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Two-photon absorption (2PA) is widely used in microscopy for deep, sub-cellular imaging.

However, the efficiency of 2PA is limited by the properties of both the absorber and the excitation

light. Entangled photon pairs produced via spontaneous parametric down-conversion (SPDC) ex-

hibit correlations in energy, time and space that may improve the excitation efficiency relative to

a classical laser. The most significant improvement is expected at low photon flux where isolated

pairs interact with the absorber. In this regime, the rate of the entangled two-photon absorption

(E2PA) process scales linearly with photon flux and the E2PA cross section (σE).

Despite over a decade of publications claiming to measure huge σE that suggest a quantum

advantage exists of up to 10 orders of magnitude, in this thesis I will show strong evidence that

σE are several orders of magnitude lower than previously reported. First, we provide relevant

background information on nonlinear and quantum optics. Next, we discuss theoretical descriptions

of σE and review the large body of experimental work in the field. Afterwards, we discuss the four

experiments we designed to measure E2PA.

In the first and third experiments, we measure SPDC transmittance through samples of two-

photon absorbers in room-temperature liquids. In our second experiment, we collect fluorescence

from samples excited with SPDC. Despite the high sensitivity of the techniques, we could not

resolve a signal in any of the measurements. We set upper bounds on the σE of eight independent

absorbers that are up to five orders of magnitude lower than previously published σE .

The third experiment also served as a classical 2PA (C2PA) measurement system. We made

one-to-one comparisons between E2PA and C2PA to bound the quantum advantage. We derived

absolute C2PA cross sections that closely agreed with values already reported in literature. In the

fourth experiment, we designed a toluene-filled hollow-core-fiber platform for 2PA measurements.
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We measured C2PA down to 20 nanowatts, and expect to make further improvements. This

platform is at least 4-fold more sensitive than a standard cuvette-based technique and thus is ideal

for the next generation of E2PA measurements.
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Chapter 1

Introduction

The field of nonlinear optics involves interactions of light with nonlinear media. Nonlinear

optical effects occur in certain materials when the intensity of light is high enough to induce sizable

nonlinear terms to the polarization of the material. The lowest order correction to the polarization is

expected to be comparable to the linear response when the intensity of the electric field approaches

that of atoms (1020 W m−2) [1].

The field of quantum optics covers the quantum mechanical properties of the individual

quanta of light, photons, and their interactions with matter. These two fields can delve into one

another, and we will see that this is the case when we consider the nonlinear processes of spontaneous

parametric down-conversion (SPDC) and entangled two-photon absorption (E2PA), both of which

concern single photon pairs and nonlinear materials. Although the former process uses the strong

field strengths typical of nonlinear optical phenomena, the latter pushes the boundaries of what is

and isn’t possible in nonlinear optics - using single photon pairs to seed a nonlinear process.

In this chapter we discuss the introductory material necessary for understanding this thesis.

First, we look at the theory of second harmonic generation (SHG) and discuss the factors, such as

phase-matching, that alter the intensity of the generation process. We then turn to its time reverse

process, SPDC, and derive a wave function for the generated light and its intensity distribution.

We consider the second-order coherence function and how it can be used to characterize the photon

statistics of various sources including SPDC. Finally we discuss two-photon absorption (2PA) and

derive the cross section for both one and two-photon absorption.
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1.1 Classical Nonlinear Optics

First let’s consider the classical Hamiltonian for the electromagnetic field

H =
1

2

∫
d3r[E ·D+B ·H], (1.1)

where E,B,D = ϵ0E+P,H = µB are the electric field, magnetic flux density, electric displacement

field and magnetizing field, respectively, ϵ0, µ are the permittivity of free space and the permeability

of the material, respectively, and P is the polarization of the material. This equation is the integral

over space of the electromagnetic energy density. Using Hamilton’s equations we derive Maxwell’s

equations [2],

∇ ·D = 0 (1.2)

∇ ·B = 0 (1.3)

∇×E = −∂B
∂t

(1.4)

∇×H = −∂D
∂t

, (1.5)

where we have assumed that there are no free charges or currents. From here, we can derive the

wave equation for nonlinear media [1]

∇2E− n2

c2
∂2

∂t2
E =

1

ϵ0c2
∂2

∂t2
PNL. (1.6)

where PNL is the nonlinear part of the polarization. The total polarization, P (t), of the material

can be expanded to include the nonlinear terms, [1]

P(t) = P(1)(t) +PNL(t) = P(1)(t) +P(2)(t) +P(3)(t) +P(4)(t) + ...

= ϵ0

(
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + χ(4)E4(t) + ...

)
. (1.7)

Here, χ(n) refers to the nth-order susceptibility of the medium and P (1)(t) is responsible for the

ordinary linear effect of a material to polarize in response to an applied electric field and thus

reduce the total electric field within the material. A wide range of nonlinear effects can occur from

the higher order terms, and many can be more thoroughly understood using Eq. (1.6).
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1.2 Second Harmonic Generation

Let’s consider the process of SHG, in which two photons of frequency ω are destroyed and a

photon of frequency 2ω is generated as shown in Fig. 1.1(a). We note that SHG is a special case

of the process sum-frequency generation (SFG), in which the two photons that are destroyed can

have non-degenerate frequencies.

In this section, our formalism is adapted from Ref. [1]. The polarization of the material is

generated by two fields at frequency ω, thus we use the first term in the nonlinear polarization,

P (2). We can assume that the electric field incident on the material is of the form

Eω(r, t) = Aω(r)e
i(kωz−ωt) + c.c., (1.8)

where Aω(r) is the amplitude of the field, kω is the wavenumber, and the field is propagating in

the z direction. We can then write the relevant polarization term as

P (2) = 2ϵ0deffEω(r, t) ·Eω(r, t)

= 2ϵ0deffA
2
ω(r)(e

i2(kz−ωt) + 1) + c.c., (1.9)

where deff is related to the second order susceptibility tensor χ
(2)
ijk. The precise form of deff depends

on the polarization directions, propagation directions and frequencies of the optical waves and the

symmetry properties of the crystal. The first term is responsible for the SHG and the second for a

DC field known as optical rectification. We will drop this second term as it is not relevant for our

purposes. We will look for solutions to Eq. (1.6) of the form E2ω(r, t) = A2ω(r)e
i(k2ωz−2ωt) + c.c..

Plugging Eq. (1.9) into Eq. (1.6), we arrive at

∂2

∂z2
A2ω(z) + 2ik2ω

∂

∂z
A2ω(z) + c.c. = −8deffω

2

c2
A2

ωe
i∆kz + c.c., (1.10)

where ∆k = 2kω − k2ω = 2ω(nω − n2ω)/c is the phase matching term. We assume we are working

in the undepleted pump regime where the amplitude Aω is independent of z. For A2ω, we assume

the slowly varying amplitude approximation, which implies that the first term is much smaller than
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Figure 1.1: Level diagram of (a) second harmonic generation (SHG), (b) spontaneous parametric
down-conversion (SPDC) and (c) two-photon absorption (2PA). Frequencies ωp, 2ωp, ωs, ωi, ω1, ω2

and ωf refer to pump, second harmonic, signal, idler, nondegenerate frequency 1, nondegenerate
frequency 2 and fluorescence respectively. Solid and dashed lines refer to real and virtual energy
levels respectively. In SHG and SPDC energy is conserved. In 2PA, energy is lost through vibra-
tional relaxation in both the excited and ground state (yellow wavy arrow).

the second. We drop the complex conjugate while maintaining the equality and are left with

∂

∂z
A2ω(z) = i

4deffω

cn2ω
A2

ωe
i∆kz. (1.11)

Next we perform the z integrals and arrive at

A2ω(z) =
4deffω

cn2ω
A2

ω

(
ei∆kL − 1

)
∆k

. (1.12)

We can then solve for the intensity of the second harmonic using the time-averaged Poynting vector,

I2ω = 2n2ωϵ0c|A2ω|2,

I2ω =
8 (deffωL)

2

c2n2ωn2ωϵ0
I2ωsinc

2(∆kL/2). (1.13)

The second harmonic intensity scales quadratically with the pump intensity, which is expected

since two photons are needed to produce a second harmonic photon. The intensity is very sensitive

to the product of the phase matching parameter and the length of the crystal. For ∆k = 0 or

∆k << 1/L, the SHG efficiency is maximized and the intensity increases quadratically with the

length of the crystal.
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1.3 Phase Matching

The phase matching parameter, ∆k, is important for all parametric nonlinear processes, so

here we discuss it more generally. This parameter describes the necessity for momentum conserva-

tion.

As the phase product ∆kL increases, the intensity of the field generated from the nonlinear

process decreases and then increases in an oscillatory manner. This can be understood as a phase

walk-off of the generated beam from the pump. After a certain length of crystal, L = Lc = 2/∆k,

walk-off leads to power flowing back into the pump from the generated beam. If the goal is to

produce a sizeable signal, this walk-off should be minimized.

Perfect phase matching (∆k = 0) can be achieved by finding a material for which the indices

of refraction for all of the waves are equal. This is not easy to find, but can be done it multiple ways.

Typically the index of refraction of a material increases with frequency (normal dispersion), but it

may also decrease with frequency (anomalous dispersion). If the crystal is birefringent, the index

of refraction depends on the axis of the crystal. This birefringence can be used to phase match. For

certain wavelength and polarization combinations of the high frequency and low frequency fields,

the phase matching condition is met. In χ(2) processes, types 0, I and II phase matching refer to

the polarization of the high frequency photon being parallel (orthogonal) to both (neither), neither

(both) and one (one) of the low frequency photons, respectively.

More variables can be added to the birefringent phase matching problem if we consider

temperature or angle tuning the crystal. The temperature affects the index of refraction and

tuning it can change ∆k. For angle tuning, we can tilt the crystal and propagate the light along

an axis with an index of refraction that is some combination of the indices for the symmetry axes

of the crystal.

Another way to phase match is called quasi-phasematching. In this case ∆k ̸= 0 for any set

of bulk crystal parameters. Instead, the optical domain of the crystal is flipped periodically (once

per coherence length, Lc) to walk the waves back into phase with one another before the generated
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field intensity begins to decrease. This flipping of the optical domain effectively changes the sign

of χ(2) and the crystal is called a periodically poled crystal. If the crystal is periodically poled, it

results in a modification where ∆k → ∆k − 2π
Λ , where Λ = 2π/∆k is the poling period.

1.4 Spontaneous Parametric Down-conversion

Another nonlinear process called parametric down-conversion (PDC) is the time reverse of

SFG. In this process a pump photon is destroyed and two photons are created, a signal and an

idler photon, as shown in Fig. 1.1(b). When the process is seeded by a weak signal beam, it’s

referred to as stimulated PDC or parametric amplification. If there is no seed the process is called

spontaneous PDC (SPDC) or parametric fluorescence. Stimulated PDC can be described using

classical nonlinear optics, as we showed for SHG, however SPDC, which is seeded only by the

vacuum, requires a quantum description.

Here we have adapted the formalism from Ref .[3]. We begin using the classical Hamiltonian

for the electromagnetic field, Eq. (1.1). By inserting the expansion of the polarization (Eq. (1.7)),

we can split the Hamiltonian into a linear and nonlinear part, H = HL +HNL. The first term in

the nonlinear part takes the form

HNL =
1

2
ϵ0

∫
d3rχ

(2)
ijlEi(r, t)Ej(r, t)El(r, t), (1.14)

where we have adopted Einstein notation, and χ
(2)
ijl depends on the frequencies of pump, signal and

idler. To reach the quantum description we must quantize the electromagnetic field. The electric

field functions E(r, t) are replaced by field observables Ê(r, t) which separate into a sum of positive,

Ê+(r, t), and negative, Ê−(r, t), frequency contributions. The positive contribution takes the form

Ê+(r, t) =
1

V 1/2

∑
k,s

i

√
ℏω(k)
2ϵ0

âk,s(t)ϵϵϵk,se
ik·r, (1.15)

where s indicates the polarization component, k indicates the wavevector, ϵϵϵ is a unit polarization

vector, â(â†) is the annihilation (creation) operator, and V is the quantization volume.

Since the pump beam is bright enough to be treated classically, we leave the classical electric

field function. After making the field replacements for signal and idler fields, the Hamiltonian for
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the system is of the form

Ĥ = ĤL + ĤNL =
∑
k,s

ℏω(k)(n̂k,s + 1/2) +
1

2
ϵ0χ

(2)
ijl

∫
d3rEi(r, t)Êj(r, t)Êl(r, t), (1.16)

where n̂ is the number operator. In the nonlinear Hamiltonian multiple terms arise, but we keep

the terms necessary for SPDC,

ĤNL =
1

2
ϵ0χ

(2)
ijl

∫
d3r

(
Ei(r, t)Ê

−
j (r, t)Ê

−
l (r, t) + h.c.

)
. (1.17)

We can compute the wave function of the SPDC state by using first-order time-dependent pertur-

bation theory, where in the interaction picture

|Ψ(t)⟩ ≈
(
1− i

ℏ

∫ t

0
dt′HNL(t′)

)
|Ψ(0)⟩, (1.18)

where |Ψ(0)⟩ = |0102⟩ and 1 and 2 denote signal and idler photons. We make a few assumptions:

that the pump is nearly monochromatic, the polarizations of signal and idler photons are fixed, the

volume of the crystal is large relative to the wavelength of light and the pump amplitude varies

slowly on the timescale of the interaction. Then we arrive at

|Ψ(t)⟩ ≈ C0|0102⟩+ C1

∫ ∫
d3k1d

3k2Φ(k1,k2)â
†
1â

†
2|0102⟩, (1.19)

where C0 and C1 are constants, with C1 ∝ Lz

√
Ip where Lz is the crystal length in the z direction

and Ip is the pump intensity. We emphasize here that the intensity of the SPDC increases linearly

with pump intensity in contrast to SHG (Sec. 1.2). The joint transverse momentum [4] amplitude

is

Φ(k1,k2) = N sinc

(
∆kzLz

2

)
ν(qp), (1.20)

where N is a normalization constant, ∆kz = k1z + k2z − kpz is the phase matching parameter, ν is

the transverse pump momentum profile and qp is the projection of kp onto the transverse plane. If

we make a change of variables we can rewrite the function in terms of q1 and q2, the projections

of k1 and k2 onto the transverse plane,

Φ(k1,k2) = u (|q1 − q2|) ν (|q1 + q2|)

= N sinc

(
Lzλp
8π

|q1 − q2|2
)
e−σ2

p|q1+q2|2 . (1.21)
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Here λp is the pump wavelength and σp is the pump radius. We have made the assumption that the

pump profile is Gaussian. We also note that, |q1 − q2| = k1sin(θ1)− k2sin(θ2) and |q1 + q2| = qp.

The function u(|q1−q2|) is set by phase matching and the function ν(|q1+q2|) is set by the pump

profile. Here we note that this form of the joint transverse momentum amplitude illuminates that

it is not separable into a function that depends only on the transverse momentum of signal and

another for idler, rather the amplitude is separable into functions that depend on the difference or

sum of the transverse momenta of signal and idler. This shows that the two photons are entangled.

