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Thesis directed by Prof. Jun Ye

Traditional optical atomic clocks are limited in their performance by laser frequency noise

and the intrinsic quantum noise of uncorrelated atoms. In this thesis, we advance the field of

optical clocks on both of these fronts. By developing the next generation of ultrastable laser tech-

nology, we enable clock comparisons that have approached the quantum projection noise limit. To

go beyond this limit, we build and operate an optical clock with the capability of spin-squeezing.

Employing conditional spin squeezing via quantum nondemolition measurements based on cavity

QED, we produce a spin squeezed state that yields a spectroscopic enhancement of 1.7 dB be-

yond the standard quantum limit. We then run a clock comparison between two spin squeezed

clock ensembles, making use of a movable optical lattice to individually squeeze and readout the

ensembles with cavity QED. This differential comparison between the two squeezed clocks directly

verifies enhanced clock stability of 1.9 dB beyond the quantum projection noise limit, and reaches

a measurement precision level of 10−17. This constitutes the first direct demonstration of quantum

enhanced measurement in an operational optical atomic clock.
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Chapter 1

Introduction

One common thread in fundamental physics is the continual “zooming in” on the universe.

It also allows one to periodically “zoom out” and see the world as a whole. It is this simple pursuit

that has led us through developments of all branches of physics. The development and refinement

of the tools used for investigating the universe aids this journey in a critical way. We will highlight

a few aspects of this journey that leads to the current world of optical atomic clocks.

First, we need atoms. In 1909, Rutherford instructed his colleagues Hans Gegier and Ernest

Marsdeen to fire alpha particles (later known to be helium nuclei) at very thin sheet of metal foils

like gold and silver, and non-intuitively, look for diffuse reflections of the alpha particles at angles

greater than 90% [1]. To their astonishment, sitting in the dark and counting scintillations by eye,

they found that these alpha particles were indeed being scattered at large angles. Rutherford sat

down for a few years to think about the ramifications of this experiment, and eventually developed

the picture of the modern atom [2]. This new model of the atom had a central nucleus with net

positive charge1 , and electrons orbiting outside that nucleus. We then have Niels Bohr to thank

for explaining that these electrons occupied quantized orbits around the atom [3]. It will be the

transition of atoms between these quantized energy levels that we will take advantage of in building

an atomic clock.

The question is - how can we probe these orbital levels inside the atom? I.I. Rabi showed the

way forward by establishing the magnetic resonance method [4]. This involves tuning an oscillating

1 Neutrons were not known to exist at this time, but Rutherford was careful to simply state that the nucleus must
have a net positive charge.
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magnetic field until it hits the same frequency as the Larmor precession frequency of the electron

inside the atom. When the oscillating field is on resonance, the radiation induces the nuclear

spins to transition to another spin state. One could use this technique to peer into the spectrum

of different atoms and molecules, and measure the energy spectrum with a new level of precision.

Surely this method would lead to some fundamental discoveries about the nature of the atom. Willis

Lamb and Robert Retherford continued to zoom in when they employed microwave spectroscopy

and found a shift between the 2S1/2 and 2P1/2 levels in the hydrogen atom [5]. This discovery

spurred the exploration and further understanding of quantum electrodynamics (QED). Then, in

1950, Norman Ramsey introduced a new method - later named Ramsey spectroscopy - where one

uses two phase-coherent pulses seperated in time (or space) to probe the atomic resonance [6]. It

was clear that continued work in spectroscopy would yield further paths to explore physics.

I.I. Rabi first suggested using the methods of magnetic resonance techniques to build an

atomic clock in a 1945 lecture [7]. The idea is that one uses two energy levels of a particular

atom as a frequency reference. The microwave radiation would be used as the pendulum, and

one can count the waves of this radiation to provide the ticks of the clock. Sources of microwave

generation on their own are imperfect, possessing drift and random frequency deviations. However,

by performing spectroscopy on the atoms, we can actively tune the microwave radiation to be on

resonance, thus fully stabilizing the light and giving us an atomic clock. The early development

of atomic clocks moved very rapidly. The first atomic clock was an ammonia maser, with the

contruction led by Harold Lyons [8]. Further improvement in maser technology came in 1958 with

the development of the hydrogen maser in Ramsey’s group (led by Dan Kleppner) [9]. Around

the same time, scientists at the National Physical Laboratory developed the first cesium beam

clock [10]. At what seems like a shockingly fast pace to us now, in 1967 the cesium hyperfine

transition frequency was chosen to redefine the second in the International System of Units (SI).

While the early development of microwave atomic clocks was revolutionary - we should con-

tinue to seek more refined tools to investigate nature. It soon became clear that these were waiting

for us in the optical domain. The invention of the laser and related optical technologies was another
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explosion of ingenuity and fast progress [11]. Venturing into the world of visible wavelength lasers

with femto-second timing resolution allows us to sub-divide the second into ≈ 106 more cycles of

radiation per second as compared to microwave clocks. This leads to an intrinsic improvement

- missing one cycle of the radiation corresponds to a greatly reduced timing error. Shortly after

their first realization in the lab, optical clocks began to surpass their microwave counterparts in

all aspects of their performance [12, 13]. Progress since then has been steady, with reported ac-

curacies of ∆ν/nu = 10−18 [14, 15, 16]. State-of-the-art comparisons between independent clocks

are now reaching the 10−17 level at an averaging time of 1 second [17, 18]. Further, by comparing

sub-ensembles within a single chamber one can leverage the incredible precision and measure the

gravitational redshift over a distance of just 1 mm [19].

1.1 Characterizing clocks

It is important to establish metrics for clocks, to evaluate the performance of a given clock

by asking the question - how well can a given clock tell time? Viewing this question from another

perspective - how sensitive is a given clock to new physics and perturbations? The more sensitive

it is - the more we can learn.

There are two broad metrics for atomic clocks - accuracy and stability. Accuracy refers to

the fact that the atomic energy levels chosen for the clock transition are not completely immune

to systematic effects from the environment. For example, the largest systematic shift in a room-

temperature strontium atom clock is the dc Stark shift arising from black body radiation of the

surrounding environment. The fact that the thermal environment radiates microwave photons

means there is a finite electric field due to that radiation. Due to differential polarizability of the

ground and excited state, that electric field leads to a shift in the apparent clock frequency. In

other words, if you make a clock in the lab and someone across the world makes a similar clock,

but puts the atom in a very cold environment, the two clocks will disagree. It is the job of the

clock scientist to carefully calibrate and understand the systematic shift. If we both write down

what we believe to be the shift, and our uncertainty in that shift, we can then compare clocks to
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see if we still agree.

My thesis will focus more on aspects of stability, which is effectively a statement of how

noisy a clock (or laser) is. Put in other words, stability refers to how long it takes to reach a

given statistical uncertainty of the clock frequency. A clock that has more shot-to-shot noise will

have a worse stability - it will take longer to reach a given statistical uncertainty. We wish to

be quantitative about stability. Natural experience in measurement science is that when you take

datapoints close together in time, they end up more clustered together with some shot-to-shot

noise. This shot-to-shot noise could have several sources, such as technical electronic noise, or more

fundamental noise. But if we go home for the night, and come back the next day, we might find that

the relative frequency had changed. There can easily be environmental conditions that influence

noise on longer time scales. We desire a statistical quantity that can capture this behavior - and

by far the best for clocks is the Allan deviation,

σy(τ) =

√〈
(ȳi+1 − ȳi)2

2

〉
(1.1)

where y = ν/ν0 is the fractional frequency, and the bar indicates that we have averaged over a

time interval τ . This statistical operator allows us to separate and understand the influence of

noise on different time scales. White frequency noise in the Fourier domain will result in an Allan

deviation with a slope of 1/
√
τ , whereas flicker frequency noise (1/f) will yield a plataeu in the

Allan deviation, indicating that more data is not giving a more precise measurement. We will use

the metric of the Allan deviation when looking at the stability of ultrastable lasers as well as the

optical clock. In fact, the fundamental noise floor of optical reference cavities comes in the form

of a “flicker floor” in the Allan deviation. For clocks, the limit is usually arising from quantum

projection noise or aliased frequency noise, which we discuss in the following section.

1.2 Limits to clock performance

Now that we are acquainted with how we characterize clock performance, we ask what are

the limits to the performance? The finite signal to noise ratio of a given clock measurement will
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ultimately set the limitations to the clock performance. There are two general sources of noise in

the clock - one coming from the interrogating clock laser and the other coming from the atoms

themselves.

The fundamental noise that arises from the atoms of the clock is quantum projection noise

(QPN) [20]. This noise is associated with the projective measurement of a system placed into a

superposition of two states |↓〉 and |↑〉. The standard deviation (denoted in this thesis by ∆) of the

atom number in |↓〉 and |↑〉 respectively is ∆N↓ = ∆N↑ =
√
N/2. The fluctuations in the two clock

states are perfectly anti-correlated, so the standard deviation of the difference is ∆(N↓−N↑) =
√
N .

These population fluctuations are converted to fluctuations of the clock frequency by the slope of

the Ramsey fringe. The highest performing microwave clocks - the fountain clock - operate at the

limit of QPN [21]. Today, state of the part optical clocks approach the QPN limit [17, 18].

A primary roadblock to observing a clock operating at the noise limit given by QPN is laser

noise. Due to finite deadtime in the clock, we do not track the laser phase at all times. This means

that the stroboscopic probing of the atoms leads to aliased high frequency noise, known in the clock

community as the Dick effect [22, 23]. The particular pulse sequence (Rabi or Ramsey) and the

dead time of the clock dictates the magnitude of the laser noise impact on the clock [24].

1.3 Overcoming the limits

Viewed from a practical perspective, both the classical and quantum limitations to the noise

performance are critical to understand, optimize and improve and subsquently improve. For the

classical laser noise - we take a two-pronged approach. First, we push the boundary of stable

lasers down to the 10 mHz laser linewidth by developing state-of-the-art lasers based on cryogenic

silicon cavities [25, 26, 27]. This laser stabilization pushed our clock performance up against the

QPN limit [17]. With the motivation of removing laser noise from clock comparisons, the Ye group

developed the “self-synchronous” measurement technique, by comparing two parts of the same

ensemble [28]. This was the technique employed in the measurement of the gravitational redshift

with a single atomic cloud [19].
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The other fundamental limit - the quantum projection noise - can be a tricky noise source to

improve upon. Of course, one way forward is to make the QPN small by operating at large atom

numbers. However, there will always be some technical limit to atom number, so it is interesting

to wonder if we can obtain clock performance beyond. This can be done by introducing spin-

squeezing. We can prepare states with reduced noise along a particular direction of the Bloch

vector, at the expense of increased noise along the orthogonal axis (anti-squeezed quadrature).

Since Ramsey spectroscopy is primarily sensitive to one quadrature of the spin state, we can align

this spin-squeezed state along the phase-sensitive axis. There are a multitude of ways to generate

such non-classical spin states [29]. One involves performing quantum non-demolition measurements

of the joint atom-cavity system [30, 31, 32, 33, 34]. With correlated quantum noise between the

measurements, taking the difference allows one to go beyond the QPN limit. This will be the

method we use when generating entanglement and using that in direct optical clock comparisons.

There has been much work on integrating spin squeezing in optical clocks [35, 36]. However, until

this work, there has not been an observation of an optical clock comparison operating below the

QPN limit. By combining the best clock laser technology with clock comparisons with cavity QED

squeezing and readout of sub-ensembles, we achieve this long-standing goal.

1.4 Outline of this thesis

This thesis discusses efforts to push the frontier of optical clocks on both the local oscillator

and atomic reference side.

Chapter 2 describes the details of the Si4 system, the first cavity to reach the thermal noise

floor below an operating temperature of 124 K, achieving this at both 4 K and 16 K. We present

a thorough noise budget of this system and stability measurements. Using the measured thermal

noise floor, we infer the loss angle of the high reflectivity dielectric coatings, providing valuable

information for both reference cavity and gravitational wave detector research.

In Chapter 3, we describe experiments involving classical atomic clocks that push the frontier

of precision measurement science. These include demonstrating clock comparisons approaching the
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QPN limit, placing limits on dilaton dark matter, and optical frequency ratio measurements at the

10−18 level for the first time.

In Chapter 4, we discuss various aspects of a spin-squeezed clock, including design choices,

probing atom-cavity system, and the influence of atomic motion on considerations of this probing.

In Chapter 5 we describe the construction of “Sr3”, the spin-squeezed clock apparatus.

Chapter 6 focuses on the first result coming out of Sr3, where we generate entanglement

directly on the Sr clock transition. We measure a Wineland parameter of -1.8 dB.

In Chapter 7, we apply spin-squeezing to a direct optical clock comparison. We directly

observe an enhancement in the clock performance of 2.0 dB beyond the QPN limit. This constitutes

the first direct observation of a spin-squeezed neutral atom optical clock operating below QPN.



Chapter 2

Ultrastable lasers based on optical cavities

2.1 Motivation and outline

Ultrastable lasers are at the core of most of the world’s best precision measurements, including

optical atomic clocks [37], tests of relativity [38, 39], and gravitational wave detectors [40]. Improved

optical coherence will open the door for more precise optical clocks [41, 42]. These lasers will further

studies in fundamental physics in several aspects, including the search for dark matter [43], atom-

based gravitational wave detectors [44] and many-body physics [45]. Furthermore, optical clocks will

play a defining role in the next generation of optical timescales [46, 47, 48]. In our lab, over the past

few years we have demonstrated numerous specific applications of ultrastable lasers. For example,

one involved comparing the silicon optical cavity against the Sr clock transition, setting a bound

on various coupling of dark matter to the Standard Model [49]. This experiment leveraged the

fact that this cavity-atom comparison is linearly sensitive to the fine-structure constant. A second

example was the first realization of an all-optical timescale [50]. In that work, the flywheel for the

timescale was the optical local oscillator instead of a microwave source. This all optical timescale

out-performed timekeeping that relies on microwave technology, showing the clear advantage of

optical clock technology.

All of these applications greatly benefit from improved short, mid, and long-term laser fre-

quency stability. Looking forward to our spin-squeezed optical clock discussed in the later half of

this thesis, we show that possessing a low noise optical oscillator is a crucial ingredient to pushing

the quantum frontier of clocks. Without a pristine optical oscillator, it would become difficult or
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impossible to debug various sources of noise, and achieve optical coherence at state-of-the-art levels.

We are thus motivated to explore the fundamental limits of ultrastable lasers, as progress

in their stability directly advances the performance of optical atomic clock technology. Other

approaches for generating ultrastable laser light are being pursued with promising results [51, 52]

However, to this date, stabilization to optical reference cavities results in the lowest noise laser

light. In particular, the highest performing systems are based on cryogenic silicon cavities, taking

advantage of the reduced thermal noise floor at lower temperature, as we discuss in Section 2.2.1.

We begin with a short introduction to ultrastable lasers based on optical cavities, and the

fundamental limit of thermal noise of these systems. We then describe in more detail a optical

cavity referred to as ”Si4”, which was a 6 cm cavity operating near 4 K cooled by a closed-cycle

cryocooler 1 . The noise budget, stability measurements, drift characterization, and inferring loss

angle will all be discussed. At the end we will also describe some of the details of the Si3 cavity,

which has been the work-horse optical cavity for Sr3 and all of the other Sr experiments at JILA,

including Sr1, Sr2 in Jun’s lab, and the Sr experiments in labs of Adam Kaufman and James

Thompson.

2.2 Lasers stabilized to optical cavities

All lasers start as free running, with their frequency dictated by the lasing conditions inside

the laser cavity. These free running lasers will have both short-term and long-term fluctuations, due

to a myriad of environmental perturbations through temperature, pressure, pump characteristics,

etc. Following the footsteps of our wiser predecessors, we know that one can make the frequency

of a laser more stable by locking to an optical cavity. From the outside a cavity looks like a simple

object - two mirrors facing one another, both fixed to a common cavity spacer. If the light enters the

cavity exactly on resonance, it will experience a phase shift of modulo 2π, and thus exits the cavity

with no relative phase shift. The basic idea of using the optical cavity as a frequency discriminator

1 We use the past tense because since this work, Si4 has been upgraded to Si6 lead by Dhruv Kedar. This new
Si6 system implements crystalline optical coatings, with the motivation of further reducing the fundamental thermal
noise floor from the coatings.
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is that when the laser is detuned slightly from the cavity resonance, it will pick up a phase shift.

We can imagine that the magnitude of this phase shift for a given frequency detuning will depend

on the quality factor of the cavity resonance . Cavities with a longer length or a higher finesse

have narrower cavity resonance linewidths. After undergoing many bounces in the cavity, some

of the light will leak out of the input mirror - available to detect and measure. The leakage light

coming out of the cavity can be described in I − Q space, which is just fancy language for saying

the leakage light has a real (I) and imaginary (Q) component. For example, if we can probe an

optical cavity and sense the corresponding Q-quadrature, or the dispersive response, then we can

use this as a feedback signal to the laser, to keep it on resonance.

This is the underlying idea of the Pound-Drever-Hall technique [53]. In the PDH scheme, one

applies sidebands to the laser well outside the linewidth of the optical resonator. When the laser

is incident on the cavity, the sidebands will simply bounce off of the front mirror, and they simple

reflect the present phase of the laser. Meanwhile, the carrier enters the cavity, and will “buildup”

in the cavity due to the high finesse resulting in many bounces per photon. This light experiences

some phase shift due to detuning between the laser and the cavity, and will then leak back out of

the cavity carrying that information with it. At low Fourier frequency below the cavity pole of the

cavity, the PDH error signal is a frequency discriminator. At Fourier frequencies above the cavity

pole, the frequency detuning is integrated and becomes phase information. Sophisticated servo

loops will take this cavity pole in the transfer function into account, although we have found this

is not always necessary. With sufficient bandwidth, we can lock the laser to the cavity resonance

down to the mHz level.

2.2.1 Fundamental limit - thermal noise

State-of-the-art optical cavities are limited in their length stability by coupling to the thermal

environment. The presence of mechanical loss in the cavity constituents (spacer, substrates, and

mirror coatings) leads to mechanical displacements which directly impact the frequency stability

of the laser locked to the cavity [55]. A great overview of the different sources of thermal noise for
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rigid cavities can be found in both Chapter 3 of Michael J. Martin’s thesis and the book chapter

within the thermal noise book referenced here [24, 56]. We will briefly overview a few sources of

thermal noise.

When Einstein first considered Brownian motion, he thought about the random motion of

particles suspended in a liquid. Einstein’s work is considered to be an antecedent to the fluctuation-

dissipation theorem. The fluctuation-dissipation theorem states that the thermally-driven fluctua-

tions of a mechanical system can be directly tied to sources of friction or damping. The components

of the optical cavity are bulk mechanical objects, and we can think of the system as responding

according to a modified Hooke’s law [57],

F (f) = − (1 + iφ) kX(f) (2.1)

where F (f) is an applied force in the Fourier domain, k is the spring-constant, X(f) is the dis-

placement in Fourier domain, and φ is the loss angle. We refer to φ as the loss angle, because the

fractional energy loss per cycle is 2πφ.

The task of calculating the Brownian motion for a macroscopic optical interferometer was

made much easier in 1997 when Yuri Levin published a direct approach [58]. Before Levin, the

method for calculating the thermal noise involved a computationally expensive normal-mode anal-

ysis. The conceptual idea of Levin’s approach is to apply an oscillating pressure (or force) to

the observed surface, and the displacement of the surface responds according to the fluctuation-

dissipation theorem. One very important takeaway from Levin’s approach is the role of a lossy

mirror coating. Levin’s analysis results in a thermal noise contribution due to localized dissipa-

tion on the surface (from the mirror coating) that scales as 1/r20, where r0 is the beam radius

on the mirror. This means that that the loss angle of the coating can be critical for small beam

sizes (like in our optical cavities). Since the previously used normal-mode analysis assumes ho-

mogenous mechanical dissipation and thus ignored the possibility of localized dissipation from the

coating, Levin’s approach was pivotal for the development and understanding of precision optical

interferometers.
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Besides Brownian motion of all of the cavity constituents, there are several other types of

thermal noise. One that is important for ULE glass cavities that employ fused silica substrates

is substrate thermo-elastic noise. Thermo-elastic thermal noise refers to the fact that there are

fundamental temperature fluctuations, and through the finite coefficient of thermal expansion, will

lead to fundamental length fluctuations. A similar source of thermal noise is coating thermo-optic

noise, where the length fluctuations arise through the refractive index of the coating. These sources

of noise have much longer correlation length, making it fundamentally different from Brownian

thermal noise.

Calculated thermal noise contributions for three different cavity systems in our lab are shown

in Fig. 2.1. We note that for the cryogenic silicon systems, by far the dominate source is coating

Brownian noise. Due to the small mechanical loss of crystalline silicon, both the substrate and

cavity spacer Brownian terms are negligible. For the room temperature ULE cavity with fused

silica substrates, you can see the significance of the other sources of thermal noise.

2.3 Technical noise budget of Si4

To build a cavity-stabilized laser that is limited by the thermal noise, one has to characterize

and control all of technical sources of noise. In this section, we outline various sources of technical

noise for the Si4 cavity system.

2.3.1 Temperature

Temperature fluctuations couple to the cavity length via the coefficient of thermal expansion

(CTE). The expansion of the cavity and the corresponding change in fractional frequency can be

simply expressed in a Taylor expansion

∆L

L
=

∆ν

ν
= α(T0)∆T +

1

2
α′(T0)∆T 2 +O(∆T 3), (2.2)

where ∆T is the temperature difference with respect to T0, α(T0) is the coefficient of thermal

expansion evaluated at T0, and α′(T0) is the slope. This equation is what motivates some of the
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more technical design decisions when considering what material to use and what temperature to

operate at. For silicon, there are two zero-crossing of α(T ), one near 123 K and another near 16 K.

As the temperature approaches zero, the CTE tends to zero, and so another strategy is to operate

at the lowest temperature possible. However, cooling down to such low temperature can introduce

detrimental vibrations induced by the cryogenics system used. This explains the natural decision

to explore the 124K operating point first, where an open-cycle cryogenics system using boiled liquid

nitrogen for cooling. Wei Zhang, the post-doc who was leading the initial Si4 effort, always said

that he would feel the cryocooler moving with his fingers and remark “that’s no good home for a

cavity”.

The Si4 system mainly operated near 4 K, and for a short time, near 16 K. The system is

cooled by a commercial cryostat system from Montana Instruments. At the time, this system was

custom built, designed in collaboration between Montana Instruments and the stable lasers team,

which at the time was Wei and Jun. The cavity operates at 4 K using a two-stage Gifford-McMahon

closed-cycle cryocooler [59, 60]. The temperature fluctuations of the cryocooler are typically 20 mK

at an averaging time of 6 s. Given a CTE of ≈ 2 × 10−11/K at 4 K, the corresponding frequency

instability is on the 10−13 level, which is several orders of magnitude above the thermal noise

floor. To suppress temperature fluctuations from the cryocooler, we use a custom, multi-stage

thermal damping system [26]. The shields are designed to maximize their heat capacity, while the

connections between the shields have a low thermal conductance.

The first shield is coupled to the 30 K stage of the cryocooler, and initially had no active

temperature control or monitoring. The cooling power for the next shield, called the active shield,

comes from the second stage of the cryocooler (2.2 K) through a mechanically flexible connection

called the cold finger. Between the cold finger and the bottom of the active shield, a cylindrical plate

made of holmium copper (HoCu2), which has a specific heat 2500 times larger than copper at 4 K,

is inserted to passively suppress temperature fluctuations from the cold finger. The temperature of

the active shield is controlled using a resistive heater. For additional thermal damping, we insert

a passive shield between the active shield and the cavity, which is mounted on a cylindrical ring
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made of G10 fiber glass (not shown). The low thermal conductivity of G10 and the ring’s small

cross-sectional area (96 mm2) minimize the thermal conductance between the two shields. The

bottom of the passive shield is constructed out of HoCu2. A cup-shaped structure made of G10

is attached to the base of the passive shield, upon which the cavity is supported. The support

structure has three nested layers to increase its effective thermal path, and has three 1 mm-long

G10 rods on top to support the cavity. The contact area of each rod is 0.75 mm2 to minimize the

thermal conductivity.

In order to evaluate the impact of temperature fluctuations on the cavity we directly measured

the thermal response transfer function (Figure 2.2). We apply a step of the active shield temperature

of 0.5 K, and observe the low-passed response of the passive shield by plotting the temperature

(dashed red). The optical cavity response is measured by a heterodyne beatnote against the MJM

cavity (blue). The thermal model is equivalent to an electrical second-order resistor-capacitor low-

pass filter. The time constant is ≈ 1400 s between the active and passive shields, and is ≈ 600 s

between the passive shield and the cavity.

This was the state of the Si4 cryogenic system as of the end of 2017, after our first result.

In order to push this system to the fundamental thermal noise limit, we sought to improve various

aspects of the system. One important improvement was made regarding the first radiation shield.

Initially, the first radiation shield was a relatively thin aluminum radiation shield coupled to the

30 K stage of the cryocooler. On top of this, it was not actively controlled, only the 30 K stage

of the cryocooler was controlled, which is far from the shield itself. We discovered a significant

coupling between the temperature of this supposed 30 K shield and the frequency of the cavity.

After discovering this coupling between the 30K stage and the cavity, we wanted to redesign and

upgrade the radiation shield to a copper radiation shield with more thermal mass. Further, initially

we had no thermal sensors on the Al radiation shield. After opening up the chamber to begin our

upgrades, we attached a thermal sensor to this Al radiation shield and cooled back down (without

the cavity), and to our surprise we found that the shield was closer to 80-90K, with a massive 10

K gradient along the vertical extent of the shield; this made us happy that we already planned to
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Figure 2.2: Time domain step response of the Si4 thermal damping system. A step function
is applied to the active plate/shield, and we measure the response on the passive shield, and the
corresponding frequency change of the cavity measured via a heterodyne beatnote against the MJM
cavity.
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replace this shield! In hindsight - aluminum is not a good choice for the low temperature cryogenic

shields as compared to copper given the thermal conductivity, and the thin 1 mm thick walls both

gave a small thermal mass, and a small cross-section for propgation of heat to the top of the shield.

After replacing this Al shield for the Cu shield - we were able to cool that shield down to 40K with

relative ease, and achieved a sub 1K gradient along the entire extent of the shield.

