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Thesis directed by Prof. Eric A. Cornell

Physicists have been able to describe our entire universe using just two mathematical mod-

els: General Relativity, for gravity, and the Standard Model, for everything else. While the

Standard Model has been tested to exquisite precision and is generally successful, it has some

serious inconsistencies: it fails, for example, to explain why matter dominates over antimatter in

our universe. New models aiming to eliminate these inconsistencies often introduce additional

symmetry violation, which in turn results in symmetry-violating properties in fundamental par-

ticles like electrons. In particular, many new physics theories predict that the electron will have a

non-zero electric dipole moment (EDM) aligned with the spin axis, which violates time-reversal

symmetry. Placing limits on the magnitude of the electron EDM directly constrains new physics

theories at energies beyond the reach of the Large Hadron Collider. Here we present a new

experimental limit on the electron’s electric dipole moment using trapped HfF+ in rotating bias

fields: |de| < 4.4× 10−30 e·cm. Our measurement is a factor of 2.5 better than the previous best

limit.
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Chapter 1

Introduction

1.1 Motivation

It’s honestly hilariously ambitious of physicists to imagine that the entire universe - from

the dawn of time until its inevitable heat death, from our galactic core out to infinity - can be

described with a single mathematical equation. But that does seem to be the project for a sizeable

portion of the discipline, and this thesis is one very small contribution to that project. Physicists

have agreed for now that the language of our universe is mathematics, so the goal is to find the

Grand Unified Theory of Everything, which is funnier if you read it in Douglas Adam’s voice.

In practice, this means taking a fairly hefty equation, like the Standard Model (SM), and testing

it and refining it and testing it and refining it and so on until we have pulled the blindfolds off

our eyes and can stare into the face of god as we walk backwards into hell1.

The Standard Model, while a darling in most physics circles, is problematic2. For example,

the SM does not account for dark matter or dark energy 3, the unification of the SM with general

relativity remains elusive, and there are other issues with opaque names like ‘the hierarchy

problem’ [11]. Our experiment is motivated by a problem called the ‘baryon asymmetry’, which

1@dril wrote: “IF THE ZOO BANS ME FOR HOLLERING AT THE ANIMALS I WILL FACE GOD AND WALK

BACKWARDS INTO HELL” Twitter, 2012-05-22

2The Standard Model: our problematic fave.

3How embarrassing - for example, dark matter makes up 84% of our universe’s cosmic matter density [10]
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describes the preponderance of matter (baryons) over antimatter (antibaryons) in our universe.

This asymmetry explains why we actually exist, but this too is a problem in the SM. The SM

predicts that our universe would have been born with virtually equal parts matter and antimatter,

who would have met and (excitingly! explosively!) annihilated a long time ago. The result would

be a present-day universe made entirely of light4, which sounds poetic - but a universe without

matter would be terribly boring. Our very existence, then, poses a problem for the “let’s describe

literally everything with an equation" people.

The baryon asymmtery can be explained by modifying the SM with the addition of some

extra ‘asymmetry’ in the math, in particular some time-reversal (T) violation (and by the CPT

theorem, charge-parity (CP) violation). This was all worked out by a physicist named Andrei

Sakharov [12], whose papers I do not understand in the least. For a slightly more technical

explanation of all this I’d recommend you read the introduction to Will Cairncross’ thesis [13],

and for an even less technical explanation please enjoy this comic I drew (Figure 1.1).

Figure 1.1: A comic I drew about the baryon asymmetry

The tricky bit, as far as I understand it, is that we can’t just add some T violation willy-nilly

into the standard model, because there’s a multitude of so-called sectors it can be added to and

we need to figure out which one is the right one. Put a different way, there’s a lot of terms in

the SM which could be tweaked to accomodate the extra symmetry violation, and we need to

figure out which terms are the right ones to adjust. Our measurement aims to check the leptonic

4no stuff, just vibes
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Figure 1.2: A cartoon depicting the time-reversal symmetry violation of an electron electric dipole
moment. The spin is indicated with two arrows and the electric dipole moment is represented by
a colour gradient and positive and negative ‘poles’. When one flips the arrow of time, the spin
flips but the electric dipole moment does not.

sector by measuring the permanent electric dipole moment (EDM) of the electron (eEDM). An

eEDM violates time-reversal symmetry because flipping the arrow of time flips the spin but not

the EDM (see Figure 1.2).

Finally, we can state the goal of this thesis: to measure the EDM of the electron (eEDM), if

it exists. We will cover the details of how one goes about measuring the eEDM in the following

chapters. For now, dear reader, please understand that the rest of this thesis is really about doing

a spectroscopic experiment (with a quick detour into a dark matter search - see chapter 5), and

not quantum field theory or complicated calculations.

There is a second motivation for our particular experiment. The addition of more T viola-

tion in the SM is, by some strange magic I don’t understand, the same as adding new high energy

particles to the SM. Because of this, sorting out the details of the T violation is related to detect-

ing new high-energy particles and measuring their properties. Traditionally this is what particle

accelerators are built for - but the new particles we are searching for are beyond the reach of

any existing accelerator, and (barring some incredible innovation) this fact is unlikely to change

for decades to come. Because of this, we really need to look outside the accelerator paradigm to

continue to search for new physics. Luckily for the field, precision AMO (atomic and molecular

optics) experiments can do just that: our current experiment is probing new physics at a TeV
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range which is already beyond the reach of the Large Hadron Collider (LHC) [32].

1.2 JILA’s eEDM experiment(s): a brief history

Before Eric started this experiment, nobody had done an eEDM search with trapped ions.

To this day we are still the only trapped ion eEDM experiment in the whole world. The relative

uniqueness of this experiment is important to acknowledge off the top, because it means that this

experiment was quite difficult to realize from scratch. Eric describes the early days of thinking

and planning5:

"There were several years there when I was thinking of how do a really good
AMO-meets-particle-physics experiment. I had BEC6, which seemed like a good
starting point. Then (as now) I was conscious of hailing from a line of AMO
or AMO-adjacent physicists who were interested in that sort of thing. I was in
Florence, Italy, in 2000 and went to an ICAP where Dave Demille had a poster on
his PbO, vapor cell, Ω = 1 vision. That was my first exposure to the really cool
possibilities of Ω = 1 molecular states for precision metrology, and it blew my
mind. I’m glad that four years went by before I definitively set out to steal that
idea. And I’m glad that everything about my experiment except for Ω = 1 was
entirely different from Dave’s EDM vapor cell project. It can be a little rude (al-
though not "illegal") to go to a talk or poster and then just say "cool experiment.
I am going to try to do it too, just do it faster." In the 2000s through summer 2003

I was thinking a lot about "what I could do for an encore to BEC". Starting in fall
2002 with Immanuel Bloch’s paper on the Mott transition [14] which basically set
everyone’s hair on fire, and increasingly for the next couple years, this idea of
doing quantum computing with individual neutral atoms in adjacent lattice sites
was like all anyone wanted to talk about. The whole scheme didn’t appeal to me,
or maybe it was just sour grapes that it was not my idea, so that pushed me to
think even more about precision metrology as an alternative to quantum informa-
tion, and as a future direction for cool BEC experiments. Meanwhile, Debbie just
down the hall was doing these mind-blowing things with fermions, so I could
sort of enjoy cutting-edge ultra-cold physics vicariously through watching her
progress. Before too long I was so set on "doing a cool precision measurement"
that I was no longer committed to "doing precision measurement using BEC". I
was pretty sure I didn’t want to do a beam-line experiment, ala Rabi then Ram-
sey then Kleppner then Commins. I wanted long coherence times, so trapped
or at least hobbled atoms or molecules. I spent time reading journal articles on
all sorts of crazy ideas, e.g. "trapping" or at least immersing molecules in liquid

5Extensive quotes from E. Cornell extracted from a February 2022 email
6Bose Einsten Condensate
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helium. I looked into exotic traps like acoustic-wave Paul traps and microwave
cavity traps."

At this point it’s helpful to point out that a key step in any EDM experiment is the addition

of a very large electric field to polarize the species under investigation. And since Eric wanted

to do the experiment with molecules to realize the “Ω = 1 vision", but he also wanted long

coherence/interrogation times, he needed to figure out how to both trap and electrically polarize

molecules. At the time nobody had developed the technology to trap EDM-friendly neutral

molecules. In fact, considerable effort is still being expended on getting EDM-friendly neutrals

trapped, and the best neutral limits still come from beam experiments (which are severely limited

in interrogation time). Of course, the technology for trapping charged species was very mature,

but using trapped ions for an EDM experiment was widely considered impossible: in a normal

ion trap the application of a polarizing DC electric field would immediately kick the ions right

out of the trap. But here’s where Eric had a fantastic idea: use a rotating electric field to polarize

the molecules without kicking them out of the trap. Later chapters will discuss this in detail.

"The idea of trap with rotating field, I am not sure exactly when I came up with
it but it was much on my mind in summer of 2003, and by fall 2003 I decided I
wanted to try it. I had like 10 different molecules in mind, but HfF+ was not one
of them7. The idea of using photodissociation as read out technique was there
from early on as well. I started trying to hire my first student in late fall of 2003.
Russ (Russel Stutz) joined in January 2004."

The first recorded proposal for the experiment that I could find comes from 2004, from the

35th Annual Meeting of the APS AMO Division [15]. The abstract reads:

Search for the electron EDM using trapped molecular ions
The current limit on the electron electric dipole moment (de < 1.6× 10−27 e·cm)
was set using an atomic beam of Tl [16]. We propose a new experiment using
molecular ions trapped in an RF quadrupole and cooled to cryogenic tempera-
tures using a Helium buffer gas. This new experiment would benefit from the
large effective electric fields experienced by an electron in polar molecules which
can be orders of magnitude larger than in heavy atoms [17]. We also hope to

7Ultimately, HfF+ was the molecule we used in the experiment
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achieve much longer spin coherent times than previous experiments, resulting
in narrow magnetic resonance lines. Utilizing the near degenerate Λ-doublet
present in some molecular ions, we expect to achieve a highly polarized sample
of ions in a relatively weak (10’s of V/cm) rotating electric field. This will lead
to high sensitivities to de while minimizing systematic effects due to laboratory
electric fields. Systematic effects should also be reduced by the low ion velocities
compared to atomic beam experiments.

It’s worth pausing for a moment here to give Russ the credit he deserves for being the very

first grad student to sign on to a never-been-done-before experiment as a new grad student. Eric

recalled a time when he gave a talk about the proposed experiment at NIST, with Russ in tow,

and afterwards one of the NIST scientists said, with Russ listening, “cool idea, but I’d hate to be

a grad student working on that project!”

By the spring of 2004 Laura Sinclair had also signed up as a grad student on the eEDM

project, and Aaron Leanhardt had agreed to be a postdoc. All 4 of them met at DAMOP in 2004

for the first group eEDM meeting, even though half the group hadn’t even been to Boulder yet!

Around this time, Eugene Commins’ experiment was the one to beat. He had published the lead-

ing paper on eEDM in 2002 [16] using an atomic beam of Thallium, and this limit stood for about

a decade before being bested in 2011 by the first eEDM experiment done with a paramagnetic

polar molecule: the YbF experiment from the Hinds group at Imperial College London [18].

By Fall of 2004 Russ, Laura, and Aaron were all in the lab, and John Bohn and his student

Ed Meyer were thinking hard about the experiment in general and molecular species in particular.

But just as things were getting off the ground, Eric got very, very sick with necrotizing fasciitis.

In his words:

"It’s hard to describe how very very sick I was, how close to death, for two
months, and how for at least a full 12 months I was either not around at all or
else around, but physically and emotionally kind of shattered, needing to work
on physical therapy, pain issues, and something at least vaguely like ptsd. I had
definitely lost my swagger. In the meantime, Russ and co. plodded on, and by
around February 2005 Eric realized that "some combination of Aaron, John and
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Ed had identified a really promising molecule, HfF+. I have no idea how they
did that!!!!"

Obviously, settling on a species was a huge milestone for the experiment. After this the

team needed to figure out how to make it, trap it, map its energy landscape, control the internal

quantum state, do ramsey spectroscopy, and read out the final quantum state. A tall order

indeed! Eric describes the exploratory work that followed:

"We wanted to do "practice photodissociation" on a molecule whose photodisso-
ciaton was well understood, and we wasted like four person-years on that effort.
Also it took us too long to figure out we really could not do survey spectroscopy
in our ion tap. We needed a neutral beam line, and we simply had to bite the
bullet and learn to do our own survey spectroscopy. Enter Jun Ye!!!"

Though the group did not publish a lot at this time, a metric tonne of work got done.

They figured out how to make and trap HfF+, they did spectroscopy and saw their first of many

assignable rotation bands, they found excited states which coupled strongly to both 1Σ+ and

3∆1, they measured the spectroscopic signature for ∆8 with no applied B field, and of course

they finally saw Ramsey fringes. A big deal for our experiment was when the team figured

out rotational-state-selective resonance-enhanced-multiphoton-dissociation (REMPD), which was

eventually published in 2014 [19]. This was so critical because the efficiency of the other readout

option, light induced fluoresence (LIF), was so low that it was clear that they would never get a

high precision result with it. Eric said it was the “much better than expected REMPD” that made

him think “yes. We will by golly be able to beat Commins by a factor of ten. We may not do that

before ACME does, but we will eventually. This whole idea IS NOT CRAZY!!!!”

Eventually we published our first generation result [2], and we managed to almost tie

ACME’s world-leading result [20]. It was pretty amazing given we were counting about 5 ions

on the side of a fringe at the time (our entire advantage was that we were measuring out to

∼ 750ms compared to ACME’s ∼ 5ms). After that we tore down the first generation apparatus

8Defined in Chapter 2
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and rebuilt everything while we re-invented almost every step of the experiment. We now count

∼ 250 ions on the side of a fringe and we measure out to 1.5− 2.5 seconds, allowing us to put a

new limit on the eEDM.

Looking back at all the theses and papers published over the last decade and a half it is

remarkable what a labour of love our eEDM experiment is. I owe a huge debt of gratitude to all

the grad students, undergrads, post-docs, and PI’s who worked incredibly hard to made this not-

so-crazy idea actually come to life. I am exceedingly lucky to have walked into the experiment

around the time the first measurement was happening, and that I’ve been able to see the second

measurement through from beginning to end.

Figure 1.3: A comparison between fringes taken in 2013 (upper left) and much more recently, in
2020 (remaining panels). Note the time axis goes to 25 ms in 2013, while it goes to 1.5 seconds in
2020.
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1.3 A non-exhaustive list of other searches for the eEDM

So far I’ve only given a few examples of the larger eEDM landscape, but these measure-

ments have been happening for 70 years so it’s a relatively mature field. Purcell and Ramsey were

the first to propose such a search in 1950 [21]. The first limits were set via scattering [22], Lamb

shift [23], and electron g-factor measurements in the late 1950’s and early 1960’s [24]. Limits were

then set with paramagnetic atoms such as Rb, Cs, and Tl (see, for example, [25],[26],[27]) in the

1960’s through 1970’s. To give you a sense of the progress, the 1964 Cs result [26] constrained

|de| < 2× 10−21 e·cm, while the measurement detailed in this thesis constrains |de| < 4.4× 10−30

e·cm.

In the early 1960’s measurements were done in diamagnetic 129Xe [28] and then later in

the late 1980’s with Hg [29]. From the late 1980’s through the early 2000’s Tl was consistently

setting the most stringent limits ([30][31][16]) - by 2002 the limit was |de| < 1.6× 10−27 e·cm.

In the last 20 years, molecular experiments took over: since the first limit was set using YbF by

the Hinds group in 2011 [18] (|de| < 1.05× 10−27e·cm), all subsequent limits have been set using

paramagnetic polar molecules. In 2014 the ACME collaboration used a beam of ThO [20] to

constrain |de| < 8.7× 10−29e·cm, and in 2017 our group published a similar limit using trapped

HfF+ ions [2] (|de| < 1.3× 10−28e·cm). In 2018 ACME improved the limit by roughly an order of

magnitude, again using a beam of ThO [32] (|de| < 1.1× 10−29e·cm). As mentioned above, the

measurement in this thesis constrains |de| < 4.4× 10−30 e·cm.

At the time of this writing, we are still the only eEDM experiment which actually traps

molecules. There are a number of groups who are on the verge of trapping EDM-friendly neu-

trals, whether they have Ω-doubling structure [33] or not (which does not preclude sensitivity to

to BSM physics but requires much larger laboratory fields, often results in incomplete polariza-

tion, and offers no internal co-magnetometry) [34][35][36][37], a technique has been suggested

for using already-trappable polar molecules [38], and some folks are even working on solid state
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eEDM searches [39]. I even heard a rumor at DAMOP that another group is going to start using

rotating fields [40].

Figure 1.4: A cartoon depicting the current status of eEDM searches. The pink region indicates
where most new physics theories predict the eEDM should be, and the blue arrows indicate
recent exclusions (at the 90% confidence level). The exclusions measured zero up to the uncer-
tainty indicated, which means that they exclude eEDMs larger than their uncertainty. The brown
region indicates the standard model prediction for the eEDM. One can see that the region we are
probing is effectively ‘background free’ in terms of the standard model prediction, and that most
new physics theories predict EDMs right in the range we can measure - so our measurements
directly constrain those theories.

1.4 Overview of this thesis

This thesis is focused entirely on JILA’s eEDM search, and almost completely on the second

generation of the search, referred to as "Generation 2" or "Gen 2". Chapter 2 details how one

actually goes about measuring an eEDM and the specific details of our experiment, including

details about the data analysis and the mathematical and algorithmic specifics we use to generate

everything from Ramsey fringes (from raw ion counts) to linear combinations of data streams to

get "frequency channels". Chapter 3 is the systematics chapter, which is pretty self explanatory.

Chapter 4 contains the final results from the Generation 2 measurement. Chapter 5 is about the

dark matter exclusion we did with Generation 1’s data. Chapter 6 contains my conclusions about

this work. Enjoy!



Chapter 2

How the experiment works

This chapter details how our experiment actually works, both theoretically and in practice.

We begin this chapter with a section providing a generic overview of how one might measure an

eEDM. Later sections will detail the theoretical foundations as well as the practical details of our

experiment.

2.1 Measuring the electron’s electric dipole moment: the basic recipe

In the most general terms, the goal of this section is to answer the question: how do you

actually measure an electron EDM? We will cover the core concepts and basic ingredients here.

2.1.1 The basic recipe: put a dipole in a field - twice

Let’s begin with something we understand1: a simple spin-flip experiment. Let’s say we

have a spin in a magnetic field, and we measure the energy splitting between the two states (spin

aligned or spin anti-aligned with the field, see Figure 2.1, left). Now we can add in the EDM:

imagine it is pointing in the same direction as the spin, so the ket in Figure 2.1 represents both

the direction of the spin and the EDM. If we also add an electric field, then the energy levels will

get pushed apart for one relative orientation of the fields (see Figure 2.1, center). If we flip the

direction of the electric field, the levels get pushed together (see Figure 2.1, right). If we take the

1hopefully
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difference between these two measurements, the magnetic term cancels out2 and we measure an

energy splitting directly proportional to the EDM. So you put a dipole in a field - twice.

Figure 2.1: Conceptual cartoon depicting the basic measurement principle. In each panel, the
ket indicates both the direction of the magnetic moment (spin) and the electric dipole moment
(EDM). In the first panel, a simple spin flip measurement is performed. In the second panel,
an electric field is added, pushing the energy levels apart for that particular relative orientation
of the fields. In the third panel the electric field is flipped, pushing the levels together. The
difference between the last two measurements cancels out the magnetic dipole contribution (to
first order) leaving only the electric dipole contribution.

2.1.2 Key ingredient 1: sensitivity

To keep pushing the limit on the eEDM we must keep improving our sensitivity (i.e. re-

ducing our measurement uncertainty). To do this we need to consider three primary things: the

electric field, the count rate, and the coherence/interrogation time. First, the larger the electric

field the larger the energy level splitting will be (see Figure 2.2, left). Second, a large count rate

will allow us to determine the centers of the peaks with more precision (see Figure 2.2, center).

Third, a long coherence will make the lines more narrow (see Figure 2.2, right). All together,

our sensitivity improves as the product of the effective electric field, the coherence time, and the

square root of the counts. To optimize our sensitivity (minimize our uncertainty) we want to

make all three parameters as large as possible.

δde ∼
1

|Eeff|τ
√

N
(2.1)

2to first order
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Figure 2.2: Conceptual cartoon depicting how three key parameters affect our sensitivity. In the
first panel, the separation between peaks scales linearly with the effective electric field, Eeff. In
the second panel, having a higher count rate N reduces the fractional error in the determination
of the peak centers by

√
1/N. In the third panel, the width of the peaks scales like the inverse

coherence time, or 1/τ

To maximize the effective electric field we use paramagnetic polar molecules: the unpaired

electron spin experiences a massively enhanced electric field inside the polarized molecule, re-

quiring only modest laboratory fields to produce [41]. For example, in our experiment we apply

a field of ∼ 50 V/cm, which results in an effective electric field (experienced by the unpaired

electron) of ∼ 20 GV/cm. Of course, this comes with a catch: molecules have a much more

complex energy structure compared to atoms. This can be both a blessing and a curse: it’s a

blessing because we are able to exploit certain molecular states to improve our measurement, but

it’s a curse because it makes the vast majority of molecules that would be sensitive to the eEDM

very difficult to trap and cool. Molecules being generically difficult to trap and cool3 means that

until recently all the leading eEDM measurements were done with molecular beams, which are

constrained to ∼ms coherence/interrogation times.

Figure 2.3: A cartoon depicting a polarized HfF+ molecule

To maximize the coherence time one needs to be able to trap the molecules - with a catch. To

3Of course, there are molecules amenable to trapping and cooling, but so far none of those candidates appear

sensitive to the eEDM.
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perform an eEDM experiment, you also need to orient the molecules in an external electric field.

Doing both at the same time is the difficult bit. Lots of groups are working on the technology to

trap eEDM-sensitive neutral molecules, and once these are trapped orienting them is (nominally)

quite easy. Trapping eEDM-friendly neutrals is not easy, however - being sensitive to the eEDM

usually means an energy level structure which is not very amenable to cooling and trapping.

The other option is to work with charged species, which are very easy to trap. But until our

experiment came along nobody could figure out how to orient trapped ions: any application

of a DC electric field would push the ions right out of the trap. Eric’s insight was to apply a

rotating electric field in the x− y plane, Elab = Erot(cos(ωrott)x̂ + sin(ωrott)ŷ) which the ions can

adiabatically follow while staying trapped. With the rotating field trick, we enjoy coherence times

three orders of magnitude larger than beam experiments [2] [32]. It’s a really brilliant idea, and

we are still the only people in the world using rotating fields to orient trapped ions.

Finally, to maximize the count rate you need to trap/cool as many molecules as possible,

and detect them with maximum efficiency. This is where ion traps underperform compared to

beam experiments: we can only trap so many ions at a time due to coulomb repulsion, and the

experimental rep rate is limited by the interrogation time. In our experiment we count about 250

ions on the side of a Ramsey fringe (roughly per second), which seems really pathetic compared

to the ∼ 106 molecules per second counted in a beam experiment. But these numbers go under

a square root, while the 3 orders of magnitude improvement we have in interrogation time

compared to beam experiments does not. This is one of the ways we stay competitive.

2.1.3 Key ingredient 2: bias magnetic and electric fields

To perform the spin-flip experiment described above we need to apply a polarizing electric

field as well as a bias magnetic field. The two fields need to be aligned then anti-aligned to get

the two core measurements we need. The previous section described our polarizing electric field.

The rotating field has two primary effects: first, it drives the ions in uniform circular motion,
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where their orbits have radius r = eErot
mω2

rot
(r ∼ 0.5 mm for our typical operating parameters).

Second, the ions are accelerated into a rotating frame relative to the lab, which introduces a

coupling between near-degenerate mF levels, which we denote as ∆ for mF = ±3/2. ∆D denotes

the difference in coupling between Stark doublets due to differing proximity to the F = 1/2

manifold.

The rotating electric field and resultant circular orbits of the molecules leaves us with one

more hurdle: how can we apply a bias magnetic field aligned (or anti-aligned) with a rotating

quantization axis?4 The answer is to use a quadrupole magnetic field. The circular orbits (in the

rotating frame) see a static magnetic field which is aligned or anti-aligned with the quantization

axis5 (see Figure 2.4). The primary component of the spin precession frequency that we measure

is due to this so-called rotating magnetic field.

Figure 2.4: A cartoon depicting how a radial quadrupole magnetic field amounts to a static,
quantization-axis aligned magnetic field in the rotating frame. In each panel, the magnetic field
gradient is indicated with light blue arrows. A circular orbit for a molecule is indicated near the
top, and pink arrows depict the vector decomposition of the magnetic field which the ions see
as they are rotating. You can see that as the molecule rotates, the vector decomposition of the
magnetic field has two components: one which is always pointing “up", and one which always
aligns (or anti-aligns) with the molecular axis.

4Why have a magnetic field at all? We want to bias away from an avoided crossing between the two energy levels

we measure, and to control the spin precession frequency.
5Technically, the quantization axis is the vector sum of the electric and magnetic fields, but the Zeeman interaction

is so much smaller than the Stark interaction in our chosen states that we can, to an excellent approximation, neglect

the contribution of the magnetic field to the direction of the quantization axis.
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2.1.4 Key ingredient 3: Ω doubling (aka clever use of molecular energy structure)

We have almost everything queued up for a great experiment. The main remaining problem

is that the shift we want to measure is either zero (up to our sensitivity) or very small, fractionally,

compared to the primary Zeeman-induced precession frequency we will measure. To measure

something that is fractionally tiny without polluting the result is difficult. One must take care

to identify and, whenever possible, eliminate systematic shifts which might mimic the effect of a

real eEDM. This is where Ω-doubling comes in! I’ll provide a brief review of Ω-doubling here as

well as a short discussion on why it is so helpful for systematic rejection. If you would like more

details I’d recommend reading [42] and references therein, as well as [43]. The idea to exploit

Ω-doubling to reduce systematics comes from Dave DeMille [44].

Ω-doubling is the name for a type of energetic substructure present in some molecules.

Ω-doublet substructure generally occurs in molecular states with internal electronic angular mo-

mentum J ≥ 1, and often in molecules with one heavy nucleus, two valence electrons in a triplet

state, and at least one valence electron in a σ or π1/2 orbital [42]. For the rest of this discussion

we will discuss the J = 1 manifold of the HfF+ 3∆1 state. HfF+’s 3∆1 state is well described by

Hund’s case a) basis states with coupled nuclear spin:

|Λ = ±2, S = 1, Σ = ∓1, J, Ω = ±1, I = 1/2, F, MF⟩ , (2.2)

where Λ = L · n is the projection of the electronic orbital angular momentum L on the

internuclear axis n, S = |S| is the total electronic spin angular momentum, Σ = S · n is the

electron spin projection on the internuclear axis, J = |J| = |L + S + R| is the electronic plus

rotational angular momentum, Ω = Λ + Σ = J · n is the projection of the electronic angular

momentum onto the internuclear axis, I = |I| is the 19F nuclear spin, F = |F| = |J + I| is the

total angular momentum of the molecule, and mF = F · ẑ is the projection of F on the rotating

quantization axis [1] [2]. We take the internuclear axis n to be directed from the 19F nucleus to
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the 180Hf nucleus [2]. The above might be easier to digest in pictoral form; if so see Figure 2.5.

Figure 2.5: A cartoon depicting the vectors for Hund’s case a. The electronic spin and orbital
angular momenta, S and L, are strongly coupled to the internuclear axis by spin-orbit and elec-
trostatic interactions respectively. Hund’s case a arises when spin-orbit interactions are much
weaker than the electrostatic interactions which split different electronic states. This means that
widely separated electronic levels are split into a set of spin-orbit manifolds, each of which con-
tains many closely spaced rotational levels. Λ = L · n is the projection of the electronic orbital
angular momentum L on the internuclear axis n, S = |S| is the total electronic spin angular mo-
mentum, Σ = S · n is the electron spin projection on the internuclear axis, J = |J| = |L + S + R|
is the electronic plus rotational angular momentum, Ω = Λ + Σ = J · n is the projection of
the electronic angular momentum onto the internuclear axis, I = |I| is the 19F nuclear spin,
F = |F| = |J + I| is the total angular momentum of the molecule, and mF = F · ẑ is the projection
of F on the rotating quantization axis [1] [2]. We take the internuclear axis n to be directed from
the 19F nucleus to the 180Hf nucleus [2].

In the 3∆1 J = 1 state of HfF+ we have two hyperfine states with total angular momentum

F = 3/2 and F = 1/2. Each of these has a pair of manifolds made up of the two allowed

projections mF = F · ẑ onto the quantization axis. The two sets of states correspond to the

eigenstates of the parity operator: |e⟩ = (|Ω = +1⟩ − |Ω = −1⟩)/
√

2 and | f ⟩ = (|Ω = +1⟩ +

|Ω = −1⟩)/
√

2. The degeneracy of these two manifolds is lifted by the Ω-doublet splitting,

which we call ωef (see Figure 2.6).
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Figure 2.6: In HfF+’s 3∆1 J = 1 state we have two hyperfine states with total angular momentum
F = 3/2 and F = 1/2. Each of these has two degenerate manifolds made up of the different
allowed projections mF = F · ẑ onto the quantization axis. The two sets of degenerate states
correspond to the eigenstates of the parity operator: |e⟩ = (|Ω = +1⟩ − |Ω = −1⟩)/

√
2 and

| f ⟩ = (|Ω = +1⟩+ |Ω = −1⟩)/
√

2. These degenerate manifolds are separated by the Ω-doublet
splitting, which we call ωef

The molecule has a molecule frame dipole moment6, and in the presence of an electric

field states of good parity are mixed to become states of good orientation. The orientation states

are either aligned or anti-aligned with the field, and we refer to these states as Stark doublets, or

doublets for short. We refer to the aligned orientation as the “lower doublet" and the anti-aligned

orientation as the “upper doublet" (see Figure 2.7, left). The addition of a magnetic field lifts the

degeneracy further, as the spin is either aligned or anti-aligned with the external field (see Figure

2.7, center). Finally the effect of the eEDM further shifts the levels, as the eEDM (which we

assume is aligned with the spin) is either aligned or anti-aligned with the internal electric field

of the molecule (indicated with E⃗eff, see Figure 2.7, right). A summary of all the shifts discussed

above is depicted in Figure 2.8.

The effect of the eEDM has the opposite sign in the upper vs lower doublet, so this allows

us to make a differential measurement between doublets to measure the energy shift due to the

eEDM. A small complication is the magnetic g-factor is different in the upper vs lower doublet

(indicated as gu
f and gl

F) due to electric-field-induced mixing with the F = 1/2 hyperfine level

6The molecule frame dipole moment points from negative to positive charge
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Figure 2.7: Focusing only on the F=3/2 manifold of the 3∆1 J = 1 state of HfF+. Σ = S · n is the
electron spin projection on the internuclear axis, and the internal electric field experienced by the
valence electron is indicated as E⃗eff. Left: an electric field polarizes the molecule along or against
the field, which we call the “upper" and “lower" “doublets". The energy levels without the added
E field are indicated with dashes lines, and the energy levels with the added E field are indicated
with solid lines. Center: adding a B field further lifts the degeneracy, when the spin is aligned
with the B field the level moves down, and when it is anti-aligned it moves up. Again, the energy
levels without the added B field are indicated with dashed lines and the energy levels with the
added B field are indicated with solid lines. Right: finally, the addition of the eEDM itself further
breaks the degeneracy, we assume the eEDM points in the same direction as the spin; when the
eEDM is aligned with the internal electric field E⃗eff the energy level moves further down and
vice versa. As before, the energy levels without the effect of the eEDM are indicated with dashed
lines and the energy levels with the effect of the eEDM are indicated with solid lines. Nothing in
this cartoon is to scale.

and with the J = 2 states.

Now here’s the clever bit: this energy level structure allows for robust systematic rejec-

tion due to misaligned fields: a transverse magnetic field, to first order, will couple mF and

m′F = mF ± 1. Because we measure only the energy difference between stretched states, this first

order shift won’t affect our measurement. To second order, the shift will affect the difference be-

tween the stretched states, but this shift is common-mode between doublets7 - so taking a differential

measurement between doublets eliminates this (up to time-variations, which can be dealt with

by measuring both doublets simultaneously, as we do) [42].

7Up to the diffference in g-factor between doublets, see section 2.2.1
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Figure 2.8: HfF+’s 3∆1, J = 1, F = 3/2 state complete details. Σ = S · n is the electron spin
projection on the internuclear axis, and the internal electric field experienced by the valence
electron is indicated as E⃗eff. The energy levels without the effect of the eEDM are indicated with
grey lines, while the ones with the effect of the eEDM are indicated with black lines. Dashed
lines are for visual aid only. The effect of the eEDM has the opposite sign in the upper vs lower
doublet. It is this energy difference that we aim to measure with our experiment.

2.2 Measuring the electron’s electric dipole moment: theoretical details

2.2.1 3∆1, v = 0, J = 1 Hamiltonian

We perform ramsey spectroscopy on the stretched (mF = ±3/2) states in HfF+’s 3∆1, J = 1,

F = 3/2 manifold. As mentioned in 2.1.4, the 3∆1 state is well-described by Hund’s case a) basis

states with coupled nuclear spin. In the 3∆1, J = 1, F = 3/2 manifold |Σ| = 1, |Λ| = 2,

and |Ω| = 1, and, again as mentioned in 2.1.4, both hyperfine (due to the fluorine nucleus’ spin

I = 1/2) and Ω-doubling structure are present. The hyperfine splitting is −46.6(1) MHz between

the F = 1/2 and F = 3/2 manifolds, and the Ω-doubling splitting is 740(40) kHz between Ω = 1

and Ω = −1 states. Treating each Stark doublet as a two-level system, we include the Zeeman,

frame-rotation, Ω-doubling, and eEDM terms as primary contributors to the energy shift between

the stretched states [2]. In the F = 3/2, mF = ±3/2 basis, the two-level perturbative Hamiltonian

has the form:
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Hu/l
eff =

1
2

−3(gF ± δgF)µB(Brot + δBnr + δBi)± 2de|Eeff| − 3αh frot + . . . h(∆± ∆D)

h(∆± ∆D) 3(gF ± δgF)µB(Brot + δBnr + δBi)∓ 2de|Eeff|+ 3αh frot + . . .

 ,

(2.3)

where the u/l superscript and upper or lower signs correspond to the upper or lower Stark

doublet, α ≡ EZ/Erot is the tilt of the electric field out of the XY plane (in other words, the

axial tilt), δB represents imperfect switching of the rotating magnetic field, and ∆ is a a rotation

induced mixing of the angular momentum projections in the laboratory frame8 with a Stark

doublet-odd contribution ∆D (due to different levels of perturbation from the F = 1/2 manifold,

the upper doublet being closer and therefore more perturbed). The subscripts on δB, nr and i,

indicate an axial magnetic field gradient δBnr that does not switch with our applied switching

axial field gradient (which ultimately comes down to the limit of our abilty with the shim coil),

and an actually-rotating-in-the-lab frame δBi due to the charging current i in our 8-electrode

trap. Here the magnetic g-factor gF results from the combined nuclear and electronic magnetic

moments, which are coupled by the nuclear hyperfine Hamiltonian. There is a difference in

magnetic g-factors between the upper and lower Stark doublets, denoted as δgF, which is due

to Stark-induced mixing of J = 1 with J = 2 and E -field induced mixing of adjacent magnetic

sublevels at second order in perturbation theory. δgF has the form

δgF

gF
≈ −3dmfErot

20Be

(
1− gNµN

3gFµB

)
+

3h̄2ω2
rot

dmfErotA∥

(
1− 2gNµN

3gFµB

)
≈ −1× 10−3. (2.4)

For our experimental parameters the first term, which is linear in Erot, dominates. The

coupling ∆ first arises at fourth order in perturbation theory from the combined perturbations

of rotation and Ω-doubling, and breaks the degeneracy of the |mF| = 3/2 states in either Stark

doublet at Brot = 0 [43, 45]. ∆ and ∆D are given by

8I think of it is like this: if there is a projection that is initially aligned with the quantization axis, then the axis

rotates, the projection goes from being, eg., +z to some mixture of ± z. So, with our rotating bias field, adjacent mF

levels become mixed.
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h∆ =
3h̄ωe f

2

(
h̄ωrot

dmfErot

)3
(

18A2
∥ − 19d2

mfE2
rot

A2
∥ − d2

mfE2
rot

)
, h∆D =

3h̄ωe f

2

(
h̄3ω3

rot

d2
mfE2

rot A∥

)(
9A2
∥ − 8d2

mfE2
rot

A2
∥ − d2

mfE2
rot

)
.

(2.5)

These expressions are valid as long as dmfErot ≫ h̄ωe f and dmfErot ≫ h̄ωrot or, in other

words, if the molecule is fully polarized. The strong scaling of ∆ with Erot allows us to perform

off-resonant π/2 pulses by modulating the magnitude of Erot.

The geometric frequency shift 3α frot is due to a non-zero axial electric field, EZ. When

EZ is nonzero, the total electric field tilts out of the x− y plane, and it sweeps out a solid angle

different from 2π. See [46] for a detailed discussion of this effect. 2de|Eeff| is the EDM term, where

de is the electron edm and Eeff is the effective electric field experienced by the valence electron.

Higher order contributions to Hu/l
eff , denoted by ellipses in Eq. (2.3), are due to higher-order

combinations of perturbing Hamiltonian components, and primarily result in small corrections

to the terms already discussed [2].

2.2.2 Measurement of δgF/gF

We re-measured the differential g-factor ratio δgF/gF for improved accuracy compared to

the Generation 1 measurement. There are two different ways to measure δgF/gF, one can look

at the slope in f D as one varies f 0 (by, for example, varying the magnitude of Brot), or the slope

in f BD as one purposely applies a non-reversing axial magnetic field gradient, generating an f B
nr.

We did both, see Figures 3.6 and 2.10.

2.2.3 Molecular structure

Put bluntly, HfF+is a complex molecule, and entire PHDs are done calculating various

molecular parameters. Luckily for me, that is not what this thesis is about. For a nice detailed

discussion of the energetic structure of HfF+, I’d recommend reading Chapter 2 of Will’s thesis
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Figure 2.9: Measurement of δgF/gF by varying the mean fringe frequency f 0, all data is taken at
Erot = 57.9V/cm.

Figure 2.10: Measurement of δgF/gF by adding a non-reversing axial magnetic field gradient,
leading to large f B. Note that f BD is still blinded in this measurement.

[13]. This section is here simply to point you to the right place if you are looking for HfF+details

:)

2.2.4 Experimental noise vs the quantum projection noise limit

We’ve already seen a heuristic expression for the sensitivity in section 2.1.2. Now let’s dig

into the details, and try to figure out how far above the quantum projection noise limit we are.
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The problem with really deriving the correct expression is that we never really know how

many ions each experimental run starts with. In certain specialized experiments, the total number

of spin-1/2 particles maybe known precisely (for instance, in chains of trapped ions, or in certain

optical lattice experiments, or in situations where many photons can be scattered from each

particle.) Often times, however, the total number of spins Ntot contained within a sample can

be known to at best only ±N̄1/2
tot . Where N̄tot is the average value for Ntot observed over many

samples. One can imagine this limit arises because we have somehow randomly down-selected

a small fraction much larger sample (say of neutral molecules) to get our sample spins (perhaps

they are ionized molecules). In any case, when one knows the total number of spins only to the

?shot-noise? on Ntot, N̄1/2
tot , and when one then performs some coherent spin manipulation on

the sample, and then measures a projection, say, the number of up spins N↑, one finds that the

best one can do is to measure N↑ to a one-sigma uncertainty of N̄1/2
↑ where N̄1/2

↑ is the average

number of up spins measured over may samples. If one succeeds in realizing this precision, one

is at the shot-noise limit. This situation can be contrasted to the situation in which one knows

Ntotprecisely, in which case the corresponding precision on measuring up-spins can be somewhat

better:

σ = (N̄↑(1− N̄↓/Ntot))
1/2. (2.6)

Note that in this “known Ntot” limit, variance vanished as N̄↑ goes to N̄tot whereas in the

other limit the variance on N↑ continues to be the naive shot-noise limit of N̄1/2
↑ even as N̄↑ goes

to N̄tot.

We are very much in the “imprecisely known Ntot” limit, and worse yet, we actually have

considerable technical noise in the production of our molecules, so noise from sample-to-sample

on Ntot is actually often factor of 4 or 5 worse even than N̄1/2
tot . We use a differential technique,

measuring the N↑ population simultaneously in both stark doublets, so as to cancel the technical

noise and thus on the side of the fringe we can measure the difference between the spin up
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populations in the two stark doublets to the precision you would anticipate if each individual

spin-up population were measured to within its shot noise limit [47].

I derived the expected shot noise limit in the case where we do know Ntot, you can find it

in Appendix D.

For now, let’s not worry about the stark doublet and think of a single fringe and see what

we anticipate for the error in our spin asymmetry if we were able to measure individual spin

projections at the shot noise limit. During our Ramsey experiment the spin precesses, so the initial

state (|↑⟩+ |↓⟩)/
√

2 evolves such that at a later time tR after a second π/2 pulse the state vector

can be written as ∼ cos(ωtR) |↑⟩+ sin(ωtR) |↓⟩. So now the probabilities of measuring a given

basis vector become sinusoidally time-varying: p↑ = |c↑|2 = | cos(ωtR)|2, which goes right into

the binomial distribution of equation D.1 and the corresponding variance (eq D.2):

σ2(tR) = Ntot| cos(ωtR)|2(1− | cos(ωtR)|2). (2.7)

This is the quantum projection noise limited uncertainty for any measurement we will make of

an ensemble of independent ions. In other words, this is the minimum uncertainty we can expect

in any measurement of the number of ions in a given stretched state. How will this uncertainty

affect our total uncertainty?

