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Simulating the properties of many-body fermionic systems is an outstanding com-
putational challenge relevant to material science, quantum chemistry, and particle
physics. Although qubit-based quantum computers can potentially tackle this problem
more efficiently than classical devices, encoding nonlocal fermionic statistics introduces
an overhead in the required resources, limiting their applicability on near-term
architectures. In this work, we present a fermionic quantum processor, where fermionic
models are locally encoded in a fermionic register and simulated in a hardware-
efficient manner using fermionic gates. We consider in particular fermionic atoms in
programmable tweezer arrays and develop different protocols to implement nonlocal
gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together
with Rydberg-mediated interaction gates, to find efficient circuit decompositions for
digital and variational quantum simulation algorithms, illustrated here for molecular
energy estimation. Finally, we consider a combined fermion-qubit architecture, where
both the motional and internal degrees of freedom of the atoms are harnessed to
efficiently implement quantum phase estimation as well as to simulate lattice gauge
theory dynamics.

fermionic quantum processor | digital quantum simulation | tweezer arrays | quantum chemistry |
lattice gauge theories

The study of strongly correlated fermionic systems lies at the core of some of the most
interesting problems in modern physics. These include profound questions regarding
the inner workings of the universe, such as the physics of quark–gluon plasmas (1), as
well as technologically pressing challenges in material science and quantum chemistry,
from high-temperature superconductivity (2) to nitrogen fixation (3). The defining
feature of fermionic many-body systems is the fundamental indistinguishability of their
constituents, which dictates the antisymmetry of the wavefunction and the corresponding
quantum statistics. Importantly, this indistinguishability gives rise to the so-called sign
problem, which severely limits the applicability of many numerical approaches, such as
Monte Carlo methods, highlighting the innate difficulty of solving fermionic many-body
problems on classical computers (4).

One of the most promising alternatives to address these problems is provided by
quantum computers (5). Traditionally, quantum computing involves distinguishable
spin-1/2 particles, where quantum information is stored in superposition states of qubit
registers and processed by the action of quantum gates. The quantum statistics of fermions
needs to be encoded in such qubit-based devices on a software level, which incurs overhead
in circuit depths (6–9) or qubit numbers (10–12). This presents a substantial challenge
for current experiments where noise limits gate and readout fidelities. Although this
approach has been applied to simple fermionic models from quantum chemistry (13–
18), condensed-matter (19–28), and particle physics (29–31), using quantum processors
based on superconducting circuits or trapped ions, experimental studies have so far been
restricted to small system sizes.

Neutral atom systems provide a route to bypass this issue and construct quantum
devices where fermionic statistics are built-in on a hardware level. The natural
indistinguishability of atoms, which come as bosons or fermions, is for instance leveraged
in celebrated analog quantum simulations of Hubbard models in optical lattices (32–34).
Recently, optical tweezers have emerged as powerful tools to trap and manipulate neutral
atoms with an unprecedented level of programmability and scalability (35–43). So far,
these systems have, however, mainly been used to realize spin models with distinguishable
constituents (44–51), where each atomic position is pinned to a specific tweezer, internal
electronic or nuclear spin states are used to represent qubit states, and interactions
between these qubits are implemented using highly excited Rydberg states.
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In this work, we envision the next generation of such tweezer
setups, where not only the internal but also the external degrees
of freedom are coherently controlled and fully integrated in the
quantum processing architecture. This is a crucial prerequisite
for capitalizing on the indistinguishability of (fermionic) atoms,
which requires the possibility for their center-of-mass wave
functions to overlap, e.g., by coherently delocalizing atoms
across tweezers. Remarkably, this motional control has already
been demonstrated in pioneering proof-of-principle experiments
both with tweezers and double-well optical potentials (52–59).
Below, we describe a blueprint of the elements required for
such a fermionic quantum processor (8), where both quantum
hardware and software are codesigned to efficiently simulate
fermionic models. More precisely, we describe protocols for
the basic set of fermionic quantum gates, including, apart
from Rydberg-mediated interacting gates, digital tunneling gates
(or “fermionic beam splitters”) implemented through MERGE
or SHUTTLE protocols. While the present work focuses on a
setup with tweezer arrays, it is worth mentioning alternative
setups that involve optical lattices, developed in the context of
bosonic atoms (60–67). We exemplify our proposal for concrete
atomic systems and discuss the requirements and experimental
challenges for their physical implementation. Furthermore, we

provide illustrative examples of application of such a fermionic
quantum processor in the context of digital quantum simulation
for quantum chemistry and for lattice gauge theories (LGT),
where we use this fermionic gate set to find efficient circuit
decompositions and demonstrate a significant reduction in circuit
depth when compared to traditional qubit-based approaches.

Hardwired Fermi Statistics

We consider fermionic atoms in an array of microtraps that
represent the fermionic quantum register (Fig. 1A). We write
cj,� (c†

j,�) for the annihilation (creation) operator of atoms on
lattice site j, which we assume to be prepared in the trap ground
state, and � labeling internal atomic states [qudits (68)]. To
be concrete, we will illustrate the quantum gate set, including
in particular digital tunneling gates, for spinless fermions, i.e.,
dropping the index � for the moment. In this case, the state of the
quantum register comprising N atoms occupying L microtraps
is given by a superposition of Fock states |n1, . . . , nL〉, where
nj = 0, 1 is the atomic occupation, and

∑L
j=1 nj = N .