2.3.2 Vibration noise

Vibrations are a significant source of short-term instability for the Si4 system because of the

closed-cycle cryostat. We minimize vibrations coming from the cryocooler by carefully designing

the mechanical layout of the system [26]. The mechanical design (Fig. 2.3a) isolates the cavity

from the vibrations of the cryocooler. The cryocooler sits on a main plate that is firmly fixed to a

monolithic aluminum pillar that is bolted to the concrete foundation of the laboratory. There are

three mandatory mechanical links between the cryocooler and the chamber: a cold finger to cool

the active shield, a thermal link connecting the first stage of the cryocooler to the 30 K shield,

and a vacuum bellows to isolate them from the environment. All other mechanical connections

are eliminated by placing the vacuum chamber on a split plate, which is mechanically separated

from the main plate (see the top view in Fig. 2.3a). The gap between the main plate and the split

plate is 1.5 mm, and is exaggerated in the figure. The split plate is supported by three rods that

are bolted onto an active vibration isolation (AVI) table. The AVI rests on an optical table. The

optical table is supported by four aluminum blocks, roughly 1 foot tall, giving the setup an overall

low profile for minimizing tilting motion.

Our initial characterization of the vibration sensitivty of the Si4 system was obtained by

using ambient vibrations as the drive. We simultaneously measured the vibration noise and a

heterodyne beat between the silicon cavity and a stable laser at 698 nm based on a 40 cm-long

ultra-low expansion glass (ULE) cavity (called the MJM cavity throughout this thesis) using a Yb

frequency comb. We found that the beat frequency against the MJM cavity was highly correlated

with the vibrations measured by an accelerometer placed on the AVI table at Fourier frequencies



18

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

er
en

ce

101 102

Frequency (Hz)

10−11

10−10

10−9

V
ib

ra
ti

on
se

n
si

ti
v
it

y
(g
−1

)

H1

H2

Z

(a)
(b)

(c)

Figure 2.3: (a) The mechanical layout of the Si4 system. The top view shows how the split plate
is mechanically isolated from the main plate, and the only real physical connection is a flexible
thermal connection. (b) Measured coherence between the accelerometer on the AVI and the beat
note of Si4 against a reference laser. (c) Vertical vibration sensitivity in fractional frequency units
per g of acceleration, versus the azimuthal angle between the silicon crystal axis and the three-axis
supports.

−40 −30 −20 −10 0 10 20 30 40

Angle (degrees)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

V
er

ti
ca

l
se

n
si

ti
v
it

y
(1

0
−1

0
g−

1
)

100 101 102

Frequency (Hz)

10−33

10−32

10−31

10−30

10−29

F
ra

ct
io

n
al

fr
eq

u
en

cy
n

oi
se

(1
/H

z)

(a) (b)

Figure 2.4: (a) Vertical vibration sensitivity of Si4 measured versus the relative azimuthal angle
between the tripod support and the crystal axis of the silicon crystal. (b) Improved high frequency
noise performance of Si4 by sensitivity improvement, and optimization of AVI position.



19

above 10 Hz. To quantify the correlation between vibrations measured on the AVI table and the

frequency noise of the beat note we introduce the coherence : Caiν(f) = |Saiν(f)|2/[Sνν(f)Saiai(f)].

Here, Saiν(f) is the cross-spectral density between frequency fluctuations of the beat signal and

acceleration noise in the ith direction (i = x, y, z), and Sνν(f) and Saiai(f) are the autospectral

densities for frequency noise and accelerations, respectively. Three accelerometers are mounted

to the AVI table, one for each direction labelled as H1, H2 and z. The coherence between each

accelerometer and the phase noise of the beatnote are shown in Figure 2.3b. A nonzero coherence

value at a given f indicates that the laser noise and vibrations are correlated at that spectral

frequency. This is an important prerequisite for measuring transfer functions from accelerations

to frequency noise, Hai(f) = Saiν(f)/Saiai(f), since phase estimates in the cross spectrum are

only trustworthy where significant frequency-domain correlation exists. From 10 Hz to 400 Hz, we

measure appreciable coherence between frequency noise and vibrations along all three directions.

Within this frequency range, we compute transfer functions from each accelerometer on the AVI

table to the beat frequency spectrum by averaging Hai(f) over an hour-long dataset. The measured

transfer functions along each direction are shown in Figure 2.3c. Si4 reached the level of 10−10 g−1

for 10 - 100 Hz, with some resonant features at higher frequencies. We have since made significant

improvement in lowering the vibration sensitivity by paying attention to the mechanical support

structure and mounting in the design of Si6 (an effort led by Dhruv Kedar).

After our initial result of [26], we sought to improve the short-term stability. Due to the

anisotropic nature of the silicon crystal [61], the vertical vibration sensitivity is sinudoidally modu-

lated, with a period of 120 degrees. When the cavity was initially installed, the vertical sensitivity

versus azimuthal mounting angle had not yet been experimentally checked, although Wei had placed

the cavity to the simulated zero-crossing of the sensitivity. We had reason to suspect how close we

really were to the zero-crossing, since the simulated zero-crossing can be modified by imperfections

in the mechanical model of the cavity and in the finite-element-modeling. Since we were planning to

open the vacuum chamber in order to make the upgrades to the thermal system as discussed in Ch.

2.3.1, we planned to measure this. We directly measured the vertical vibration sensitivity versus the
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relative angle between the mounting points and the crystal axis orientation of the silicon. We were

able to reduce the vertical vibration sensitivity to (5 ± 2) × 10−12/g at a driving frequency of 9.5

Hz. The horizontal vibration sensitivity in each direction was measured to be (2 ± 1) × 10−10/g.

A reduction of vibrations at the cavity was obtained by fine tuning the relative position of the

vacuum chamber and the cryostat. The combined improvements in sensitivity and noise provide

a tenfold reduction in the frequency noise power spectral density (PSD) for Fourier frequencies

of 10-50 Hz compared to previous work [26]. The horizontal sensitivity depends critically on the

transverse positions of the cavity mirrors with respect to the optical axis of the cavity, and thus a

more precise centering of the mirrors with respect to the symmetry axis of the cavity will provide

a reduced horizontal sensitivity.

One other aspect related to vibration sensitivity is the impact of earthquakes. During a

JILA/NIST clock comparison data point, suddenly all of the clocks came unlock at the same time.

By chance, I went to the NYtimes website and saw that an earthquake had just occured in Mexico

(February 16, 2018). We looked up the local seismometer station, and found that one can download

the ground velocity data, and this is plotted in Figure 2.5a. Looking at the beatnote between the

Si3 and Si4 cavity systems (Figure 2.5), we see clear correlation between the two signals. One can

see the arrival of the different components of the seismic waves produced by the earthquake. We

have a remarkably sensitive optical interferometer, that we have attempted to make as insensitive

to vibrations as possible. The fact that we can still see such a clear signal is indicative of the

relatively large ground motion coming from earthquakes, even far away. It also reminds you that

low frequency vibrations are not cancelled by our AVI table. This means that using a lower

frequency sensor of motion, like a tiltmeter, could give enhanced control over the low frequency

vibration environment.

2.3.3 Residual amplitude modulation

One of the most important technical noise sources for Si4 is residual amplitude modulation

(RAM). RAM is a systematic effect in frequency modulation based stabilization schemes, which
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arises when the two modulation sidebands are unequal in magnitude, not exactly 90◦ out of phase, or

a mixture of the two effects. From an operational point of view, RAM that is completely stationary

is not a real problem, but in reality, the RAM always has some time-dependent component. This

time-dependent RAM manifests itself as time-varying baseline of the PDH error signal. Since the

PDH servo loop can not distinguish this change in the error signal from real frequency deviations

between the laser and the cavity, this RAM will be written as frequency drift of the locked laser.

There can be various sources of RAM, including time-varying RF pickup, changes in the EOM

temperature, and optical etalons. The most nefarious sources of RAM is time-varying optical

interference, or etalons. If you have some sort of standing wave in your optical system, that

means the carrier and sideband can experience differential phase shifts or amplitude attenuations.

Then, as the lab temperature or pressure slowly varies, then this relative phase shift or amplitude

attenuation will appear as a slowly changing DC offset of the error signal. We point the interested

reader to [62] for an in-depth analysis of the role of etalons in different sections of the optics layout.

We employ active control of the RAM, following the strategy described in [63], with a few

minor differences. In our case, the RAM is detected by picking off the beam with a 90/10 non-

polarizing beamsplitter before the PDH PBS. We demodulate the RAM, with the phase set such

that we are detecting the I quadrature. The relative phase for the I quadrature is typically set

by maximizing the RAM error signal. This demodulated signal is then sent through a servo loop

filter, and we apply the feedback as a DC voltage onto the EOM. The I quadrature dependence on

voltage is a sinusoidal function of the EOM temperature, and so to optimize the gain and dynamic

range, we tune the temperature so that this slope is maximized. For our setup, the Q quadrature

was always much too small to play a significant role.

The way to diagnose the out-of-loop RAM is by tuning the laser off of the cavity resonance,

and observe the demodulated PDH error signal. If this baseline is fluctuating, then you can be

sure that this same fluctuation is impacting the PDH error signal when you tune on resonance. By

tilting optics, controlling temperature and pressure of the overall optics setup, and adding optical

isolation in the correct spots, one can reduce this RAM to the parts-per-million level or better.
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The measured out-of-loop RAM for Si4 is shown as the red trace in Figure 2.7. We can see a broad

peak in the 10-40 mHz region, which we ascribe to fluctuating etalons in the system.

Of course, this off-resonance test is not perfect, and things could degrade further when you

are on resonance, since you are allowing the beam to enter the cavity. For example, the beam could

strike a piece of dust on a window in transmission of the cavity. This scattered light could make its

way back to the PDH error signal. It will appear as a fluctuating phase shift between the carrier

and the sidebands, and the PDH servo will apply feedback based on this signal. So while checking

the out-of-loop RAM as we have discussed is a first step, one must always check the stability of the

stabilized laser by forming a three-cornered comparison with two other lasers.

2.3.4 Photothermal effects

Photothermal effects are those that change the frequency of the cavity depending on the

amount of laser light circulating in the cavity. Photothermal effects can arise from different physical

mechanisms. At very low frequency, the absorbed power in the mirror coatings propagates and

changes the length of the spacer. At higher frequencies, the response tends to be dominated by the

coating, since the substrate contribution with silicon is negligible. Unfortunately there are not great

references for the different critical parameters. From the perspective of just trying to make the

best laser possible - it is sufficient to measure the transfer function, and then stabilize the intensity

to a high enough degree. In Figure 2.6a, we show the measured photothermal amplitude in units

of Hz/W, where W refers to the amplitude of the modulated power measured in transmission. We

measured the amplitude and phase response at different overall transmitted power, and found that

the photothermal transfer function strongly depended on this transmitted power.

It is natural to ask what is limiting the transfer function in the different frequency ranges

in Figure 2.6. In order to attempt to understand the ferquency dependence of the photothermal

response, we calculate the expected transfer function based on the model developed in [64]. At

low frequency the dominate contribution is the thermal response of the cavity spacer. At Fourier

frequencies above 10−2 Hz, the photothermal response is dominated by the coating. There are
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two contributions to the coating photothermal response - the thermo-elastic and photo-thermo-

refractive. The thermo-elastic effect refers to the fact that a temperature change results in a

change in the coating thickness through the coefficient of thermal expansion. The photo thermo-

refractive effect arises due the the finite dependence of the refractive index on temperature dn/dT .

To calculate these effects, we need to plug in various material properties at cryogenic temperatures,

which can be difficult to assign. Nonetheless, we use the parameters from [64], and plot the result

of the calculation as the black line in Figure 2.6.

We find it difficult to assign the exact physical effect dominating the transfer function at

higher frequency. Photo thermo-refractive noise seems unlikely, since dn/dT tends to get small at

cryogenic temperatures. It is also interesting to note that the phase of the photothermal response

flips by 180◦ as we go from the low frequency cavity response to the higher frequency coating

contribution. Furthermore, the dependence on this photothermal transfer function on the optical

power might suggest the presence of another light-matter effect.

From a practical perspective, we minimize the impact of the photothermal effect in Si4 by

actively stabilizing the transmitted optical power, down to 40 nW. We can thus reduce the impact

of intensity fluctuations to be well below the Brownian thermal noise floor (see Figure 2.7). Further

efforts in our group on coating photo-thermal effect would reveal other interesting effects associated

with different mirror coatings (in our case, crystalline coatings).

2.3.5 Path length noise

Another critical source of noise is path length fluctuation. When we are considering stabilizing

a laser to a cavity, the critical junction is when you split the light in front of the cavity, where

some of the light heads toward the cavity and some heads toward either a beat note or toward a

particular optical clock experiment. Since any noise written onto the path length after the split

point is differential, one must be careful that the phase noise introduced in that path is sufficiently

small. For the Si4 cavity, we characterized this noise by performing a loop-back measurement.

We split the light in fiber before the output coupler, and send part through 5 m fiber across the
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lab, and then loop the fiber back to the beamsplitter. We close the loop on the path length noise

of the fiber, and beat the cancelled light against the local light. The relative frequency noise is

well below the thermal noise limit of the the cavity. In actual operation, there is additional free

space path that is differential. In order to minimize the impact of noise in this free space path,

we built a brass enclosure that surrounds the entire optical setup. On top of this, we added an

additional layer of isolation around the optics using blackened aluminum foil. Around the optical

table we installed heavy-duty vinyl curtains to further supress both room temperature fluctuations

and pressure variations.

2.3.6 Electronics noise

There are various sources of electronics noise in a cavity-stabilized laser. One source of noise is

from the photodetector (photodiode + transimpedance amplifier) used for PDH detection. In most

optical cavities, this noise source is dealt with by simply turning up the optical power such that the

signal to noise of the detected error signal is limited by photon shot noise. For Si4, due to significant

photothermal effects, both in noise and drift, we desire a low operating power. To this end, we

employ a resonant photodetector that has a noise equivalent power (NEP) of ≈ 60 nW, allowing

operation at the 100 nW level without significant contribution from the photodiodector. Another

source of electronics noise can come from the servo used for PDH locking. We used a standard JILA

low delay servo, which is a circuit that has been around JILA for two decades, having undergone

several upgrades. For use in a stable laser system, we found that the low frequency noise had to

be improved. We achieved this by changing the input op-amp from a very high speed op-amp to

a lowe bandwidth one, with a lower 1/f corner. The final PDH servo noise is shown in Figure 2.7

as the dotted curve. While this was low enough for Si4, Eric Oelker designed a further improved

servo for Si3 and Si6, to achieve an even lower noise floor.

The full technical noise budget of the 6 cm system is shown in Figure 2.7. We show fits

to the measured noise arising from temperature, Pound-Drever-Hall (PDH) servo, and the PDH

photodetector (PD). The dominant technical noise source is residual amplitude modulation (RAM),
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shown as the red data. The measured out of loop RAM has a prominent peak around 20 mHz, and

such a broad peak can easily arise from time-dependent etalon effects. The sum of the technical

noise is well below the predicted thermal noise floor (dashed red line).

2.4 Stability measurements

To determine the instability of the Si4 cavity, we measure a beat between Si4 and Si3 (see

Figure 2.8). Si4 and Si3 are both fiber-noise-cancelled to the comb table located within the same

room as the cavities. Si3 consists of a 1.5 µm laser stabilized to a silicon cavity which operates at

124 K with a thermal noise floor of 4× 10−17 [61, 25]. The short-term instability (averaging times

of 0.1 to 10 s) of Si3 is determined by a three-cornered comparison with Si4 and a ULE clock laser

at 698 nm. The long-term instability (>10 s) is directly measured by a strontium optical lattice

clock. These measurements show that Si3 is at its thermal noise floor for averaging times from 0.1

to 1000 s [17].

Measuring the noise of a beatnote at the 10−16 level and better is no easy task. We often

make use of frequency counters to measure beatnotes. However, while frequency counters are great

devices, they have broad bandwidth, and so they can be very sensitive to other spurious tones in

the RF neighborhood. Furthermore, the shortest gate time of the counter is 1 ms, which can lead

to significant aliasing of noise above the Nyquist frequency of 500 Hz. Thus, we found that in

order to obtain reliable noise measurements with the counter, we needed to heavily band-pass the

beatnote signal. We employed an 8-pole active band-pass filter, with a 3 dB bandwidth of 1 kHz,

and a center frequency of 10 kHz. At these lower frequencies, the counter can become sensitive to

amplitude fluctuations, so our active filter is designed to give a square-wave output.

The modified Allan deviation of this beat, after subtracting the reference laser instability of

4× 10−17 in quadrature, is displayed in Figure 2.9(A). The modified Allan deviation is calculated

from a 24,000 second long measurement record made with a dead-time free lambda-type counter.

We compute the instability after removing the linear drift of the beat with a magnitude of ∼

3× 10−18/s. The Si4 instability reaches 6.5× 10−17 for averaging times of 0.8 < τ < 80 s, which is
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timescale allows for calibration of the Si3 drift when the Sr clock is not running.
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consistent with the predicted thermal noise floor (green shaded region). At the time of this work, we

had limited knowledge of the actual loss angle of the dielectric coatings at cryogenic temperatures.

The uncertainty in the thermal noise floor is estimated from the two published values of the loss

angle at 4 K. [65, 66].

The corresponding frequency noise PSD for Si4 is shown in Figure 2.9(B). The PSD is calcu-

lated from the time-series of the beat obtained by the frequency counter. The thermal noise floor of

the Si3 cavity (Sy = 1.7×10−33/f) is subtracted from the beat PSD [25]. The Si4 laser is limited by

the thermal noise floor for Fourier frequencies over nearly three decades, from 5 mHz to 2 Hz. We

fit the measured PSD to a function Sy = af−1 and obtain the fit parameter a = 4.12(5) × 10−33.

The thin noise spikes at 1 Hz and higher harmonics come from the cryocooler vibrations. The laser

deviates from thermal noise at Fourier frequencies below 0.5 mHz, potentially due to etalons or

temperature fluctuations.

We experimentally determine the laser linewidth from a Fast Fourier Transform (FFT) of the

Si3-Si4 beat. The beat is mixed down to 10 Hz and digitized with a analog-to-digital converter.

One example of such a measurement is shown in Figure 2.10(a). We use a measurement time

of 128 seconds and employ a Hanning window, corresponding to a Fourier limit of 10.9 mHz.

The expected linewidth for 1/f frequency noise is given by a statistical distribution [25]. The

distribution is multiplied by the ratio σSi4/(
√
σ2Si3 + σ2Si4) = 0.85 in order to estimate the relative

contribution of the Si4 laser to the beat linewidth. Here, σSi4(Si3) refers to the thermal noise floor of

Si4(Si3). We repeat this measurement 100 times and plot the histogram of results in Fig. 2.10(B).

The median laser linewidth for the distribution in Fig. 2.10(b) is 16 mHz, representing by far the

lowest observed to date for a laser locked to an optical cavity placed inside a closed-cycle cryocooler.

2.5 Linear frequency drift : power dependence

We measure the drift of the Si4 system by counting the beat Si3-Si4 as shown in Fig. 2.8.

This requires careful calibration of the drift of the Si3 system. The Si3 laser is used as the clock

laser for a strontium optical lattice clock, giving a direct measurement of the drift [17]. As an
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independent check, the drift of the Si3 system is continuously monitored against a hydrogen maser

from NIST via an optical frequency comb. This maser is then calibrated against UTC(NIST) as

depicted in Fig. 2.8. The long-term linear frequency drift of Si3 is −3 × 10−19/s with 2.8 µW of

transmitted power. The measured linear drift of Si3 is removed from the Si3-Si4 beat, thus giving

the drift of Si4.

The linear frequency drift of the Si4 cavity is dependent on the transmitted optical power

as shown in Fig. 2.11. We vary the incident power and stabilize the cavity transmission at various

levels as shown in Fig. 2.8. With a cavity finesse of F = 500, 000, total transmission of T = 2 ppm,

and total loss of A = 4 ppm, a transmitted power of 40 nW corresponds to a circulating power of

2 mW. Each time the optical power in the cavity is changed, a frequency transient is observed. In

order to extract the linear frequency drift, we wait several time constants for the transient to decay

away. Interestingly, the observed time-constant for the settling of the cavity to its asymptotic drift

rate depends on the final power setting, as shown in Fig. 2.12. This means that at the lowest

optical power (40 nW in transmission), we needed to take data for about 1 month to obtain a

reliable estimate of the frequency drift. We note that in order to achieve high performance at low

optical power by employing resonant photodetectors for both the PDH and the RAM detection,

providing a shot-noise limited signal-to-noise ratio at 68 nW (input referred noise of 0.15 pA/
√

Hz).

The linear power dependence of the drift is striking evidence for a new mechanism of length

drift of an optical cavity at low temperatures. The sign of the frequency drift is always negative,

meaning the physical length of the cavity is getting longer over time. The slope of the power

dependence is roughly −7× 10−21/s/nW. One potential explanation is thermal-induced mechanical

creep of the mirror coating, where the mismatch in the coefficient of thermal expansion for the

substrate and the coating gives a temperature-dependent creep. To reduce the impact of optical

power on the long-term drift, Wiens et al. minimized the irradiation of their mirrors by periodically

scanning the laser across the cavity resonance to measure the cavity frequency [39]. We present

the first rigorous characterization of a power-dependent frequency drift in an optical cavity. The

lowest operating power we have achieved is 40 nW in transmission, giving a fractional frequency
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drift of −3× 10−19/s. This frequency drift is comparable to the previous state-of-the-art obtained

from a 124 K silicon cavity [67].

However, the implication of the current finding is tantalizing in that as we continue to reduce

the incident power, we can access an extremely low value of cavity drift, making it possible that

such a cavity alone could be useful as a potential time scale. At this low power, the fractional noise

of the laser is higher than that showed in Fig. 2.9 by about a factor of two. The extra noise is due

to the photodetector, and will be mitigated with an improved design. We also note that since this

work, crystalline mirrors have been implemented in the ”Si6” system. There, the overall magnitude

of the drift is much smaller [68]. This supports our understanding that the drift in the Si4 system

comes primarily from some physical effect in the coating, or in some light-matter interaction in the

coating. It is interesting to note that a coating with more order (crystalline), yet with generally

higher loss (defects), still gives an overall smaller drift.

The advances presented here point to a clear direction for ultrastable lasers. To operate

with a minimal frequency drift, optical cavities at low temperature will have to operate at very

low optical power. Reduction of the thermal noise will be possible by replacing the conventional

SiO2/Ta2O5 mirrors with crystalline mirrors [69, 70]. Such crystalline mirrors have been shown

to exhibit a factor of 10 lower loss angle at room temperature [70]. Increasing the cavity length

further will also reduce the fractional frequency noise. We can now foresee a strong possibility of

achieving an ultrastable cavity with fractional instability < 1× 10−17 using a continuously-running

closed-cycle cryocooler at 4 K.

2.6 Inferring loss angle of SiO2/Ta2O5 coating

As we discussed in Section 2.2.1, mechanical dissipation in the coating often dictates the

amplitude of length fluctuations. These fluctuations are referred to as Brownian coating thermal

noise (CTN), and can limit the precision of interferometric measurements. Thus, there has been

considerable experimental effort to characterize the level of CTN present in current optical coatings.
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There are two distinct methods for determining the Brownian CTN of an optical coating. The first

is referred to as the ”mechanical ringdown approach”. This involves measuring the mechanical

quality factor, Poisson ratio, and Young’s modulus for each coating material. These mechanical

properties for the coating and substrate are then used to calculate the CTN for a given mirror.

This method of calculating the CTN may not account for all multilayer phenomena in the coating.

The second method, referred to as a ”direct measurement”, determines the CTN of the coating by

measuring the frequency stability of optical cavities. This approach has the challenge of extracting a

coating loss angle from a single measurement over a broad frequency range, requiring input on other

coating and substrate properties. Due to the challenges in each approach, it is vital that both are

undertaken as independent and complementary research efforts. In this Section, we present direct

CTN measurements of SiO2/Ta2O5 using the most stable cavities in operation today at cryogenic

temperatures up to room temperature. To make calculations of the fundamental noise floor of a

given optical resonator, including both reference cavities or gravitational wave detectors, one must

know the ”loss angle” of the coating material. As of right now, all gravitational wave detectors

make use of amorphous coatings, mainly made up of SiO2/Ta2O5 dielectric stacks.

To extract a mechanical loss angle from the measured noise spectrum, we must perform

a characterization of all other noise sources in the reference cavity systems. The 124 K system

has been thoroughly characterized as described in [61]. Since that work we have made several

improvements to the setup, including active stabilization of the transmitted optical power, active

temperature control of the outermost vacuum chamber, and improved optical quality of the op-

tics. All of these improvements are primarily focused on the lower frequency noise, allowing us to

characterize the 1/f thermal noise over a wider frequency range.

The technical noise budget of the Si4 system is shown in Fig. 2.7. We show fits to the measured

noise arising from temperature, Pound-Drever-Hall (PDH) servo, and the PDH photodiode (PD).

The dominant technical noise source is residual amplitude modulation (RAM), shown as the red

data. The sum of the technical noise is well below the measured noise. Figure 2.7B shows the

intrinsic thermal noise of the cavity, including Brownian noise from the spacer (dotted), substrate
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(dash-dot) and coating (dashed). The measured noise is shown (black) along with the sum of

technical noise and thermal noise (green). The CTN is the dominant noise source from 5 mHz to

0.8 Hz.

The MJM cavity has routinely performed at a fractional frequency stability of 1 × 10−16.

Since we have not developed a thorough noise budget for this system, we report only an upper

limit on the loss angle.

With the technical noise on the cryogenic cavities being sufficiently low, we can extract a

mechanical loss angle at each respective temperature. We assume that the mechanical loss in the

parallel and perpendicular directions are identical (φ‖ = φ⊥). Our measurements presented in this

manuscript do not distinguish these two loss components. Without loss of generality we lump them

together as a total loss angle. We also note a gradual shift away from the loss angle convention

of φ‖ and φ⊥ in the LIGO community, and the loss angle can instead be defined in terms of bulk

loss φB and shear loss angles φS [71]. Approximately, the assumption of φB = φS is equivalent to

that of φ‖ = φ⊥, without detailed treatment of light penetration into the coating layers. However,

the reference [71] argue that using φ‖ and φ⊥ can lead to negative strain energies for a non-zero

Poisson ratio σ 6= 0.