To compute the quantum projection noise limited total uncertainty, we need to go from

an uncertainty in a single spin asymmetry measurement to an uncertainty in the precession

frequency, then from that to a measurement of de. I’ll sketch out a heuristic argument using only

the sides of the fringe, I expect the rigorous argument is more complex than we need. Let’s step

through a perfect, quantum-projection-noise-limited version of our experiment and keep track of

the uncertainties:

First, we prepare an ensemble of ions Ntot in a superposition state (|↑⟩ + |↓⟩)/
√

2, let it

evolve, apply a second π/2 pulse, then measure the number of ions in the up state, N↑. The
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probability of measuring a given value of N↑ (on the side of a fringe, we expect N↑ = Ntot/2) is

given by the binomial distribution with variance σ2
↑/↓ = Ntot p↑(1− p↑) = Ntot/4, since p↑ = 1/2

on the side of a fringe.

Then we repeat the same process to measure N↓ and again σ2
↑/↓ = Ntot/2 since we are on

the side of a fringe (p↑ = p↓ = 1/2).

Now we take these two measurements and form the fringe asymmetry: A = (N↓ −

N↑)/(N↓ + N↑). Combining the errors we have a new uncertainty: the numerator and denomi-

nator have the same variance δA2
n/d = Ntot/2, and the quotient of that has variance

δA2 =
(N↓ − N↑

N↓ + N↑

)2( Ntot/2
(N↓ − N↑)2 +

Ntot/2
(N↓ + N↑)2

)
=

Ntot/2
(N↓ + N↑)2 +

Ntot/2(N↓ − N↑)2

(N↓ + N↑)4

=
1

2Ntot

(2.8)

where in the last line we used N↓ + N↑ = Ntot

Now we repeat this procedure r times, and we get r/2 asymmetry measurements. We

average these measurements to get a better estimate of the spin asymmetry, and the sampling

distribution of the mean9 is usually approximated by a normal distribution, so the quantum-

projection-noise-limited uncertainty on an asymmetry measurement is δA2
mean = δA2/r:

δA2
QPN =

1
Ntot frepTtot

, (2.9)

frep is the rep rate of the experiment, and Ttot is the total time the experiment was running, and

r = frepTtot/2.

On the side (zero-crossing) of a sinusoisally-varying asymmetry measurement, the slope

(in units 1/s) is equal to ω 10, which we approximate as a line with zero offset: y = ωt. If we are

9For Ntot >> 1

10The side of the fringe cos(ωt) is at ωt = π/2, the derivative is d/dt cos(ωt) = −ω sin(ωt), plug in ωt = π/2
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fitting a line to a point with errorbar σ′ (and σ′ << 1), then the line can be moved up or down σ′,

so the fitted line can range from y = ωt to y = ωt± σ′. The horizontal distance (in this case, the

time shift) between the "true line" y = ωt and the "line inferred due to the errorbar" y = ωt± σ′

is given by finding the point on the x-axis where y = ωt = σ′, so t = σ′/ω. In a cycle, the time

for a single degree is tdeg = 1/360 f = T/360, where f is the frequency and T is the period. The

time uncertainty due to our errorbar divided by the time for a single degree is the uncertainty

in degrees: σ′/ω/1/360 f = σ′/2π f /1/360 f = σ′ (remembering that the 2π is radians and 360

is degrees). So our phase error, in radians on the side of a fringe, is the same as the errorbar:

σ′. Now if we say that our frequency measurement is given by (ϕL − ϕE)/2πtR, where ϕL is the

late-time phase, ϕE is the early-time phase and tR is the ramsey free evolution time, then the

frequency uncertainty is δ f =

√
(σ′)2+(σ′)2

2πtR
=
√

2σ′

2πtR
. This is all for a fringe with perfect contrast, for

a non-unity contrast C we can scale it δ f =
√

2σ′

C2πtR
. Finally, to get from a frequency uncertainty to

a de uncertainty, we divide by −2|Eeff|sgn(gF)/h [2], where |Eeff| is the effective field experienced

by the valence electron and sgn(gF) is the sign on the g-factor. Thus,

δde =

√
2σ′h

2|Eeff|C2πtR
(2.10)

is the uncertainty in de for a single frequency measurement.

Finally, we will take the mean of all our frequency measurements, and the distribution

of frequency measurements is again normal (we go to some effort to quantify this, see Chapter

4.) So our new uncertainty is just equation D.6 divided by the square root of the number of

measurements:

δde =

√
2σ′h

2|Eeff|C2πtR
√

frepTtot/2
. (2.11)

Let’s clean this up by taking h̄ = h/2π and cleaning up the factors of 2:

δde =
σ′h̄

|Eeff|CtR
√

frepTtot
. (2.12)
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Now all that remains is plug in the quantum-projection noise limited errorbar on a single

frequency measurement, σ′ = 1/
√

Ntot frepTtot. Finally, we have the quantum-projection-noise-

limited expression for our uncertainty in de:

δde =
h̄

|Eeff|CtR frepTtot
√

Ntot
. (2.13)

The expression above assumes that in each experimental cycle we read out an identical

number of ions, Ntot. In reality, N varies in every cycle due to fluctuations in the spatial mode

and power of the lasers that ablate, ionize, and dissociate, as well as other experimental noise

sources. We avoid most of that noise by performing a differential measurement between the

upper and lower doublets: in a single shot of the experiment we measure both the lower and

upper Stark doublets, and we perform our measurements when the fringes for both are in phase,

so the proportional experimental noise is effectively cancelled out. Details of this scheme are in

[47] and [48].

2.3 Experimental apparatus

2.3.1 Overview

Our experiment is a spectroscopy-on-trapped-ions experiment, so we have the usual stuff:

lasers, a vacuum chamber, a source chamber, some oxford commas, and an ion trap. The general

aesthetic is ’home built spaceship’.

2.3.2 Source chamber

Our source chamber is where we make neutral HfF. It contains our piezo valve, which

opens to pulse SF6 into the chamber. Details of the disk-piezo11 valve can be found in Kevin

Cossel’s thesis [49]. The source is connected to the main chamber via a differential pumping

chamber which contains two skimmers (detailed in Huanquian’s thesis [50]).

11Physik Instrumente P-286.23
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Figure 2.11: CAD rendering of the entire apparatus, excluding lasers. In purple are the X shim
coils, blue are the Y shim coils, and yellow are the Z shim coils. The orange coils generate the
axial magnetic gradient that we call Brot
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Figure 2.12: Top down schematic of our experiment’s main chamber
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2.3.3 Ion trap

Our 10-electrode linear Paul trap has 8 radial electrodes and 2 axial electrodes. The 8 radial

electrodes are driven in a quadrupole configuration to provide RF radial confinement (50 kHz),

while they are operated independently to generate a rotating electric field (375 kHz) or DC shims.

The 2 endcap electrodes provide DC axial confinement.

Our second-generation ion trap benefitted enormously from lessons learned in the first

generation of the experiment [2]. The 8 radial electrodes have a shape carefully optimized to pro-

vide a drastically improved rotating field uniformity (over a several centimeter diameter area),

increased trap depth, increased trap harmonicity, and highly suppressed electric field inhomo-

geneties. The result is a larger trapping volume which allows us to trap about 10 times more

ions at the same or lower density. New electronics allowed us to generate about 2× larger Erot,

which directly suppresses collisional decoherence. The driving electronics were also improved to

suppress ground loops and high frequency noise, all of which can cause general ‘heating’. Our

trap is very unusual, in part for the rotating field but also because it is relatively big. To give you

a sense of scale, you could put a coffee mug between the electrodes (see Figure 2.13). The details

of the design of the Generation 2 ion trap and electronics can be found in Will Cairncross’ thesis

[13].

The amplitudes of the confining, rotating, and shim fields vary throughout the experimen-

tal sequence, as pictured in Figures 2.17-2.16 for a 5 ms free evolution time Ramsey sequence.

To get from a voltage on the electrodes to a value of V/cm in the center of the trap, we

need to account for the geometry of the electrodes. For the radial electrodes: take the electrode

voltage and multiply by 0.1748 to get Erot or RF amplitudes in V/cm in the center of the trap,

and for the endcap (axial) electrodes multiply the amplitude in voltage by 0.0146.
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Figure 2.13: CAD rendering of the main experimental chamber sliced in half for a view of the
ion trap. To give a sense of scale, you can fit a coffee cup between the electrodes.

2.3.4 Computer control

While almost every line of Matlab code got rewritten since Generation 1, and the LabView

state machine was largely reprogrammed, the structure of the computer control is still about the

same as detailed in Section 2.3 of Matt Grau’s thesis [51] and Section 4.4 of Will Cairncorss’ thesis

[13].

2.3.5 Applied magnetic fields

Our experiment has 4 pairs of magnetic field coils12 and no magnetic shielding. All coils

are on the outside of the main vacuum chamber, see Figure 3.1.

Three of the coil pairs are set up along our lab-frame X, Y, Z axes in Helmholtz configura-

tion for either shimming out the earth’s magnetic field or for generating large transverse fields

(for systematics studies). The magnetic field at the center of the trap is measured by an array

12*Slaps top of experiment* this baby can fit so many field coils in it
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Figure 2.14: Confining and orienting field amplitudes throughout the experimental sequence, in
Volts/cm, for a 5 ms Ramsey free-evolution time. The π/2 pulses are easily visible in the Erot
panel.

of fluxgate magnetometers13 bolted to the main experimental chamber. The magnetometers are

sensitive enough to detect whether the elevator across the hall is on the same floor as us or not.

The final coil pair, which we colloquially call “B axgrad coils” generate our so-called ‘rotat-

ing’ magnetic field. They are aligned with the lab-frame Z axis and produce the axial magnetic

13From Bartington Instruments, custom-built Mag612U’s with a 500µT range and a ∼ 1kHz bandwidth
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Figure 2.15: Confining and orienting field amplitudes throughout the experimental sequence, in
Volts, for a 5 ms Ramsey free-evolution time. The π/2 pulses are easily visible in the Erot panel.

gradient B = B′axgrad(2Z −X − Y ) (where, for example, |B′axgrad| ≈ 11.89 G/m for an ap-

plied current of 0.55A). In the rotating frame of the ions this appears as a magnetic bias field

Brot ≡ ⟨B·E rot/Erot⟩ ≃ B′axgradrrot.

Physical coil parameters are detailed in Table 2.1.
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Figure 2.16: The variation of the computed secular frequencies throughout the experimental
sequence for a 5 ms Ramsey free-evolution time.

2.3.6 Applied electric fields

As mentioned in 2.3.3, our 10-electrode ion trap has 8 radial electrodes and 2 axial elec-

trodes. We can apply the RF, Erot or DC shim/confining potentials to any electrode, but in our

normal operation we only apply a DC confining field to the endcap electrodes, and everything

else is confined to the radial electrodes. In an idealized experiment, in the laboratory frame, we

would only have 3 applied fields:
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Figure 2.17: From Erot, computed values of Brot and rrot throughout the experimental sequence
for a 5 ms Ramsey free-evolution time.

First, the radial RF confining fields:

ERF(R, t) =
Vrf

R2
0

cos (ωRFt)(X − Y ), (2.14)

where ωRF ≡ 2π frf = 50 kHz and R0 ∼ 2.4 cm is the effective radius the RF trap.
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Table 2.1: Magnetic field coil parameters

Coil # turns Radius [m] Separation [m]
X 80 0.217 0.216

Y 85 0.198 0.197

Z 57 0.171 0.172

Axgrad 85 0.135 0.192

Second, the axial DC confining fie

EDC(R, t) =
Vdc

Z2
0
(X + Y − 2Z) (2.15)

where Z0 ∼ 8.3 cm is the effective height of the RF trap.

And third, the radial rotating electric field:

E rot(R, t) = Erot
[
X̂ cos (ωrott)− R̃Ŷ sin (ωrott)

]
, (2.16)

where ωrot ≡ 2π frot and R̃ is the rotation switch sign.

In our actual experiment, we see higher harmonics of both time-varying fields, though it is

the higher harmonics of Erot which cause us trouble. We also see leakage of Erot and its higher

harmonics on to the endcap, which is itself problematic (we will discuss this in Chapter 3). The

second harmonic of Erot is of particular concern:

E2h(R, t) = E2h

(
XX̂−YŶ

R0
cos (2ωrott + ϕ2h) +

XŶ + YX̂
R0

sin (2ωrott + ϕ2h)

)
, (2.17)

where R0 is the radius of the ion trap, and this is again in the laboratory frame [13]. These four

fields comprise the main electric fields we are concerned with in our experiment.

For the radial electrodes: take the electrode voltage and multiply by 0.1784 to get Erot or

RF amplitudes in V/cm in the center of the trap, and for the endcap (axial) electrodes multiply

the amplitude in voltage by 0.0146.
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2.3.7 Lasers

Below is a table detailing the laser beams used directly in our experiment. The generation

of these beams takes a somewhat larger number of actual lasers. Complete details of all the lasers

used in our experiment can be found in Appendix A.

Table 2.2: Photons used in our experimental sequence

Name Transition Power λ (nm) Polarization Pulse Width
Ablation n/a 10 mJ 532 linear 10 ns
Photoionization 1 Ω = 3/2← X2∆3/2 30 µJ 309.388 linear 10 ns
Photoionization 2 Rydberg← Ω = 3/2 1.3 mJ 367.732 linear 10 ns
Transfer P(1) 3Π0+ ← X1Σ+ 600 mW 961.43495 linear CW
mF Pumping P(1) 3Π0− ←3 ∆1 21 mW 1082.4137 circular CW, strobed
mF Depletion Q(1)3Σ−0+ ←

3 ∆1 550 mW 814.508 circular CW, strobed
Vibrational Cleanup P(1)3Σ−0+ ←

3 ∆1 30 mW 818.37198 linear CW
Dissociation 1 Ω = 2←3 ∆1 1.6 mJ 368.494 circular 10 ns
Dissociation 2 ?← Ω = 2 25 mJ 266 circular 10 ns

All the lasers used in our experiment are locked to wavemeters using a simple servo loop.

Note that for the first dissociation photon the wavelength is actually 368.4945nm or 368.493nm

depending on the direction of rotation, to adjust for doppler broadening.

Figure 2.18: Cartoon depicting the transitions used during our state preparation.
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2.3.8 Chops, switch states, blocks, and superblocks

The core of this measurement is taking the difference between measured transition ener-

gies (Ramsey fringe frequencies) when the electric field flips direction relative to the electron

spin, as explained in Section 2.1.1. We also like to measure the difference and average of the

fringe frequencies when we change other experimental parameters, like the Erot rotation direc-

tion. Ultimately, we measure the fringe frequency in 16 different experimental states, and we

form linear combinations of those measurements to diagnose systematics and isolate our eEDM

signal, as explained in Section 2.4.4. In addition to that, we prepare one of 2 stretched states and

read out one of 2 stretched states, and we chop between those possible preparation and readout

choices. Finally, we sometimes change a single parameter and take a set of measurements with

that new parameter. All of this is what we call switch states, blocks, chops, and superblocks. Let

me explain.

A chop is the fastest change we make to our experiment. Between single experimental runs,

we change which stretched state we prepare and which we readout. For example in one run

we might prepare mF = +3/2 and readout mF = −3/2, then in the next run we might prepare

mF = −3/2 and readout mF = −3/2. We do this by changing the circularly polarized pumping

and depletion lasers (see Section 2.3.7 and Section 2.3.10 ) to be σ+ or σ− in the ion’s frame. The

pumping and depletion lasers are circularly polarized by passing through λ/4 waveplates right

before they enter the vacuum chamber. These waveplates stay fixed (they are not rotated between

experimental chops). The pumping and depletion lasers are strobed at frot on a 49% duty cycle,

and the relative direction of k⃗ and E⃗rot, plus the handedness in the lab frame, determines if the

light is σ+ or σ−. So, in practice, the chop consists strobing the lasers in phase or out of phase with

Erot. There are 4 possible combinations: in/in, in/out, out/in, and out/out.

A switch is the next fastest change we make to our experiment. When we take measure-

ments we do them in one of 24 = 16 possible experimental states, which we call switch states.
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We switch the sign of the magnetic field (in or out), the Erot rotation direction (again in or out),

the Stark doublet (upper or lower), and the side of the screen we read a given Stark doublet out

on (left or right). Note, we measure both doublets simultaneously (so the Stark doublet switch

comes for ‘free’), but separately (on either side of the screen, so we still use it as a switch in the

analysis - see Section 2.4.4). We indicate which switch state we are in with the letters B̃, R̃, D̃, and

Ĩ , i.e. B̃ = ±1, R̃ = ±1, D̃ = ±1, and Ĩ = ±1. Because the D̃ switch comes for free, the actual

number of switches we physically make is 23 = 8.

In practice, there’s a few extra details to keep track of here, but we don’t have special

names for them. The dissociation transitions need to be between stretched states to ensure the

dissociation products inherit the correct momentum and the doublets separate on the screen. So

if the chop is in/in or out/in (in both cases the readout state is “in”), then the dissociation beams,

which are circularly polarized, need to be fired when they are also ‘in phase’ with Erot - in other

words, if the depletion transition is σ+ then the dissociation transition also need to be σ+, and

vice-versa. In addition to this, the first dissociation photon will be red or blue shifted depending

on the rotation direction, so we shift its wavelength depending on which combination of R̃ and

σ+/− we have.

A Block is what we call a set of Ramsey fringe measurements in all possible switch states -

again since the D̃ switch comes for free this means a block is comprised of 8 ramsey fringes.

Finally, a superblock is when we make a change to the apparatus then measure a set of

blocks. For example, the λ/4 waveplates are all fixed in our normal operation, but they can

each be rotated (and the corresponding logic changed to ensure we always dissociate stretched-

stretched etc) and we can collect a set of blocks with them in their new position. The example

given should have no effect on our science signal, but we do things like that just in case we do

see something - in which case we investigate thoroughly!
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2.3.9 Trap characterization

2.3.9.1 Secular frequencies

Because we change the RF and axial confinement throughout the experimental sequence,

the secular frequencies are not constant. Their computed values for the entire sequence are shown

in Figure 2.16, but those computed values do not account for any experimental perfections. We

can easily measure the secular frequencies by giving the ions a little kick to start them sloshing,

then sending them on to the MCPs as a function of trapping time. Measuring the secular fre-

quencies during the free-evolution time, we find that fX = 1 kHz, fY = 1.3 kHz, and fZ = 1.7

kHz.

2.3.9.2 Ambient fB measurement

We collected data with Iaxgrad set to 1.08 A in both the in and out direction and shifted the

ions in z to see if we could get a handle on the ’ambient’ f B. The data is in X:\2021\210901\systematic1

and X:\2021\210831\systematic1 X:\2021\210831\systematic2 . We observed quadratic shifts

in both the f B and f BR channels. We explore this in more detail in Chapter 3.

Figure 2.19: Measurement of the ‘ambient’ f B
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Figure 2.20: Measurement of the ‘ambient’ f B

2.3.9.3 Mean field

We have approximately 20,000 ions in our trap on any given day. Coulomb repulsion causes

mean field effects that we can observe. For example, in time of flight a thermal cloud should fit

a Gaussian profile, but our cloud clearly deviates from this (see Figure 2.21).

Figure 2.21: The time of flight trace of the HfF+ cloud with a Gaussian overlaid

Generally, there is always going to be tension when we try to define things like temperature

and size for an ion cloud with mean field effects. In particular, a lot of the following analysis

relies on assumptions like expansion during time of flight is ballistic, so I just want to put a

disclaimer for the rest of this section that there are some serious self-consistency issues. The part

which does not rely on assumptions is the breathe, which we did measure, and which does show
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the presence of mean field effects (see the very end of this section).

We can chop the trace in Fig 2.21 into slices and integrate each slice to compute the HfF

number in each slice (see Fig 2.22).

Figure 2.22: Using our HfF/voltage calibration, we compute the HfF in each slice of the TOF
trace

The TOF data along with the Y-Z image data allows us to construct an approximate ellip-

soid which contains the majority of the ions (see Fig 2.23).

Figure 2.23: Constructing the approximate HfF ellipsoid from our imaging and TOF data. In the
Y-Z imaging data, the lines demarcate the approximate edge of the cloud.

Now we can use the area in each slice in the X direction along with how many ions are in

each slice to determine the HfF density:

Using this, we can compute the density weighted density (8.9 for this dataset) and the
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Figure 2.24: Approximate HfF density along X, and approximate Mean Field Parameter for our
cloud over a given temperature range

approximate mean field parameter (see Fig 2.24).

If we estimate that our cloud is about 10 K then our mean field parameter is roughly 6.

This means that we are definitely not a gas but clearly not in the coulomb crystal regime. The

ion cloud behaviour should be somehwere between a pure gas and a liquid.

We can also give the could kicks and measure the breathe and slosh frequencies. For a

thermal cloud the ratio of the breathe over the slosh frequency should be 2. For our cloud we

measure ∼ 1.414.

2.3.10 Experimental sequence

2.3.10.1 Neutral HfF production (∼ 3 ms)

We make neutral HfF by ablating a Hafnium rod in the presence of SF6. First, a disk-piezo15

based valve16 opens for ∼65 µs, and Ar(99%)/SF6(1%) gas at ∼ 120 psi is injected into the source

chamber. The gas exits through a 1mm diameter nozzle, just downstream of which a Hf rod

is positioned (such that it is on the edge of the expanding beam). About 1.21 µs after the start

14Analysis and plotting scripts are in X:\2020\200403\analyze_cloud_density .

15Physik Instrumente P-286.23

16See Kevin Cossel’s thesis for details of the valve assembly [49]
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of the gas pulse, an Nd:YAG pulsed laser (Abby, 532 nm, 10ns, ∼10 mJ pulses) ablates the Hf

rod. The Hf molecules from the ablation are entrained in the gas pulse and through the magic of

chemistry, HfF molecules are produced.

The jet of HfF molecules (at this point both neutral and charged) is supersonically ex-

panded, which cools the molecular beam to rotational temperature of ∼10 K. As the beam tra-

verses a differentially pumped chamber on its way to the main chamber it is is collimated with

two skimmers: the first (3 mm diameter) is located about 11 mm from the source and is biased at

200 V to remove any ions which were produced in the ablation; and the second (2 mm diameter)

is about 9.6 mm further downstream and is not biased.

2.3.10.2 Photoionization (10ms)

When the neutral HfF molecules enter the trapping region, still entrained in the Argon

buffer gas, they are are excited via an optical-optical double resonance to a Rydberg state 54

cm−1 above the ionization threshold, and they autoionize (the two ionization photons come from

Harambe, dye amplifier, 309.388 nm with ∼ 30µJ per pulse, and Bertha, dye laser, 368.351 nm

with ∼ 2 mJ per pulse, both pumped by Mia, YAG 532 nm, 10 ns, 10 Hz, and Harambe is seeded

by Tuna, CW ECDL, 60 mW, 2 × 309.388nm) 17. The ions inherit the 600 m/s center-of-mass

velocity of the neutral molecules, and ’kicks’ (short pulses) are applied to the electrodes to stop

the ion beam in the center of the trap. The trap turns on immediately after the kicks are applied,

and this RF quadrupole trap confines the ions. At the same time, the rotating electric field is

turned on. We usually trap around 20, 000 ions.

The ionization process is state-selective: the Rydberg state is energetically forced to decay

to a single 1Σ+
0 , ν = 0 vibronic ground state of HfF+. By choosing the correct parity of the

intermediate state, as much as 50% of the ions end up in the 1Σ+
0 , mJ = 0, J = 0 state. Complete

17Harambe provides the 1
st ionization photon and Bertha provides the 2

nd ionization photon. Harambe is seeded

by Tuna but both are pumped by Mia.
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details of our ionization procedure can be found in Huanquian Loh’s thesis [50].

We take some care when stopping and catching the ion cloud to minimize secular motion,

which will ultimately dephase and result in a hotter cloud. We do this by applying small DC

shims to the trap to shift the center of the RF trap to best overlap with the cloud (we call this

‘minimizing the slosh’). After the trap is turned on and the ions are trapped, we slowly (over

10 ms) ramp the shim values down to zero, which we call ’centering the trap’. I’ve quoted the

timing for photoionization as 10 ms because I have included the time taken to center the trap.

Note that the linewidth of the first ionization laser (Harambe) is narrow enough to re-

solve transitions of the various HfF isotopologues, allowing us to address transitions of only the

199Hf19F isotopologue18 [50]. Also note that ionization itself only takes tens of nanoseconds, but

the YAG which pumps both ionization lasers operates at 10 Hz, so our experimental rep rate is

limited to at most 10 Hz.

2.3.10.3 State transfer, cleanup, and mF pumping (120 ms)

At this point we have trapped HfF+in the ground electronic and vibrational state (1Σ+,

v = 0), spread over the lowest 4 rotational levels. We connect J = 0 → 3 using microwaves and

perform incoherent transfer to our ‘science’ state: 3∆1, v = 0, J = 1. We turn the CW transfer

laser (Toptica, CW ECDL, 961.434 nm, 600 mW) on as soon as the ions are trapped and leave

it on for 120 ms. The transfer laser is resonant with 3Π0+ , J = 0 which decays preferentially to

3∆1. You might notice that this seems to violate the transition selection rule that the total spin

cannot change, but the 3Π0+ state has an admixture of singlet and triplet character, allowing us

to transfer from an S = 0 state to an S = 1 state.

Using a resonant transition and its resultant decay means that we are left with ions in 3∆1

18The isotopologue of a chemical species has at least one atom which is a different isotope (has a different number

of neutrons).
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spread over several vibrational levels, primarily (until vibrational decay) in the lowest rotational

level (thanks to coming from J = 0 upstairs). This presents two problems: first, ions which are

in the lowest vibrational and rotational level are still spread over the zeeman sublevels, and we

need to prepare a pure spin state. And second, ions in the upper vibrational levels will decay

throughout our spin precession experiment, polluting any pure spin state that we might prepare

in the lowest vibrational level.

We deal with the first issue by illuminating the cloud with low power CW lasers which

resonantly connect 3∆1, v = 1, J = 1→ 3Σ−0+ , v = 1, J = 0 or 3∆1, v = 1, J = 2→ 3Σ−0+ , v = 1, J = 1

or 3∆1, v = 2, J = 1 → 3Σ−0+ , v = 2, J = 0. The 3Σ−0+ preferentially decays back to 1Σ+. These CW

lasers are linearly polarized and are brought through the top of the trap, and have about 10 mW

of power. We only actually use one laser at the moment (3∆1, v = 1, J = 1 → 3Σ−0+ , v = 1, J = 0,

which we call vibrational cleanup, home-built ECDL, 10 mW, 818.3719 nm) as this seems to

maximize the contrast improvement we observe. We still have poor fringe contrast overall (only

50%) from non science state ions getting dissociated, we are not sure what the root cause is.

I have been suspicious that the skimmer is no longer attached to the electrical lead and is no

longer actually biased, so our background might be due to random state ions created during the

ablation process being co-trapped with our state-prepared ions.

We perform our Ramsey spectroscopy between the mF = ±3/2 levels in either the upper

or lower Stark doublet, so we must prepare a pure spin state in anticipation of preparing a

superposition. 40 ms after transfer is initiated we turn on a strobed, sigma polarized, CW laser

(1083, DBR laser, 1082.4137 nm, strobed at frot, 49% duty cycle, 21 mW) which is brought in

from the side of the trap and connects 3∆1, v = 0, J = 1 → 3Π0− , v = 0, J = 0. The strobing is

synchronous with Erot such that the wavevector is either parallel or anti-parallel to E rot, which

drives a σ+/− transition to an F′ = 3/2 manifold upstairs, eventually leaving only one stretched

state populated in 3∆1. This pumping laser is on for 80 ms.
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2.3.10.4 First depletion (7 ms)

At this point we have nominally prepared a pure spin state, but just to be sure we illuminate

the ion cloud with our CW depletion laser (814, CW ECDL, 814.5077nm, 540 mW at 50% duty

cycle, strobed at frot such that it is parallel/antiparallel to E rot) which drives a σ+/− transition to

3Σ−0+ . Our depletion laser connects 3∆1, v = 0, J = 1 → 3Σ−0+ , v = 0, J = 0, which preferentially

decays to 1Σ+ by a 10:1 ratio, having weaker coupling to the 3∆1 state. This additional step

ensures that any ions in the wrong stretched state due to imperfect pumping are eliminated from

the 3∆1 manifold. Figure 4.6 depicts the lasers and transitions used so far (excluding ionization).

2.3.10.5 π/2 pulses and free evolution (varying timescale)

Now we have a pure spin state. We apply a π/2 pulse to create a coherent superposition of

the mF = +3/2 and mF = −3/2 states. We apply the π/2 pulse by temporarily ramping down

the magnitude of Erot, which increases a rotation-induced coupling ∆u/l between mF = ±3/2

states. The pure spin state will evolve into a superposition in ∼ 1 ms [43] [50]. We ramp Erot

back up, and allow the superposition to evolve for a variable amount of time. After the desired

precession time has elapsed, we apply a second π/2 pulse to map the relative phase onto a

population difference between the mF = ±3/2 states.

2.3.10.6 Final state projection (second depletion, 25ms)

To project the ions into their final state, we again apply the depletion laser we used in

Section 2.3.10.4, which selects which final state we will read out (mF = ±3/2).

2.3.10.7 Dissociation and imaging

To detect and count the number of ions in our science state, we employ resonance-enhanced

multiphoton dissociation [19] using two UV pulsed lasers (Dissociation 1, also known as Cora,

a pulsed dye laser, fired such that its k-vector is parallel/antiparallel to E rot, and Dissociation
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2, also known as 266, a pulsed YAG, fired such that its k-vector is parallel/antiparallel to E rot).

The dissociation is partially state-selective, it should only dissociate molecules which are in the

3∆1, v = 0, J = 1, 2 manifold (but we do have a large background of dissociated ions, we do

not know where they are from. I suspect the skimmer biasing is broken). Because our ions are

oriented in the trap, we dissociate them when they are parallel to our detector, and as long as we

obey the angular momentum requirements detailed in Will Cairncross’ thesis [13] (importantly,

that both dissociation photons drive σ+/− transitions), the Hafnium atoms from the different

doublets will fly to opposite sides of the phosphor screen. Chapter 6 of Will Cairncross’ thesis

covers our oriented photodissociation procedure in detail [13].

As mentioned in Section 2.3.8, if the chop is in/in or out/in (in both cases the readout state

is “in”), then the dissociation beams need to be fired when they are also ‘in phase’ with Erot -

in other words, if the depletion transition is σ+ then the dissociation transitions also need to be

σ+, and vice-versa. In addition to this, the first dissociation photon will be red or blue shifted

depending on the rotation direction, so we shift its wavelength depending on which combination

of R̃ and σ+/− we have.

Figure 2.25: Some typical images showing how the two doublets appear on our phosphor screen:
on the left, we depleted one doublet and imaged the one remaining. In the center we did the
same with the opposite doublet, and on the right we depleted neither (so we are imaging both
doublets at the same time). The numbers indicate pixels on the screen, the images are in false
colour, and the images are an average of 20 separate runs of each experiment. The red line
indicates our programmatic determination of the ’center’ of the two blobs.

We gate the phosphor screen such that we only image the Hf+ atoms, the un-dissociated

HfF+‘spectator’ ions (ions which were presumably in the wrong state) would otherwise ruin the
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image. We detect both the Hf+ and the HfF+spectator ions in time of flight. The HfF+signal

allows to diagnose experimental issues. We do not normalize the counted Hf+ by the integrated

HfF+signal, we found it was less noisy to perform a differential measurement between the si-

multaneously detected orientation states [47]. The technical details of our imaging and counting

system are detailed in [48] and [47]. The photons used in our experimental sequence are sum-

marized in Table 3.3 and Figure 4.6.

For diagnostic purposes (see Section 2.4.1), we can also use the depletion laser tuned to be

on resonance with one Stark doublet only (and sent in, linearly polarized, through the top of the

trap) to deplete one Stark doublet at a time, and to image this doublet alone.

2.3.10.8 Data collection and basic processing

Our experimental signal is dissociated Hf+ ions read out via phosphoresence on an imag-

ing microchannel plate (MCP), as well as the time of flight scope trace from the MCP. The image

is processed asynchronously such that instead of storing the whole image, which would take

an enormous amount of disk space, we save a file which contains the locations and bright-

ness of each bright spot which was determined to be an ion according to our smoothing and

noise-reducing processing code. At the same time, we store the entire experimental state (which

means, in practice, the state of every object in our LabView state machine). These two items, the

ion counts and locations as well as the state of the experiment, form our base data.

Once we have this file, we use our determined ’center’ of the image to count how many

ions are on each side of the screen, and our switch state to determine which side of the screen

corresponds to which doublet. We also know which stretch state we are reading out, so ultimately

we end up with a count of the mF = ±3/2 population in each doublet.
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2.4 Data analysis

2.4.1 Hf counting and imaging

As mentioned in the previous section, our experimental signal is dissociated Hf+ ions read

out via phosphoresence on an imaging microchannel plate (MCP), and we store a list of the

locations and brightness of each ion in the image, as well as the precise state of the experiment.

Before we take any Ramsey fringes, we take a set of images in each switch state to deter-

mine where the center line between the two blobs of ions should be for each switch state (in case,

say, the rotation direction shifts the center of the image). In total we take 3 types of image: one

where we depleted the lower Stark doublet, one where we depleted the upper Stark doublet, and

one where we deplete neither (see 2.25). We use these three images to determine the center line

between the two blobs for each switch state. Then we define a swatch, which is a rectangular

area centered on the center line whose ion counts are discarded. We do this because the doublets

are not entirely separated on the screen, so in this area we can’t be sure that we will assign the

correct bright spots to the correct doublet.

Using Figures 2.26 and 2.27, we can get a heuristic understanding of the doublet/imaging

contrast. The doublet contrast essentially quantifies the fraction of ions from a given doublet

which land on the wrong side of the screen. In our experimental data, we see a blob for each

doublet (like in Figure 2.26). If we integrate along one dimension, we will get two gaussian-like

functions (Figure 2.27). If those traces are completely separated, then we can say the doublet

contrast is 1. Say the 1D function resulting from integrating in one dimension is called f L for the

lower doublet and f U for the upper doublet. Define the center of the blobs as yc (indicated by

the dashed black line in Figure 2.27). We can define the doublet contrast as

DC = 1−
2
( ∫ 1200

yc
f U(y)dy +

∫ yc
0 f L(y)dy

)∫ 1200
0 f U(y) + f L(y)dy

(2.18)

The doublet contrast defined above does not account for any background, meaning ions
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Figure 2.26: An overlay of 20 images from our MCP assembly, where each doublet was fully
depleted 10 times. The center is indicated with a black dashed line.

Figure 2.27: The integrated trace of Figure 2.26, showing the upper and lower doublets separately.

who were dissociated but who weren’t from the science state. Our experimental data has a

relatively high background (order 50 out of 350 ions in each doublet), so it’s important to consider

the effect of a background signal. The background ions arrive as a blob in the center of the image

(we verify this by depleting all of 3∆1 before dissociating), and call its integrated trace b(y). In

that case,
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DC = 1−
2
( ∫ 1200

yc
f U(y)dy +

∫ yc
0 f L(y)dy

)
+
∫ 1200

0 b(y)dy)∫ 1200
0 f U(y) + f L(y)dy + b(y)dy

(2.19)

Let’s re-write this extremely cursed equation to make it more readable. Let T =
∫ 1200

0 ( f U +

f L)dy, B =
∫ 1200

0 b(y)dy and N =
∫ 1200

yc
f U(y)dy +

∫ yc
0 f L(y)dy then our measured doublet con-

trast is

DCapparent = 1− 2N
T + B

− 2B
T + B

(2.20)

So background ions reduce our apparent doublet contrast (for example, in the image

above). However, these background ions get effectively subtracted away in our difference asym-

metry (see section 2.4.2), so our effective doublet contrast is just

DCeffective = 1− 2N
T

. (2.21)

In either case, now that we have our center line and swatch for each switch state we can

properly count Hf+ ions in our images and assign them to the correct doublet and spin polariza-

tion. For every image (which corresponds to a single run of the experiment), we end up with a

spin polarization assignment (in-in or in-anti etc), number of ions in the upper doublet, number

of ions in the lower doublet, and complete experimental state including the switch state.

2.4.2 Spin asymmetry

For every switch state, we will take data in both the in-in and anti-in (or the anti-anti and

in-anti) state-prep and readout combinations. If the preparation and readout phase are the same

(ie in-in and anti-anti), then the fringe formed as we measure different free evolution times will

have a 180 degree phase shift from the fringe formed when they are different (anti-in or in-anti).

You can reason this through easily if you just imagine what happens on the Bloch sphere at

zero time: if you prepare ’in’ (say, mF = +3/2) and readout ’in’ with zero time evolution, you
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should measure the maximum Nin = Nmax, while if you prepare ’out’ (in this example this is

now mF = −3/2) and readout ’in’ you should measure the minimum Nin = 0.

Now let’s call in-in and anti-anti “In" and in-anti and anti-in "Anti"19. Now we can form

our asymmetry:

Au/l =
NIn − NAnti

NIn + NAnti
, (2.22)

where the subscript u/l indicates the upper or lower doublet, respectively. As you can see, it

takes at least two separate experimental runs to form a single asymmetry measurement. How-

ever, thanks to our imaging technique, we get an asymmetry measurement in both doublets

simultaneously.

An typical ramsey fringe looks like Figure 2.28. The fringes from the upper and lower

doublets have slightly different frequencies, mostly due to the difference in g-factor between the

doublets.

Figure 2.28: Example Ramsey interferometry data

We can also form two ‘meta’ asymmetries by taking the difference or the sum of the upper

19Sorry
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and lower asymmetries:

AD = Au −Al

AS = Au +Al

(2.23)

2.4.3 Fitting

As mentioned previously, we perform our Ramsey experiment simultaneously on both

doublets and use their oppositely-signed angular momentum at the time of dissociation to read

them out of opposing sides on the imaging MCP screen (see section 2.3.10.7). Unfortunately, the

doublets are not fully separated on the screen, so we must be careful with how we fit our data.

Below is a summary of our fitting routine.

For a simple Ramsey fringe with no leakage from the other doublet, we can define a de-

caying sine wave for the asymmetry:

gu/l(tR) = Cu/le−γu/l tR cos(2π fu/ltR + ϕu/l) + Ou/l (2.24)

where C is the initial fringe contrast, γ is the contrast decay rate, f is the fringe frequency, tR is

the free evolution time, ϕ is the initial phase, O is the offset, and the u/l subscript indicates the

upper or lower Stark doublet. In our fitting routine, we initially fit each fringe separately to this

function. From the fit parameters we define the mean and difference parameters as

αm =
αu + αl

2

αd =
αu − αl

2
,

(2.25)

where α represents C, γ, f , ϕ, or O. We can redefine our upper and lower fit parameters in terms

of the mean and difference parameters:

αu = αm + αd

αl = αm − αd.
(2.26)

Due to imperfect imaging/doublet contrast, in reality each doublet’s sine wave has a contribution

from the other doublet, which leads to beating. If we let DC be our doublet contrast, then our
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measured asymmetries will go like

Au = (
1 + DC

2
)gu + (

1− DC
2

)gl

Al = (
1− DC

2
)gu + (

1 + DC
2

)gl ,
(2.27)

Now our sum and difference asymmetries are

Au + Al = gu + gl

Au − Al = DC(gu − gl),
(2.28)

which we can express in terms of the mean and difference fitting parameters:

Au + Al = (Cm + Cd)e−(γu+γl)tR cos(2π( fm + fd)tR + (ϕm + ϕd)) + (Om + Od)...

+ (Cm − Cd)e−(γu−γl)tR cos(2π( fm − fd)tR + (ϕm − ϕd)) + (Om −Od)

Au − Al = DC((Cm + Cd)e−(γu+γl)tR cos(2π( fm + fd)tR + (ϕm + ϕd)) + (Om + Od)...

− (Cm − Cd)e−(γu−γl)tR cos(2π( fm − fd)tR + (ϕm − ϕd))− (Om −Od)),

(2.29)

We use the two functions above to simultaneously fit the sum and difference asymmetries.

The fit uncertainty on fd and ϕd are smaller than the fit uncertainty on fm and ϕm thanks to our

differential data collection and fitting routine.

2.4.4 Frequency channels

When we take measurements we do them in one of 16 possible experimental states, where

we switch the sign of the magnetic field (in or out), the rotation direction (again in or out), the

Stark doublet (upper or lower), and the side of the screen/image we read a given Stark doublet

out on (left or right). Note, we measure both doublets simultaneously, but separately (on either

side of the screen). We will indicate which switch state we are in with the letters B̃, R̃, D̃, and Ĩ ,

i.e. B̃ = ±1, R̃ = ±1, D̃ = ±1, and Ĩ = ±1. With our switch state notation we can re-write our

two-level Hamiltonian20:
20The Ĩ switch has no physical mechanism by which I can reasonably insert it into the hamiltonian, it’s more of a

sanity check than anything.
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Hu/l
eff =

1
2

−3(gF + D̃δgF)µB(B̃Brot + δBnr + R̃δBi) + D̃2de |Eeff | − 3αhR̃ frot + . . . h(∆ + D̃∆D)

h(∆ + D̃∆D) 3(gF + D̃δgF)µB(B̃Brot + δBnr + R̃δBi)− D̃2de |Eeff |+ 3αhR̃ frot + . . .