In the context of quantum simulation (QS) of many-body
systems (5), we are interested in particle-number conserving

A

B C

Fig. 1. Fermionic quantum processor. (A) We consider a fermionic register based on fermionic atoms trapped in optical tweezers, where quantum information
is encoded in the atomic occupation and processed using fermionic gates. The latter includes tunneling processes, delocalizing atoms between different
tweezers (lighter spheres), as well as interaction gates, based on the Rydberg blockade mechanism. (B) We use these gates to construct fermionic quantum
circuits, where certain subroutines are first precompiled to minimize circuit depths (as detailed below). (C) Fermionic circuits are particularly suited for quantum
simulation of fermionic models, avoiding nonlocal overheads. Here, we consider the ground-state energy estimation of molecules using variational algorithms,
as well as Trotter time evolution of LGTs.
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unitaries acting on this register (69), which can be constructed
using the gate set

BK =
{
ei�/4ni , ei�ninj , ei�/4

(
c†
i cj+H.c.

)}
, [1]

as shown by Bravyi and Kitaev (8).
As we demonstrate in the next section, the circuit depth

required to simulate fermionic models can be consider-
ably shortened by considering instead the more general set
G =

{
U (int)
i,j (�), U (t)

i,j

(
E�
)}

, where

U (int)
i,j (�) ≡ e−i� ninj , [2]

U (t)
i,j

(
E�
)
≡ e−i

[
�1
2

(
e−i�2 c†

i cj+H.c.
)
+
�3
2 (ni−nj)

]
, [3]

are generalized interaction (int) and tunneling (t) gates, re-
spectively (Fig. 1A). The gates are parametrized in terms of
tunable parameters � and E� = (�1, �2, �3). In the context of
qubit-based quantum computation, where single-qubit rotations
together with one entangling interaction gate are sufficient to
achieve universality (70), fermionic degrees of freedom first need
to be encoded into qubits using, e.g., a Jordan–Wigner (JW)
transformation (71). Tunneling gates, required to simulate many-
body fermionic systems, can be implemented in the case of a JW
encoding using O(L) entangling gates (71). Fermionic atoms
trapped in the motional ground state of optical tweezers offer the
unique possibility to avoid this overhead by implementing the
gate set G directly. Specifically, the tunneling gate, U (t)

i,j

(
E�
)

, can
be realized using different approaches that exploit the capability
of dynamically rearranging the tweezer positions, two of which
we discuss now in more detail.

The MERGE approach realizes the tunneling gate by tem-
porarily bringing the two tweezers i and j so close together
that atoms can tunnel between the corresponding lowest vibra-
tional states (Fig. 2A), as it has been demonstrated in recent
experiments (52, 56–58, 72). Another approach involves fully

merging (and later separating) the tweezer pair through custom-
designed merging and splitting protocols. The gate parameters
E� can in either case be completely controlled by the tweezer
parameters and the details of the merging protocol, such as the
tweezer detuning and depths, the time-dependent distance of the
tweezer minima, and the duration of this coupling process. In
practice, these can be determined via optimal control techniques
for given target tunnel parameters E� and allow gate execution on
timescales set by the inverse trapping frequency of the tweezers.
This approach is therefore natural for light atoms, such as lithium,
where relatively small trap depths are sufficient for large trap
frequencies. We note that the implementation of the tunneling
gate using the MERGE protocol requires the use of two different
laser frequencies for the tweezer pair, to avoid heating processes
arising from the interference across tweezers (42) (Fig. 2A).

The SHUTTLE approach offers an alternative way to realize
the tunneling gate, which is based on the capability to realize
state-dependent optical potentials (63, 73), and is thus naturally
suited for alkaline-earth atoms. We therefore illustrate this idea
for the specific example of 87Sr, a fermionic isotope of strontium
with nuclear spin I = 9/2 below and in Fig 2. The central
idea is to use two sets of tweezers: a set of static storage traps,
whose occupations define the fermionic register and a set of
transport traps, which serve as a “shuttle” for atoms. Crucially,
the wavelength of the storage and transport tweezers is chosen
such that they trap two different internal states of an atom,
respectively. For instance, for 87Sr, one can trap the state
1S0 (74) in the storage tweezers, and independently trap the
clock state 3P0 (63, 75) in transport tweezers, reminiscent of the
collisional entangling quantum gate with spin-dependent lattices
for bosonic atoms (60, 62, 67). Here, we extend these ideas
and design a fermionic shuttle that implements the tunneling
gate U (t)

i,j

(
E�
)

. Importantly, when a storage and transport
tweezer overlap and their potential shapes match, atoms can
be coherently transferred or coherently split between the two
tweezers simply by using laser pulses that implement internal

rotations Ri
(
E�
)

= e−i
[
�1
2 (cos �2X+sin �2Y )+

�3
2 Z

]
, where X , Y ,

A

B

C

Fig. 2. Fermion-qubit register and tunneling gates. (A and B) show the sequence of laser pulses and tweezer moves used to implement a MERGE and a
SHUTTLE gate between a pair of sites (i, j), respectively, where the atomic superposition between two different tweezers is achieved either through direct
tunneling (dashed line) or internal rotations. In the figure, tweezers of different colors correspond to different wavelengths. While the illustration shows the
case of a single initially localized atom, we emphasize that the protocols also apply to situations where both tweezers contain contributions from many-body
superpositions of several atoms delocalized over the whole system. (C) Level structure of 87Sr. A fermionic register (F) is built by encoding quantum information
into the presence/absence of an atom trapped by a given storage tweezer (red) in one of the hyperfine states of the ground-state manifold 1S0. The latter
is laser-coupled to the meta-stable excited state 3P0, with Rabi frequency Ωc and detuning Δc , trapped by a second transport tweezer (green). Interactions
between pairs of atoms are turned on by exciting the atom to the Rydberg state 3S1, using a Rabi frequency ΩR, where ΔR is the corresponding detuning. Other
hyperfine levels, energy resolved using a magnetic field and coupled through a microwave frequency ΩF , serve as a qubit register (Q).
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and Z are Pauli matrices acting on the atomic subspace spanned
by 1S0 and 3P0. Using this mechanism, one can construct the
full tunneling gate, U (t)

i,j

(
E�
)