For the ith mirror, the expression for the fractional frequency PSD arising from coating

Brownian noise is then [72]

Siy(f) =
2kBTd

π2fL2

1− σ2sub
ωiY 2

sub

φc(f)

Yc(1− σ2c )(1− σ2sub)
×
[
Y 2
c (1 + σsub)

2(1− 2σsub)
2 + Y 2

sub(1 + σc)
2(1− 2σc)

]
(2.3)

Here, ”c” labels the coating and ”sub” labels the substrate. σc(sub) is the Poisson’s ratio, Yc(sub) is

Young’s modulus, d is the coating thickness, ωi is the 1/e2 beam radius at the ith mirror, φc(sub) is

the loss angle.

Note that we are allowing for the coating loss angle to have frequency dependence. Several

authors have reported a frequency-dependent loss angle for SiO2/Ta2O5 coatings [73, 74]. We fit

the measured spectra to the functional form of Sy(f) = a/f b in order to allow for any potential
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are the fits to Sy(f) = a/f b.
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frequency dependence. A deviation from b = 1 for the CTN indicates a frequency-dependent loss

angle. The fits to the measured spectra are shown as dashed lines in Figure 2.13. We find weak

dependencies on frequency as summarized in Figure 2.14.

With the fits from Fig. 2.13 and Eq. 2.3, we derive φc(f) and plot the results in Fig. 2.14.

The results are

φ4 K(f) = (5.6± 0.9)× 10−4 × f −0.05±0.01 (2.4)

φ16 K(f) = (3.2± 0.3)× 10−4 × f −0.11±0.02 (2.5)

φ124 K(f) = (2.4± 0.3)× 10−4 × f 0.06±0.02 (2.6)

The shaded band indicates the 1σ uncertainty. We find that the frequency dependence, although

rather weak, has the opposite sign at 4 and 16 K compared with the 124 K result. The 4 and 16 K

results use mirrors from a different coating run than the 124 K cavity, and so this difference could

in principle be coating-dependent. However, the other measurements of the frequency dependence

to the loss angle all have positive coefficients (see [74, 73]). It might be that there is a real change

in the coating loss properties with the drastic change in temperature.

For comparison with other results published in the literature, we plot φc as a function of

temperature in Fig. 2.15. The orange diamonds [75], green squares [77], and blue triangles [76] are

ringdown measurements that do not explicitly consider φ⊥ and φ‖. The pink square [25], black

triangle [78] and purple diamond [79] are all from direct thermal noise measurements which assume

φ⊥ = φ‖. Our results are plotted at 1 Hz, and no frequency dependence has been assumed for the

referenced values, which are largely measured in the kHz frequency range. We measured CTN at

several temperatures near 4 K, and average these values together. The x-axis error bar for that

data point indicates the spread in temperature explored, while the y-axis error bar is the standard

deviation of the extracted φc. We do not see a strong temperature dependence between 4 to 16 K.

We have presented direct measurements of the thermal noise for SiO2/Ta2O5 HR coatings.

These measurements are complementary to those attained by ringdown spectroscopy. For the

design of future gravitational wave detectors, independent measurements of coating thermal noise
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are important. For ultrastable reference cavities, the use GaAs/AlGaAs crystalline coatings at

cryogenic temperatures is important to explore. Other potentially low thermal noise optical coatings

could also be tested using cryogenic ultrastable silicon cavities.

2.7 Si3 : zero crossing of CTE

So far, we have focused on the Si4 cavity system, but for the optical clock experiments in

the Ye lab, we have only used Si3, the 124K cavity system. In this section, we will describe the

measurement of the zero crossing of the CTE of Si3. After the optical timescale data campaign [50],

we were curious how much of the long-term instability was coming from temperature fluctuations.

When the Si3 cavity was commisioned, we performed a broad scan of the cavity temperature with

the help of PTB colleagues who had come to visit JILA. At that time, we beat the Si3 laser against

Si4, which did not have its power-dependent drift worked out yet. Thus, we decided to remeasure

the zero-crossing, since we weren’t exactly sure how far off we were. During the Christmas break

of 2017, a quiet lab allowed for taking the Si3 offline for some characterization work.

To measure the zero-crossing of the CTE, we want to sweep the cavity temperature over a

small range, say around 10 mK. We then record the cavity frequency (length) versus the temperature

of the cavity, and should observe a parabola when we cross through zero. Sweeping the cavity

temperature over a reasonable time scale can be tricky, since the time constant from the active

shield to the cavity is 12 days. Thus, one has to use “thermal inertia” in order to sweep the

temperature. We first make a large step to a lower temperature, wait some time, and then jump

up above the initial setpoint. By using a detailed thermal model of the cryogenic system, and

continuously checking the parameters versus the measured temperatures, one can predict how the

thermal system will respond, and fine-tuning of the step amplitudes and time can be performed.

The cavity temperature is read by a thermocouple, which can exhibit jumps in its reading. For

this reason, this sensor is only meant as a somewhat rough out-of-loop monitor, and the inloop

sensors are precision PT-100 thermistors installed on the radiation shields. So during the sweep, one

has to keep track of any inadvertant noise jumps in the data. This becomes especially important
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when you have determined the zero-crossing point, but now need to steer the system to the correct

temperature reading.

With the cavity temperature now sweeping linearly, we measure the Si3 frequency against Si4

and the hydrogen maser reference from NIST (Figure 2.16). The measurement against the maser

has much more short-term frequency noise, but serves as a consistency check for the fact that we

measured against Si4, another drifting system. We have measured the zero crossing to the µK

level, and can easily steer to this temperature to within 1 mK.
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Chapter 3

Classical clock demonstrations and applications

In this chapter, we briefly overview various clock results using classical, uncorrelated atomic

ensembles. These experiments take direct advantage of the advances in ultrastable laser technology.

We first describe the clock comparisons between Sr1 and Sr2 that were undertaken during the second

half of 2018 [17]. Then, we discuss placing limits on ultralight bosonic dark matter, coming from

precision comparisons between the Si cavity, Sr atoms and a hydrogen maser [49]. After this, we

switch gears toward time-keeping, discussing a measurement campaign made by the Bouder Area

Clock Optical Network (BACON), where in 2018 we measured three optical clock ratios at the 18th

digit. This lays the groundwork for the eventual redefinition of the SI second, and also provides

further opportunities for testing fundamental physics. These measurements and applications push

the frontier of what one can achieve state-of-the-art optical clock technology, without introducing

quantum entanglement. This chapter sets the stage for the rest of the thesis, where we report our

effort to push a further boundary by introducing quantum correlations and spin-squeezing.

3.1 Classical clock comparisons at the quantum limit

After many years of hard work spanning multiple PhD timescales [80, 24, 81], our group

developed the first cryogenic silicon cavity to reach the thermal noise floor [25]. This new laser had

unprecedented frequency stability - reaching a laser linewidth below 10 mHz. Two of these systems

had been built at PTB in Germany, and it was time to transport one of the systems to JILA. Eric

Oelker and Lindsay Sonderhouse both travelled to Braunshweig Germany, assisted in packing up
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Figure 3.1: (a) Schematic of the cross-correlation method. Each laser is fiber noise cancelled to
the frequency comb table, and we measure the beat between Si4 and Si3, and MJM vs Si3. (b)
The black data is the cross-correlation spectrum for the Si3 system (21 cm Si). The red line is a
laser model that we will use for Dick effect calculations and dark matter limit simulations.

the systems, and hand-carried the cavity to Boulder, Colorado. Eric led the effort to rebuild the

system, and very quickly we were very happy to see that the Si3 system was dipping below the

Si4 stability within just a few weeks of operation at 124 K. It seemed like a prime time to conduct

some new clock comparisons with this new clock laser.

As we mentioned in Chapter 1, neutral atom clocks make use of large ensembles in order to

make the influence of QPN negligible. However, it is quite difficult to operate a clock at the QPN

limit, due to frequency noise on the clock laser. Aliased high frequency noise, known as the Dick

effect, can contibute significant amounts of clock noise. Until this work, the laser noise had limited

the direct observation of anti-synchronous clock comparisons to the low 10−16/
√
τ level, where τ

is the averaging time in seconds [41, 82, 83]. By employing the improved optical local oscillator,

we sought to push single clock stability into the 10−17/
√
τ level for the first time. To this end, we

performed clock comparisons between the 1D Sr1 clock and the 3D Sr2 clock.

We start by characterizing the clock laser performance by using a cross-correlation measure-

ment (Figure 3.1a). The measured cross correlation for Si3 is shown as the black data in Figure
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3.6b. The noise model includes a thermal noise term of 1.5× 10−33/f . There are several peaks in

the spectrum. The peak near 5 Hz is a vibration peak that shows up on all three lasers, and at a

larger magnitude on both the MJM and Si4 systems, making us suspect that the true magnitude

on the Si3 laser system could easily be smaller than observed and modeled here. Two peaks at 20

Hz and 30 Hz are likely to arise from HVAC motor vibrations. Also included are white frequency

and white phase noise terms.

For this comparison, the Sr1 1D clock (before the rebuild described in [84]) operated with

1,500 - 2,000 atoms, probing the
∣∣1S0,mF = ±9

2

〉
→
∣∣3P0,mF = ±9

2

〉
transitions. The ± label

refers to the averaging of the two transitions to become first order insensitive to magnetic field

fluctuations. The Sr2 system is a 3D optical lattice, and for this experiment was run without their

typical evaporation cooling stage [85]. The Sr2 system also operated on the magnetically insensitive

σ transition,
∣∣1S0,mF = ±3

2

〉
→
∣∣3P0,mF = ±5

2

〉
, which is 22 times less sensitive to the magnetic

field noise than the ±9/2 transition [86]. Since this work, several other groups/experiments have

begun using this particular clock transition [87, 18].

Furthermore, to achieve the best clock performance, we had to hunt for various sources of

noise in the systems. We initially stabilized the 0th order of an AOM, and probed the atoms

with the 1st order. We found that differential noise between these two orders gave noise beyond

our desired level of precision. With some ingenuity (a combined effort of Christian Sanner, Ross

Hutson, Eric Oelker, Colin Kennedy and others on the Sr team), a simple solution was found for

Rabi spectroscopy. We retroreflect the 1st order beam for stabilization, but need to deal with

the turning on and off of the pulse accordingly, without introducing significant phase transients

when the laser is on. To work around this, we first detune the laser from the clock transition

by 1 MHz, turn on the light to a low level, and engage the fiber noise servo. The laser is then

swept onto resonance and turned to the clock drive power level. This solution works great for Rabi

spectroscopy because the time when the laser is swept onto resonance (ms level) is short compared

to the entire Rabi pulse duration of 550 ms. Furthermore, we characterized the overall frequency

shift uncertainty of this probing scheme to very high precision [14]. Ramsey spectroscopy is further
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Figure 3.2: (a) Anti-synchronized clock comparison between Sr1 and Sr2. The solid gray line is
the callculated QPN, blue line is calculated Dick effect, orange dashed-dot is the quadrature sum
of QPN and the Dick effect laser noise, and the dashed green line is the fitted stability, giving
5.5× 10−17/

√
τ . (b) Synchronous comparison, showing a single clock stability of 3.5× 10−17/

√
τ .

complicated when you want to stabilize the 1st order, but has been implemented with clever tricks.

The comparison stabilities are shown in Figure 3.2. The anti-synchronized comparison is run

so that the two clocks have no temporal overlap of the clock pulses, with a pulse time of 550 ms,

and the dead time tuned so there is a buffer of 10 ms on either side of the pulse. The Dick effect is

calculated to be 3.8 × 10−17/
√
τ using the laser noise model for the Si3 laser, plotted as the solid

blue line. Shown as the gray line is he anticipated QPN level is 2.9 × 10−17/
√
τ , and we combine

the Dick effect and QPN for the orange dashed-dot line. The fitted stability of 5.5(3)× 10−17 is in

good agreement with the anticipated stability of 5.7× 10−17/
√
τ .

To remove the common-mode laser noise, we perform synchronous comparisons (Figure 3.2b).
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Here, the observed stability is 3.5(2) × 10−17/
√
τ , just 20% (1.6 dB) above the predicted QPN of

2.9 × 10−17/
√
τ . This is the closest to the QPN level for any independent, neutral atom optical

clock comparison to date. It is this very fact that motivates the development of a spin-squeezed

clock in our lab. State-of-the-art clocks are running into the fundamental QPN limit.

3.2 Dark matter limits from precision spectroscopy

Overwhelming evidence from astrophysics points to the fact that dark matter makes up the

majority of the observable matter density in the universe [88]. However, direct detection of dark

matter has so far alluded the scientific community, despite significant efforts spanning generations of

experimental astrophysicists [89]. Ultralight bosonic dark matter is one proposed type of dark mat-

ter out of a great soup of theoretical proposals [90]. Using our precision measurement techniques,

we can make measurements that are sensitive to fundamental constants.

3.2.1 Sensitivity to fundamental constants

We first consider the frequency ratio of our optical cavity to the Sr atom fSr/fSi, and show

that it is sensitive to the fine-structure constant, α = e2

hc . To see how this scaling comes about, we

make some simple considerations. The strontium optical transition frequency scales as

fSr ∼
Ry
h

(3.1)

where Ry is the usual Rydberg constant. Then, let’s suppose the silicon cavity frequency is given

by fSi ∼ c
λ , and that λ must be an integer multiple of the Bohr radius,

fSi ∼
c

NaB
(3.2)

where c is the speed of light, N is the number of silicon atoms making the length of the cavity,

and the aB is the Bohr radius. Then, in our measurements we look at the frequency ratio of the

strontium frequency and the silicon cavity frequency,

fSr
fSi
∼ RyNaB

hc
(3.3)



51

fSr
fSi
∼

mee4

h2
N ~2

mee2

hc
(3.4)

fSr
fSi
∼ (2π)2e2N

hc
= bα (3.5)

where I’ve absorbed a constant factor b = (2π)2N . We see that the linear dependence on alpha

naturally comes out of this simple derivation. The next step is to take into account relativistic

corrections, which can be written quite clearly as an additive correction fSr ∼ Ry(1 + kα2).

Sensitivity to the electron mass is realized by comparing the silicon cavity against a hydrogen

maser. The hydrogen maser operates on the hyperfine ground state transition, which has the usual

scaling of

fH ∝
(
e2

aB~

)[
α2Frel(Zα)

]
µp

[
me

mp

]
(3.6)

where α is the fine-structure constant, µp is the magnetic moment of the proton, me and mp are

the electron mass and proton mass respectively, and Frel(Zα) is a relativistic factor depending on

Z. The frequency of the silicon cavity is fSi = c/λ. Using the silicon cavity frequency from Eq. 3.2,

we take the ratio,

fH
fSi
∝ N

[
α3Frel(Zα)

]
µp

[
me

mp

]
(3.7)

Thus, the silicon cavity - hydrogen maser comparison is linearly dependent on the electron mass.

For an optical timescale to be established, we need to run the silicon cavity against strontium

over an extended (ideally forever) period of time. The comparison does not have to continuous, but

it is repeated many times nonetheless. We also naturally run the silicon cavity against hydrogen

masers in order to connect to the more conventional timescales. Establishing the optical timescale

thus gives us “free” access to this search of ultralight dark matter.

3.2.2 Dark matter couplings

The standard way to search for dilaton dark matter is to consider phenomenological couplings

of the dark matter field φ(t) to various terms in the Standard Model Lagrangian. Following [91, 92],
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we consider scalar couplings of the dark matter field φ to the Standard Model. If we consider

couplings to the electromagnetic term and the fermionic mass term, we get the following dilaton

Lagrangian (with ~ = c = 1),

Lφ = κφ

(
de
4e2

FµνF
µν − dmemep̄sieψe

)
(3.8)

where dme and de are the dimensionless coupling constants, is the coupling of the dark matter to

electron mass me, and ψe is the fermion spinor [92]. The dark matter field oscillates with the form

φ(t) = φ0 cos (mφt+ δ) (3.9)

The overall normalization is mass dependent

κφ0 =
6.4× 10−31 eV

mφ
, (3.10)

where here (and only here), κ = 4π
mPl

and mPl is the Planck mass. The 1/mφ scaling means that the

amplitude of the expected dark matter increases for lower mass, such that the overall energy density

of the dark matter is held fixed. The fermionic term in the Lagrangian gives a time-dependence to

the mass of the electron (for details see Appendix A of [93],

me(φ(t)) = me

(
1 + κφ0dme cos (mφt+ δ)

)
. (3.11)

and similarily for the electromagnetic field term, we obtain time dependence of α,

α(φ(t)) = α
(
1 + κφ0de cos (mφt+ δ)

)
. (3.12)

Thus, if one can find a measurement that is sensitive to the electron mass then a limit on the

magnitude of dme may be set.

For the silicon-maser data, we use the Si3 cavity locked to stabilize an Er:fiber optical fre-

quency comb (same setup described in [17]. A hydrogen maser (ST-14) signal at 1 GHz is transferred

from NIST to JILA over a phase-stabilized optical fiber to the strontium lab [94]. The maser signal

is mixed with the repetition rate of the frequency comb to a frequency of 1 MHz and then counted

with a lambda-type frequency counter. This gives us the direct frequency comparison between the
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darkmatter_data.pdf

Figure 3.3: (a) Fractional frequency deviation of the Si - Sr frequency comparison. The data
has been dedrifted by fitting the data to Eq. 3.13. (b) Power spectral density of the Si-Sr data.
The model for the Si cavity is shown as the dashed line. (c) Fractional deviation of the Si - maser
frequency difference. (d) PSD of the Si - maser data. The maser model has a white noise term,
and a broadened resonance to account for the microwave link noise. The silicon model is the same
as for (b).

silicon cavity and the hydrogen maser. For the optical data, silicon cavity is locked to the Sr1

clock [14]. The control signal of the atomic clock lock yields the silicon cavity - strontium relative

frequency.

The data campaign spans from Modified Julian Date (MJD) 58443 - 58477. The raw data

for the two datasets are shown in Figure 3.3a and Figure 3.3c, in terms of fractional frequency

deviation versus the elapsed time. The data has been dedrifted by fitting to a model of the form,

f(t) = a+ bt+ ce−t/d, (3.13)

where (a,b,c,d) are the fit parameters. The power spectral density (PSD) of the residuals is com-

puted using the Lomb-Scargle periodogram, shown as the red data points in Figure 3.3b for the

optical data and Figure 3.3d for the microwave data. The microwave PSD is calculated for Fourier

frequencies from 0.7µHz to 1 mHz. We leave out Fourier frequencies above 1 mHz for two reasons.

One is that due to the noise level, the bound is considerably higher than currently set limits. An-

other is to simplify the analysis, since the noise above 1 mHz is dominated by the microwave link

noise.

In order to set a dark matter bound, we require the 95% confidence limit of the PSD. This

is achieved by establishing a noise model for the measurement and simulating many time-domain

traces that have the same noise as the model. In Figure 3.3d, we plot traces of the Si3 noise

model (dashed green). Also plotted is the white noise level of the Hydrogen maser (dashed red) of
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1.1× 10−25 Hz−1, which corresponds to an Allan deviation of 1.5× 10−13/
√
τ . The measured noise

is largely dominated by the maser and some link noise at around 2 × 10−4 Hz. The link noise is

modeled as a sinusoidal signal at 2×10−4 Hz with phase noise introduced to approximate the shape

of the link noise. We then simulate 100 different time-domain traces, compute the Lomb-Scargle

for each generated trace and build a statistical distribution. The 95% confidence limit is then

calculated from the distribution.

3.2.3 Dark matter Limit

With the 95% confidence limit for the PSD in hand, one can calculate the dark matter limit.

We use the same normalization The experimental bound for the silicon-hydrogen maser is shown as

the black curve in Figure 3.4. This bound includes corrections coming from the impact of dedrifting

the frequency measurement and any potential degradation in sensitivity due to the unknown phase

of the dark matter. The discussion of these effects may be found in the following section.

In Figure 3.4b, we plot various other experimental bounds on the dme coupling. The torsion

pendulum bounds are obtained by searching for a fifth force, since the existence of a scalar field

φ would result in the exchange of virtual φ quanta [100]. The MICROSCOPE experiment is a

space-based torsion-pendulum [101, 98]). We note that in the 2018 PRL, the dme result is not

directly plotted, but another paper shows the limit on dme [93].

3.2.4 Extra details on our analysis

In this sub-section, we expand on a few details regarding our data analaysis. Some other

details may also found in the supplemental materials of [49]. To check the normalization of the

Lomb-Scargle periodogram, we took two independent approaches. The first, most straightforward

check is by checking the amplitude of a sine wave. We generate a sine wave with a given amplitude

of 1 × 10−12. In order to verify the amplitudes of the spectral densities, we simply integrate each

amplitude spectral density (ASD). The Scipy (a commonly used Python package) ASD gives us the

correct rms value of 7 × 10−13, whereas the Lomb-Scargle gives us an amplitude that is exactly a
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Figure 3.4: (a) 95% confidence limits placed on the dimensionless couplings to the electromagnetic
field de, showing the improved limits set by fSr/fSi (red) and fH/fSi (blue) ratios in the mass range
above 1× 10−19 eV. The maximum projected sensitivity for a search of the same 11-day duration
without data gaps is included (light green), highlighting the potential of our technique. Limits
derived from previous spectroscopic searches (black lines), with the network [95], Dy-Dy comparison
[96], and Rb/Cs [97]. Limits from equivalence principle tests (purple lines), with MICROSCOPE
[98] and UW [99]. (b) Demonstration of a significantly improved limit on the electron mass modulus
(dme) derived from the fH/fSi (blue) ratio. Limits from equivalence principle tests (purple lines),
including MICROSCOPE [98] and measurements from UW [99]. Shaded regions in both (a) and
(b) are excluded at the 95% confidence level given the observed signal and noise models.
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factor of two smaller. One possibility is that the Scipy ASD is giving the one-sided spectral density

whereas the Lomb-Scargle is giving the two-sided. In any case, we will multiply the resulting Lomb-

Scargle periodograms by a factor of two for amplitude, and by four for power spectral density (PSD).

The second check we did was to generate time-domain data of white noise, flicker frequency noise

and random walk frequency noise with known amplitude, and checking the Lomb-Scargle vs FFT.

Since our dark matter limit for dme extends down to a Fourier frequency of 0.7 µHz, we were

curious to check the effect of dedrifting the signal, as well as a random phase. In order to explore

this effect, we add a hypothetical sine-wave signal to the raw data (before dedrifting) with a known

amplitude of 1× 10−13. We then dedrift the data+sine by fitting the drift model given by Eq 3.13.

Then we can take a Lomb-Scargle periodogram of the data and check the RMS value of the signal

by integrating over the relevant frequency bins, and compare with the value we know we should

obtain for such a sine wave. The result of this simulation is plotted in Figure 3.5. We plot the

ratio of the obtained dark matter signal amplitude to the expected amplitude. Simulating the time

domain traces with a length of 30 days is computationally expensive, and so to reduce the time

required for the simulations we only calculate the correction at the points plotted as the orange

circles. We then fit the correction to a 1− e−x/f0 model so we can interpolate the correction to all

frequencies for the dark matter bound. We note that these corrections are more relavant for the Si

- maser dataset since it is three times longer, allowing us to reach lower Fourier frequencies.

The scalar dark matter described by Equation 3.9 involves an arbitrary phase δ that could

in principle take on any value from 0 to 2π. Since the data is not perfectly sampled, we will have

a non-uniform sensitivity function for dark matter fields possessing different phase δ. We have no

way of knowing what the correct phase of the signal could be, so we evaluate this effect by injecting

dark matter signals of known amplitude with varying phase δ. We then compare the obtained

amplitude from our least-squares fit of the data with the actual injected amplitude, and plot this

ratio as the blue datapoints in Figure 3.5. Similar to the dedrift correction, we fit the ratio to

obtain the corrections at our final Fourier frequencies. For the final corrections to the dark matter

limit, we multiply both the dedrift impact and the phase impact, and this is plotted as the solid
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The vertical dashed line indicates the lowest Fourier frequency for which a dark matter limit is
computed.
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black line in Figure 3.5.

3.3 Boulder Atomic Clock Optical Network

The Boulder Atomic Clock Optical Network (BACON) is a collaboration and corresponding

network between the Sr lab at JILA and the Yb and Al+ ion groups at NIST. The relative density of

high performing clocks in Boulder, Colorado is truly impressive. At the time of writing this Thesis,

the Yb clock has a systematic uncertainty of 1.4 × 10−18 [15], the Al+ ion clock is 9.4 × 10−19

[16], and the Sr clock is at 2.0× 10−18 [14]. In 2017, we embarked to measure the frequency ratios

between these three atomic clocks. This optical clock frequency ratio measurement serves as a

critical step toward the redefinition of the SI second. Optical frequency ratios are the best way to

check consistency between optical clocks because they do not rely on cesium fountain clocks that

currently define the second, which would limit such a comparison to the 10−16 level. By using an

optical frequency comb as the flywheel, we can connect various optical standards across a wide

range of frequencies [102, 103]. Since the optical frequency combs introduce minimal noise, we can

measure the ratio with the utmost precision [104].

One of the first steps in the comparison was establishing a link between the JILA Sr clock

and the clock/frequency comb labs at NIST. There exists a long network of optical fiber inter-

connecting various labs and institutes around the city of Boulder called the Boulder Research and

Administrative Network (BRAN). Before the clock comparison, we revived the BRAN fiberlink

between JILA and NIST. The servo loop had to be adjusted to prevent instability, since the finite

time-delay leads to phase shifts that can give π phase shifts and corresponding instabilities [105].

The bandwidth of the servo ended up being approximately 5 kHz. We set up the fiber link in a loop-

back configuration to evaluate the out-of-loop performance (Figure 3.6a). We install AOM-2 in the

retroreflection of the light from ref #2, so that the light is marked in frequency and is distinguished

from all of the other back reflections in the long fiber and interconnections. The inloop error is

measured by out-coupling the error signal and counting it with a frequency counter (lambda-type,

deadtime free), and is plotted as the red points in Figure 3.6b. We also measure the out-of-loop
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noise, shown as the black circles. We see a two distinct bumps in the Allan deviation, likely due

to temperature/pressure fluctuations of the out-of-loop fiber. The Allan deviation averages down

to 5 × 10−19, which we take to be the uncertainty of the fiber link. In Figure 3.6c, we plot a

histogram of the out-of-loop frequency measurements, and show the residuals to the Gaussian fit

in the bottom panel.