 . (2.30)

This two-level system has the familiar form

H =

Eα ∆

∆ −Eα

 , (2.31)

which has eigenvalues E = ±1/2
√

∆2 + E2
α. The full expression for the energy of this system is

∆Eu/l =
√
[3(gF + D̃δgF)µB(B̃Brot + δBnr + R̃δBi) + 3αhR̃ frot − D̃2de|Eeff|]2 + [h(∆ + D̃∆D)]2.

(2.32)

To simpify this, we can think of it like
√
(A + a)2 + x2, where A >> a and A >> x since de|Eeff|

is (obviously) tiny and (when Erot is large enough) ∆± ∆D is too. We expand our expression in

a Taylor series:
√
(A + a)2 + x2 ∼ |A + a| + x2

2|A+a| ∼ |A + a| + x2

2|A| . Dividing by h we get the

measured frequency:

f =
1
h
|3(gF + D̃δgF)µB(B̃Brot + δBnr + R̃δBi) + 3αhR̃ frot − D̃2de|Eeff||+

h(∆ + D̃∆D)2

2|3gFµBBrot|
. (2.33)

You need to be careful when taking the absolute value: 3gFµBBrot is much bigger than all the

other terms, so taking the absolute value flips B’s sign onto the other terms (it can help to draw

this out on the number line to convince yourself of this). So after taking the absolute value one

is left with the theoretical measured frequency:

f (B̃, D̃, R̃) = 1
h
(3|gF|µBBrot + 3(|gF|µB(δBnr − R̃δBi)B̃ − 3δgFµBBrotD̃ − 3δgFµB(δBnr + R̃δBi)B̃D̃

− 3αh frotB̃R̃+ 2deEeffB̃D̃ +
h(∆ + D̃∆D)2

6gFµBBrot
.

(2.34)

We take the measurement in all possible switch states and we form linear combinations of

that set of measurements to create what we call frequency channels or parity states. One measure-

ment in all of the switch states is called a block. For example, (ignoring the Ĩ switch for now), we
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form linear combinations of frequency measurements f (B̃, D̃, R̃) to form the frequency channels

f B̃D̃R̃ via the transformation

f 0

f B

f D

f BD

f R

f BR

f DR

f BDR



=
1
8



+ + + + + + + +

+ − + − + − + −

+ + − − + + − −

+ − − + + − − +
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, (2.35)

where ± signs represent ±1. Combining the errors on each fringe we end up with one standard

error for the D-odd channels and one for the D-even channels, given by

δ f =
1
8

√
∑

B̃,D̃,R̃=±
(δ f B̃D̃R̃)2, (2.36)

where δ f B̃D̃R̃ are the standard error estimates obtained from the fitting routine described in

Section 2.4.3. Note: given the matrix above you might expect the demoninator in equation 2.36

should be 4 since we average the D-odd channels separate from the D-even channels, but in the

matrix above I ignored the Ĩ switch, so the correct number is 8.

We follow the same prescription to obtain parity states for other measured quantities like

the contrast, phase, decoherence rate, and fringe offset.

To understand why we do this, consider the leading order terms of some of the fre-

quency channels. f 0 ∼ 3|gF|µBBrot/h is the average fringe frequency. On the other hand,

f B ∼ 3|gF|µBδB/h ∼ f 0( δB
Brot

) measures how accurately the magnetic field is reversed, you can

think of this as the average fringe frequency suppressed by the magnetic field chop. f D is the

difference in frequency between the two Stark doublets: f D ∼ −3δ|gF|µBBrot/h, the leading term

is the fringe frequency suppressed by the difference in g-factors between the two doublets. If the
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g-factor was identical for each doublet and the rotation-induced coupling terms were identical,

the leading order f D term would vanish. And so on for all the other channels. Listing the leading

terms for all frequency channels we have:

f 0 ∼ 3gFµBBrot/h +
h(∆ + ∆D)2

6gFµBBrot

f B ∼ 3gFµBδBnr/h

f D ∼ −3δgFµBBrot/h +
h∆∆D

3|gF|µBBrot

f BD ∼ 2deEeff/h− 3δ|gF|µB/h(δBnr + δBi) + . . .

f R ∼ 0

f BR ∼ −3⟨α⟩ frot + 3gFµBδBi/h

f DR ∼ 0

f BDR ∼ 3δgFµBδBi/h

(2.37)

Where again the subscripts on δB, nr and i, indicate an axial magnetic field gradient δBnr

that does not switch with our applied switching axial field gradient (which ultimately comes

down to the limit of our abilties with the shim coil), and an actually-rotating-in-the-lab frame

δBi due to the charging current i in our 8-electrode trap. The frequency channel we are most

interested in is the one containing the eEDM: f BD. f BD is the antisymmetric combination of

chopping both the doublet and the magnetic field. In general, forming frequency channels allows

us to diagnose experimental issues and get a handle on most systematics.

2.4.5 Blinding

We performed our measurment blind: the frequency channel which contains de, f DB, was

blinded by the computer before we got to see it. In practice, this meant that as soon as the

frequency channels were computed, a random number was added to the f DB value. The random

number was chosen once from a uniform distribution between 5 and 20 mHz, and it is stored

in a coded file which the computer opens, reads the blind, adds to f DB, then closes. When we
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unblinded we subtracted the blind from the mean value of f BD.

2.4.6 Data cuts

Please see chapter 4 for details of our data cuts.



Chapter 3

Accuracy evaluation

This chapter was co-written by Luke Caldwell and myself.

Welcome to the systematics chapter, comrade. This chapter begins with a reproduction

of a manuscript in preparation, titled ’Accuracy evaluation of the HfF+ electron electric dipole

moment experiment’. After the manuscript draft follows a section titled ’Not Systematics’ which

contains everything that explicitly did not lead to systematic shifts in our measurement channel

but which contributed to our understanding of our system.

The following sections are a reproduction of a manuscript in preparation

3.1 Accuracy evaluation of the HfF+ electron electric dipole moment experiment

We have completed a new precision measurement of the electron’s electric dipole
moment using trapped HfF+ in rotating bias fields. We report on the accuracy
evaluation of this measurement, describing the mechanisms behind our system-
atic shifts. Our systematic uncertainty is reduced by a factor of 33 compared to
the first generation of this measurement [2].

3.2 Introduction

Symmetries are fundamental in physics and exploring them has been vital to revealing

much of what we understand about nature today. In 1967 Sakharov showed that violation of
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combined charge and parity (CP) symmetry is required to explain the observed baryon asymme-

try of the universe - an imbalance between the amount of matter and anti-matter. CP symmetry

is not a good symmetry of nature but is only weakly violated by the Standard Model. Explaining

the baryon asymmetry requires new physics with additional sources of CP violation and many

extensions to the Standard Model have been proposed to do this.

Electric dipole moments of fundamental particles like the electron violate time-reversal (T)

symmetry, equivalent to CP-violation assuming CPT invariance. The Standard Model predicts

an electron EDM (eEDM) which is well below current experimental sensitivity. However many

proposed extensions predict eEDMs which are several orders of magnitude larger, bringing its

observation within experimental reach. Measurements of the eEDM thus constitute sensitive

probes for physics beyond the Standard Model.

We recently completed the most precise measurement of the eEDM to date, constraining

its size at |de| < 4.4 × 10−30 e·cm (90% confidence). This paper explains the details of our

measurement. Section 4.2 describes our apparatus and experimental sequence, Section 3.4 the

protocol used for data analysis, and Section 3.5 details the effective Hamiltonian we use to model

the results. In sections 3.6–3.8 we report the measures we have taken to identify, characterize and

mitigate sources of systematic error.

3.3 Experiment

Our experiment uses HfF+ ions, confined in an ion trap and prepared in the metastable

3∆1 state. In this state, the valence electrons are subject to a large intramolecular effective electric

field Eeff = 23 GV cm−1, along the internuclear axis of the molecule. We orient this molecular

axis in the lab frame by applying an external electric field which rotates to maintain confinement

of the ions. We then prepare the electron spin of the molecule in a coherent superposition of

states parallel and antiparallel to Eeff, and use Ramsey spectroscopy to measure the precession

frequency. The electron EDM will give a contribution to this precession frequency proportional
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Table 3.1: Constants used throughout this document. The total magnetic g-factor of J = 1, F =
3/2 states gF ≡ (G∥ + gNµN/µB)/3 results from the combination of nuclear and electronic Zee-
man effects.

Constant Value Description Reference
Be/h 8.983(1)GHz Rotational constant of science state [52]
A∥/h −62.0(2)MHz Hyperfine constant [2]
dmf/h 1.79(1)MHz V−1 cm Molecule-frame electric dipole moment [2]

ωe f /(2π) 0.74(4)MHz Ω-doubling constant [52]
gF −0.0031(1) F = 3/2 state g-factor [50]
gN 5.257 74(2) Nuclear magnetic g-factor of 19F [53]
|Eeff|/h 5.63× 1024 Hz e−1 cm−1 Effective electric field [54]

Table 3.2: Example experimental parameters and associated derived parameters from our 2022

data.

Parameter Value Description
Erot 58 V cm−1 Magnitude of rotating electric field during free evolution
ωrot 2π × 375 kHz Rotation rate of Erot
Brot 11.9 mG Computed from a measurement of Baxgrad and calcula-

tion of rrot

|B⃗0| 23.5 G m−1 Measured using the magnetometers, for an Iaxgrad of
roughly 1.08 A

rrot 0.5 mm Radius of HfF molecule circular motion
δgF
gF

−0.002 146(2) Stark doublet-odd magnetic g-factor ratio (see Figure 3.6)
∆ ∼ 1 Hz Electric field-induced mF coupling

∆D ∼ −0.6 Hz Doublet-odd correction to ∆
RF 23.5 V RF radial confinement amplitude during free evolution
RF 4.1 V cm−1 RF radial confinement amplitude during free evolution
RF 50 kHz RF radial confinement frequency during free evolution

Axial confinement 3.7 V DC axial confinement amplitude during free evolution
Axial confinement 0.05 V cm−1 DC axial confinement amplitude during free evolution

ωx 2π × 0.95 kHz X secular frequency during free evolution
ωy 2π × 1.51 kHz Y secular frequency during free evolution
ωz 2π × 1.60 kHz Z secular frequency during free evolution
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Figure 3.1: CAD rendering of the entire apparatus, excluding lasers. On the left is the source
chamber, where we produce neutral molecules. To the right of the source chamber is the dif-
ferential pumping chamber, where the beam of neutral molecules is supersonically cooled to a
rotational temperature of roughly ∼ 10K and collimated by skimmers. Further right is the main
experimental chamber, which contains our 8-electrode Paul trap. Surrounding the main chamber
are the magnetic field coils: the X shim coils in purple, the Y shim coils in blue, and the Z shim
coils in yellow; the coils which generate the quadrupole magnetic field B⃗ are indicated in orange.
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Figure 3.2: Top down schematic of our experiment’s main chamber. The neutral molecules fly
into the center of the trap where they are ionized and trapped. We apply the rotating electric
bias field E⃗rot and the quadrupole magnetic field B⃗. The ions undergo unifom circular motion,
either aligned or anti-aligned with E⃗rot, and their unpaired spins precess about E⃗rot · B⃗.
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Table 3.3: Photons used in our experimental sequence

Name Symbol Transition Power λ (nm) Polarization Pulse Width

Ablation n/a 10 mJ 532 linear 10 ns
Photoionization 1 Ω = 3/2← X2∆3/2 30 µJ 309.388 linear 10 ns
Photoionization 2 Rydberg← Ω = 3/2 1.3 mJ 367.732 linear 10 ns

Transfer L961
trans P(1) 3Π0+ ← X1Σ+ 600 mW 961.43495 linear CW

mF Pumping L1082
op P(1) 3Π0− ←3 ∆1 21 mW 1082.4137 circular CW, strobed

mF Depletion L814
depl Q(1)3Σ−0+ ←

3 ∆1 550 mW 814.508 circular CW, strobed
Vibrational Cleanup L818

vc P(1)3Σ−0+ ←
3 ∆1 30 mW 818.37198 linear CW

Dissociation 1 Ω = 2←3 ∆1 1.6 mJ 368.494 circular 10 ns
Dissociation 2 n/a← Ω = 2 25 mJ 266 circular 10 ns

to deEeff. To reject other unwanted contributions, we perform this measurement simultaneously

on two spatially overlapping clouds of ions with their molecular axes aligned and anti-aligned

with the externally applied field. The difference between the precession frequencies measured in

each case is our science signal, proportional to 2deEeff.

This section describes the apparatus, and each of the steps used in state preparation and

measurement of the ions. A summary of typical parameters used in the experiment is given in

Table 3.2.

3.3.1 Lasers

The experiment uses a total of 9 lasers1; 5 pulsed UV lasers used for ablation, ionisation and

photo dissociation, and 4 CW lasers—which we denote L961
trans, L818

vc , L1082
op , L814

depl—used for state-

preparation and readout. A summary is given in Table 3.3 and Fig. 4.6, and each is described

in detail in the following sections. All lasers are locked to wavemeters using simple servo loops

with a bandwidth of ∼ 1 Hz.
1There’s actually more lasers than this; the UV lasers need pumping and seed lasers, and we calibrate our waveme-

ter using an additional laser locked to a Rb transition. Our actual experiment had 13 ± 2 lasers going at any given

time.
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3.3.2 Molecular beam and ionisation

Our experiment begins with a pulsed beam of neutral molecules. We use a pulsed Nd:YAG

laser to ablate a solid Hf rod into a pulsed supersonic expansion of Ar and SF6. Chemical

reactions between the Hf plasma and the SF6 produce neutral HfF which are entrained in the

supersonic expansion and rovibrationally cooled by collisions with the Ar to a temperature of

∼ 10 K. When they arrive in our main chamber, ∼ 50 cm away, a pair of pulsed UV lasers at

309 nm and 368 nm excite a two-photon transition to a Rydberg state 54 cm−1 above the ionization

threshold, from which they autoionize [55, 50]. The molecular ions are created in the first few

rotational levels of 1Σ+, the electronic and vibrational ground state of the molecule. The ions are

stopped at the center of our RF ion trap by pulsed voltages on the radial trap electrodes, after

which the confining potentials are immediately turned on. We typically trap ∼ 20, 000 HfF+ions

with a lifetime of ∼ 10 seconds. The trap is described in detail in the next section.

3.3.3 Ion trap

Our linear Paul trap has 8 radial electrodes and 2 endcaps. The radial confinement is

provided by driving the radial electrodes in a quadrupole configuration producing a field,

E⃗RF(⃗r, t) =
VRF

R2
0

cos (ωRFt)(x⃗− y⃗), (3.1)

where ωRF = 2π× 50 kHz, VRF is the voltage applied on each electrodes, R0 ∼ 4.8cm is the effec-

tive radius the RF trap, and x⃗, y⃗ are the radial position coordinates of the ions in the laboratory

frame. Axial confinement is provided by DC voltages VDC on a pair of endcaps, producing a field

E⃗DC(⃗r, t) =
VDC

Z2
0
(x⃗ + y⃗− 2⃗z) (3.2)

where Z0 ∼ 16cm is the effective height of the RF trap. We choose the values of VRF and VDC

immediately after ionisation to best phase match with the size of the ion cloud, giving trap

frequencies of around 5 kHz in all directions. We then linearly ramp the trapping voltages down

over 10 ms to expand and cool the ion cloud. The ramp takes the trap frequencies to ∼ 2.8 kHz
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and ∼ 2.0 kHz in the radial and axial directions respectively.

In addition to the RF confinement, we also apply a rotating electric field E⃗rot,

E⃗rot(t) = Erot
[
x̂ cos (ωrott)− R̃ŷ sin (ωrott)

]
, (3.3)

where ωrot = 2π × 375 kHz, R̃ = ±1 indicates the rotation direction and Erot = |E⃗rot| is typically

∼ 58 V cm−1. This field serves to orientate the molecular axis, and thus the effective electric

field, of the ions and we do our spectroscopy in this rotating frame. E⃗rot causes an additional

micromotion of the ions,

δ⃗R = − e2

2m
E⃗rot = −rrotÊrot, (3.4)

where rrot ∼ 0.5 mm. The shape of the radial electrodes are optimized to minimize inhomo-

geneities in E⃗rot across the ion cloud.

3.3.4 Magnetic fields

Measuring the electron EDM also requires orienting the electron spin of the molecules

which we do with an applied magnetic field B⃗0. In order for the unpaired electrons to experience

a time-averaged interaction with the intramolecular effective electric field, this magnetic field

must corotate with E⃗rot. We achieve this by using a pair of coils in anti-helmholtz configuration,

and aligned along the axial direction, giving

B⃗0 = B̃B2,0(2⃗z− x⃗− y⃗), (3.5)

where B2,0 is typically 230 mG cm−1 and B̃ = ±1 indicates the direction of the current in the

coils, explained in more detail in Sec. WHAT. In the rotating and co-moving frame of the ions,

this quadrupole magnetic field appears as a time-averaged magnetic bias,

Brot = ⟨B⃗0 · E⃗rot⟩ = B2,0rrot. (3.6)

The coil pair is driven by a precision current source (Keysight B2902A). We refer to the pair of

coils that produces this field as the B⃗0-coils.
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Figure 3.3: Cartoon depicting the transitions used during our state preparation.

The apparatus also includes three pairs of coils setup along the lab frame x̂, ŷ, ẑ axes in

Helmholtz configuration for tuning the magnetic field at the position of the ions. The z coil

is driven by the second channel of the precision current supply used for the B⃗0-coils, the x

and y coils are driven by a lower precision current supply (Keithley 2230). The magnetic field

around the periphery of the trap is measured by an array of 8 fluxgate magnetometers (Bartington

Instruments, custom-built Mag612U’s) bolted to the main experimental chamber. We use these

measurements to infer the magnetic field at the center of the trap. In contrast to other modern

eEDM experiments, the apparatus includes no magnetic shielding.

3.3.5 State preparation

Immediately after ionization, the HfF+ions are in the ground electronic and vibrational

state (1Σ+(v = 0)), primarily distributed over the lowest 4 rotational levels J = 0–3. We connect

these rotational levels using microwaves and perform incoherent transfer to the eEDM-sensitive

3∆1(v = 0, J = 1) state by using light from L961
trans to drive the 3Π0+(J = 0) ← 1Σ+ transition,

the excited state of which decays preferentially to 3∆1. This light enters the chamber along the

z-axis and is on for 80 ms beginning immediately after ionisation. The decay from 3Π0+ puts

population in several vibrational levels in 3∆1, which can decay into the v = 0 science state if left

untreated. We remove the population in higher vibrational levels by illuminating the cloud with
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L818
vc light which connects 3Σ−0+(v = 1, J = 0) ← 3∆1(v = 1, J = 1) at ∼ 818 nm, preferentially

decaying back to 1Σ+. The L818
vc laser also enters the chamber along the z axis and remains on for

the duration of the experiment.

After transferring the ions to the science state, we ramp on E⃗rot in 5 ms. In this field, the

stretched states of 3∆1(J = 1, F = 3/2), can be considered states of good orientation, forming

two pairs of levels—which we call doublets—with their molecular dipole, and thus Eeff, either

aligned or anti-aligned with Erot as shown in Fig. 4.1. Each doublet consists of one state with

mF = 3/2 and one with mF = −3/2.

We polarize the molecules in the rotating frame by optically pumping them using L1082
op

light addressing the 3Π0−(v = 0, J = 0) ← 3∆1(v = 0, J = 1) at 1082 nm. The light is circularly

polarized with its k-vector in the plane of E⃗rot. We use an AOM to strobe L1082
op synchronously

with the rotation of E⃗rot on a 50% duty cycle such that it drives either σ+ or σ− transitions to

an F′ = 3/2 manifold in the excited state. This eventually leaves population only in either the

mF = 3/2 or mF = −3/2 states of 3∆1(v = 0, J = 1). The preparation phase of the experiment refers

to the orientation of E⃗rot relative to the k-vector of the light when the light is on; in when E⃗rot is

parallel, and anti when it is anti-parallel. This preparation phase can be changed by adjusting

the timing of the strobing cycle. L1082
op is turned on for 80 ms, starting 40 ms after trapping.

The final step of state preparation is applying L814
depl light at 814 nm. This laser is tuned to

address the 3Σ−0+(v = 0, J = 0) ← 3∆1(v = 0, J = 1), which preferentially decays to 1Σ+ by a

10:1 ratio, having weaker coupling to the 3∆1 state. L814
depl is circularly polarized with the same

handedness and k-vector as L1082
op . It is again strobed so as to only address and remove any

residual population left over in other mF states after L1082
op is turned off. L814

depl light is on for 7 ms,

3 ms after L1082
op is turned off.

These steps leave the population in an incoherent mixture of the stretched states of the two

doublets. The key difference from our previous measurement [2] is that the experiment proceeds
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on both doublets simultaneously. Our detection scheme [47], described in Sec. 3.3.7, allows us to

read out each independently, allowing us to take advantage of common-mode noise cancellation.

3.3.6 Ramsey sequence

Immediately prior to the Ramsey sequence, we ramp the radial confinement of the ions

down further, to a trap frequency of ∼ 1 kHz. This reduces the density of the cloud and improves

the coherence time.

We apply a π/2 pulse to the ensemble of ions by temporarily ramping down the magnitude

of E⃗rot from 58 V cm−1 to 7 V cm−1 in 16 µs, holding it there for 1 ms and then ramping back up in

a further 16 µs. Reducing Erot increases a rotation-induced coupling between mF = ±3/2 states

in a doublet (see Sec. 3.5), causing the pure spin states in each doublet to evolve into a coherent

superposition. We allow this superposition to evolve for a variable amount of time tR—up to

3 s—and then apply a second π/2 pulse to map the relative phase onto a population difference

between the two states in a doublet.

3.3.7 Measurement

We project the ions into their final state by applying L814
depl again to remove population from

one of the stretched states in each doublet. The readout phase is defined in the same way as the

preparation phase; in for E⃗rot is parallel with the k-vector of the light when it is on and anti for

antiparallel.

Finally, we detect and count the number of ions in the remaining stretched states via

resonance-enhanced multiphoton dissociation [19], driven by two pulsed UV lasers at 368 nm

and 266 nm. Immediately prior to the dissociation pulse, we ramp up both radial and axial con-

finement to compress the cloud and improve the dissociation efficiency. The dissociation pulse is

timed so that E⃗rot, is along Ĩ ŷ, in the plane of a microchannel plate (MCP) and phosphor screen

assembly. Here Ĩ = ±1 and ŷ defined by Fig. 4.2. Because the dissociation lasers enter at an
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Figure 3.4: Ramsey spectroscopy in HfF+. Top, level structure in the eEDM-sensitive 3∆1, J = 1,
F = 3/2 manifold in external electric Erot and magnetic Brot bias fields (not to scale). The oriented
molecules are either aligned or anti-aligned with Erot, which we call the lower and upper Stark
doublets respectively. The component of the energy splitting due to the eEDM, 2deEeff, flips sign
between doublets. Bottom, example Ramsey fringes from our dataset. The fringes from the two
doublets are collected simultaneously.
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angle, there is considerable Doppler shift from the micromotion of the ions at 45◦ to the k-vector

of the light. To account for this we adjust the wavelength of the 368 nm light depending both on

the product R̃Ĩ which gives the sign of the Doppler shift.

Each of the lasers is circularly polarized to drive transitions which preserve the orientation

of the molecules during dissociation [13]. In this way the resultant Hf+ ions from each doublet

are ejected in opposite directions. The handedness of the dissociation lasers P̃ is determined

by a λ/2 waveplate which can be moved into or out of the beam path on a motorised mount.

Immediately after dissociation, we turn off the RF confinement and apply pulsed voltage on the

radial electrodes to kick the ions towards the MCP. The Hf+ ions from each doublet are imaged

on opposite sides of the phosphor screen; which side each doublet is imaged on is set by the

value of Ĩ. We time-gate the phosphor screen such that we only image the dissociated Hf+ and

not any remaining HfF+ions. We detect both Hf+ and HfF+ions in time of flight. Technical

details of our imaging and counting system are detailed in [48] and [47].

We typically detect ∼ 550 Hf+ ions on each side of the screen early time, and ∼ 120 after

a 3 s interrogation time. The later is principally limited by the finite lifetime of the 3∆1 state but

with a contribution from ions being heated out of our shallow trapping potential during tR.

3.3.8 Noise

Fluctuations in the power of the pulsed lasers used for ablation, ionization and photo-

dissociation means that the fluctuations in the number of Hf+ ions detected at the end of each

shot are ∼ 30%, roughly 3× the quantum projection noise limit for 120 ions. However these

sources of noise, and many others, are common mode; the exact same laser pulses address the

ions which end up in the upper and lower doublets. If we measure the ion number when the

Ramsey oscillations of the two doublets are in phase with one another (or close) then we can take

advantage of excellent noise cancellation in the number difference which we use to extract our

science signal (see Sec 3.4). The two doublets oscillate at slightly different frequencies owing to
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a small difference in their magnetic moments of about a part in 230 and so we deliberately take

our data at the ‘beat’, where the two doublets are in phase. We take our early time data when

when the two doublets are in phase2 and our late time data ∼ 230 oscillations later when they

come back into phase again. The time of the second beat can be controlled by varying oscillation

frequency via the B⃗0-coils. In our final dataset, the noise in the science signal is roughly 10%

above shot noise.

3.3.9 Experimental protocol and switch states

In each shot of the experiment we can choose the preparation phase to be either in or

anti. For a given choice of Ĩ–the direction of E⃗rot at the moment of dissociation, and P̃–the

handedness of the dissociation laser polarization, the readout phase is constrained by the need

to drive stretched-to-stretched transitions which preserve molecule orientation. We label each

shot of the experiment with each of these phases. For example in-anti labels a shot where the

cleanup (and optical pumping) laser are parallel to E⃗rot during state preparation but anti-parallel

during readout.

To record a Ramsey fringe, we repeat our measurement at different free evolution times.

For a given fringe, the phase of readout is kept fixed. At each Ramsey time, we take an even

number of shots with each pair consisting of one shot with each phase of state preparation. This

set of shots is called a point and a Ramsey fringe consists of 8 of these points taken at different

tR; we take 4 points at early Ramsey time, and 4 points at late Ramsey time, each consisting of

two points on the sides of fringes and one point each on the top and bottom as shown in Fig. 4.1.

The points on the sides of the fringes consist of 20 shots, while the points on top and bottom

consist of 8 shots.

We record our data in ‘blocks’. Each block is constructed from a set of 23 = 8 fringes

2Due to the finite length of the π/2 pulses, the doublets are already slightly out of phase at the earliest Ramsey

times accessible to us. Systematic effects associated with this imperfection are discussed in Sec 3.8.
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recorded in each possible combination of 3 experimental switches. Each switch corresponds to

an experimental parameter whose sign can be reversed: B̃ the direction of the current in the

B⃗0-coils, R̃ the direction of rotation of E⃗rot, and Ĩ the direction of E⃗rot relative to the y axis at the

time of dissociation, corresponding to which side of the phosphor screen each of the doublets are

imaged onto. Note that in our implementation of the Ĩ switch, the direction of E⃗rot is reversed at

all points in time so that the opposite switch is prepared and read out. A fourth experimental

switch, P̃ the polarization of the dissociation light, is alternated every block.

We refer to each experimental configuration with {B̃, R̃, Ĩ, P̃} = ±1 as a switch state. In

each block, the first Ramsey time is recorded for all switch states before moving onto the sec-

ond Ramsey time for each switch state etc. The order of the switch states at each point is

{B̃, R̃, Ĩ} ={1,1,1}, {-1,1,1}, {-1,1,-1}, {-1,-1,1}, {1,1,-1}, {-1,1,-1}, {1,-1,-1}, {-1,-1,-1}. Every other block,

the order of switch states is reversed. In each switch state, we simultaneously collect data for

molecules in each doublets, corresponding to orientation of the molecular axis with respect to the

applied electric field which we represent by another switch D̃ = ±1. The Ramsey times for each

switch state are adjusted independently based on the data from the previous block to ensure that

the 20 shot points are as close as possible to both the sides of the fringes, where our sensitivity is

highest, and to the beat, where our noise cancellation is best and where various systematic shifts

are minimized.

For the eEDM dataset, we collected 1370 blocks or ∼ 600 hours of data over a ∼ 2 month

period of April–June 2022. During the data run, we took data with 3 different values of the B2,0,

corresponding to fringe frequencies of ∼ 75, 105 and 151 Hz. About halfway through the dataset,

we changed the waveplates of L1082
op , L814

depl and the dissociation lasers to reverse the handedness

of the light from each.
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3.3.10 Images to determine doublet positions

To determine where each doublet falls on the phosphor screen in each switch state, we take

a series of images with no Ramsey sequence. For these images we prepare the stretched states as

described in Sec. 3.8.1 and then remove the population in one of the doublets using low-power

L814
depl light, tuned to resonance with the doublet to be depleted, and propagating along the z

direction to avoid micromotion-induced Doppler shifts. We take 3 types of image per switch

state: one where we deplete the lower Stark doublet, one where we deplete the upper Stark

doublet, and one where we deplete neither. We use these three images to determine the center

line between the two blobs for each switch state as described in Section 3.4.1. We repeated this

imaging routine roughly every 20 blocks during the dataset.

3.4 Data Analysis

3.4.1 Ion counting and asymmetry

Our experimental signal is dissociated Hf+ ions read out via phosphorescence on an imag-

ing microchannel plate (MCP). The images are processed asynchronously and we save a file

which contains the locations and brightness of each bright spot which was determined to be an

ion according to our smoothing and noise-reducing processing code.

We use this same code to analyze the test images described in Sec. 3.3.10 and find a center

line for each switch state. We use this center line when analyzing the Ramsey data to define a

swatch which is a rectangular area, of fixed width, at the center of the image whose ions counts

are discarded. We do this because the doublets are not entirely separated on the screen, so in

this area we can’t be sure that we will assign ions to the correct doublet. The extent to which

we are able to isolate the two doublets is given by the imaging contrast CI . As the swatch width

increases, the imaging contrast improves but total ion number N decreases as we throw out more

ions. For the final analysis of the dataset, we used a swatch of 90 pixels which roughly maximizes
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CI
√

N.

Once we have our center line and swatch for each switch state we can properly count Hf+

ions in our Ramsey data images and assign them to the correct doublet. For every image (which

corresponds to a single run of the experiment), we end up with a number of ions in the upper

doublet Nu, number of ions in the lower doublet Nl, and complete experimental state including

the switch state, preparation phase and readout phase.

For every switch state, we take data in both the in-in and anti-in (or the anti-anti and in-

anti) combinations of preparation and readout phase. If the preparation and readout phase are

the same (i.e. in-in and anti-anti), then the fringe formed as we measure different free evolution

times will have a 180 degree phase shift from the fringe formed when they are different (anti-in

or in-anti). We will refer to in-in and anti-anti “In" and in-anti and anti-in “Anti". Now for each

pair of shots, we can form our spin asymmetry,

Au/l =
Nu/l

In − Nu/l
Anti

Nu/l
In + Nu/l

Anti

, (3.7)

where the subscript refers to the preparation and readout phase combination. For each Ramsey

time and switch state we take n shots and so can form n/2 asymmetries for each of the upper

and lower doublet. From these n/2 asymmetries we construct a mean Am
u/l and a standard error

δAu/l which we use for fitting.

We can also form two ‘meta’ asymmetries by taking the difference (D) and sum (S) of the

upper and lower asymmetries,

AD = Au −Al,

AS = Au +Al,
(3.8)

with means Am
D ,Am

S and standard errors δAD, δAS. The δAD are reduced compared to δAS due

to common-mode cancellation of many sources of noise.
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3.4.2 Least squares fitting

As mentioned previously, we perform our Ramsey experiment simultaneously on both

doublets and use their opposing orientations at the time of dissociation to read them out of

opposing sides on the imaging MCP screen. Because the data are acquired simultaneously, the

difference asymmetry allows us to cancel much of the common-mode noise, leaving us with

doublet-odd data with less scatter than the raw data. Unfortunately, the doublets are not fully

separated on the screen, so we must be careful with how we fit our data.

For a simple Ramsey fringe with no leakage from the other doublet, we can define a de-

caying sine wave for the asymmetry,

gu/l(tR) = Cu/le−γu/ltR cos(2π fu/ltR + ϕu/l) + Ou/l. (3.9)

Here C is the initial fringe contrast, γ is the contrast decay rate, f is the fringe frequency, tR is the

free evolution time, ϕ is the initial phase, O is the offset, and the subscripts indicate the upper or

lower Stark doublet. In our fitting routine, we initially fit each fringe separately to this function.

From the fit parameters we define the mean and difference parameters as

αm =
αu + αl

2
,

αd =
αu − αl

2
,

(3.10)

with α ∈ {C, γ, f , ϕ, O}. Due to imperfect imaging contrast CI , in reality each doublet’s signal

has a contribution from the other doublet. In this case, the measured asymmetries are

Au = (
1 + CI

2
)gu + (

1− CI

2
)gl

Al = (
1− CI

2
)gu + (

1 + CI

2
)gl

(3.11)

Now our sum and difference asymmetries are

AS = gu + gl

AD = CI(gu − gl),
(3.12)
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which we can express in terms of the mean and difference fitting parameters,

AS = (Cm + Cd)e−2γmtR cos(2π( fm + fd)tR + (ϕm + ϕd)) + (Om + Od)...

+ (Cm − Cd)e−2γdtR cos(2π( fm − fd)tR + (ϕm − ϕd)) + (Om −Od)

AD = CI((Cm + Cd)e−2γmtR cos(2π( fm + fd)tR + (ϕm + ϕd)) + (Om + Od)...

− (Cm − Cd)e−2γdtR cos(2π( fm − fd)tR + (ϕm − ϕd))− (Om −Od)),

(3.13)

We use these two expressions to perform a simultaneous least-squares fit for the sum and dif-

ference asymmetries in each experimental switch state. The value of CI , the imaging contrast, is

fixed at 0.9 for this fit—determined as described in Sec. 3.8.2.1. The parameter uncertainties are

extracted based solely on the standard errors of the asymmetries used in the fits. The resultant

uncertainties on the fitted values of fd and ϕd are close to the shot noise limit and much smaller

than those on fm and ϕm thanks to our simultaneous data collection and fitting routine, which

cancels most of the common-mode noise. The outputs of these simultaneous fits are used for all

further analysis.

3.4.3 Switch parity channels

After fitting to each Ramsey fringe in a block to extract the 10 fitting parameters, we use the

resulting 16 values of each parameter to form 16 linear combinations which we call switch-parity

channels. The switch-parity channel for the mean and difference parameters αm and αd which

are odd under the product of switches [S̃aS̃b...] are given by

αSaSb... =
1
16 ∑

B̃,R̃, Ĩ=±1

[S̃aS̃b...]αm(B̃, R̃, Ĩ),

αDSaSb... =
1
16 ∑

B̃,R̃, Ĩ=±1

[S̃aS̃b...]αd(B̃, R̃, Ĩ).
(3.14)

So for example, f BR is formed by adding together the fm measured in all switch states for which

the product B̃R̃ is even, subtracting the fm measured in all switch states for which the product B̃R̃

is odd and dividing by the total number of switch states. CDBRI is formed from adding together

the measured Cd in all switch states for which the product B̃R̃ Ĩ is even, subtracting all switch
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states for which the product B̃R̃ Ĩ is odd and again, dividing by the number of switch states. The

science signal is f BD. All other parity channels allow us to to diagnose experimental issues and

identify sources of systematic error.

3.4.4 Blinding

We blinded the dataset by programming the fitting routine to add an unknown constant

offset to the f BD channel. This offset was stored in an encrypted file and was not removed until

all statistical and systematic checks on the dataset had been completed, and the uncertainties

finalised.

3.4.5 Data cuts

After completing the dataset, we applied cuts to the blinded data based on non-EDM

channels indicating signal quality. Blocks with late-time contrast below 0.2 were cut due to low

signal to noise. Figure 4.4 shows how the center value and error bar of the science channel vary

as a function this cut. Blocks were also cut if they contained a fringe with a fitted difference

frequency fd in any switch state which was over 3.5σ different from the mean fringe frequency

for that switch state. The mean fringe frequencies were calculated over all blocks which had

the same value of B⃗0 and were constructed from the linear combinations, including the blinded

offset on f BD. In total, the two cuts removed 42 blocks leaving 1328 blocks in the final dataset.

3.5 Effective Hamiltonian for doublets

To an excellent approximation, we can model the evolution of each of the Stark doublets as

a two-level system. The effective Hamiltonian for each pair can be parameterized

Heff =
h
2

 f0 ∆

∆ − f0

 . (3.15)

The diagonal f0 components contain all terms which directly shift the energies of the two states

relative to one another, whilst the off diagonal ∆ components contain all terms which mix the
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Figure 3.5: Results as we shift the threshold for applying cuts to the data. In each plot, only one
cut is applied (the other cut is not applied). The cuts do not shift the resultant value of f BD.
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two states. We can expand both f0 and ∆ in terms of their leading contributions,

f0 = B̃ f 0
0 + δF0, (3.16)

∆ = R̃∆0 + R̃D̃∆D + δD. (3.17)

Here the quantities with tildes are equal to ±1 and are determined by the experimental switch

state, discussed in Sec. 3.3.9. The principle contribution to f0 is the Zeeman splitting f 0
0 =

3gFµBBrot ∼ 100 Hz. The off-diagonal component is dominated by two terms with similar mag-

nitude, but different switch state dependence; ∆0 and ∆D ∼ 1 Hz arise at fourth order in pertur-

bation theory in the full molecular Hamiltonian from the combined perturbations of rotation and

Ω-doubling, breaking the degeneracy of the mF = ±3/2 states in either Stark doublet at Brot = 0

[43, 45]. ∆ and ∆D are given by

h∆ =
3h̄ωe f

2

(
h̄ωrot

dmfErot

)3
(

18A2
∥ − 19d2

mfE2
rot

A2
∥ − d2

mfE2
rot

)

h∆D =
3h̄ωe f

2

(
h̄3ω3

rot

d2
mfE2

rot A∥

)(
9A2
∥ − 8d2

mfE2
rot

A2
∥ − d2

mfE2
rot

)
.

(3.18)

These expressions are valid as long as dmfErot ≫ h̄ωe f and dmfErot ≫ h̄ωrot or, in other words, if

the molecule is fully polarized. The strong scaling of ∆ with Erot allows us to perform off-resonant

π/2 pulses by modulating the magnitude of Erot as described in Sec. 3.3.6.

The additional perturbations are given by

δF0 = ∑
S̃∈W

S̃δ f s
0 , (3.19)

δD = ∑
S̃∈W

S̃δ∆s (3.20)

where both summations are over W , the set of all possible products of {B̃, D̃, R̃, Ĩ}, and the

superscript s on the δ f s
0 and δ∆s denote the switch state dependence of the perturbation rela-

tive to the largest term in each matrix element, f 0
0 and ∆0 respectively. For our purposes, the

most important perturbation is that due to the electron EDM which contributes a diagonal term,

D̃δ f BD
0 = 2D̃deEeff. Some of largest diagonal perturbations are listed in Table WHAT. Those

which are important for our determination of de are discussed in detail in Sec. 3.7.
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For each experimental switch state and doublet, we measure a frequency f (B̃, R̃, Ĩ, D̃) cor-

responding to the energy difference between the two eigenstates, which we define to be always

positive. For typical experimental parameters, f 0
0 is roughly two orders of magnitude larger than

any other term in the Hamiltonian, and so we can expand f about f 0
0 ,

f (B̃, R̃, Ĩ, D̃) =
∣∣∣B̃ f 0

0 + δF0 +
∆02

+ ∆D2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

B̃ f 0
0

− δF0
∆02

+ ∆D2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

f 0
0

2 + ...
∣∣∣

= | f 0
0 |+ B̃δF0 +

∆02
+ ∆D2

+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

| f 0
0 |

− B̃δF0
∆02

+ ∆D2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

| f 0
0 |2

+ ...

(3.21)

3.6 Accuracy evaluation

Accurate determination of the eEDM-induced energy shift in HfF+requires a careful eval-

uation of all possible systematic shifts. There are several methods one can employ to search

for and understand systematics. First, one can change experimental parameters in a controlled

way to look for shifts in the science channel. To see shifts with this method, one typically needs

to change the parameter in question by a factor of 100, which is not always possible. Section

3.7.1.1 is a good example of doing this. Second, one can “break” the data analysis. This can be

very precise since it can be performed on our entire dataset before unblinding, and it runs no

risk of actually breaking the physical experiment. Section 3.8.2 contains several examples of this

approach. Third, we can use other parity channels for insight into the eEDM channel as they

can at times magnify certain effects. Section 3.7.2.4 is a good example of this approach. Finally,

one can perform detailed analytical calculations or simulations to understand how experimental

parameters might affect our measurement. Section 3.7.1 is an example of this approach.

Our systematics themselves can be divided into 2 categories: shifts in the actual precession

frequency of the spin, and shifts in the phase at early or late free evolution time. Frequency shifts
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are the dominant class of systematics in our experiment, and are covered in Section 3.7. Phase

shifts tend to be smaller as they are suppressed due to our long coherence times and our ability

to measure both the early-time and late-time phase (which is not possible in beam experiments).