, as follows (see also Fig. 2B): 1)
We first bring a transport tweezer to a storage site i and perform
a �-pulse rotation, i.e., Rx

i (�) ≡ Ri(�, 0, 0), 2) after which we
move the transport tweezer to site j. 3) We then perform a second
pulse Rj(E�∗), with E�∗ = (�1, �2 + �

2 , �3), 4) bring the transport
tweezer back to site i, and 5) finally undo the initial �-pulse.

Contrary to the MERGE gate, there is no direct tunneling
between tweezers involved in the SHUTTLE gate. Instead, the
superposition between internal states created by the pulse at
step (3) in the protocol translates to a superposition between
different tweezers thanks to their state-dependent nature. The
implementation time of this step depends thus on the Rabi
frequency but is independent on the mass of the atom, allowing
to implement the SHUTTLE gate on deep traps where unwanted
motional excitations can be further suppressed. All timescales
involved in this implementation are therefore small compared to
moving times, such that the trap depth will set the clock speed of
our fermionic quantum processor. Finally, we note that both the
SHUTTLE and the MERGE approach can be fully parallelized. We
comment on potential error sources for both approaches below.

In these setups, the interaction gate U (int)
i,j (�) is essentially

equivalent to a standard qubit entangling gate that has already
been implemented for alkaline (35, 38, 39, 42) as well as alkaline-
earth atoms (40, 76) using the Rydberg blockade mechanism.
To realize it, we first rearrange the tweezers i and j and bring
them to a distance that lies within the Rydberg blockade radius.
We then drive the atoms with a laser that couples the atoms’
internal state to a Rydberg state. Owing to the Rydberg blockade
mechanism, properly chosen laser pulses result in a unitary
ei�01(ni+nj)+i�11ninj (38). The phases�01/11 depend on the shape
of the Rydberg laser pulse (38) and choosing �11 = 2�01 − �
provides the desired interaction gate up to the single-particle
phase shift �01. We note that resonantly coupling the atom
to the untrapped Rydberg state could create excitations in
the trap, which should be suppressed to preserve the atom’s
indistinguishability. We note that these effects can be further
reduced by trapping the atoms also in the Rydberg state (77).
Alternatively, one can work in the dressed-Rydberg regime, where
decay from the Rydberg state is suppressed and interactions
become independent of distance, thus avoiding the repulsive
forces between atoms. Below, we will discuss these together
with other experimental challenges, including several strategies
to mitigate the dominant error sources.

Fermionic Quantum Circuits

We now employ the set of fermionic gates G to construct
the quantum circuits required for QS of fermionic systems.
Let us first focus on purely fermionic Hamiltonians, which
we generalize below to fermion-boson models relevant to high-
energy physics. To be explicit, we consider the particle-number-
conserving fermionic Hamiltonian:

H =
∑
i,j

h(1)
i,j c†

i cj +
∑
i,j,k,l

h(2)
i,j,k,l c

†
i c

†
j ckcl , [4]

with complex parameters h(1)
ij and h(2)

ijkl . This Hamiltonian is
frequently used both in condensed matter (32) and quantum
chemistry (71), where the indices can denote either the position

A B

C

Fig. 3. Fermionic subroutines. In (A), we indicate the elementary fermionic
gates, namely the tunneling and interaction gate. Using these elementary
gates, we can construct more complex gates like a density-dependent
tunneling gate (B) and a pair-tunneling gate (C) where a pair of fermions can
tunnel together from the hatched to the unhatched sites and vice versa. The
specific angles required for an exact circuit decomposition of these compiled
gates are provided in Eqs. 7 and 9.

of electrons in a solid-state crystal or the orbitals of a molecule,
respectively. We note that spinfull fermionic models such as the
Hubbard model can be recast into the form of Eq. 4 by mapping
spin states to distinct spatial indices. These indices are encoded
into separate tweezers within the fermionic register which are
then encoded into different tweezers in the fermionic register.
Specifically, we can represent the Hubbard interaction ni,↑ni,↓
as ni1ni2 , where i1 and i2 correspond to two different tweezers,
for direct implementation using the aforementioned interaction
gate.

Many QS algorithms, e.g., the Variational Quantum Eigen-
solver (VQE) (13, 15) and the Quantum Approximate Optimiza-
tion Algorithm (QAOA) (78), or Trotter time evolution (69), use
as subroutines unitary operations obtained from exponentiating
each local term in the Hamiltonian. Apart from the tunneling
and interaction gates introduced above, these include density-
dependent tunneling (dt) as well as pair-tunneling (pt) processes,

U (dt)
i,j,k (�1, �2) ≡ e−i �1(e−i�2 c†

i njck+H.c.), [5]

U (pt)
i,j,k,l (�1, �2) ≡ e−i �1

(
e−i�2 c†

i c
†
j ckcl+H.c.