An example Allan deviation of a daily ratio measurement is shown in Figure 3.7. Within a

single day, the neutral atom clock ratio of Yb/Sr averages down to the low 10−18 level, while the

ratio with the single ion clock averages to 10−17. The contributions to the instability are shown as

the dashed lines, showing that they are low enough noise as as to not contribute significant noise

to the ratio. The ratios were measured over several months, and in the end the Yb/Sr data was

over-scattered, partially due to this outstanding single-day precision. To treat the data from this

campaign - we had to introduce the idea of “dark uncertainty”, which would account for unknown

fluctuating systematics (this data analysis was done in collaboration with NIST statistics expert

Amanda Koepke). The final ratios were measured to be

νAl+/νYb = 2.162887127516663703(13)

νAl+/νSr = 2.611701431781463025(21)

νSr/νYb = 1.2075070393433378482(82),

(3.14)

representing some of the most accurate measured quantities to date.

Using the same data from the clock comparison we can also measure the absolute frequency

of the strontium clock transition. A detailed analysis of the connection between the optical clock

and the international definition of the SI second determined the Sr absolute frequency to be [106]

νSr = 429228004229873.19(0.15) Hz. (3.15)
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Figure 3.6: (a) Schematic for the out-of-loop evaluation of the BRAN fiber link for the 2017/2018
JILA-NIST clock comparison. A stable laser (Si3) is fiber noise cancelled, with the noise detected
between the mirrors labelled as “ref #1” and “ref #2”. The out-of-loop beat is measured between
the local light and the “remote” light. (b) Overlapping Allan deviation of the inloop error for the
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loop frequency measurements, with the residuals to the Gaussian fit shown below.
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Chapter 4

Spin-squeezed clock : background and considerations

4.1 Basic theory and definitions

Neutral atom clocks that employ uncorrelated independent atoms are fundamentally limited

by QPN. We describe the state of this atomic ensemble using the collective spin operator Ĵ =

Ĵxx̂+ Ĵyŷ + Ĵz ẑ, which is formed by simply taking the sum over all of the individual spin vectors.

The x̂, ŷ, ẑ are unit vectors that form the basis for the collective state vector. The z-projection of

the collective spin operator can be expressed as population differences between the two spin states

as

Jz =
N↓ −N↑

2
, (4.1)

where N↓ and N↑ are the atoms in the ground and excited clock states, respectively. We will concern

ourselves with Jz, because it contains our clock discriminator. Ramsey spectroscopy converts phase

accumulation in the aximuth plane to a tipping of the Bloch vector along the z direction on the

Bloch sphere (Jz).

Coherent spin states (CSS) describe the non-classical state formed by N identical spin-1/2

particles. We can express the CSS as a product state [24, 107]

|θ, φ〉 =
N∏
i=1

cos
θ

2
|↑i〉+ eiθ sin

θ

2
|↓i〉 (4.2)

This state is represented by a simple arrow with the endpoint living on the Bloch sphere. It responds

to optical rotations in a classical fashion. We will consider a state pointing along the y direction

on the Bloch sphere after atoms are initially prepared in a coherent superposition of |↓〉 and |↑〉.



63

The noise associated with this state is along the orthogonal directions z and x, and is obtained by

applying Heisenberg’s uncertainty principle,

∆Jz∆Jx ≥ |Jy|/2 (4.3)

where ∆ denotes the standard deviation. We visualize the noise of this state as a Gaussian distri-

bution on the surface of the Bloch sphere. This noise arises from quantum projection, which is the

noise associated with the projective measurement of a state placed into a superposition.

The ultimate phase resolution potentially achievable by a CSS is set by the QPN and is defined

as the standard quantum limit. We express QPN in terms of the uncertainty of the z-projection of

the Bloch vector

∆Jz,CSS =
√
N/2 (4.4)

QPN arises from the projective measurement of an ensemble in a superposition state, when the

atoms “collapse” into either the |↓〉 or |↑〉 state. This QPN will lead to a limit in the phase-

estimation of a Bloch vector with length N to

∆θSQL =

√
N/2

N/2
=

1√
N

(4.5)

We note that we have assumed the contrast associated with the state is Ci = 1, and we treat the

case of Ci < 1 in Section 7.1. Equation 4.5 makes it very clear that operating with a higher atom

number is advantageous to push the SQL to the lowest phase resolution possible. It is difficult to run

a clock that operates at the SQL, and even the highest performing synchronous clock comparisons

tend to operate a few dB above this level, often due to the presence of other technical noise in the

clock [17, 19].

The idea of spin-squeezing is to engineer entanglement in the atomic ensemble in order to

surpass the SQL. Since the clock signal is captured in Jz, the simple idea is to shuffle the uncer-

tainty to the anti-squeezed quadrature Jx, and improve the phase resolution while still satisfying

Equation 4.3. Experiments that involve spin-squeezing greatly increase the technical complexity

of the optical clock. One has to engineer interactions between the atoms in order to obtain non-
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classical spin states. When introducing these interactions, one must preserve the coherence of the

atomic ensemble.

4.2 Historical background

The development of quantum entanglement has provided an exciting new direction for reduc-

ing the impact of QPN in quantum sensors, offering the opportunity to greatly advance upon this

state-of-the-art performance. Spin squeezing, in particular, was proposed early on to utilize quan-

tum correlation to conceal noise from individual atoms and thus achieve improved measurement pre-

cision and bandwidth [108, 109]. The creation of entanglement for metrology has been explored in a

wide variety of atomic quantum sensors including microwave clocks [110, 111, 112, 30, 31, 34, 33, 29],

ion clocks[113, 114], magnetometers [115], and matterwave interferometers [116].

The first step toward implementing spin-squeezing in a cavity QED system is achieving

strong coupling between the atom (or atoms) and the electromagnetic cavity mode. This strong

coupling regime is also referred to the resolved vacuum Rabi splitting limit, where the vacuum Rabi

frequency,

Ω = 2g
√
N, (4.6)

is much larger than any other time scales in the system (Ω� κ,Γ). There are two general regimes

for strong coupling: microwave domain [117, 118], and optical domain [119]. In the earliest work,

both of these general approaches were pursued by coupling either single atoms, or beams of atoms

to the microwave/optical cavity. The approach in the Haroche and Walther group was to couple a

beam of circular Rydberg atoms to a superconducting microwave cavity. In that case, the dipole

moment of the atomic transition was enhanced by using Rydberg atoms, and a very high quality

factor microwave cavity minimized κ. This enabled the realization of the strong-coupling regime

for the atomic beam passing through the microwave cavity. The second approach was pioneered

in the group of Jeff Kimble, where alkali atoms were coupled to a high finesse optical cavity via

dipole-allowed transitions. In this regime, strong-coupling can be attained for just single atoms
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[119].

In later work in the groups of Vladan Vuletic, James Thompson, Mark Kasevich, and others,

ensembles of atoms were trapped and coupled to optical cavities, enabling the inspiring work on

implementing spin-squeezing in microwave clocks [30, 31, 33, 29]. By coupling ensembles of many

atoms, one can enhance the collective coupling between the atoms and the cavity mode. We will

follow along this line, but instead run the clock in the optical domain, both for the cavity QED

coupling and the clock states.

Despite tremendous progress, spin-squeezing in atomic clocks has yet to yield enhancement

at state-of-the-art stability levels. A spin-squeezed microwave clock has observed 11 dB of enhance-

ment [33] at the 10−10 stability level at 1 s, in contrast with microwave fountain clocks at 10−14 [120].

We note that the spin-squeezed clock in [33] operated at a considerably shorter Ramsey dark time

than the state-of-the-art atomic fountain clocks. For optical clocks, which operate at much higher

stability, generation of entanglement has been demonstrated by a measured Wineland parameter

of -4.6 dB [35]. After subtraction of a laser noise model, an optical clock employing a SSS was

inferred to operate -4.4 dB below the SQL at a fractional frequency stability of 1.3 × 10−13 τ−1/2

(where τ is the averaging time in seconds) [35]. However, metrological applications require direct

observation of clock stability enhancement without post-processed removal of technical noise. It

remains to be seen whether spin-squeezing will enhance the operation of state-of-the-art atomic

clocks. The primary objection of the Sr3 machine is to demonstrate a competitive atomic clock

with cavity QED based squeezing, and directly observe metrological enhancement.

4.3 How do we design a cQED system?

What should we consider when designing a cavity QED system for an optical clock? To

answer this, we will examine some simple calculations of various physical quantities, and discuss

how different design choices impact various parameters through fundamental and technical scalings.

The Jaynes-Cummings Hamiltonian describes a single atom interacting with the quantized
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electromagnetic field of the cavity mode,

Ĥ = ~ωaσ̂+σ̂− + ~ωâ†â+ ~g
(
σ̂−â† + σ̂+â

)
, (4.7)

where the first term is the energy of the atom and ωa is the atomic transition frequency between

the energy levels 1S0 →3P1 = |e〉. The second term is the energy of the photons, where â (â†) is

the photon annihilation (creation) operator, so ââ† corresponds to the total photon number. ω is

the optical cavity resonance frequency. The last term describes the interaction between the photon

and the atom. σ̂−â† represents an atom going from the excited to ground state and emitting a

photon, while σ̂+â describes and atom absorbing a photon and going from the ground to excited

state.

As usual, we go into the rotating frame of the atom,

Ĥ = ~δcâ†â+ ~g
(
σ̂−â† + σ̂+â

)
, (4.8)

where δc = ω−ωa is the relative detuning of the cavity from the atomic transition. A key parameter

here is the single atom cavity coupling [121],

g = µ

√
ωa

2~ε0V
, (4.9)

where µ is the atomic dipole matrix element, ωa is the atomic transition frequency, and V is the

cavity mode volume. The atomic dipole moment µ is

µ =

(
3ε0~λ3

8π2
Γ

)1/2

(4.10)

We note that g only depends on properties of the atomic transition and the volume of the cavity

mode - which will depend on the cavity parameters.

To extend this Hamiltonian to describe N atoms interacting with the cavity mode, we replace

the atomic operators with collective raising and lowering operators Ĵ± = 1
2

∑N
i=1 σ̂

i
±, The Tavis-

Cummings Hamiltonian that describes the many-atom ensemble coupled to a quantized mode of

electromagnetic radiation is then

Ĥ = ~δcâ†â+ ~g
(
Ĵ−â† + Ĵ+â

)
. (4.11)
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Assuming we are in the weak-excitation limit, where the number of atoms excited to |e〉, then we

can make an approximation to this Hamiltonian [32, 122],

Ĥ = ~δcâ†â+ ~g
√
N
(
b̂â† + b̂†â

)
. (4.12)

where the collective operators Ĵ± are replaced with new creation and annihilation operators b̂ =

J+/
√
N and b̂ = J+/

√
N . We have finally arrived at the enhancement of atom-cavity coupling by

using an ensemble of N atoms, increasing the frequency by a factor of
√
N .

One might think that choosing a transition with the largest dipole moment µ leading to a

larger g will give the maximum achievable squeezing. This is not true, however, and instead the

key parameter that dictates the maximum achievable squeezing through QND measurements is the

single-atom cooperativity C, expressed as

C =
(2g)2

κΓ
. (4.13)

Examining this expression, we can see that the cooperativity C does not depend on Γ (or the

strength of the atomic transition dipole moment). We can understand this intuitively: a transition

with a larger dipole moment will increase the numerator of Equation 4.13, but that increased dipole

moment simultaneously increases the rate of incoherent scattering of photons into free space. The

spirit of Equation 4.13 is that what matters is the tradeoff between photons leaving through the

cavity mirror as useful information and the leakage into the universe via free space scattering. This

means that one can either use a broad transition (1S0 →1 P1, Γ = 2π × 35 MHz), or a narrower

transition (1S0 →3P1,Γ = 2π × 7.5 kHz). Reasons for choosing one transition over another are

thus more technical rather than fundamental. For example, working high finesse cavities at shorter

wavelengths can be problematic in terms of mirror coating damage [123].

The spectroscopic enhancement using QND measurements scale with the spin noise reduction

and the shortening of the Bloch vector (loss of Ramsey fringe contrast). We assume that the contrast

loss is limited by free space scattering, so we can write the spectroscopic enhancement as

ξ =

(
∆J ′z

∆Jz,QPN

)2

e−ms (4.14)
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where ms is the number of scattered photons and ∆J ′z is noise of a differential Jz measurement.

In the far-detuned limit where the atom-cavity detuning is much greater than the vacuum Rabi

splitting δc � Ω and assuming negligible readout noise of the final measurement, and assuming the

loss of coherence is dominated by free-space scattering, the potential spectroscopic enhancement

scales as [32]

ξ−1 =
QNC

e
. (4.15)

This means that the maximum achievable squeezing only depends on the collective cooperativityNC

and the total quantum efficiency Q. This result is independent of the atomic transition linewidth

Γ.

One important assumption of the above equation is that we are working with a cycling

transition. This is more complicated when working with the fermionic isotope of Sr, where we

need to consider the complicated hyperfine levels. Transitions that take the atom out of the initial

ground-state will lead to loss of coherence and an increase of noise via diffusion [32]. For these

reasons, we choose to operate on the
∣∣1S0, F = 9/2,mF = 9/2

〉
→|3P1, F = 11/2,mF = 11/2〉. We

apply a bias magnetic field along the direction of the cavity, and probe the cavity with circularly

polarized light. Barring any impure polarization or relative misalignment of the magnetic field and

the k-vector, we should realize a cycling transition with relatively small probability of a spin flip.

4.4 How should we probe the atom-cavity system?

We want to probe the atom-cavity system such that we optimize the information gained

about the collective atomic state versus the incoherent collapse of the single-particle wave function.

This means we need the most precise information about the state of light leaving the optical cavity.

In QND measurements, we aim to utilize the phase of the light leaking from the cavity as

the witness for the ground state population of the atomic ensemble in the cavity. The leakage light

that comes out of the cavity through the input mirror can be written relative to the incident field
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Ei, [32]

Er
Ei

= I + iQ, (4.16)

where the I quadrature response is

I =

1− βr

1 +
(

δ
κp/2

)2
 (4.17)

and the Q quadrature is

Q =
βr

(
δ

κp/2

)
1 +

(
δ

κp/2

)2 (4.18)

where βr =
√
κ1/κ is the radius of the I − Q circle for the light coming back through the input

mirror. Here, κ1 is the rate of coupling out of the input mirror, κ2 is the rate of coupling out of the

second mirror, κ = κ1 +κ2 +κL is the total rate of power decay for the cavity mode. The detuning

between the probe laser and the cavity mode is δ. To show a direct example of this, we measure

the I−Q response of our cavity with the setup in Figure 4.1. We scan our probe laser across the

cavity resonance and record a heterodyne beat between the probe and the LO beam. By directly

digitizing this signal, we can demodulate the RF signal in software. The normalized I−Q response

is plotted parametrically in Figure 4.1b. The individual I and Q responses are plotted versus the

probe laser frequency in Figure 4.1b and c. The red line in each panel is the result of a simultaneous

fit to Eq. 4.17 and Eq. 4.18. We can see some slight deviation from the theoretical response, as

seen in the baseline drift in the I quadrature. This can come from a slight miscalibration of the

demodulation waveform, and does not significantly impact the extraction of the cavity frequency,

as we can restrict the fitting window to the most sensitive parts of the frequency sweep (closer to

resonance).

The QND measurement can be distilled down to a measurement of the leakage light to extract

the phase. It is this light that carries information about the atomic state inside the cavity. However,

in cavity QED experiments, this probe power must be kept at an extradorinarily small level, in our

case around 10−15 W. Since it is such a small amount of probe power, we opt to measure the phase

shift against a stronger local oscillator beam, in order to make the photon shot noise dominant
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Figure 4.1: (a) Schematic of the detection scheme, where laser light is split into a probe path
and LO path, and these are combined on a beamsplitter. (b) By sweeping the probe laser across
resonance we can map out the I −Q response of the cavity response. (c) Normalized I quadrature.
(d) Normalized Q quadrature.
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over the detector noise, giving a shot noise limited signal-to-noise. The amplitude of the resulting

interference term is proportional to the product of the electric fields, or equivalently the square root

of the optical powers. For sufficient LO power, the noise of the photodetector and measurement

system is negligible compared to the LO photon shot noise. In this case, the signal-to-noise ratio

is simply proportional to the signal beam,

SNR ∝
√
PsPLO√
PLO

=
√
Ps (4.19)

To achieve the photon shot noise limit, we also have to be careful about classical intensity noise

of the LO, which is more severe at greater LO powers. We combat this by employing balanced

detection in addition to active control of the LO intensity.

While this simple scaling gives good intuition on quantum optical measurements, there is the

choice between “heterodyne” and “homodyne” detection schemes. This refers to the fact that one

can tune the LO beam to be at a different frequency from the cavity probe and look at the AC

signal, or tune to the same frequency and extract the information at DC. The heterodyne method

can be simpler to implement, but suffers from a loss of 3 dB of signal to noise ratio. This is seen

by considering the influence of the “image frequencies”. When you form a heterodyne beatnote,

you are looking at the interference of two distinct optical frequencies, which produce a beamnote

at the difference frequency fhet = νLO − νS , where νLO is the optical frequency of the LO and

signal respectively. However, on the other side of the LO is not a tone, but shotnoise, that gets

mixed to the same beat frequency fhet. Hence the shot noise contribution gets doubled, resulting

in the loss of 3 dB in signal to noise. The most straightforward way around the 3 dB loss is by

performing homodyne detection. There, the LO is tuned to the same frequency as the signal beam.

By adjusting the relative phase of the LO beam with respect to the signal beam, one can choose

the particular quadrature of detection of I or Q. Making the signal beam and the LO beam to be

the same frequency, there is no image shot noise, and hence no extra loss of 3 dB of signal to noise.

While homodyne detection optimizes the signal-to-noise, it also allows for further optimiza-

tion by performing “fixed tone measurements”, which refers to fixing a probe tone on the resonance
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of the cavity mode as opposed to sweeping the laser frequency across the resonance. For example,

if you sit exactly on resonance with heterodyne, the signal will spend half of the time in the Q

quadrature, and thus half of the probe will not carry useful information. However, if we perform

homodyne detection, then the entire probe field will carry the most sensitive phase information.

It’s also clear that sweeping will not provide the optimal measurement. This is because the optimal

measurement quadrature varies from the I to Q and back the I again during the sweep. So unless

one varies the detection phase during the sweep, one loses the 3 dB gain.

With all of these considerations - it is clear that the best QND measurement will be made

by performing homodyne detection and probing with a fixed frequency probe on resonance. This is

the primary motivation for operating our system in a detuned regime. In this regime, we can park

a probe tone near the shifted cavity-like mode, and the atom number fluctuations are small enough

such that we stay in the linear response of the homodyne signal. The one con of this approach is

that we lose the common mode suppression of laser noise that one enjoys by probing the vacuum

Rabi splitting. We combat this by building a low noise cavity stabilization setup, discussed in

Chapter 5.8.1.

4.4.1 Atomic motion and probing time scales

In the experiments described in this Thesis, we keep all intra-cavity light to a minimum,

and thus do not confine the atoms along the cavity axis. The atomic motion is dictated by their

temperature and the trapping potential of the vertical trapping optical lattice. At higher order, the

optomechanical effects from the probing light may play a role [34], but for now we will ignore this

effect. We treat each pancake of the vertical optical lattice as a 2D harmonic oscillator. The atoms

occupy the radial modes of the 2D harmonic oscillator according to the corresponding Boltzmann

distribution. To estimate the order of magnitude for the spatial spread, the thermal radius for our

cloud can be estimated from 1
2kBT = 1

2m87(2πνR)2σ2y , where m87 is the mass of 87Sr, νR is the

radial trap frequency. From this, we get a thermal cloud radius of σy = 26 µm. We note that this

definition is consistent with our density distribution defined in Appendix B. The cavity mode gives
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rise to the spatial dependence of the atom-cavity coupling

g2i (X,Y, Z) = g20e
−(Y 2+Z2)/w2

0 sin2 (2πX/λ689) (4.20)

So as the atoms move, they will experience a time-dependent atom-cavity coupling, g(X(t), Y (t), Z(t)).

In the far-detuned regime (δc � Ω)), the time-dependent frequency shift for the total atomic

ensemble can be decomposed into the dispersive shifts of each of the individual atoms,

δνi(t) =
g2i (t)

δc
. (4.21)

We seek to simulate the atomic motion of atoms in the 2D harmonic oscillator, and use those

trajectories to calculate g2i (t) for each ith atom. We can then calculate the mean cavity shift due

to each atom, and simulate how the cavity shift depends on probing time scales or the atomic

temperature.

Simulating the atomic trajectories is carried out as follows. We randomly sample initial X

and Y positions for each atoms according to the normal distribution with σY = 26 µm. With the

spatial coordinate, we then pull from Boltzmann distributions to assign the initial momentum for

px and py. The distributions along the two directions are taken to be independent, each having a

standard deviation of σp =
√

2m87kBTr. We then iteratively solve Hamilton’s equation of motion

to obtain new values of position and momentum. These trajectories are plotted in Figure 4.2a as

the white traces. They are plotted on top of the intensity distribution of the standing wave inside

the cavity. The solid lines indicated the 1/e2 radius of the cavity mode, w0 = 71 µm.

For each atom, we track the motion and plot the quantity g2i (t)/((2π)2)δc), giving units of

Hz/atom. We can see that after a very short amount of time, most of the atoms traverse several

standing waves of the probing light. This is consistent with a rough estimate made by considering a

1D Boltzmann distribution and calculating the fraction of atoms that traverse 5 standing waves to

be around 0.1 ms. Thus, we can be rest assured that sufficient thermal averaging along the cavity

mode is achieved after a relatively short amount of probing time.

However, the story for the radial motion is not as straightforward. This is because the thermal

cloud radius σY = 26 µm is not that much smaller than the cavity mode waist of w0 = 71 µm.
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Figure 4.2: (a) The atom-cavity coupling g2(x, y), which follows the intensity of the cavity mode
standing wave is shown as the contour plot, normalized to a peak value of one. The lines indicate
the 1/e2 radius. Overlaid on top of g2 is 100 different atomic trajectories simulated for the particle
motion in a single pancake of the optical lattice. (b) Corresponding traces of g2(t)/δc for all of the
different particles, showing that most atoms sample many standing waves well within 1 ms. (c)
Fractional noise of the cavity shift for a measurement time of 2 ms, versus the dwell time between
frequency measurements. We show the magnitude of the oscillations versus atomic temperature
(d) Same as (c), with a measurement time of 40 ms. We can see that the longer measurement time
offers improved averaging of the radial motion.
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This means that the radial motion will lead to significant changes in the atom-cavity coupling. We

consider the impact of radial motion on a two window measurement of the cavity frequency shift,

similar to what we implement for our QND probing of Jz in Chapter 6 and 7. In Figure 4.2c, we

plot the total fractional shift versus the dwell time between the two measurements td for a short

measurement window of Tm = 2 ms. We can see the radial oscillations are damped out as the radial

motion is not perfectly coherent and there exists a spread of radial trapping frequencies. If we set

the measurement time to Tm = 40 ms (Figure 4.2d), we can see that there is further averaging of

the radial motion giving a drastically smaller effect.

Now we want to simulate the magnitude of noise in dressed atom-cavity frequency measure-

ments that can occur due to the atomic motion. We fix the dwell time td = 10 ms, chosen to

represent the time it takes to perform a π-pulse. We then vary the measurement time, and look at

the standard deviation of the fractional cavity shift difference (νp−νf )/νp (Figure 4.3). Further, by

varying the atomic temperature, we can see that lower temperature atoms will give smaller noise

due to the atomic motion - matching intuition. We can also see that a measurement time of 20 ms

or longer is a safe choice for mitigating motional effects. As we will discuss further, experimentally

we use a measurement time of Tm = 40 ms. This choice is primarily influenced by considering two

effects: the atomic motion discussed in this Section, and the influence of cavity - laser technical

noise, discussed in Chapter 5.
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Figure 4.3: Simulations of cavity frequency shift noise arising from themal atomic motion. With a
fixed seperation time between measurements of 10 ms, we predict fluctuations in the shifted cavity
frequency on the percent level. Both low atomic temperatures and longer measurement time Tm
are critical for minimizing this effect.



Chapter 5

Sr3 : a new spin-squeezed clock apparatus

In this Chapter, we describe the design and construction of a new experimental apparatus

that integrates a high finesse cavity with a state-of-the-art optical lattice clock. We have named

this system as “Sr3”, since it is the third atomic clock system being operated in the Ye lab. The

first goal of this experiment was to directly observe improvement in clock performance due to spin

squeezing. To achieve this, we require the preparation of 1,000 - 10,000 strontium atoms inside

a high finesse cavity and in a well controlled environment. The high finesse optical cavity and

supporting structure is designed for low noise frequency measurements, allowing us to make non-

destructive measurements of the atomic population with resolution below the quantum projection

noise. We also implement a movable optical lattice, in order to apply squeezing and read out

independent atomic ensembles with the cavity probe. With all of this in mind, we took one step

further and designed a system that would enable future performance at the state-of-the-art level

for accuracy, including black-body radiation, DC Stark, ac Stark, and other systematic shifts.

We split the experiment into two main regions inside our vacuum chamber, referred to as the

“MOT bucket” and the “science cavity”. The MOT bucket sits below the cavity, and serves as the

location where we prepare the initial blue and red MOTs. These atoms are loaded into the movable

optical lattice, which transports the atoms ≈ 40 mm vertically into the science cavity. The cavity

enables us to engineer squeezed states of several thousand atoms, while simultaneously providing

a clean environment in terms of clock systematics. The following will describe the design of the

ultrahigh vacuum (UHV) system, the MOT bucket, the science cavity, and some of the surrounding
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hardware.