Phase shifts are covered in Section 3.8.

We include effects as systematics if they meet one of three criteria: first, if we saw a non-

zero correlation between the eEDM channel and some parameter; second, if we saw a signal we

thought would be important to understand but could not understand; and third, if we saw a cor-

relation with the non-eEDM channel and some parameter but we know of a mechanism for that

to leak into the eEDM channel. We set limits on systematics either by varying parameters over

a large dynamic range and setting direct limits using the experiment, or by making conservative

estimates using simulations.

3.7 Frequency shifts

3.7.1 Magnetic effects

Many experiments to measure EDMs are plagued by the interaction of the atom or molecule

with stray magnetic fields. In our experiment, three features make us comparatively immune to

these effects. First, the 3∆1 state we use has an extremely small magnetic moment, roughly

300 times smaller than the magnetic moment of a bare electron. Second, our measurement is a

differential one taken simultaneously between two pairs of states with almost identical magnetic

moments—equal to roughly 1 part in 500. This allows us to measure magnetic effects by looking

at the f B channel whilst they cancel to a high degree in our measurement channel f BD. Finally,

the rotating quantisation axis in our experiment means that most effects considered in other

experiments tend to average to zero over an integer number of rotation cycles. However, there

are still some important magnetic effects which can shift our measured value of f BD and we

consider those in this section.
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The interaction of the science states with a magnetic field B⃗ is well described by the effective

Zeeman Hamiltonian,

HZ = (µ⃗0 ± µ⃗D) · B⃗,

= mFµB(gF ± δgF)Êrot · B⃗,
(3.22)

where the ± corresponds to the upper and lower doublet respectively. Here µ⃗0 is the part of

the magnetic moment which is common to both doublets and µ⃗D is differential part, typically

500 times smaller for our choice of experimental values. In the second line, we have made

explicit the fact that both magnetic moments track the quantisation axis defined by the unit vector

pointing along Erot. We choose to write the magnetic field as a sum of two parts, B⃗ = B̃B⃗0 + δ⃗B

where the first part is due to the idealized applied quadrupole magnetic field gradient which

reverses perfectly with the B̃ switch, and the second part δ⃗B represents any additional magnetic

field experienced by the molecules. In general, δ⃗B can be composed of many components with

different dependence on the switch state and can be written

δ⃗B = ∑
S̃∈W

S̃δ⃗Bs, (3.23)

where the summation is over W , the set of all possible products of {B̃, D̃, R̃, Ĩ}, and the super-

script s denotes the switch state dependence of the field relative to B⃗0. For example, the largest

magnetic shifts measured in the experiment are caused by charging currents induced by the os-

cillating voltages on the radial electrodes. The charging currents produce a uniform magnetic

field which rotates with E⃗rot and whose sign depends on the rotation direction,

R̃ ⃗δBBR = R̃
µ0ωrotCeffVrot

2πReff
Êrot. (3.24)

Here Vrot is the amplitude of the oscillating voltages on each of the fins, Ceff is the effective

capacitance, and Reff the effective radius of the trap. In our experiment | ⃗δBBR| ∼ 15 µG.

We will be particularly interested in B⃗B, the magnetic field which does not chop sign with
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B̃, causing shifts in f B and f BD. To first order3 these are

hδ f B = 3gFµBÊ · ⃗δBB,

hδ f BD = 3δgFµBÊ · ⃗δBB,
(3.25)

where Ê is the unit vector pointing along the total electric field E⃗ .

The differential magnetic moment µ⃗D arises principally from two effects—mixing of neigh-

bouring mF levels in the rotating frame, and mixing of the J = 1 levels with J = 2 induced by the

electric field. For the experimental parameters used throughout our dataset, the latter dominates

and so we neglect the former here. The differential g-factor δgF can then be calculated from

second-order perturbation theory as,

δgF ≃
3D∥G∥|E⃗ |

20B
. (3.26)

We see that, as expected, the mixing is linear in the size of the electric field. We can use this, in

combination with Eq. 3.25 to give expressions for the time-averaged frequency shifts we measure

in the experiment,

h⟨δ f B⟩ = 3gFµB⟨Ê · ⃗δBB⟩,

h⟨δ f BD⟩ = 3
δgF

Erot
µB⟨E⃗ · ⃗δBB⟩.

(3.27)

We see that the common mode part of the Zeeman interaction is proportional to ⟨Ê · ⃗δBB⟩ whilst

the differential part is proportional to ⟨E⃗ · ⃗δBB⟩.

Any possible B⃗B can be expanded as

⃗δBB(x⃗, y⃗, z⃗) = ∑
l=1,2,...

l

∑
m=−l

Bl,m∇⃗rlY∗l,m, (3.28)

3We note that there are higher order corrections to these shifts arising from rotation-induced mixing of the two

states in a doublet. These effects are well understood but, under the experimental parameters used in the dataset,

contribute less than 10 % corrections to the shifts discussed and so are not included in our systematic uncertainty

budget.
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Table 3.4: Magnetic-field expansion

Coefficient Y∗l,m
Uniform fields

B1,−1 ŷ
B1,0 ẑ
B1,1 x̂

First-order gradients

B2,−2
√

3(yx̂ + xŷ)
B2,−1

√
3(zŷ + yẑ)

B2,0 −xx̂− yŷ + 2zẑ
B2,1

√
3(zx̂ + xẑ)

B2,2
√

3(xx̂− yŷ)

Second-order gradients

B3,−3
3
2

√
5
2 (2xyx̂ + (x− y)(x + y)ŷ)

B3,−2
√

15(yzx̂ + xzŷ + xyẑ)

B3,−1

√
3
2 (−xyx̂ + 1

2 (−x2 − 3y2 + 4z2)ŷ + 4yzẑ
B3,0 −3(xzx̂ + yzŷ + 1

2 (x2 + y2 − 2z2)ẑ)

B3,1

√
3
2 (

1
2 (−3x2 − y2 + 4z2)x̂− xyŷ + 4xzẑ)

B3,2
√

15(xzx̂− yzŷ + 1
2 (x− y)(x + y)ẑ)

B3,3
3
2

√
5
2 ((x− y)(x + y)x̂− 2xyŷ)
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where x⃗, y⃗, z⃗ are the ions position relative to the trap center, Bl,m is the coefficient of each compo-

nent and Y∗l,m are the semi-normalized real spherical harmonics

Y∗l,m =

√
4π

2l + 1
×



i√
2
(Ym

l − (−1)mY−m
l ) if m < 0

Y0
l if m = 0

1√
2
(Y−m

l + (−1)mYm
l ) if m > 0

. (3.29)

The Y∗l,m for l ≤ 3 are given in Table 3.4.

3.7.1.1 Non-reversing B′axgrad

In an idealised version of the experiment where the ions are subject only to a perfect

rotating electric field E⃗rot = Erot(cos(ωt)x̂ + sin(ωt)⃗y), the micromotion of the ions is − e
mω2 E⃗rot =

−rrotÊrot. In this case the only component of the magnetic field with l ≤ 3 which causes a

non-zero time-averaged shift in any frequency channel is the quadrupole magnetic field ⃗δBB =

B2,0(−xx̂ − yŷ + 2zẑ). As described in Section 4.2, we deliberately apply such a quadrupole

magnetic field B′axgrad whose sign reverses in the B̃ chop which is the main contribution to f .

However there can be an additional contribution which does not reverse sign with B̃, arising

either from a background field present in the lab, or from imperfect reversal of the applied field.

We have

h⟨δ f B⟩ = −3gFµBB2,0rrot,

h⟨δ f BD⟩ = −3δgFµBB2,0rrot.
(3.30)

Both shifts are proportional to B2,0 but with the D̃-even shift being ∼ 500 times larger. There

are two possible approaches to removing the effect of this systematic from our measurement, the

first is to make a correction to the measured value of f BD based the measured value of f B,

δ f BD
corr = f B δgF

gF
. (3.31)

The second is to shim out B2,0 by deliberately applying slightly different currents through the

B′axgrad coil in each direction. Both approaches are equivalent, we choose to shim f B to zero
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Figure 3.6: Measurement of δgF
gF

, by varying the mean fringe frequency f 0 and measuring the
differential fringe frequency f D. Data taken at Erot ∼ 50 V/cm.

on each block based on the measured value of f B in the previous block. We then correct the

measured value of f BD on each block by the measured value of f B on that block. The quantity

δgF
gF

in Eq. 3.31 is determined directly from experiment as shown in Figure 3.6. The largest

correction on any single block is 75 µHz, while the median correction size is 5 µHz. The average

correction over the whole dataset is just 0.2 µHz.

This approach is effective in reducing the contribution of this systematic shift to levels well

below our statistical error bar, but only holds if there are no other shifts in f B that scale with

f BD with a constant of proportionality different from δgF
gF

—or even no shift in f BD at all. The

remainder of this section explores and places limits on such shifts arising from stray magnetic

fields. Section 3.7.2 explores possible contributions from Berry’s phase effects.

3.7.1.2 General principles in determining other magnetic effects

Although no other magnetic field components couple directly to an idealised rotating elec-

tric field to give significant shifts, a number of potentially problematic shifts can arise when other

contributions to the electric field experienced by the ions are taken into account. In particular,

when the magnitude of the total electric field experienced by the ions is not constant in time,
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Figure 3.7: Measurement of δgF
gF

, obtained by introducing a large δBnr and measuring the resultant
values of f BD and f B. Note that f BD is still blinded in this measurement. Data taken at Erot ∼ 50
V/cm.

there can be effects for which ⟨E⃗ · ⃗δBB⟩ ̸= ⟨|E⃗ |⟩⟨Ê · ⃗δBB⟩.

To enumerate possible shifts in the experiment, we analytically calculate the micromotion

of a charged particle subject to an electric field E⃗ = E⃗rot + κδ⃗E where E⃗rot is the electric field of the

idealised rotating field, and δ⃗E represents perturbations to this, discussed in the sections below.

This micromotion allows us to write down the time dependent magnetic field experienced by a

molecule moving through magnetic field imperfections κδ⃗B. Finally we find the frequency shifts

⟨ f B⟩ and ⟨ f BD⟩ by calculating ⟨Ê · δ⃗B⟩ and ⟨E⃗ · δ⃗B⟩. Here the time average is over an integer

number of periods of all relevant frequencies and we keep terms up to O(κ2).

For those effects which give non-zero shifts in either channel, we constrain the maximum

size of the shifts by direct measurement using the ions, or by auxiliary measurements of the size

of the imperfections. We note that this analytical approach, by necessity, does not include the

effects of spatially dependent electric fields and so misses the effects of ponderomotive forces

such as those from the RF confining fields. To validate this approximation, we performed com-

prehensive numerical simulations including the full motion of the ions in the trap whilst varying

the size of the imperfections listed over ranges well above their expected size in the experiment

and observed no additional effects.



89

3.7.1.3 Second harmonic of Erot and transverse magnetic field

The rotating electric field in our experiment is generated by sinusoidally varying voltages

on each of the radial electrodes. These voltages are driven by op-amps which inevitably suffer

from harmonic distortion, adding higher harmonics of the input signal. Consider the effect of an

additional electric field oscillating at the second-harmonic frequency. We have

E⃗ = Erot


cos(ωt)

sin(ωt)

0

+


E2hX cos(2ωt + ϕ2hX)

E2hY cos(2ωt + ϕ2hY)

0

 (3.32)

Ê ≃


cos(ωt)

sin(ωt)

0

+
1

2Erot


E2hX cos(2ωt + ϕ2hX)

E2hY cos(2ωt + ϕ2hY)

0



+
E2hX

4Erot


− cos(ϕ2hX)

sin(ϕ2hX)

0

+
E2hY

4Erot


sin(ϕ2hY)

cos(ϕ2hY)

0



+
E2hX

4Erot


− cos(4ωt + ϕ2hX)

− sin(4ωt + ϕ2hX)

0



+
E2hY

4Erot


− sin(4ωt + ϕ2hY)

cos(4ωt + ϕ2hY)

0



(3.33)

where Ê has been expanded to first order in 1/Erot. Alongside the components oscillating at

ω, and the corrections oscillating at 2ω, Ê also has terms which are time independent, and terms

that oscillate at 4ω. The time-independent terms can couple to a uniform transverse magnetic



90

field ⃗δBB = B1,1 x̂ + B1,−1ŷ to give time averaged shifts,

h⟨δ f B⟩ = 3gFµB

4Erot

(
−B1,1E2hX cos(ϕ2hX)

+ B1,−1E2hY cos(ϕ2hY)

+ B1,−1E2hX sin(ϕ2hX)

+ B1,1E2hY sin(ϕ2hY)
)
,

(3.34)

h⟨δ f BD⟩ = 0. (3.35)

We note that depending on the details of the second harmonic, the phases ϕ2hX and ϕ2hY can

change sign under rotation. In this way some of this shift can (and usually does) show up in

f BR rather than f B. We have verified these shifts experimentally by intentionally applying a

large second harmonic to our electrodes along with large transverse magnetic fields. Due to

the correction applied described in Section 3.7.1.1, any shift in f B not due to a non-reversing

quadrupole magnetic field would cause a systematic δ f BD = δgF
gF
⟨δ f B⟩.

During the datarun, we measure the transverse field using an array of magnetometers

positioned on the vacuum chamber and tune it to zero using three pairs of shim coils arranged

around the apparatus. The magnetometers can be subject to small offsets and are calibrated at

the beginning of the data run by intentionally applying large second harmonic electric fields

and measuring shifts in f B and f BR. We used the same technique at regular (roughly weekly)

intervals throughout the dataset to check the size of the magnetic fields and guard against any

drifts in the magnetometer offsets. Based on these measurements, we conservatively estimate

the maximum size of the transverse fields to be < 10 mG in x and y, limited principally by the

precision of the current supplies used to drive the shim coils.

To reduce the size of the second harmonic electric fields present in the experiment, we

intentionally apply a secondary signal at 2ω with the opposite phase, cancelling any signal at 2ω

down to about a part in 40,000 of the signal at ω. In the worst case, where the relative phases of

the residual 2ω signal are such that the corresponding electric field at the position of the ions is
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maximised, this corresponds to residual shifts in f B of about 80 mHz G−1. After this procedure,

we deliberately apply large magnetic fields to the ions and observe the residual shifts in f B to

be 103(1)mHz G−1 and 46(9)mHz G−1 for fields along x and y respectively, in good agreement

with our direct voltage measurements. The amplitude of the second harmonic was checked

periodically throughout the dataset to guard against any drifts, for example in the characteristics

of the power operation amplifiers. Combined with the uncertainty on the transverse fields above,

these measured gradients result in systematic uncertainty in f B of 1 mHz with a corresponding

systematic uncertainty in f BD of 2 µHz.

3.7.1.4 Higher-harmonics of Erot

We can generalize the arguments of the previous section to higher harmonics of Erot. For

the nth harmonic, the expansion of Ê in powers of 1/Erot will contain components which oscillate

at (n− 2)ω and (n + 2)ω. The E⃗rot-induced micromotion of the ions combined with an mth order

magnetic field gradient, produces a magnetic field in the frame of the ions which oscillates at

mω. So in general an nth harmonic of Erot can couple to (n− 2)th and (n + 2)th order magnetic

field gradients (l = n − 1 or n + 3) to give non-zero time-averaged frequency shifts. After the

feedforward is applied to reduce the second-harmonic as described above, the next largest shift

from harmonic distortion is due to 3ω, with an amplitude on each fin of about a part in 1500

of the amplitude at ω. The 3rd harmonic can couple to first-order field gradients of the form

⃗δBB = B2,−2
√

3(yx̂ + xŷ) + B2,2
√

3(xx̂− yŷ) to give shifts,

h⟨δ f B⟩ = 3
√

3gFµBe
4mω2

(
B2,2E3hX cos(ϕ3hX)

−B2,−2E3hY cos(ϕ3hY)

−B2,−2E3hX cos(ϕ3hX)

−B2,2E3hY cos(ϕ3hY)
)
,

(3.36)

h⟨δ f BD⟩ = 0. (3.37)



92

We intentionally applied a large third harmonic electric field with various phases and observed

shifts of ∼ 20 mHz. The applied third harmonic field was 28 times larger than that present in the

dataset and so we conservatively set a limit on the maximum size of any possible shift in f B at

1 mHz, with a corresponding systematic uncertainty in f BD of 2 µHz.

Higher harmonics are comparable to, or lower in amplitude (the fourth harmonic is down

about a factor of 2/3 compared to the third, whilst the fifth is up a factor of about 4/3, sixth

and higher harmonics are all smaller) and couple to higher-order magnetic field gradients. To

set limits on their possible contributions to shifts in f B we made measurements of the magnetic

field gradients. These measurements were made outside of, but within a few cm of, the vacuum

chamber. The electrodes in the experiment are machined from non-magnetic titanium and there

are no other sources of magnetic fields closer to the ions than the steel vacuum chamber which

is ∼ 10 cm away. Because of this, we expect that the field gradients outside the chamber are

similar to, or greater than, those inside the chamber. From these measurements we estimate the

maximum size of first order field gradients to be 10 mG cm−1 and second-order gradients to be

10 mG cm−2. To determine the size of the magnetic field oscillating at nω, the nth order magnetic

field gradient should be multiplied by rn
rot where rrot = 0.05 cm. This means we expect any

higher-order harmonic contributions to shifts in f B to be reduced by a factor of ∼ 20 from those

for the third harmonic, corresponding to systematic uncertainties in f BD < 100 nHz. Therefore,

we do not include any higher-order effects in our systematic uncertainty budget.

3.7.1.5 Ellipticity of Erot

Another possible electric field imperfection is an ellipticity of Erot (i.e. the oscillating volt-

age on different electrodes in the trap having slightly different amplitudes). A general rotating

electric field having an ellipticity with its major axis orientated at angle θ to the x axis can be
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written

E⃗ =Erot


cos(ωt)

sin(ωt)

0

+ Eϵ


cos(2θ −ωt)

sin(2θ −ωt)

0

 . (3.38)

The corresponding Ê is

Ê =


cos(ωt)

sin(ωt)

0

+
Eϵ

2Erot


cos(2θ −ωt)

sin(2θ −ωt)

0



+
Eϵ

2Erot


− cos(2θ − 3ωt)

sin(2θ − 3ωt)

0

 .

(3.39)

This field can once again couple to first order magnetic field gradients of the form ⃗δBB =

B2,−2
√

3(yx̂ + xŷ) + B2,2
√

3(xx̂ − yŷ). After taking into account the modification to the ion mi-

cromotion caused by this perturbation, the resulting shifts are

h⟨δ f B⟩ =− 9
√

3gFµBeEϵ

2mω2

(
B2,2 cos(2θ) + B2,−2 sin(2θ)

)
, (3.40)

h⟨δ f BD⟩ =− 6
√

3δgFµBeEϵ

mω2

(
B2,2 cos(2θ)

+ B2,−2 sin(2θ)
)
. (3.41)

Note that in contrast to the effects of higher-harmonics discussed above, the ellipticity does

cause a shift in f BD, with δ f BD/δ f B = 4
3

δgF
gF

. Due to the correction described in Sec. 3.7.1.1,

which assumes δ f BD/δ f B = δgF
gF

, the systematic associated with the shift described in this section

will be 1/4 of the total shift induced in f BD. The size of the ellipticity in our experiment was

measured as described in Sec. 3.7.2. To set limits on the size of the shift, we applied an ellipticity

5 times larger than this, limited by our shallow ion trap during the Ramsey sequence, and varied

its angle. The one sigma upper limit on the shifts seen in this way was 12 mHz and so we set

an upper limit on the size of any shift in f B due to this effect of 2.4 mHz, corresponding to a

systematic uncertainty in f BD of 1 µHz.
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3.7.1.6 RF micromotion

In addition to the rotating electric field the ions are subject to the RF confining field oscil-

lating at ωrf. This RF field induces its own micromotion of the ions and, through B2,0, a magnetic

field oscillating at ωrf. The corresponding time-averaged shifts are

h⟨δ f B⟩ = 3gFµB
eE2

rfB2,0

4Erotmω2
rf

, (3.42)

h⟨δ f BD⟩ = 3δgFµB
eE2

rfB2,0

2Erotmω2
rf

. (3.43)

In this case we have ⟨δ f B⟩/⟨δ f BD⟩ = 2δgF/gF and so there is potential for a systematic, but both

shifts are proportional to B2,0 which we are shimming to zero. The ratio of the magnitude of the

shift caused by the RF field to that caused by Erot is ⟨E2
rf⟩ω2/E2

rotω
2
rf ∼ 10−2 so that this shift will

just provide a ∼ 1% correction to the—already very small—systematic uncertainty in Sec. 3.7.1.1.

In addition, because our measurement of δgF/gF was performed with the RF fields present, it

already includes this correction. Therefore, we do not include any contribution from this effect in

our systematic uncertainty budget. Other electric fields which oscillate at frequencies other than

integer multiples of ω (e.g. time-averaged electric field due to secular motion) behave similarly

but with even smaller contributions.

3.7.1.7 Out of plane electric fields

All the electric field imperfections discussed thus far are additional fields contained within

the x, y-plane, the plane in which Erot rotates. However, it’s also possible for the ions to experience

oscillating fields in the z direction. This can occur, for example, due to thermal motion of the

ions or patch charges displacing the center of the ion cloud from the geometrical centre of the

trapping electrodes. The largest shifts from fields in the z direction are those due to B2,0 coupling

to their own micromotion. The shifts have δ f BD/δ f B = δgF/gF and so produce no systematic

effects not already accounted for by the approach described in Sec. 3.7.1.1.



95

3.7.2 Berry’s phase effects

The rotating electric bias field Erot defines our quantisation axis, and we do our spec-

troscopy in the rotating frame. Working in this rotating frame has two important effects: a

mixing of the eigenstates of the system, which depends on the rotation rate; and an additional

phase accumulation between eigenstates with different total angular momentum projections onto

the quantization axis, which does not. This latter part, a geometric or Berry’s phase—depending

only on the path traced out by the quantisation axis in time—is discussed in this section, whilst

the former is discussed in section 3.7.3.

As the electric field vector in the experiment rotates, it traces out closed loops in phase

space. In each loop, the two states in a doublet accrue a differential geometric phase given by

ϕgeo = ∆mFΩ = 3Ω, (3.44)

where ∆mF is the difference in the angular momentum projection of the two states and Ω is

the solid angle traced out by the electric field. In the idealised experiment, the electric field

rotates strictly in the X, Y-plane, subtending a solid angle of 2π every Trot = 1/ frot. Phase

shifts of integer multiples of 2π are indistinguishable from zero and so not observable in the

experiment. However effects which tilt the quantisation axis out the X, Y-plane can cause a

non-zero frequency shift. For small tilts, the shift is given by

δ f = −3 frot

2π

∫ Trot

0
α(t)ϕ̇(t)dt (3.45)

where α(t) is the tilt of the quantization axis out of the equatorial plane, ϕ̇(t) is it’s azimuthal

angular velocity, and the integral is over one period of the rotating field.

This frequency shift affects both doublets identically but is independent of the B̃ chop and

so appears in B̃-odd frequency channels. We note that the main contribution to ϕ̇(t) ∼ R̃ω is

rotation odd and so the most natural channel for the shift to appear in is f BR, however rotation-

odd components of α(t) can cause effects in f B as well. Whilst the shifts do not appear directly
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in our measurement channel, any shifts in f B will cause a systematic shift—suppressed by a

factor of δg/g—due to the correction we make based on the measured value of f B, described in

Sec. 3.7.1.1.

The most straightforward way to tilt the quantisation axis is to add a time-independent

electric field in the axial direction. Our measurement using trapped ions is well protected from

this possibility; any electric field in the axial direction which does not time average to zero, and

which is not balanced by another force on the ions, will cause the mean position of the ions to

shift to where the time-averaged electric field is zero. However, there are a number of mechanisms

which can cause non-zero time-averaged geometric phases in the experiment. In this section, we

discuss these mechanisms and place constraints on their possible size during our measurement.

3.7.2.1 Gravity

The gravitational force on the ions causes them to sit at a position in the trap where the

axial electric field is slightly different from zero. This field is Egrav = mg/e ∼ 20 µV m−1, causing

a shift δ f = 3 frotEgrav/Erot ∼ 4 mHz. This shift appears rigorously in f BR which we do not use

for correction of f BD and so we do not include any contribution from this effect in our systematic

uncertainty budget.

3.7.2.2 AC Stark shift from vibrational cleanup light

The vibrational cleanup light is tuned to resonance with the 3∆1(v = 1) → 3Σ0+(v = 0)

transition to remove any population in 3∆1(v = 1) and prevent it decaying into the science state.

The light is left on throughout the free evolution time and propagates in the axial direction

through the chamber. To estimate the effect of this light, we assume that the polarisability

of the 3∆1(v = 0) state is dominated by interaction with 3Σ0+(v = 0), from which the laser

is detuned δL ∼ 1.7 THz, and the nearby 3Σ1(v = 0), a further ∼ 30 THz away. Conserva-

tively assuming transition matrix elements of dtrans ∼ 0.1 ea0 for each, we obtain a polarisabil-
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ity of d2
trans/(h2ϵ0cδL) ∼ 2× 10−4 Hz W−1 m2. The light intensity at the position of the ions is

∼ 300 W m−2, giving an AC Stark shift of order ∼ 1 Hz.

The scalar AC Stark shift affects all states in 3∆1(v = 0) equally and so has no effect on

our measurement. However, a gradient of the intensity could exert a force on the ions, pushing

them to a position where the electric field is non-zero in a similar way to the gravitational effect

described above. The light is roughly collimated through the chamber and we conservatively

constrain the intensity gradient to be < 500 W m−3, corresponding to a force more than 10 orders

of magnitude smaller than that due to gravity discussed in section 3.7.2.1.

Effects from possible vector or tensor AC stark shifts depend on the polarization of the

light which is nominally linear in the X, Y-plane in our experiment. The tensor shift causes

an AC stark shift which is differential between doublets, but common mode within a doublet,

but which oscillates at 2 frot, imitating an ellipticity of Erot. Conservatively assuming the tensor

polarisability is of similar size to the scalar, this effective ellipticity is h ∼ 1 Hz/Erotdmf ∼ 10−8,

much smaller than our best limit on the true ellipticity in the trap.

For linearly polarised light, the vector Stark shift is zero but we can consider the effect

of a residual handedness. In this case, the vector shift can tilt the quantisation axis out of the

X, Y-plane. Conservatively assuming vector polarisability similar size to the scalar, and a 2 %

residual handedness of the light, we find a geometric phase of ∼ 1 mHz. Like the gravitational

effect, this shift is in f BR and so has no systematic effect on our measurement. We took some

auxiliary blocks with the vibrational cleanup light turned off during the free evolution time and

observed no shifts, constraining any shift in f BR to less than 9 mHz.

3.7.2.3 Phase modulation due to axial secular motion

Ions displaced from the center of the trap experience a non-zero axial confining field. Any

axial motion due to the axial confining potential is harmonic, so the axial component of the
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electric field will average out to zero over many cycles. Instantaneously, however, the ions will

accrue a Berry’s phase which we could then alias, leading to a perceived phase shift.

We investigated by pulsing the endcap electrode to ‘kick’ the ion cloud in the axial direction

right before the first π/2 pulse; causing temporary coherent axial oscillations, then collecting a

Ramsey fringe. Example data is shown in Fig. 3.8. We repeated this procedure over a range of

kick amplitudes. For each Ramsey fringe we fit the data to the model

A cos(2π f t + ϕ + δ cos(2π fzt + ϕz)). (3.46)

Figure 3.9 shows the amplitude of the phase modulation δ, plotted against the amplitude of the

applied kick. The data constrain δ < 0.02 radians at the 1σ confidence level. Assuming the worst

case scenario where we take our data at the maximum of the phase modulation, this corresponds

to an apparent frequency shift of < 1.4 mHz for the effective average late Ramsey time (∼ 2.3

seconds) used. This shift is likely to be in f BR but could leak into f B if the phase of the axial

oscillation were rotation odd. We did not monitor this during our dataset and so include an

systematic uncertainty of 3 µHz in our uncertainty budget.

While this phase shift is negligible at late time—we find any slosh decoheres in 7 ms—

the integral of the phase shift could be non-zero. We explored this numerically and found a

frequency shift of f BD on the order of 100 pHz, which is completely negligible.

3.7.2.4 Axial 2nd harmonic + radial ellipticity

In addition to static tilts of the quantisation axis and aliasing of time-varying tilts, pertur-

bations to the radial electric field can cause variations in the magnitude of the rotating field and

its azimuthal angular velocity which can couple to axial displacements to give geometric phase

effects which do not time-average to zero. An important example of this type of effect is an el-

lipticity of Erot combined with a second-harmonic field in the axial direction. Such an axial field

could result either from leakage of the signals that drive the radial electrodes onto the endcaps,
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Figure 3.8: Example axial oscillation-induced phase modulation data, for a both large kick (color)
and a small kick (grey).

Figure 3.9: Phase modulation amplitude for various sizes of z kick. Upper doublet data is in blue
and lower doublet data is in pink. Both fits have an intercept of −0.0127(0.0108).
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or from axial displacement of the ions from the geometric center of the trap combined with fields

generated by the radial electrodes themselves.

We can express a radial ellipticity in Erot as we did before (Eq. 3.38) but now explicitly

including rotational dependence,

E⃗ =Erot


cos(ωt + ϕR + R̃ϕ0)

R̃ sin(ωt + ϕR + R̃ϕ0)

0



+ Eϵ


cos(2R̃θ −ωt− ϕR − R̃ϕ0)

R̃ sin(2R̃θ −ωt− ϕR − R̃ϕ0)

0

 .

(3.47)

Here ϕ0 + R̃ϕR is the angle of the radial electric field to the X-axis at t = 0 and θ is the angle

between the major axis of the ellipse and the X-axis. An axial field oscillating at the second

harmonic is given by

E⃗2hZ =E2hZ


0

0

cos(2ωt + ϕ2hZ)

 . (3.48)

With these electric fields we find the tilt angle and azimuthal angular velocity are

α(t) ≃ E2hZ

Erot
cos(2ωt + 2ϕ2 f Z)

×
(

1− Eϵ

Erot
cos(2ωt + 2ϕR + 2R̃ϕ0 − 2R̃θ)

)
,

(3.49)

ϕ̇(t) ≃ R̃ω− 2R̃Eϵω

Erot
cos(2ωt + 2ϕR + 2R̃ϕ0 − 2R̃θ), (3.50)

where in each case we have expanded to first order in Eϵ/Erot. Using Eq. 3.45, we find

δ f ≃ 9R̃E2hZEϵ frot

2E2
rot

cos(ϕ2 f Z + 2R̃θ − 2R̃ϕ0 − 2ϕR). (3.51)

Finally we can calculate the expected shifts in f B and f BR by taking the sum and difference of
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Figure 3.10: Example data collected with E2 f Z ∼ 4 V m−1 and an ellipticity Eϵ/Erot ∼ 5× 10−3.
As we vary the phase of the axial modulation, f B and f BR vary sinusoidally with a π/2 phase
offset, as expected.

the shifts in the two rotation directions,

δ f B = −9E2hZEϵ frot

2E2
rot

sin(2θ − 2ϕ0) sin(ϕ2 f Z − 2ϕR), (3.52)

δ f BR =
9E2hZEϵ frot

2E2
rot

cos(2θ − 2ϕ0) cos(ϕ2 f Z − 2ϕR). (3.53)

We see that we expect frequency shifts which vary sinusoidally as a function of either θ or ϕ2 f Z,

with a π/2 phase shift between f B and f BR. Figure 3.10 shows example data for deliberately

applied ellipticity Eϵ/Erot ∼ 5× 10−3 and an axial second-harmonic E2 f Z ∼ 4 V m−1.

We used data like this to manually shim out any residual ellipticity by applying E2 f Z, and

adjusting the Erot multiplying DAC on each electrode until we saw the effect was minimized. We

then measured the residual ellipticity in the same way and found Eϵ/Erot = 3× 10−4, suppressed

by a factor of 35. We constrain the axial second harmonic field by deliberately applying an

ellipticity and varying θ to constrain |E2 f Z| < 10 mV m−1 at the 1σ confidence level, suppressed

by a factor 400. Combining these suppression factors allows us to place a limit on the maximum

size of any shift in f B, δ f B < 0.8 mHz. We include a corresponding contribution to our systematic

uncertainty of 2 µHz.
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3.7.2.5 Effects of higher harmonics

We can generalize the discussion of the previous section to a pair of perturbations δ⃗EX,Y

and δ⃗EZ which act in radial and axial direction respectively, and which are both phase locked to

Erot. We can write general expressions for these pertubations,

δ⃗EX,Y = EnhX cos(nωt + ϕnhX)X̂

+ EnhY cos(nωt + ϕnhY)Ŷ,
(3.54)

δ⃗EZ = EmhZ cos(mωt + ϕmhZ) (3.55)

where m, n are both integer. The combination of these perturbations will result in a non-zero

time-averaged frequency shift at first order provided m and n differ by ±1. The shift is given by

δ f = ∓ 3EmhZ frot(n± 2)
4E2

rot

(
EnhX cos(ϕnhX − ϕmhZ)

± EnhY sin(ϕnhY − ϕmhZ)
)
,

(3.56)

where the ± correspond to m = n± 1. Depending on the R̃ dependence of the various phases,

this shift could appear in either f B or f BR. We note that the frequency shift corresponding to the

first harmonic on the endcap and second harmonic radially, m = 1, n = 2, is zero, and so the

next largest shifts are expected to come from effects involving the third harmonic or higher.

To place constraints on the possible size of these effects, we measured the Fourier transform

of the signal on each of the radial electrodes and the two endcaps. The measured amplitudes of

each harmonic are shown in the second column of Table 3.5. We first consider the possible radial

electric fields caused by these signals. The radial electric fields at the center of the trap generated

by an nω voltage signal on each electrode are

δEXnh = −
8

∑
k=1

Vnhk

RX,Y
cos((9− 2k)

π

8
) cos(nωt + ϕnhk), (3.57)

δEYnh =
8

∑
k=1

Vnhk

RX,Y
sin((9− 2k)

π

8
) cos(nωt + ϕnhk), (3.58)

where Vnhk and ϕnhk are amplitude and phase of the voltage on each of the 8 electrodes and

RX,Y ≃ 23 cm is constant relating to the geometry of the trap. The amplitude of these fields is
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given by

|δEXnh| =
[(

8

∑
k=1

Vnhk

RX,Y
cos((9− 2k)

π

8
) cos(ϕnhk)

)2

+

(
8

∑
k=1

Vnhk

RX,Y
cos((9− 2k)

π

8
) sin(ϕnhk)

)2 ]1/2

,

(3.59)

|δEYnh| =
[(

8

∑
k=1

Vnhk

RX,Y
sin((9− 2k)

π

8
) cos(ϕnhk)

)2

+

(
8

∑
k=1

Vnhk

RX,Y
sin((9− 2k)

π

8
) sin(ϕnhk)

)2 ]1/2

.

(3.60)

The amplifiers driving each of the electrodes are nominally identical and so the harmonic dis-

tortion is approximately equal on each electrode. As a first order approximation, we take

the amplitude of the signal on each electrode to be equal, Vnhk = Vnh, and the phases to be

locked to the fundamental with a small offset that can be different on each electrode, ϕnhk =

ϕnh0 + n(9− 2k)π
8 + δϕnhk.

We first consider δϕnhk = 0. In this case all the radial fields from all electrodes cancel one

another unless n differs from a multiple of 8 by ±1. When n is one greater than a multiple of

8, the relative phases on neighbouring electrodes are the same as for the fundamental and so

the harmonic field corotates with Erot. For n one less than a multiple of 8, the relative phases

on neighbouring electrodes are flipped compared to the fundamental and the resulting field

counterrotates. In both cases the amplitude is 4Vnh/RX,Y and we use this as an estimate of the

field size for these values of n in the third column of Table 3.5. For the other harmonics we

can estimate their size by looking at the variance of their amplitude due to the variance of the

amplifier phases,

⟨|δEXnh|2⟩ =
8

∑
k=1

(
∂|δEXnh|
∂δϕnhk

)2

⟨δϕ2
nhk⟩, (3.61)

⟨|δEYnh|2⟩ =
8

∑
k=1

(
∂|δEYnh|
∂δϕnhk

)2

⟨δϕ2
nhk⟩, (3.62)

where the derivatives in brackets are evaluated at δϕnhk = 0. Since in these cases the phase

relationship between the fields is random, we will be interested in their quadrature sum. After
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Table 3.5: Constraints on electric fields from higher-harmonic voltages on radial electrodes and
endcaps.

Amplitudes (mV) Fields (mV m−1)

n Radial Axial |δEX,Ynh| |δEZnh|
2 11 0.5 250 1.0
3 310 0.3 1296 2.1
4 190 0.1 649 1.8
5 410 0.2 1715 2.7
6 100 0.4 341 0.8
7 230 0.5 4000 1.7
8 45 0.7 154 3.1
9 170 1.0 2957 1.8
10 37 1.4 126 2.0
11 140 1.8 586 2.7
12 42 2.1 143 3.1

some lengthy algebra, we find

⟨|δEX,Ynh|2⟩1/2 =
(
⟨|δEXnh|2⟩+ ⟨|δEYnh|2⟩

)1/2

=
Vnh

RX,Y

[
4 + (−1)n

√
2 cos

(nπ

4

)

− (−1)n
√

2 cos
(

3nπ

4

)]1/2

⟨δϕ2
nh⟩1/2,

(3.63)

where we have set the variances of the phases on all amplifiers to be equal, ⟨δϕ2
nhk⟩ = ⟨δϕ2

nh⟩.

From measurements of the signals on the electrodes, we conservatively estimate ⟨δϕ2
nh⟩ = (π/8)2.

The third column of Table 3.5 shows the estimated size of the radial electric fields from higher

harmonics calculated using this expression. Note that, because we shim the 2nd harmonic, we

can make no such claims about relative phases on electrodes and so we assume the worst case

of all electrodes on one side of the trap in phase and exactly out of phase with the electrodes on

the other side, giving δEX,Y2h = 4
√

1 + 1√
2
V2h/RX,Y.

We can take a similar approach to estimating the possible higher harmonic fields in the

Z direction. The most direct way of generating axial electric fields with angular frequency nω

is for them to appear directly on the endcaps of our trap where they generate a field VnhZ/Rax
Z ,
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where Rax
Z ≃ 137 cm. Our measurements of possible higher-harmonic signals onto the endcaps

are shown in the third column of Table 3.5; for n > 3 these are upper limits, constrained by

the frequency-dependent noise floor of our FFT measurements. We find that in most cases the

fields generated by these voltages are dominated by another contribution, signals on the radial

electrodes combined with axial displacement of the ions from the center of the trap. We can write

the axial electric field due to nω signals on the radial electrodes at axial displacement Z0 as

δEZnh =
8

∑
k=1

VnhkZ0

R2
Z

cos(nωt + ϕnhk), (3.64)

with amplitude

|δEZnh| =
Z0

R2
Z

((
8

∑
k=1

Vnhk cos(ϕnhk)

)2

+

(
8

∑
k=1

Vnhk sin(ϕnhk)

)2)1/2

.

(3.65)

The constant RZ ≃ 27 cm is fixed by the trap geometry. We measure the axial displacement by

deliberately applying an ellipticity plus a large second harmonic in phase to all radial electrodes

and find Z0 = 0.6 mm.

Again, we make the substitutions Vnhk = Vnh and ϕnhk = ϕnh0 + n(9− 2k)π
8 + δϕnhk and

start by assuming δϕnhk = 0,

δEZnh =
VnhZ0

R2
Z

sin(nπ)

sin
( nπ

8

) cos(nωt + ϕnh0). (3.66)

The contribution of the 8 electrodes cancels out except for when n is a multiple of 8 when they are

all in phase with one another and we have |δEZnh| = 8VnhZ0/R2
Z. For these values of n, we use

this as an estimate of the axial field amplitude from the radial electrodes. For the other possible

harmonics we can estimate their amplitudes in the same way we did for the radial fields. The

variance of the amplitude of the field is given by

⟨|δEZnh|2⟩ =
8

∑
k=1

(
∂|δEZnh|
∂δϕnhk

)2

⟨δϕ2
nhk⟩. (3.67)
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Table 3.6: Constraints on Berry’s phase frequency contributions to f B or f BR due to possible
combinations of radial and axial field imperfections from harmonic distortion in amplifiers used
to drive radial electrodes. All entries are in µHz.

nZ

nX,Y 2 3 4 5 6 7 8 9 10 11 12

2 0 17 0 0 0 0 0 0 0 0 0

3 11 0 95 0 0 0 0 0 0 0 0

4 0 22 0 87 0 0 0 0 0 0 0

5 0 0 75 0 83 0 0 0 0 0 0

6 0 0 0 31 0 38 0 0 0 0 0

7 0 0 0 0 139 0 947 0 0 0 0

8 0 0 0 0 0 13 0 24 0 0 0

9 0 0 0 0 0 0 545 0 556 0 0

10 0 0 0 0 0 0 0 16 0 35 0

11 0 0 0 0 0 0 0 0 90 0 200

12 0 0 0 0 0 0 0 0 0 33 0

where again, the derivative in brackets is evaluated at δϕnhk = 0. After some more lengthy

algebra, we find

⟨|δEZnh|2⟩1/2 =
VnhZ0

R2
Z

(
4− sin(nπ)

sin
( nπ

4

))1/2

⟨δϕ2
nh⟩1/2. (3.68)

We use this expression with ⟨δϕ2
nh⟩1/2 = π/8 to calculate the field estimates for all n which are

not a multiple of 8. Note that, again due to our shimming of the second harmonic, we can’t make

any claims about relative phases on the electrodes and so we assume the worst case of all in phase

giving |δEZ2h| = 8V2hZ0/R2
Z. The fourth column of Table 3.5 shows the sum in quadrature of our

estimates for the axial field from the radial electrodes with those from the endcaps.