)
, [6]

where the indices in the equations above are different.
For both Eqs. 5 and 6, we derived a specific decomposition

in terms of the gate set G, which are shown in Fig. 3 B and C,
respectively. Both decompositions are exact and have a constant
circuit depth that does not depend on the system size L. More
precisely, for Eq. 5, we obtain

U (dt)
i,j,k (�1, �2) = U (t)

i,k (�1, �2, 0)U (int)
i,j (�)

· U (t)
i,k (−�1, �2, 0)U (int)

i,j (�),
[7]

which can derived analytically by first expanding U (dt)
i,j,k (�1, �2)

in its Taylor series and then using the relation

e−i�nlnj (c†
l ck + H.c.)ei�nlnj = c†

l
(
1− 2nj

)
ck + H.c., [8]

Although a similar analytical decomposition can be obtained for
Eq. 6, here, we report on a more compact and still exact circuit
decomposition, found via variational optimization. The latter,
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displayed in Fig. 3C, minimizes the total circuit depth and takes
the following form:

U (pt)
i,j,k,l (�) = U (t)

i,k
j,l

(�2 ,
�2+2�

2 , 0)U (int)
i,j
k,l

(�1)

· U (t)
i,k
j,l

(�2 ,
�2+�

2 , 0) U (int)
i,j
k,l

(−�1)

· U (t)
i,k
j,l

(
√

2�, 2�2−�
4 , �),

[9]

where we denote U (t)
i,k
j,l

(
E�
)
≡ U (t)

i,k

(
E�
)
U (t)
j,l

(
E�
)

and

U (int)
i,j
k,l

(�) ≡ U (int)
i,j (�)U (int)

k,l (�), with the two gates applied in

parallel, and � = 2�/
√

27.
These fermionic circuits in terms of the gate set G provide a

clear advantage in terms of circuit depths with respect to qubit
encodings, which necessarily suffer from overheads associated
with implementing nonlocal fermionic statistics. Such encodings
often introduce space overhead with ancillary degrees of free-
dom (10–12), or depth overhead caused by the decomposition of
significantly higher-weight qubit operators (6–9, 79), resulting
from mapped fermionic operators; for the case of Jordan–Wigner
transformation, the size of such qubit terms grows with the
system size L (71). Moreover, the ability to implement tunneling
and interaction gates at arbitrary angles enables us to find exact
decompositions, resulting in shorter quantum circuits compared
to approximate decompositions based on the universalBK set [1].
Finally, note that the all-to-all connectivity of atom arrays plays
a crucial point in the case of quantum chemistry, where the
presence of nonlocal terms in Eq. 4 introduces further overhead
for architectures with only nearest-neighbor gates (80).

The fermionic quantum circuits can subsequently serve as pre-
compiled subroutines, thereby extending the polynomial savings
in circuit depth to the entire QS algorithm. For instance, the
real-time evolution under Hamiltonian Eq. 4 can be simulated
by a first-order Trotter expansion (81),

e−iHt
≈

∏
i,j

U (t)
i,j (h(1)

i,j �t, 0, 0)
∏
i,j,k,l

U (pt)
i,j,k,l (h

(2)
i,j,k,l�t, 0)

t/�t

,

[10]

where �t is the Trotter time and the local gates can be applied in
parallel across the system.

Another application is hybrid quantum-classical algorithms,
such as VQE, which are specifically designed for determining
the ground-state energy of molecules using near-term quantum
devices. In this context, utilizing U (pt)

i,j,k,l enables us to construct
variational states that exhibit two important characteristics. First,
they are hardware efficient (80) by directly utilizing the gates
naturally available in the fermionic quantum processor. Second,
these states possess what is known as “chemically inspired”
properties (71), meaning they have sufficient expressiveness to
efficiently approximate the relevant physical states within the
entire Hilbert space.

One example is the disentangled unitary coupled cluster
(dUCC) ansatz (82), | (E�)〉 = U (E�) | HF〉, constructed using
the variational circuit

U (E�) =
∏
i,�
U (t)
i,� (�(1)

i,� ,
�
2
, 0)

∏
i,j,�,�

U (pt)
i,j,�,�(�

(2)
i,j,�,� ,

�
2

), [11]

where the products run over occupied (i, j) and virtual (�, �)
modes with respect to an initial Hartree–Fock product state
| HF〉. The energy functional E

(
E�
)

= 〈 
(
E�
)
|H | E 

(
E�
)
〉,

which is then classically minimized, can be also efficiently con-
structed in our fermionic processor, by first applying randomized
tunneling gates followed by measurements in the occupation
basis (83, 84).

We illustrate our approach for the LiH molecule. We consider
in particular the molecule at a fixed interatomic distance of
1.45 Å in the Born–Oppenheimer approximation, with two
electrons and four active orbitals. The Hamiltonian parameters
h(1)
i,j and h(2)

i,j,k,l for this configuration are obtained using Open-
Fermion (85). The circuit that prepares, in this case, the dUCC
ansatz is depicted in Fig. 4A, where the gates U (t)

i,� (�(1)
i,� ,

�
2 , 0)

and subroutines U (pt)
i,j,�,�(�

(2)
i,j,�,� ,

�
2 ) that appear in the circuit

correspond to the nonzero terms in the Hamiltonian.
We calculate the energy difference �E ≡ Eexp(E�∗) − E0,

where E�∗ are the optimal variational parameters that minimize
E
(
E�
)

, Eexp is obtained by evaluating the latter in the presence
of experimental errors, and E0 is the exact ground-state energy.
Fig. 4B shows the average �E for random fluctuations in
the trapping frequency and tweezer positions (Materials and
Methods), providing an estimate of the required precision to reach
chemical accuracy. Note that �E can be reduced by lowering the
tweezer depth as well as by increasing the pulse intensity to
reduce the implementation time, and the full protocol includ-
ing tweezer transport can be further improved using optimal
control (86, 87).