5.1 UHV System

One of the requirements for a cavity-QED optical clock system is achieving UHV. A poor

vacuum would impact our experiment in a number of different ways. Broadly speaking, a higher

background pressure means more collisions of these gas molecules with Sr, leading to loss, or in the

case of a grazing collision, leading to a systematic clock frequency shift. Thinking practically about

the impact of a finite vacuum lifetime for Sr3, we consider a potential future experiment where

we will use the QND nature of the probing to recycle the atomic ensemble instead of reloading

atoms each cycle of the experiment. This type of experiment would have the advantage of reducing

the dead time of the clock, leading to improved stability due to mitigation of the Dick effect. Of

course, a short vacuum lifetime would be a limitation to such an experiment, due to the eventual

loss of atoms and the corresponding rise of the QPN. When designing Sr3, we knew we would be

placing a lot of different materials in vacuum, including: the copper cavity spacer and supporting

structure, mirrors, epoxy, temperature sensors, kapton wires, viton. Thus, we could not expect

the same vacuum quality as the Sr2 machine described in [124]. We ended up setting the goal of

< 10−10 Torr, which should lead to a > 10 s vacuum-limited lifetime.

Each component that was placed in vacuum have different levels of handling, and different

cleaning procedures altogether. In the following we describe the UHV system, the pre-bake and

cleaning procedures we implemented, and finally the bakeout of the entire system.

5.1.1 Design

We employ an AOSense strontium cold beam source, which includes the oven crucible, Zeeman

slower and two 2D MOTS. After transporting the chamber from the auxillary lab to the main Sr

room, we found that one of the heater pins for the oven was shorted to the vacuum chamber. After

some moments of anxiety, we realized we could actually run the heater in this configuration. The

one worry is that if we flow current directly into the vacuum chamber, it could find its way back to
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Earth ground through an undesireable path (for example through the breadboard → photodiode).

We thus attached a thick tin-coated copper braid (the type typically used for electronic cable

shielding) to serve as the return for the current, and by checking with a clamp current reader, we

confirmed the current was making its way back to the power supply through this attached braid.

The oven is attached to the chamber via a long skinny vacuum tube. The differential pumping

speed from the outlet of the all-metal gate valve to our main chamber is calculated to be 0.01 L/s.

For vacuum pumping, we employ a 150 L/s Starcell ion pump from Varian, a titanium sublimation

pump (TSP), and a 200 L/s NEG. The TSP gives us the largest pumping speed, in excess of 1000

L/s for hydrogen in the chimney area of the chamber. We note that when one calculates capacity

for the TSP, one would expect the pump to saturate on the year timescale at 10−11 Torr level.

However, we have not noticed a rise in pressure from the ion gauge, and so we have not refired

the TSP. Interestingly, the story is the same with Sr2. Since the TSP does not provide efficient

pumping of inert gases (argon, xenon, etc), we add the ion pump. This is especially important since

anytime we replace the oven, one dominant gas will the be argon from the back-filling process.

5.1.2 Assembly and bake-out procedure

Given careful cleaning of the in-vacuum components, our chamber should mostly be limited

by the level of hydrogen outgassing of the chamber walls and the achieved pumping speed. Based

on an initial 150 C degree vacuum bakeout of the empty chamber (all steel blanks, no payload),

we estimated our initial steel outgassing rate to be 3× 10−12 mbar L s−1 cm−2. It has been shown

that vacuum baking steel vacuum chambers at a temperature greater than 400 C for a long period

of time can reduce the hydrogen outgassing rate by as much as a factor of ten [125]. We removed

all viewports and vacuum pumps except for the turbo-molecular pump (TMP), and proceeded to

bake the chamber at 400-450 C for 25 days. At this elevated temperature, we observed the partial

pressure of hydrogen to decrease from 1.5× 10−5 Torr down to 3× 10−6 Torr, indicating an overall

reduction of the hydrogen outgassing rate of nearly a factor of three.

With the steel in the main chamber thoroughly baked, next we needed to ensure that all
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objects placed in vacuum were properly cleaned. The surface area of the MOT bucket is not

negligible, and all of the inner walls that are exposed to vacuum are steel. Since these parts had

been fabricated in the shop, we opted to sonicate the MOT bucket upside down in an Alconox

water bath for 30 minutes, followed by a solvent rinse. Since the MOT bucket has several in-

vacuum welds, we combined a vacuum test with a pre bake of the MOT bucket. The MOT bucket

was attached to a brand new 10 inch diameter nipple, and was subsequently vacuum baked at 150C

for 7 days. The final pressure reading of this MOT bucket prebake reached the low 10−10 Torr

level, limited by the RGA noise floor.

Our science cavity design employs viton for vibration decoupling. The LIGO collaboration

has found that viton can outgas a significant amount of hydrocarbons under vacuum, especially

above a temperature of 180◦ C. Since this viton is relatively close to our high finesse mirrors, we

took extra care in preparing these pieces for our system. For vacuum cleaning the viton, we followed

the LIGO cleaning procedures with some modifications :

1. Ultrasonic bath in Alconox for 15 minutes

2. Ultrasonic bath in de-ionized water for 15 minutes

3. Vacuum bake at 180 C for 72 hours

The cavity pieces that are machined out of copper were cleaned ultrasonicly with Alconox,

and then in the “usual three solvents” of isoproponal, acetone and methanol. In order to ensure

cleanliness and to increase the emissivity of the copper, we then air-baked at 150C for approximately

3 hours. This air-baking made the cavity spacer a reddish-brown color - indicating the formation

of a Cuprous Oxide coating, which has a higher emissivity than polished copper. This will increase

the relative contribution of the copper to the black-body radiation environment of the atoms, thus

giving higher control and knowledge of the thermal environment. The final assembly procedure

was an involved effort of stringing various kapton wires through the cavity assembly. The electrical

feedthrough we used is part number : IFTRG327013, which uses a MIL-C-26482 style connector

with 32 total pins. Of these 32 pins, we use 4 for the two PZTs, and 10 total for the in-vacuum

thermal sensors.
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Figure 5.1: (a) Angle-view of the MOT bucket. The smaller MOT bucket pieces are welded
together on a 10 inch conflat flange that is bolted to the bottom of the chamber. (b) Side cut-view
of the MOT bucket. The MOT coils and the cooling fixtures inside the MOT bucket are labelled.
In total, there are 5 in-vacuum welds.

5.2 MOT bucket design

The MOT bucket was designed to provide a space inside the vacuum chamber to produce

the ultracold atomic sample for cavity QED. The MOT coils are placed 1.1 inches apart with an

overall diameter of 2.5 inches. We used solid-core, kapton coated 13 AWG wire from S&W wire

company, with a specified operating temperature up to 250 C. The MOT coils consist of 13 turns

of wire in two vertical layers, potted in a high-temperature non-ferromagnetic epoxy. This wire

configuration was chosen to make the coils compact, while simultaneously maximizing the surface

area contact with the watercooling fixtures that are affixed to one side of each coil (see Figure

5.1b). Four roughly calibrated sensors are installed inside the cooling fixtures, so in the future the

thermal environment can be monitored for accuracy studies.

Installing magnetic field coils with so much surrounding metal, especially the copper cooling

flanges can be worrisome in terms of generating significant Eddy currents. We measured the

responding magnetic fields inside the MOT bucket when we rapidly switch off the MOT coils, and



82

confirmed that we could switch the magnetic fields on the ms level. The presence of the copper

cavity further complicates the issue of Eddy currents, which we discuss and present measurements

of in section 5.8.1.

5.3 Accuracy considerations

5.3.1 Faraday shielding - DC Stark

One of the potential drawbacks of implementing a cavity QED clock is the electric field

produced by the cavity PZTs. In order to shield the atoms from the PZT voltage, we make use of

the cavity itself as a Faraday shield. The cavity spacer is directly grounded to the vacuum chamber

through the thermal braid, ensuring a good ∆V = 0 ground plane relative to the chamber, ensuring

that the cavity should not build up any significant electrical charge. The aperture cut through the

cavity for the cavity mode is the same diamter as the inner diameter of the PZT (6 mm). In

order to evaluate the efficacy of this design, we perform a COMSOL simulation of the electric field

distribution. The boundary conditions for the voltage are set by grounding the cavity spacer, and

also by an applied voltage to the PZT electrodes. The simulated electric field along the axis of

the cavity is shown in Figure 5.2. We consider the possibility of a surface charge on the surface of

the mirror of 1 nC. This amount of charge is considered to be a worst case scenario, as this was

the magnitude of charge seen by SYRTE that gave a large 10−13 shift with essentially no Faraday

shielding [126].

This same approach was taken in the recently built Sr1 system (described in [84]), where the

Faraday shield had the same inner diameter as the PZT. In Sr1, the DC Stark effect was measured

to be less than 10−18, and could be easily compensated down to the 10−20 level by applying a

small field. While we expect success with the Faraday shielding in Sr3, experiments will have to be

performed to confirm this. By mounting electrodes outside of vacuum, one should be able to apply

a larger enough electric field to check the dc Stark shift in Sr3.



83

−20 −15 −10 −5 0 5 10 15 20

Postition relative from atoms (mm)

10−24

10−23

10−22

10−21

10−20

10−19

10−18

10−17

10−16

F
ra

ct
io

n
al

fr
eq

u
en

cy
sh

if
t

200V, 1nC on mirror

20V, 1nC on mirror

0V, 1nC on mirror

Figure 5.2: COMSOL simulations of the DC electric field at the location of the atoms. We simulate
the effect of having 1 nC of charge distributed uniformly on the surface of one of the mirrors. Also
shown is the effect of an applied voltage on that same PZT. Even at the highest operating voltage,
the overall shift should be on the order of 1× 10−18.
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5.3.2 In-vacuum calibrated thermal sensors

Looking ahead, the hope is that Sr3 becomes a well-calibrated and accurate clock that can

make use of entanglement. In order to achieve the desired accuracy, we require good knowledge of

the thermal environment. For this reason, we calibrated four PT100 thermal sensors and installed

them in the cavity space and cavity support mount. You can see the two sensors mounted in the

cavity spacer in Figure 5.3a. The sensors are housed in a ceramic rod, where the wires are glued to

the ceramic rod, but the sensor itself is free floating to avoid strain related shifts of the resistance

calibration.

The sensors were first culled by performing repeated thermal cycles up to 150 C and back

down to room temperature. After each thermal cycle, the sensors were then checked by realizing

an ice melting point, by mixing doubled sitilled water with doubly distilled ice (frozen water). The

sensors that exhibited small jumps in the ice melting point value were subsequently calibrated. We

used a dry-block comparison method, where we couple the NIST calibrated sensors to a copper

block, and then couple our PT100 to that same copper block. We evaluated temperature gradients

across the block by comparing the temperature read by each reference sensors, and made sure that

the gradient was below 1 mK. Example calibration data for Rgrey is shown in Fig. 5.3b, with the

fit to the resistance data given by a quadratic function. The corresponding uncertainty resulting

from the fits, converted to temperature, is shown in Fig. 5.3c.

5.4 Laser systems and cooling

5.4.1 461 nm laser system and blue MOT

The blue laser system is a combination of extended cavity diode lasers (ECDLs) and injection-

locked lasers. Over time, the blue system in the Ye lab has become more centralized. The common

source is a blue laser locked to the atomic spectrometer. From there, a secondary Toptica 461

nm system serves as seed light for both Sr1 and Sr3. This secondary laser is offset locked to the

spectrometer laser. We then seed injection locked lasers. In the past, our lab has routinely used
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Figure 5.3: (a) Top view of the optical cavity. Shown are the two thermal sensors that are installed
in the cavity spacer. (b) Calibration of Rgrey in a dry-block comparison with three reference sensors.
(c) Calibration uncertainty for the two sensors as a function of operating temperature.
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injection locked lasers from Nichia operating near 100 mW. For Sr3, we opted to try out a new

500 mW blue laser diode as the injection locked laser [127] . By doing so, we could simplify the

blue laser system to only require two injection locked lasers to operate the experiment. The first

500 mW diode provides light for the Zeeman slowing. We find diminishing returns with increased

power in the Zeeman slowing beam and that 75 mW at the experiment is a healthy and reasonable

amount. Thus, to avoid the damage of the optical fiber, we attenuate the laser before fiber coupling

to the experiment. The second diode is split into two overall paths, one serving the 2D MOT and

the other for the 3D MOT. On the experiment side, the 2D MOT has about 20 mW total. Each

3D MOT beam has between 5-10 mW of power.

5.4.2 Repump lasers

Initially we utilized two home-built ECDLs for the 679 nm and 707 nm transition. These lasers

utilized anti-reflection coated laser diodes, neither of which were close to the desired wavelength at

room temperature, thus necessitating heating and cooling near the maximum rated temperatures.

We have since replaced these lasers with commercial ECDLs from AOSense. In either case, the

lasers are roughly set at the correct frequency using a wavemeter, and then frequency modulated by

about 1 GHz in order to address all of the hyperfine states. As a technical note - we generally find

that the blue MOT atom number is most critically dependent on the tuning of the repump lasers.

This indicates that a better scheme for the repump lasers would be to stabilize them either to an

optical cavity or an atomic reference (Sr hollow cathode lamp [128]). Then, one would directly

modulate the light with an EOM placing sidebands at precisely the correct frequencies, making

much more efficient use of the optical power.

5.4.3 689 nm lasers

To address the narrow, dipole forbidden transition of 1S0 →3P1, we require reasonable quiet

lasers with minimal frequency drift. We use two 689nm lasers, both homebuilt interference filter

ECDLs, which were originally designed by Ben Johnson in Adam Kaufman’s group, though the



87

rough design for interference filter lasers have been around for quite some years. Josie Meyer helped

us out by building a few of these ECDLs for the 689 nm laser system. We have one laser each for

the F=9/2 and F=11/2 transitions of 1S0 →3P1 in 87Sr. Each laser is phase-locked to the 689 nm

cavity system, which is an old “Ludlow” cavity that has an expected performance on the 1-10 Hz

level, well below any of our noise requirements for cQED experiments. To control the frequency of

each 689nm laser, we put the reference synthesizer for the phase lock into frequency modulation

mode. Then, we can either drive the FM port with an arbitrary waveform generator (AWG), to

achieve arbitrary modulation. For simplicity, we use an RF switch to change the modulation source

to a DAC channel, so we perform more simple linear ramps without having to reprogram the AWG.

Just before transferring the atoms from the blue MOT to red MOT, we ramp down the blue MOT

laser intensity to about 1/3 the initial value. This results in a colder blue MOT and optimizes the

transfer efficiency to the red MOT.

To capture atoms from the blue MOT to the red MOT, we need to broaden the laser linewidth

of the red trapping lasers in order to match the Doppler broadening of the ≈ mK temperature blue

MOT atoms. For this initial “broadband red mot”, we frequency modulate both lasers with sine-

wave modulation, and the modulation depth is ramped linearly along with the intensity of the red

MOT beams in order to adiabatically transfer atoms from a broadband red MOT to the single

frequency red MOT. In order to reach the lowest possible red MOT temperature, the final intensity

setpoint is ≈ 0.1 × Isat. Our final red MOT temperature is approximately 1 µK, as measured by

time of flight. One special note is that our F = 11/2 laser also serves as our cavity probe laser.

The detailed optics layout for the implementation of that laser as the cavity probe is shown in Fig.

5.12.

5.4.4 Optical lattice and transport

We trap the atoms in a vertically-oriented optical lattice formed by the interference of two

counter-propagrating 813 nm beams. The lattice beams are split at the laser breadboard. From

there, each beam goes through their own AOM and then independently fiber-coupled to the exper-
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iment. After the fiber outcoupler, the laser is picked off and intensity servoed. In order to stabilize

the relative phase of the two lattice beams, we form a Mach-Zender interferometer, using a dichroic

on the top breadboard as one of the beamsplitters. When the lattice beams are well-aligned, we

observe an interference fringe, and can use this fringe for locking the relative phase of the two

lattice beams. One issue is that the observed interference phase is not exactly the same phase that

the atoms will experience in the vacuum chamber. Through geometric arguments, one can see that

there is a differential phase. Thus, despite stabilizing the interference fringe phase, we must be

careful to shield the open path length as best we can so that the atoms experience a stable lattice.

As a bare minimum, we evaluate the inloop error of the phase-stabilization, shown in Figure 5.4.

We compare the inloop error of the phase stabilization to the laser noise model of Si3 and of MJM.

For the synthetic laser that probes the cavity, we adopt the Si3 stability below ≈ 100 Hz, and follow

MJM above ≈ 100 Hz. We approach the MJM noise model around 1 kHz, and are otherwise safely

below both laser noise models [129, 17].

Further improvements to this stabilization scheme can be considered. One drawback of

detecting the relative phase of the lattice at DC is that laser intensity noise is indistguishable

from phase noise. This means that we need to do a careful job at controlling the laser intensity

(something we want to do anyway, for lattice heating considerations). While we don’t show the

traces here, the out-of-loop laser intensity dominates over the phase noise for Fourier frequencies

above 10 kHz. This is the primary reason for not pushing the bandwidth of the phase stabilization

with this setup, as we will actually write the laser intensity noise onto the phase of the optical

lattice. Experimentally, we find that if we continue to increase the bandwidth, we start to suffer

from atom loss. Using an EOM to sense the phase difference at an RF frequency in a similar

configuration as described in [130] might allow for tighter phase control. Another consideration is

that there can be out-of-loop phase fluctuations. For this, shortening the out-of-loop path (although

it is already as short as possible given the optics layout), and better shielding of the environment

from pressure and tempertuare fluctuations is always the way to go.

After the atoms are loaded into the lattice, we transport the atoms in this movable lattice
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Figure 5.4: Lattice phase noise measurements. The free running lattice phase noise is the red
trace, and the locked inloop error is the black trace. For comparison, the laser noise models for the
two clock lasers MJM and Si3 are shown as the purple and cyan dashed curves. The photodiode
noise floor is the gray trace.

by ramping the frequency of the AOM in the bottom-up lattice beam. The motion of the lattice is

induced by changing the relative frequency of the two lattice beams and is given by

∆~vlat =
λlat
2

∆ν, (5.1)

where ∆~vlat is the velocity of the lattice and ∆ν is the relative frequency detuning of the lattice

beams. The transport waveform is shown in Figure 5.5. One important detail is that we mix three

frequency synthesizers together to form the AOM drive for the bottom-up lattice beam. In this

way, we can trigger three independent frequency ramp profiles corresponding to three transport

distances. This allows us to do smaller vertical manipulations of the cloud position relative to

the cavity, enabling the probing of multiple ensembles with the cavity. Future upgrades to the
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Figure 5.5: The left axis indicates the relative frequency detuning of the optical lattice beams
for transport, and the right axis is the corresponding velocity of the lattice. The total transport
distance is approximately 42 mm.

RF synthesis will allow for more arbitrary configuration of ramp profiles, including more gentle

Gaussian ramps instead of the linear ramps we employ here. Another consideration for future

upgrades is the fact that during our transports, we allow the lattice phase to free run. One worries

about this, especially in the differential clock comparisons of Chapter 7. One can imagine that

small phase fluctuations lead to displacement noise of the atomic cloud, and if a measurement

is sensitive to this position (i.e. with respect to the clock laser phase), this can be a source of

unwanted noise. More sophisticated servo control can keep the lattice phase servoed during the

transport operations. We also wish to have a focus-tunable lens so that the tightest confinement

can be applied to the atoms in both the MOT bucket and the science cavity. This would allow for

high radial trap frequencies, more easily driving the clock transition in the resolved radial sideband

regime Ω << ωR.
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5.5 Clock laser

The clock laser is critical to the operation of the Sr3 experiment. We discussed in detail the

Si4 and Si6 ultrastable laser systems in Chapter 2. Here we will discuss some of the critical aspects

of the clock laser as it applies to the Sr3 experiment.

5.5.1 Fiber noise cancellation

In order to drive the clock transition in a low noise fashion, we need to transfer the laser light

from the distribution center to the experimental table without adding appreciable phase noise. The

distribution center houses the injection locked laser, which receives its seed from the fully stabilized

clock light. We employ fiber noise cancellation (FNC), where we have a reference plane (mirror)

at the distribution center, and another reference plane at the experiment where the light is retro-

reflected through the fiber. By interfering the light from these two reference planes, we directly

measure the relative phase noise introduced by the fiber. The 0th order of the second AOM at

the experimental table is retro-reflected as the reference light. We feedback to the AOM at the

distribution center, with a bandwidth of ≈ 100kHz.

Due to the fact that we stabilize the 0th order, and the 1st order goes to the atoms, any

differential noise between these two paths will be seen by the atoms. To evaluate the differential

noise, we temporarily insert a retro-reflector in the path of the 1st order beam, while stabilizing the

0th order beam as usual. The 1st order beam will produce a beatnote at the photodetector that is

distinguished as a particular RF tone. If we move the retro-reflector and measure the phase noise

of this 1st order beat will tell us about the differential noise. The measured noise of this 1st order

beat is shown in Figure 5.6. When we place the 1st order retro close to the 0th order reference,

we observe the black trace, showing noise well below the laser noise model of Si3 (dashed line).

Moving the 1st order retro to just before the chamber, we see the noise is slightly larger, but still

at an acceptable level. We note that in order to achieve this noise performance, we cover the clock

optics with a crude enclosure of blackened aluminum foil, and close the enclosure around our entire
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optics table.

Furthermore, any differential noise between the 1st order clock light and the optical lattice

will also appear as clock noise. We place the clock retro for fiber noise cancellation as close to the

optical lattice phase reference as possible. To minimize any potential relative path length noise, we

cover the optics in a secondary enclosure of blackened foil.

5.6 Atomic state preparation

Now it’s time to put all of the above-described laser systems into action. The overall ex-

perimental sequence is displayed in Figure 5.7. The sequence starts with cooling and trapping

the atoms in a blue MOT. We send 13 A of current through our MOT coils, corresponding to an

anti-Helmholtz magnetic field gradient of about 30 G/cm. A rough estimate of the blue MOT atom

number is 10 million. At the end of the blue MOT, we linearly ramp the intensity of the 3D MOT

beams down in an out-of-loop fashion, by about a factor of 10. This leads to increased transfer

efficiency from the blue MOT to the broadband red MOT, giving ≈ 2x more atoms.

The red MOT operates on the dipole-forbidden transition of 1S0 →3P1 [131]. We transfer

the atoms from the blue MOT to a broadband red MOT by simultaneously turning off the blue

MOT beams and turning on the red MOT lasers at full intensity (≈ 1000I/Isat each). During

the initial broadband red MOT, the 689 nm trapping lasers are frequency modulated to ≈ 1

MHz wide for the 11/2 laser and ≈ 500 kHz for the 9/2 laser, respectively. The broadband to

single frequency transition is realized by linearly ramping the modulation depth of the frequency

modulation amplitude down to zero over 250 ms. Simultaneous with the frequency modulation

ramp, we linearly ramp the laser intensity down to less than Isat. Going to this low intensity

results in a red MOT temperature of about 1 µK, as measured by time-of-flight spectroscopy.

During nominal operation, the vertical optical lattice is kept on during the entire blue and

red MOT sequence, meaning that we are continually loading the lattice. We note that because the

813 nm trapping lattice causes an ac Stark shift of the 1S0 →3P1 transition, we optimize with this

inhomogenous shift always present. We suspect that we get away with this given the size of the
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optical lattice is ≈ 150 µm diameter at the MOT location, keeping the inhomogenous ac Stark shift

to an acceptable level. However, it might be possible to improve the red MOT by instead ramping

the optical lattice up at the end of the MOT sequence. This can involve frequency ramping the

red cooling lasers to compensate for the ac Stark shift, to optimize cooling of the atoms inside the

lattice.

After extinguishing the red MOT light, we perform optical pumping into the ground-state

hyperfine level
∣∣1S0,mF = −9/2

〉
. We apply a bias magnetic field of about 2 G along the Y direc-

tion, and shine on an optical pumping beam tuned near the
∣∣1S0〉 → ∣∣3P1, F = +9/2

〉
transition

with circularly polarized light, in order to pump the atoms into mF = −9/2. This optical pump-

ing is optimized by adjusting the frequency, intensity, and duration of the pumping, to achieve

approximately 70% of the atoms in mF = −9/2. We then move the cloud up into the cavity by

detuning the bottom-up lattice beam, as described in Section 5.4.4. Once there, we begin clock

state manipulation and QND probing. Future improvements will implement optical pumping in

tandem with sideband/radial cooling.

5.7 Cavity-stabilization 813nm laser

In the very early stages of the Sr3 experiment, we stabilized the cQED cavity to our M

Squared Ti:S laser. Over time we realized that the performance of this Ti:S was much noisier than

what we required for the cQED cavity stabilization. We would often see large amounts of frequency

noise manifest itself as intensity noise in the transmission of the cavity, and this signal was actually

a good diagnostic for when the Ti:S was misbehaving. We knew we could build a lower noise laser

than the Ti:S, albeit at lower power, so we decided to build an independent ECDL for the cavity

stabilization. This ECDL is based on the same design as our 689 nm lasers described in section

5.4.3. The 813 nm laser uses an anti-reflection coated laser diode from Eagleyard (EYP-RWE-

0840-06010-1500-SOT02-0000), and the interference filter is a 3 nm FWHM bandpass filter from

Iridian (MI000002). The free-running Lorentzian linewidth of this laser is ≈ 20 kHz, which is about

a factor of 10 better than the M-Squared Ti:S. One unfortunate note on this laser - we have had
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Cavity parameters

689 nm 813 nm

C 0.3 NA

g0/2π (kHz) 8.6 NA

L (cm) 6.9 6.9

finesse, F 16,000 8,000

κ (Hz) 157,000 (measured) 330,000

mode waist (µm) 71 75

T1 (ppm) 280 (specified) 200

T2 (ppm) 20 (specified) 200

total loss L 100 (estimated) 100 (estimated)

Table 5.1: Key parameters of optical cavity

the PZT fail on this laser twice during power outages. We therefore warn any graduate student

reading this thesis to not use the cylindrical PZTs from Thorlabs in any critical application.

5.8 cQED cavity

5.8.1 Cavity design and construction

Perhaps the most unique and critical aspect to the Sr3 experiment is the optical cavity. The

cavity parameters are shown in Table 5.1. We designed the cavity to operate on the λ = 689

nm 1S0 →3P1 transition. The cavity geometry and the atomic transition properties determine the

peak atom-cavity coupling, which we calculate to be g0/2π = 8.6 kHz. Correspondingly, the peak

single-atom cooperativity is given by C = 4g20/(κΓ) = 0.25. This enables us to enter the collective

strong-coupling regime (NC � 1) with a few thousands of atoms.

The cavity is designed as a single-ended cavity at 689 nm, with specified mirror transimission

values of T1 = 280 ppm and T2 = 20 ppm. This means that intra-cavity light will preferentially

exit through the input mirror, making that the optimal measurement port for quantum efficiency.