Figure 1.2: A schematic of a (a) joint spectral intensity (JSI) and (b) joint temporal intensity
(JTI) of entangled photons produced via spontaneous parametric down-conversion. The diagonal
width ∆(ω1 + ω2) of the JSI is set by the bandwidth of the pump laser and ω1 + ω2 is equal to the
pump laser frequency. The antidiagonal width ∆(t1− t2) of the JTI is inversely proportional to the
bandwidth of the entangled photons [5]. This width is sometimes referred to as the entanglement
time, Te. Te can increase as the beam propagates due to the group velocity dispersion of the optics
the beam propagates through.

We can easily find the joint transverse momentum intensity, which is |Φ(k1,k2)|2. If we write

the joint transverse momentum amplitude in terms of frequencies by making the substitutions

of ki → ωini/c, we end up with the joint spectral amplitude, Φ(ω1, ω2), and can likewise solve

for the joint spectral intensity (JSI). A schematic of a JSI for SPDC is shown in Fig. 1.2(a).

We can write the joint transverse-momentum or spectral amplitude in space or time coordinates,

respectively, using a Fourier transform. In the space and time domain we will refer to these as the

joint transverse-position or temporal amplitudes. A schematic of a joint temporal intensity (JTI)
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is shown in Fig. 1.2(b).

A number of useful quantities can be extracted from these various intensities. From the joint

transverse-position intensity, we can find the entanglement area Ae. The width of the 2-dimensional

distribution of an idler photon’s position conditioned on the signal photon’s position is ∝
√
Ae. It

can be measured or calculated for a given transverse plane of the SPDC’s propagation, and is

known to be affected by optical elements. A lens, for example, performs a Fourier transform on

an imaged object [3, 4]. If the lens is placed one focal length in front of the crystal, the Fourier

transform of the SPDC beam at the crystal will lie at one focal length past the lens. This changes

the position correlations in the image plane to position anticorrelations in the Fourier plane. An

accurate comparison of measurement to calculation requires careful consideration of the optical

path. We can even estimate a “birth zone” [3] of the SPDC by considering the crystal plane. From

the JTI, we can determine the entanglement time, Te. This quantity is the width of the distribution

of idler arrival times conditioned on signal arrival time. The values of Te and Ae are set by the

temporal and spatial second-order coherence functions, g(2) [6, 7].

1.5 Second-Order Coherence Function

An important quantity to characterize the photon statistics of a light source is the second-

order coherence function. In this section we follow the formalism of Refs. [8, 9]. First consider the

first-order correlation function,

G
(1)
j (r1, t1) =

〈
Ê−

j (r1, t1)Ê
+
j (r1, t1)

〉
, (1.22)

where j indicates the mode of light that is measured at position r1 and time t1. This function is

proportional to the counting rate of a photodetector. Next, consider a mode of light j measured

at position r1 and time t1 and another mode k measured at r2 and t2, the rate at which the

photodetectors detect a coincidence is proportional to the second-order correlation function,

G
(2)
j,k(r1, t1; r2, t2) =

〈
Ê−

j (r1, t1)Ê
−
k (r2, t2)Ê

+
k (r2, t2)Ê

+
j (r1, t1)

〉
. (1.23)
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It’s useful to use a normalized version of these correlation functions, which at second order is written

g
(2)
j,k (r1, t1; r2, t2) =

G
(2)
j,k(r1, t1; r2, t2)

G
(1)
j (r1, t1)G

(1)
k (r2, t2)

=

〈
Ê−

j (r1, t1)Ê
−
k (r2, t2)Ê

+
k (r2, t2)Ê

+
j (r1, t1)

〉
〈
Ê−

j (r1, t1)Ê
+
j (r1, t1)

〉〈
Ê−

k (r2, t2)Ê
+
k (r2, t2)

〉 . (1.24)

This function is referred to as the second-order coherence function in recognition of its ability to

determine if a photon source is coherent (|g(n)| = 1). Common factors can be canceled, and we can

write this in terms of only creation and annihilation operators

g
(2)
j,k (r1, t1; r2, t2) =

〈
â†j(r1, t1)â

†
k(r2, t2)âk(r2, t2)âj(r1, t1)

〉
〈
â†j(r1, t1)âj(r1, t1)

〉〈
â†k(r2, t2)âk(r2, t2)

〉 . (1.25)

Then, if the measurement is on a single mode (j = k) measured at the same place (r1 = r2) and if

the source is stationary (does not depend on exact values of t1 and t2), we can reduce this to the

form

g(2)(τ) =

〈
â†(t)â†(t+ τ)â(t+ τ)â(t)

〉
⟨â†(t)â(t)⟩2

, (1.26)

where τ = t2 − t1. For the special case of τ = 0,

g(2)(0) =
⟨n̂(t)(n̂(t)− 1)⟩

⟨n̂(t)⟩2
. (1.27)

Depending on the optical setup, including the type of laser and detectors, there are different ways

in which we can measure and calculate g(2)(0) as described in Ref. [9]. In the case relevant for this

thesis of a pulsed source with photons detected using a Hanbury Brown-Twiss (HBT) interferometer

with “click” detectors as schematically shown in Fig. 1.3(a), we can measure γ
(2)
click,

γ
(2)
click[m] =

Nc[m]

R1R2TrepTint
, (1.28)

where R1 and R2 are the singles count rates on detectors 1 and 2 and Nc[m] is the number of

correlation events recorded by timing electronics in the histogram bin centered at an integer m

number of pulses with width set by the repetition period Trep for an experiment integration time

Tint. The quantity Nc[m] can be called the number of coincidences, and refers to the number of
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Figure 1.3: Schematic of (a) a Hanbury Brown-Twiss interferometer. Light is incident on a
beamsplitter and detected at the two output ports on detectors 1 and 2. If detector 1 and detector
2 register photons within a short time window (coincidence) the difference in time (start-stop) is
recorded. This time is τ for the second order coherence function (g(2)(τ)) measurements. (b) The
second order coherence function for a coherent source, a thermal source and a single driven atomic
emitter [10].

times a click on detector 1 is followed by a click on detector 2 within the repetition period. The

quantity γ
(2)
click[0] equals g

(2)[0] when the photon detection efficiency or the multi-photon generation

probability is very low [9].

In Fig. 1.3(b), the g(2)(τ) values for sources demonstrating a range of photon statistics is

shown. A value of g(2)(0) = 1 is consistent with a coherent beam of light from a laser, and demon-

strates Poissonian photon statistics. For g(2)(0) < 1 the light shows sub-Poissonian photon statistics

and is consistent with a single-photon source. For g(2)(0) > 1 the light shows super-Poissonian pho-

ton statistics and is consistent with thermal light. Classical light fields are constrained to g(2) ≥ 1.

Signal or idler photons follow a thermal distribution with g(2)(0) = 2. SPDC has a g(2)(0) value

that depends on the mean photon number. A degenerate, single-mode (in all degrees of freedom:

polarization, spatial mode, spectral and temporal profiles) SPDC source can be modeled as a single-

mode squeezed vacuum (SMSV), for which g(2) = 3+1/µ [11] where µ =
〈
â†â
〉
is the mean photon

number.
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1.6 Two-Photon Absorption

Next we turn to a χ(3) nonlinear process: 2PA. In this process two photons are absorbed

by an absorber, such as an atom or molecule, and a transition is made from a ground to excited

state as shown in Fig. 1.1(c). Unlike the parametric process’ SHG and SPDC, this process is

non-parametric. In a parametric process, the initial and final quantum states of the system are

identical. The only time that the system is not in this state is when it occupies a virtual state.

In a non-parametric process, the final state is a different and real quantum state of the system.

The part of the susceptibility involved in describing a parametric process is the real part and for

non-parametric is the imaginary part.

We can derive the cross section for 2PA in multiple ways, here we will opt to derive it using

second-order time-dependent perturbation theory for state amplitudes, as was done first by Maria

Göppert-Mayer in 1931 [12]. We note that as pointed out in Ref. [5], this method considers only

the double quantum coherence (DQC) pathway’s contribution to 2PA, but the non-rephasing (NR)

and rephasing (R) pathways also exist and may contribute especially if there are real intermediate

states close to resonance with the exciting field. These pathways can be found using a fourth-order

perturbative treatment of density matrices. Another method to derive the 2PA cross section is in

terms of χ(3) using energy considerations, see for example Ref. [13].

We will follow the derivation in Ref. [1] closely that considers an atom interacting with an

electric field. The Hamiltonian for this system can be written as

Ĥ = Ĥ0 + V̂ (t)

= Ĥ0 + d̂E(t), (1.29)

where Ĥ0 is the free Hamiltonian for the atom, d̂ = −er̂ is the electric dipole moment operator, e

is the charge of an electron, r̂ is the position operator and

E(t) = Eeiωt + c.c. (1.30)

is a monochromatic electric field. We assume that the atomic wave function, ψ(r, t) obeys the
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Schrödinger equation,

iℏ
∂

∂t
ψ(r, t) = Ĥψ(r, t). (1.31)

The solution for the wave function of this system can be expressed as

ψ(r, t) =
∑
l

al(t)ψl(r, t)

=
∑
l

al(t)ul(r)e
−iωlt, (1.32)

where ψl(r, t) are the eigenstates of the free Hamiltonian and al(t) is the time-dependent coefficient.

Inputting Eq. (1.32) into Eq. (1.31), multiplying by u∗m(r) and integrating over all space we find

iℏ
∂

∂t
am(t) =

∑
l

al(t)Vmle
−iωlmt, (1.33)

where ωlm = ωl − ωm and

Vml =

∫
d3ru∗m(r)V̂ ul(r). (1.34)

Since Eq. (1.33) cannot be solved exactly, we instead perturbatively solve the equation by replacing

V with λV , where λ is the expansion parameter (which varies from 0 to 1 depending on the strength

of the perturbation), and expanding am(t) in powers of the interaction,

am(t) = a(0)m + λa(1)m + λ2a(2)m + λ3a(3)m + ... (1.35)

Then we arrive at the generalized equation for any N ,

iℏ
∂

∂t
a(N)
m =

∑
l

a
(N−1)
l Vmle

−iωlmt. (1.36)

First, we consider the first-order process which corresponds to one-photon absorption (1PA). Before

the laser is turned on we assume that the atom is in the ground (g) state, corresponding to a
(0)
g = 1

and a
(0)
l = 0 for all l ̸= g. Next we determine that

Vmg = −dmgEe
−iωmgt + c.c. (1.37)

The first term will correspond to 1PA, whereas the second to stimulated emission. We drop the

second term as we are only interested in the absorption process. Then after integration over t we
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arrive at

a(1)m (t) =
dmgE

ℏ(ωmg − ω)
(ei(ωmg−ω)t − 1). (1.38)

We can describe the probability that the atom is in state m by

p(1)m (t) = |a(1)m (t)|2 = |dmgE|2

ℏ2
4sin2 ((ωmg − ω)t/2)

(ωmg − ω)2
=

|µmgE|2

ℏ2
f(t), (1.39)

where the function f(t) can be approximated by a Dirac delta function for long interaction times t,

f(t) = 2πtδ(ωmg − ω). (1.40)

With this delta function the probability amplitude describes an infinitely narrow transition. To

approach a more realistic description, we can give the state m some finite width in frequency space.

We introduce the density of final states, ρf (ωmg) where ρf (ωmg)dωmg is the probability that the

transition frequency lies between ωmg and ωmg + dωmg. Then we have

p(1)m (t) =
|dmgE|2

ℏ2
2πt

∫
dωmgδ(ωmg − ω)ρf (ωmg)

=
|dmgE|2

ℏ2
2πtρf (ωmg = ω). (1.41)

Next we derive the one photon transition rate (Fermi’s golden rule)

R(1)
mg = p(1)m (t)/t

=
|dmgE|2

ℏ2
2πρf (ωmg = ω). (1.42)

We can now solve for the purely atomic quantity, the 1PA cross section,

σ(1)mg = R(1)
mg/ϕ =

|dmg|2ω
nϵ0cℏ

πρf (ωmg = ω), (1.43)

where ϕ = 2nϵ0c
ℏω |E|2 is the photon flux. The 1PA cross section is quoted in units of cm2, with

typical cross sections on the order of 10−16 cm2. To derive the 2PA cross section, we follow the

exact same procedure, but at second order in the interaction. One can show that the probability

of being in state n is

p(2)n (t) = |a(2)n (t)|2 =

∣∣∣∣∣∑
m

dnmdmgE
2

ℏ2(ωmg − ω)

∣∣∣∣∣
2

2πtρf (ωng = 2ω). (1.44)
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Then the two-photon transition rate can be written

R(2)
ng = p(2)n (t)/t = |a(2)n (t)|2 =

∣∣∣∣∣∑
m

dnmdmgE
2

ℏ2(ωmg − ω)

∣∣∣∣∣
2

2πρf (ωng = 2ω). (1.45)

In later sections we will refer to this as R. Next, we define the 2PA cross section

σ(2)ng = 2R(2)
ng /ϕ

2 =

∣∣∣∣∣∑
m

dnmdmgω

ℏnϵ0c(ωmg − ω)

∣∣∣∣∣
2

πρf (ωng = 2ω). (1.46)

In later sections, we will refer to this quantity as σC . It’s useful to note that Eq. (1.46) is written

for degenerate 2PA, however the cross section can be derived for nondegenerate 2PA by adding a

second field to Eqn. (1.30). The factor of 2 in Eq. (1.46) differs from that shown in Ref. [1], but

agrees with the formalism of Refs. [14, 15]. It holds the units of photons per molecule and makes

the units for the cross section cm4 s photon−1 molecule−1. This convention is used in this thesis

so that the cross section refers to the removal of two photons from the field and one molecule from

the ground state. Typically σC are quoted in terms of GM (Goeppert-Mayer) units, where 1 GM

= 10−50 cm4 s photon−1 molecule−1.

Typical values of σC for molecules are on the order of 1 to 100 GM [16, 17]. These values

require that a high flux laser (> 1025 photons cm−2 s−1) be used to observe an absorption signal.

Typically pulsed lasers meet these requirements by producing bursts of photons in a short time.

However, the shorter the pulse in time, the wider the bandwidth of the photons and thus the more

difficult it is for the sum of the energies of the photons to equal the transition energy. Among

the many photons incident on the absorbing sample, only a small fraction (typically < 10−15) are

absorbed. Those that are absorbed arrived within the required short time window, which is set by

the virtual state lifetime (femtoseconds [18]), and arrived close enough to the absorber to interact

with it. Clearly, this excitation process is inefficient.



Chapter 2

Entangled Two-Photon Absorption

2.1 Publication Note

Parts of this chapter are adapted from:

[19] Parzuchowski, K.M., Mikhaylov, A., Mazurek, M.D., Wilson, R.N., Lum, D.J., Gerrits, T.,

Camp Jr, C.H., Stevens, M.J. and Jimenez, R., 2021. Setting bounds on entangled two-photon

absorption cross sections in common fluorophores. Physical Review Applied, 15 (4), p.044012.

2.2 Introduction

In the previous chapter we discussed spontaneous parametric down-conversion (SPDC) and

two-photon absorption (2PA), and pointed out the inefficiency of the 2PA process. In this chapter

we discuss entangled 2PA (E2PA). This process refers to the excitation of a two-photon transition

using a light source of entangled photons produced via SPDC.