In the last years, more advanced versions of VQE have been
developed to address larger molecules using fewer resources.
One example is adapt-VQE (88–90), where the variational
circuits are iteratively constructed by progressively adding new
layers built from an operator pool. The latter are chosen to
maximize the reduction in energy at every iteration, and the
procedure stops once a certain precision is achieved. One can
again choose a chemically inspired operator pool, composed of
the subroutines Eqs. 5 and 6, where each of them requires again
additional overhead in a qubit-based quantum computer (88).

A B

Fig. 4. Variational circuit for VQE. (A) A variational circuit used to prepare
the ground-state of the LiH molecule. (B) Average energy difference �E in the
presence of fluctuations in the trapping frequency and tweezer positions,
characterized by standard deviations Δ!r and Δr , respectively. V0, !r , and
rzp denote the depth, radial frequency, and zero-point fluctuations of the
harmonic trap, and � is the transfer pulse time (Methods). The horizontal line
signals chemical accuracy, �E∗ ≈ 1.59 mHa.
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Alternatively, the number of entangling gates can be reduced
by considering instead a hardware-efficient operator pool, e.g.,
by dropping the Pauli strings in the JW transformation as in
qubit-adapt-VQE (89), which however further complicates the
classical optimization part of the algorithm. Again, our fermionic
quantum processor combines the best of these two approaches,
as it allows us to construct each element in the operator pool with
a constant-depth circuit while minimizing the complexity of the
classical optimization.

Fermion-Qubit Architecture

We now consider spinfull fermionic atoms, combining the
fermionic register and fermion gates introduced above with
a more standard qubit-based architecture. This allows us to
encode both qubit ancillas and fermionic modes locally, leading
to efficient implementations of more advanced QS algorithms
such as quantum phase estimation (QPE) (91), as well as to
simulate boson-fermion models such as LGTs in a hardware-
efficient manner.

To be specific, we illustrate the architecture using again Sr as
an example. Qubit ancillas can be readily included by considering
two hyperfine levels of 1S0 (Fig. 2C ), where one level, denoted
|1̃〉, is decoupled from the 3P0 clock manifold by a magnetic
field. Gates in G applied to an atom in the internal state |1̃〉
act therefore as the identity, similarly to the empty state |0〉.
Defining �z = |1̃〉〈1̃| − |1〉〈1| and �x = |1〉〈1̃| + |1̃〉〈1|, we
can implement corresponding rotations R̃ between the states |1̃〉
and |1〉 through microwave frequencies (Fig. 2C ). This enlarges
the gate set to G̃, including both G and R̃. In the fermion-qubit
register, the same type of atoms can either encode a qubit ancilla
or a fermionic mode. In the case of QPE, the energy of H can
be estimated by applying a Trotter time evolution under the
terms in H controlled by an ancilla, with a precision that grows
with the number of ancillas (91). As an example, we show in
Fig. 5A a fermion-qubit circuit associated to a controlled density-
dependent hopping process CiU

(dt)
j,k,l (�1, �2) = |1̃〉 〈1̃|i ⊗ Ij,k,l +

|1〉 〈1|i ⊗ U
(dt)
j,k,l (�1, �2), and other controlled operations can be

decomposed similarly in terms of our fermionic gate set. We note
that this decomposition requires additional controlled phase gates
CiU

(int)
j,k (�) and CiU

(ph)
j (�) = |1̃〉 〈1̃|i ⊗ Ij + |1〉 〈1|i ⊗ e−i�nj ,

which can be directly implemented using the Rydberg blockade
mechanism (38).

Finally, the fermion-qubit architecture allows us to go beyond
purely fermionic models, and consider for instance LGTs,
where fermions are coupled to dynamical (bosonic) gauge fields.
Consider for simplicity a Z2 LGT described by the Hamiltonian

H = �E
∑
〈x,y〉

�x
〈x,y〉 + �B

∑
�

�z�

+ �J
∑
〈x,y〉

(
c†
x�

z
〈x,y〉cy + H.c.

)
+ �m

∑
x

(−1)sxnx ,
[12]

where fermion (spin) operators, representing matter (gauge)
degrees of freedom, act on the sites x (links 〈x, y〉) of a D-
dimensional lattice. The first row in Eq. 12 contains the pure-
gauge dynamics, including four-body plaquette operators �z�
acting with �z

〈x,y〉 on each link around a plaquette � (Fig. 5B,
while the second row includes gauge–matter interactions. The

A

B

Fig. 5. Fermion-qubit quantum circuits. (A) Decomposition of CiU
(dt)
j,k,l

(�1 , �2), a density-dependent fermionic hopping controlled by ancillary qubit
(i) into fermionic gates and the three-body fermion-qubit gate CiU

(int)
j,k . The

angles of the interaction and the controlled interaction gate are �. The angles
of the first and third tunneling gates are (�1 , �2 ,0), whole for the second
and fourth are (�1 ,−�2 ,0). (B) Trotter step required to time-evolve one
plaquette under the Z2 LGT Hamiltonian Eq. 12, where atoms 0 to 4 and
5 to 7 encode local matter and gauge fields, respectively. The unitary circuits
U(p), with p ∈ {m, E, J, B}, implement the exponential of each term in the
Hamiltonian, and the single-qubit rotations are given by R̃x(�) = e−i(�/2)�x

(green hexagons) acting on the {|1̃〉 , |1〉} subspace, while U(ph)
i (�) = e−i�ni

(orange box) is a local phase shift if a particle is present in tweezer i. We
further use standard notations for qubit operations, namely, H indicates a
Hadamard gate H = (− |1〉+ |1̃〉) 〈1| /

√
2 + (|1〉+ |1̃〉) 〈1̃| /

√
2, a dot denotes

a control on the state |1〉, and two connected dots correspond to a CZ gate.
The angles of the interaction gates are �, whereas the angles of the tunneling
gates are (�J�t,0,0).