Before baking the system, we measured a cavity finesse of F = 20, 000, which was consistent with

the specified transmission values of the mirrors and negligible optical loss. We knew the bake out
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Figure 5.8: Measurement of the cavity finesse at 689 nm by monitoring the transmission after
abruptly shutting off the light. The black data and fit are before the bake out, giving F = 20, 000.
The red data and fit are after the chamber bakeout, giving F = 16, 000. As a check, we temporarily
move the photodetector to before the cavity (gray data), to confirm our light shut-off time is
sufficiently short.
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process can be a risky time for such high reflectivity mirrors. To try to minimize the thermal

gradients in the chamber, we heated up the chamber over the course of ≈ 24 hours. Although

the bakeout was successful in reaching the 10−11 Torr level, the cavity finesse ended up degrading

during the bakeout. We calculate that the cavity obtained an additional loss of L = 100 ppm.

We suspect that this increase of loss could have come from a deposition of residual hydrocarbons

in the chamber. The primary consequence of the increase in loss is a decrease in the first mirror

transmission rate κ1 relative to the total cavity power decay rate κ. This is quantified and referred to

as the quantum efficiency for the cavity Qcav = κ1/κ, which went from Qcav = 0.85 to Qcav = 0.75.

This results in a change in the overall quantum efficiency of just 5%. Given the nonzero chance that

cleaning the mirrors could actually make things worse, we opted to move foward with the slightly

degraded mirrors.

For cavity stabilization, the cavity mirrors also have high reflectivity at 813nm, with the

cavity parameters at this wavelength shown in the second column. The cavity linewidth at 813nm

is 330 kHz. This relatively narrow linewidth at 813 nm of κ813 = 300 kHz was chosen to make

cavity stabilization less susceptible to technical effects like RAM. However, the narrower linewidth

comes with the tradeoff of needing to deal with the problem of FM to AM conversion.

A closeup photograph of one of the cavity mirror assemblies is shown in Figure 5.9, and a

full view of the cavity is shown in Fig. 5.10. The cavity employs two PZTs supplied by Noliac, one

having 13.2 µm travel (NAC2123-H10-A01) and the other having 3.3 µm travel (NAC2123-A01).

The idea is that the longer travel PZT could allow us to attempt to make the 813nm mode closer

to the magic wavelength, but for the experiments in this thesis we have not used the longer travel

PZT. We note one consideration to PZT stacks is that the conversion from voltage to displacement

is multiplied by the number of PZTs glued together, in our case 4x. For the 100 Hz linewidth

goal of our stabilization, the high voltage PZT driver can be a significant source of noise. The

PZTs are glued to the copper plate using a very thin layer of EpoTek 353ND epoxy, and then a

copper “mirror cup” is glued to the top of the PZT with the same epoxy. The mirror cup has three

extrusions to gently center the mirror on the cup. The mirror is glued in the midplane of the mirror



99

mirror

grounded cup

PZT stack

plate

spacer

Figure 5.9: Up close photo of the mirror assembly with the PZT stack. You can also see two of the
Ceramabond epoxy joints holding the mirror inside the mirror cup. The whole epoxied assembly
is bolted to the cavity spacer with four vented screws, of which two are visible here. The other
mirror, is identical apart from the overall height of the PZT.
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using a ceramic based adhesive Ceramabond 853. Prior to choosing these epoxies for use in our

vacuum chamber, both epoxies were vacuum tested using a residual gas analyzer, demonstrating

outgassing limited in the test chamber at to the 10−10 Torr level. We note that when gluing cavity

mirrors for optical cavities - it’s critical to choose an epoxy that does not induce a large amount of

stress on the optic. During the first gluing of the mirrors for the Sr1 buildup cavity, we found that

353ND epoxy could go as far as to shatter the fused silica optic, which drove us to the more gentle

ceramic-based adhesives.

The mechanical support for the cavity is a double pendulum isolation scheme. We suspend

a heavy intermediate piece of copper from the vacuum chamber with three short rods of viton

serving as the lossy spring. The optical cavity is then suspended from this intermediate piece

with three more pieces of viton. The idea of this double pendulum is that it will greatly attenuate

vibrations coupled to the cavity above the resonant frequencies. By simulating the coupled system in

COMSOL, we predicted that the resonant frequencies of this mechanical system would be clustered

between 10 - 50 Hz. In hindsight, while these mechanical resonances do indeed improve the higher

frequency noise of the optical cavity, it poses significant challenges when our cavity frequency

measurement window lasts 40 ms. Future experiments that further reduce the atomic motion

might permit measurements with shorter duration, taking further advantage of this mechanical

isolation scheme.

While copper has nice properties for vacuum and BBR, there is the downside of being capable

of supporting significant Eddy currents. The largest change in magnetic flux will occur when we

switch the MOT field and when we ramp on the clock bias field. These changes in B field can

and will induce currents in the copper spacer, leading to time-dependent forces on the cavity

Furthermore, these Eddy currents could take considerable time to damp out. To mitigate this

effect, we used a wire-EDM to cut a very small slot in the optical cavity and the supporting copper

piece. We measured the effect of including such a slot using a test spacer. We suspended the cavity

test spacer from the upper copper piece, and mounted these pieces above the MOT bucket. A

3-axis magnetometer was placed inside the cavity spacer, and we rapidly switched off the current
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Figure 5.10: Full view of the cavity, as it would be seen from below after installation. In clear
view are the two mirrors. Also visible is the slot we cut in the cavity, to reduce Eddy currents.
The cavity is mounted onto an aluminum jig that was used to secure the cavity during installation
of the various components.
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in the MOT coil and measured the time response of the magnetic field (Figure 5.11). We checked

the response with no cavity present (orange), with the cavity but without the slot cut (blue), and

the cavity in with the slot cut (green).

5.8.2 Cavity stabilization

In this section we will describe the cavity stabilization scheme that we used for most of our

early experiments in Sr3. The requirements for the frequency noise performance depends on several

factors. The primary one is the magnitude of the cavity frequency fluctuations due to quantum

projection noise. When we are operating in the slightly detuned regime, the QPN fluctuations

are roughly 2 kHz for approximately 10,000 atoms. If we want the technical noise floor coming

from relative laser - cavity frequency noise to be 20 dB below QPN, we need to reach a frequency

resolution of 200 Hz. As we will discuss, the timescale of the probing will change what Fourier

frequency we are sensitive to, and this can impact the strategy for stabilization. To put this in

context for our experiment, we probe the cavity with a measurement time of 40 ms, meaning that

we need to focus on frequency noise in the range of 1 - 100 Hz.

The simple idea is to make the cavity length as stable as possible for cQED probing of the

atom-cavity system. To this end, we first stabilize the 813 nm ECDL laser described in section 5.7

to the optical frequency comb by feeding back to the current at high frequency, and to the PZT of

that ECDL at lower frequencies. We achieve a locking bandwidth of ≈ 300 kHz. This allows us to

stabilize this laser down to the noise floor given by Si3+comb in addition to the uncancelled fiber

noise floor between the ECDL and the comb. We then send this 813 nm light to the cQED cavity,

and stabilize the cavity length to the ECDL via a PDH lock, feeding back to the cavity PZT. For

the experiments in this thesis, we keep the intra-cavity lattice at a low level so as not to significantly

trap the atoms along the cavity. To this end, we turn the incident power down to ≈ 10 µW, and

actively stabilize the power in transmission of the cavity. After the bakeout the cavity has a finesse

of ≈ 6300 at 813 nm, leading to a power buildup of ≈ 1200. We estimate that our operational

trap depth in the cavity is ≈ 0.1Er. The relative large finesse for 813nm allows us to more easily
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Figure 5.11: Response of the magnetic field when rapidly switching off the current through the
MOT coils. The magnetometer is placed inside a test cavity spacer having roughly the same
geometry as our actual spacer. We measure the response without the spacer (orange), with the
spacer (blue) and with the spacer but with a slot cut into it (green). We show a dramatic effect of
including the slot in the spacer, showing a faster damping time constant of induced Eddy currents
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The 689nm laser is pre-stabilized to the red cavity system. The 689 ECDL is split into the LO and
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Figure 5.13: Frequency diagram of the cavity modes and of the different laser light tones. The bare
cavity frequency ωc is detuned from the bare atomic resonance ωa by δc/2π = 1 MHz. The cavity
is shifted by the presence of atoms in the ground state |↓〉. The relavant frequencies are shown.
The carrier is synthesized by frequency shift of AOM-2, and the sideband that probes the cavity
is generated by the EOM drive. The LO is correspondingly frequency shifted to be on resonance
with the sideband for homodyne detection.

stabilize the cavity length, since a narrow cavity resonance makes issues like RAM less worrisome.

The tradeoff is with FM → AM conversion, making the implemenation of an intra-cavity lattice

more challenging.

To measure the noise floor set by the relative fluctuations of the laser and the cavity, we probe

the cavity with a relatively large optical power (nW or so). We do this so that the photon shot noise

limit is negligible, and we can unveil the technical frequency noise floor that does not depend on

optical power. The relevant noise measurements are shown in Figure 5.14. For reference, the free-

running cavity noise is the purple trace, showing enormous noise at lower frequencies. The inloop

error of the 813nm lock to the comb is the blue trace, showing more than sufficient stabilization.

We note that this is an optimistic trace, as there is a 30 m optical fiber that is currently not fiber
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of loop noise measurement. We can see the frequency bands where we are still limited by the inloop
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noise cancelled, and can easily be a contributor to noise at the 100 Hz2/Hz level. The inloop error

of the cavity lock to the 813 nm laser is shown as the gray trace. When we then probe the cavity

with the pre-stabilized 689nm laser, we measure the frequency noise spectrum shown as the red

curve. We can see the servo bump at around 1 kHz, which is limited by the ringing up of mechanical

resonances starting at 1.2 kHz and 2.5 kHz.

To measure the cavity frequency, we employ homodyne detection of the probe laser. For the

cavity QED experiments described later in this thesis, we will be doing repeated cavity frequency

shift measurements, where the cavity resonance has been shifted by the presence of atom in the

ground state. We will refer to the repeated probe of the cavity resonance as “two window probing”.

The transfer function for a two-window measurement is

T (f) =
4 sin2 (πf(Tm + τm)) sin2 (πfTm)

(πfTm)2
. (5.2)

We can multiply the measured noise spectrum (red trace from Figure 5.14) with this transfer

function and predict the noise of the two window probing. When we perform this calculation,

we find that we can push the technical noise of two repeated cavity frequency measurements to

approximately 200 Hz rms for a measurement time of Tm = 40 ms.

Looking forward, one can imagine various ways to improve the cavity stabilization system.

The relative frequency noise between the 689 nm laser and the locked optical cavity is largely

limited by the inloop stabilization of the cavity in the band from 30 Hz to 1 kHz. Since there

are already strong correlations between the frequency noise at 689 nm and the inloop PDH error

signal at 813 nm from 20 Hz - 10 kHz, one could imagine implementing feedforward with no need

for any changes to the hardware. As an alternative to feedforward, one could directly improve

the relative noise by implementing a more sophisticated loop transfer function that compensates

for the mechanical resonances, allowing for a higher bandwidth. Either of these approaches would

improve the ultimate technical noise floor of the cavity frequency measurement system. Further

improvement to the low frequency noise below 20 Hz would also be beneficial. A primary suspect for

the excess low frequency noise is residual amplitude modulation in the 813 nm cavity stabilization
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lock.

5.9 Homodyne interferometer

The homodyne interferometer is shown in the lower right corner of Figure 5.12. This is

where we will measure the leakage light from the atom-cavity coupled system to perform QND

measurements. The primary goal is to achieve a photon shot noise limited homodyne detection of

the optical tone probing the atom-cavity system.

Performing homodyne detection combined with our somewhat long probe time of 40 ms means

we are increasingly sensitive to low frequency noise. We found that pointing instability of the LO

beam on its own (with the signal port blocked) could give rise to significant low frequency noise

in the output of the homodyne photodetector. We confirmed the source of the low frequency noise

by picking off a small fraction of the beam near the homodyne PD and detect it with a quadrant

PD. There were significant correlations between the homodyne noise and the beam position as

measured by the quadrant PD. We then reconfigured the interferometer to keep the path as short

as was reasonably possible, and intentionally tilted optics to prevent optical etalons. Furthermore,

we enclosed the optics surrounding the cavity in a secondary box, although with an imperfect seal,

and found that this greatly improved our low frequency noise performance.

The homodyne fringe is detected using a home built balanced photodetector. The photode-

tector operates in current-subtracting mode, where the two photodiodes are wired back to back

such that the sensed current is the difference between the two photocurrents. The technical dark

noise of the photodetector is ≈ 31 dB below the LO photon shot noise for an LO power of 80

µW. This photodetector design has advantages in simplification of the electronics, but means that

there is not a convenient way to electronically balance the two ports for optimal intensity noise

suppression. While one can fine tune the balance of the beamsplitter with polarization/alignment,

we add a safety cushion by adding active intensity control to both the LO and cavity probe beams,

The combination of active stabilization of the LO intensity and the common-mode rejection of the

LO intensity noise allows the homodyne detection to be nearly photon shot noise limited.
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There are two primary sources of technical noise on top of the photon shot noise. We send the

LO beam through the homodyne interferometer, and measure the output noise (Figure ??). Note

here that we do not add any extra gain at the output of the photodetector, so the photocurrent

noise is amplified by the transimpedance gain of 106 Ω. In Figure ??, we can see the noise rises

with a 1/f scaling, and fit a noise model to the data shown as the orange line. The expected photon

shot noise is the red dashed line, and the dark noise is the solid blue line.

If one looks at the noise of the LO alone (signal port blocked) through the homodyne beam-

splitter and detection, there are significant peaks in the noise spectrum (Figure 5.15). We placed an

accelerometer on the table near the homodyne interferometer, and discovered strong correlations

with the homodyne output voltage at certain frequencies. The distinct frequencies at ≈20 Hz and

≈30 Hz come from air conditioning motor vibrations. There is another cluster of peaks in the

300-400 Hz range that we identified to be the mechanical resonances of the optical breadboard that

houses all homodyne optics. Our understanding of the coupling between vibrations of the optical

breadboard and the homodyne output voltage is that the vibrations drive differential pointing noise

of the LO beam through the interferometer. There can easily be differential etalons between the

two paths after the beamsplitter to each photodiode. Such a differential etalon could give a varying

intensity due to mechanical fluctuations. Interestingly, we have found that the amplitude of the

vibration induced peaks in the homodyne spectrum depends on the precise alignment of the LO

beam. This needs to be kept in mind when optimizing noise performance of the homodyne detec-

tion. Thinking toward the future, it will be advantageous to make the homodyne interferometer

even more compact. An improved design would involve mounting all of the optics to a common

chunk of metal in a very compact fashion. The optics would be completely enclosed so as to prevent

air currents from giving time-varying etalon effects. The one downside is the compactness of the

optics can make it difficult to avoid spurious reflections, but should still be manageable.

When we are making measurements of the cavity frequency, we synchronously record the

homodyne signal and the accelerometer output on an oscilloscope (Picoscope), and perform sub-

traction of the vibration trace in order to reach the photon shot noise limit. The only free parameter
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in the subtraction is the arbitrary scale factor between the homodyne voltage and the accelerometer

voltage - there is no significant phase shift between the signals.

5.9.1 Path length stabilization

As seen in Figure 5.12, we split the 689 nm laser into the probing path and the LO path. Any

relative path length fluctuation between the two paths will lead to relative phase noise between

the probe light and the LO light. When probing with heterodyne, this phase noise can impact the

measurement, but slow overall relative phase drifts are less of a concern, since the heterodyne signal

spends equal time in the I and the Q quadrature. However, when probing the cavity on resonance

with homodyne detection, we need to actively control and set the relative phase. This is because

the most sensitive quadrature on resonance is Q, and any deviation will distort the homodyne

signal and reduce the signal to noise ratio. We thus implement a path length servo, shown in the

bottom of Figure 5.12. We detect the beatnote between the carrier and the LO beam, which are

shown in frequency space in Figure 5.13. This beatnote is stabilized to a reference synthesizer by

feeding back to AOM-1 in the LO path. We note in passing that this path-length beatnote appears

at the same exact frequency as the EOM drive.

We mention one minor technical detail regarding the RF driving. While one could simply

split the RF drive for the EOM and use that synthesizer as the phase lock reference, we opt to use

two independent synthesizers that are phase locked to the same 10 MHz microwave reference. This

way, one can change the relative phase by adjusting the synthesizer settings, instead of dealing

with delay lines, or other ways of setting the relative phase. The downside is that the relative

phase noise is not common-mode at higher frequency. Therefore we opt to use a low phase noise

synthesizer SRS SG382, such that the contributing phase noise of the synthesizer is well below the

technical noise floor of the laser-cavity system. Another consideration for the path length servo

is the photon shot noise. The power in the carrier is approximately 150 nW. This relatively high

carrier power compared to the probe sideband means the photon shot noise limit will not degrade

the signal to noise of the detection of the sideband. One could imagine turning down the carrier
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Figure 5.15: (a) Measured output of the homodyne voltage (blue) and the accelerometer (orange)
placed on the optical table near the homodyne interferometer. Both signals have been bandpass
filtered in software to make the correlations clearly visible. (b) The same signals in the frequency
domain. After we subtract the accelerations from the homodyne voltage, we can see strong can-
cellation of the noise peaks at 20 Hz and 30 Hz, without impacting the homodyne noise at other
frequencies. We note here that the photodiode voltage is amplified by a voltage factor of 25, on
top of the 106 gain of the transimpedance amplifier.
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power by a factor of 10 without facing serious consequences.



Chapter 6

Generating and measuring entanglement on the Sr clock transition

With this newly built Sr3 experiment, we can now ask: can we directly observe an optical

clock ticking with fluctuations below the fundamental limits set by the quantum projection noise?

Before even dreaming of obtaining that result, there were many aspects of the system to

implement and iron out. In this Chapter, we discuss performing state-of-the-art clock spectroscopy

in our system, and use it to understand the limitations imposed by atomic motion. In Section 6.2, we

establish coupling between the atoms and the cavity mode, entering the strong collective coupling

regime. In Section 6.3, we directly measure the QPN, allowing us to carefully calibrate the effective

atom cavity coupling geff . We then demonstrate QND measurements with measured spin noise

reduction of -4.7 dB below QPN. Together with measurements of the Ramsey fringe contrast loss,

we measure a spin squeezed state that has phase resolution 1.7 dB below the Standard Quantum

Limit, verifying the presence of entanglement.

6.1 Clock spectroscopy

We first explore the temperature of our atomic sample by probing the atoms with clock

spectroscopy. As the simulations from Chapter 3 suggest, and by intuition, we know that we are

going to be happier with a colder atomic sample. We take a brute force approach to prepare a

gas with temperatures less than 1 µK. After the initial state preparation described in Section 5.6,

we remove the higher temperature atoms by applying a “lattice ramp”, which involves ramping

the optical lattice to ≈ 7Er over 10 ms, hold there for 20 ms, and then back up to 20Er in 10



114

−40 −30 −20 −10 0 10 20 30 40

Clock detuning (kHz)

0.0

0.1

0.2

0.3

0.4

0.5

E
x
ci

ta
ti

on
fr

ac
ti

on
lattice ramp

sideband cooling

no cooling/ramp

Figure 6.1: Sideband scans of the clock transition. Without any ramping of the lattice or additional
cooling (green), with sideband cooling (red), and with the lattice ramp along (black). The lattice
ramp gives a sample prepared primarily in the ground motional band 〈nz〉 = 0, and a narrower
blue sideband (radial temperature). The carrier signal is heavily saturated in this clock scan.

ms. The ramp is adiabatic with respect to the fast motion along the tightly confined direction,

and quasi-adiabatic with respect to the radial motion. There is no phase-space compression in this

lattice ramp, it instead lets the hotter atoms to simply leave the trap. It is a bit of a shortcut

compared to implementing efficient radial and sideband cooling. At the expense of throwing away

about half of our atoms, it easily leads to a cold sample of 20,000 atoms.

We perform sideband clock spectroscopy in order to look at the population of higher motional

bands (Figure 6.1). The sideband spectrum just after transport and optical pumping but without

further cooling strategies is the green trace, giving a temperature of 1.2 µK. We compare just

sideband cooling vs just the lattice ramp alone in the red and black traces, respectively. Both lead

to 〈nz〉 → 0, but the lattice ramp also leads to a colder radial sample as seen by the width of the

blue sideband.
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Extracting the radial temperature from the blue sideband is not a reliable method. To

carefully measure the radial atomic temperature, we perform radial scans of the clock transition.

For this, we send the clock laser along the radial direction of the trapped pancakes in the 1D lattice.

In this scenario the clock laser probes the atoms well outside the Lamb-Dicke regime, and will be

sensitive to the Doppler shifts of the radially moving atoms. By scanning the frequency of the

clock laser, we directly access the Doppler limited linewidth. This measurement is shown in Figure

6.2, where the red data points is without the lattice ramp, and the black data points are with the

lattice ramp. The extracted radial temperature is 447(20) nK without lattice ramp, and 291(22)

nK with the lattice ramp.

With the atomic temperature nice and cold, we proceed by zooming in on the optical tran-

sition. The background magnetic field is nulled to zero at the location of the cavity by performing

clock spectroscopy with all 10 ground-state spin states present. When the applied bias field exactly

cancels the background magnetic field, all 10 π-transitions will be degenerate. By adjusting the

fields in the X, Y, and Z direction and iteratively zooming in on the carrier by probing with longer

π-pulses, we achieve a Fourier limited linewidth of 5 Hz. We do not push this further as we do not

plan a long interrogation time at the first stage of spin squeezing experiments.

To remove the atoms in hyperfine spin states other than mF = −9/2, we apply a “cleanup

pulse”. This involves driving a clock pulse on the magnetic sub-level transition (mF = −9/2 →

mF = −9/2), and then blowing away all of the remaining ground-state atoms that were either not

promoted to the excited state using a pulse of 461 nm light. With the pure initial excited state,

we are finally ready for spectroscopy. In the same bias magnetic field, we can drive the atoms and

observe the Rabi flopping between the ground and excited clock states.

For example, we probe the atoms via Rabi flopping with a Rabi frequency of 12 Hz in Figure

6.3a and 111 Hz in Figure 6.3b. We observe dephasing of the Rabi flopping. This is particularly

relavant for squeezing experiments where we need to apply several pulses to manipulate the atomic

state. To attempt to understand our loss of contrast, we explore the model presented in [132]. In

that work, a finite misalignment angle between the clock laser and the optical lattice is considered.
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Figure 6.2: Radial Doppler scans of the clock transition. Red data points are without the lattice
ramp, black points are with the lattice ramp. The radial temperature extracted from the Gaussian
fits (corresponding dashed lines) are T=290(10) nK for with lattice ramp, and T = 447(20) nK
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Due to this finite angle, there is a projection of the radial motion along the axial clock, modifying

and reducing the Lamb-Dicke parameter. We fit our measured data to a model from [132], plugging

in our measured radial temperature, and those fits are shown as the solid red lines in Figure 6.3.

These fits suggest an overall angle between the clock and lattice of 2.2 mrad.

We also perform Ramsey spectroscopy experiments, and explore the Ramsey contrast versus

the dark time T for different pulse sequences. For the simplest Ramsey type experiments, we

measure Ramsey contrast of 90 to 95%, as seen by the black points in Figure 6.4. However, for

our spin squeezing experiments, we will be required to apply several clock pulses to manipulate

the atomic state in the clock manifold. These clock pulses will be separated in time according to

the time duration of the population measurements. One can imagine that radial motion will again

play an important role in these pulse sequences. As shown in Figure 6.4, we can see by adding
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the necessary clock pulses reduce our contrast to the 70% level. This is further reduced by adding

dwell time between the π/20 and the π0, which is necessary for the QND measurements.

One other crucial takeaway for Ramsey contrast is in relation to our previous discussions

of atomic temperature. We have found that the Ramsey contrast can be negatively impacted

with hotter atoms. This again suggests that atomic motion is playing an important role in the

atomic coherence. The clear way forward is to freeze out the motion by implementing more atomic

confinement with a 2D or 3D optical lattice.

6.2 Entering the collective strong-coupling regime

To realize the coupled atom-cavity system, we first need to align the lattice beam to the

cavity mode. Most cavity QED experiments trap the atoms in the cavity mode, but we have a more

unconstrained geometry without strong trapping in the cavity. Rough alignment is obtained by

imaging the atoms through the second mirror (T≈0.5 at 461 nm) onto a CCD camera. By observing

the transmitted cavity mode on the same CCD, rough alignment can be obtained. However, if the

cavity mode is not well centered on the imaging lens, there can be small errors in this technique,

and thus we look directly for the vacuum Rabi splitting as a measure of successful alignment. To

more easily obtain the first signal, we operated with all 10 spin states in a nominally zero magnetic

field, so all of the different spin states added together in the vacuum Rabi splitting, and we can

take advantage of the higher atom number.

Since we wish to avoid Raman spin flips, we choose to operate on the nominally cycling

transition |1S0, F = 9/2,mF = −9/2〉 → |3P1, F = 11/2, mF = −11/2〉. To couple to this

transition, we apply a 2 G bias magnetic field along the cavity optical axis (X direction), and

probe the system with σ− polarization. With the bare cavity tuned on resonance, we measure a

typical vacuum Rabi splitting of 750 kHz, as shown in Figure 6.5. Measuring the ground state atom

number amounts to measuring the vacuum Rabi splitting Ω↓ = 2g
√
N↓. Operating on resonance

offers several technical advantages. By simultaneously probing the two vacuum Rabi modes, and

taking the difference, one becomes insensitive to relative fluctuations between the laser and the
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Figure 6.5: Center : we show the eigenvalue spectrum of the atom-cavity coupled system versus the
atom-cavity detuning δc/2π. Left : When we tune the cavity onto the bare atomic resonance, we
observe the vacuum Rabi splitting, shown in the left plot. This demonstrates entering the collective
strong-coupling regime. Right : For the QND measurements, we operate in the slightly detuned
regime.
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cavity. This is because laser-cavity fluctuations will lead to an overall translation of the eigenvalue

spectrum in Figure 6.5a. One technical tradeoff for operating in this regime is the signal-to-noise

versus the loss of atomic coherence from the probing. This is because atom number fluctuations

cause the coupled modes to vary more than κ/2, which forced us to perform frequency sweeps

instead of fixed-tone probing. This could in principle be avoided by implementing an active servo

of the probe tones onto the coupled modes, but due to complexity we opted to not pursue that as

a first experiment.