Despite the inefficiency of 2PA, the process is widely used in two-photon excitation microscopy

(2PEM) for cellular imaging deep within biological tissue [20, 21]. Excitation of a two-photon

transition occurs much more efficiently at the focus than outside of the focal volume, which leads

to a huge boost in resolution relative to a one-photon based technique. Fluorescence from the

relaxation of the absorber is collected to reconstruct an image. 2PEM can only image about 1 mm

deep into living brain tissue. Imaging to greater depths would require a higher laser intensity that

perturbs the biological function of the tissue. Alternatively, a different light source that is more

efficient at excitation of 2PA could be used.
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Numerous theoretical and experimental studies have investigated the possibility of enhancing

the efficiency of 2PA by exciting with nonclassical light [22, 11]. Photon pairs that are entangled in

the energy-time and position-momentum degrees of freedom can exhibit the strong temporal and

spatial correlations needed for 2PA. Theoretical studies on simple model systems [23, 24, 6] have

predicted that using entangled photon pairs can lead to a significant “quantum advantage” in 2PA

rates. Here we define quantum advantage as the ratio of the minimum photon flux necessary to

observe classical 2PA (C2PA) to that for E2PA.

We will first look into the derivation of the E2PA cross section (σE) as was first done by Fei

et al. [6] and discuss why a simpler definition is more useful for the experimental conditions used

in this thesis. We then present the simple probabilistic model for the cross section similar to that

shown by Fei et al. [6], and connect C2PA to E2PA. For a more comprehensive review of the theory

of E2PA we suggest the work of Drago and Sipe [25] and Raymer and coworkers [5, 26, 27] .

Afterwards, we will discuss the range of E2PA experiments in literature, emphasizing that

the size and measurability of the cross sections is under debate. We also present the challenges of

reporting E2PA cross sections. Finally we will discuss the signatures of E2PA that serve as tools

for designing and conducting an E2PA measurement.

2.3 Quantum Mechanical E2PA Cross Section

To derive σE , we can again (Sec. 1.6) use second-order time-dependent perturbation theory.

We emphasize again that as mentioned in Raymer et al. [5], this derivation considers only the

double-quantum coherence pathway and leaves out other pathways that may contribute to 2PA

especially when the excitation field is near resonance with real intermediate states. Similar to

the theoretical derivations of SPDC, we must adopt a quantum description. The probability of

two-photon absorption can be written [28]
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where |i(f)⟩ denotes the initial (final) state wave function of the electron, |Ψi(f)⟩ denotes the initial

(final) state wave function of the optical field. Here we have considered the case where the field

described by Ê
(+)
1 (t1) interacts first and Ê

(+)
2 (t2) interacts second [28]. We can take note that

the probability (Eq. 2.1) consists of a material correlation function, M , and a second-order field

correlation function, G(2),
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By replacing the field correlation function with the product of classical field amplitudes, we can

recover Eq. (1.44). Evaluation of this equation for SPDC excitation shows that the field and

material parameters are inseparable, leading to a definition for σE that depends on both field

and absorber properties. It’s important to note here that the time ordering of the fields and dipole

moment operators results in E1 and E2 in Eq. (2.2) being associated to the first and second arriving

photons, respectively, of a frequency anticorrelated pair [29, 30]. The relevant G(2) function is thus

subtly different than the standard form in Eq. (1.23). The form of G(2) in Eq. 2.2 reduces to the

standard G(2)(0) when the linewidth of the absorber’s final state is significantly broader than the

bandwidth of the exciting field [29, 30, 26].

The probability of E2PA is known to depend linearly, rather than quadratically, on photon

flux [6, 24, 23] at low photon flux. The rate of E2PA contains both a linear component and the

classical quadratic component that dominates at high photon flux

RE =
1

2
(σEϕ+ σCϕ

2). (2.3)

Using Eq. (1.19), (2.3) and (2.2) one can derive the σE . Here we’ve taken the derivation from

Ref. [6] in the special case of a monochromatic pump and converted from natural to cgs units, used
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our convention for the factor of 2 in Eq. (2.3) and added in a density of final states, ρf ,

σE =
πω1ω2

2AeTe(ℏnϵ0c)2
ρf (ωfi = ω1 + ω2)

×
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where D
(j)
kl = ⟨f |dk|j⟩⟨j|dl|i⟩ are the transition dipole matrix elements, k and l refer to photons

1 and 2 or vice versa, ∆
(j)
1(2) = ωj − ωi − ω1(2) is an energy mismatch parameter and κj is the

intermediate state linewidth.

Large oscillations in σE as a function of Te (“entanglement induced two-photon transparen-

cies” [6]) have been theoretically predicted for a few atoms and molecular fluorophores [31, 32, 33],

but have not been measured experimentally. For large values of Teκj the interference will wash

out and σE approaches the probabilistic model we present below (Eq. (2.11)) [6]. Furthermore,

as the degrees of freedom of the absorber increases (i.e. for large molecules, absorbers that inter-

act with eachother, absorbers that interact with the surrounding medium and vibronic coupling)

the amount of coherence between the photons and the absorber decreases, and σE is expected

to approach the classical limit [31]. The absorbers studied in this thesis are large molecules or

quantum dots dissolved in room-temperature solvents, and thus likely can be approximated by the

probabilistic model.

2.4 Probabilistic E2PA Cross Section

Here we present a connection between a simple probabilistic theory describing E2PA and

the well-accepted description of C2PA. We consider a single-mode field with mean photon number

µ =
〈
â†â
〉
, the 2PA rate can be written [11, 34]

R = κ2

〈
â†

2
â2
〉
= κ2µ

2g(2), (2.5)

where κ2 (s−1) is a collection of constants quantifying the strength of the nonlinear interaction. It

has been demonstrated, for example, that thermal light (g(2) = 2) doubles the 2PA rate compared

to laser excitation (g(2) = 1) of the same intensity [35].
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In the classical limit, the instantaneous 2PA rate for a single fluorophore can be written [15]

R =
1

2
σCϕ

2, (2.6)

where ϕ is the photon flux, with units of cm−2 s−1. The C2PA cross-section σC has units

of GM, where 1GM = 10−50 cm4 s. (In this section we omit photons, excitations and fluo-

rophores/absorbers from the units of various quantities for brevity; in later chapters we include

them for clarity.)

For a pulsed laser (g(2) = 1) source with temporal and spatial mode set by the pulse duration

T (fs) and the beam area A (cm2), if we rewrite Eq. (2.5) in terms of the photon flux, ϕ = µ/(TA),

and substitute

κ2 =
σC

2T 2A2
, (2.7)

we arrive at the classical limit in Eq. (2.6).

In contrast to laser light, SPDC produces photon pairs exhibiting correlations in energy,

time and space that can be tailored to enhance the rate and selectivity of 2PA [36, 37]. The energy

correlations between the signal and idler photons within a pair are set by conservation of energy

in the conversion of one pump photon to two down-converted photons and can be engineered to

match the energy of a two-photon transition. Photon pair production is localized in space and

time [3, 38], allowing for excitation with photons that nearly simultaneously arrive in a localized

region of space.

A degenerate, single-mode (in all degrees of freedom: polarization, spatial mode, spectral

and temporal profiles) SPDC source can be modeled as a single-mode squeezed vacuum (SMSV),

for which g(2) = 3 + 1/µ [11]. Substituting this expression into Eq. (2.5) yields

R = κ2
(
µ+ 3µ2

)
. (2.8)

For a pulsed source, substituting ϕ and Eq. (2.7) into Eq. (2.8) gives

R =
1

2
σC

(
ϕ

TA
+ 3ϕ2

)
. (2.9)
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Figure 2.1: (a) Schematic of entanglement area, Ae, and beam area, A. Photons closely correlated
in space may have Ae smaller than A. (b) Schematic of entanglement time, Te, and the duration of
either the pump pulse or the overall SPDC pulse, T . Photons closely correlated in time may have
Te smaller than T .

An alternative way to write Eq. (2.8) is [6]

RE =
1

2

(
σEϕ+ 3σCϕ

2
)
, (2.10)

where σE has units of cm2 and RE is the instantaneous E2PA rate. For a single-mode field, the

two cross sections are related by σE = σC/(TA). At low photon flux, the first term dominates

and the E2PA process should scale linearly with ϕ [23, 24]. We note that it is more precise to say

that the E2PA rate is linear in photon number, as Eq. (2.8) shows. If pulse duration or spot size

were modified, the linear term should scale in the same way as the quadratic term, at least in the

single-mode case considered here. At high photon flux, where many photon pairs overlap in time,

the quadratic term dominates.

In a real experiment, the SPDC light typically occupies multiple modes and Eq. (2.8) does

not hold. In this case, the coefficient for the linear term could in principle be larger than the

coefficient for the quadratic term. Roughly speaking, if the two photons in a pair are more closely

correlated in time than the pump pulse duration, the interaction strength could be enhanced by

the factor T/Te, where Te is the entanglement time. Analogously, if the photons in a pair are more

closely correlated in space than the beam size, the interaction strength could be modified by the

factor A/Ae, where Ae is the entanglement area. A schematic of these quantities is illustrated in
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Fig. 2.1. Following this simple, probabilistic argument leads to the approximation

σE ≈ σC
TeAe

. (2.11)

Other than a factor of two difference due to our different definition of σE , this is the same approxi-

mation arrived at in Ref. [6], but following a different argument and making different assumptions.

To maximize the E2PA rate, Te and Ae should be as small as possible. For a large µ and a large

number of modes, g(2) −→ 1 and the E2PA rate approaches the classical limit in Eq. (2.6).

Unlike σC , which depends only on wavelength for a particular molecular 2PA transition, the

value of σE depends strongly on the properties of the excitation source and experiment. The values

of Ae and Te evolve as the SPDC beam propagates through optics from the down-conversion crystal

to the sample [39, 40, 41, 42, 7, 43], and therefore depend on the details of the optical system used

to measure E2PA. Calculating σE for a given experimental geometry thus requires knowledge of

Ae and Te within the excitation volume. Clearly, these factors complicate the ability to compare

results from different experiments.

2.5 Experimental Literature Summary

There are broadly two experimental designs used for measuring E2PA as shown schematically

in Fig. 2.2. The first is a transmittance-based experimental scheme, where a beam of entangled

photon pairs is sent through a sample and the transmittance (the fraction of photon pairs that

are transmitted through the sample) is measured. The second is a fluorescence-based experimental

scheme, where a beam of entangled photon pairs is sent through a sample and the fluorescence that

is emitted from the absorber is collected. Each of these techniques has their own unique advantages.

For transmittance measurements, one can use a sample that has a low quantum yield and one can

use a low photon pair flux. The latter of which is because the measured signal is a fractional change

of transmission and increasing the incident flux does not increase the value in the low flux regime.

Furthermore, the detectors must count single photons, thus low photon rates can be measured. For

fluorescence measurements, the desired signal is background free and the alignment of these setups
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Figure 2.2: (a) Schematic of a transmittance-based measurement scheme. Photon pairs are gener-
ated by SPDC in a χ(2) nonlinear crystal and sent through a cuvette containing a solvent and 2PA
sample, then through a cuvette containing only the solvent. The ratio of photon counts detected for
the two measurements gives the transmittance. (b) Schematic of a fluorescence-based measurement
scheme. Photon pairs are generated by SPDC in a χ(2) nonlinear crystal and sent through a cuvette
containing a solvent and 2PA sample. Fluorescence photons are counted on a detector angled at
90◦ relative to the beam propagation direction.

can be less sensitive. The latter of which is because the measured signal is not typically collected

onto a small detector, such as single-mode fiber-coupled detectors, far from the source, which is

more likely in a transmittance measurement.

The SPDC sources used in E2PA experiments can vary. The pump laser, for example, can be

continuous wave (CW) or pulsed. For a CW-pumped SPDC excitation source, the linear photon-

flux-dependent term in Eq. (2.10) will remain dominant over the quadratic term at higher average

fluxes than for that of a pulsed-pumped SPDC excitation source. This is because of the lower

likelihood of uncorrelated pairs arriving at a fluorophore at the same time. SPDC sources vary

in phase matching types (Section 1.3) and thus the photons in a pair may have perpendicular or

parallel polarizations. Furthermore, an experimental design may rotate the polarization of one

photon relative to its partner photon. Studies of C2PA [44, 45, 46] suggest that there is a small

difference in efficiency (by a factor of two or three) of excitation when the two photons have

perpendicular polarizations instead of parallel.

A summary of important parameters in selected E2PA reports is given in Table 2.1. These

studies represent experimental efforts from all three of the independent groups that have claimed to
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Table 2.1: Results and experimental parameters from selected E2PA studies. Cross sections (σC
and σE) are quoted at the corresponding excitation wavelength (λ). Cross sections and entangle-
ment times (Te) are found as described in the main text. We estimate the entanglement area (Aest

e )
required to explain the σE values based on Eq. (2.11).

Sample [Ref.] λ σC σE Te Aest
e

(nm) (GM) (10−19 cm2 fluorophore−1) (fs) (10−9 µm2)

9R-S [47] 800 27.9 2.02− 2.69 100 1.0− 1.4
Rh6G [48] 1064 9.9± 1.5 [16] 0.0099− 0.019 140 38− 72
RhB [49] 808 260± 40 [16] 0.17− 42 17 3.6− 900
Tetraannulene [50] 800 2960 990 96 0.31

measure a signal from E2PA. Table 2.1 shows σC and σE values determined at several near infrared

wavelengths. In Ref. [47], pulsed-pumped type-II SPDC was generated to excite a sample with

1−25×106 photons s−1 (the beam waist is not specified) in transmittance- and fluorescence-based

E2PA schemes. For the studied 9R-S molecule, the σE values found using these two techniques

differ slightly from one another. The measurement uncertainty was estimated to be 9% and 12% for

transmittance- and fluorescence-based techniques. In Ref. [48], a continuous-wave (CW)-pumped

type-0 SPDC source was used for entangled two-photon excited fluorescence (E2PEF) measure-

ments with an effective incident photon rate of 2 − 50 × 107 photons s−1 (beam waist of 60 µm).

A 100 times increase of the molar concentration led to a decrease in the measured σE value for

Rhodamine 6G (Rh6G) by a factor of two. The uncertainties on the measured σE were estimated to

be nearly 50%. A similar concentration dependence was observed in Ref. [49] using pulsed-pumped

type-II SPDC excitation with an incident pair rate of 50 − 7, 000 photon pairs s−1 (beam waist

of 61 µm) in a transmittance-based scheme, where the concentration dependence of σE for Rho-

damine B (RhB) was attributed to potential aggregation effects in the solutions. The uncertainties

on the published σE are ≈ 10%. In Ref. [50], a pulsed-pumped type-II SPDC source was used

to excite the tetraannulene sample with 1− 25× 106 photons s−1 in a transmittance-based E2PA

scheme. The measurement uncertainty was not estimated in this report. The values for σE of

990 × 10−19 cm2 fluorophore−1 for tetraannulene [50] and 0.0099 × 10−19 cm2 fluorophore−1 for

Rh6G [48] are the largest and smallest values, respectively, that have been reported. In all these
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reports the photon flux is not specified, except for an order-of-magnitude estimate in Ref. [49], and

the photon rate is not precisely defined.