Hamiltonian is invariant under local Z2 transformation, i.e.,
H = V†

xHVx ∀x, with Vx = (−1)nx
∏

y �
x
〈x,y〉.

Apart from serving as simplified models to study fermionic
confinement (92, 93), Z2 LGTs emerge in condensed-matter
systems (94), displaying strongly correlated phenomena such
as high-Tc superconductivity (95), topological order (93, 96–
98), and unconventional dynamics (99–101). For D > 1, the
model presents a sign problem away from half-filling and can not
be solved efficiently using classical methods. The corresponding
real-time dynamics can be efficiently simulated using quantum
devices (102–107) through, e.g., a first-order Trotter expansion.
In our fermion-qubit architecture, the gate set G̃ allows us to
construct Trotter steps with a constant circuit depth. This can
be seen by first decomposing the exponential of each term in
the Hamiltonian Eq. 12 following refs. 108–110, where the
corresponding circuit in terms of the fermionic and qubit gates
in G̃ is shown in Fig. 5B. Thanks to the local structure of Eq. 12,
the possibility to parallelize fermionic gates and in particular the
possibility to directly implement fermionic tunneling gates, such
decomposition leads to a circuit depth that is independent of the
system size, contrary to more standard qubit-based approaches.
For the latter, any JW encoding will convert an extensive number
of local fermionic terms to multiqubit operators acting each
of them on an extensive number of qubits. Implementing the
exponential of each of them would require therefore a number
of two-qubit gates that also grows linearly with the system size.
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The total circuit depth for a single Trotter step will be thus
polynomial in L, where the advantage of using instead fermionic
gates becomes clear.

Finally, we note that the above protocol can be generalized
to nonabelian gauge fields, required to address the full Standard
Model of particle physics, by further extending it to a fermion-
qudit architecture (110, 111).

Experimental Challenges and Considerations

We finish by discussing in more detail some of the experimental
challenges that should be overcome to build a fermionic quan-
tum processor, including the main error sources for the gates
discussed above, as well as different strategies to minimize them.
The experimental setup for our proposed fermionic quantum
processor is similar to existing reconfigurable tweezer platforms
with high-fidelity Rydberg gates (42, 76); however, the main new
challenge will be coherently controlling the motional degrees
of freedom. This introduces new pathways for decoherence,
primarily coming from leakage out of the fermionic register
(i.e., heating to motional excited states), and dephasing from
inhomogeneity between different tweezer sites.

Leakage, or heating, out of the motional ground state can arise
from state preparation errors, scattering by the tweezer, pulsing
the traps off for the Rydberg gate, and from moving the atoms; we
argue here that all of these effects can be greatly suppressed. First,
heating from tweezer scattering is negligible for sufficiently large
detunings. By utilizing tight radial and axial confinement, 3D
motional ground state preparation has been realized at levels of
≈ 95% (52, 57). However, by “spilling out” all motional excited
states, we can convert the motional ground state occupancy to
nearly 100% provided we can nondestructively check for atom
presence, which can be done directly using an ancilla atom and a
high-fidelity Rydberg gate to check for atom presence (112, 113).

Consider for example the 50-kHz trap depth for the lithium
tweezers, relevant for the MERGE gate, used in refs. 56 and
58, which would give a 0.03-Hz scattering rate and an even
smaller heating rate due to the Lamb-Dicke parameter. Pulsing
the trap off during the Rydberg gate could cause heating, but
the probability of transitioning to higher motional states will
be roughly (!t)2/4, where ! = 2� × 15 kHz is the trap
frequency (56, 58) and t ≈ 100 ns is the implementation time
required for 99.9% fidelity gates. This probability then evaluates
to <10−4 per gate and so does not contribute significantly
compared to a 99.9% gate fidelity. Finally, moving the atoms

can cause heating and, as a conservative estimate, we utilize the
heating rates calculated in ref. 42. If the atoms are placed relatively
close together, at a distance of several micrometers, then for the
move to be 99.9 to 99.99% fidelity, each move has to be≈500 μs.
This can be significantly speed-up using optimal control (114).

In general, we expect that trap inhomogeneities will be the
dominant source of dephasing for degrees of freedom coherently
encoded in motional states. With a Rydberg gate fidelity of
∼99.9%, we would like to perform ∼1,000 operations, where
in general, the tweezer geometry is reconfigured between each
round. The latter would allow us to implement, e.g., a few
Trotter steps required to simulate the real-time dynamics of local
Hamiltonians, such as the LGT described above, for 2D systems
with ∼100 atoms, an extremely challenging problem to tackle
with a classical computer. If it takes ∼500 μs to move atoms
between gates, that sets the total operation time of ∼ 500 ms.
For the example of lithium-6, a trap depth of 50 kHz and a
reasonable SD between tweezers of 0.2% leads to a coherence
time of T ∗2 ≈ 2 ms, which is only enough time for ≈4 moves.
Note that this is for shallow trap depths of lithium-6, a light atom
and that this effect will be even more exacerbated for heavier
atoms like strontium, where larger trap depths (laser intensities)
are required for the same trap frequencies.