In Table 3.6, we combine these estimates of the radial and axial field amplitudes with

Eq. 3.56 to set limits on the Berry’s phase from each possible combination of higher-harmonics.

Summing all the contributions in quadrature we get an uncertainty on the Berry’s phase of

1.4 mHz, corresponding to a systematic uncertainty in f BD of 3 µHz which we include in our

systematic uncertainty budget.
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3.7.3 Residual rotation induced doublet mixing

The systematic effects we have considered so far are all concerned with the second term in

Eq. 3.21, various sources of δ f s
0 . However, the third and fourth terms in the expression, containing

the off-diagonal components of the effective Hamiltonian, can also potentially cause systematic

shifts. The third term concerns shifts directly generated by the off-diagonal mixing components,

while the fourth term concerns the leaking of frequency shifts into other channels due to this

mixing. In this section we discuss possible contributions to each and place constraints on their

size during the measurement.

3.7.3.1 Leaking of f BR

The largest leak of any frequency channel into f BD is expected to come from the frequency

channel with the largest signal. This is f BR where a signal of∼ 200 mHz is caused by the charging

currents in our electrodes. This could potentially leak into f BD when combined with a non-zero

values of δ∆DR or δ∆R,

δ f BD = − f BR 2∆0δ∆DR + 2∆Dδ∆R

| f 0
0 |2

. (3.69)

Non-zero values of δ∆DR and δ∆R can come from an axial magnetic field through a 4th order

coupling similar to ∆ and ∆D but where one of the rotation matrix elements is replaced with a

magnetic field matrix element. Any effect would also result in a contribution to f DR,

δ f DR =
2∆0δ∆DR + 2∆Dδ∆R

| f 0
0 |

. (3.70)

So we can rewrite Eq. 3.69 as

δ f BD ≃ − f BR

f 0

(
f DR − δgF

gF
f R
)

. (3.71)

Our data places a limit on this contribution to f BD of < 170 nHz and so we include no contribu-

tion in our systematic uncertainty budget.

On similar grounds, we could also expect non-zero δ∆DR or δ∆R to cause f BR to leak into
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f B,

δ f B = − f BR 2∆0δ∆R + 2∆Dδ∆DR

| f 0
0 |2

, (3.72)

causing a systematic via the correction described in Sec. 3.7.1.1. Since this expression involves

the same terms as Eq. 3.69, barring unlikely cancellations, the contribution can be expected to be

of similar size. The corresponding systematic in f BD is suppressed by a further factor of δgF/gF

and so we again include no contribution in our systematic uncertainty budget.

3.7.3.2 Axial magnetic fields

Analogously to how a static axial magnetic field can generate δ∆DR and δ∆R, a B̃-odd axial

magnetic field BB
Z can cause δ∆BDR and δ∆BR. Such a field could be generated from the B′axgrad

coils if the ions are situated slightly away from their geometric center. The combination of these

two effects can cause a shift in f BD via the third term in Eq. 3.21,

δ f BD =
2δ∆DRδ∆BR + 2δ∆Rδ∆BDR

| f 0
0 |2

. (3.73)

An order of magnitude estimate for these R̃-odd mixing elements can be obtained from taking

the measured values of ∆ and ∆D and multiplying them by the ratio of the magnetic-field matrix

element to the rotational matrix element, gFµBBZ/h̄ωrot ∼ 0.01 G−1. Since ∆ and ∆D are ∼ 1 Hz,

we can expect effects of 10 mHz G−1. We took data with large axial magnetic fields and saw

shifts in f DR of 170(30)µHz G−1 for f 0 = 151 Hz, confirming the order of magnitude of this

approximation. Applying these approximations to Eq. 3.73, we can then expect a systematic shift

in f BD of ∼ 2 µHz G−2 ×BB
ZBZ. Looking at f DR − δgF

gF
f R and f BDR − δgF

gF
f BR for our dataset puts

limits on the fields of BZ < 0.5 G and BB
Z < 0.4 G. We note that the same magnetometers used

to shim out BZ are able to shim BX and BY to ∼ 10 mG but since we have not confirmed this

for BZ, we use this more conservative limit. Finally we constrain any systematic shift in f BD to

< 400 nHz.
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3.7.4 Oddities & miscellany

3.7.4.1 Ion-ion interactions

The dominant ion-ion interaction is from the monopole charge on each ion. If we qualita-

tively model the cloud as 20,000 singly charged ions uniformly distributed across a sphere 1 cm

in radius, we find that the resulting mean-field electric field is much smaller than either E⃗rot or the

peak E⃗RF, but comparable to the time-averaged value of E⃗RF. That is to say, the mean-field self-

repulsion of the cloud is only modestly smaller than the effective electric fields providing secular

confinement. We see evidence for this for instance in the frequencies of the breathing modes of

the cloud. The ions therefore experience a net confinement that is somewhat anharmonic. None

of the arguments for the limits of the size of systematic errors on de hinge on the confinement

being particularly harmonic. Each trapped ion must perforce experience a time-averaged axial

electric total field (whether external or from other ions) extremely close to zero, and thus to a

high precision the rotation of E⃗rot causes no Berry’s phase frequency shift. It is the case, however,

that the mean-field repulsion causes the ion cloud to be larger than it otherwise would be at a

given temperature. In the presence of various field inhomogeneities, changes in the radius of the

cloud can change both the decoherence rate and the average fringe frequency f 0. We see shifts in

the mean Ramsey frequency f 0 that correlate with the number of ions in the trap. These do not

appear in the D-odd frequency channels. The mean-field coulombic repulsion does not break the

various symmetries that keep frequency shifts out of the science signal.

On a microscopic level, the coulomb potential between two atoms is roughly 10−3kT, and

thus ions are far from the ion-crystal regime. When small-impact-parameter ion-ion collisions

occur, the ion-ion electric field can briefly spike to a magnitude which is not infinitesimal com-

pared to Erot. This can cause the tip of the E⃗rot to briefly wobble in a way that encloses solid

angle, and there can be a resulting random Berry’s phase shift that degrades the coherence be-

tween the mF = 3/2 and mF = −3/2 states, but does not bias the central value of the Ramsey
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fringe frequency. Adiabatic relaxation of the confining potential of the trap dramatically reduces

this source of decoherence, at the cost of increasing the decoherence from spatial inhomoegeneity

mentioned in this section. We empirically reoptimize the compromise value of the ramped-down

confinement several times during the course of a long data collection run.

Fields from the molecule-frame electric dipole moment are down from the monopole-

generated fields by a factor or more.

As for magnetic interactions, each ion carries a magnetic dipole moment (3/2)gFµB. Ap-

proximating the distribution of 20,000 ions just as described above, the field arising from a uni-

form magnetization within the ball of ions could cause frequency shifts of order pHz, and is thus

neglected.

3.7.4.2 Effect of ion-cloud spatial distributions in which the Stark doublets are not per-

fectly overlapping

Much of the ultimate accuracy and precision our measurement of f BD ∼ deEeff comes from

the fact that we are measuring a resonance in two samples of ions which overlap perfectly in

space and in time, but for which Eeff points in opposite directions. If for some reason the two

samples do not perfectly overlap, then spatial variation in B̃-odd frequencies can cause systematic

shifts in our science signal. Generically, time-averaged D̃-odd displacements ⟨ri⟩D or sizes of the

ion cloud ⟨ri
2⟩D can couple to first- and second-order gradients in f B to give systematic shifts,

δ f BD = ∑
i=x,y,z

⟨ri⟩D
∂ f B

∂ri
+ ⟨ri

2⟩D ∂2 f B

∂ri
2 . (3.74)

By moving the ions around in the trap, we measure ∂ f B

∂ri
∼ 40 mHz cm−1 and ∂2 f B

∂r2
i
∼ 10 mHz cm−2

and so we are potentially interested in ⟨ri⟩D ∼ 1× 10−4 cm and ⟨r2
i ⟩D ∼ 5× 10−4 cm2.

We have good a priori reason to believe that the spatial distribution of ions in the two

doublets are identical to very high precision. The two Stark doublets are initially populated by
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optical pumping from the 1Σ ground state via a 3Π0 state, both with Ω = 0. To an excellent

approximation, both these states have well defined parity in the modest electric fields used in

our experiment and so the pumping process is completely independent of doublet. Any D̃-odd

spatial distributions must be imprinted subsequently, either by the lasers used to prepare or

readout the states of the molecules, or by D̃-odd forces on the ions.

We first discuss possible effects of the lasers used for state-preparation. The next laser to

interact with the ions is the 1082 nm which polarizes the ions by optically pumping them into

stretched mF states. Although this process again proceeds via an excited state with Ω = 0, and so

each photon scatter is equally likely to populate either doublet, in this case the laser excites out of

the 3∆1 state, and so can potentially cause a D̃-odd population difference. However, we operate

in the strongly saturated regime where all ions have sufficient time to interact with the laser and

so any effects of spatial intensity variation are strongly suppressed. Due to this suppression, we

expect any effects to be smaller than those discussed in the next paragraph.

The other CW laser addressing molecules in the science state is the 814 nm laser used to

remove population in unwanted mF states. This laser is on for 7 ms before the Ramsey sequence,

to clean up any population not successfully optically pumped, and for 25 ms after the Ramsey

sequence to remove population in one stretched state. Using measurements of ion number as a

function of laser interaction time, we estimate the time taken to remove all molecules in unwanted

mF levels is about 1 ms and so both interaction periods are strongly saturated, again greatly

suppressing any effects of spatial variation. However for this laser, there is a second relevant time

scale; because the electric field is not perfectly aligned with the k-vector of the light, molecules

in the desired stretched mF state can also occasionally scatter photons, removing a fraction βdep

from the state we detect. This effect is largest for the time after the Ramsey sequence, where

interaction time is longest and we conservatively estimate that βdep < 0.1. Although this step

takes place after the Ramsey sequence, if the ions removed have some D̃-odd spatial dependence,

that will result in similar dependence being imprinted onto the remaining ions which we detect.
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The rotating E⃗rot causes the ions to move in small circles at speeds of ∼ 1000 m s−1. This motion

in the X-Y plane causes a sinusoidally varying Doppler shift oscillating at ωrot with amplitude

∆Dopp ∼ 1000 MHz. This Doppler shift, combined with the Stark splitting of ∆St ∼ (dmfErot −

A∥/2)/h ∼ 140 MHz between the two doublets means that the laser comes into resonance with

each at a slightly different time on each rotation. We have identified two possible mechanisms

related to this effect which can produce D̃-odd spatial structure in the cloud.

The first is that the interaction with each doublet takes place at slightly different spatial

locations, separated by δxdep ∼ 60 µm. This can cause an initial offset between the two clouds,

rD
i0 ≲ βdepδxdep ∼ 6 µm. Initial offsets in the center position of the two doublets can cause a

non-zero ⟨ri⟩D but, given that both clouds oscillate about the trap center with trap frequencies

ωsec ∼ 2π × 1 kHz, the time-averaged effect is heavily suppressed by the long Ramsey times,

tR ∼ 2 s used in our experiment, ⟨ri⟩D ∼ ⟨ri0⟩ωsec/2πtR ∼ 30 nm. This effect is D̃R̃-odd and so

produces a systematic when coupled to gradients in f BR. The f BR gradients we measure in the

radial directions are < 20 mHz cm−1, giving a systematic shift of < 100 nHz. In reality we expect

any effect to be significantly smaller still due to the depletion laser being on for a time which is

long compared to one trap period so that any rD
i0 is greatly reduced.

If the laser beam has non-zero displacement from the center of the micromotion, xdep, the

interaction can selectively remove more of the hotter ions from one doublet than from the other,

producing an effective ⟨r2
i ⟩D in those ions remaining in 3∆1. In the worst-case limit where the

depletion laser is much smaller than the ion cloud, the mean square position of the removed ions

is

(xdep +
δxdep

2
)2 − (xdep −

δxdep

2
)2 = 2xdepδxdep. (3.75)

The ions oscillate backwards and forward in the trap and so, in the limit of no ion-ion collisions,

their time-averaged mean square position during the Ramsey time is reduced by a factor of 2.

Simulations of more realistic ratios of laser to cloud size reduce this by a further factor of ∼ 3. We



113

estimate xdep < 2 mm and so estimate the difference in mean square position of the remaining

ions as ⟨ri
2⟩D ∼ βdepxdepδxdep/3 ∼ 4× 10−5 cm2. The effect is again D̃R̃-odd and so can produce

a systematic when accompanied by curvature in f BR. The largest such curvature we measure

is 70 mHz cm−2, producing a systematic of ∼ 3 µHz. In reality, ion-ion collisions redistribute

the velocities and positions of ions in the trap so that any initial difference in the size of the

clouds is rapidly scrambled. To set an upper limit on the timescale of this thermalisation, we

note that we measure a curvature in f of 1200 mHz cm−2, caused by the spatial variation of the

magnetic field from the B⃗0 coils. For a 1 cm gaussian cloud with no ion-ion collisions, this would

cause decoherence of ∼ 20% of the contrast in ∼ 50 ms. This is roughly equal to our total loss

of contrast over a 3 s Ramsey time and so ∼ 50 ms sets a rough upper limit for the timescale

of thermalisation. For the shortest Ramsey times used in the dataset of ∼ 1.5 s, the possible

systematic shift is reduced by a factor of 50 ms/1.5 s ∼ 30. As such we estimate the size of any

residual systematic to be < 100 nHz and so do not include its contribution in our systematic error

budget.

The second mechanism is that the electric field vector defining the quantisation axis is, on

average, pointing in slightly different directions when the laser interacts with each doublet. These

angles are given by θu = θ0/2 + δθ, θl = −θ0/2 + δθ where θ0 ∼ ∆St/∆Dopp ∼ 0.14 is the dif-

ference in the angle of Erot when it addresses each of the two doublets and δθ ∼ δdepl/∆Dopp

is half the difference in the magnitude of those angles caused by imperfect laser detuning

δdepl ≲ 20 MHz. In the unsaturated limit, the scattering rate with which each doublet inter-

acts with the laser is then different by a factor cos θu − cos θl ∼ −2∆Stδdepl/∆2
Dopp. Again, the

laser interacts with a fraction ∼ 0.1 of the molecules and so we estimate the possible difference in

mean square position as ⟨ri
2⟩D ∼ ⟨r2

i ⟩0.1(2∆Stδdepl/∆2
Dopp) ∼ 6× 10−4 cm2. This effect is R̃-even

and so can produce a systematic when accompanied by curvature in f B. The largest such curva-

ture we measure is 10 mHz cm−2, producing a systematic of < 6 µHz. The same thermalization

arguments discussed in the previous paragraph reduce this to below 200 nHz and so we include
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no contribution in our systematic error budget.

Finally, we consider the first dissociation laser. The photodissociation beam is a doubled,

pulsed dye laser with a 10 ns pulse width. The central frequency of the laser pulse is stabilized

to a wave meter, with the set point chosen to be a compromise between the peaks of the two

transitions for dissociating the upper and lower doublets. Over the course of the entire data

run we find that on average we have see D̃-odd term of 2% in the number of Hafnium ions

we create. A residual differences in efficiency, in combination with intensity-driven saturation

and spatial structure on the beam can generate a D-odd contribution to the mean-square spatial

extent of the molecules that participate in the Ramsey fringes. This in turn can combine with

curvature in f B, which can be as large as 10 mHz cm−2, to give a systematic error on f BD. As

with possible D̃-odd effects arising from the optical pumping beams, the size of the resulting

systematic error is strongly suppressed by ion-ion thermalization that occurs over the course

of the tR and washes out size differences. The pulsed lasers width in frequency space is large

compared to the transform-limited value for a 10 ns pulse width, and frequency structure within

the pulse is not well characterized, which makes modeling the effect of the laser beam a little

uncertain. Just before entering the chamber, however, the dissociation beam passes through an

iris with 1 cm diameter. We can make the simplifying and very pessimistic assumption that the

extra 2% D̃-odd change in Hafnium ions is due entirely to molecules dissociated just at the outer

edge of the laser beam. In this way we can set a conservative limit that the size of this effect on

f BD must be less than 3.5 µHz.

In addition to these effects from the lasers, we have also considered possible effects of D̃-

odd forces on the ions due to electric field gradients, and D̃-odd heating due to photon scattering.

We find each to be significantly smaller than our limits on those from the lasers.
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3.8 Phase Shifts

In this section we explore possible systematic effects caused by shifts in the phase of the

ions, or our measurement of that phase. Using trapped ions for our measurement makes us

relatively insensitive to these effects when compared to other similar experiments using beams

of atoms or molecules. The first reason is that we can vary the free evolution time of our mea-

surement; each block of our dataset consists of data taken at short and long Ramsey times. Most

phase shifts caused by state-preparation or measurement are common mode and so cancel out

in our science signal which is only sensitive to the differential phase evolution between the early

and late time data. The second reason is that any residual shifts—from phase effects which are

different for the early and late time data—get divided by the difference in free evolution time

between the two measurements. The coherence time of the ions in our experiment is roughly

three orders of magnitude longer than comparable experiments using beams and so any effects

are reduced by a similar factor. In Sec. 3.8.2, we consider errors caused by imperfections in our

measurement of those accumulated phases, and in Sec. 3.8.1, we consider phase errors caused by

imperfections in state-preparation.

3.8.1 State preparation

3.8.1.1 phases due to π/2 pulses

During preliminary data runs, we measured a small, and unexpected, contribution to the

initial phase (roughly 10 mrad) which is odd under D̃, B̃ and Ĩ. We studied the dependence of this

effect on many experimental parameters. In particular we found: (a) the magnitude of the effect

depended strongly on the parameters used for the π/2 pulses–we could greatly suppress the

effect by implementing π/2 pulses with higher values of Erot during them and compensating by

increasing their duration; (b) the sign of the effect changed when we projected into the opposite

doublet; and (c) contrary to what we had anticipated for an effect which is odd under Ĩ, there is

no dependence on the side of the phosphor screen that each doublet is imaged onto.
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Figure 3.11: Toy model to explain ϕDBI . (i) uncoupled basis, (ii) coupled basis.

We have settled on a probable physical mechanism for the effect which qualitatively matches

our observations by including the effects of other states 3∆1(v = 0, J = 1) outside the two

doublets used for spectroscopy. The important features of this mechanism can be illustrated

with the toy model system shown in Fig. 3.11(i). The model includes just 4 of the 12 levels in

3∆1(J = 1): the two F = 3/2, |mF| = 3/2 states of a given doublet, labelled |a⟩ and |b⟩, and the

two F = 3/2, |mF| = 1/2 levels which lie closest to them in energy, labelled |c⟩ and |d⟩. In an

electric field, and in the absence of any magnetic field or rotation, the two pairs of states with

|mF| = 3/2 and |mF| = 1/2 are each degenerate. The Stark splitting between the two pairs is κ.

When rotation is included, there is a direct coupling mixing |a⟩ and |c⟩, and |b⟩ and |d⟩. In the

full 12-level model there is also a second-order coupling between |c⟩ and |d⟩— involving a single

matrix element associated with each of rotation and Ω-doubling—and a fourth-order coupling

between |a⟩ and |b⟩— involving three matrix elements associated with rotation and a matrix el-

ement associated with Ω-doubling. Although these couplings are much smaller than the direct

coupling, they are important because they act in degenerate subspaces so we include their effects

in our toy model through couplings ∆ and ∆2. We will not include the effect of a magnetic field

because we are interested in what happens during a π/2-pulse where the other effects are all



117

much larger. The Hamiltonian for our toy system in this basis is then

H =



κ δ 0 ∆

δ 0 ∆2 0

0 ∆2 0 δ

∆ 0 δ κ


, (3.76)

where the states are in order of mF: |a⟩ , |c⟩ , |d⟩ , |b⟩.

We can simplify our thinking by changing to a different basis. Consider the case where we

somehow independently tune δ to zero; we now have two uncoupled systems, |a⟩ and |b⟩, and |c⟩

and |d⟩. We can diagonalize each system to give eigenstates which are fully mixed as shown in

Fig. 3.11(ii): |3/2,+⟩ = 1√
2
(|a⟩+ |b⟩) and |3/2,−⟩ = 1√

2
(|a⟩ − |b⟩), and |1/2,+⟩ = 1√

2
(|c⟩+ |d⟩)

and |1/2,−⟩ = 1√
2
(|c⟩ − |d⟩). Rewriting the full toy-model Hamiltonian in this basis we have

H =



∆2 δ 0 0

δ κ + ∆ 0 0

0 0 −∆2 δ

0 0 δ κ − ∆


, (3.77)

where the states are in the order |1/2,+⟩ , |3/2,+⟩ , |1/2,−⟩ , |3/2,−⟩. The Hamiltonian is now

block diagonal. During the second π/2 pulse, the mixing between |a⟩ and |b⟩ causes population

to oscillate between them (as intended), but it also causes a weak oscillation between the |mF| =

3/2 states and the |mF| = 1/2 states. This oscillation depends on the initial phase difference

between the |a⟩ and |b⟩ states. The two most important phases to consider are the sides of the

fringe; where we are most sensitive to phase shifts, and thus where we take most of our data. On

the side of the fringe, the state immediately before the second π/2 pulse is |3/2,+⟩ or |3/2,−⟩.

It can be seen from Eq. 3.77 that when δ = 0, these states are eigenstates of the Hamiltonian

and the π/2-pulse does nothing. When δ is non-zero, the coupling causes population to be

transferred from |3/2,+⟩ to |1/2,+⟩ and from |3/2,−⟩ to |1/2,−⟩ with Rabi frequencies Ω+
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and Ω− respectively,

Ω+ =
√

4δ2 + (κ + ∆− ∆2)2 ∼ κ + ∆− ∆2, (3.78)

Ω− =
√

4δ2 + (κ − ∆ + ∆2)2 ∼ κ − ∆ + ∆2. (3.79)

The two Rabi frequencies are different because the energy gap is different in each case. The

amplitudes of the oscillations in each case are then

A+ =
δ2

4δ2 + (κ + ∆− ∆2)2 ∼
δ2

κ2 , (3.80)

A− =
δ2

4δ2 + (κ − ∆ + ∆2)2 ∼
δ2

κ2 . (3.81)

The approximate expressions in both cases assume κ ≫ δ, ∆, ∆2. This difference in Rabi frequen-

cies results in a different amount of the population being transferred to |c⟩ and |d⟩, dependent on

the initial phase. We measure only the population in either |a⟩ or |b⟩ and never the population

in |c⟩ or |d⟩, and so this population transfer appears as an apparent phase shift. The population

oscillations are happening very fast—the frequencies are of order the energy gap between the

3/2 states and the 1/2 states, κ ∼ MHz—and so the size of the apparent phase shift can depend

very sensitively on the exact parameters of the π/2-pulse. The maximum size of the effect goes

as 1/κ2 and so depends strongly on the size of Erot during the π/2 pulse.

We now examine the dependence of this effect on the experimental switch state:

(i) Ĩ: in our implementation of the Ĩ switch, the mF state we project into, and read out of, is

Ĩ odd. This corresponds to measuring, for example, |a⟩ instead of |b⟩. On the side of the

fringe where the population in |a⟩ is decreasing with Ramsey time, the population in |b⟩ is

increasing with Ramsey time and as a result the apparent phase shift—a relative change in

population which has same sign for both states—is Ĩ odd.

(ii) B̃: the phase shift is completely independent B⃗0 and so is B̃-odd.

(iii) D̃: in the opposing doublet, the sign of κ is flipped; the |mF| = 1/2 states are above the
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|mF| = 3/2 states in energy. This means that the relative rate of transfer between the two

sides of the fringe are flipped and the effect is D̃ odd.

(iv) R̃: δ, ∆ and ∆2 all involve odd numbers of matrix elements associated with rotation and so

flip sign with rotation direction. This flips the sign of the effect so that the relative rates

of population transfer out of the two states are reversed. However, the flipping sign of

∆ means that the initial superposition produced by the first π/2 pulse is π out of phase

compared with the opposite rotation direction so the phase shift at a given Ramsey time

ends up being R̃ even.

In the experiment it is very difficult to control the parameters of the π/2 pulses at the required

level to quantitatively verify this mechanism is at play. In addition small differences in the electric

field experienced by different ions, and coupling to other states in the full Hamiltonian, cause the

population oscillations to dephase rapidly, and so we were never able to observe them. However,

we believe the qualitative agreement with what we observe to be convincing.

We took three steps to mitigate the effects of ϕDBI . We reduced the size of the effect

dramatically by increasing the value of Erot that we ramp down to during the π/2-pulse. We

also added the P̃ chop to our experimental sequence for the eEDM dataset; in every other block,

we read out of the opposite state, so that any remaining effect would change sign. Finally,

midway through the dataset, we reversed the polarization of all the optical pumping, depletion

and dissociation lasers, again flipping the sign of any effect. We can still check for any residual

effect by looking at the difference in ϕDBIP before and after the waveplate change; in the eEDM

dataset its average value was 1.1(1)mrad. Such phase shifts could potentially leak into frequency

channels if, for example, the second π/2 pulse depended on the Ramsey time, perhaps because

of heating in the amplifiers or similar. We note that during our exploration of the effect we were

able to increase its size to 170 mrad, and saw no shift in f DBI at the 1σ confidence level. Using

this data we can set a limit on any shift caused by the phase at −3(4)µHz mrad−1, increasing
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confidence in our ability to reject systematic effects associated with phases caused by the π/2

pulses. In the eEDM dataset, none of the other D̃-odd phases (except ϕD) exceed 750 µrad.

3.8.2 Internal state measurement

3.8.2.1 Improperly characterized imaging contrast

Our imaging process allows us to differentiate between Hf ions originating from the upper

and lower doublets by projecting them onto different sides of the imaging MCP. However, due to

the initial size of the cloud and it’s finite temperature the two clouds are not perfectly separated

and they overlap slightly at the center of the screen. This overlap can cause our measurement

of the difference frequency to be pulled and, if improperly characterised, can potentially cause a

systematic error. To see how this works, consider how the number of ions detected on each side

of the MCP, and in each phase, depends on the phase evolution of the upper and lower doublets

Φu and Φl,

Nanti
u =

N
2
(1− sin(Φu))(1− ϵ) +

N
2
(1− sin(Φl))(ϵ)

Nin
u =

N
2
(1 + sin(Φu))(1− ϵ) +

N
2
(1 + sin(Φl))(ϵ)

Nanti
l =

N
2
(1− sin(Φl))(1− ϵ) +

N
2
(1− sin(Φu))(ϵ)

Nin
l =

N
2
(1 + sin(Φl))(1− ϵ) +

N
2
(1 + sin(Φu))(ϵ),

(3.82)

where N is the mean number of ions measured on each side of the MCP, ϵ is a parameter which

characterises the amount of leakage of each cloud onto the other side of the MCP screen, and we

have assumed perfect contrast. We can now form asymmetries as we do in our analysis,

Au =
Nin

u − Nanti
u

Nin
u + Nanti

u

= (1− ϵ) sin Φu + ϵ sin Φl,

Al =
Nin

l − Nanti
l

Nin
l + Nanti

l

= (1− ϵ) sin Φu + ϵ sin Φl.

(3.83)
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We can simplify our thinking by assuming that we are taking data close to the side of the fringe

such that Φu ≃ 2nπ + δu and Φl ≃ 2mπ + δl for n and m integer. In this limit we have

Au ≃ δu − ϵ(δu − δl)

Al ≃ δl + ϵ(δu − δl).
(3.84)

The apparent phase of each of the doublets are pulled towards each other by an amount that

depends on the leakage ϵ and their difference in true phase δu − δl. We account for this in our

analysis by including a parameter CI , the imaging contrast. By comparing Eq. 3.83 with Eq. 3.11

we can identify ϵ = (1 − CI)/2. Now suppose we mischaracterize the imaging contrast CI ,

assigning it an incorrect value C′I . The resultant fitted values for the phases of the upper and

lower doublet δ′u and δ′l will then satisfy the following expressions

δ′u −
1− C′I

2
(δ′u − δ′l) = δu −

1− CI

2
(δu − δl),

δ′l +
1− C′I

2
(δ′u − δ′l) = δl +

1− CI

2
(δu − δl).

(3.85)

We find that the fitted difference phase ∆′ = δ′u − δ′l is different from the true difference phase

∆ = δu − δl by an amount

∆′ − ∆ =
(CI − C′I)∆

C′I
. (3.86)

Both the early and late time data in our Ramsey are fringes are potentially susceptible to this

phase pulling effect and so it is important that we properly characterize and understand CI . To

do so, we took fringes where the data was collected deliberately offset from the early- or late-

time zero crossings of the difference fringe. Taking the late time data removed from the beat by

a number of periods n causes the fitted f D to be pulled by an amount

δ f D =
∆′ − ∆
2πtR

=
n
tR

(CI − C′I)
C′I

f D

f
. (3.87)

Moving the early time data has the same size effect but with the opposite sign. For a given C′I

and swatch size, we can fit the extracted f D vs the number of periods we are offset from the zero

crossing of the difference fringe. Figure 3.12 shows how this slope varies with the value of C′I

for the swatch size of 90 pixels used in our measurement, chosen to maximize C
√

N. The correct
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Figure 3.12: Example data. Plotting the slope of f D when the early-time data is taken at varying
offsets from the zero crossing of the difference fringe. The x-intercept gives us the true value of
our imaging contrast, which we then use in our fitting program.

value of C′I is the one for which ∂ f D

∂n = 0, here C′I = 0.90(1), corresponding to ϵ = 0.050(5),

which we use for analysis of our whole dataset. Whilst we can measure CI very precisely, its

value can wander slightly over time. We have repeated this measurement many times over the

course a year and find that the early and late time CI are consistent with one another, and

between measurements, to ±0.05. We conservatively estimate the largest possible deviation in

CI , averaged over the dataset to be δCI ∼ 0.05.

For this effect to leak into f BD and cause a systematic shift in our science signal requires

either the amount we miss the beat by to B̃-odd, or the imaging contrast itself to be B̃-odd. We

consider the B̃-odd phase first. Because the mean value of ϕD is negative, the early time beat

happens before zero, and so we are forced to take data with nonzero ∆. In this case a non-zero

value of ϕBD will mean that the early time data is taken at a different ∆ depending on the B̃

switch. The value of ϕBD over the dataset is −30(140)µrad. Combining this with the uncertainty

in CI above leads to a systematic uncertainty ϕDBδCI
2πtRCI

∼ 0.7 µHz.

A systematic shift can also potentially be caused by ϕD combined with a B̃-odd imaging

contrast CB
I . In order for this shift to reach the 5 µHz level, would require CB

I ∼ 0.005, or

equivalently ϵB ∼ 2.5× 10−3, or about 5% of the total leakage. We know of no mechanism which
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can cause such an effect and so include no contribution in our systematic uncertainty budget.

3.8.2.2 Swatch position

As described in Section 4.2, the position of the center line and corresponding swatch for

each switch state is determined by an algorithm based on images of the cloud taken without

any π/2-pulses. In this section we explore the consequences of a possible systematic error in the

center position dividing line between the two doublets.

We reanalysed the dataset, with the center line in each image displaced by different number

of pixels left and right. The largest observed shifts in the frequency and phase channels are shown

in Fig. 3.15. We note that the signal to noise in these shifts is much better than indicated by the

error bars shown because we are reanalysing the same data. We can explain the observed shifts

using ideas from the previous section. Let’s use Eq. 3.85 as before but this time with the phase

pulling on each of the doublets separated,

δ′u − δu =
(δu − δl)(ϵ− ϵ′)

2ϵ′ − 1
, (3.88)

δ′l − δl = −
(δu − δl)(ϵ− ϵ′)

2ϵ′ − 1
. (3.89)

We can combine both of these equations as

δϕ = D̃
∆(ϵ− ϵ′)

2ϵ′ − 1
(3.90)

where δϕ is the phase pulling of a single fringe and ∆ = δu − δl is the amount we are missing

the beat by. We can express the effect of moving the swatch center around by modifying ϵ, the

amount each doublet leaks into the other

ϵ = ϵ0 + κD̃ ĨYc − ν(D̃ ĨYc)
2. (3.91)

This equation expresses the fact that as we move the swatch over to one side, there is more

leakage into one of the doublets and less into the other. Which way around they are depends

on the I switch. The first order effect, ∝ κ, is linear but for larger swatch displacements, the
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Figure 3.13: Varying the swatch width while correcting for the doublet contrast. We see no
meaningful shifts in our science channel and a small residual shift in f D. In the lower panel we
have averaged over the 3 distinct values of f D that we operated at.
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second order effect, ∝ ν, starts to become important too. Substituting this back into Eq. 3.90 and

assuming for simplicity that we have done a good job of picking the doublet contrast in the first

place so that ϵ′ = ϵ0, we get

δϕ =
∆

2ϵ′ − 1
( ĨκYc − D̃νY2

c ). (3.92)

The last factor we need to include to explain the data is to make the approximation that the main

place we are missing the beat is at early time (due to the beat being before T = 0), so that ∆ ∼ ϕD.

Here we have included the largest (by far) contribution to the D-odd phase only. Finally we have

δϕ =
1

2ϵ′ − 1
( ĨκϕDYc − D̃νϕDY2

c ). (3.93)

So the principle effects we expect are a linear shift in ϕI and a smaller quadratic effects in ϕD.

Because (almost) all of the pulling is happening at early time, each of these could be expected

to have an echo in the corresponding f channel, with opposite sign and smaller by a factor of

2π× T ∼ 15 s rad. Each of these can be seen in Fig. 3.15 from which we infer κ = −1.89(6)× 10−3

per pixel and ν = −7.0(2)× 10−6 per pixel squared. The shifts seen in ϕDI and f DI (about a factor

of 5 smaller than those in ϕI and f I) could be caused by a Ĩ-odd systematic error in the swatch

position Y I . Including this in Eq. 3.93 yields an additional contribution ϕD

2ϵ′−1 (κY I − D̃νY I2 −

2D̃ ĨνYcY I). Comparing the term linear in Yc to the observed gradient in ϕDI gives Y I = 25(1)

pixels. Other possible systematic shifts in swatch position can be constrained by the data in the

same way to less than 5 pixels.

The largest gradient in a frequency channel seen in this analysis is ∂ f I/∂Yc ∼ 2 µHz per

pixel. It is important to realize that the swatch displacement that is carried out here is just one

of many possible ways of moving the swatch. Because we moved the swatch the same direction

in each switch state, Yc shows up in Eq. 3.91 with D̃ Ĩ. There are 7 other possible ways to move

the swatch, always D̃-odd but with all other possible switch-state dependence. We can infer

the effects of these possible systematic effects from those shown here. We are interested in any

possible shifts in ϕDB and f DB which can only show up quadratically in any systematic error
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Figure 3.14: The effect of moving the center of the swatch on our science channel.

in the swatch position. To see an effect requires either missing the beat by a B̃-odd amount,

or a combination of two systematic shifts in swatch position, one B̃-odd and on B̃-even. As

discussed in the previous section, the former can happen due to a combination of our non-zero

ϕD and a non-zero ϕDB. In our dataset, ϕDB = −30(140)µrad which, combined with Y I gives

a systematic | ϕDBνY I 2

2πT(1−eϵ′) | < 70 nHz. The largest contribution to the latter is from Y I combined

with YBI , constrained by looking at the gradient of ϕDBI in our analysis to be 1(2) pixels. This

gives a systematic of | 2ϕDνY IYBI

2πT(1−eϵ′) | < 1.2 µHz. We include the quadrature sum of these two in our

systematic uncertainty budget.

3.8.2.3 Counting saturation

Our imaging system has a limited capacity, and if that were somehow magnetic field and

doublet odd it could be a concern. It’s hard to conceive of a method for this to be both magnetic

field and doublet odd, however, because even if one side of the screen saturated faster than the

other, that asymmetry is heavily suppressed by the fact that the Ĩ chop swaps which side of the

screen we read each doublet out on.

Collating the imaging data over 25 blocks we can see that our imaging does indeed saturate

(the image intensity does not scale linearly with the number of Hf+ ions we count, see Figure
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Figure 3.15: Moving the center of the swatch has a measurable effect in several parity channels.
Note all panels show the entire aggregated dataset except for the f D panel, which shows a subset
of measurements performed at a single f 0
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Figure 3.16: Imaging data collated over 25 blocks. The lower doublet data is in pink while the
upper doublet data is in blue.

3.16).

We can fit the data in Figure 3.16 to the function I = αHf+counted + fi(Hf+counted)
2. For small

Hf+counted, the image intensity should scale linearly with Hf+counted. Therefore, we can apply a

saturation correction to our data: Hf+real = Hf+counted(1 + fi/ffHf+counted). We then re-analyzed all

our data with several saturation corrections applied: none/zero, two incorrect ones, and the

“true” value of β/α = 8.52× 10−4. We see no observable shift in our science channel and so we

do not include this effect in our systematic error budget.

3.8.2.4 Time-varying offsets

Our asymmetry fringes can be offset from zero, characterised by the parameters Ou/l from

Eq. 3.9. It is possible that these offsets might decay as a function of Ramsey time, for example

if collisions slowly redistribute population between the two states in a doublet. Since we fit our

fringes with a single offset for all Ramsey times, this could potentially lead to a systematic shift

in the relative phases. To investigate this possibility, we refit our entire dataset with a fixed

differential offset between the early and late time asymmetry data points and looked for changes

in f BD. We observe no shifts at the nHz level and so include no contribution in our systematic

uncertainty budget.
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Figure 3.17

Table 3.7: Systematic error budget

Effect Section Correction (µHz) Uncertainty (µHz)

Magnetic
Non-reversing B⃗0

3.7.1.1 0.2 < 0.1
Second harmonic of Erot and transverse magnetic field 3.7.1.3 2

Third harmonic of Erot and magnetic field gradients 3.7.1.4 2

Higher harmonics of Erot and higher order magnetic field gradients 3.7.1.4 < 0.1
Ellipticity of Erot and magnetic field gradients 3.7.1.5 1

Berry’s phase
Phase modulation due to axial secular motion 3.7.2.3 3

Axial 2nd harmonic with ellipticity of Erot 3.7.2.4 2

Higher harmonics of Erot 3.7.2.5 3

Rotation induced mixing
Leaking of f BR

3.7.3.1 < 0.2
Axial magnetic fields 3.7.3.2 0.4

Other frequency
Imperfect overlap of spatial distributions 3.7.4.2 3.5

Phase
Improperly characterized imaging contrast 3.8.2.1 0.7
Swatch position 3.8.2.2 1.2

Total 0.2 7



130

3.9 Interpretation

Table 4.1 presents our error budget. We have demonstrated a significant advance in the

characterization of our experiment resulting in a lower systematic uncertainty and a measure-

ment which is statistics dominated. The use of rotating bias fields and trapped molecules is a

powerful technique for suppressing systematics; the rotation means that most stationary field-

induced systematics average away over a rotation cycle, and the trapped species allows us to

measure both early- and late-time phase which eliminates a large class of state-preparation sys-

tematics one might otherwise have to worry about. As eEDM sensitivity is pushed into the next

decade of accuracy, these advantages may prove essential.

3.10 Supplemental Information / Appendices to the paper

3.10.1 Overview of data

The data blocks can be divided into three main categories, based on the approximate value

of f 0, corresponding to roughly 77, 105, and 151 Hz. f D ≃ δg/g f 0, thus came in respectively

at -171, -230 and −327 mHz, and by choosing late-time Ramsey fringes centered at 1/2 f D or

respectively roughly 2.9. 2.2 and 1.5 s, the late-time Ramsey fringes were taken at the re-phasing

of the fringes for the upper and lower doublets. In the tables below, we present averages taken

separately over the three ranges of f 0, plus an average taken over all the blocks. In each case

the quoted one-σ errors are based on combining the estimated error on all the relevant blocks,

and then relaxing that value by multiplying by
√

χ2 to correct for overscatter. For reference

we include the relevant value of χ2 as calculated before the error bars were relaxed. The χ2

associated with the relaxed error bars displayed here are all by construction equal to 1.

The tables under discussion in this section are presented in E.
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3.10.2 Overall comments

The parameters which are even in all switch states (superscript 0) are the noisiest, as they

are unprotected from all the drifts in the experimental conditions. These drifts arise from many

sources, for instance (i) changes in the temperature of the lab, or of the water cooling the power

op-amps that drive the ion-trap electrodes. (ii) changes in the ambient magnetic field and its

gradients, arising e.g. from a distant freight elevator, a less-distant optical table, or a still-closer

weld in an only nominally nonmagnetic UHV chamber (iii) variation in the number, temperature,

and density of the ion cloud (iv) drifts in the current supply that drives the B⃗0 coils. Cloud size

and thus ion density and trap temperature were not well-characterized parameters. Ion number

in particular drifts from block to block, and due to mean-field coulomb repulsion within the

cloud the ion number is coupled to cloud size, and from there to f 0 which is an average over

spatial field inhomogeneities. The strength of radial and axial trap confinement were treated

as parameters to be tweaked to maximize the precision per block of data. Ion production was

frequently re-optimized as well, with resulting jumps in f 0 between blocks of tens of milliherz

or more.