No direct Te measurements were completed in the aforementioned reports. In the case of

Ref. [48] we estimate Te based on the details provided by the authors, who estimated an effective

flux reduced to the fraction of photon pairs that have Te = 140 fs. In Refs. [47, 49, 50], the value

of Te was estimated at the output of the crystal, which in some cases can be orders of magnitude

smaller than the value at the sample’s position. This is especially true when the total group delay

dispersion (GDD) of the optics is large or when the bandwidth of the SPDC is large (Chapter 3

Section 3.7). The value of Te would be very sensitive to even small amounts of GDD in the latter

case.

The values of Ae are not specified in any of these reports. We estimate the entanglement

areas, Aest
e , required to explain the results of these previous reports, based on the probabilistic

model, Eq. (2.11). The values of Aest
e range from 10−6 − 10−10 µm2. This would require both

photons within a pair to be confined to a region that is 10−6 − 10−10 times the diffraction limited

spot size. We have no evidence that this level of confinement is feasible [41, 42, 40, 7]. Thus, the

simple, probabilistic theory [6] used to derive Eq. (2.11) cannot explain these experimental results.

In addition to the inconsistencies of the results in Table 2.5 with theory, these reports have

only measured one signature of E2PA. As we will explain in the next Section, the signature that

they measure is not unique to E2PA and thus the origin of the signal is unclear. Another camp

of researchers exist, including our researchers, that have not been able to resolve a signal due to

E2PA, but have designed a sensitive experiment capable of measuring E2PA cross section upper

bounds (σUB
E ).

To the best of our knowledge, a complete summary of experimental results of E2PA is given

in Table A.1 and shown in Fig. 2.3. This plot shows σE (marked by various blue ××× symbols)

and σUB
E (marked by various orange ▼ symbols) values as a function of σC . From lightest to

darkest, the shades of blue represent the results from University of Geneva [48], University of

Michigan [47, 50, 51, 52, 53, 54, 55, 56] and Universidad de los Andes [49]. From lightest to darkest
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Figure 2.3: E2PA cross sections (marked by various blue××× symbols) and cross section upper bounds
(marked by various orange ▼ symbols) reported throughout literature. The values are plotted as
a function of σC . Each shade of blue or orange indicates results from a different organization as
mentioned in the main text. The data used for this plot can be found in Table A.1.
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the shades of orange represent the results from Universidad Nacional Autónoma de México [57],

California Institute of Technology [58], JILA/National Institute of Standards and Technology [59,

19, 60, 61](the work presented in this thesis) and University of Oregon [62]. The σUB
E have values

lower than the reported σE , signifying the stark disagreement between these two groups. The size

of σE has yet to be narrowed down which is evident by the vertical axis extending 12 orders of

magnitude. The reports of σUB
E are recent, being published in the last 2 years, whereas the reports

of σE have spanned 16 years and are primarily being published by one group.

The σUB
E used for Refs. [61, 57, 58, 62] were not provided in those publications, but were

estimated in a similar manner to those used in our publications [59, 19] as shown in Appendix A.

We note that some groups chose not to discuss their results in terms of E2PA cross sections in part

because of the large variability of the value from one experiment to the next (Sec. 2.4). We use it

in this thesis to make orders-of-magnitude comparisons between the results from various groups.

2.6 Signatures of E2PA

Although numerous experiments in literature report that E2PA signals are large and mea-

surable, it is unclear what the origin of the measured signal is. In order to claim that a signal has

a particular origin, a unique signature (or preferably multiple signatures) of the process must be

identified. Here we discuss a number of signatures of E2PA, however this list is not exhaustive.

The most commonly known signature of E2PA is its linear dependence on excitation photon

flux at low photon flux (Eq. (2.10)). This signature is not unique to E2PA and is shared with

many other processes such as scattering, one photon absorption, or fluorescence from the coating

of an optic in the beam path. Nevertheless, this signature is typically the only signature of E2PA

measured by the groups who report σE .

Another signature of E2PA is the signal’s dependence on the time delay between photons in a

pair; as the time delay is scanned away from optimal overlap (zero time delay), the signal is expected

to decrease towards zero in accordance with the simultaneity requirement of 2PA. In a recent report,

Tabakaev et al. [48] observe such behavior in an E2PEF experiment. An interferometer was used
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before the sample to probabilistically and equally split photons and time delay half of the photon

pairs, while the other half traversed the same path. The resulting E2PEF as a function of the time

delay should consist of a constant signal due to the photon pairs that traveled the same path and a

variable signal due to the photon pairs that traveled different paths. The signal at long time delays

should be half the signal at zero delay. Instead, Tabakaev et al. observe a signal that tends to zero

at large time delays. This unexpected result is pointed out by the authors of the study, but it has

yet to be explained. Some of the other reports [51, 63, 64] have included time-delay scans, but with

data reported at only a few delays.

Another signature of E2PA is the signal’s dependence on the presence of both photons in a

pair. If only one photon from each pair makes it to the two-photon absorber, the signal should

disappear. This test could be performed in a straightforward manner by adding a longpass or

shortpass filter centered at the pump wavelength (one must ensure that the alignment of the system

does not change). This was done in our publication [61] and was used as confirmation that the

origin of the signal was not E2PA. For type II SPDC, this can also be done by adding a polarizer to

the beam. Another way to check for this signature is to probabilistically and equally split photons

into two paths of an interferometer and block one arm of the interferometer, the signal should

reduce to a quarter of its original size.

One variation of this previous signature is to attenuate the SPDC beam and observe a

quadratic decrease of the signal. This differs from attenuation of the pump beam, which would

cause the signal to scale linearly. This difference can be understood mathematically.

In the case of linear loss between the SPDC generation crystal and the sample, the 2PA rate

(Eq. (2.5)) is modified [9]

R = κ2T 2
〈
â†

2
â2
〉
= κ2T 2µ2g(2), (2.12)

where the linear loss has been modeled as a lossless beamsplitter with transmittance T . For

excitation with a pulsed single-mode SPDC source,

R =
1

2
σCT 2

(
ϕxtal
TA

+ 3ϕ2xtal

)
, (2.13)
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where ϕxtal is the photon flux in the SPDC crystal (in our notation this is photon flux, not photon

pair flux). Rewriting in terms of the photon flux at the sample (ϕsample = T ϕxtal) yields

RE =
1

2

(
σET ϕsample + 3σCϕ

2
sample

)
. (2.14)

To extract σE , the flux at the sample should be scaled by T . If the flux is adjusted by attenuating the

pump power, the first term in RE should scale linearly with ϕsample. If the flux is instead adjusted

by attenuating the down-converted light, this term should scale quadratically with ϕsample. This

signature should be present in either transmittance- or fluorescence-based measurement schemes.

This loss-scaling signature was demonstrated in up-conversion of down-conversion by Dayan et

al. [65, 66], and can be used as a method to distinguish E2PA from other linear loss processes.

2.7 Thesis Overview

The overall objective of this thesis work is to experimentally investigate E2PA in molecules

dissolved in room temperature solvents. At the beginning of our research project we sought to

replicate some aspects of the experimental design of previous works where sensational claims were

made about the quantum advantage of E2PA. We soon found that we were not able to reproduce

the results from these reports and in fact were not able to measure a signal at all. Afterwards we

had to rethink our experimental design in order to increase our sensitivity. We designed sensitive

fluorescence and transmittance experiments, but still could not measure a signal. We were the first

to report upper bounds on σE , and we have done so for eight independent absorbers. Lastly, we

designed a new platform for more sensitive 2PA measurements.

In Chapter 3 we describe the SPDC source used for these various experiments. We detail the

capabilities of our systems and the methods used for characterizing this source.

In Chapter 4 we detail our first transmittance experiment. This setup includes an inter-

ferometer to test for time delay signatures of E2PA. We demonstrate how one could misinterpret

one-photon losses as a signature of E2PA, and go on to account for these losses. We set an upper

bound on the E2PA cross section of the studied sample, which shows disagreement with results in
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literature. The sensitivity of this experiment was limited by residual interference.

In Chapter 5 we discuss our fluorescence experiment. In this experiment we use our maximum

SPDC flux and achieve our highest cross section sensitivity. We study both C2PA and E2PA in

the same setup under nearly identical excitation conditions. Our C2PA measurements for the six

studied samples are used to derive C2PA cross sections which all agree within a factor of two to

the values published in literature. For E2PA we cannot measure a signal above our noise floor, and

set upper bounds on the cross sections.

In Chapter 6 we cover our second transmittance experiment. Here we take lessons from our

previous setup and design a higher sensitivity experiment. We redesign the interferometer and

improve our data acquistion and analysis techniques to allow for long but stable measurements.

We achieve a sensitivity to 0.05% change in transmittance, which is a 20-fold improvement from

the last experiment. However, we do not measure a signal for any of seven samples measured at

various concentrations. We set upper bounds on the E2PA cross sections for these molecules.

In Chapter 7 we describe our toluene-filled hollow-core-fiber platform for fluorescence mea-

surements. Here we confine the sample and light into a 37 cm-long, 5µm diameter tubing. We

measure C2PA down to ≈ 20 nW excitation power. This is a four-fold improvement from the pre-

vious fluorescence experiment. We expect that we can use higher concentration samples to measure

C2PA at lower powers.

In Chapter 8 we conclude our work and discuss work that was not included in this thesis. In

another experiment, we found that the process hot-band absorption can mimic E2PA. This process

could be the source of the signals measured by other groups. We discuss future work including the

use of the fiber experiment for E2PA studies.



Chapter 3

Entangled Photon Source and Characterization

3.1 Publication Note

Parts of this chapter are adapted from:

[59] Mikhaylov, A., Parzuchowski, K.M., Mazurek, M.D., Lum, D.J., Gerrits, T., Camp Jr, C.H.,

Stevens, M.J. and Jimenez, R., 2020, February. A comprehensive experimental system for measur-

ing molecular two-photon absorption using an ultrafast entangled photon pair excitation source. In

Advanced Optical Techniques for Quantum Information, Sensing, and Metrology (Vol. 11295, pp.

48-61). SPIE.

and

[19] Parzuchowski, K.M., Mikhaylov, A., Mazurek, M.D., Wilson, R.N., Lum, D.J., Gerrits, T.,

Camp Jr, C.H., Stevens, M.J. and Jimenez, R., 2021. Setting bounds on entangled two-photon

absorption cross sections in common fluorophores. Physical Review Applied, 15 (4), p.044012.

3.2 Introduction

In this chapter we discuss the setup and characterization of the entangled photon source

used in the three E2PA measurements covered in this thesis. First we discuss the design of the

source. Next we discuss the multi-mode detection stage, where all spatial modes of the SPDC

are detected for the measurement and calibration of our mean photon number. Then we discuss

the single-mode detection stage, which is used to detect a single spatial mode of SPDC. Using this
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setup we can characterize the joint spectrum, the entanglement time and g(2)(0). Finally we discuss

entanglement area.

3.3 SPDC Source

Figure 3.1: Schematic of the SPDC source and detection stages. The 810 nm pump laser (red) is
frequency doubled (blue) in an SHG unit. A half-wave plate (HWP) and polarizer (pol) control
the power. The light is filtered (F) and focused into a type-0 ppKTP crystal to generate SPDC.
The pump light is filtered (F) out, and the SPDC is sent to either the multi-mode or single-
mode detection stage. For multi-mode detection, all the light is focused onto a free-space-coupled
single-photon avalanche diode (SPAD). For single-mode detection, all the light is sent into an
Hanbury Brown-Twiss interferometer and launched into two single-mode fibers where it is detected
on superconducting nanowire single-photon detectors (SNSPDs).

A schematic of our photon pair source and detection stages is shown in Fig. 3.1. A pump laser

emits ≈ 110 fs pulses with a center wavelength of 810 nm (≈ 9 nm bandwidth) at a repetition rate

of 8×107 pulses s−1. The pulse duration and bandwidth is measured on a SwampOptics Grenouille

8-50-USB. The laser is frequency doubled via second-harmonic generation (SHG) to produce 405 nm

light (≈ 3 nm bandwidth). A half-wave plate (HWP) and polarizer (pol) are used to control the

power. Any remaining 810 nm light is filtered out. The beam is focused with a 300 mm lens into a

type-0 periodically poled potassium titanyl phosphate (ppKTP) crystal to generate collinear SPDC

photon pairs at 810 nm. The crystal is temperature controlled at 30.00◦C±0.01◦C. The beam size

at the focus in the crystal is approximately 30 µm. Filters are used to remove the remaining 405 nm

light. The part numbers for the components used in the experiments discussed in Chapters 4, 5, 6,

and 7 (including those shown in Fig. 3.1) are listed in Appendices C, E, G, and I.
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3.4 Characterizing Mean Photon Number

In this section, we seek to characterize the mean photon number of the multimodal SPDC.

We discuss values for various parameters that were measured during the fluorescence experiment

discussed in Chapter 5. To characterize the SPDC mean photon number at the sample (µsample),

we direct all the SPDC light to the multi-mode detection stage shown in Fig. 3.1, which consists

of a silicon single-photon avalanche diode (SPAD). We measure the count rate at low photon flux,

and correct for the SPAD dead time and efficiency, the photon statistics of the down-conversion

source, and the difference in optical losses between the two paths. We perform this procedure for

three low photon fluxes (where the SPAD is not saturated), and then extrapolate to the high flux

used in the fluorescence measurements. This high flux is the maximum flux we can produce from

our source due to the damage threshold of our crystal.

For a measured count rate Qmeas on the SPAD, the measured click probability per laser pulse

is

Pmeas
click =

Qmeas

g
, (3.1)

where g = 8 × 107 pulses s−1 is the pulse repetition rate. Assuming a non-paralyzing dead time,

the dead-time-corrected click probability can be found using [67]

P corr
click =

Pmeas
click

1−NdeadP
meas
click

, (3.2)

where Ndead is the number of laser pulses the SPAD is dead for following detection of a photon. We

measure the dead time of this SPAD as ≈ 52 ns, implying that Ndead = 4. For a pump power of

50 µW, we measure Qmeas = 4.4× 106 cnt s−1, and hence Pmeas
click = 0.055. The dead-time-corrected

click probability is P corr
click = 0.071. This is the per-pulse click probability we would have expected

to measure in the absence of dead time.

Converting this click probability to mean photon number requires knowledge of the system

detection efficiency (ηSDE) and the photon statistics of the SPDC source. These can be related
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through the expression [68]

P corr
click =

∞∑
n=1

[1− (1− ηSDE)
n]P (n), (3.3)

where P (n) represents the probability that a pulse of SPDC light contains n photons at the output of

the down-conversion crystal. At a wavelength of 810 nm, we calculate 83% cumulative transmittance

of all the optics between the SPDC crystal and the SPAD based on manufacturer specifications.

The manufacturer-specified efficiency of the SPAD is 55%. Thus the system detection efficiency is

ηSDE ≈ 0.46. The photon number distribution of a SMSV can be written [11]

P (n) =
µ
n/2
xtaln!

2n(n2 !)
2(1 + µxtal)(n+1)/2

(3.4)

for n even and P (n) = 0 for n odd. Here µxtal is the mean photon number generated at the down-

conversion crystal. At 50 µW pump power (P corr
click = 0.071 and ηSDE = 0.46), we solve Eqs. (3.3) and

(3.4) for µxtal. These numbers are consistent with a SMSV with mean photon number µxtal = 0.22.