Instead, we opt to operate in the slightly detuned regime. There are multiple trade-offs when

deciding on an operating detuning. As the operating atom number increases, one can afford to

detune the cavity further from the bare atomic resonance, if you want to fix the technical noise

floor relative to the QPN. For our experiment we set the atom - cavity detuning to δc/2π = 1 MHz.

We then observe the dispersive shift of the cavity mode due to atoms in the ground-state. At this

detuning, the operational cavity frequency shift is anywhere between 100 - 400 kHz depending on

the exact atom number. A fixed-frequency laser is then parked on resonance of the cavity-like mode

to measure the dispersive shift ω↓. For our highest atom numbers, the far-detuned approximation

for the frequency shift begins to break down, and we need to include relatively significant higher

order corrections to the usual g2/δc scaling. We can use the exact expression of the eigenvalues to

obtain an expression for the number of atoms in |↓〉 in terms of ω↓ as

N↓ = ω↓
δc
g2

(
1 +

ω↓
δc

)
. (6.1)

An optical π-pulse is then applied to swap the population between |↑〉 and |↓〉. The frequency shift

is measured again to determine the excited state population N↑. To zoom ahead, it is by measuring

these frequency shifts in a non-destructive way that we will generate entanglement via conditional

spin squeezing. After an initial π/2, we can make two repeated measurements of Jz, and since the

two measurements will contain highly correlated QPN, taking their difference allows us to subtract

the common quantum noise [111, 31]. By using that differential information, we will project the

atoms into a spin-squeezed-state (SSS).
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6.3 QPN and the effective atom-cavity coupling

With the strong-coupling regime in our wheelhouse, we now seek to perform conditional spin

squeezing. For that, we will make repeated measurements of the Bloch vector projection along z,

and take direct advantage of the correlated QPN in those two measurements. Here, we will make

full use of the low-noise cavity probing system we described in Chapter 5.8.2. It is therefore critical

to know the level of QPN so we can properly benchmark our QND measurements. It turns out,

and we will show derivations below, that the atom-cavity coupling constant g serves as the bridge

between QPN in terms of population fluctuations and cavity frequency shift fluctuations. We can

see this with a few lines of math and considerations. In the far-detuned limit, the shift of the

cavity-like mode is

ω↓ =
g2

δc
N↓ (6.2)

The noise from projection noise is ∆N↓ =
√
N/2. Since we infer the atom number from the shift,

one can show that the noise of the frequency shift is

∆ω↓ = g

√
ω↓
2δc

. (6.3)

We can then see in a straightforward way that measuring the QPN using our cavity QED system

is directly connected to the atom-cavity coupling g. A stronger atom-cavity coupling means that

QPN converts to larger frequency fluctuations, which makes good physical sense. We note that we

write g, but we really mean the effective quantity.

6.3.1 QPN in slightly detuned regime

We operate in the slightly detuned regime, where we have set a detuning of δc/2π = 1 MHz.

Even at our lower atom numbers, the shift is 100 kHz or greater. To fit g to our measured noise of

the differential cavity frequency shift ∆(ω↓ − ω↑), we require an expression for this noise in terms

of the sum shift ωsum = ω↓ + ω↑. The eigenvalues for the |↓〉 and |↑〉 states are

ω↓,↑ =
δc +

√
δ2c + Ω2

↓,↑

2
, (6.4)
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where the vacuum Rabi splitting for each spin state are Ω↓ = 2g
√
N↓ and Ω↑ = 2g

√
N↑. The

QPN fluctuation of the frequency shift is obtained by propagating the QPN noise ∆N↓ through

the expression

∆ω↓ =

∣∣∣∣ dω↓dN↓

∣∣∣∣∆N↓. (6.5)

For a CSS of N total atoms prepared by a π/2 pulse on the equator of the Bloch sphere with state

population N↓ = N↑ = N/2, one can express N in terms of the sum of measured frequency shifts

ωsum = ω↓ + ω↑

N = ωsum
δc
g2

(
1 +

1

2

ωsum

δc

)
. (6.6)

QPN for the two spin states is ∆N↓ = ∆N↑ =
√
N/2. We can calculate the projection noise

fluctuations of the frequency shift using the derivative of the eigenvalue expression. Projection

noise fluctuations of N↓ and N↑ are perfectly anti-correlated, and therefore ∆(ω↑ − ω↓) is twice of

the fluctuations of ω↓,

∆(ω↑ − ω↓) = 2∆ω↓ =
g2
√
N√

δ2c + Ω2
↓
. (6.7)

Using Eq. 6.6 and Eq. 6.7, the expression for characterizing g based on the measurement on QPN

fluctuations of the initial CSS is

∆(ω↑ − ω↓) = g

√
ω2
sum/2 + δcωsum
(ωsum + δc)2

(6.8)

6.3.2 Measuring QPN

We will now measure the QPN of our ensemble by looking at the fluctuations of (ω↓ − ω↑)

versus the total shift ωsum = ω↓ + ω↑. The pulse sequence for measuring QPN is relatively simple

as shown in Figure 6.6a. We perform an initial π/2 pulse to prepare a CSS on the equator of the

Bloch sphere. We measure the shift of the cavity-like mode for the ground state atoms, indictaed

by ω↓, perform a π pulse to swap populations, and measure ω↑. As we will now go into detail -

we need to be careful about the influence of technical noise in the clock rotations or the cavity
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Figure 6.6: (a) Pulse sequence for measuring QPN. Black open pulses correspond to clock rotations,
and the red pulses are cavity frequency shift measurements. (b) QPN measurement. The red
datapoints have no rotation noise subtracted, and the model including a linear term is fit (red
line) giving g/2π = 5230(213) Hz. The open blue circles have an estimated clock rotation noise
contribution subtracted, and is fit without a linear term giving g/2π = 5127(192) Hz.
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frequency shift measurements, as these can both mimic QPN, and give incorrect normalizations for

our conditional spin squeezing.

6.3.3 Noise in QPN measurement

When we perform a measurement of QPN, we have to be aware of systematic or technical

effects that can influence our determination of g. There is noise from both rotation noise and

the cavity shift measurements. At low atom number where the influence of QPN is small due

to the
√
N scaling, we run into our technical noise floor of the homodyne measurement. When

measuring QPN, we can feel free to turn up the optical power so that we can minimize the impact

of photon shot noise. Nonetheless, the combination of photon shot noise, backaction on the atoms,

and technical laser - cavity noise will all contribute, as seen by the finite offset at ω↓ + ω↑ = 0.

At higher atom number, as the length of the Bloch vector gets longer, rotation noise can start to

become noticeable in the measurements. In principle, the noise can come from amplitude or phase

noise of the clock local oscillator.

The pulse sequence for measuring QPN is relatively simple, as shown in Figure 6.6a. Let’s

first consider amplitude noise during the clock pulses in the QPN measurement sequence. We need

to consider the noise introduced in the π/2 pulse and the π pulse, since this added noise would add

in quadrature with the technical measurement noise and the true QPN. Let’s consider shot-to-shot

fluctuations ε in the clock drive Rabi frequency, and assume it is correlated between the π/2 and

π pulse for each shot of the experiment. If we tune the Rabi frequency to Ω0 to nominally give a

π/2 pulse with a pulse time of tπ/2, we can write the modified Rabi frequency as

Ω1 = Ω0(1 + ε) (6.9)

A Bloch vector undergoing evolution with a Rabi frequency Ω1 gives a Bloch vector angle of

θ1 = π/2 + επ/2. Since we are treating the ε error as correlated, the π-pulse will result in a further

angular deviation of πε, and so the two pulses together give the angular error of this pulse sequence
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is

∆θ =
3επ

2
(6.10)

This can be understood intuitively since we are treating the error as correlated, so the total pulse

area of the combined π/2 + π pulse is 3π/2.

Now we consider the pulse sequence we utilize to benchmark rotation noise, which is π/2 -

ω↓ - 2π - ω↓. Since we always take the difference between the two ω↓ measurements, and the initial

π/2 pulse is common to both measurements, this pulse sequence is sensitive only to the noise of

the 2 π pulse. Again, given the shot-to-shot error in the Rabi frequency of ε, the angular error of

this 2π pulse is

∆ω = 2πε (6.11)

Thus, to estimate the amount of rotation noise present in the QPN pulse sequence, we multiply the

benchmarked noise by the ratio (1.5/2) and subtract that in quadrature (taking the linear atom

number dependence into account).

We also take another approach where we allow for a linear term in our non-linear fit, and

see how large that term is, and how it impacts the extraction of geff . This is potentially an

appealing approach, since the rotation noise subtraction can be sensitive to your assumed model

of the rotation noise (amplitude versus phase, correlated versus uncorrelated noise). By allowing

for a linear term in the model, we allow for a generic classical rotation noise source. Fitting for g

this way gives g/2π = 5230(213) Hz, which is in good agreement with the method of subtracting

the measured rotation noise. We treat this as a consistency check, since the rotation noise term is

not perfectly linear in the shift. Our final result is taken as the value obtained by the subtraction

method, giving g = 2π × 5.1(2) kHz as shown in Figure 6.6b, and the bare cavity noise offset of

2π × 0.76(5) kHz.
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6.4 Conditional spin squeezing

6.4.1 Spectroscopic enhancement

The first method of generating useful spin-squeezing we pursued is conditional spin squeezing.

This involves making two repeated measurements of Jz = (N↓ −N↑)/2. In principle, we can make

this differential measurement with precision well below the level of QPN [34], and how far below

QPN is referred to as spin noise reduction R,

R =

(
∆(Jz,f − βJz,p)

∆Jz,QPN

)2

, (6.12)

where the numerator is the difference between the pre and final measurement, with β acting as

a Bayesian optimal estimator. The β deweights the pre-measurement, and will typically take on

a value from 0 - 1, depending on the strength of the pre-measurement. An important concept to

remember is that we have prior measurement about the state we prepare (Jz ≈0), and in principle

the noise of that prior distribution is set by the QPN. If the noise of the pre-measurement was

higher than the QPN level, and you imagined getting a result for Jz that was far from the expected

value near the equator of Jz = 0, you would clearly want to deweight that measurement, since you

know it is exceedingly unlikely that the actual state is far from Jz = 0 (ignoring real outliers due to

issues on the experiment). A further reason for a non-unity β is the fact that the pre-measurement

is taken at a lower probe power than the final measurement due to the backaction. One therefore

should deweight the pre-measurement accordingly.

To certify that the measured spin noise reduction arises from entanglement, one must weigh

R against the loss of coherence induced by the probe as measured by the Ramsey fringe contrast. In

other words - if the information leaks out to the universe via free space scattering into 4π sterradian,

then the system loses it’s entanglement.

The Wineland parameter, ξ, serves as a criterion for the generation of entanglement, and was

originally expressed as [108]

ξ = R
1

C2
f

, (6.13)
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where we weigh the spin noise reduction below QPN against the loss of signal induced by the

squeezing operation. This formulation of the Wineland parameter assumes an initial contrast of

Ci = 1. We further note that we have defined the QPN assuming unity contrast (all of the atoms

contribute to the cavity signal and corresponding noise), ∆Jz,QPN =
√
N/2. For our experiment,

we want to express the Wineland parameter taking into account an initial contrast Ci < 1. When

we have Ci < 1, the initial length of the Bloch vector is shorter, making the ∆θSQL worse by

a factor of
√
Ci. The Wineland parameter may be rewritten with the initial contrast taken into

account as

ξ =

(
∆(Jz,f − βJz,p)

∆Jz,QPN

)2 Ci
C2
f

(6.14)

= R
Ci
C2
f

, (6.15)

where Ci and Cf are the initial and final Ramsey fringe contrast, respectively. Another equivalent

way to think about ξ is by looking at the measured phase resolution relative to the SQL limit of

phase resolution,

ξ =

(
∆θm

∆θSQL

)2

(6.16)

where ∆θm is the measured phase resolution and ∆θSQL = 1/
√
CiN with Ci being the initial

Ramsey fringe contrast. This formulation has the advantage that it shows us exactly what we need

to measure in our experiment, which is the phase resolution of our state. The phase resolution

can then be easily mapped to Ramsey spectroscopy and how one gains enhancement of the clock

performance. Further, it is this relative phase resolution that intuitively shows why ξ is a witness

for entanglement.

6.4.2 Calibrating incident photon number

Here we include a short aside on how we calibrate and estimate the number of incident

photons on the cavity for a given QND measurement. While the practical method of benchmarking

the QND strength is by the loss of Ramsey fringe contrast, determining the incident photon number

will allow us to compare our measured spin noise reduction and contrast loss against theoretical
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predictions. To get our initial bearings, we first want to independently determine the optical power

in the sideband. For this we turn up the EOM drive such that we put at least 10% of the optical

power into the first order sideband. We can then measure the total optical power in the beam

incident on the cavity (in front of the viewport just before the cavity, loss in the viewport is on the

% level) with a power meter. By observing the relative size of the reflection dip on the cavity mode

for the carrier and the sideband, we can reliably determine the total amount of sideband optical

power incident on the cavity in units of Watts, labelled as Pinc,tot,cav. We label with “tot” because

this includes the part of the beam that is not actually modematched to the cavity. So we know

how much optical power is in that sideband, and we can track the optical loss from the incident

viewport on the chamber to the homodyne photodiode, and the fraction of power that makes it

to the photodetector is the path efficiency. We then know how much sideband optical power is

incident on the photodiode, and we label this as Pinc,PD. The power in the LO incident on the PD

is labelled as PLO. The expected peak-to-peak voltage assuming unity mode matching between the

reflected beam off of the cavity mirror and the LO is

Vp2p,ideal = 4SPDG
√
PLOPinc,tot,PD (6.17)

where SPD is the sensitivity of the photodiode (SPD = 0.48 A/W), G is the transimpedance gain of

the photodetector (G = 1MOhm). However, the finite mode matching between the reflected beam

and the LO leads to a smaller observed peak-to-peak Vp2p,obs. The ratio F = Vp2p,obs/Vp2p,ideal

depends on the quality of various mode-matching and alignment, and can typically be 0.6. To be

explicit, we rewrite the signal as

Vp2p,obs = FVp2p,ideal = 4FSPDG
√
PLOPinc,tot,PD (6.18)

and use this expression to infer Pinc,tot,PD. Using the path efficiency we can determine the incident

power on the cavity, but only a fraction of that incident beam is actually mode matched to the

TEM00 mode. We measure this mode matching by back-propagating a beam through the cavity,

and observe the back-coupling efficiency through the launch fiber. In the experiments shown in
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this thesis, the mode matching of the incident beam to the TEM00 mode was 0.75. With those

values, we can deduce the amount of optical power incident on the cavity in the sideband that is

actually mode matched to the cavity mode. This allows us to map measured homodyne signal sizes

to incident photon number, and use them to compare against predictions of photon scattering into

free space.

6.4.3 Spin noise reduction

We now demonstrate repeated measurements of Jz with differential resolution well below

QPN. After an initial π/2, we make a pre-measurement denoted by Jz,p, wait a dwell time of 20

ms, and perform the final measurement Jz,f (Figure 6.7a). While the pre-measurement fluctuates

with standard deviation ∆Jz,QPN =
√
N/2, the final measurement contains highly correlated QPN,

as seen by the strong correlations between the two measurements (Figure 6.7). We turn up the

photon number for the measurement of Jz,f to optimize the signal to noise of that final readout

measurement. The effect of β is to de-weight the pre-measurement so that we optimize the resulting

standard deviation of the difference. We directly observe spin-noise reduction R = −4.6(6) dB

relative to QPN at the optimal squeezing photon number of 2.3× 104 per measurement window.

We can ask the question - after taking into account the technical noise of the final-measurement,

what is the full spin noise reduction R that we can infer? To answer this, we assume that the readout

noise in the final measurement is uncorrelated with the pre-measurement. Due to our measure-

ment noise roughly matching our expected photon shot noise (see Figure 6.11), this is a somewhat

reasonable assumption to make. We then calculate the photon shot noise present in the final two

measurements, and subtract this off from our measured spin noise reduction. For example, for the

spin noise reduction shown in Figure 6.8, both measurements are taken at the highest probe power

of 4.2 × 104 photons per measurement. In this case the final measurement would contribute the

same amount of noise as the pre-measurement, and the inferred spin noise reduction is R = −8.5

dB. From a practical perspective, this inferred R is not what we could make use of in a real metro-

logical measurement. However, it tells us how much we could improve our conditional squeezing if
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Figure 6.7: (a) Pulse sequence used for measuring spin noise reduction. After an initial π/2, we
measure Jz,p, wait a dwell time τ , and then measure Jz,f . (b) The high-degree of correlations are
shown between Jz,p and Jz,f .
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Figure 6.8: The left panel shows the pre-measurement (red points) and the final-measurement
(open cyan points). The incident photon number per measurement is 4.2 × 104. The optimal
subtraction Jz,f −βJz,p is shown in the right panel. The dashed lines indicate the calculated QPN,
and the solid lines indicate the calculated standard deviation of the measured data. The spin noise
reduction here is R = −6.3(4) dB.

we could turn up our probe power arbitrarily high to make the final measurement noise completely

negligible. At the moment, we observe an increase of the noise at even higher power - indicating

extra noise from the light action on the atoms.

6.4.4 Ramsey contrast

For our conditional spin squeezing we measure the initial Ramsey contrast Ci without QND

probing using the pulse sequence shown in Figure 6.9a. We then add QND probing and measure

the final contrast Cf using the sequence in Figure 6.9b. To map out the fringe, we vary the phase

of the final π/2 pulse and record the excitation fraction which is defined as

fe =
N↑

N↑ +N↓
. (6.19)

Examples for the measured Ramsey fringe is shown in Figure 6.9c. The initial contrast with no

QND probing is the open green squares. We note that our initial contrast is degraded primarily by

the optical manipulations of the π pulse and the π/2 align pulse. When we add the QND probe,
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we see the contrast come down accordingly (black and red points). We note that we do not see an

appreciable phase shift of the Ramsey fringe. This leads one to believe that we have sufficiently

echoed away the ac Stark shift induced by the QND probe. The maximum phase shift that we

observe is 50 mrad.

We plot the measured fractional loss of contrast as Cf/Ci versus the incident photon number

per population measurement as the black points in Figure 6.10. The expected loss of coherence

from free-space scattering is

Cf = Cie
−Ms/N (6.20)

where Ms is the number of scattered photons. We estimate the expected number of scattered

photons by solving for the steady-state atomic excitation |〈b〉|2. The rate of scattered photons is

then Ṁs = Γ|〈b〉|2 (see Appendix C for more details). We clearly observe more contrast loss than

our free space scattering estimate. In principle this could be explained by a miscalibration of the

photon number, but the discrepenacy seems too large to be explained by this. It is also possible

that there is a second-order in Ms effect playing a role to the contrast loss. We need to further

explore our loss of contrast - and whether it depends on any other parameters in the system, like the

duration of the measurement window, π-pulse time for the clock rotations, etc. Another possible

excess loss of contrast could come from additional inhomogneous effects induced on the atoms due

to the QND probe. Better atomic confinement could lead to improved Ramsey contrast in both

the initial state and the final probed atoms.

6.4.5 Measured Wineland parameter

We systematically vary the number of photons incident on the cavity per measurement win-

dow, and measure the spin noise reduction R and the contrast loss Ci/C
2
f (Figure 6.11). For

example, turning on a QND probe with 2.3×104 photons per population measurement reduces the

contrast to Cf = 0.60(1). At this optimal probe power, the measured Wineland parameter reaches

-1.7(7) dB (Figure 6.11), a direct verification of spin entanglement in our system. If we want to

infer the amount of entanglement in the system before the final measurement, we need to calculate
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Figure 6.9: (a) Pulse sequence used for measuring the initial contrast with no QND probing
applied. (b) Pulse sequence for measuring final contrast Cf with the QND probing. (c) Open
green squares is the Ramsey fringe with no probing, black points is with 2.3×104 photons per
measurement, and red triangles is with 4.2 × 104 photons per measurement. We do not observe
any significant phase shift due to the probing.
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the noise of the final measurement to subtract in quadrature (assuming uncorrelated detection

noise). Using the model given by the cyan line in Figure 6.11, we subtract the final measurement

noise, and infer a Wineland parameter of -3.7(7) dB. This inferred value is not the useful amount

of entanglement, as real clock operation relies on the final measurement. It is insightful however,

since we can infer how much more squeezing we could expect if we could improve the cavity shift

noise at higher photon number.
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circles), and the corresponding Wineland parameter ξ (black circles). At the optimal photon
number, we directly measure a Wineland parameter of -1.7(7) dB. Expected R given our estimated
quantum efficiency of Q = 0.28 (cyan line), expected contrast loss via free-space scattering (red
line), and the corresponding expected Wineland parameter (black line, see Methods).



Chapter 7

Squeezed clock comparisons

To quickly recap, we have built a new apparatus that is capable of state-of-the-art clock

operation with cQED. We then demonstrated that we can generate entanglement on the Sr clock

transition. The next question is - can we use this spin squeezing for a real clock measurement, and

directly observe an enhancement beyond the QPN limit?

In this Chapter we describe our squeezed clock comparisons that we perform in order to

demonstrate the direct advantage of implementing spin squeezing. We perform a differential clock

measurement, where we compare two sub-ensembles within the same atomic cloud. Original demon-

strations of this technique by the Sr2 team made use of a high resolution imaging system in order

to divide their Fermi-degenerate gas into two sub-ensembles [28]. Instead of using imaging, we

use the selective nature of the cavity probing to sub-divide our ensemble. By using the movable

optical lattice, we can shuffle different parts of the cloud in and out of the cavity mode on demand.

In Section 7.1, we first define the QPN and SQL limit to a clock comparison with initial contrast

Ci < 1. Section 7.2 will provide a description of the differential clock measurements, and present

our results for both a classical clock and squeezed clock comparison. In the later sections, we

highlight various details that provide further experimental measurements that are relavant to the

spin squeezing observation.
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7.1 QPN and SQL

Neutral atom optical clocks probe many atoms to obtain the best signal-to-noise ratio. The

fundamental noise source in atomic clocks is the quantum projection noise that stems from the

inherent population fluctuations associated with the projective measurement of N uncorrelated

atoms [20]. Operating at higher atom number is clearly advantageous from a signal-to-noise point

of view. However, technical noise from imperfect state readout, intrinsic atom-atom interactions,

or aliased frequency noise of the interrogating clock laser pose challenges for observing clock per-

formance at the QPN limit [133]. With precise engineering of quantum states and control of

atomic interactions [134], and using laser-noise mitigation techniques such as synchronous compar-

isons [28, 17], state-of-the-art optical clocks are currently approaching QPN-limited stability with

up to 105 atoms [19]. It is an exciting prospect to imagine pushing these state-of-the-art clocks

past the QPN-limit, making use of quantum correlations to improve precision measurements.

We want to establish a clear definition for the standard quantum limit for a clock with a finite

initial contrast Ci < 1. The primary loss of atomic coherence in our squeezed clock experiments

comes from the multiple optical rotations needed in our sequence. Conceptually, we treat the

system as having two components - a pure state with |Jz| = CiN/2, and treating other (1 − Ci)

atoms as no longer partipating in the same CSS. We thus need to calculate the standard quantum

limit (SQL) for the Ci atoms that participate in the CSS. In this case, we have

∆θSQL =

√
CiN/2

CiN/2
=

1√
CiN

(7.1)

We find it useful to define another limit, which we call the “QPN” limit. In our situation, the

sequence of optical rotations leads to dephasing, but the atoms are not lost from the trap. The

dephased atoms still couple to the cavity mode, and will still contribute quantum projection noise.

Thus, the QPN limit is the ratio of the projection noise for all of the atoms divided by the shortened

Bloch vector,

∆θQPN =

√
N/2

CiN/2
=

1

Ci
√
N

(7.2)
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We note here that operation of a clock with phase resolution below ∆θQPN is a real enhancement,

in that no classically operating clock could go below this level. However, going below ∆θSQL goes

further as a metric for entanglement in the clock.

7.2 Self-synchronous clock comparison with cQED

The timing sequence for the differential clock comparison includes clock rotations, transports,

and QND measurements (Figure 7.1a). Clock rotations are shown as black pulses, with each pulse

labelled by the pulse area and axis of rotation. The atomic cloud is moved vertically by detuning

one of the lattice beams, and each transport operation is indicated by either a green or purple

pulse. The waveforms for the optical lattice detuning are linear ramps of the frequency over a total

of 5 ms, as shown below the pulse sequence. All clock pulses are applied with the lattice at the

same vertical location, so we do not have to take into account the varying clock laser phase. After

the pre-measurements, the π
2 |x clock pulse rotates the spin-squeezed axis to the phase-sensitive

axis. Our Ramsey dark evolution time is T = 14 ms, and the final π/2 pulse converts an acculated

phase to a tipping of the Bloch vector in the z direction. To minimize the impact of photon shot

noise, the final measurements use a higher probe photon number of ≈ 4.5× 104 per measurement

window. This is safe since the final measurement is outside of the Ramsey interferometer, and a

shortening of the Bloch vector at this point is harmless. The CSS - CSS comparison uses the exact

same pulse sequence, with the only exception that we do not apply any probe light during the

pre-measurement windows. Running the two comparisons with the same pulse sequence allows us

to see and understand the role of spin-squeezing.

The relative separation between the two ensembles is set such that they give the same shift

of (ω↓ + ω↑) ≈ 2π × 215 kHz, corresponding to ≈ 8500 atoms per independent ensemble. We

first measure the Ramsey fringe contrast for each ensemble, shown in Figure 7.1b. We plot Jz =

(N↓ −N↑)/2 versus the phase φ of the final π/2 pulse. Red is ensemble A and blue is ensemble B.