All P̃-odd values are in a category by themselves, in that they were not collected as part

of a rigorously implemented intra-block chop. Instead, we reverse the direction of the relevant

polarizer every other block. On some days, we took an odd number of blocks. In other instances

we vetoed an entire block of data which left the next block of data unpaired with a block of

opposite P switch. For these reasons, from our entire run of ∼ 1300 blocks we do not try to

generate ∼ 650 sets of P̃-odd fit values based on pairs of matched, sequentially collected blocks.

Instead, for each of the f 0 superblocks, we divide the blocks into the P̃ = 1 and P̃ = −1 piles,

calculate weighted mean values for each fitting parameter and each of the {D̃, B̃, R̃, Ĩ} parity

channels, with error bars corrected for scatter. Then, element-wise across the large table of

values, we take either a sum or difference between the P̃ = 1 and P̃ = −1 to create the overall

P̃-even or P̃-odd parity channels. In this method, there is no particular meaning to χ2 for the
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P̃-odd parity channels, so no such value presented in the tables below.

After each block we attempt to servo the value of f B back to zero for the subsequent block.

Thus the mean value of f B is very low even though f B channel is susceptible to drifts in ambient

conditions. These drifts can be tracked because we record the value of the current in the coils

used to servo f B.

Looking across the 480 parity-channel values associated with the three frequency superblocks,

and the 160 fully aggregated values, we see the overwhelming majority of the values are quite

close to zero. There are a few numbers which are dramatically different from zero, for good

reason:

(i) f 0 itself of course, the absolute value of the energy difference between mF = ±3/2, which

we apply a bias magnetic field to set to a value between 75 and 155 Hz, depending on the

superblock.

(ii) f D comes in a −225 mHz, smaller than the mean value of f 0 by a factor of about −1/450,

which is the fractional difference in g-factor between the upper and lower states, plus a few

smaller correction factors.

(iii) f BR, at 212 mHz, comes from a magnetic field, rotating at 375 kHz, generated by oscillating

currents that arise from charging the fins to the oscillating voltages that create the rotating

electric bias field.

(iv) f BDR, at roughly 410 µHz, is f BR echoed in corresponding D̃-odd channel by the same factor

of δg/g ∼ −1/450. After a correction for finite f BR is applied, f BDR is within 1.7 σ of zero.

(v) f BD is proportional to the electron’s electric dipole moment de and its value in principle

could be quite large. If we take the ACME 90% confidence limit, de < 1.1× 10−29 e cm e-cm

at face value, we would have similar confidence that our measured value will lie between
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−120 µHz < f BD < 120 µHz. For all but the last few weeks of the experimental effort

described here, the blinding procedure built into our analysis software made f BD appear to

have the arbitrary value near 16.1 mHz.

(vi) γ0 The mean decay rate of coherence is about 0.1 s−1. Arising from ion-ion collisions and

from spatial inhomogeneities, gamma is a noisy number that depends sensitively on number

of trapped ions and fine details of the trap shimming.

(vii) ϕ0, fairly large at tens of milliradians, is measured to be proportional to f 0 and is consistent

with ∼ 150 µs (CK) offset in where we define tR = 0. This is not unexpected given that the

during the π/2 pulses the rabi frequency varies during the 1 ms pulse duration.

(viii) O0, OD, CD, ϕD. These nonzero terms all arise predominantly from the same basic cause.

Due to the presence of the F = 1/2 manifold intermingled with the F = 3/2 levels, the cou-

pling procedure we use to drive nominal π/2 pulses is characterized by a slightly different

effective Rabi frequency for the upper and lower levels. The duration of our coupling pulses

is chosen as a compromise, and results in a state mixing of slightly larger than π/2 for one

doublet and slightly smaller than π/2 for the other. This is the origin of the fringe offset

O0 and this compromise also contributes to the deviation of fringe contrast from unity. Our

compromise π/2 pulse duration was in retrospect chosen imperfectly, such that the devia-

tion from perfect π/2 duration was not equal and opposite for the upper and lower levels.

This led to finite values of OD and CD. With the π/2 pulses not applied at exactly zero

detuning, a ϕD term also results.

Beyond these large (and largely understood) nonzero fit values, in a perfect version of the

experiment we would like to see the remainder of the 480 values be very small, and ideally within

measurement error of zero.
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3.10.3 Frequencies

Of the remaining 27 frequency channels, there are five that differ from zero by more than

4σ, i.e. by more than twice their scatter-adjusted estimated error.

The four largest are f R, f RI , f I , and f BI with frequencies of -4.2, -2.2, -0.8 and −0.42 mHz

respectively. What f R, f RI , and f I have in common is that they correspond to switches which

involve changing the inputs to our direct digital synthesis (DDS) boards. Each fin is driven by a

distinct DDS board. To change the sign of rotation of E⃗rot, the R̃-switch , we change the relative

digital phases we load into the different DDS boards. To effect the Ĩ switch, which has to do with

the direction of the the E⃗rot electric field at the instant we do the photodissociation pulse, we

switch the sign of the amplitude input into all 8 boards. The digital math performed within the

DDS boards must always include at least implicitly a truncation to the least significant bit (LSB) of

the digital-to-analog converter, and this process is repeatable but subject to tiny discontinuities

from the round-off error. Our fringe frequency is directly proportional to the rotating electric

field amplitude. The commanded voltage on any fin is sinusoidal in time. A shift of 4 mHz

could result in a change in the magnitude of E⃗rot corresponding to much less than 1 LSB of

commanded voltage. In this context, our nonzero values of f R, f RI and f I seem unsurprising. f R

is additionally affected by small drifts in the equilibrium location of the center of the ion cloud,

and by drifts in the magnitude of residual second harmonic contamination in Vrot.

After the discussion above, we are left with 10 D̃-even and 14 D̃-odd channels which

we believe should be “quiet”, near zero, after a “δg/gcorrection” for the nonzero value in the

corresponding D̃-even channel, (the correction leaves f DR at 3.0 σ from zero, and f BDR at 1.6 σ

from zero). We have 24 “quiet” channels, and an additional channel f BD, which we believe should

be quiet except for any nonzero value of de, the electron’s EDM. We don’t have an independent

measure of the correct value of de, but the 24 channels offer a chance for test of our accuracy and

precision claims. We take each quiet frequency channel, divide it by its corresponding sigma, and
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then we can ask what is the rms amount by which the items in the ensemble differ from zero?

If we omit the three-sigma value, f DR, and look at only the remaining 23 values, we get a very

pleasing answer - the frequencies differ from zero by an rms amount of 0.98. If instead we include

f DR, the rms normalized difference from zero is 1.3. This is not a catastrophically large number

for an ensemble of 24 independent points, but is a larger than one might hope. Put another way,

if you have 24 normally distributed points, there is about an 8% chance that at least one will

be as far away from its “correct” value as 3 σ. It is a thing that happens, sometimes. We have

no explanation for why f DR should be nonzero, and we can’t rule out that an uncharacterized

systematic error contributed to its nonzero value. We put a lot more effort into thinking about

and characterizing systematic errors that will move f BD around compared to errors in f DR, so

even if one in 24 measured frequencies does have an uncharacterized systematic error, this is not

a very worrisome impeachment of f BD. In the end we have chosen to comment on this slightly

aberrant observation but to make no corresponding relaxation in our error budget for our main

measurement.

3.10.4 Contrasts, and contrast decays

We’ve already mention C0 and CD. The fit value C, the initial contrast in the Ramsey

fringes, is affected by parameters of the ion cloud exactly at the moment of photodissociation.

The cloud mean position, its mean velocity, and the direction in which Hafnium ions is ejected

after photodissociation, all impact where the atomic Hafnium ions eventually impact on the

imaging ion detector. Different regions of the multi-channel ion detector have different sensitivity

and different propensity to saturate. We have a procedure which region of the detector receives

ions ejecting from upper doublet and which from lower doublet, but this procedure can be subject

to biases. All this means that changes in contrast can appear in multiple channels. In particular

CDI corresponds to a different contrast detected on the right or on the left side of the detector.

This is a particularly large term. CRI corresponds to the direction of the HfF+ velocity, along

the direction towards the detector, at the moment of photodissociation. This in turn affects the
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mean time-of-flight for the Hf+ ions and the HfF+ ions. We impose a hardware gate to cause

the image of ions to display only the Hf+ ions and not the heavier, slower, later-arriving HfF+

ions. The timing of this gate is designed to maximize count rate from Hf+ ions but suppress the

contrast-destroying HfF+ ions. Changing the molecule velocity at the moment of dissociation

changes the optimum time for the gate, but we do not make any adjustment to the detection

circuitry. Therefore a substantial value of CRI comes as no surprise. CR, CDR and CDRI likely

arise from similar but smaller effects. The entire point of including the contrast C as a fitting

term is to prevent the nonlinear fitting routine from interpreting changes in contrasts as changes

in frequencies. Frequencies are further isolated from misinterpreted changes in contrast (as for

instance, if the detector loses more sensitivity due to large-count rate saturation) by ensuring

we choose Ramsey times separately for data each switch state so that we take points as close as

possible to the exactly halfway up the sides of fringes.

What we call γ is really just a measure of the ratio of the contrast in the early-time fringe

to that in the late-time fringe. We don’t routinely collect over the intermediate times between the

first, “early-time” sinusoidal cycle of the Ramsey fringe and the last “last-time” fringe. When

we have filled in some of the intermediate times, the resulting full fringe does not fit well to a

pure exponential decay in contrast. The various effects that limit contrast can’t be combined in

a purely multiplicative way, and thus our approach to fitting (Eq. 3.13) means that any channel

with a distinctly nonzero contrast, say CRI , will have a nonzero decay rate, ie γRI .

3.10.5 Phases

The largest observed nonzero channels in phase and offset (O, OD, ϕ, ϕD) are well un-

derstood. Phase errors typically arise from small imperfections in the π/2 pulses. The observed

value of ϕBR is for instance consistent with the presence of an otherwise imperceptibly small axial

gradient in the magnitude of E⃗rot. Other channels of ϕ differ from zero by statistically significant

amounts, but all less than 3 mrad. With exception of ϕD, no D̃-odd channel differs from zero by
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more than 1 mrad, and the all important ϕDB is measured to be 0.03(14)mrad. The frequencies

we measure are isolated from phase errors by the early fringe/late fringe chop. Our best effort

at creating a nonzero fringe phase resulted in a 170 mrad phase, which is 1000 times larger than

the 1 σ limit on our measured ϕDB, but even in that case we could resolve no frequency shift in

the corresponding frequency channel.

3.10.6 Offsets

Offsets in our Ramsey fringes can occur due to imperfections in π/2 pulses, as occurs

in O0, OD and presumably OBR. There are scenarios where offsets in some channels can occur

due to minor spatial variations in the polarization of laser beams, such as could happen from a

dusty waveplate. This may account for the anomalous value of ODIP. Other than O0 and OD,

the magnitudes of offset channels are less than one thousandth of the average fringe amplitude.

Even we did not allow the fitting routine to relax around a nonzero offset, the spacing of our

Ramsey time points is such that it would strongly suppress coupling of offsets to frequencies in

our fits.

This marks the end of the manuscript draft

3.11 Not Systematics

In this section I’m going to do a quick review of some effects we observed which are not

systematics, but which were interesting/edifying/time-wasting nonetheless.

3.11.1 Shifts vs z position

We have recorded f , f B, & f BR all varying with the z position of the ions in the trap.

Plotting script for the plots in this section are in the X drive in 211129, titled plotting_z_shim.

We were able to explain f and f B fairly quickly, but it took us some time to figure out f BR.
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Figure 3.18: Observed frequency shifts in z

Figure 3.19: Observed frequency shifts in z

3.11.1.1 f vs z

The parabolic shift in f (z) can be explained by constructing a simple model of the axial

gradient (Brot) coils, and expanding the resulting magnetic field out to second order. The field

from a single coil is (up to a factor of current and 4πϵ0):

k =
4Rρ

(R + ρ)2 + (z− z0)2 (3.94)

where R is the radius of the coil, ρ is the radial distance from the center, and z is the distance

along the axis. We can take this expression and add a second term at the correct distance (and
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sign for the current) to model an anti-Helmholtz configuration, then expand that expression,

with our actual coil parameters substituted, to second order in ρ and z. This gives a term like

(r− Krz2)Baxgrad, with K = 6× 10−5.The fit to the data gives K = 9× 10−5.
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Figure 3.20: Fitting f (z)

Note the model is Luke’s mathematica notebook titled Baxgrad model which is in 201112

as is the analysis code which generated the f (z) plot, named analyzing_frequencies_vs_zshim.

3.11.1.2 f B vs z

f B(z) shows a shift of 0.007 Hz/mm or 0.07 Hz/cm. We can approximate f B ∼ (3gFµB/h)Bnr
rot =

(3gFµB/h)Bnr
axgradrrot, where Bnr is the non-reversing magnetic gradient. We can differentiate both

sides to get ∂ f B

∂z = (3gFµB/h)
∂Bnr

axgrad
∂z rrot. Rearranging, ( ∂ f B

∂z )/(3gFµBrrot/h) =
∂Bnr

axgrad
∂z . Plugging in

the known values ( ∂ f B

∂z = 0.07 Hz/cm, rrot = 0.05 cm, etc), we get
∂Bnr

axgrad
∂z = 1× 10−6 G/mm2, or

∂Bnr
axgrad
∂z = 1× 10−4 G/cm2. For comparison, Brot = 11.9 mG, which for rrot = 0.5mm means we

have 0.238G/cm Baxgrad. So to get our observed change in f B we need a change in Bnr
axgrad over 1

cm which is about 1/1000 of Baxgrad, which seems quite believable.

It remains to determine the source of f BR(z). The next sections detail the our investigations.
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3.11.1.3 f BR vs z: is it from the magnetic field shimming Z coils?

In the Gen 1 trap f B(z) turned out to be caused by the z coils - turning them off removed

the dependence (see notes in lab notebook Nov 17 2016). Simulations of the Gen 1 coils showed

that the z coils were causing a quadratic field near z = 0. We repeated this experiment in the

Gen 2 trap and found that the Z coils being either on or off had no effect on the shifts observed.

Figure 3.21: Comparing frequency shifts in z with the magnetic field shimming Z coil on or off

Figure 3.22: Comparing frequency shifts in z with the magnetic field shimming Z coil on or off
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3.11.1.4 f BR vs z: is it from axial confinement?

Changing the axial confinement changes the spatial extent of the ion cloud in the z direc-

tion. We checked to see what kind of effect this might have on the observed frequency shifts. We

did not observe any notable changes.

Figure 3.23: Comparing observed frequency shifts in z with 2 different values for the axial con-
finement

Figure 3.24: Comparing observed frequency shifts in z with 2 different values for the axial con-
finement
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3.11.1.5 f BR vs z: is it from anharmonicity in z?

We know that our z trapping potential is anharmonic. We found this by giving the cloud

varying magnitudes of kicks and looking at the resultant slosh frequency. See the script from Oct

22 2021 titled trap_anharmonicity_analysis (lab notebook day Oct 22 2021) (the original data

is from 2020). See also the mathematica notebook attached in the ’trap anharmonicity analysis

continued’ lab notebook, it should be titled ’modelling endcap anharmonicity 3’.

Using Mathematica, I modelled the axial confinement as quadratic with higher order even

perturbations (whose strengths are parameterized by α and β, while the perturbation is parame-

terized by ϵ) plus a z shift (whose strength is parameterized by k2):

U(x) =
1
2

mω2
0x2 +

1
4

mαϵx4 ++
1
6

mβϵx6 + k2mx. (3.95)

We solve for the equilibrium position (which is a rather complicated expression), then

expand our potential about the equilibrium position for small ϵ to get an expression for the

potential that we will use which eliminates the shift. Then we take the negative gradient of this

expression to get the force:

F(x) = −mϵ

(
βk2

5 + αk2
3ω0

4

ω0
10 + α

(
x− k2

ω0
2

)3

+ β

(
x− k2

ω0
2

)5
)
−mxω0

2. (3.96)

We are interested in periodic functions of s ≡ ωt, so we write x(t) = z(s), which leads to

ẍ(t) = ω2z′′(s). We define ω and z as series:

ω = ω0 + ϵω1 + ... (3.97)

and

z = z0 + ϵz1 + ... (3.98)
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then we substitute the series and x(t) = z(s) into our equation of motion:

mω2 (z0
′′ + ϵz1

′′) = −mϵ

(
βk2

5 + αk2
3ω0

4

ω0
10 + α

(
z− k2

ω0
2

)3

+ β

(
z− k2

ω0
2

)5
)
−mω0

2z.

(3.99)

Then we expand the result for small ϵ to get:

mω0
2z0
′′+ϵ

(
2mω0ω1z0

′′ + mω0
2z1
′′)+ O

(
ϵ2) = (3.100)

−mω0
2z0 + ϵ

(
− 5βk4

2mz0

ω0
8 +

10βk3
2mz0

2

ω0
6 − 10βk2

2mz0
3

ω0
4 − 3αk2

2mz0

ω0
4 + (3.101)

5βk2mz0
4

ω0
2 +

3αk2mz0
2

ω0
2 + β(−m)z0

5 − αmz0
3 −mω0

2z1

)
+ O

(
ϵ2) (3.102)

Then we group terms by order of ϵ, and solve each resulting equation using the solution

from the previous order. The zeroth order term, z0′′(t) = z0(t) has the obvious solution:

z0(t) = A sin(s). (3.103)

We substitute this into the equation which is first order in ϵ. We set the integration constant

to zero and set the “secular” terms (terms with the form s cos(s)) to zero to get

ω1 =
5A4βω0

8 + 6αA2ω0
8 + 60A2βk2

2ω0
4 + 40βk2

4 + 24αk2
2ω0

4

16ω0
9 . (3.104)

Plugging this into the first order equation you get a pretty gnarly expression for z1(t).

Then since we have z0(t) we can write down z(t) to first order: z(t) = z0(t) + ϵz1(t). We plug

our expression for z(t) into our expression for the force, which becomes pretty gross to look at,
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then we expand the expression for the force to first order in ϵ. It’s still pretty gross but for the

record this is what we get:

F(t) = −Amω2
0 sin(ω0t)+

Amϵ

384ω8
0

[
128ω0

2 cos(tω0)
(

8A3βk2ω0
4 + 20Aβk2

3 + 6αAk2ω0
4 − 3tω0

8ω1

)
− 256Ak2ω0

2 cos(2tω0)
(

ω0
4 (3α + 5A2β

)
+ 10βk2

2
)
+ 256A3βk2ω0

6 cos(4tω0)−

6 sin(tω0)
(

A2ω0
8 (46α + 37A2β

)
+ 4k2

2ω0
4 (48α + 115A2β

)
+ 320βk2

4
)

+ 27A2ω0
4 sin(3tω0)

(
ω0

4 (4α + 5A2β
)
+ 40βk2

2
)
− 25A4βω0

8 sin(5tω0)
]
+ O

(
ϵ2)
(3.105)

Taking the electric field Ez(t) as the force over the charge, and integrating

−1
6

ω

2π

∫ 2π/ω

0

E3
Z(t)
E3

rot
(3.106)

then expanding the result as a series in ϵ, we get an expression for the Berry’s phase we ex-

pect as a function of displacement (in terms of k2) and the strength of the quartic (parameterized

by α (we also let ϵ go to 1 as we finish with the perturbation theory.) This gives

αberry == −
m3ϵ

(
5A6βk2ω0

4 + 10A4βk2
3 + 3αA4k2ω0

4
)

12Erot3q3ω0
2

(3.107)

If we plug in the known values for everything in the above equation plus xeqω2
0 for k2,

where Xeq is the equilibrium position, we get that the berrys phase alpha is

αberry = xeq
(

β
(
−3.722534205999362̀*∧-17xeq2 − 1.861267102999681̀*∧-19

)
− 1.1167602617998085̀*∧-17α.

)
(3.108)
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fBR is then 375000× 3αberry so the fBR due to this quartic perturbation should scale like

f BR = 375000× 3× xeq(−1.12× 10−17α + β(−1.86× 10−19 − 3.72× 10−17xeq2)) (3.109)

Since we have expressions for ω0 and ω1 we can say that the frequency is

f =
1

2π
(ω0 + ω1) (3.110)

and for the data where we gave the cloud a kick and measured the slosh amplitude A and

frequency then the equilibrium position is zero, so k2 = 0 and our expression for the frequency

is

f =
5A4β + 6αA2 + 16ω0

2

32πω0

(3.111)

We then fit the slosh vs frequency data we have to determine ω0, α and β.
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Figure 3.25: Fitting the measured frequency vs slosh amplitude in the non-displaced trap

Now we can plug the values for ω0, α, and β into equation 3.109:
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f BR = −0.000154xeq− 2.677xeq3 (3.112)

We can plot this prediction on a plot with our experimental results, and we see that this

completely fails to account for the observed shift; the slopes differ by a factor of ∼ −10.
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Figure 3.26: Comparing the prediction for f BR from our model of the anharmonicity to the
empirical results. We see that this model does not account for the observed shifts

3.11.1.6 f BR vs z: we’re pretty sure it’s due to currents in the electrodes

Trevor Wright made a simple model of the currents in the electrodes which explained what

we observed quite well. Look forward to his thesis for the write-up :)

In any case, we have no mechanism by which this could become a systematic.

3.11.2 Ion number vs f 0

At one point we saw what appeared to be a correlation between total trapped HfF+number

and f 0, but this has not held true through the dataset. What seems to happen reliably is that f 0

tends to drop over a day whether or not HfF+number is dropping, and some days HfF+number

would also drop throughout the day so we saw false correlations.
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3.11.3 f R

In general we measure a non-zero f R, the value depends on what primary fringe frequency

we are operating at (see Figure 3.27). We suspect this is just due to the DAC resolution on our

Erot generating channel; it’s only a 10-bit DAC so a difference in a single DAC step would be

enough to provide the f R we observe.

Figure 3.27: Averaging f R over our entire dataset, per primary fringe frequency f 0. f R scales
with f 0 with a slope of 0.00018, which is very close to 1/1024 = 0.00098 or a single step in a
10-bit DAC.

3.11.4 Shifts vs x-y position

We observe frequency shifts if we move the ions in the x-y direction (see Figures 3.28 and

3.29). We have no clue why! Baxgrad gradients would explain f, but fR is a little harder to

understand. This is one remains a mystery, but we have no mechanism by which this could be a

systematic4.

4plotting script is in 220125\analyze_radial_shifts.
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Figure 3.28: Comparing observed frequency shifts with x translation

Figure 3.29: Comparing observed frequency shifts with x translation



Chapter 4

A new limit on the electron’s electric dipole moment

This chapter is a reproduction of a manuscript in preparation co-written by myself and Luke Caldwell

4.1 Summary of the eEDM result

Physicists have been able to describe our entire universe using just two math-
ematical models: General Relativity, for gravity, and the Standard Model, for
everything else. While the Standard Model is generally successful it has some
serious inconsistencies: it fails, for example, to explain why matter dominates
over antimatter in our universe. New physics models aim to eliminate these in-
consistencies and often introduce additional symmetry violation, which in turn
results in predicted symmetry violation in fundamental particles like electrons.
In particular, many new physics models predict that the electron will have a
measurable non-zero electric dipole moment aligned with the spin axis, which
violates time-reversal symmetry. Here we present a new experimental limit on
the electron’s electric dipole moment using trapped HfF+ in rotating bias fields.
We find de = (−9.7 ± 20.1stat ± 6.2syst) × 10−31 e·cm, which corresponds to an
upper bound of |de| < 4.4× 10−30 e·cm (90% confidence). Our measurement is a
factor of 2.5 better than the previous best limit, and confirms previous results in
a radically different system. Our limit directly constrains new physics theories at
energies beyond the reach of the Large Hadron Collider [32].

The Standard Model of physics predicts that the electron has a very small displacement

of its center of charge from its center of mass, giving it an electric dipole moment (EDM) which

violates time-reversal (T) symmetry. So far, nobody has detected an electron electric dipole

moment (eEDM, de), and the Standard Model prediction lies ∼ 8 orders of magnitude below
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current experimental sensitivity. Extensions to the Standard Model aimed at solving inconsis-

tencies like matter-antimatter asymmetry often do so by adding new particles at energies higher

than any so far discovered, accompanied by new T-violating phases. These new particles re-

sult in a much larger prediction for the eEDM - often within reach of near-term experiments.

Measurements of the eEDM serve as a direct constraint on extensions to the Standard Model,

and current eEDM measurements probe for particles with energies above ∼ 30 TeV [32], well

beyond the reach of any current or planned particle collider. In addition, a non-zero measure-

ment at current experimental sensitivities would unambiguously signal new physics. Here we

present the most precise measurement of the eEDM so far. We achieved this with a unique

experimental setup, trapping molecular ions and polarizing them in rotating bias fields. Our

result, de = (−9.7± 20.1syst± 6.2stat)× 10−31 e·cm (’syst’, systematic uncertainty; ’stat’, statistical

uncertainty), is consistent with zero and constrains de to an upper limit of |de| < 4.4× 10−31 e·cm

at 90% confidence.

In general, eEDM searches aim to measure the energy difference ∆U when de is aligned

vs anti-aligned with an electric field E ; ∆U = −2de · E . Assuming there are no new degrees

of freedom the eEDM must be aligned with the electron spin, and an unpaired electron spin

inside a polarized paramagnetic molecule is subject to a huge intramolecular electric field Eeff

[41]. This is why our measurement uses trapped HfF+ molecules; with an applied field of ∼ 50

V/cm the science states of our molecule are oriented and fully polarised (Eeff = 23 GV/cm). By

using trapped ions we are able to realize spin coherence times 3 orders of magnitude larger than

any other molecular eEDM experiment. As shown in Figure 4.1, the intramolecular axis, which

defines the direction of Eeff, points either parallel or antiparallel to the applied electric field. A

differential measurement performed between these two orientation states is at the heart of our

experiment.
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4.2 Experimental Overview

We begin our experiment with the production and radiofrequency trapping of roughly

20, 000 HfF+ ions in the 1Σ+ ground state [55] [50]. In order to both polarize and trap our

ions we rotate our external bias field Erot at angular frequency ωrot = 2π × 375 kHz and do

our spectroscopy in the rotating frame. The rotating electric field polarizes the ions, which

have a molecule-frame dipole moment, and states of good parity are mixed into states of good

orientation (either aligned or anti-aligned with Erot), known as Stark doublets (see Figure 4.1, top).

We also apply a quadrupole magnetic field gradient B, which drives the primary component of

the spin precession (see Figure 4.2).

Once we have trapped our ions and applied our bias fields, we prepare them for spec-

troscopy. We perform Ramsey spectroscopy on the stretched (mF = ±3/2) states in the 3∆1,

J = 1, F = 3/2 manifold of HfF+. As described in Methods, we transfer our ensemble into 3∆1

then prepare a pure spin state before applying a π/2 pulse to create a coherent superposition of

the mF = ±3/2 states. We allow the superposition to evolve for a variable amount of time, then

we apply a second π/2 pulse to map the relative phase onto a population difference between the

mF = ±3/2 states. We clean out one of the stretched states, then we detect and count the number

of ions in the remaining stretched state by state-selectively photodissociating the molecules [19],

using the opposing orientations in the trap to send the dissociation products to opposite sides

of our imaging microchannel plate and phosphor screen assembly [48, 47]. We count the ions in

each doublet then repeat the measurement reading out the other stretched state. From these two

measurements we can construct a spin asymmetry, Au/l =
N↑−N↓
N↑+N↓

, where the subscripts u/l indi-

cate the upper or lower Stark doublet, and the subscripts ↑ / ↓ indicate the spin state / stretched

state we read out. We repeat our measurement at different free-evolution times, which generates

a Ramsey fringe whose frequency is proportional to the energy splitting between stretched states

(see Figure 4.1).
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Figure 4.1: Ramsey spectroscopy in HfF+. Top, level structure in the eEDM-sensitive 3∆1, J = 1,
F = 3/2 manifold in external electric Erot and magnetic Brot bias fields (not to scale). The oriented
molecules are either aligned or anti-aligned with Erot, which we call the lower and upper Stark
doublets respectively. The component of the energy splitting due to the eEDM, 2deEeff, flips sign
between doublets. Bottom, example Ramsey fringes from our dataset. The fringes from the two
doublets are collected simultaneously.
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Figure 4.2: Top down schematic of our experiment’s main chamber. The neutral ions fly into the
center of the trap where they are ionized and trapped. We apply the rotating electric bias field
E⃗rot and the quadrupole magnetic field gradient B⃗. The ions undergo unifom circular motion,
either aligned or anti-aligned with E⃗rot, and their unpaired spins precess about E⃗rot · B⃗.
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In practice, our experiment is an electron spin precession measurement simultaneously

executed on two orientation states (Stark doublets, D̃) of trapped HfF+. The primary component

of the spin precession frequency that we measure, fB , is due to the spin precessing about a

laboratory magnetic field B⃗: h fB = 3gu/l
F µBÊrot · B⃗ = 3gu/l

F µBBrot, where h is Planck’s constant,

gF is the magnetic g-factor, the superscripts u/l indicate the upper or lower Stark doublet, µB

is the Bohr magneton, and Brot is the magnetic field in the ion’s rotating frame. As indicated

in Figure 4.1, the relativistically enhanced eEDM-induced energy shift, h fEDM ∼ deEeff, adds or

subtracts from the primary frequency h fB depending on the relative orientation of Eeff and Brot

(aligned or anti-aligned). We take measurements in both orientation states simultaneously but

separately (on either side of the screen), which allows us to perform a differential measurement

between the D̃ states (cancelling most common-mode noise [47]).

We collect our Ramsey fringes in each one of 8 possible experimental states, where we

switch the sign of the magnetic field B̃ (in or out), the rotation direction R̃ (up or down), and

the side of the screen/image we read a given Stark doublet out on Ĩ (left or right). A set of

Ramsey fringes in all possible switch states is called a block, and we fit those fringes to a set of

parameters (frequency, phase, contrast, offset and decay rate). Using all the fringes in a block we

form linear combinations of the fitted fringe parameters to create what we call parity channels.

The B̃, D̃-odd frequency channel, f BD, contains the eEDM signal. The other channels allow us to

diagnose systematics and monitor experimental performance.

We collected our blocks in “superblock” chunks where we changed an experimental pa-

rameter not listed above for a large set of blocks to search for unknown systematic effects. Our

superblocks consist of: different magnitudes of B to adjust the average fringe frequency f 0 (we

took data at f 0 = 77, 105 and 151 Hz), inverse orientations of the fixed waveplates used for state

preparation and readout (to change the handedness of the light in the lab frame), and changing

which stretched state we prepare (we routinely read out both stretched states, and we inter-

leaved blocks preparing one or the other stretched state). During data collection and analysis, we
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‘blinded’ our measurement to prevent experimenter bias from affecting our results. We gener-

ated a random number from a uniform distribution, and when frequency channels are computed

the random number is added to the f BD channel before any results are displayed. We did not

remove the blind until our systematics search and analysis was complete.

4.3 Accuracy evaluation

To evaluate the accuracy of our measurement we searched extensively for systematic shifts

prior to data collection; full details are in 3 and our systematic error budget is delineated in

Table 4.1. In general, we tuned a variety of experimental parameters over a large range and

observed the response in our data channels. The only shift we were able to observe directly

in the eEDM channel is that which is due to a non-reversing quadrupole magnetic field and the

difference in magnetic g-factors gF between Stark doublets δgF. The f B channel, which is acquired

concurrently with the f BD channel, provides a direct measurement of the non-reversing magnetic

field and allows us to apply a correction to our science channel: δ f BD
corr = f B δgF

gF
, see Figure 4.3.

Before applying any corrections to the science channel, we suppress this systematic by actively

shimming the currents through the B coils in each direction to minimize f B. This shimming

was so effective that the mean correction we applied was well below our statistical sensitivity:

δ f BD
corr = 181 nHz. Unfortunately, this type of shimming and correction leaves us susceptible to

other possible effects which can cause shifts in f B but not f BD. One of the most important sources

of such a shift was the combination of a transverse magnetic field and an Erot second harmonic

caused by harmonic distortion in our op-amps. This combination can cause shifts in both f B and

f BR. We shim out the second harmonic on each electrode by feeding forward a second harmonic

signal with the opposite phase. With this technique, we are able to suppress the second harmonic

by ∼ 80 dB. We also used our magnet coils to null the ambient uniform magnetic field at the RF

trap center below 10 mG. All remaining known systematic shifts are enumerated in Table 4.1.
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Table 4.1: Systematic error budget

Effect Correction (µHz) Uncertainty (µHz)

Magnetic
Non-reversing B⃗0

0.2 < 0.1
Second harmonic of Erot and transverse magnetic field 2

Third harmonic of Erot and magnetic field gradients 2

Higher harmonics of Erot and higher order magnetic field gradients < 0.1
Ellipticity of Erot and magnetic field gradients 1

Berry’s phase
Phase modulation due to axial secular motion 3

Axial 2nd harmonic with ellipticity of Erot 2

Higher harmonics of Erot 3

Rotation induced mixing
Leaking of f BR < 0.2
Axial magnetic fields 0.4

Other frequency
Imperfect overlap of spatial distributions 3.5

Phase
Improperly characterized imaging contrast 0.7
Swatch position 1.2

Total 0.2 7
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Figure 4.3: Systematic shift in the eEDM channel f BD due to non-reversing axial magnetic field,
which shows up in the f B channel.

4.4 Results

We collected 1370 blocks over roughly two months. We applied cuts to the blinded data

based on non-EDM channels indicating signal quality: blocks with late-time contrast below 0.2

were cut due to low signal to noise, as were blocks containing fitted fringe frequencies which

were over 3.5σ different from the mean fringe frequency for that switch state. The cuts applied

did not shift our result, see Figure 4.4. After applying cuts we were left with 1328 blocks, or

∼ 620 hours of data.

Figure 4.4: Results as we change the threshold for cutting blocks from our dataset. In each plot,
only one cut is applied (the other cut is not applied). Applying cuts does not systematically shift
our result.
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Each block results in one value of f BD and thus one eEDM measurement. In general our

fringe measurement uncertainty came in at the quantum projection noise limit [47], and the

reduced chi-squared statistic for taking a weighted mean of all the blocks is χ2
r = 1.07. To correct

for the over scatter we scale our final statistical error bar by
√

χ2 = 1.03. The unblinded dataset

is shown in Figure 4.5. Inspection of a normal probability plot indicates that the distribution

of normalized and centered eEDM measurements ( f BD − ⟨ f BD⟩)/δ f is consistent with a normal

distribution.

Figure 4.5: Summary of our dataset after cuts have been applied and scaling δ f by
√

χ2 to account
for over-scatter. Top left, normal probability plot of f BD showing the data are consistent with a
normal distribution. Bottom left, histogram of normalized and centered f BD data. Overlaid in
blue is a normal distribution. Right, superblocks taken under different experimental parameters
compared to the overall average value of f BD. Here N is the average number of trapped HfF+ions
per experimental trail.

We removed our blind on November 1, 2022 and obtained a final value for the eEDM-

sensitive frequency channel

f BD = −10.9± 22.8stat ± 7syst µHz. (4.1)

Dividing by −2|Eeff|sgn(gF)/h ≃ 1.13× 1031 µHz/e·cm, we obtain a value for the eEDM
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de = (−9.7± 20.1stat ± 6.2syst)× 10−31 e · cm, (4.2)

which is consistent with zero within one standard error.

The resulting upper bound on de is

|de| < 4.4× 10−30 e · cm (90% confidence), (4.3)

Our result is consistent with the ACME collaboration’s 2018 findings [32], and confirms

their result with a radically different experimental approach. So far we have assumed that par-

ity and time-reversal violation arise purely from de. Diatomic molecules are sensitive to other

symmetry violating effects [56], and we can interpret our measurement as a linear combination

of them all. Assuming that de is zero, we can instead attribute our measurement of f BD to

2WSCS, which arises from a pseudoscalar-scalar electron-nucleon coupling CS [57] [58] (here the

molecule-specific structure constant WS = 20.4 kHz [59]). Dividing f BD by 2WS, we find

CS = (−2.7± 5.6stat ± 1.7syst)× 10−10. (4.4)

4.5 Conclusions

Our measurement imposes constraints on beyond standard model theories, in a regime

largely inaccessible to particle accelerators [32]. The standard model predictions for both de and

CS are well below current experimental sensitivity, making this measurement a background-free

probe for new physics. In addition, our measurement confirms previous results [32] in a radically

different system, improving confidence in both experiments. Measurements like ours can also be

used to constrain possible couplings to dark matter [60].
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4.6 Methods

4.6.1 Bias fields

We apply a rotating electric field E rot(R, t) = Erot[X̂ cos (ωrott) − R̃Ŷ sin (ωrott)], where

ωrot ≡ 2π frot, frot = 375 kHz, and R̃ indicates the rotation direction (up or down). The rotating

field orients and polarizes the ions, which are driven in uniform circular micromotion with a

radius rrot ∼ 0.5mm.

Our experiment has 4 pairs of magnetic field coils and no magnetic shielding. All coils

are outside of the main vacuum chamber. Three of the coil pairs are set up along our lab-

frame X, Y, Z axes in Helmholtz configuration for tuning the magnetic field at the position of

the molecules. The magnetic field at the center of the trap is measured by an array of fluxgate

magnetometers bolted to the main experimental chamber. The fourth coil pair generates our so-

called ‘rotating’ magnetic field Brot. The coils are aligned with the lab-frame Z axis and produce

the quadrupole magnetic gradient B = B′axgrad(2Z −X − Y ). In the rotating frame of the ions

this appears as a magnetic bias field Brot ≡ |⟨B·E rot/Erot⟩| ≃ |B′axgradrrot|.

4.6.2 HfF+3∆1 details

Once we have trapped our ions and applied our bias and shimming fields, we prepare

them for spectroscopy. We perform Ramsey spectroscopy on the stretched (mF = ±3/2) states

in HfF+’s 3∆1, J = 1, F = 3/2 manifold. Here, J indicates the electronic plus rotational angular

momentum, F indicates the total angular momentum, and mF = F · ẑ is the projection of F onto

the rotating quantization axis. The 3∆1 state is well-described by Hund’s case a) basis states with

coupled nuclear spin from the Fluorine nucleus.
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4.6.3 Quantum state preparation

Our state-selective two-photon ionization procedure produces HfF+in the ground elec-

tronic and vibrational state (1Σ+, v = 0), primarily distributed over the lowest 4 rotational levels.

We connect J = 0→ 3 using microwaves and perform incoherent transfer to the eEDM-sensitive

3∆1, v = 0, J = 1 state via the 3Π0+ , J = 0 ← 1Σ+ transition at ∼ 961 nm, which decays

preferentially to 3∆1. The decay from 3Π0+ puts population in several vibrational levels in 3∆1,

which will decay into our ‘science’ state 3∆1, v = 0 if left untreated. We clean the popula-

tion in 3∆1, v = 1 out by illuminating the cloud with radiation at ∼ 818 nm which connects

3Σ−0+ , v = 1, J = 0 ← 3∆1, v = 1, J = 1 and preferentially decays back to 1Σ+. This laser is on

for the duration of the experiment, and will clean out any population which leaks down from

higher vibrational levels over the course of the measurement. The lasers used in our experimental

sequence are summarized in Figure 4.6.

After transfer to 3∆1 we turn on a strobed, circularly polarized, CW laser at ∼ 1082 nm

which is brought in from the side of the trap and connects 3Π0− , v = 0, J = 0← 3∆1, v = 0, J = 1.

The strobing is synchronous with the rotation of Erot such that the wavevector is either parallel or

anti-parallel to E rot, which drives a σ+/− transition to an F′ = 3/2 manifold in 3Π0− , eventually

leaving only one stretched state populated in 3∆1 (in both Stark doublets).

4.6.4 Ramsey spectroscopy

Once we have a pure spin state in both doublets prepared, we apply a π/2 pulse to the

ensemble of ions by temporarily ramping down the magnitude of Erot, which increases a rotation-

induced coupling ∆u/l between mF = ±3/2 states [61]. The increased coupling causes the pure

spin states to evolve into a coherent superposition of the mF = +3/2 and mF = −3/2 states in

∼ 1 ms [43] [50]. We ramp Erot back up and allow the superposition to evolve for a variable

amount of time. After the desired precession time has elapsed, we apply a second π/2 pulse to

map the relative phase onto a population difference between the mF = ±3/2 states. We project
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the ions into their final state by applying the ‘depletion’ laser, which connects 3∆1, v = 0, J =

1 → 3Σ−0+ , v = 0, J = 0 at ∼ 814 nm, and preferentially decays to 1Σ+ by a 10:1 ratio having

weaker coupling to the 3∆1 state. This laser is circularly polarized and strobed at frot such that it

is parallel/antiparallel to E rot, which drives a σ+/− transition to 3Σ−0+ , leaving only one stretched

state populated.

4.6.5 Final state readout

Finally, we detect and count the number of ions in the stretched states via state-selective

resonance-enhanced multiphoton dissociation [19] using two pulsed lasers, both of which are

circularly polarized and timed such that their k-vectors are parallel/antiparallel to E rot to drive

σ+/− transitions. The ions are oriented in the trap thanks to Erot, and we perform dissociation

when they are parallel to our imaging microchannel plate (MCP) and phosphor screen assembly.

Because our dissociation transitions obey the angular momentum requirements detailed in [13],

the dissociated Hafnium atoms from the two Stark doublets will fly to opposite sides of the

screen. We gate the phosphor screen such that we only image the Hf+ atoms, the un-dissociated

HfF+‘spectator’ ions would otherwise ruin the image. We detect both the Hf+ and the HfF+ions

in time of flight. The technical details of our imaging and counting system are detailed in [48]

and [47].