Although a SMSV can be a good first approximation to an SPDC source, our source emits

into many spatial and spectral modes, as evidenced in part by the joint spectral measurements in

Fig. 3.3(a). To approximate the many modes in our SPDC light, we perform a Bernoulli sampling

of M equally populated SMSVs, each with mean photon number µxtal/M , assuming ηSDE = 0.46

for all modes. We substitute the resulting photon probability distribution P (n) into Eq. (3.3) for a

range ofM varying from 1 to 100, and find the resulting µxtal to only change in the range from 0.22

(one mode) to 0.21 (100 modes). Although we do not know exactly how many modes are present,

the number of modes does not significantly impact the resulting value of µxtal, so we use the value

of 0.22 for 50 µW pump power.

We repeat this procedure at two other low pump powers (75 and 100 µW), and extrapolate

the resulting linear fit to find µxtal ≈ 147 photons pulse−1 at the maximum pump power of 30 mW.

Correcting this for the 24% loss between the SPDC crystal and the sample yields µsample ≈ 112 pho-

tons pulse−1. This mean photon number is used to calculate the peak photon flux at the sample

using Eq. (5.12).

We can estimate the number of SPDC spectral modes based on the ratio of the SPDC
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to laser spectral widths, which gives ≈ 8 spectral modes. It follows that there are ≈ 14 pho-

tons mode−1 pulse−1 at the sample. For these operating conditions, at which many pairs are

spectrally and temporally overlapped, we may expect a significant contribution to any measured

signal from the classical term in the E2PA rate (Eq. (2.3)).

3.5 Superconducting Nanowire Single-Photon Detectors

In the single-mode detection stage (Fig 3.1) the light is sent into an HBT interferometer

(Fig. 1.3) and each arm is focused into a fiber held in a fiber launching stage. The 5 m-long

single-mode fiber patch cables are connected to superconducting nanowire single-photon detectors

(SNSPDs). The SNSPDs are cooled down to ≈ 4 K with a closed-cycle helium cryocooler. The

SNSPDs’ temperature is monitored. Bias and readout modules are used to extract the digitized

and amplified signals that are analyzed with a time tagger triggered to the laser. The singles and

coincidence rates are measured.

3.6 Time-of-Flight Spectrometer

Figure 3.2: Measured time of arrival (ns) of photons as a function of their wavelength (nm) for the
two 500-m-long fibers
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To build a time-of-flight fiber-based spectrometer [69], the 5-m-long patch cables in the single-

mode detection stage (Fig. 3.1) are attached to 500-m-long fibers that then connect to the SNSPDs.

The fiber group delay dispersion causes the various frequency components of the photons to spread

out in time and thus get detected at different times. These arrival times can thus be associated to

the frequency of the light.

We characterized the fiber dispersion by launching the pulsed laser into the fiber, tuning the

wavelength in the range 660-1200 nm in 5 nm steps. The time of arrival of the laser (centered

at each wavelength) at the detector relative to the laser trigger pulse was recorded. We did the

measurement with the 5-m-long patch cables only and with the 5-m-long patch cables attached to

the long fibers. We subtracted the time of arrival for the short fiber from the time of arrival for the

long fiber. We plotted time of arrival as a function of wavelength in Fig. 3.2. Using the slopes of

these curves in the 825-875 nm range, we can extract the dispersion parameter of the fiber, which

is −0.111 ± 0.004 and −0.115 ± 0.004 ns nm−1 km−1 in close agreement with the manufacturer’s

specifications at 850 nm of −0.106 ± 0.004 ns nm−1 km−1. At the wavelength range of interest,

785-835 nm, the slopes are both −0.055± 0.002 ns nm−1.

To measure the joint spectral intensity (JSI), we direct all the SPDC to the single-mode

detection stage shown in Fig. 3.1 with the 500-m-long fibers attached. We operate at a low pump

power such that we expect up to one photon pair to be generated per pulse. The signal and idler

detection times for each coincidence are recorded. We accumulate coincidences until the shape of

the JSI has a large signal to noise ratio and the structure stops changing. Initially we have a plot

of idler photon arrival times as a function of signal photon arrival times. We use the characterized

dispersion parameter of the fiber to convert the axes of the measured JSI from time of arrival to

wavelength. In Fig. 3.3(a) we show the JSI of the SPDC source without any bandpass filters. The

unfiltered SPDC source was used for the fluorescence experiment discussed in Chapter 5. In the

transmittance measurements discussed in Chapters 4 and 6, bandpass filters filtered the SPDC

to 9 and 11 nm FWHM respectively. The shape of the JSI indicates the expected wavelength

anticorrelation of SPDC. Taking the projection of the JSI on the vertical and horizontal axes (for
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type-0 SPDC these can be called signal and idler projections, or vice versa) reveals several results,

see Fig.3.3(b). The vertical and horizontal projections are shown in red and blue, respectively, with

FWHM of 72 and 79 nm. The various features in the spectra and the detuning from degeneracy is

likely a result of a combination of measurement artifacts, such as the spectral profiles of the optics.

Figure 3.3: (a) Measured joint spectral intensity (JSI) where λS,I are the signal and idler wave-
lengths. (b) The JSI is projected onto the horizontal axis and vertical axis showing the signal
(blue) and idler (red) spectra respectively. The FWHM of the signal and idler spectra are 79 and
72 nm respectively. The overlap of the spectra is evident in the dark red region. (c) Calculated
joint temporal intensity (JTI) obtained through a discrete Fourier transform as described in the
main text. (d) Projection onto the antidiagonal axis, tS-tI, of the JTI shown in (c) (blue) and for
a transform-limited (β = 0 fs2) pulse (red). The FWHM of these projections are 1620 fs and 17 fs.

3.7 Entanglement Time

In this section we discuss how we estimate the entanglement time Te of our SPDC source at the

sample. Here we consider the conditions in the fluorescence experiment as discussed in Chapter 5.
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For the transmittance experiments discussed in Chapters 4 and 6, we discuss the estimation of the

entanglement time for those experimental conditions within the chapters themselves.

The entanglement time is the width of the temporal g(2) function [6], which can be estimated

as the FWHM of the antidiagonal projection of the joint temporal intensity (JTI) distribution. We

do not measure the JTI directly; instead we calculate it based on our measured JSI. Computing

the JTI from the JSI requires knowledge of the spectral phase of the SPDC. We do not have a

measurement of this phase; instead we estimate the accumulated group delay dispersion (β) of the

pulse from the center of the crystal to the center of the sample to be 3700 fs2. Our most dispersive

elements are the polarizing beamsplitter and the ppKTP crystal. We set the joint spectral amplitude

(JSA) in the frequency domain to the square root of the JSI in the frequency domain multiplied by

the phase factor due to β, JSA =
√
JSIeiβ(ωS−ωP/2)

2/2eiβ(ωI−ωP/2)
2/2 where ωS, ωI, and ωP are the

frequencies of the signal, idler and pump fields, respectively. In asserting this, we assume that the

SPDC is transform limited in the center of the crystal and that the only significant accumulated

phase factor is that due to β. We note that β for signal photons would be distinct from that for

idler photons if the two were instead orthogonally polarized [39]. This is due to birefringence of

various optical elements. We perform a discrete Fourier transform on the JSA to obtain the joint

temporal amplitude (JTA). The magnitude squared of the JTA gives the JTI shown in Fig. 3.3(c).

The projection of the JTI onto the antidiagonal (tS-tI) is shown in blue in Fig. 3.3(d).

We find that Te ≈ 1620 fs. This can be compared with a transform-limited (β = 0 fs2) pulse

(Fig. 3.3(d) in red) that has Te ≈ 17 fs. The projections of the JTI onto horizontal and vertical

axes both have FWHMs of 1040 fs. This width is a good approximation for the pulse duration of

signal and idler beams because it is significantly larger than the pump pulse duration.

To make a probabilistic estimate of the advantage of lossless dispersion compensation or a

dispersion-free setup on the rate of E2PA in our experiment, we consider how dispersion affects the

SPDC’s fulfillment of the simultaneity requirement of 2PA. This simultaneity requirement asserts

that two photons must arrive at the absorber within a time window (∆t) set by the absorber’s

virtual state lifetime. For a dispersed pulse, fewer of the SPDC photon pairs arrive within this
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Figure 3.4: (a) The joint temporal intensity from Fig. 3.3(c) with a yellow filled-in region indicating
a 50 fs time window (see main text for explanation). (b) The ratio of the number of coincidences of
the transform-limited SPDC satisfying the relation |tS − tI| ≤ ∆t to that for the dispersed SPDC
(β = 3700 fs2) as a function of ∆t. The yellow bar indicates the 50 fs time window shown in (a).

time window. A precise calculation of the virtual state lifetime of these large molecular absorbers

is not feasible, however we can consider any arbitrary time window. In Fig. 3.4(a) the projection

of the JTI from Fig. 3.3(d) is shown with a reduced range along the horizontal axis, along with a

time window ∆t = 50 fs indicated in yellow. The number of photon pairs of the transform limited

SPDC (β = 0 fs) which satisfy |tS − tI| ≤ ∆t divided by the number of photon pairs of the dispersed

SPDC (β = 3700 fs) which satisfy the same constraint (called the coincidence ratio) is shown in

Fig. 3.4(b) as a function of ∆t. A yellow bar indicates the 50 fs time window shown in Fig. 3.4(a).

For the smallest possible ∆t we can consider based on our resolution (1 fs), the coincidence ratio

is 95. Thus a factor of 95 more photon pairs of the transform-limited SPDC satisfy |tS − tI| ≤ 1 fs

than for the dispersed SPDC. This implies that for a virtual state lifetime of 1 fs, lossless dispersion

compensation or a dispersion-free setup would at most improve our E2PA rate by a factor of 95. If

the virtual state lifetime is longer, the factor is smaller as indicated in Fig. 3.4(b). This probabilistic

analysis of the entanglement time’s effect on the rate of E2PA ignores quantum interference effects

predicted by more sophisticated theoretical models [6, 32, 33, 31]. The work on these models is

ongoing and needs more thorough study. However, as mentioned in Chapter 2, Section 2.3, the

interference effects are likely washed out for the absorbers studied in this thesis.
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It is worth noting that we could reduce the Te of our source by reducing the SPDC bandwidth

with a bandpass filter that is narrower than the ≈ 76 nm width. This would consequently reduce

our photon flux. We do not try this for the fluorescence experiment as it seems unlikely that a de-

creased photon flux will increase our likelihood of measuring E2PA. However, for the transmittance

experiments this is a useful strategy since we do not and cannot use our maximum SPDC flux. We

find that the Te values under these conditions are much smaller.

3.8 Characterizing Second-Order Coherence

To measure g(2)(0) we must use our single-mode detection stage (Fig. 3.1). The characteri-

zation done here considers the low flux single-mode of photon pairs detected in the transmittance

experiment presented in Chapter 6. For this section we look back at the parameter γ
(2)
click written

out in Eq. 1.28 in terms of parameters measurable in our setup. First we show that γ(2)[0] ≈ g(2)[0].

The parameter g(2)[0] can be written out in terms of the per pulse photon probabilities of

the measured source of photons [9], where P (n) is the probability that the source emits n photons,

g(2)[0] =

∑∞
n=0 n(n− 1)P (n)

[
∑∞

n=0 nP (n)]
2

=
2P (2) + 6P (3) + 12P (4) + ...

[P (1) + 2P (2) + 3P (3) + ...]2
. (3.5)

For our pair source, there is no chance for emission of odd numbers of photons so P (1) = P (3) = 0

along with the even higher order photon numbers. We operate in a low flux regime where P (2) >>

P (4) >> P (6), thus we only keep P (2) and arrive at

g(2)[0] ≈ 2P (2)

(2P (2))2
=

1

2P (2)
. (3.6)

Similarly γ
(2)
click[0] can be written out in terms of per pulse photon probabilities [9],

γ
(2)
click[0] =

η1η2|R|2|T |2
[
2P (2) + 6P (3)(1− 1

2η1|R|2 − 1
2η2|T |2) + ...

]
η1|R|2

[
P (1) + 2P (2)(1− 1

2η1|R|2) + ...
]
η2|T |2

[
P (1) + 2P (2)(1− 1

2η2|T |2) + ...
] ,
(3.7)

where R and T are the reflection and transmittance efficiencies of the beamsplitter in the single-

mode detection stage and η1 and η2 are the detection efficiencies for detectors 1 and 2. Again
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keeping only the P (2) terms,

γ
(2)
click[0] ≈

2P (2)

4P (2)2(1− 1
2η1|R|2)(1− 1

2η2|T |2)
. (3.8)

Next we assume 1
2η1|R|2 << 1 and 1

2η2|T | << 1, which is true in our case, and arrive at

γ
(2)
click[0] ≈

1

2P (2)
≈ g(2)[0]. (3.9)

Looking back at Eq. 1.28, we measure the quantities R1, R2 and Nc[0]. We use a pump laser with

repetition time, Trep = 12.5 ns and an integration time of 1 s. Typical values of R1,R2 and Nc[0]

are 1× 105 cnt s−1, 1× 105 cnt s−1 and 6× 103 cnt. This gives γ
(2)
click = 48. This value should only

be considered accurate for the experiment discussed in Chapter 6. At high flux, such as that used

for the fluorescence measurements, g(2) would much smaller (approaching 1) since multiple pairs

can be overlapped in the same pulse, rendering the beam’s photon statistics similar to the photon

statistics of a laser.

3.9 Entanglement Area

Unfortunately, we do not have a direct measurement of entanglement area Ae; we can only

estimate a range of values for Ae. The estimate of the lower bound is based on the diffraction

limit. We find no evidence that the two photons can be focused to a region significantly smaller

than that set by the diffraction limit. It has been shown [70, 71, 43, 42, 41, 38] that entangled

photons can be focused to a spot size that is a few-fold smaller, however we neglect these factors

here as they have a minor effect in the orders-of-magnitude comparisons we present. Thus, we set

the bound using a circular area with radius (r) set by the central wavelength of excitation (r ≈ λ),

which is 2.1µm2. The estimate of the upper bound varies depending on the experiment. For the

transmittance experiment we set the upper bound to an elliptical area with diameters set by the

measured transverse FWHMs of an 810 nm laser backpropagated through the setup at its focus

in the sample. For the fluorescence experiment the diameters are set by the measured transverse

FWHMs of the SPDC beam at its focus in the sample.



Chapter 4

An Introduction to Transmittance Measurements for Entangled Two-Photon

Absorption

4.1 Publication Note

This chapter is adapted from:

[59] Mikhaylov, A., Parzuchowski, K.M., Mazurek, M.D., Lum, D.J., Gerrits, T., Camp Jr, C.H.,

Stevens, M.J. and Jimenez, R., 2020, February. A comprehensive experimental system for measur-

ing molecular two-photon absorption using an ultrafast entangled photon pair excitation source. In

Advanced Optical Techniques for Quantum Information, Sensing, and Metrology (Vol. 11295, pp.

48-61). SPIE.