Whenever there is static inhomogeneity in a system, such as
positional trap-depth dependence, the natural approach is to
perform a motional echo procedure (115). We can permute
around the various tweezer positions so that all atoms acquire the
same average phase due to the positional trap depth dependence.
First, consider two tweezers with unequal trap intensities and
thus unequal energies at the bottom of the trap. Due to the
different energies, the atoms at these sites experience dephasing.
However, this effect can be canceled out by repeatedly swapping
the tweezer positions along with each application of the tunneling
gate (seeMaterials andMethods for details). In Fig. 6, we illustrate
this idea by simulating the Floquet evolution of two example
Hamiltonians with nearest-neighbor hopping (Materials and
Methods). The results show that performing the echo procedure
allows us to extend the useful simulation time by two orders of
magnitude in one dimension and by one order of magnitude
in two dimensions. In practice, the inhomogeneities might not
be exactly static, in which case the echo needs to be applied
at a rate faster than that timescale. We also note that there
could potentially be other methods to design robust sequences
of tunneling gates. For example, circuits can be precompiled
in order to minimize the number of necessary swap operations
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Fig. 6. Robustness to trap inhomogeneity. (A) The achievable physical time in digital simulation is extended by two orders of magnitude when utilizing
the positional echo procedure in one dimension. There, it is especially effective as the relative phase noise becomes bounded (Materials and Methods). The
simulation was performed for a simple hopping Hamiltonian with periodic boundary conditions, a hundred sites, and a Gaussian phase disorder with ��=0.035
applied between tunneling events (see main text and Materials and Methods). (B) For a generic many-body system, the phase noise is no longer constant, but
the echo procedure still improves coherence of the system. For a 10×10 square lattice, under the same conditions as the one-dimensional case, the available
simulation time is extended by an order of magnitude.
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while taking into account the specific distribution of spatial
coherence.

In addition, trap inhomogeneities can be further reduced
by storing the atoms in state-dependent optical lattices in
combination with tweezers, which are used to move the atoms
to the desired position in order to apply the corresponding
gates (60–67). In this architecture, the MERGE gate can be
implemented using superlattices, by first placing the atoms in
double wells (116), while the SHUTTLE gate can be implemented
by using the lattice and tweezers as storage and transport
potentials, respectively.

Finally, for the SHUTTLE gate based on alkaline-earth atoms like
strontium as discussed above, additional error sources include
phase shifts and losses during step (3) of the protocol due to
elastic and inelastic collisions, respectively, between atoms in the
3P0 and 1S0 states. The formers are of the order of a few kHz
for 87Sr (117, 118) and should be removed by an appropriate
calibration or measured and compensated by additional phase
shift gates. Inelastic collisions are even smaller (119) than typical
Rabi frequencies and can therefore be safely neglected. Finally,
we note that the optical potentials for the storage and transport
tweezers need to match to properly transfer atoms between them,
and fluctuations in the tweezer location and laser intensity will
lead to imperfect transfer processes (Materials and Methods). The
effect of such fluctuations is taken into account in the variational
preparation of a simple molecule, illustrated in Fig. 3.

Conclusions and Outlook

We presented a fermionic quantum processor based on fermionic
atoms trapped in tweezer arrays and showed how to locally
encode and quantum simulates fermionic models in a hardware-
efficient manner. We illustrated the advantages of our approach
with respect to qubit-based devices for VQE and QPE in
quantum chemistry, as well as for the Trotter time evolution
of gauge theories. We note that the proposed hardware can
be used to run more advanced fermionic quantum algorithms,
further optimizing the required resources, with the goal of
reaching a practical quantum advantage in the near term. The
fermionic gate set can also be extended to include particle
nonconserving processes, using, e.g., atom reservoirs, allowing
for the implementation of error correction protocols.

Materials and Methods

Error Model for VQE. We exemplify the fermionic quantum simulation of
the LiH molecule using VQE, where we consider in particular the tunneling
gate implemented using the SHUTTLE protocol in strontium. We consider optical
tweezers generated by laser fields with the following intensity profile in the
radial r and longitudinal z directions,

I(r, z) = I0

(
w0
wz

)
e−2(r/wz)2

, [13]

with wz = w0

√
1 + (z/zR)2, where w0 and zR = �w2

0/� are the
waist and Rayleigh length of the tweezer, respectively, and � is the laser
(trapping) wavelength. For a properly chosen wavelength, the latter gives
rise to an AC Stark shift on a neutral atom, leading to an optical potential
V(r, z) = −Re(�)/(2�0c)I(r, z), where � is the atom polarizability for the
corresponding energy level, �0 is the permittivity of free space, and c is the
speed of light. The trapping potential V(r, z) can be approximated around
its minimum using a second-order Taylor expansion, leading to the following
harmonic potential,

V(r, z) = V0 +
1
2
m!2

r r
2 +

1
2
m!2

z z
2, [14]

where V0 ≡ V(0, 0), m is the mass of the atom, and the frequencies are given

by !r =
√

4V0/(mw
2
0) and !z =

√
2V0/(mz

2
R). For typical experimental

parameters, these frequencies are related by !r/!z ≈ 10. Here, we consider
random fluctuations both in the frequencies !r and !z and in the relative
position between tweezers, given by �r and �z, following all these parameters
independent Gaussian distributions.