Figure 4.6: Cartoon depicting the transitions used during our state preparation.
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We repeat our measurement at different free-evolution times, which generates a Ramsey

fringe whose frequency is proportional to the energy splitting between stretched states. Because

we simultaneously measure both doublets, we get two Ramsey fringes. We can prepare one of

2 stretched states and read out one of 2 stretched states, and we chop between those possible

preparation and readout choices by strobing the circularly polarized pumping and depletion

lasers either in phase or out of phase with Erot to drive σ+ or σ− transitions. There are 4 possible

combinations: in/in, in/out, out/in, and out/out.

4.6.6 de signal extraction

When we take measurements we do them in one of 8 possible experimental switch states,

where we switch the sign of the magnetic field (B̃, in or out), the rotation direction (R̃, again in or

out), and the side of the screen/image we read a given Stark doublet out on (Ĩ , left or right). Note,

we measure both doublets (D̃) simultaneously, but separately (on either side of the screen).

We take a set of Ramsey fringes in all possible switch states (we call this a block). We fit

each fringe in the block to extract the fringe parameters (frequency f , phase ϕ, contrast C, decay

rate γ, and offset O), and we form linear combinations of those parameters to create what we

call parity channels. Taking linear combinations of the frequencies in a block gives us frequency

channels, which are of primary concern. For example, the mean of all the measured frequencies

in a block is f 0 ∼ 3gFµBBrot/h. If instead we take the difference over the B̃ switch we get

f B ∼ 3gFµBδBnr/h ∼ f 0( δBnr
Brot

), which measures how accurately the magnetic field is reversed.

f D is the difference in frequency between the two Stark doublets: f D ∼ −3δgFµBBrot/h. If the

g-factor was identical for each doublet and the rotation-induced coupling terms were identical,

the leading order f D term would vanish. In general, we indicate the odd parity components

with a superscript, so f BR is the the antisymmetric combination of switching both the magnetic

field and the rotation direction. Forming frequency channels allows us to diagnose experimental

issues and get a handle on many systematics.
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The frequency channel of primary interest contains the eEDM signal: f BD ∼ 2deEeff/h−

3δgFµBδBnr/h + . . . Here, the subscript on δB indicates a quadrupole magnetic field gradient

δBnr that does not switch with our applied switching quadrupole field gradient.

Because we collect data in both doublets simultaneously, we are able to take differential

measurements which cancel out most common-mode noise. After we define the asymmetry

Au/l =
N↑−N↓
N↑+N↓

in the upper and lower doublets, we can take the difference D and sum S over the

doublets:

AD = Au −Al

AS = Au +Al ,
(4.5)

which allows us to fit the difference and sum fringes to reduce uncertainty in our D̃-odd channels.

Full details about our fitting and analysis routine are in 3, and a discussion of the advantages of

our simultaneous measurement scheme is in [47].



Chapter 5

Dark Matter Exclusion

5.1 Introduction

Sometime in 2017 Victor Flambaum approached us with a curious idea: to use our first-

generation EDM measurement as the basis for a dark matter search. Dark matter? Indeed. As

it turns out, a certain class of dark matter could leave an oscillatory echo in our spectroscopic

signal - in short, even though the DC value of the transition we measured was zero it could still

have a non-zero AC amplitude.

One might reasonably ask - why use AMO/precision measurements to try and detect

dark matter at all? Isn’t new particle detection an accelerator’s job? And what about dedicated

Figure 5.1: Generation 1 EDM data vs time. Could there be an oscillatory signal buried in here?
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dark matter detection experiments? To answer the first question, I think it’s fair to predict that

accelerator energies are likely to remain on a plateau for quite a while to come. So if the particles

we are searching for are higher energy than the reach of the LHC, the dark matter detective is

out of luck. So we really need to look outside the accelerator paradigm to solve the issue of dark

matter. Which leads us to the next question: what about dedicated direct detection searches?

Well, of course there are plenty of those, and they’re all interesting and worth doing. But one

big advantage that AMO/precision measurements have over their direct detection counterparts

is their ability to exclude huge portions of the parameter space (in a relative sense) at once.

For example, our exclusion covered seven orders of magnitude: from 10−22 − 10−15 eV in mass.

Competing direct detection searches are often limited to tiny fractions of a single decade (see, for

example, this paper [62] from the ADMX collaboration, which excluded axion dark matter in the

3.3-4.3 eV mass range). There are, of course, some direct detection experiments that have large

mass ranges, but while we still have no idea what dark matter is and we are still searching over

40 mass decades, it seems prudent to expand our toolbox to include a few tools that allow for

broadband searches.

Separate from the question of the width of the search in mass range, there is also the

depth of the search in coupling strength, which we can call our “sensitivity”. Because AMO

experiments are not designed specifically for dark matter detection they can be (and in our case,

was) much less sensitive than one might hope. But again, I think pursuing these searches is still

worth it - simply because of how quickly precision measurements are becoming more sensitive.

The electron EDM limit has moved a factor of 100 in less than 10 years, and one can see similarly

impressive progress with things like atomic clocks. There are tons of precision measurements

like this out there, and a lot of them are so sensitive now that they are really well-positioned to

make a big dent in the search for dark matter. This is exciting, and something that I think we as

a field should take advantage of. Assuming we do, this leads us to the most important question

of all: at the threshold of this era, we should not be asking ‘how is the analysis of hypothesis
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exclusion typically done?’ but rather ’how can we get the analysis of hypothesis exclusion right?’

You see, after taking on this project there was about a year of confusion and suffering trying

to understand dark matter (in general) and statistical exclusion methods for dark matter searches

(in particular). Part of the difficulty was that it became clear that nobody really agreed on how to

do dark matter exclusions, and based on my preliminary and fairly shaky analysis it seemed like

some groups were doing stuff that was patently wrong. Most of the stuff I read about was fairly

standard threshold-based frequentist methods. One issue I noticed right away was that none

of those methods had a particularly appealing way of dealing with the look-elsewhere effect,

and after more reading and struggling it seemed like none of the methods I looked into had a

reasonable way of dealing with the stochastic nature of the dark matter field itself. There were

more issues: the scale of the stochasticity changing as your measurement time approaches the

dark matter coherence time, the differential sensitivity of different measurement quadratures,

and even the finite sample time for fast hypothesized oscillations. All of these had us (Eric and

I) spinning our wheels somewhat, trying to make it all work using threshold-based frequentist

methods.

Ultimately, and thankfully, we teamed up with Dan Palken and Ben Brubaker from the

Lehnert group for their much-needed expertise on statistical methods (Dan) and dark matter

(Ben). Dan ultimately confirmed my suspicion about the general confusion and disagreement

and was able to demonstrate exactly what some groups were doing wrong. I’d recommend

reading his thesis for all the gory details [63]. Dan introduced us to a Bayesian exclusion method

which could neatly deal with the issues we had identified, and we set to work extending the

analysis framework he had devised for to suit our needs. The details of that are, obviously,

below.

Before we get into the details I’d like to make two last points. The first is that the issues

listed above, that we were the first group to properly deal with, really are the difference between



167

getting it wrong and getting it at least closer to right. In fact, Gary Centers and co [64] wrote

a lovely paper about how failing to address the stochasticity issue (the field amplitude itself is

temporally stochastic) can means that seven currently published exclusions are too stringent,

some by about a factor of 10! So one really must try to address these things if they want to

claim they gave it the ol’ college try. The second point is that some folks can be hesistant about

Bayesian analysis methods, because they feel that things like the ‘prior belief’ are too subjec-

tive. I completely understand this sentiment, I actually began my dark matter experimentalist

journey as a staunch frequentist for this exact reason. It wasn’t until I was doing this analysis

that it became clear how superior the Bayesian approach is. But to ease your mind before you

dig into the details, dear reader, I will point out three things. The first is that our analysis is

largely independent of the priors. The prior update, introduced to you soon, is actually the key

parameter in this search and this is really just the ratio of two probabilities: that of getting your

measurement if dark matter really exists vs that of getting your measurement if it’s just noise. We

also made our matrix of prior updates freely available to anyone who wants it so that they can

explore the results with whatever priors they want. Our exclusion does not even depend on the

absolute scale of the priors, but only on their profile. But the profile really matters, which brings

me to the second point. We chose a log-uniform prior profile and we believe that it is a natural

choice given that there isn’t really any reason for the new dark matter particle to appear in any

specific mass decade. The masses of known standard model particles are distributed over many

decades, and there is no particular reason to expect new physics to be any different. In addition,

the body of literature surrounding this type of dark matter has only constrained it to exist within

25 (!) mass decades, which means that we have already implicitly agreed, as a community, on

logarithmically uniform priors. The third point is that the choice of priors is isomorphic to the

choice of power threshold set for detection used in a frequentist analysis. You’ll often read about

a 95% confidence interval for each frequency examined. All of the published frequentist analyses

of this type that I’ve seen use a constant threshold for detection over a large frequency range

which is, frankly, silly - because it is equivalent to choosing uniform priors over several mass
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decades, which amounts to only actually doing your search in the highest decade. So if you’re

going to do that, you might as well throw out the lower decades entirely. A frequentist analysis

would solve this problem by choosing a frequency-dependent threshold, but then you have done

something which is isomorphic to choosing a profile for the priors, and then you are being just

as “subjective" as Bayesians. I really think that it is a meaningful practical advantage, both as

the scientist doing the analysis, and for the critical readers examining the results, to have clearly

states priors and justifications for them - precisely because it makes your assumptions explicit.

One can compare this situation to a frequentist analysis where they can be hidden, unexamined,

and sometimes, indefensible.

Well I’m sure you’ve heard just about enough of me by now. Let’s get on to the main event:

a copy-paste of the paper and supplement :)

5.2 Experimental Constraint on Axionlike Particles over Seven Orders of Magni-

tude in Mass

This section is a reproduction of the main text of ref. [60]

A measurement of the permanent electric dipole moment of the electron (eEDM, de) well

above the standard model prediction of |de| ≤ 10−38e cm would be evidence of new physics

[65, 66, 67, 68, 69]. The search for permanent EDMs of fundamental particles was launched

by Purcell and Ramsey in the 1950s [21, 70], but it was not until recently that physicists began

to consider the possibility of time-varying EDMs inspired in large part by hypothetical axion-

like particles (ALPs) [71, 72, 6, 73, 74, 75]. Coupling to ALPs can cause EDMs of paramagnetic

atoms and molecules to vary, due to variations in de or the scalar-pseudoscalar nucleon-electron

coupling CS. In this paper, we extend our analysis of the EDM data we collected in 2016 and 2017

[2] to place a limit on the possibility that CS oscillates in time. This allows us to put a constraint

on the hypothetical ALP-gluon coupling over seven orders of magnitude in mass.
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Dark matter is one of the largest unsolved mysteries in modern physics: the microscopic

nature of 84% of our universe’s cosmic matter density remains inscrutable [10]. A family of

candidate dark matter particles called axion-like particles are pseudoscalar fields favored for their

potential role in solving problems such as the strong CP problem, baryogenesis, the cosmological

constant, and small-scale cosmic structure formation [76]. ALPs can be anything from the QCD

axion [77, 78, 79, 80] to ultralight axions from string theory [81], with different models favouring

different mass ranges [82, 83, 84, 76, 85, 5]. In this paper, we will consider ultralight spin-0

bosonic fields whose mass ma can range from 10−24 − 101 eV (or 10−10 − 1015 Hz) [5]. ALPs in

the low end of this mass range would solve some issues pertaining to small scale structure raised

by astrophysical results [85, 86, 76, 87].

Ultralight dark matter particles such as these must be bosonic: the observed matter density

can’t be reproduced with light fermions because their Fermi velocity would exceed the galactic

escape velocity. The resulting field has high mode occupation, is well described classically as a

wave, and oscillates primarily at the Compton frequency ν = mac2/h. Astrophysical observa-

tions tell us that a quasi-Maxwellian dark matter velocity distribution would have, near earth,

a dispersion of δv ∼ 10−3c, which in turn leads to a coherence for the dark matter (DM) wave

of about 106 cycles [88]. This finite linewidth ultimately limits the sensitivity of any experiment

whose total observation time approaches or exceeds the coherence time.

Several distinct couplings to ALP fields can result in an oscillating CP-odd quantity such

as de or CS, which amounts to an oscillating molecular EDM signal in our data. The most

straightforward effect is the derivative coupling of the ALP field to the pseudovector electron

current operator — in other words, a direct coupling between ALP and electron. Unfortunately,

in an atomic or molecular system the observable effect scales linearly with ma, leading to a large

suppression for the mass range we explore [75]. A second potential coupling is from the ALP-

induced modification of the electron-nucleon Coulomb interaction [74]. Regrettably, the nature

of this effect has not been elucidated in detail, but it is also expected to scale linearly with ma
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[89]. Finally, there are two distinct effects due to the coupling of ALPs to gluons. The first leads

to a partially screened nuclear EDM which would be enhanced in polar molecules but scales

linearly with ma, which again is problematic in the mass range we probe [90]. The second effect

will result in an oscillating CS and this is independent of ma [91, 92, 93]. In this paper, we use the

hypothesized oscillation in CS to constrain the ALP-gluon coupling.

To understand the analysis discussed herein, the reader should be familiar with a few key

details from the original measurement. Complete details can be found in [2] and references

therein. The heart of our experiment is an electron spin precession measurement of 180Hf19F+

molecular ions confined in a radio-frequency Paul trap and polarized in a rotating bias field to

extract the relativistically-enhanced CP-violating energy shift 2hWSCS between the stretched and

oriented mFΩ Stark sublevels [94]. The molecule-specific structure constant WS = 20.4 kHz [59],

h is Planck’s constant, and we assume for the remainder of this paper that de is zero.

In an individual run (or shot) of the experimental procedure, many HfF+ ions are loaded

into an ion trap, and the internal quantum population is concentrated into one of four internal

sublevels by means of pulses of polarized light. The energy difference between two sublevels is

interrogated with Ramsey spectroscopy [2]. The population is put into a superposition of two lev-

els by means of a coherent mixing pulse, and then allowed to coherently evolve for a variable time

tR, before a second coherent pulse remixes the two levels. The resulting population in a sublevel

is destructively read out by means of final series of laser pulses, which induce photodissociation

of HfF+ ions into Hf+ ions with a probability proportional to the population in the interrogated

sublevel. The procedure requires about one second and the ion dissociation signal has a compo-

nent which oscillates with tR as cos(2π fRtR), where fR is proportional to the energy difference

(averaged over the ∼0.5 second coherent evolution time tR) between the mF = ±3/2 magnetic

sublevels of a given Stark level. There are multiple contributions to fR, including Zeeman shifts

and Berry’s phase shifts. Over the course of a block of data, comprising 1536 experimental shots,

we chop the direction of the ambient magnetic field, the rotation direction of the bias field, and
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the internal Stark level probed, and for each of these eight different experimental configurations

we sample multiple Ramsey times, in order to extract fR under eight different laboratory con-

ditions. A certain linear combination of all the various fR measurements isolates, to first order,

the CP-violating contribution to the energy difference, f CS = 2WSCS, where in this case we are

sensitive to the average value of CS during the ∼22 minutes required to collect a block of data.

To probe for a possible time-variation in CS, our analysis is broken into two parts: ‘low

frequency’ (27 nHz – 126 µHz), corresponding to hypothesized variations in WS with periods

shorter than the overall 14 month span of data collection but still long compared to the duration

of a block, and ‘high frequency’ (126 µHz – 400 mHz), corresponding to periods shorter than our

most sensitive period of data collection (∼11 days) but still long compared to the duration of a

shot (∼1 second)[95, 96].

The low-frequency Least Squares Spectral Analysis (LSSA) is straightforward: we take

the bottom-line results for each of our 842 blocks of data ( f CSi , σi, Ti), where Ti is the time in

seconds at which the ith block was collected, relative to the center of our data set (at 00:17 UTC,

Aug 16, 2016), and σi is the standard error on f CSi . Then for each hypothesized ALP frequency

νi = ω/(2π) in a set of equally spaced trial frequencies in the low-frequency range, we assume

f CS(T) = A cos(ωT) + B sin(ωT), (5.1)

and do a weighted least-squares fit [96] to extract our best values A0(ν) and B0(ν).

For the high-frequency LSSA analysis we want to resolve hypothesized changes in f CS that

occur over the time scales ≤ 22 minutes (the time required to collect a block), so we disaggregate

each block into its 1536 component measurements: the number of dissociated ions N measured

for each of the shots that make up a block. The expected value for N for each shot is an oscillatory

function of the Ramsey time tR. The frequency of the oscillation in tR is modulated because a

component of fR is proportional to CS, hypothesized to be an oscillatory function of Ti, and the

sign of the modulation amplitude depends on the sign of the bias magnetic field applied for
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Figure 5.2: Least-squares spectral analysis of our EDM data.

that shot, and on the Stark doublet selected for probing for that shot. The least-squares fitting

routine is correspondingly more complicated [96] but at the end of the day we again extract best-

fit values A0(ν) and B0(ν) for each hypothesized value of the ALP oscillation frequency ν in the

equally spaced grid of trial frequencies across the high-frequency range.

Combining the two analyses, we obtain a measure of the best fit oscillation amplitude

over seven orders of magnitude (Figure 5.2). Now we can ask: to what extent do our fit values

convince us that CS is actually oscillating, given experimental noise and the look-elsewhere effect

[97]? To answer this question we used the Bayesian Power Measured (BPM) analysis framework

developed by Palken et al. [3].

The essence of the BPM framework is a comparison between the probability of measuring a

given oscillation amplitude assuming the existence of an ALP with a specified mass and coupling

and the probability of measuring the same amplitude assuming it doesn’t exist. This means we

need probability distributions for both cases at each frequency ν, which we can evaluate at the

actual measured values A0, B0. For the case where ALPs do not exist, we get the distributions by

generating simulated data which by construction has no coherent CS oscillation in it. For the low
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frequency data we generate a single point of ‘noise’ at each acquisition time in the real dataset.

Each point of noise is drawn from a Gaussian distribution with mean of zero and a variance

which matches that of the real dataset. For the high frequency analysis we randomly shuffle

the timestamps of the individual Ramsey measurements in such a manner as to effectively erase

any coherent oscillation which may be present in the CS channel while preserving both the basic

structure of the data (including the general coherent oscillation present in each Ramsey dataset)

and the technical noise (see [96] for more details).

Once we have this simulated data we perform LSSA on it to get best fit values for A, B

at each frequency ν of interest. We repeat this process 1000 times. The resultant distribution of

A0, B0 at each frequency ν represents what we would expect to find in a universe where ALPs

do not exist. Each distribution is bivariate normal with some rotation angle. We rotate each

distribution into the primary axes A′, B′ where the variance of the distribution is maximized

along A′ and minimized along B′, to define the no-ALP distribution:

N =
1

2πσA′σB′
e
− 1

2 (
A′2
σ2

A′
+ B′2

σ2
B′
)
. (5.2)

We still need to determine the probability distributions in the case that ALPs do exist.

Note that A′ and B′ are still random variables in this case due to the stochastic nature of the ALP

field: different spatio-temporal modes of the field interfere with each other (the ALP field at any

point in space is a sum over many contributions with random phases), so the field amplitude is

stochastic over timescales longer than the coherence time [98, 99]. Except at the very high end of

our analysis range, the ALP coherence time is much larger than the duration of our measurement,

so we resolve only a single mode of the ALP field. In this limit the local ALP field may be written

in the form

a(T) = α
√

ρDM/ma cos(ωT + ϕ), (5.3)

where we take the mean local dark matter density ρDM to be 0.4 GeV/cm3 [4], ω includes a small

contribution from the ALP kinetic energy, ϕ ∈ [0, 2π) is a uniform-distributed random variable,
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and α ≥ 0 is a Rayleigh-distributed random variable: P(α) = αe−α2/2. The modifications to our

analysis due to the decoherence of the ALP field are discussed in our Supplemental Material [96],

otherwise we assume α and ϕ are constant over the entire data collection time. The oscillating CS

term in the Ramsey fringe frequency is then written as

f CS(T) = 2WSηCG/ faa(T), (5.4)

where CG/ fa is the ALP-gluon coupling (see [96] for alternative parameterizations) and η ≈ 0.03

is a coefficient relating CS induced in a generic heavy nucleus to the QCD theta angle [91, 100].

The quadrature amplitudes of the ALP signal are then

A′ = 2WSηCG/ faα
√

ρDM/ma cos(ϕ)

B′ = −2WSηCG/ faα
√

ρDM/ma sin(ϕ).
(5.5)

As mentioned earlier, A′ and B′ must still be treated as random variables even in the absence of

noise; the fact that α is Rayleigh-distributed implies that A′ and B′ are each Gaussian distributed

with mean zero and variance

σ2
X = (2WSηCG/ fa

√
ρDM/ma)

2. (5.6)

The equal quadrature variances reflect our ignorance of the local phase of the ALP field oscilla-

tions. The fact that A′ and B′ can simultaneously be small reflects the possibility that the earth

may have been near a null in ALP density during our data collection time. We can now construct

the expected ‘ALP distribution’ by adding the variance σ2
X to our no-ALP variances (the no-ALP

variances characterize the experimental noise). This defines a new bivariate normal distribution

X =
1

2πσAXσBX
e
− 1

2 (
A′2

σ2
AX

+ B′2
σ2

BX
)
, (5.7)

which we call our ‘ALP distribution’. Here, σ2
AX = σ2

A′ + ζσ2
X and σ2

BX = σ2
B′ + ζσ2

X. We encapsu-

late sources of attenuation, including decoherence of the ALP field due to the finite linewidth, in

the frequency-dependent factor ζ which we discuss in detail in the Supplemental Material [96].
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Now we can compare probabilities for the ALP vs no-ALP case. For each hypothesized

coupling strength CG/( fama) and frequency ν of interest we take the ratio of the probability

distributions N and X evaluated at our actual measured amplitudes A′0 and B′0:

Ui(νi, CG/( fama)) =
X (A′0(νi), B′0(νi), νi, CG/( fama))

N (A′0(νi), B′0(νi), νi)
, (5.8)

which we call the prior update: the number Ui is a multiplicative factor which, when multiplied

with our logarithmically-uniform priors, updates our prior belief to our post-experimental (or

posterior) belief (see Figure 5.3). Note the prior update is equal to the Bayes factor in the limit of

very low priors, which is the the limit we are operating in. A 95% exclusion corresponds to the

prior update dropping to 0.05 [3].

So far, our analysis has not taken into account the look-elsewhere effect even though we

are looking at more than 106 frequencies. The colormap of U in Figure 5.3 simply shows how our

belief in the existence of ALPs has changed as a function of frequency and coupling. To account

for the look-elsewhere effect one must move from a notion of how locally unlikely an event is

to how globally unlikely it is. For example, what might seem unlikely in a single frequency bin

(say, you only expect it to happen 1/1000 times) becomes rather unsurprising when you look

in 1000 bins - in this case you should expect to see that event approximately once. Our local

measure, the prior update, compares the probability distributions in each bin for the ALP vs the

no-ALP case. To move to a global measure we generate the aggregate prior update:

U (CG/( fama)) =
aggregate posterior

aggregate prior
=

∑i Uiϵ/νi

∑i ϵ/νi
, (5.9)

where ϵ/νi is our prior belief (for an ALP of frequency νi), using logarithmically-uniform priors

(ϵ being constant). The aggregate prior update correctly accounts for our logarithmic priors,

which is necessary in broad searches like ours where the number of hypotheses tested varies

strongly as a function of frequency but we expect the ALP is equally likely to be found in any

frequency decade. Using equation 5.9 we can sub-aggregate over any subset of the analysis range

and at any frequency we like, and any interested reader can do the same - the full un-aggregated



176

Figure 5.3: Bayesian power measured analysis of the EDM data. The grayscale matrix corre-
sponds to a sub-aggregation of the prior updates U over 100 logarithmically-spaced frequency
bins. Darker shading on the logarithmic color scale corresponds to increased prior update, which
can be interpreted as an increased belief in an ALP of given frequency ν at ALP-gluon coupling
CG/( fama). We use a blue line to indicate the 95% exclusion (which corresponds to the sub-
aggregated update dropping to 0.05 [3]) for sub-aggregation over each decade. The correspond-
ing greyscale matrix for this sub-aggregation is not shown. Finally, a dotted line corresponds to
the aggregated exclusion over the full analysis range. The full un-aggregated matrix of U values
is available upon request.
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matrix of U values is available upon request. The aggregate prior update taken over the entire

set of frequencies analyzed represents the fractional change in our belief that an ALP of a given

coupling strength exists anywhere in the full analysis range, which appropriately accounts for

the look-elsewhere efect. The aggregate prior update as a function of coupling strength is plotted

in the Supplemental Material, where we also discuss our selection of the priors [96].

Our results yield no strong indication of a dark matter signal over the range 10−22 − 10−15

eV, so we use the above procedure to exclude CG/ fama > 1.72× 1016 GeV−2 at 95% confidence.

If we assume the density of the ALP field is held constant at its mean value, we can convert

our exclusion back to frequency modulation amplitude in Hz via eq (5.3) and (5.4) which gives

us an exclusion of 37 mHz. This is considerably less impressive-seeming than the limit of 1.2

mHz which we extracted from our original DC analysis [2]. This relaxation of the exclusion is

an unavoidable consequence of correctly accounting for the stochastic nature of the ALP field

and the look-elsewhere effect associated with setting a limit across seven orders of magnitude in

frequency.

Our constraint on the ALP-gluon coupling CG/ fa is plotted in Figure 5.4 along with existing

direct and indirect limits. Our results are the first laboratory constraints on the ALP-gluon

coupling in the mass range 10−17 − 10−15 eV.

The analysis techniques applied herein are general enough to apply to most time-series

datastreams, and in particular will be applied to our next-generation EDM measurement which

we expect to be about an order of magnitude more sensitive. More generally, the field of precision

measurement is in a remarkable period of progress reminiscent of Moore’s Law, and we expect

that analyses of this type will become more and more common. At the threshold of this era, we

believe that it is critical to ask: how we can get the analysis of hypothesis exclusion right?

This is especially pertinent given that the existing frameworks and analyses already pub-

lished have so far failed to account for important effects, such as the stochastic nature of the ALP
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Figure 5.4: Astrophysical and laboratory limits on the ALP-gluon interaction. All limits assume
that ALPs saturate the local dark matter content and we have taken the mean local dark matter
density to be 0.4 GeV/cm3 [4]. All constraints correspond to a 95% confidence level. The purple
region embodies the constraint that the virial deBroglie wavelength is smaller than the size of
a dwarf galaxy [5]. The blue region is the constraint derived from looking at neutron EDM
oscillation [6]. The green region represents constraints from big bang nucleosynthesis [7], and
the yellow region represents constraints from supernova energy loss bounds [8, 9]. The pink
region is the constraint described in this work.
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field or the look-elsewhere effect. At least seven other dark matter exclusion publications have

overestimated their exclusion by factors ranging from 3 to 10 in their failure to account for the

stochasticity of the field [98]. To the best of our knowledge, the Bayesian analysis framework

we have chosen here is optimal for this kind exclusion for several reasons: first, it easily incor-

porates the stochastic nature of the dark matter field, as well as the fact that the scale of the

stochastic fluctuations changes as the measurement time approaches the coherence time of the

dark matter field. In addition, this framework seamlessly accounts for the differential sensitivity

of the the two quadratures of our measurement to the dark matter field, and can be easily scaled

up to even higher dimensional parameter spaces. Finally, this framework correctly accounts for

the the look-elsewhere effect with respect to exclusion [63]. Note that [6] in Figure 5.4 fails to

account for the stochastic fluctuations in the ALP field, which could mean that their exclusion

is overestimated by nearly an order of magnitude [98]. More generally, we appreciate how this

framework preserves all the information in the signal compared to a threshold-based framework,

which reduces the information in the signal to only ‘above’ or ‘below’ threshold.

5.3 Experimental Constraint on Axionlike Particles over Seven Orders of Magni-

tude in Mass - Supplemental Material

this section is a reproduction of the supplemental material of ref. [60]

5.3.1 Frequency Ranges

Our analysis was broken into two regimes: ‘low frequency’ (27 nHz – 126 µHz) and ‘high

frequency’ (126 µHz – 400 mHz). The fundamental limits of the low frequency analysis were set

by the inverse timespan of the entire dataset (27 nHz, see Figure 5.5a) and the ‘Nyquist’ limit for

the ‘block’ collection (each block took 22 minutes to collect, so this is 378 µHz). The fundamental

lower limit of the high frequency analysis was set by the inverse timespan of the most sensitive

data, which was taken over an 11-day period in 2017 (1.12 µHz, see Figure 5.5b). The upper limit

is slightly below the ‘Nyquist’ limit – each point took about 1 second to collect and we chose
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400 mHz. Our data is not evenly spaced in time, so we are using the term ‘Nyquist limit’ in a

loose sense: with unevenly spaced data, the Nyquist frequency is often higher than one might

expect [101]. The frequency ranges above have considerable overlap, and we used this overlap

Figure 5.5: (Top) Individual CS measurements plotted as a function of their acquisition time
since August 16 2016 (the temporal ‘center’ of our dataset). (Bottom) Our most sensitive CS
measurements were collected over 11 days in 2017. For the low frequency analysis we used the
entire dataset (top), and for the high frequency analysis we used only the most sensitive 11 days
(bottom).

to validate our high frequency analysis. We analyzed the overlapping portion of the dataset

using both the ‘low frequency’ and ‘high frequency’ methods and found virtually the same LSSA

result in both cases. Taken together, the entire dataset was enormous, so we chose to truncate

both datasets to eliminate overlap and reduce the size of the dataset, which made computing

slightly less resource-intensive.

In each regime, the frequencies we interrogated were evenly spaced between maxima and

minima; the spacing was chosen as 1/6 of our spectral resolution – intentionally oversampling

so that we wouldn’t miss any potential peaks. Our spectral resolution is given by the inverse of

the timespan to collect each dataset, in the low frequency case this is ∼450 days and in the high
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frequency case this is ∼11 days.

5.3.2 Generating Least-Squares Spectra

Our experimental signal is a count of Hf+ ions generated by state-selective dissociation of

the HfF+ ions. From this signal we generate an asymmetry A′i = ±Ni−⟨Hf+⟩
⟨Hf+⟩ . Here, Ni is the

Hf+ count in a single shot (run) of the experiment and ⟨Hf+⟩ is the mean Hf+ count for the

data point (set of shots, averaged) to which the shot belongs. The sign of A′i is given by the

spin prepration/readout conditions [102, 103]. A set of asymmetries, taken by sandwiching a

variable free-evolution time tR between 2 coherent mF mixing pulses, generates a Ramsey fringe.

The frequency of the Ramsey fringe is directly proportional to the energy difference between the

mF = ±3/2 states in a given Stark doublet.

The Ramsey fringe frequency has multiple contributions:

fR = 3gFµBBrot/h + 3α′ frotR̃B̃− 2WSCSD̃B̃

+ ...,
(5.10)

where gF is the F = 3/2 state g-factor, µB is the Bohr magneton, Brot is the magnitude of the rotat-

ing bias magnetic field, frot is the frequency of rotation, B̃ is the sign of the magnetic field, D̃ is the

populated Stark doublet, R̃ is the sense of the electric bias field rotation, and α′ is a parameter de-

scribing Berry’s phase [45]. For any given measurement, the experiment will be in a given switch

state, characterized by the values of {B̃, D̃, R̃}={±1,±1± 1}. To isolate the CP-violating energy

2hWSCS, we repeat our spin precession measurement in each of the 23 unique states at varying

free-evolution times to form eight different Ramsey fringes and respective switch frequency mea-

surements f {B̃D̃R̃}. From each set of eight fringes (called a block) we form linear combinations of

our measured switch frequencies to form parity frequencies: fparity = M−1f{B̃D̃R̃}, where M−1

is a transformation matrix and f indicates the set of parity or switch frequencies. One of these

linear combinations isolates, to first order, the CP-violating CS term f CS = 2WSCS.

As mentioned above, our analysis is broken into two parts, low and high frequency. In
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general terms, the low frequency analysis consists of taking the f CS measurement from each block

as a function of block acquisition time (Figure 1) and reanalyzing the data to check for oscillations

in our signal. In contrast, for the the high frequency analysis we break apart each block and fringe

to extract a (potentially) time-varying CS signal from each shot of the experiment, allowing us to

extend the bandwidth of our search over an additional three orders of magnitude.

In detail, the low frequency analysis consists of least-squares spectral analysis (LSSA) on

our set of f CS measurements as a function of block acquisition time. We minimize

χ2 =
N

∑
i=1

1
σ2

i
[A cos(ωTi) + B sin(ωTi)− f CS(Ti)]

2 (5.11)

over A and B for every potential ALP oscillation frequency ν = ω/(2π) of interest, where σi is

the standard error on a given f CS measurement and Ti is the block acquisition time in seconds

with respect to the temporal center of the dataset. This equation is analytically solvable, so we

directly compute the minima of the resulting quadratic equation to obtain the “best fit” values of

A and B: A0(ν) and B0(ν).

For the high frequency analysis, in contrast, we have to perform LSSA directly on the set of

asymmetry measurements as a function of shot acquisition time T. It may be helpful at this point

to emphasize that we have two different time streams: the free-evolution time tR (which ranges

between 0− 0.7 seconds) which is an entirely distinct parameter from the shot/data acquisition

time T (which ranges between ±2 · 107 seconds). The asymmetry measurements already oscillate

as a function of free-evolution time (tR), and for a static (DC) EDM measurement it is assumed

this oscillation frequency is constant (for a given switch state, up to experimental noise). In the

presence of an oscillating f CS(T), however, we expect the already-present oscillation in tR to be

frequency modulated in T, and we need to determine the form of this frequency modulation.

We begin with the fits generated from our DC analysis in [2]: the asymmetry points A′(tR) from

each fringe in a given switch state were fit to Afit(tR) = −Ce−γtR cos(2π fRtR + ϕ) + O, where

C is the fringe contrast, fR is the fringe frequency, ϕ is the initial phase, O is the offset, and γ
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is the coherence decay rate. As mentioned earlier, the frequency fR measured in a given fringe

does not provide a direct measurement of CS; it contains multiple contributions. The frequency

due to non-CS terms is f0 = fR − M′ f CS , where M′ are the matrix elements used to transform

between switch and parity bases and f CS is the frequency component due to CS. Since we are

only interested in the potentially time-varying CS component (and we assume it has a mean of

zero [2]) we write

fR(T) = f0 + M′ f CS(T),

f CS(T) = A cos(ωT) + B sin(ωT).
(5.12)

If we include this frequency modulation (which we assume is very small), we can expand our fit

asymmetry Afit to second order in f CS(T) to obtain

Aosc(T) = −Ce−γtR cos(2π( f0 + M′ f CS(T))tR + ϕ) + O

∼ −Ce−γtR cos(2π f0tR + ϕ) + O

+ Ce−γtR(2πtR M′ f CS(T)) sin(2π f0tR + ϕ)

+ Ce−γtR 2(πtR M′ f CS(T))2 cos(2π f0tR + ϕ),

(5.13)

which is our desired expression for the f CS(T)-induced frequency modulation. With this, we

perform LSSA on the difference between Aosc(T) and A′(T),

χ2 =
N

∑
i=1

1
σ2

i
[Aosc

i −A′i]2, (5.14)

where the subscript indicates the ith acquisition time point in our dataset.

5.3.3 Timestamp Shuffling

As described in the main text, our statistical analysis requires simulated data which, by

construction, contains no coherent oscillations in the f CS channel. For the low frequency analysis

this is a rather simple procedure which relies on our knowledge that each block-based f CS mea-

surement is drawn from a Gaussian distribution with mean zero and well-characterized variance

[2]. For the high frequency analysis our simulation technique warrants further discussion.
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The challenge is to simulate shot-by-shot data which preserves the basic structure of the

fringes and blocks as well as the inherent noise of the measurements. The fringes themselves

have a coherent oscillation in them, and each block contained eight fringes – each of which may

oscillate at a slightly different frequency depending on the switch state. The fringes also had

a limited coherence time, which varied throughout the dataset as we changed experimental pa-

rameters. While generating simulated data that faithfully preserves these features is in principle

possible, the most difficult part for our purposes was preserving the noise. There were a number

of technical noise sources which were not easily characterized, i.e. they didn’t conform to some

known distribution, and were transient, i.e. they were present or absent to different degrees

through the dataset.

We found that the most effective way to preserve the qualitative features of the noise and

the specific details of the fringes and blocks while erasing any real-time coherent oscillation in

the f CS channel was to randomly shuffle the timestamps of the data by block. As described in

the previous section, a block of data formed one single f CS measurement and was composed of

eight Ramsey fringes, which together comprise 96 data points or 1536 shots. When we collected

a block of data we would not collect each Ramsey fringe one at a time, slowly increasing the

free-evolution time until completion then changing the switch state to collect the next fringe. In-

stead, we would increase the Ramsey time while scrambling the various switch states, effectively

collecting points from each fringe in random order. In other words, we randomized the order in

which we collected the 96 data points corresponding to each block, such that there is no fixed

relationship between either the switch state or Ramsey time of adjacent data points. When we

shuffle the timestamps by block, that means we take all timestamps of the data points belonging

to a given block and swap them with timestamps for data points belonging to some other block.

One can imagine this as swapping whole blocks around in time. Since a block corresponds to

a f CS measurement, this will eliminate any coherent oscillation in the f CS channel which may

have been present, so that it is broken instead into many lower-amplitude features that neither
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appear as candidates for discovery, nor, when combined with many reshuffles, as significant

perturbation to the noise distributions we use for determining exclusions.

We checked to make sure the reshuffled data quantitatively reproduced the coarse-grained

frequency structure of the noise in the actual data. We were also able to compare the spec-

tra generated by shuffling the f Cs data to spectra of the non- f Cs parity frequencies, which by

construction should be free of coherent oscillation. Each such non- f Cs channel yields a single

representation of a noise spectrum which we should expect to be similar to that of f Cs in the

absence of an ALP signal – indeed, these shuffled spectra qualitatively reproduced our non- f Cs

noise spectra quite well. As an additional check, we can take an individual data set from our

collection of reshuffled data sets and treat it to the full analysis as if it were our actual data set,

including creating a subaggregated exclusion heat-map plot as in Figure 3 of our main text, and

an aggregate prior update ‘discovery plot’ as in Figure 4 below. The fake exclusion heat maps

reproduce the qualitative features of our actual exclusion heat maps. For the twenty fake ‘dis-

covery plots’ we generated, the largest peak aggregate update value was < 20, and all but the

three largest were < 10; i.e., none were indicative of discovery. The peak aggregate update value

occasionally being slightly larger than in our real data set is to be expected as a consequence of

a sort of higher-order look-elsewhere effect.

To confirm that our simulation method really did sufficiently attenuate coherent oscillations

while preserving the spectral structure of the noise in our dataset, we performed least-squares

spectral analysis (LSSA) on simpler versions of simulated datasets which by construction con-

tained a coherent oscillation as well as noise. The simulated data was sampled at the same times

as our real dataset, and we performed simulations at frequencies throughout the bandwidth an-

alyzed. In each case we found that the detected amplitude of the oscillation was significantly

attenuated while the noise at other frequencies was not affected. Conversely, when we shuffled

by data point or shot we found that while any coherent oscillation would be erased, the noise at

other frequencies would also be attenuated.
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It is clear why shuffling the timestamps by block should erase any oscillations on the

timescale of the block itself or longer, but it may not be clear why the technique works for

oscillations with a higher frequency. The reason this works is due to the manner in which

the data was collected – the random scrambling of when we collected the Ramsey times and

switch states is unique to every block, so the shuffle introduces phase jumps into the data on the

timescale of single data points – in other words, it effectively shuffles the data on the data point

(16 second) timescale.

One might ask: why not just shuffle the timestamps by data point? The reason is that

shuffling by data point, while very effective at erasing any coherent oscillation present, also

appears to drastically change the spectral structure of the noise in our dataset. One might then

ask why we don’t simply simulate the data directly, and again we find that assuming a specific

noise model (such as shot noise in the HfF+ count) is insufficient for simulating the real noise

we had present. It should go without saying that arbitrarily increasing the noise in the simulated

data led to the risk of hiding any real oscillation which would otherwise be detected, has no real

scientific basis, and should be avoided.

5.3.4 Estimating the no-ALP distribution

Our analysis hinges on having a good estimate of the no-ALP distribution, which itself

relies on knowing the variances σ2
A′ and σ2

B′ . Because we are searching over such a large frequency

range, and examining so many different frequencies, there are many upward fluctuations in

the oscillation amplitudes obtained from LSSA, in both the real and simulated datasets. Small

fluctuations in the estimated variances can result in large changes in the apparent significance of

these amplitudes. If our estimates of σ2
A′ and σ2

B′ are poor, our exclusion will reflect that.

One might think that the best way to ensure we have good estimates of the variances

would be to do many more simulations. Unfortunately, especially for the high frequency data,

the simulations were very computationally expensive so running more simulations was not an
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option. This high computational cost is not a feature specific to our choice of Bayesian analysis

framework, but rather a generic consequence of the large number of independent frequencies at

which we must construct the no-ALP distribution, taken together with the size of the full set of

asymmetry measurements on which the high frequency LSSA is performed. Because we only

ran 1000 simulations our error in estimating the variances is dominated by statistical noise. To

account for this, we chose to adjust the raw variances obtained from the simulated data to better

match what we know to be true.