4.2 Introduction

In this chapter, we study entangled two-photon absorption (E2PA) using a transmittance-

based scheme. We are motivated by the previous experimental works in literature that report

E2PA signals using simple transmittance measurement schemes such as that shown in Fig. 2.2.

We reiterate (Chapter 2 Section 2.6) that these previous publications only verified one signature

of E2PA, the linear dependence of the signal on photon flux, which is not unique to E2PA. This

signature is consistent with many one-photon losses such as scattering, one-photon absorption,

fluorescence from an optical component or misalignment.

We design our experiment with the goal of reproducing the results from literature and im-

proving on the simple design. Our design has the capability to test for a unique signature of E2PA:
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it’s dependence on the time delay between photons in a pair (Chapter 2 Section 2.6). We introduce

control over the time delay using a Mach-Zehnder interferometer. We find that the interferometer

allows us to distinguish E2PA from one-photon losses, but it requires careful consideration of the

one-photon losses.

Our two photon absorbing sample is Zinc-tetraphenylporphyrin (ZnTPP) dissolved in toluene.

ZnTPP is a commercially available compound for which E2PA cross section σE values have been

reported [53, 49]. It has been suggested that the value of σE = 2.37 × 10−17 cm2 for ZnTPP at

800 nm can be used as a reference standard for E2PA experiments [72], thus it’s an important

sample to study.

We first analyze our data using a simple method that doesn’t use the time-delayed data.

This technique is sensitive to one-photon losses and two-photon absorption. The derived changes

in transmittance can erroneously be used to derive an σE close to the values reported in literature.

When we switch to an analysis technique that uses the time-delayed data that is only sensitive to

two-photon absorption (2PA), we find that the changes in transmittance for ZnTPP are below are

measurement sensitivity of 1%. Using this sensitivity we set an upper bound on the cross section,

σUB
E , for ZnTPP of 1.7× 10−19 cm2. This is considerably lower than what has been reported. We

believe our measurement technique and analysis form a basis for conducting E2PA experiments in

a more quantitative manner.

4.3 Experimental Setup

A schematic illustration of the experimental setup is presented in Fig. 4.1. Here we give a

brief overview of the setup, a thorough description of the components is given in Appendix C. It

consists of an SPDC pair source, an interferometer, a sample telescope and a single-mode detection

stage. The SPDC source is as described in Chapter 3 Section 3.1. We use a bandpass filter to filter

the SPDC bandwidth to ≈ 9 nm.

The collimated SPDC beam is steered into a Mach-Zehnder interferometer. A half-wave plate

(HWP1) is set at the interferometer’s input to rotate the SPDC beam polarization such that the
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Figure 4.1: Schematic of the experimental setup. The 810 nm laser (dark red) is frequency
doubled at an SHG unit. The 405 nm beam (blue) is directed through a half-wave plate (HWP)
and polarizer (pol) to control the power. Any remaining 810 nm light is rejected with a set of
filters and two dichroic mirrors (F). The beam is focused into a type-0 ppKTP crystal to generate
collinear degenerate SPDC at 810 nm (light red). The SPDC is collimated and the 405 nm pump is
blocked with a set of filters and two dichroic mirrors (F). HWP1 rotates the SPDC polarization for
equal probabilistic splitting at a polarizing beamsplitter (PBS). The beams are directed through
either the stationary or delay arm of the interferometer. A retroreflector on a translation stage is
used for time delay control in the delay arm. The beams are recombined at a PBS and focused into
a cuvette. The beam is collimated and directed into the single mode detection stage which consists
of HWP2 and a PBS to switch between detection modes.

photons are split probabilistically and equally at a polarizing beamsplitter (PBS). A retroreflector

is set on a motorized translation stage to adjust the length of the delay arm of the interferometer.

The beams traveling through the two arms are recombined at a PBS.

The SPDC is focused with a 50 mm lens into a cuvette that contains either a solvent or

a solution of two-photon absorbing molecules dissolved in the solvent (sample). A 50 mm lens

collimates the light and the beam is sent into the single-mode detection stage described in Chapter 3

Section 3.5. Next, HWP2 and a PBS are used to switch between two detection modes: the alignment

mode (HWP2 at 22.5◦) and the E2PA measurement mode (HWP2 at 0◦). In the measurement

mode, the polarization of the photons is not rotated at HWP2 and nearly all the light from the

stationary arm goes to detector 1 and nearly all the light from the delay arm goes to detector 2. In

the alignment mode, the polarization of the photons is rotated 45◦ such that the light from each

arm has a nearly equal probability of going to either detector.

The sample preparation is done at described in Appendix B. We use the reported molar
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extinction coefficient [73] of ZnTPP to prepare a sample of 1.0× 10−4 mol L−1 ZnTPP in toluene.

A standard 1 cm spectroscopic quartz cuvette is used for all measurements.

4.4 Experimental Characterization

Figure 4.2: (a) Measured joint spectral intensity (JSI) where λS,I are the signal and idler wave-
lengths. (b) The JSI is projected onto the horizontal axis and vertical axis showing the signal (blue)
and idler (red) spectra respectively. The FWHM of the signal and idler spectra are both 8.7 nm,
which is set by an optical filter. The overlap of the spectra is evident in the dark red region. (c)
Calculated joint temporal intensity (JTI) obtained through a discrete Fourier transform. (d) Pro-
jection onto the antidiagonal axis, tS-tI, of the JTI shown in (c) (blue) and for a transform-limited
(β = 0 fs2) pulse (red). The FWHM of these projections are 213 fs and 208 fs.

We measure the joint spectral intensity (JSI) of our source using the time-of-fight spectrom-

eter described in Chapter 3 Section 3.6. The JSI is shown in Fig. 4.2(a). The bandwidth is set by

a bandpass filter placed after the SPDC source. The JSI projections onto vertical and horizontal

axes in Fig.4.2(b) are used to estimate the marginal FWHM bandwidths of the photons as 8.7 nm.
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We estimate the total group delay dispersion (GDD) of our optical elements between the ppKTP

crystal and the center of the sample to be approximately 3100 fs2 at 810 nm. We use this GDD to

simulate the joint temporal intensity (JTI) using the procedure described in Chapter 3 Section 3.7.

The result is shown in Fig. 4.2(c). The FWHM of the projection of the JTI onto the antidiagonal

axis (Fig. 4.2(d)) is used to estimate the entanglement time as 213 fs. We note that this size of

GDD has a nearly negligible effect on our entanglement time due to the narrow bandwidth of our

filtered SPDC. The pulse duration of the SPDC can be estimated by the projection of the JTI onto

the horizontal and vertical axes, which is ≈ 258 fs.

Figure 4.3: (a) The normalized coincidence rate as a function of time delay measured with toluene
in the beam path for the alignment mode (black symbols) and E2PA measurement mode (red
symbols) configurations over a 500 fs delay range. (b-c) A 12 fs delay range of plot (a) centered
at zero delay for the alignment mode (b) and E2PA measurement mode (c). In (b) we observe
interference fringes whereas in (c) we observe low amplitude oscillations due to residual interference.
The rates are normalized to have average values close to 1 at large delay positions.

In the alignment mode configuration, interference occurs at the PBS in the single-mode

detection stage and can be measured in the coincidence rate between detectors 1 and 2. We plot

the alignment mode rate in black in Fig. 4.3(a) and (b). The pattern shows a dip as a function

of time delay that’s at a minimum (“zero delay”) at optimal overlap due to Hong-Ou-Mandel
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(HOM) interference. Fast-oscillating fringes are superimposed on the HOM dip due to NOON-

type interference. We explain the interference pattern in the next section. We measure a fringe

visibility of ≈ 90%, which implies that the photons have a high overlap in all degrees of freedom

(spatial, spectral, temporal and polarization mode) and thus are indistinguishable. In the E2PA

measurement mode, interference is suppressed as shown in red in Fig. 4.3(a) and (c). Due to

imperfections of our polarization optics, a small amount of light from the stationary arm leaks to

detector 2 and similarly from the delay arm to detector 1. This results in low amplitude residual

interference near zero delay.

4.5 Origin of Alignment-Mode Interference Pattern

When characterizing our setup in alignment mode, we measure the interferogram shown in

Fig. 4.3(a). Here we explain the structure of this interference pattern.

We begin by modeling the state of each photon pair produced in the SPDC crystal as (see,

e.g., Ref. [74] for details):

|ψ⟩ =
∫∫

dω1dω2f(ω1, ω2)â
†
H,1â

†
H,2 |0⟩ , (4.1)

where the operator â†H,i is the creation operator that creates a horizontally-polarized photon with

frequency ωi. The function f(ω1, ω2) defines the joint spectral amplitude (JSA) of the photon pair.

Because we are modeling light from a type-0 down-conversion process, we must ensure that the

JSA is symmetric, i.e. it must obey the relation f(ω1, ω2) = f(ω2, ω1).

To calculate the coincidence rate at the interferometer output as a function of time delay,

we first consider how light is transformed as it propagates through the interferometer. First, the

light travels through HWP1, which is set to an angle of 22.5◦, which rotates horizontally polarized

light (indicated by subscript ‘H’) to diagonally polarized light. We represent this rotation with the

following transformation:

â†H,j →
1√
2

(
â†H,j + â†V,j

)
, (4.2)
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where j ∈ {1, 2}, and the ‘V’ subscript indicates vertical polarization. The light then enters the

interferometer, where the vertically-polarized component of the beam travels a fixed path length,

and the horizontally-polarized component is delayed by time τ , which is represented by multiplying

the âH,j operators by the phase term exp {−iωjτ}. The light is recombined at a PBS, then travels

through HWP2, which is also set to an angle of 22.5◦. The horizontally polarized component of

the light is transformed according to Eq. (4.2), and the vertically polarized component undergoes

the transformation:

â†V,j →
1√
2

(
â†H,j − â†V,j

)
. (4.3)

Finally, the light is split at a PBS, where the vertical component travels to detector 1 and

the horizontal component travels to detector 2. The total transformation the light undergoes from

the crystal through the last HWP can be summarized as:

â†H,j →
1

2

[
â†H,j

(
e−iωjτ + 1

)
+ â†V,j

(
e−iωjτ − 1

)]
. (4.4)

To calculate the coincidence rate, R(τ), between detectors D1 and D2, we apply the trans-

formation (4.4) to the SPDC state (4.1), and then find the magnitude of the terms that lead to

coincidences. The result is:

R(τ) ∝
∫∫

dω1dω2 |f(ω1, ω2)|2
∣∣e−iω1τ + 1

∣∣2 ∣∣e−iω2τ − 1
∣∣2 , (4.5)

which we can can separate into two terms:

R = RHOM(τ) +RNOON(τ), (4.6)

with

RHOM(τ) = 2

∫∫
dω1dω2 |f(ω1, ω2)|2 [1− cos(ω1 − ω2)τ ] , (4.7)

and

RNOON(τ) = 2

∫∫
dω1dω2 |f(ω1, ω2)|2 [1 + 2 cosω1τ − 2 cosω2τ − cos(ω1 + ω2)τ ] . (4.8)
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The first term, RHOM, leads to a coincidence rate that is constant for large time delays, and

decreases to zero at delay τ = 0; this is HOM interference [75]. The second term, RNOON, describes

a NOON-type interferogram with fringes that oscillate at the sum of the two photon frequencies [76].

We complete the calculation by choosing a specific form of the JSA and evaluating the

integrals in Eqs. (4.7) and (4.8). For simplicity, we assume the pump laser has a Gaussian spectrum

with center frequency 2ω0 and width σp. We also assume the SPDC process is degenerate and that

the photons have Gaussian spectra with width σ. We write the JSA as:

f(ω1, ω2) =
(2σ2 + σ2p)

1/4

(2πσ2σp)1/2
exp

{
−(ω1 − ω0)

2

4σ2
− (ω2 − ω0)

2

4σ2
− (ω1 + ω2 − 2ω0)

2

4σ2p

}
. (4.9)

The resulting coincidence rates are:

RHOM(τ) =
1

2

(
1− exp

{
−σ2τ2

})
, (4.10)

and

RNOON(τ) =
1

2

(
1− exp

{
−
σ2σ2pτ

2

2σ2 + σ2p

}
cos 2ω0τ

)
. (4.11)

The explicit form of Eqs. (4.10) and (4.11) demonstrates the HOM-type and NOON-type compo-

nents of the interferogram.

Figure 4.4: Calculated coincidence rate as a function of interferometer time delay. (a) A 500 fs
range of the interferogram composed of fast-oscillating fringes superimposed on a HOM-type dip.
(b) A 12 fs range of the same graph to show the fringes, the period of ≈ 1.35 fs is consistent with
a pump wavelength of 405 nm.

We can plot R(τ) = RHOM(τ) + RNOON(τ) if we choose specific parameters for the JSA,

which we display in Fig. 4.4. For the pump we choose σp = 0.002 fs−1 and a center wavelength of
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405 nm, which corresponds to a full width at half maximum (FWHM) of ≈ 0.2 nm. We choose a

center wavelength of 810 nm for the down-conversion, and σ = 0.01 fs−1, which corresponds to a

single-photon spectrum with ≈ 6 nm bandwidth. With these parameters, the calculated coincidence

rate R(τ) qualitatively approximates the measured interferogram in Fig. 4.3.

4.6 Experimental Procedures

After verifying the alignment of the setup, we rotate HWP2 to 0◦ to operate in the E2PA

measurement mode. Ideally, we would completely turn off any interference and measure zero

interference visibility, with the only observed change in coincidences as a function of time delay

due to E2PA. However, we measure residual interference. This artifact (linear interference fringes

superimposed on a possibly small remaining HOM dip) could be incorrectly attributed to E2PA. To

mitigate the effect of the residual interference, we record the coincidence rates over several fringes

in the vicinity of zero delay and average them. This averaging procedure is repeated for a delay

of approximately -6.7 ps, corresponding to a path-length difference of 2 mm from zero delay; we

denote this position as “τ delay”. The uncertainty is estimated from the standard deviations in

the measured counts and is ≈ 1%. This defines the sensitivity limit in measuring changes in the

coincidence rates.

For the E2PA measurements we tune the 405 nm pump power from ≈ 60µW to 11 mW using

the HWP; the coincidence rates are approximately 2× 102 − 3.7× 104 cnt s−1 and singles rates are

103 − 106 cnt s−1. Measured coincidence rates are shown in Fig. 4.5 and given in Appendix D. We

record the coincidence rates for photon pairs transmitted through the solvent (blue symbols) and

subsequently through the sample (red symbols) at τ (a) and zero delays (b). All measurements are

repeated multiple times, from which standard deviations (relative) are estimated. Sample removal

and refill is done using a pipette and the cuvette is fixed in the beam path.
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Figure 4.5: Coincidence rates measured in the experiment. The rates (in counts per second,
cnt s−1) are measured as a function of the pump power (mW). The experiments were conducted for
neat solvent (blue symbols) and sample (red symbols) at the (a) zero- and (b) τ -delay positions.
All rates were averaged according to the procedure described in Section 4.6.

4.7 Deriving a Cross Section

In this section, we describe how a measured change in transmittance due to E2PA can be

used to estimate an E2PA cross section.