The open circles correspond to running the sequence with no probe light applied during the pre-

measurement windows. The solid circles are the Ramsey fringes with probing. The loss of contrast
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Figure 7.1: (a) Clock pulses are the black pulses, measurements of ensemble A are the red pulses,
and the transports are shown as the green and purple pulses. The Bloch spheres depict the spin
state distribution at various points during the sequence. (b) Ramsey fringe measured by varying
the phase of the final π/2 pulse. (c) Pre and final measurements of ensemble A and B. (d) The
final measurements of ensemble A and B show strong correlations, allowing for the subtraction of
the common-mode laser phase noise.
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at our operating probe photon number is ≈ 5%. An ideal Ramsey fringe with unity contrast is

shown as the dotted curve, reaching the maximal values of Jz = ±N/2. The initial Ci and final

contrast Cf are given by the ratio of the measured fringe amplitude and the ideal Ramsey fringe

amplitude.

For each cycle of the experiment we simply observe the final tipping of each ensemble’s Bloch

vector. We do not apply feedback to the laser to steer onto the resonance. The phase of the

final π/2 pulse is set such that the final Bloch vector for each ensemble is near the equator of the

Bloch sphere, corresponding to Jz ≈ 0. This puts the Bloch vectors at the point of maximal phase

sensitivity for Ramsey spectroscopy. The raw pre and final measurements are plotted for each

ensemble in Figure 7.1c (red is ensemble A and blue is ensemble B). One can see the correlations

by eye, and the correlation coefficient between the pre and final measurement is ≈ 0.3. However, it

is clear that the laser noise is playing a significant role, as the correlation between the pre and final

measurement is far worse than what we see for the spin noise reduction measurements (Figure 6.7).

This is due to the addition of the Ramsey pulse sequence. We can look at the final measurements

for A and B (Figure 7.1d), which clearly shows rejection of the common-mode laser frequency noise.

The correlation coefficient between JAz,f and JBz,f for both classical and spin squeezed comparisons

is ≈ 0.9. In Section 7.5 we measure the degree of common mode rejection, and estimate the residual

laser noise to contribute a noise floor 30 dB below QPN.

For each experimental shot, we need to combine the measurements to give the best estimate

of the differential phase between the two ensembles. To be explicit, we will use the measured

amplitude of the Ramsey fringe α (Figure 7.1b) to convert Jz measurements to phase. Assuming

the small angle limit, this conversion is expressed as

θA − θB =
(JAz,f − βAJAz,p)− βD(JBz,f − βBJBz,p)

α
(7.3)

Note that we use θ, because the final Ramsey π/2 pulse converts phase evolution φ to tipping in

the polar angle θ. The phase difference can then be converted to frequency units using the simple

relationship between phase and frequency ∆θ = ∆ωT = 2π∆νT .
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Figure 7.2: (a) Schematic showing the transported atomic cloud for squeezing/readout of each en-
semble. The clock laser propagates vertically, addressing both ensembles in a synchronous fashion.
(b) Fractional frequency stability given by the total Allan deviation for the CSS - CSS comparison
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estimated QPN limit, and the dotted blue line is the SQL. We note that we plot the observed
comparison stability, so we have not divided by

√
2 to estimate single clock stability.
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We first compare classical clocks (CSS - CSS), where we run the pulse sequence without

QND probing. Making use of the eigenvalue expression for the atom-cavity system, we convert

these frequency differences to atom number, and then combine the measurements to attain the

corresponding Jz. To convert measured Jz for each ensemble directly to phase, we use the amplitude

of the Ramsey fringes (Figure 7.1b). The SSS - SSS comparison uses the same pulse sequence, with

the QND probe pulses applied.

We determine the stability for each comparison by fitting the first 5 points of the Allan

deviations plotted in Figure 7.2. The observed stability is 1.58(3) × 10−15 τ−1/2 and 1.25(2) ×

10−15 τ−1/2 for the CSS - CSS and SSS - SSS comparison, respectively. We directly observe an

enhancement of stability by 2.0(2) dB in the SSS - SSS comparison over that of CSS - CSS. We

observe a deviation from 1/
√
τ averaging at longer averaging times. This arises due to a drift in the

atom number which changes the conversion from measured homodyne voltage to cavity frequency

shift. In future experiments we will be able to eliminate this source of flicker noise by tracking the

change of the homodyne fringe slope. For this reason, we fit the Allan deviation for the first four

data points. The deviation is likely due to a drift in the slope of the homodyne signal, as the atom

number slowly drifts.

To put our results in the proper context, we seek to benchmark the observed SSS-SSS sta-

bility to both the practically achievable limit set by QPN and fundamental limit set by SQL. The

measurement of (Jz,A − Jz,B) is limited by the quadrature sum of QPN arising from each sub-

ensemble. We first define the fundamental limits in the absence of any scale factor between the

ensembles (βD = 1). The QPN-limited phase estimation between the ensembles is (assuming the

same initial contrast Ci for each ensemble)

∆θQPN =
1

Ci
√
NA +NB

(7.4)

using Ci as the slope of the Ramsey fringe to convert QPN into fractional frequency noise. However,

the ultimate bound on the performance of an unentangled ensemble is the SQL. This strictest bound

treats the (1−Ci) fraction of atoms as no longer participating in the pure CSS, thus reducing the
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magnitude of the projection noise, resulting in the SQL-limited phase sensitivity of

∆θSQL =
1√

Ci(NA +NB)
(7.5)

The above limits must be adjusted for the optimal estimator βD. For example, the SQL for the

clock comparison is

∆ (φA − φB)SQL =

√
1

CiNA
+ β2D

1

CiNB
. (7.6)

The observed stability of the CSS - CSS comparison is consistent with the QPN-limited

stability, and 2.6(3) dB above SQL. Implementing QND-based squeezing operation and accounting

for the final contrast of Cf = 0.50(1), the SSS - SSS comparison shows a 2.0(3) dB gain over

the QPN-limited stability, demonstrating practical metrological enhancement from the squeezing

operation. This result is above SQL by 0.6(3) dB, indicating a Wineland parameter near unity. We

therefore can not

This is the first direct observation of an operating optical clock below the QPN limit. The

direct observation of the clock comparison below the QPN limit with measurement precision av-

eraging down to the 10−17 level is a crucial step towards improving the performance of the best

optical lattice clocks via entanglement. Such improvement in differential clock stability translates

directly into increased sensitivity for many applications of interest, including the measurement of

the gravitational redshift at ever-shorter length scale and the future development of clock networks

for fundamental physics [135, 113, 136, 44]. Further improvement will come from enhanced con-

trol of atomic motion, which will yield improved spin rotation fidelity and increased coupling to

the cavity mode. Larger atom number, improved single-atom cooperativity, and better quantum

efficiency will all lead to stronger spin squeezing.

7.3 Optimal estimators

In this Section we will discuss the optimal estimators used in the differential clock comparison

in more detail. To attain the ideal clock comparison given the measured quantities, we have

three optimal estimators in the estimated phase difference φA − φB in Equation 7.3. The optimal
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estimators φA and φB represent the weighting of the pre-measurement. Due to the finite signal-

to-noise ratio, the pre-measurement contains imperfect information about the collective spin state.

This means that the optimal value of βA and βB are less than unity. A more subtle optimal estimator

for our comparison is βD. During a particular measurement, we can look at the individual noise

of each ensemble on their own ∆(Jz,A,f ) and ∆(Jz,B,f ) For example, in the data presented in this

chapter, ensemble B was noisier. We found that the relative noise between the two ensembles was

not exactly unity. This led us to include an additional optimal estimator βD to account for the

differential technical noise.

The simplest analysis would be to simply simultaneously optimize the three estimators over

the whole dataset. We then asked several questions regarding these β values. What is the un-

certainty of these optimal estimators; and how does it propagate to the final squeezing result?

Furthermore, how does the length of the dataset influence these parameters. To answer these ques-

tions, we temporarily break the data up into a “training set” and a “clock run”. We increase the

length of the training set to see how the optimal estimators evolve and eventually converge in Figure

7.3. Taking the second half of the data, we calculate the mean values (dashed line) and plot the

standard deviation (shaded region). The values are βA = 0.49(1), βB = 0.48(1) and βD = 0.907(5).

We take these values to be the optimal estimators for analyzing the whole clock run. To propagate

the uncertainty of the optimal estimators, we use a simple numerical method. We pull from normal

distributions for βA, βB, βD and geff using the 1σ standard deviation for each quantity. For each

iteration, we calculate the phase resolution compared to the QPN and the SQL limits, and plot

these results as histograms.

7.4 Vertical extent of cloud

In the differential clock measurements, we squeeze and compare two ensembles within the

same atomic cloud. The final Z position of the atomic cloud can be precisely set by adjusting the

transport waveform. We vary the final position of the cloud and measure the mean shift of the

cavity-like mode, and plot this in Figure 7.4. Using our knowledge of the cavity mode distribution,
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Figure 7.4: Measured shift of the cavity-like mode versus vertical displacement of the atomic
cloud. The green dashed line is the Gaussian fit of the form of Eq. 7.8, giving a fitted σz = 130µm.
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we calculate the frequency shift using Eq. B.1 and Eq. B.2

ω↓ =
g2effNeff

δc
=
Ntot〈g2i 〉

δc
(7.7)

Plugging in the appropriate distributions in 〈g2i 〉, and considering a varying offset of the cloud in

the vertical direction Z0, we find that the shift has the form,

ω↓(Z0)

ω↓(0)
= e

−2Z2
0

4σ2
Z
+w2

0 , (7.8)

where σZ is the rms extent of the cloud along the vertical direction. We then fit our measured

cavity frequency shift to Eq. 7.8. After plugging in our cavity mode waist of w0 = 71 µm, we

extract a vertical cloud size of σZ = 130 µm. This cloud size is in good agreement with images of

the cloud using fluoresence imaging.

One can imagine various different routes for improvement. If we could get an atomic cloud

with both a larger atom number and larger extend σz, we could easily probe more than 2 ensembles

within the same cloud. Another approach would be to create spatially seperated ensembles [87],

each having σz < w0. These more compressed clouds could give both an improved effective values

for atom number N and the atom-cavity coupling g.

7.5 Common-mode suppression of laser noise

Probing the two sub-ensembles with the same clock laser has the great advantage of allowing

the laser phase noise to be common between the evolution of the two Bloch vectors. In order

to check our level of common-mode suppression, we operate a two-ensemble Ramsey experiment

and add in artificial laser noise. We raise the artificial noise level by adding a white frequency

noise term into the fiber noise cancellation reference synthesizer. This is achieved using an SRS

SG382 synthesizer, and using the internal noise modulation feature. The measured cavity shift

noise versus added white noise is shown in Figure 7.5. It is clear the the added noise shows up in

each ensemble (red and blue circles), but when we take the difference (open green squares), we see a

good common-mode rejection of noise. Looking at the largest noise, we can see a direct suppression
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Table 7.1: Quantum efficiency contributions

Parameter Value

QE of cavity (κ1/κ) 0.68
Photodiode QE 0.88
Homodyne-cavity mode overlap 0.75
Path efficiency 0.62
Photodiode technical 0.99

Total 0.28

of noise corresponding to 10 dB. The Si3 clock laser has a frequency noise power spectral density

of about 10−2 Hz2/Hz. Our estimated contribution in terms of cavity frequency shift noise would

be ≈ 50 rms Hz, or 30 dB below QPN. We comment here that only 10 dB of this cushion comes

from the common-mode suppression. The full 30 dB is only possible because of our advanced clock

laser technology.

7.6 Quantum efficiency

The overall quantum efficiency of the measurement plays a key role in QND-based spin

squeezing. In thinking about probing the atom-cavity coupled system, we define the overall quan-

tum efficiency as the product of all of the independent sources of loss of photons, or decrease of

signal to noise ratio for the homodyne detection. The amount of attainable spin-squeezing is lin-

early proportional to the quantum efficiency [32]. Furthermore, Q < 1 leads to excess noise in

the anti-squeezed quadrature. We first estimate the overall quantum efficiency by considering the

different contributions, including the cavity quantum efficiency κ1/κ = 0.68, mode overlap of the

cavity leakage light and the homodyne LO beam of 0.75, quantum efficiency of the photodiode of

0.88, and finite path efficiency of 0.62, and other negligible sources. Multiplying these together

gives a quantum efficiency of Q = 0.28. We use this value when estimating the expected R (cyan

line in Figure 6.11), showing reasonable agreement.
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7.7 Spin state tomography

We perform state tomography to evaluate the amount of anti-squeezing introduced by the

QND measurement. The pulse sequence used for measuring the anti-squeezed quadrature is shown

in Figure 7.6a. We make a pre-measurement of Jz, jump the clock laser phase by 90◦ to rotate

the state by an Ψ, and then perform a final measurement. For the rotation angles larger than 5

degrees, we use a swept readout for the final measurement, since the measurement noise is large

enough to depart from the linear regime of the Q response of the homodyne signal. To our surprise,

the observed anti-squeezing is well above the expected level given our estimated quantum efficiency

of Q = 0.28. This indicates additional technical noise in the anti-squeezing quadrature, or in the

measurement itself. The measured noise level at the anti-squeezed quadrature is 9 dB above what

is expected from the estimated quantum efficiency (Figure 7.6b). This indicates an additional noise

source contributing to the anti-squeezing, but it does not preclude observing the benefit of spin

squeezing. This is clearly an avenue for further investigation.

7.8 Independence of the two ensembles

There is an inherent limitation in the total atom number per sub-ensemble for a given total

atom number and vertical extent of the cloud. For the differential clock comparisons performed

in this thesis, we tune the transport distances such that the cavity frequency shift is equal for the

two ensembles (to within 10 - 20%). When tuning up the experiment and the relative distances,

one wants to confirm the independence of the sub-ensembles and determine the magnitude of the

correction factor due to finite overlap between the ensembles and the cavity mode. To explore

this, we vary the vertical separation between the ensembles and evaluate the Pearson correlation

coefficient between the measured Jz for each ensemble. For no separation, we probe the same

ensemble and expect high correlations between the measured QPN to within the measurement noise.

Then as we increase the separation distance, the correlation coefficient will decrease accordingly to

a noise floor set by correlated noise (classical rotation noise). We first measure Jz,A for ensemble A,
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Figure 7.6: (a) Pulse sequence used for performing spin state tomography. (b) Relative spin noise
after a rotation angle of Ψ. We infer the spin noise just after the pre-measurement by assuming
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spin squeezed state, and the dashed-dot line indicates our expected anti-squeezing for a quantum
efficiency of 0.28.
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apply a vertical displacement of the cloud via the movable optical lattice to put ensemble B in the

cavity, and subsequently measure Jz,B. The measured correlation coefficient between Jz,A and Jz,B

is shown versus the separation distance between the ensembles in units of the waist of the cavity

mode w0 (Figure 7.7a). The blue line is a numerical Monte Carlo simulation of the correlation

coefficient for two ensembles with varying mean separation. Our operational ensemble separation

Z0 is denoted as the dashed grey line, at Z0 = 150 µm.

While the correlation coefficient is a relatively easy quantity to calculate from experimental

data, it is not the quantity we really would like to know. Based on the finite overlap of the ensemble,

we would like to calculate the change of the combined QPN versus the separation distance. For

this we use both analytical and numerical methods, with both shown in Figure 7.7b. In the limit

of a flat density distribution, the analytical correction to the QPN is straightforwardly calculated

as

d(∆θQPN) = 1− e−Z2
0/w

2
0 (7.9)

We can calculate the full analytical expression taking into account the finite σZ for the ensemble.

From this, we perform a seriest expansion so we can see the second order term,

d(∆θQPN) = 1− e−Z2
0/w

2
0 +

(
Z0

2
√

2σZ

)2

e−Z
2
0/w

2
0 . (7.10)

At our vertical cloud size of σz = 130 µm, and a separation distance of Z0 = 150 µm, this higher

order term contributesa 0.2% correction. For the differential clock comparisons of Figure 7.2, a

spatial separation of 150 µm (dashed grey line) is chosen to guarantee sufficient independence of

the ensembles. At this separation, the adjustment to the QPN is 0.045 dB.
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Figure 7.7: Independence of atomic ensembles (a) Measured correlation coefficient between Jz,A
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Chapter 8

Conclusion and outlook

This Thesis has covered the improvement of optical clock technology on multiple fronts. We

developed some of the best stable lasers using cryogenic silicon cavities. This involved building

high finesse cavities that reduced the Brownian thermal noise from the optical coating, which is

the primary source of the noise floor of these optical interferometers. We then built a new optical

clock apparatus that implements spin-squeezing approaching the state-of-the-art level. For the first

time, we were able to directly observe an optical clock comparison operating below the QPN limit.

One obvious goal is to continue to push the performance below the SQL. There are clear

improvements and aspects of the system to further understand. The aim is to directly leverage

and highlight entanglement for enhanced clock performance. The initial contrast of the atomic

ensembles will be further improved by optimizing aspects of the optical lattice and the associated

atomic motion. Adding more confinement either along the cavity axis or out of the plane of the

cavity could improve the atomic coherence, allowing for immediate improvements in the Wineland

parameter. Another approach would be to generate entanglement in the ground-state manifold of

87Sr similar to [35], which could avoid some of the detrimental clock pulses.

Another priority is to further understand the magnitude of our measured anti-squeezed

quadrature. Excess anti-squeezing can make us more sensitive to amplitude errors in the clock

rotations. Further, as we push the Ramsey dark time to longer intervals, the leakage of the anti-

squeezed quadrature will start to play a role [137].

Improving the amount of squeezing involves improving the readout noise of our QND mea-
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surement. Since the measurement noise increases with high photon number, we could win 2-3 dB of

spin squeezing by understanding and mitigating this effect. We could also other ways of generating

entanglement, for example using one-axis twisting [109, 111]. Depending on the exact experimental

parameters, one might find OAT or QND the favorable approach.

In the longer term, the system demonstrated in this thesis will serve as a blue print for

building more advanced versions of entangled clocks, with prospects of two-mode squeezing for clock

comparisons and integrating squeezing into the best performing precision to enhance measurement

bandwidth.
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[135] P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin. A
quantum network of clocks. Nature Physics, 10(8):582–587, 2014.

[136] B M Roberts, P Delva, A Al-Masoudi, A Amy-Klein, C Bærentsen, C F A Baynham, E Ben-
kler, S Bilicki, S Bize, W Bowden, J Calvert, V Cambier, E Cantin, E A Curtis, S Drscher,
M Favier, F Frank, P Gill, R M Godun, G Grosche, C Guo, A Hees, I R Hill, R Hobson,
N Huntemann, J Kronjger, S Koke, A Kuhl, R Lange, T Legero, B Lipphardt, C Lisdat,
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Appendix A

Vacuum noise limits of cavity frequency determination

In this thesis, we have estimated the frequency of our probe laser with respect to the cQED

cavity in various ways. One method involves sweeping the probe tone over the cavity and measuring

the full IQ response using heterodyne detection. When possible, we have also parked on resonance

and measured the Q response using heterodyne. In the latest work, we switched to homodyne

detection of the probe laser and performed both sweeps and fixed-tone probing, where the homodyne

detection phase has been chosen to detect the Q quadrature. In the following, we examine the full

I − Q response of the cavity leakage field, and use it to calculate the vacuum noise limit on

determining the frequency of the cavity (or cavity-like) mode.

The field that leaks from the cavity has the form

I0 =
√
Rinc

1− βr

1 +
(

δ
κp/2

)2
 (A.1)

Q0 =
√
Rinc

 βr

(
δ

κp/2

)
1 +

(
δ

κp/2

)2
 (A.2)

Here Rinc is the rate of incident photons, κp is the probed FWHM of the cavity mode, and δ is the

detuning of the laser with respect to the cavity mode. It is convenient to shift the I quadrature

such that the phasor is centered on the origin. We define our shifted I quadrature as

Ip = I0 −
√
Rinc

(
1− βr

2

)
(A.3)
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Note that the length of the phasor from the center of the centered circle to the edge is βr
2

√
RincT .

Also note that βr is the diameter of the circle, but for estimating the signal to noise, we require

the radius. Estimating the detuning of the cavity probe with respect to the cavity mode amounts

to estimating the angle of the phasor

Ψ = arctan

(
Q0

Ip

)
. (A.4)

A.0.1 Heterodyne detection

We first consider performing heterodyne detection, and perform a sweep over the cavity

resonance. We consider the local sensitivity to how Ψ changes with a small change in the detuning

δ by calculating the derivative,

dΨ

dδ
= − 4δκp

4δ2 − κ2p
. (A.5)

If the total number of photons incident is Minc = Rincdt, then the radius of the circle

is βr
2

√
Rincdt. Quantum optics teaches us that the vacuum noise creates fluctuations that will

degrade our ability to estimate Ψ, having magnitude 1/2. So the uncertainty in Ψ is given by the

ratio of the noise to the overall length of the phasor,

∆Ψ =
1/2

βr
2

√
Rincdt

. (A.6)

We can then calculate the uncertainty of the detuning as

∆δ = − ∆Ψ

dΨ/dδ
=

4δ2 + κ2p

4βrκp
√
Rincdt

. (A.7)

We will think about sweeps of the probe tone across the cavity resonance as taking weighted

averages. If we have several measurements, each with uncertainties σ1, σ2, ..., σn, then the weighted

averages is given by the inverse-squared sum 1
σ2
tot

= 1
σ2
1

+ 1
σ2
2

+ ...+ 1
σ2
n

. The swept measurement is

thought of as spending a dwell time dt and making a frequency estimate, then we step the frequency

and repeat. The final estimate is taken as the weighted sum of all of the measurements. We then

express the final estimate as an integral, where we take the sweep rate as δ = αt,

∆δsweep =

∫ ∞
−∞

(
4(αt)2 + κ2p

4βrκp
√
Rinc

)−2
dt

−1/2 =
κ2p
2κ1

√
α

πRincκp
. (A.8)
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We can use this expression to estimate the frequency noise corresponding to a single sweep over

the cavity resonance. It requires careful calibration of the rate of incident photons Rinc. If we then

want to take into account a finite quantum efficiency, one simply includes a 1/
√
Q term, meaning

that a poor quantum efficiency will lead to a higher ∆δsweep.

A.0.2 Homodyne detection

Now let’s consider a homodyne measurement of the cavity frequency. We will get the most

information if we park directly on the resonance and measure the Q-response of the cavity leakage

field. Taking the local derivative dQ
dδ to lowest order in δ gives

dQ

dδ
=

κ2p

4κ1
√
Minc

, (A.9)

where Minc is the number of photons in a measurement window. The corresponding frequency

uncertainty is given by

∆δresonant =
1/2

dQ/dδ
=

κ2

4
√
Mincκ1

. (A.10)



Appendix B

Calculation of effective atom-cavity coupling

The effective atom-cavity coupling g is independently estimated as a consistency check on

our experimentally determined value from Figure 6.6a. We follow the convention from [138], where

the effective g is

g2 =
〈g4i 〉
〈g2i 〉

, (B.1)

where gi is the atom-cavity coupling for the ith atom. The effective atom number is

N = Ntot
〈g2i 〉2
〈g4i 〉

(B.2)

where Ntot is the total atom number. In this work, when we refer to g and N , we refer to the

effective quantities. Our coordinate system is defined such that X is the direction along the cavity

axis, Y is the other horizontal axis orthogonal to X, and Z is the vertical direction along gravity.

The atomic density distribution in Z is modeled as a Gaussian, ρZ(Z) = N√
2πσZ

e−Z
2/(2σ2

Z), with

standard deviation σZ . The probability distribution along Y is PY(Y) = 1√
2πσY

e−Y
2/(2σ2

Y) is a

Gaussian with a standard deviation σŷ set by the thermal cloud radius. We calculate σY from

the radial temperature of Tr = 290(10) nK from a radial Doppler scan of the clock transition and

the radial trap frequency of 34(3) Hz, giving a σY ≈ 26µm. If we allow the atoms to sufficiently

time-average the standing wave along x, we have

g2i (Y,Z) =
g20
2
e−2(Y

2+Z2)/w2
0 (B.3)

with peak coupling g0 = d0
√

ωp
2ε0~V = 2π × 8.6 kHz. Here, d0 is the dipole matrix element and ωp

is the angular frequency of the |↓〉 →|e〉 transition, and V = 1
4πω0L is the effective cavity mode
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volume. The ensemble averages are evaluated as

〈g2i 〉 =
1

N

∫
g2i (Y,Z)ρZ(Z)PY(Y)dYdZ (B.4)

and

〈g4i 〉 =
1

N

∫
g4i (Y,Z)ρZ(Z)PY(Y)dYdZ, (B.5)

and when combined using Eq. B.1 gives the estimated value of g = 2π × 4.8(2) kHz.



Appendix C

Calculation of free space scattering

This section describes the calculation of free space scattering in the atom-cavity coupled

system.

To describe the atom-cavity coupled system, we use an input-out formalism [139]. The

Heisenberg-Lengevin equations of motion are [32]

d〈a〉
dt

= −(iδc +
κ

2
)〈â〉 − iΩ↓

2
〈ĉ〉+

√
κ1ain (C.1)

d〈b〉
dt

= −Γ

2
− i
√
Ng〈b̂〉 (C.2)

where 〈a〉 is the cavity photon operator and 〈b〉 is the atom operator. ain is the drive amplitude,

with units of
√

photons/sec. We note that the cavity operator has time-dependence as 〈a〉 = |a|eiδt,

and similar for the atomic operator 〈b〉 = |b|eiδt. Here, δ is the detuning of the probe light with

respect to the bare atomic transition frequency. We wish to solve the equations of motion for the

steady-state values, and so take the derivative of each operator and obtain

i〈a〉δ = −(iδc +
κ

2
)〈â〉 − iΩ↓

2
〈ĉ〉+

√
κ1ain (C.3)

i〈b〉δ = −Γ

2
− i
√
Ng〈b̂〉 (C.4)

We solve these coupled equations to determine the steady-state excited state population a. It then

follows that the rate of scattered photons will be

Ṁs = Γ|〈a〉|2 (C.5)
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The solution has the form

|〈a〉|2 =
4c2iκ1Ω↓

(Γ2 + 4δ2)(4(δc + δ)2 + κ2) + 2Ω2
↓(Γκ− 4δ(δc + δ)) + Ω4

↓
(C.6)

We can then plug in the approriate vacuum Rabi splitting Ω↓, κ1, δc. One then plugs in the correct

detuning δ to the eigenvalue, assuming we are probing on resonance. We require a good estimate of

the incident photon number ci, which we estimate by detuning the laser from the cavity resonance,

and measuring the resulting homodyne fringe amplitude. We can calibrate the sideband power,

and determine the mode overlap between the reflected mode and the LO mode.
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