In the low frequency range, we made no adjustments to the variances. We know that there

will be some phases and frequencies which are favoured due to the temporal structure of the

data (see Figure 5.5, top), so we wanted to preserve any structure in the variances which we

found via simulation (including significant differences between the two quadratures A′, B′), even

if it was a bit more noisy than desired due to the limited number of simulations.

In contrast, for the high frequency range we have no reason to believe there would be

any meaningful difference between the two quadratures thanks to the near-continuous temporal

spacing of the data we analyze (see Figure 5.5, bottom). In addition, we know that statistical

fluctuations are independent, bin-to-bin. So to attenuate the effect of statistical fluctuations we

smoothed the data using a 36-bin running average (this is 6 times our spectral resolution) and

then averaged the the two quadratures A′, B′.

5.3.5 Sources of Attenuation

To reduce the risk of artificially over-constraining the axion-like particle (ALP) coupling it

was important to account for all the known sources of attenuation present in our experimental

signal. To date we are aware of three possible sources of attenuation:

(1) When the total observation time T is smaller than the coherence time τc, i.e. T < τc,

the ALP field is built from a sum over many phases of a freely oscillating bosonic field
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in three dimensions, resulting in a random distribution of the field amplitude. We must

account for the probability that the local ALP field amplitude is significantly smaller than

its RMS value throughout the galaxy. For example it is possible that when we took the

data we could have been, by sheer bad luck, be sitting near a null of the field [98].

(2) When the total observation time T is comparable to the coherence time τc, i.e. T ∼ τc,

decoherence due to the finite linewidth of the ALP field will decrease the measured signal

amplitude [99].

(3) When the observation time for a given sample (i.e. a block in the low frequency analysis

or a shot in the high frequency analysis) is not small compared to the period of the ALP-

induced oscillation, we are effectively averaging over some portion of the wave, leading

to attenuation of the signal.

5.3.5.1 Effect 1: Random distribution of the ALP field amplitude

This effect is dealt with automatically in the Bayesian Power Measured analysis framework.

When we generate the ALP distribution X from the no-ALP distribution N we increase the

variance of both quadratures without increasing the mean. See the main text between equations

(3)-(7) for more details.

5.3.5.2 Effect 2: Decoherence

To quantify the effect of decoherence we compared a realistic (finite linewidth) ALP field

to an infinitely narrow linewidth field at several possible mass values. We built the realistic field

from its constituent parts as described in Ref. [99], implementing eqs (3) – (10) numerically. The

result is an expression for the local ALP field, which we can ‘fit’ using LSSA as described in the

main text. To generate the ‘infinitely narrow’ ALP distribution, we follow the same steps but

instead sample the velocity distribution only once before building up the full field. We ‘fit’ this

field with LSSA as well, then repeat the process hundreds of times to get distributions for the
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quadrature amplitudes A0, B0 in both cases. We call the amplitudes A, B and Anarrow, Bnarrow.

We rotate these distributions into the primary axes where the variance is maximized along one

axis, then define the attenuation due to decoherence in each quadrature ζd,i as the ratio of the

variances: ζd,A = σ2
A/σ2

A,narrow, ζd,B = σ2
B/σ2

B,narrow. In practice we find ζd,A ∼ ζd,B, so we define

ζd = (ζd,A + ζd,B)/2. Unsurprisingly we see no decoherence effect in our low frequency band,

but we do at the extreme high end of the high frequency band. We fit the results using a second-

order polynomial to obtain a functional form for the attenuation due to decoherence over the

entire analysis band: ζd(ν) (Figure 5.6).

Figure 5.6: Attenuation factor due to ALP field decoherence, calculated over the high frequency
analysis range. Grey-filled circles are the calculated values, and the blue curve is the fit.

5.3.5.3 Effect 3: Finite sample time

At the high end of each analysis regime, we are analyzing frequencies fast enough that

there is a non-negligible change in the signal during the sample time. This results in an ‘aver-

aging’ of the oscillation over the sample time and an effective attenuation in perceived signal

amplitude. For instance, at the upper end of our high frequency range we analyze 0.4 Hz but

each sample takes about one second to acquire. We have a similar issue at the high frequency
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end of the low frequency analysis. To quantify this attenuation, we generated artificial sinusoidal

data sampled more finely than the timestamps in our real dataset, then averaged the signal over

the actual intervals of data collection. We did this for a number of frequencies spaced through

our analysis band, then averaged these results over phases spanning [0,2π). We then perform

LSSA on both the original simulated data and the averaged simulated data and define the atten-

uation due to finite sample time ζs,i in each quadrature as ζs,A = σ2
A/σ2

A′ , ζs,B = σ2
B/σ2

B′ , where

A, B are from the averaged signal and A′, B′ are from the original signal. We average the two

quadrature attenuation factors to determine the attenuation due to finite sample time ζs. We did

this for both the high frequency analysis and the low frequency analysis, and used the fits to the

data to generate a piecewise function describing the attenuation due to this effect as a function

of frequency (Figure 5.7).

Finally, our overall attenuation factor over the entire analysis band is given by the product

of the attenuation factors for the two effects: ζ(ν) = ζd(ν)ζs(ν). This is the quantity introduced

below Eq. (7) in the main text.

5.3.6 Parameterizing the ALP-gluon coupling

Several different conventions have been used in the literature to parameterize the ALP-

gluon coupling we constrain in this letter. Here, we use the parameterization of Ref. [6]. The

most fundamental parameter in any ALP model is the energy scale fa at which a new U(1) sym-

metry is spontaneously broken. The ALP field then arises as the pseudo-Goldstone boson of this

broken symmetry; its mass and all its couplings will generically scale as f−1
a , with different di-

mensionless coefficients CG, CN , Cγ, Ce for couplings to gluons, nucleons, photons, and electrons,

respectively. For the canonical QCD axion, the gluon coupling coefficient is fixed at CG = 1 by

the requirement that the axion solve the Strong CP problem, but for more general ALPs CG can

be regarded as a free parameter, which we would typically expect to be O(1). Because of this,
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Figure 5.7: Attenuation due to finite sample time over the entire analysis range. The blue curve
shows the piecewise function generated by the fit to the grey circles.

many papers (such as Ref. [9]) express bounds on the gluon coupling CG/ fa as bounds on fa.

Other papers (e.g., Refs. [7, 8]) parameterize the ALP-gluon coupling as the coefficient gd of the

oscillating nucleon EDM that the ALP field would generate. Because an EDM has dimensions

of ecm ∼ eV−1 in natural units and the ALP field itself has dimensions of eV, this implies gd

has dimensions of eV−2, and is related to our parameterization through Eq. (7) of Ref. [8], with

fa → fa/CG.

5.3.7 Aggregate Prior Update

As described in the main text, the aggegate prior update (Figure 5.8) describes the fractional

change in our belief that an ALP of a given coupling strength exists anywhere in the full analysis

range, which accounts for the look-elsewhere effect. Computing the aggregate prior update re-

quires making a choice about the frequency-dependence of the priors (though not their absolute

scale). While this may seem to introduce an element of subjectivity into the analysis, it in fact
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merely makes explicit a choice of assumptions which is also present, though implicit, in other

analysis frameworks [3]. In equation (9) of the main text and Fig 4 below, we adopt logarithmi-

cally uniform priors, which are simple, well-suited to broadband exclusion, and well-motivated

by how particle masses seem to distribute themselves in nature.

If our analysis were composed of evenly-spaced frequencies between 27 nHz — 400 mHz,

computing the aggregate update would have been a direct implementation of equation (9) of the

main text, where the logarithmically uniform priors account for the fact that there are far fewer

frequencies in the lowest bin vs the highest bin. But since our analysis is split into two regimes,

so-called ‘low frequency’ and ‘high frequency’, each with different frequency spacing, we needed

to ensure our computation of the aggregate prior update accounted for the fact that the number

of frequency bins in each decade wasn’t a smooth function of the frequency (or, in other words,

that it is a smooth function of the frequency, except for the discontinuity at the point where the

two analysis regimes are stitched together). To account for this we computed the aggregate prior

update in each regime separately, then took a weighted average of the two results, where the

weights were the logarithm of the number of frequency bins in each analysis regime.
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Figure 5.8: Aggregate prior update U (equivalently, exclusion) as a function of ALP-gluon cou-
pling CG/( fama). The horizontal dotted line indicates 95% exclusion (where the aggregate prior
update drops to 0.05), while the vertical dotted line indicates the lower limit of CG/( fama) which
is excluded at 95% confidence over the entire analysis band. Had our data presented us with
strong affirmative evidence for the existence of an ALP in our frequency range, the curve of U vs
CG/( fama) might have peaked not at U = 2.5 but for instance at U = 1, 000 or higher.



Chapter 6

Conclusion

Conclusion chapters are often corny, pedantic, and/or unnecessary. “Tell me what you

told me” is the general approach to chapters with this title. Why bother with that? Even I am

tired of listening to myself talk at this point, and you, dear reader, have already slogged through

5 chapters with me. But I made the executive decision (it is my thesis after all), to include this

chapter for one specific reason: this thesis marks an end to the original conception of the JILA

trapped ion eEDM experiment. Moving forwards, JILA’s eEDM experiment will take on a totally

new, and rather revolutionary1, form.

Let’s try to re-adjust our perspective for a moment: this thesis was about performing a

precision measurement of the electron’s electric dipole moment using trapped molecular ions.

The measurement detailed in this thesis was the second, and last, of its kind: no other group in

the world is using trapped ions to perform any measurement that requires electrically polarizing

the species - the idea of a rotating electric field is still so new no-one else has picked it up yet.

Since 2014 I have been working on a physics experiment which, in form at least, had no peers.

Honestly, I found that delightful.

With such a unique experimental setup it almost seems a shame to put the whole thing out

1In my opinion.
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to pasture2, but we are left with little choice (plus, and it’s hard to understate how important this

is to the whole operation, Eric was obviously already kind of bored with it). Why is our hand

forced? Well, let’s imagine what we need to do to squeeze another result out: if we aim for a 10x

improvement in sensitivity with each subsequent measurement (which is admittedly ambitious

but also in keeping with our current pace) then we would need to either read out 100x more ions

with each shot or find a way to get our fringe contrast up to 1, then read out 25x more ions each

shot, or use a new molecule to get higher |Eeff|, then get more contrast, then, etc etc. Choose any

way you like to manipulate our old friend, equation 2.1 (reproduced below as Eq. 6.1 for your

convenience), to get a factor of 10 out, and then think about what’s actually possible.

δde ∼
1

|Eeff|τ
√

N
(6.1)

Let’s consider τ first: we could get a straight factor of 10 in sensitivity if we can make τ

10× larger. Imagine we have a molecule which has the science state as a ground state, so that we

are not limited by excited state lifetimes. Then what happens? Our experimental rep rate goes

way down. We would prepare our ions, start the Ramsey sequence, then wait for something like

15 seconds before reading out the result and starting all over again. We would still need lots of

data to get the statistical sensitivity we need, and now what previously took about 4 weeks of

dedicated data-taking time now takes a year! Not to mention the 1/ f noise issues that would

inevitably crop up with such a low rep rate. So in general, if we are looking to extend τ we are

looking immediately at having a rep rate, and a pink noise, problem. Not acceptable.

What about
√

N? Could we leave τ alone and just read out 100×more ions per shot? Well I

don’t want to declare anything like that impossible3, but I can confidently say (quite sarcastically):

good luck. First of all, we can’t really trap more ions: space charge effects will always put a

2Presumably, some kind of UHV safe pasture with no shortage of copper gaskets and pure quantum states

3I am far too cowardly for that
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fairly hard limit on the total number of ions one can trap in one place. But! We were routinely

trapping something on the order of 20, 000 ions while we only read out ∼ 500 of them. This

massive discrepancy is due to state preparation issues: each step in our state prep was much less

efficient than 1 and so the ultimately useful fraction of ions we could read out is the result of a

bunch of values < 1 being multiplied together. Ok fine, then why can’t we just ‘fix’ each step in

the state preparation to massively improve our efficiency? I suppose we could, in theory. But in

practice? Nah. Our species was selected for its sensitivity to the eEDM, not its amenability to

quantum state control. It is possible that there is a magic species out there, with highly diagonal

frank-condon factors as well as a large enough Eeff etc, but if it exists nobody has found it yet.

Even if we did know of this magical species, and we could, through sheer force of will, prepare

all 20, 000 ions in the trap in the science state and read them out with perfect efficiency, this

would still only offer us
√
(40) ∼ 6× improvement in sensitivity, so we would also need to fight

some other battles to get the factor of 10 we require. But more realistically: this magic species is

unknown and the time it would take to find it, do all the required spectroscopy, etc etc, would

put us so far behind our competitors temporally that we would suddenly be needing a factor of

100 in improvement to stay competitive. So again, we are stuck.

That leave us with Eeff. This is (obviously) fixed for our current species, but of course one is

free to change species! Could we get a factor of 10 that way? Maybe. But changing species is no

small task: since we work with bespoke molecules (they simply must be sensitive to the eEDM,

darling) we have to do all the spectroscopy and figure out all the state preparation steps ourselves

before we can even think about performing an EDM measurement. And given a quick survey of

the molecules currently in use for eEDM experiments, it’s unlikely that one would enjoy a full

10× improvement in Eeff. It’s more likely to be something like 3×. So again, as expected, we are

stuck.

Now you may be thinking: ‘well, just figure out the right combination of those three things,

dummy’! And sure, that is a possibility. But how far will that get us? Another 10×, then after
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that? At some point the potential of this approach is limited: you can’t, even if you reeeeally want

to, trap arbitrarily large amounts of charged species in one location, so you will always end up

severely statistics limited. And so we end back up where we started: trapped ion experiments

have a rep rate problem.

What one needs is a way to combine the ‘unlimited’ rep rate of a beam experiment with the

long coherence times available with trapped ions. Eric realized that instead of trapping the ions

in one place one could instead ’trap’ the ions in a clumpy sort of beam : one can shuffle the ion

trap itself along in space, then load another one behind it and another one behind that and so

on, until what one has is a beam (more like a train) of N ion clumps, with state preparation being

done at one end, free evolution happening along the travel distance, and state readout happening

at the other end. With this method, it’s like running N traps in parallel, without multiplying the

surrounding infrastructure by the same factor. We have been calling this approach the ‘bucket

brigade’. Thankfully4, the details of the bucket brigade are well beyond the scope of this thesis.

So while our once-revolutionary trapped ion EDM experiment is being burnt to the ground

out behind the institute by a group of disgruntled graduate students (proverbially, of course), a

new phoenix rises from the ashes, crying out ’good luck, suckers’.

Oh! And before I go, one last thing: unionize your workplace. United we bargain, divided

we beg.

4At this point we are all getting pretty tired of my cutesy use of italics and breaking the 4th wall
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Appendix A

Lasers

Our experiment used a lot of lasers. Here is a master list, much too late to be of any use for

anyone actually doing the experiment.

A.1 Neutral HfF production / ablation: “Abby" 532 nm

Continuum ‘Minilite’ pulsed Nd:YAG Laser

Abby is a Class 4 Pulsed Q-switched Nd:YAG laser, with a 2nd harmonic crystal for 532

nm output. The output pulses are 10 ns long and deliver ∼ 10 mJ per pulse.

We use a dichroic mirror on the output to dump 1064, while 532 goes to the chamber. Abby

is a variable rep rate laser, and is triggered by the LabView program’s DIO.

The table below is from the manual, which is stored in the bottom drawer of the filing

cabinet.
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Wavelength 1064 nm 532 nm
Energy 50 mJ 25 mJ
Peak Power 8.3 MW 6.3 MW
Average Power 750 mW 375 mW
Pulsewidth 5-7 nsec 3-4 nsec
Stability 2% 3%
Polarization Horz Vert
Jitter ±0.5 nsec ±0.5 nsec
Beam Size <3mm <3mm
Divergence <3 mrad <3 mrad
Rep Rate 1-15 Hz 1-15 Hz

Table A.1: Minilite II specs from manual

A.2 Photionization 1+2 pump: “Mia" 532 nm

Spectra Physics ‘Quanta Ray Pro Series’ pulsed Nd:YAG laser

Part specification: Quanta-Ray-Pro-250-10. This 10 Hz YAG pumps Harambe and Bertha.

The undoubled 1064 nm fundamental gets dumped internally. 532 nm is the only output. We

use about 25 mJ to pump Harambe and 250 mJ to pump Bertha. The serial number is 2344PR.

The table below is from the manual, which is stored in the bottom drawer of the filing

cabinet.

Wavelength 1064 nm 532 nm 266 nm
Energy 1250 mJ/p 650 mJ/p 130 mJ/p
Pulsewidth 8-12 ns 1-2 ns 3-4 ns
Short Term Energy Stability ±2% ±3% ±8%

Table A.2: Quanta-Ray-Pro-250-10 specs from manual
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A.3 Photoionization 1 seed: “Tuna" 1237.55598 nm

Toptica ‘TA Pro’ external cavity diode laser

Tuna is a commercial ECDL with a TA, whose fundamental wavelength is set to 1237.55598

nm. We send about 350 mW into a fibre, which goes to a waveguide doubler (NTT Electronics

Wavelength Conversion Module WH-0619-000-A-B-C) with a maximum power input of 200 mW.

Out of the waveguide doubler we get about 70 mW of doubled output (618.77799) which is used

to seed Harambe, our pulsed dye amplifier. The wavelength of the doubled light is controlled by

the temperature of waveguide doubler. The serial number is 025112, The TA Article number is

TA-1250-1500-1.

Tuna’s datasheets are stored in the tall black cabinet as well as digitally in the ’Lasers’

lab notebook. The table below summarizes a few key parameters. The ’actual’ parameters drift

around a bit, but they give a good starting point if you’re looking to get it locked to the nominal

wavelength.

Wavelength (nominal) 1237.5 nm
Output Power (Actual) 370 mW into fiber
Output Power (Max) 2000 mW
Diode Current (Actual) 267.9 mA
Diode Current (Max) 272 mA
Piezo Voltage (Actual) 94.643 V
Lasing Threshold 43 mA
TA Current (Actual) 3840 mA
TA Current (Max) 7000 mA
Linewidth (from OSA spectra I took) 0.1 nm FWHM

Table A.3: A few Tuna (Toptica TA Pro) specs from the data sheet
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A.4 Photoionization 1 (first photon): “Harambe" 309.388 nm

Radiant ‘NarrowAmp’ pulsed dye amplifier

Harambe is a 3 stage pulsed dye amplifier1. Note there isn’t much of a manual for this

(apparently it was shipped without one and when Yan requested one they sent him a hastily

written 10 page Word document).

Harambe is pumped by Mia (532 nm) and seeded by doubled Tuna (618.778 nm). The

photon used for ionization is the doubled output of Harambe (309.388 nm). We use around 30µJ

per pulse, and when the amplifier is well-aligned with 50 mJ of pump power and 60 mW of seed

power we are able to get ∼ 150 uJ out.

Harambe’s dyes are Rhodamine 610 chloride and Rhodamine 640 perchlorate. We pre-

make 1 g/L concentrate of both dyes which we then dilute when we fill the circulators. Harambe’s

dye volumes are (all assuming 1g/L concentrate):

• first stage: 165 mL Rhodamine 610, 185 mL Rhodamine 640, 725 mL ethanol

• second stage: 90 mL Rhodamine 610, 100 mL Rhodamine 640, 390 mL ethanol

• third stage: 90 mL Rhodamine 610, 100 mL Rhodamine 640, 880 mL ethanol

Photoionization is a two-photon process, which promotes a valence electron to a Rydberg

state 54 cm−1 above the ionization potential. Once in this state, the molecule quickly autoionizes.

Here are some specs I found at the following website: https://www.radiant-dyes.com/

PDF/NarrowAmp.pdf, plus specs for our specific usage - generating 618nm light then doubling it

to 309 nm.

1Technically not a laser, just an amplifier, but nonetheless relevant to put here. Sorry to be pedantic, but this is a

PHD thesis after all.

https://www.radiant-dyes.com/PDF/NarrowAmp.pdf
https://www.radiant-dyes.com/PDF/NarrowAmp.pdf
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Tuning Range 540-800 nm
Linewidth
(dependent on pump laser) approx. < MHz 100 mS
Maximum Output Power, doubled (309 nm)
(50 mJ pump, 60 mW seed) 150 µJ
Maximum Output Power, doubled (309 nm)
(21 mJ pump, 60 mW seed) 70 µJ
Output pulse energy (from url)
(at 730 nm, pumped 45 mJ with 532 nm) > 9mJ
Power Stability < 6%
Pointing Stability < 50µrad
Divergence < 0.5mrad

Table A.4: Select Harambe (Radiant Narrow Amp) specs

A.5 Photoionization 2 (second photon): “Bertha" 735.464 nm

Sirah ‘Precision Scan’ dye laser

Bertha is a tunable pulsed dye laser pumped by Mia (we typically use about 250 mJ pump

power). Currently, we don’t use the tuneability. The output beam is S polarized. The fundamen-

tal is doubled, and it is the doubled output which is used for ionization. We use around 2 mJ of

doubled power for ionization.

Bertha’s dye is Pyridine 2 (LDS 722). We pre-make 0.5 g/L concentrate we then dilute

when we fill the circulators. Bertha’s dye volumes are (all assuming 0.5 g/L concentrate):

• Resonator: 252 mL dye concentrate, 448 mL ethanol

• Pre-Amp: 173 mL dye concentrate, 1027 mL ethanol

• Cap Amp: 90 mL dye concentrate, 1910 mL ethanol

Here are some specs I found at the following website: https://www.sirah.com/wp-content/

uploads/documents/PrecisionScan.pdf, plus specs for our specific usage - generating 735 nm

light then doubling it to 367.7 nm.

https://www.sirah.com/wp-content/uploads/documents/PrecisionScan.pdf
https://www.sirah.com/wp-content/uploads/documents/PrecisionScan.pdf
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Linewidth
(dependent on grating, our specific are unknown) 1− 4 pm
Absolute wavelength accuracy < 15 pm
Wavelength Stability 1.5pm/◦C
Divergence (typical) 0.4mrad
Polarization > 98% (vertical)
Pump Power (532 nm, our use) 250 mJ
Maximum Output Power (doubled, with 250 mJ pump) 5 mJ

Table A.5: Select Harambe (Radiant Narrow Amp) specs

A.6 State transfer: “Toptica" 961.43495 nm

Toptica ‘TA Pro’ external cavity diode laser

Toptica is a commercial ECDL with a TA, it’s named ‘Toptica’ because it was the very first

Toptica laser we got in the lab and apparently it never occurred to anyone that we would get

another one. It’s probably easier to call this laser ‘Transfer’ but it’s too late for that! We couple

about 1W into a PM fiber which is sent over to the chamber then directed through the top of the

trap (with linear polarization). We send about 600 mW into the trap.

Toptica’s datasheets are stored in the tall black cabinet as well as digitally in the ’Lasers’

lab notebook. The table below summarizes a few key parameters.

Wavelength (nominal) 986.45 nm
Output Power (Actual) 1.3 W before fiber, 620 mW after fiber
Output Power (Max) 2060 mW
Diode Current (Actual) 94 mA
Diode Current (Max) 110 mA
Lasing Threshold 27 mA
TA Current (Actual) 2877 mA
TA Current (Max) 2930 mA

Table A.6: A few Toptica/Transfer (Toptica TA Pro) specs
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A.7 Cleanup: “Vibational Cleanup" 818.372 nm

Homebuilt external cavity diode laser

Vibrational Cleanup is a homebuilt ECDL, using a ThorLabs diode centered at 818 nm. We

get about 68 mW out which we send into a fiber then into the top of the trap (linearly polarized).

We get about 17.5 mW into the chamber.

There are no datasheets or manuals for this laser. Here’s our current operating parameters:

Wavelength (nominal) 818 nm
Output Power (Actual) 68.5 mW before the fiber, 17.5 mW into the chamber
Diode Current (Actual) 291.4 mA
Piezo Voltage (Actual) 73.18 mV

Table A.7: A few Vibrational Cleanup (Homebuilt ECDL) specs
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A.8 mF pumping: “DBR/1083" 1082.4137 nm

I couldn’t find much documentation for this one

Operating Temperature (Actual) 7.5 ◦C
Diode Current (Actual) 318.36 mA
Power into isolator (Actual) 170 mW
Power into AOM (Actual) 120 mW
Power into fiber at 49% duty cycle (Actual) 46 mW
Power into trap at 49% duty cycle (Actual) 21 mW

Table A.8: A few Vibrational Cleanup (Homebuilt ECDL) specs

A.9 Depletion: “814/Depletion" 814.508 nm

Toptica ‘TA Pro’ external cavity diode laser

Depletion is a commercial ECDL with TA. The laser puts out about 1W. We couple the

light into an AOM which is modulated at a 50% duty cycle at frot. The AOM’s zeroth order

output is coupled into a fiber and sent into the top of the trap for single doublet depletion. The

AOM’s first order diffracted light is sent into a polarization setup (known as a Berek Polarization

Compensator) to obtain circularly polarized light, which is then sent into the side of the trap. We

send about 500 mW into the side of the trap for mF level depletion and about 50 mW into the

top of the trap for single doublet depletion.

Depletion’s datasheets are stored in the tall black cabinet as well as digitally in the ’Lasers’

lab notebook. The table below summarizes a few key parameters.
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Wavelength (nominal) 815.0 nm
Output Power (Actual) 540 mW into trap at 50% duty cycle
Output Power (Max) 2100 mW
TA Current (Set) 2610 mA
TA Current (Max) 2800 mA
Diode Current (Set) 111.665 mA
Diode Current (Max) 128 mA
Piezo Voltage (Actual) 90.83 V
Lasing Threshold 56 mA

Table A.9: A few Depletion (Toptica TA Pro) specs

A.10 Photodissociation 1 (first photon): “Cora" 736.989/2 nm or 736.986/2 nm

Sirah ’Cobra Stretch’ dye laser

Cora is a tunable pulsed dye laser pumped by Olga. We use the tunability to dissociate

out of different states. All values here are for dissociating out of 3∆1, v = 0, J = 1. The output

beam is S polarized. The fundamental is doubled, and it is the doubled output which is used for

dissociation. We use around 1.5 mJ of doubled power for dissociation.

Cora’s dye is Pyridine 2 (LDS 722). We pre-make 0.5 g/L concentrate we then dilute when

we fill the circulators. Cora’s dye volumes are (all assuming 0.5 g/L concentrate):

• Resonator: 280 mL dye concentrate, 420 mL ethanol

• Amplifier: 144 mL dye concentrate, 936 mL ethanol

Here are some specs I found at the following website: https://www.sirah.com/wp-content/

uploads/documents/CobraStretch.pdf, plus specs for our specific usage - generating 736 nm

light then doubling it to 368.5 nm.

https://www.sirah.com/wp-content/uploads/documents/CobraStretch.pdf
https://www.sirah.com/wp-content/uploads/documents/CobraStretch.pdf
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Linewidth
(dependent on grating, our specific are unknown) 1− 4 pm
Absolute wavelength accuracy < 15 pm
Wavelength Stability 1.5pm/◦C
Divergence (typical) 1.0mrad
Polarization > 98% (vertical)
Pump Power (532 nm, our use) 170 mJ
Fundamental measured before doubling (at 736.989 nm) 20 mJ
Power measured right after doubling (at 736.989/2 nm) 3 mJ
Power measured after the chamber, (at 736.989/2 nm) 1.6 mJ

Table A.10: Select Cora (Syrah Cobra Stretch) specs

A.11 Photodissociation 2 (second photon) + Cora pump: “Olga" 266 nm

Spectra Physics ‘Quanta Ray Lab Series’ pulsed Nd:YAG laser

Part specification: Quanta-Ray-Lab-170-30H - note we bought this as a 30 Hz laser so the

last part of the part number is 30 H. But we had it converted to 10 Hz, so the last part of the

part number should be changed to 10H. This 10 Hz YAG pumps Cora and provides 266 nm

for dissociation. The undoubled 1064 nm fundamental gets dumped internally. 532 nm output

pumps Cora (170 mJ, remainder is dumped). 266 nm output is sent straight to the trap for

dissociation. The serial number is 4364L.

The table below is from the manual, which is stored in the bottom drawer of the filing

cabinet.

Wavelength 1064 nm 532 nm 266 nm
Energy 850 mJ/p 450 mJ/p 90 mJ/p
Pulsewidth 8-12 ns 1-2 ns 3-4 ns
Short Term Energy Stability ±2% ±3% ±8%

Table A.11: Quanta-Ray-Lab-170-10H specs from manual. Note the manual specified the pulse
width in nm but I’m pretty sure that’s a typo, especially given footnote 1 on table 3-2.
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One shot asymmetry

We normally define our asymmetry as A = (N↓ − N↑)/(N↓ + N↑), which takes two ’shots’

of the experiment, but one can instead define it with only one shot. We did this for our dark

matter analysis [60]. We define the single-shot asymmetry A as

A = ±Ni − ⟨N⟩
⟨N⟩ , (B.1)

where we choose + when the preparation and the depletion have the same phase (known collo-

quially as ‘in-in’ or ‘anti-anti’) and − when preparation and depletion have the opposite phase.

Ni is the Hf+ count in a single shot, and ⟨N⟩ is the mean Hf+ count for the set of shots (datapoint)

to which the single shot belongs.

Below is a little thing I worked out on how background affects the measured fringe contrast,

in case it’s useful to someone one day.

B.0.1 One-shot asymmetry and measured fringe contrast

As mentioned above, we define the single-shot asymmetry A as

A = ±Ni − ⟨N⟩
⟨N⟩ (B.2)

where we choose + when the preparation and the depletion have the same phase (known collo-

quially as ‘in-in’ or ‘anti-anti’) and − when preparation and depletion have the opposite phase.
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Ni is the Hf+ count in a single shot, and ⟨N⟩ is the mean Hf+ count for the set of shots (datapoint)

to which the single shot belongs. Let’s see how this definition works. Assume, in some perfect

experiment, that we prepare the same number of ions each time, and that our state preparation

and dissociation are perfect. If you consider zero free-evolution time, then the in-in and anti-anti

shots will result in N Hf+ ions being read out, while the in-anti and anti-in shots will result in 0

Hf+ ions being read out. For a given set of shots, called a data point we will alternate between

in-in and anti-in or anti-anti and in-anti. For any set of these chops, the mean number of ions we

read out will be N/2. For the in-in and anti-anti shots we have the asymmetry

A = +
N − N/2

N/2
= 1 (B.3)

while for the in-anti or anti-in shots we will have the asymmetry

A = −0− N/2
N/2

= 1 (B.4)

so you see that we can combine the shots with opposite depletion appropriately. In this perfect

experiment, as we increase the free-evolution time, the asymmetry A traces out a sinusoid which

oscillates between ± 1 at a frequency proportional to the energy splitting.

Now what happens if you add a constant background? This is an important question

because we know that there is a background which is independent of the free-evolution time. It

seems to be due to imperfect ionization and dissociation. For simplicity let’s continue to assume

the ion number is constant and so on, and that the background is constant. Call the background

Hf number b. Now the mean Hf (for a data point) is N/2 + b, the minimum number is b, and
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the maximum number is N + b. Our in-in or anti-anti shots will have the asymmetry

A = +
(N + b)− (N/2 + b)

(N/2 + b)

=
N + b

N/2 + b
− 1

=
2N + 2b
N + 2b

− 1

=
2N

N + 2b
+

2b
N + 2b

− 1

while the anti-in or in-anti shots will give

A = −1− b
N/2 + b

= 1− 2b
N + 2b

Averaging these two will give

A =
( 2N

N + 2b
+

2b
N + 2b

− 1 + 1− 2b
N + 2b

)
/2

=
N

N + 2b

< 1

Which we see leads to a loss in contrast.

Our measured fringe contrast varies between 0.6-0.85. It is possible that the imperfection

is due to more than just a constant background, such as imperfect depletion, pumping, or π/2

pulses, but it is at least in part due to the background that we always observe.



Appendix C

A list of useful transitions

There’s a lot to keep track of in our experiment, and at one point I made the diagram below

and put it as the desktop background on the main experiment computer. Until then, there wasn’t

any central place where all the useful transitions we use were catalogued. Turns out that kind of

thing is quite useful so I am saving that figure here, for posterity1. Enjoy.

1I don’t actually know what the word ’posterity’ means and I will not look it up



220

Figure C.1: The infamous ’laser diagram’



Appendix D

An approximation to our shot noise limit

Here’s my derivation of the shot noise limit if we knew the total number of ions we were

starting with.

Ultimately, the core of our experiment is spin precession experiment (Ramsey spectroscopy)

between stretched states. We prepare an ensemble of ions (for now, let’s say that we prepare the

same number each time Ntot) whose valence electrons are in a pure spin state |↑⟩ or |↓⟩, we take

that pure spin state and rotate it by π/2 into an equal superposition (|↑⟩+ |↓⟩)/
√

2, then we wait

a varying amount of time before we project the superposition back onto one of the basis vectors

(|↑⟩ or |↓⟩), and we count N↑ or N↓ (for now let’s assume that N↑+ N↑ = Ntot) . For any quantum

two-level system prepared in a superposition |ψ⟩ = c↑ |↑⟩+ c↓ |↓⟩, the probability of measuring

(projecting the state into) a given basis vector is given by the modulus squared of the coefficient

1: p↑ = |c↑|2, p↓ = |c↓|2. This probabilistic/non-deterministic essence is inescapable (it’s one of

the core features of quantum mechanics, after all2), so unless either c↓ or c↑ is 0 or 1, there will

always be some uncertainty in the outcome. When an experiment has a binary outcome with

some probability (eg p↓, like we have here), and it is repeated over and over, one will find that

the measured outcomes obey a binomial distribution: if we have Ntot ions, and N↑ is the number

of ions in state |↑⟩ (and N↓ is the number of ions in state |↓⟩, N↑+ N↓ = Ntot), then the probability

1Assuming that the state vector is properly normalized, ie |c↑|2 + |c↓|2 = 1.

2As far as we know
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of measuring a given value of N↑, ie P(N↑), is3

P(N↑, Ntot, p↑) =
Ntot!

N↑!(Ntot − N↑)!
pN↑
↑ (1− p↑)Ntot−N↑ . (D.1)

The variance of the binomial distribution is

σ2 = Ntot p↑(1− p↑), (D.2)

which goes to zero when p↑ = 0 or p↑ = 1, and has its maximum value of Ntot/4 when p↑ = 1/2.

It is this variance in the measured outcome that is the ultimate limit to our errorbars 4.

Now there’s one final detail: during our Ramsey experiment the spin precesses, so the initial

state (|↑⟩+ |↓⟩)/
√

2 evolves such that at a later time tR after a second π/2 pulse the state vector

can be written as ∼ cos(ωtR) |↑⟩+ sin(ωtR) |↓⟩. So now the probabilities of measuring a given

basis vector become sinusoidally time-varying: p↑ = |c↑|2 = | cos(ωtR)|2, which goes right into

the binomial distribution of equation D.1 and the corresponding variance (eq D.2):

σ2(tR) = Ntot| cos(ωtR)|2(1− | cos(ωtR)|2). (D.3)

This is the quantum projection noise limited uncertainty for any measurement we will make of

an ensemble of independent ions. In other words, this is the minimum uncertainty we can expect

in any measurement of the number of ions in a given stretched state. How will this uncertainty

affect our total uncertainty?

To compute the quantum projection noise limited total uncertainty, we need to go from

an uncertainty in a single spin asymmetry measurement to an uncertainty in the precession

frequency, then from that to a measurement of de. I’ll sketch out a heuristic argument using only

the sides of the fringe, I expect the rigorous argument is more complex than we need. Let’s step

3If you haven’t studied probability distributions, the way to read P(N↑, Ntot, p↑) = is “the probability of measuring

N↑ given Ntot and p↑ is...

4If I’ve explained this poorly, of if you’re just looking for more details, I would strongly recommend you read [104]
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through a perfect, quantum-projection-noise-limited version of our experiment and keep track of

the uncertainties:

First, we prepare an ensemble of ions Ntot in a superposition state (|↑⟩ + |↓⟩)/
√

2, let it

evolve, apply a second π/2 pulse, then measure the number of ions in the up state, N↑. The

probability of measuring a given value of N↑ (on the side of a fringe, we expect N↑ = Ntot/2) is

given by the binomial distribution with variance σ2
↑/↓ = Ntot p↑(1− p↑) = Ntot/4, since p↑ = 1/2

on the side of a fringe.

Then we repeat the same process to measure N↓ and again σ2
↑/↓ = Ntot/2 since we are on

the side of a fringe (p↑ = p↓ = 1/2).

Now we take these two measurements and form the fringe asymmetry: A = (N↓ −

N↑)/(N↓ + N↑). Combining the errors we have a new uncertainty: the numerator and denomi-

nator have the same variance δA2
n/d = Ntot/2, and the quotient of that has variance

δA2 =
(N↓ − N↑

N↓ + N↑

)2( Ntot/2
(N↓ − N↑)2 +

Ntot/2
(N↓ + N↑)2

)
=

Ntot/2
(N↓ + N↑)2 +

Ntot/2(N↓ − N↑)2

(N↓ + N↑)4

=
1

2Ntot

(D.4)

where in the last line we used N↓ + N↑ = Ntot

Now we repeat this procedure r times, and we get r/2 asymmetry measurements. We

average these measurements to get a better estimate of the spin asymmetry, and the sampling

distribution of the mean5 is usually approximated by a normal distribution, so the quantum-

projection-noise-limited uncertainty on an asymmetry measurement is δA2
mean = δA2/r:

δA2
QPN =

1
Ntot frepTtot

, (D.5)

5For Ntot >> 1
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frep is the rep rate of the experiment, and Ttot is the total time the experiment was running, and

r = frepTtot/2.

On the side (zero-crossing) of a sinusoisally-varying asymmetry measurement, the slope

(in units 1/s) is equal to ω 6, which we approximate as a line with zero offset: y = ωt. If we are

fitting a line to a point with errorbar σ′ (and σ′ << 1), then the line can be moved up or down σ′,

so the fitted line can range from y = ωt to y = ωt± σ′. The horizontal distance (in this case, the

time shift) between the "true line" y = ωt and the "line inferred due to the errorbar" y = ωt± σ′

is given by finding the point on the x-axis where y = ωt = σ′, so t = σ′/ω. In a cycle, the time

for a single degree is tdeg = 1/360 f = T/360, where f is the frequency and T is the period. The

time uncertainty due to our errorbar divided by the time for a single degree is the uncertainty

in degrees: σ′/ω/1/360 f = σ′/2π f /1/360 f = σ′ (remembering that the 2π is radians and 360

is degrees). So our phase error, in radians on the side of a fringe, is the same as the errorbar:

σ′. Now if we say that our frequency measurement is given by (ϕL − ϕE)/2πtR, where ϕL is the

late-time phase, ϕE is the early-time phase and tR is the ramsey free evolution time, then the

frequency uncertainty is δ f =

√
(σ′)2+(σ′)2

2πtR
=
√

2σ′

2πtR
. This is all for a fringe with perfect contrast, for

a non-unity contrast C we can scale it δ f =
√

2σ′

C2πtR
. Finally, to get from a frequency uncertainty to

a de uncertainty, we divide by −2|Eeff|sgn(gF)/h [2], where |Eeff| is the effective field experienced

by the valence electron and sgn(gF) is the sign on the g-factor. Thus,

δde =

√
2σ′h

2|Eeff|C2πtR
(D.6)

is the uncertainty in de for a single frequency measurement.

Finally, we will take the mean of all our frequency measurements, and the distribution

of frequency measurements is again normal (we go to some effort to quantify this, see Chapter

4.) So our new uncertainty is just equation D.6 divided by the square root of the number of

6The side of the fringe cos(ωt) is at ωt = π/2, the derivative is d/dt cos(ωt) = −ω sin(ωt), plug in ωt = π/2
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measurements:

δde =

√
2σ′h

2|Eeff|C2πtR
√

frepTtot/2
. (D.7)

Let’s clean this up by taking h̄ = h/2π and cleaning up the factors of 2:

δde =
σ′h̄

|Eeff|CtR
√

frepTtot
. (D.8)

Now all that remains is plug in the quantum-projection noise limited errorbar on a single

frequency measurement, σ′ = 1/
√

Ntot frepTtot. Finally, we have the quantum-projection-noise-

limited expression for our uncertainty in de:

δde =
h̄

|Eeff|CtR frepTtot
√

Ntot
. (D.9)

The expression above assumes that in each experimental cycle we read out an identical

number of ions, Ntot. In reality, N varies in every cycle due to fluctuations in the spatial mode

and power of the lasers that ablate, ionize, and dissociate, as well as other experimental noise

sources. We avoid most of that noise by performing a differential measurement between the

upper and lower doublets: in a single shot of the experiment we measure both the lower and

upper Stark doublets, and we perform our measurements when the fringes for both are in phase,

so the proportional experimental noise is effectively cancelled out. Details of this scheme are in

[47] and [48].



Appendix E

All parity channel results

Below are all parity channel results for our 2022 dataset. Because we took data at three dis-

tinct values of f 0, the results are disaggregated over those values then re-aggregated afterwards

to give an overall average and error. All errorbars are adjusted for χ2. Before taking weighted

means and adjusting for χ2, the value and error for each parity channel for each block was mul-

tiplied by 1000, so the units for contrast are milli “contrast units”, for decay rate the units are per

millisecond, for frequency the units milli hertz, and for offset the units are milli offset units.
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