Consider a beam of photon pairs that is described by a flux ϕ. We can derive an expression

describing how ϕ changes while the beam propagates along the z-axis through a sample. The beam

enters the sample at z = 0. The sample’s length is L. Assuming the beam experiences only linear

losses while interacting with the sample that causes some attenuation in the flux characterized by

κ, the change in the flux dϕ over some small distance dz can be written

dϕ

dz
= −ϕκ. (4.12)

We make the approximation that the beam is collimated over the length L (Rayleigh range

≫ L) and has constant intensity over its cross section. For our experimental conditions this is

not precise (the SPDC beam is not uniform and is focused into the sample); however, we ignore

this discrepancy and proceed with the simplest case. A more rigorous analysis (similar to what

has been developed for z-scan type measurements [15]) should be applied for a general treatment.

With the aforementioned assumptions integration of Eq. (4.12) becomes trivial. Assuming weak
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absorption (κL≪ 1), we find,

ϕout ≃ ϕin (1− κL) . (4.13)

We can introduce a relative change in the flux, δϕ, as

δϕ =
∆ϕ

ϕin
. (4.14)

where ∆ϕ = ϕin−ϕout and ϕin(out) is the flux going into (out of) the sample. Using Eq. (4.13), this

becomes

δϕ ≃ ϕin − ϕin (1− κL)

ϕin
= κL. (4.15)

All of our experimental data is recorded as detected photon pair rates, R, rather than flux values.

Therefore, it is convenient to rewrite the equations in a slightly different way using R instead of ϕ.

Since ϕ differs from R only by a factor of 1/A where A is the beam area, it is straightforward to

show that,

δϕ = δR =
∆R

Rin
≈ κL, (4.16)

where ∆R = Rin − Rout and Rin(out) is the photon rate going into (out of) the sample. Since we

fiber couple the light transmitted through the sample before it is detected, A is specific to the

spatial mode coupled into fiber.

If the change in transmittance (δϕ or equivalently δR) is due to E2PA only, then κ = nσE ,

where n is the number density of the sample (in molecules per cm3).

Then we find,

σE ≃ δR

nL
, (4.17)

where σE and L are in units of cm2 molecule−1 and cm, respectively.

4.8 Data Analysis Case Studies

In this section we show how the measured coincidence rates are used to calculate a δR that is

only sensitive to E2PA rather than one-photon losses. We start with the most simplistic approach

adopted from previous reports (i.e. Refs. [53, 49]) and discuss the pitfalls of this method. We
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progressively add more complexity to show how our experimental setup and analysis can be used

to account for one-photon loss mechanisms.

Figure 4.6: A schematic showing notations used in the data analysis case studies. Each panel
corresponds to a different case considered in Section 4.8: (a) illustrates case 1, (b) illustrates case
2 and (c) illustrates case 3.

4.8.1 Case 1. Measuring sample and solvent without time delay

Here we start by using only data at zero delay. We assume that if there is a difference in

coincidence rates measured with the solvent (Rsolv
0 ) and with the sample (Rsamp

0 ) (at zero delay),

it’s due to E2PA. This situation is schematically depicted in Fig. 4.6(a). It shows coincidence rates

as a function of the time delay. All curves are not real data and not shown to scale. Under this

assumption, ∆R = Rsolv
0 −Rsamp

0 .

From Section 4.7, Eq. (4.16)

δR =
∆R

Rin
≃ Rsolv

0 −Rsamp
0

Rsolv
0

.

We use the rates measured at different pump powers (Table D.1 in Appendix D) to calculate average

δR values. We find δR = 0.146± 0.010. This assumption ignores the likely scenario that switching

a solvent with a sample can introduce one-photon losses to the measurement. These losses could

be one-photon absorption, scattering or misalignment. In section 4.9, we will see that this way of

analyzing the data leads to an overestimate of σE values.
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4.8.2 Case 2. Measuring sample with time delay

Next consider a case where only the sample is measured and the time delay is varied between

the zero- and τ -delay positions. Here we assume that the difference in the coincidence rates mea-

sured at τ and zero delays, Rsamp
τ and Rsamp

0 , respectively, is proportional to E2PA. This scenario

is depicted in Fig. 4.6(b). Under these assumptions, ∆R = Rsamp
τ −Rsamp

0 and

δR =
∆R

Rin
≃ Rsamp

τ −Rsamp
0

Rsamp
τ

This technique avoids some of the pitfalls that render case 1 incorrect since the one-photon

losses that are associated with switching the sample with a solvent are not introduced. Those losses

are shown in Fig. 4.6(b) as Rsolv−samp.

From the measured rates we deduce δR = 0.006 ± 0.005. The first two lowest power points

(lowest rates in Table D.1) are excluded from the calculation. Including these removed points

results in a large additional uncertainty in δR. One can see that in this case, the value of δR is

much smaller than in case 1. This is because the largest one-photon losses contributing to the δR

derived in case 1 are removed in case 2. However, case 2 can only derive accurate δR values when

the one-photon losses in the experiment are the same at zero and τ delays. This assumption is

not correct, especially since we noted that there are residual interference effects evident at zero

delay. However, the delay-dependent one-photon losses are smaller or of similar magnitude to our

experimental uncertainty as shown by the derived δR. In the next case study, we account for all

one-photon losses including the residual interference.

4.8.3 Case 3. Measuring sample and solvent with time delay

Here we account for all the one-photon losses by using both the sample and solvent measure-

ments at both time delays. We assume that the residual interference effects are the same magnitude

for sample and solvent measurements. We denote the loss in the coincidence rate associated with

residual interference at zero delay as RHOM. Additionally, if there is some misalignment associated

with replacing solvent with sample or due to moving the stage between the two delay positions, the
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corresponding losses in the coincidence rates are Rsolv−samp and Rstage, respectively. A schematic

describing this case is shown in Fig. 4.6(c), however Rstage is not shown.

In this case, the coincidence rates measured with the sample at the two delay positions are

Rsamp
τ = Rin −Rsolv−samp −Rstage,

Rsamp
0 = Rin −∆R−RHOM −Rsolv−samp,

and for the solvent,

Rsolv
τ = Rin −Rstage,

Rsolv
0 = Rin −RHOM.

Using these relations one can show

∆R = (Rsamp
τ −Rsamp

0 )−
(
Rsolv

τ −Rsolv
0

)
.

Here, Rin ≃ Rsolv
0 . Then,

δR ≃ ∆R

Rsolv
0

=
(Rsamp

τ −Rsamp
0 )−

(
Rsolv

τ −Rsolv
0

)
Rsolv

0

.

Thus, δR is independent of Rsolv−samp, RHOM and Rstage. Using this analysis, δR = −0.001±

0.004. Again, we excluded the lowest power points from the analysis to reduce the calculated

uncertainty. The average δR value is lower than the associated uncertainty, thus, we cannot assign

this change in transmittance to a measured signal in our experiment.

4.9 Results

Here we estimate σE values using Eq. (4.17). The derived σE values are listed in Table 4.1.

First we consider case 1 where we found δR = 0.146 ± 0.010. We can use this value to derive

σE = (2.43 ± 0.20) × 10−18 cm2, however this change in transmittance may be due to one-photon

losses as discussed in Section 4.8.1. It’s useful to note that this σE value is within the range

of σE values for ZnTPP from other reports where a very similar analysis procedure was used:

σE = 2.37× 10−17 cm2 as reported in Ref. [53] and (1− 10)× 10−18 cm2 as reported in Ref. [49].
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For cases 2 and 3 we found δR = 0.006 ± 0.005 and δR = −0.001 ± 0.004, respectively.

These δR are effectively zero within the estimated uncertainty. Therefore, we did not use them to

calculate the corresponding σE values.

Let us consider a limiting case to estimate our experimental upper bound on σE . We call this

situation case 4 (Table 4.1). The smallest δR that can be measured reliably in our experiment is

about 0.01. Thus, we calculate from Eq. (4.17): σUB
E ≈ 1.7× 10−19 cm2, which serves as an upper

bound for ZnTPP.

Table 4.1: Summary of the changes in transmittance δR and calculated σE values for ZnTPP.
Cases 1-3 correspond to the 3 different analysis case studies, with case 3 illustrating the correct
analysis procedure. Case 4 illustrates a limiting situation used to place an upper bound on σE .

Case δR σE × 1019

cm2

1 0.146± 0.010 24.3± 1.6
2 0.006± 0.005 −
3 −0.001± 0.004 −
4 0.01 1.7

4.10 Conclusions

In this chapter we presented our vision of a comprehensive transmittance–based scheme for

E2PA measurements. We performed a careful characterization of the experimental apparatus, and

we showed that the implementation of a time delay between the two photons was essential for a

one-photon loss insensitive transmittance measurement.

We used data analysis case studies to highlight the importance of using the time delay. If no

time delay is implemented (case 1), then the calculated δR value includes spurious contributions

from scattering or other one-photon losses. The value of δR derived in case 2 is inherently free

of the measurable losses attributed to case 1, however it may include delay-dependent one-photon

losses. To eliminate all one-photon losses we applied the analysis presented in case 3. In cases 2

and 3 the derived δR values are significantly lower than the results obtained in case 1 (Table 4.1).
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Thus, simplistic subtraction schemes like those used in case 1 are insufficient and can lead to a

many-orders-of-magnitude overestimate in σE values.

We illustrated this procedure in our pilot study of ZnTPP using 810 nm SPDC excitation.

We showed that if the time delay was not applied, one can erroneously use their measurements

to derive a σE value that is in agreement with published values in literature. The real changes in

transmittance due to E2PA for ZnTPP were below our experimental sensitivity of ≈ 1%. Thus, we

estimated ZnTPP’s σE ≤ 1.7 × 10−19 cm2, which is significantly lower than previously published

σE values.



Chapter 5

Bounding Entangled Two-Photon Absorption Cross Sections with a

Fluorescence-Based Scheme

5.1 Publication Note

This chapter is adapted from:

[19] Parzuchowski, K.M., Mikhaylov, A., Mazurek, M.D., Wilson, R.N., Lum, D.J., Gerrits, T.,

Camp Jr, C.H., Stevens, M.J. and Jimenez, R., 2021. Setting bounds on entangled two-photon

absorption cross sections in common fluorophores. Physical Review Applied, 15 (4), p.044012.

5.2 Introduction

In this chapter, we investigate entangled two-photon absorption (E2PA) using a fluorescence-

based measurement scheme. We are motivated to determine whether a large quantum advantage

(QA) exists. Some reports suggest the QA is nearly 10 orders of magnitude [52, 54]. However, in

these reports it is unclear whether the signals are caused by E2PA or some other process as discussed

in Chapter 2 Section 2.5. Furthermore, the methodology in these reports has not advanced to the

point where classical two-photon absorption (C2PA) and E2PA can be measured in the same setup,

and thus the excitation conditions can differ significantly leading to orders-of-magnitude error in

the QA quantification.

We present a method for measuring both entangled two-photon excited fluorescence (E2PEF)

and classical two-photon excited fluorescence (C2PEF) in one experimental setup. We characterize

our excitation sources, fluorescence collection system and samples to determine our 2PA cross-
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section sensitivity. The C2PEF measurements are used to derive C2PA cross sections, σC , for the six

studied fluorophores. The values strongly agree with previously reported C2PA cross sections [17,

47, 77]. Although we do not detect measurable E2PEF signals for any of the six fluorophores,

we can bound the maximum efficiency of the E2PA process in each fluorophore by placing upper

bounds on its E2PA cross section, σE . The C2PEF and E2PEF measurements are also used to

bound the QA. Our established upper bounds on σE are up to four orders of magnitude lower than

the smallest published value of σE [48]. For two of the samples, the upper bounds on σE are four

and five orders of magnitude lower than the previously reported cross sections [48, 47].

5.3 Experimental Setup and Characterization

Here we give a brief overview of our experimental setup and characterizations. A thorough

description of the components is given in Appendix E. A schematic of the experimental setup is

shown in Fig. 5.1 and it consists of a laser source, a photon pair source, a single-mode detection

stage, a multi-mode detection stage and the two-photon excited fluorescence (2PEF) measurement

system. A pump laser emits ≈ 110 fs pulses with a center wavelength of 810 nm (≈ 9 nm bandwidth)

at a repetition rate of 8×107 pulses s−1. The laser output is frequency doubled to produce 405 nm

light (≈ 3 nm bandwidth), of which 30 mW is used to produce SPDC for E2PA as described in

Chapter 3 Section 3.3. A small fraction of the 810 nm pump laser is routed around the nonlinear

crystals and used for C2PA.

We characterize the joint spectrum of the photon pairs with the time-of-flight fiber spec-

trometer using the single-mode detection stage as described in Chapter 3 Section 3.6. In this

configuration, the single-mode detection stage consists of a 50-50 fiber beamsplitter rather than

a free-space beamsplitter. The SPDC is approximately degenerate and centered at 810 nm with

≈ 76 nm bandwidth. We determine the entanglement time (Chapter 3 Section 3.7) using the

estimated joint temporal intensity, which accounts for the approximately 3700 fs2 of dispersion ac-

cumulated by each photon pair before reaching the center of the cuvette. The value of Te at the

sample position is ≈ 1620 fs. Although Te is larger than in the ideal (dispersion-free) case, we make
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Figure 5.1: Schematic of the experimental setup. The 810 nm laser (dark red) is split into two
paths; one path is used for C2PEF measurements and the other for E2PEF measurements. The
light in the C2PEF path is directed through a half-wave plate (HWP) and polarizing beamsplitter
(PBS) to control the power of light directed to the 2PEF measurement system. The laser is optically
chopped (chopper) and focused into a sample. The fluorescence (green) is collected onto a photon-
counting PMT and all scattered light rejected using filters (F). The PMT pulses are shaped and
sent to a time tagger that is synchronized with the optical chopper. The light in the E2PEF path is
frequency doubled (blue) via second-harmonic generation (SHG) and focused into a type-0 ppKTP
crystal to generate collinear SPDC photon pairs at 810 nm (light red). Filters (F) are used to
remove the remaining 405 nm light. To characterize the joint spectral intensity of the light, a flip
mirror directs the pairs into the time-of-flight spectrometer which uses the single-mode detection
stage. To characterize the absolute SPDC photon rate at the sample, a HWP and PBS direct the
light to a single-photon avalanche diode (SPAD) in the multi-mode detection stage. For E2PEF
measurements, the HWP is rotated to transmit all SPDC photons through the PBS; this light
travels along the same path as the light used in the C2PEF measurements where it is focused into
a 2PA sample.

a probabilistic estimate that lossless dispersion compensation would at most increase the rate of

E2PA by a factor of 95 (Chapter 3 Section 3.7).

The SPDC photon rate is measured using the multi-mode detection stage. The optical system

was designed to minimize losses, thereby minimizing the number of unpaired photons focused

into the sample. Taking into account the single-photon detection rate, the SPAD dead time and

efficiency, the photon statistics of the SPDC and the optical losses in our setup from the center of the

crystal to the center of the sample (≈ 24%), we estimate that ≈ 147 photons pulse−1 are generated

at the output of the crystal and ≈ 112 photons pulse−1 arrive at the sample while operating at our
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maximum pump power (30 mW) (Chapter 3 Section 3.4).

We estimate that the value of Ae is in the range of 2.1−13, 700µm2 as described in Chapter 3

Section 3.9. The value of Ae likely changes throughout the cuvette because the beam is not colli-

mated. The range of values that Ae could take on at the edge of the cuvette is 2.1−2, 160, 000µm2.