These experimental fluctuations introduce errors in the fermionic quantum
gates since they lead to imperfect rotations between the storage (S) and transport
(P) tweezers. In particular, both the Rabi coupling and the detuning of a given
pulse are modified due to the imperfect overlap between the wavefunctions,
(�r, �z) = 0f(�r, �z) and Δ(�r, �z) = Δ0f(�r, �z), with

f(�r, �z) =

∫
drdz 2�r  ∗S (r, z) P(r + �r, z + �z), [15]

where we consider Gaussian wavefunctions for the ground state of the harmonic
potential Eq. 14,

 S/P(r, z) =
e−(r/2rzp)2

(2�rzp)1/4
e−(z/2zzp)2

(2�zzp)1/4
, [16]

with zero-point fluctuations given by rzp = 1/
√

2m!r and zzp = 1/
√

2m!z .
Moreover, fluctuations in the trap frequency lead to a nonzero difference between
the trap depths, �V0 = VS0 − VP0 , introducing an extra unwanted detuning,
Δ̃ = Δ + �V0, giving rise to an extra angle �V0� for Z rotations, where � is
the pulse time.

Motional Echo Scheme. The positional trap-depth dependence leading to a
static dephasing can be mitigated by an appropriate echo procedure. Due
to the positional nature of this noise, the natural approach is to ensure that
each fermionic register spends equal time at each tweezer site and, on average,
experiences the same disorder pattern. The key insight is that, once the evolution
is digital, the atom i does not need to always reside in the tweezer site i. That
is, we can permute the atoms around the various tweezer positions either by
moving them around or introducing swap operations, which effectively change
which atom resides in which tweezer; since this process is deterministic, it is easy
to keep track of the atom labels in the classical experimental software. Ideally,
the atoms need to be shuffled in an ergodic fashion, such that they spend equal
time at every tweezer site, ensuring the dephasing between two tweezers is
reduced on average.

More concretely, during the t-th time step, the i-th atom resides in the
�t(i)-th tweezer. Since the inhomogeneity is (to first-order) static, but varies
from tweezer to tweezer, this can be modeled via a time-dependent disorder
Hamiltonian Dt =

∑
x h�t(x)n̂x .

The effective dynamics is captured by alternating disorder evolution and
target evolution. Moving into an interaction picture with respect to the disorder,
and assuming each moving step takes time � , the hopping terms c†

i cj become
dressed as

(c†
i cj)(t) = e

−i�
∑

t′≤t(h�t′ (j)−h�t′ (i))c†
i cj, [17]

where the term in the exponent leads to dephasing of the simulation; thus, if
the atoms are not permuted between sites (�t(j) = j), the phase noise grows
linearly in time. The echo procedure now consists of introducing a permutation
scheme � such that the error accumulation is reduced. We note the special
nature of this echo procedure, which is intrinsically linked to spatial positions of
the traps and cannot be performed by applying global operations, in contrast to
the typical echo sequences present in spin systems.

There is a particularly simple and effective echo procedure for a 1D chain with
periodic boundary conditions (j= i+ 1). Here, the two sublattices of tweezers,
labeled with even and odd numbers, will sequentially translate by one site in
space after every tunneling gate resulting in�t(i) = (i− t) mod L, where L is
the length of the chain. This results in each atom spending the same amount of
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time at each position and, moreover, experiencing the same history of trap depths
as the neighboring site, up to boundary conditions, which further improves the
echo performance as the noise between the two sites becomes time-correlated
(between Floquet rounds), �t+1(i+ 1) = �t(i) and the relative accumulated
disorder is ∑

t′≤t

(h�t′ (i+1) − h�t′ (i)) = h�0(i+1) − h�t(i), [18]

which implies that the phase noise on the hopping term tij remains bounded
for all time.

A more general disorder cancelation strategy is to simultaneously swap
a pair of modes i and j whenever an interaction gate is applied between
them. This permutation scheme can be implemented with no additional gate
overhead by appropriately increasing the angle of thegate. Further, thisapproach
leverages the efficient all-to-all connectivity of tweezer arrays. Even though
the underlying interaction connectivity may be local, the spatial positions of
two adjacent modes i and j are potentially distant after multiple swaps have
occurred. This procedure also performs well for 1D interactions, due to a similar
time-correlation effect; if two sitesx1 andx2 interact at time step t, then�t(x1) =
�t+1(x2) and �t(x2) = �t+1(x1). The effectiveness of this strategy can be
seen in Fig. 6A, where it extends the available simulation time by two orders of
magnitude.

For systems with higher-dimensional connectivity, the echo procedure should
still improve the coherence of the system, as long as the permutation of sites
results in an ergodic shuffling of atom positions. Assuming that the noise
distribution is spatially random and independent, the average of accumulated
phase differences should decrease as a square root of the number of time steps,

1
t

∑
t′≤t

(h�t′ (j) − h�t′ (i)) ∼
1
√
t
, [19]

which results in the phase noise in Eq. 17 accumulating as
√
t. Without utilizing

the specific structure of a given problem (as was the case in one dimension), it is
unclear whether this scaling can be improved. Finding the optimal permutation
strategy in a general setting is an important direction for future research. In
Fig. 6B, we show the results of applying the echo procedure to a Hamiltonian
defined on a 10× 10 square lattice and observe an order-of-magnitude increase
in the coherence time.

The results shown in Fig. 6 were obtained by simulating 50 atoms in 100
tweezers, interacting in a 1D-ring (Fig. 6A) and 2D-square-lattice (Fig. 6B)

connectivity with periodic boundary conditions. The evolution under a nearest-
neighbor tunneling Hamiltonian with the hopping rate J = 1 and the time
step� = 0.13, was implemented using free-fermion methods. The Hamiltonian
evolution is split into parallel Floquet rounds and static, positional phase disorder
following a Gaussian distribution with �� = 0.035 is applied between each
round.

Data, Materials, and Software Availability. All study data are included in
the main text.
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