This subtle point is taken into account in Section 5.5.

For C2PEF and E2PEF measurements, we use a polarizing beamsplitter (PBS) to combine

the SPDC and laser beams, and align them along the same path. The power of the laser beam

is controlled using a half-wave plate (HWP) in conjunction with the PBS, varying from 0.079 −

10.5µW. The beams are sent through an optical chopper, then focused in the center of a cuvette to

a beam FWHM of ≈ 68µm and ≈ 49µm for the SPDC and laser beams respectively. For E2PEF

measurements, we block the laser beam, and for C2PEF measurements we block the SPDC beam.

The portion of the beam absorbed in the sample is partially re-emitted as fluorescence, which is

collected and focused onto a photon-counting photomultiplier tube (PMT). A combination of a

shortpass and bandpass filter (selected for each fluorophore, see Section 5.5) in front of the PMT

reject scattered 810 nm and 405 nm light. The SPDC beam is found to have a larger divergence

within the sample compared to the laser beam (Section 5.4). The divergence is taken into account by

using the characterization of the spatially dependent geometrical collection efficiency (Section 5.5).

The geometrical collection efficiency of the fluorescence collection system is characterized using

numerical simulations and 1PEF measurements (Section 5.4) and determined to be 15.4% and

4.7% for a point source and line source (extending the length of the cuvette) of fluorescence,

respectively. The two beams are found to be displaced from each other in the sample by ≈ 5µm

horizontally and vertically. As Section 5.4 and Appendix F explain, our experimental apparatus

is carefully designed and characterized to be robust against small changes in alignment like these.

The longitudinal displacement between the beams is compensated for.

The six fluorophores investigated in this study are the 1,3,5-triazine-based octupolar molecule

“AF455” [78, 79] in toluene, Qdot ITK carboxyl quantum dot 605 (qdot 605) in borate buffer,

fluorescein in pH 11 water, the benzodithiophene derivative “9R-S” [47] in chloroform, rhodamine
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590 (Rh6G) in methanol and coumarin 153 (C153) in toluene (details on sample preparation in

Appendix B). These samples are of particular interest because of their well-known and large values

of σC at 810 nm (see Table 5.3). In addition, two of these samples (Rh6G and 9R-S) were studied

in previous reports of E2PA [48, 47].

5.4 Fluorescence Collection Efficiency

Initial characterization of the fluorescence system’s geometrical collection efficiency is per-

formed using Zemax’s OpticStudio. The solvent, glass cuvette walls, four collection optics and

detector surface are modeled in the program. Using a merit function and an optimization algo-

rithm, we find the ideal spacing of the optics.

A 2PA process can only occur if two photons are sufficiently spatially overlapped at a flu-

orophore, thus the rate of C2PA and E2PA depend on the focusing of the respective beams. For

C2PA, this is clearly evident through the quadratic photon flux dependence in the excitation rate

(Eq. (2.6)), where the photon flux depends inversely on the beam size. For E2PA, this spatial

dependence is hidden because the excitation rate depends linearly on photon flux (Eq. (2.10)) in

a similar manner to 1PA (a beam-size-independent process). The spatial dependence is instead

included in the E2PA cross section (Eq. (2.11)), which depends inversely on the entanglement area.

In our experiment, the excitation beams are not collimated (see divergence of the SPDC

(green) and laser (blue) beams in Fig. 5.2(a)) and thus the excitation volume is a non-trivial shape.

Furthermore the E2PA beam does not have a constant entanglement area (or E2PA cross section)

which complicates the ability to perform an exact calculation of the E2PA cross section (or in our

case an upper bound) for a given E2PA signal. To approximate this, we calculate the E2PA cross-

section upper bound in the region with nearly constant entanglement area (Section 5.5). For this

calculation and our calculation of the C2PA cross section (Section 5.5) it is critical to characterize

the collection efficiency of our system as a function of the origin of the fluorescence along the z-

direction. Ideally we would also take into account the collection efficiency’s x- and y-dependence,

however as we discuss below, this is less critical to the final result.
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Figure 5.2: Illustration of the geometrical collection efficiency inside of the cuvette and the
laser/SPDC beam overlap. (a) A cross section of the cuvette in the xz plane. The selected contours
show where the collection efficiency is constant, based on Zemax simulations. The magnitude of
the collection efficiency is scaled based on 1PEF measurements. The beam propagation is shown
for the laser beam (blue) and the SPDC beam (green). (b) A cross section of the cuvette in the
xy plane. The magnified image on the right is a view of the center of the xy plane and shows
approximate beam FWHMs and overlap.

In Zemax, we simulate the collection efficiency as a function of the origin of the fluorescence

within the cuvette volume. We model a point source of fluorescence that emits rays isotropically

at some position in the cuvette. The number of those rays collected onto the detector are counted.

We systematically translate this source in all directions to trace out contour plots of collection

efficiency in the xz plane (centered in y) (Fig. 5.2(a)) and the xy plane (centered in z) (Fig. 5.2(b)).

In Fig. 5.2 we rescale the collection efficiency found through Zemax to match experimental values,

as discussed below. We find that the collection efficiency is slightly asymmetric in the x direction,

collecting slightly better when the point source is displaced towards the PMT. We ignore this minor

asymmetry in the experiment and center the beams through the cuvette.

Although the spatial distributions of the excitation beams have some transverse extent,

Fig. 5.2 shows that transverse displacements from x = y = 0 must be large to significantly affect

the collection efficiency (> 102 µm at z = 0 and transverse displacements nearly negligible beyond
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|z| > 1 mm). Our excitation beams’ spatial distributions in the transverse directions are contained

within a region of nearly constant collection efficiency, thus in our calculations (Section 5.5) we

ignore the transverse spatial distribution of the excited fluorescence.

In Zemax, we simulate the total collection efficiency (κ) of a particular excitation volume for

the limiting cases of a uniform cylindrical excitation volume (50 µm diameter) that extends the

length of the cuvette (centered in x and y) and for that of a point source centered in the cuvette.

For the former, the collection efficiency is at a minimum for the system (for a uniform excitation

volume centered in the cuvette with 50 µm diameter), κmin = 6.1%, and for the latter, the collection

efficiency is at a maximum for the system, κmax = 20.2%

To a good approximation, the collection efficiency K (found using Zemax) as a function

of z (cm) fits to a complementary error function. This can be qualitatively understood by the

similarity of the simulation of the collection efficiency as a function of z to a knife’s edge beam

profile measurement, which fits the same type of function. In both cases an intensity is measured

as a function of the placement of an object. This object alters the intensity passed to a detector.

Thus, the collection efficiency as a function of z takes the form

K(z) =
κmax

2
erfc (α(|z| − z0)) , (5.1)

where κmax = 0.20, α = 2.8 cm−1 and z0 = 1.5 cm. These parameters are set by Zemax collection

efficiency simulations for the translation of a point source along the z direction (centered in x (cm)

and y (cm)), and z = 0 is the center of the cuvette. The function K(z) is used to calculate the

portions of an excitation volume extended along the z direction that contribute to the collected

fluorescence signal. Below we discuss our method to scale the collection efficiency as a function of

z, K(z)
′
(where

′
indicates the experimental value rather than simulated), to fit the experimental

conditions.

We measure the minimum collection efficiency, κ
′
min, of our fluorescence setup using a 1PEF-

based technique. The results of this measurement are compared to the Zemax simulation of κmin

to scale the collection efficiency for experimental differences. As we mentioned, κ
′
min characterizes
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a system with a nearly uniform cylindrical excitation volume (50 µm diameter) that extends the

length of the cuvette, thus we use an excitation source which generates an excitation volume of this

kind.

In a similar manner to the treatment in Ref. [16], the measured 1PEF rate, F1 (cnt s−1), can

be described by

F1 = N1
W

hν
κ

′
min

λf∫
λi

γ(λ)Φ(λ)dλ, (5.2)

where N1 (excitations photon−1) is the number of excitations per photon, W (W) is the average

power incident on the sample, hν (J) is the average energy of an incident photon, λi,f (nm) are initial

and final wavelengths chosen to integrate over the entire emission spectrum of the sample, γ(λ)

(cnt photon−1)] is the wavelength-dependent component transmission efficiency (detector, filters,

lenses and cuvette), and Φ(λ) (photons excitation−1 nm−1) is the differential quantum yield. A

normalization of quantum yield is used such that
∫∞
0 Φ(λ)dλ gives the value published in literature

for the total quantum yield of the fluorophore (Table 5.1).

The number of excitations per photon is found using

N1 = 1− 10−OD, (5.3)

where OD = ϵcl is the optical density of the sample at the excitation wavelength, ϵ (L mol−1 cm−1)

is the extinction coefficient of the sample at the central excitation wavelength, c (mol L−1) is the

molar concentration of the sample and l (cm) is the cuvette length.

We estimate γ(λ),

γ(λ) =

N∏
i=1

Tfilteri(λ)
M=3∏
j=1

Tlensj (λ)Tcuvette(λ)
1

2

(
1 + T 2

cuvette(λ)Rsph.mirror(λ)
)
QE(λ), (5.4)

where T (λ) and R(λ) are the transmittance and reflectance of a given optic and QE(λ) is the PMT

quantum efficiency. The various manufacturers’ specifications are used to calculate γ(λ). Here, we

use one filter (bandpass) (F5) and thus N = 1. The laser, PMT quantum efficiency, fluorophore

absorption and emission and filter transmittance spectra are shown in Fig 5.3(g)-(h).
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To calculate κ
′
min, we input Eq. (5.3) into Eq. (5.2), and solve for the minimum collection

efficiency,

κ
′
min =

F1

(1− 10−OD)W/(hν)
λf∫
λi

γ(λ)Φ(λ)dλ

. (5.5)

The excitation source is a CW 458 nm laser. The beam FWHM and Rayleigh range at the

focus on cam1 in Fig. E.1 is measured to be 15 µm and 1 mm respectively. This Rayleigh range

suggests that the beam size will be significantly larger at the edge of the 10 mm path length cuvette

compared to at the center. However, the beam has a small transverse spatial extent for all z (at

|z| = l/2 the beam size is ≈ 4% of the cuvette width) relative to the collection efficiency contour

spacing in the transverse direction. Thus, the excitation volume can be approximated as a uniform

cylindrical volume that extends the length of the cuvette. Using a similar argument, although the

beam size is smaller than that used in the simulation (50 µm), the difference can be neglected based

on the relatively large spacing of the collection efficiency contours.

We use the samples Rh6G in ethanol and fluorescein in pH 11 water. The sample is pre-

pared at a relatively low concentration (≈ 0.1 − 10 × 10−6 mol L−1) and the OD is measured

in a spectrophotometer. During measurements, the amount of power (W ) reaching the sample

is measured after lens L8 and varied using the ND wheel F6 after the output of the laser (see

notation in Fig. E.1). We first send the laser through the solvent to check that there is no signal

due to scattered light. Next, the laser is sent through the sample and a signal is measured. The

fluorescence signal is measured at six different excitation powers ranging from 10 - 150 nW.

Using the comparison of the experimentally determined and simulated minimum collection

efficiency, we rescale the maximum collection efficiency of the system, κ
′
max = κ

′
min/κmin × κmax,

which goes into the experimental K(z)
′
(same as Eq. (5.1), but with κ

′
max instead of κmax). We

measured an average κ
′
min = 3.9±0.6% and 5.4±0.7% for Rh6G and fluorescein respectively. Using

the average of these two, we find κ
′
max = 15.4%.

We note that in fluorescence measurements, especially those performed at high sample con-

centrations, fluorescence self-absorption can reduce the measured signal. In our experiment, our
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narrow cuvette width minimized this effect. Our measurements suggest that self-absorption is

negligible.

5.5 Calculating C2PA and E2PA Cross Sections

Here we describe the equations relevant for the calculation of the C2PA cross sections and

E2PA cross-section upper bounds based on our measured data. First we describe the C2PEF signal

and the derivation of C2PA cross sections from the fit to our C2PEF data. Then we describe the

E2PEF signal and the derivation of E2PA cross-section upper bounds based on our measurable

fluorescence lower bound.

The C2PEF signal, FC (cnt s−1), measured in our experiment can be described by

FC = g

l/2∫
−l/2

NC(z)K(z)
′
dz

λf∫
λi

γ(λ)Φ(λ)dλ, (5.6)

where g (pulses s−1) is the pulse repetition rate, l (cm) is the cuvette path length, NC(z) (excita-

tions cm−1 pulse−1) is the number of excitations per infinitesimal step dz (cm) along the cuvette

length per laser pulse, K(z)
′
is the geometrical collection efficiency as a function of z (cm) as de-

scribed in Eq. (5.1), γ(λ) (cnt photon−1) is the component transmission efficiency as described in

Eq. (5.4) (where here N = 2) and Φ(λ) (photon excitation−1 nm−1) is the differential fluorescence

quantum yield. A proper normalization of quantum yield is used such that Φ =
∫∞
0 Φ(λ)dλ gives

the value published in literature (Table 5.1) for the total quantum yield of the fluorophore. The

integration limits for the λ (nm) integral are set so that the integral spans over the entire emission

spectrum of the fluorophore. The laser, fluorophore emission, PMT quantum efficiency and filter

spectra for 2PEF measurements are shown in Fig 5.3(a)-(f).

The experimental conditions are such that ground state depletion and beam depletion are

negligible [15], thus we define NC(z) as

NC(z) =
1

2
σCn

1/2g∫
−1/2g

∞∫
−∞

∞∫
−∞

ϕ(x, y, z, t)2dxdydt, (5.7)



68

where σC (1 GM = 10−50 cm4 s photon−1 fluorophore−1) is the C2PA cross section, n (fluo-

rophores cm−3) is the number density of fluorophores and ϕ(x, y, z, t) (photons cm−2 s−1) is the

photon flux of the laser beam. The factor of 1/2 carries units of excitations per photons absorbed.

The dx (cm) and dy (cm) integrals extend over the entire beam and the dt (fs) integral extends

over the pulse repetition time (1/g). Equation (5.7), is related to the familiar phenomenological

C2PA excitation rate, R (excitations s−1 fluorophore−1), described in Eq. (2.6) by

NC(z) = n

1/2g∫
−1/2g

∞∫
−∞

∞∫
−∞

Rdxdydt, (5.8)

with R having implied dependence on x, y, z and t.

The temporal and transverse spatial profiles of the laser beam or SPDC beam can be ap-

proximated by Gaussian distributions. Assuming the laser is always on, ϕ(x, y, z, t) takes the form

ϕ(x, y, z, t) = ϕ0(z)Exp

(
−4ln2

(
x2

∆x(z)2
+

y2

∆y(z)2

)) ∞∑
i=−∞

Exp

(
−4ln2

(t+ i/g)2

τ2

)
, (5.9)

where ϕ0(z) (photons cm−2 s−1) is the peak photon flux as a function of z, τ (fs) is the FWHM

pulse duration and ∆x(z) (cm) and ∆y(z) (cm) are the FWHM beam widths. The photon flux has

z dependence because it is focused into the sample. The FWHM beam width in the x direction,

for example, varies as a function of z as

∆x(z) = ∆x0
√
1 + (z/zR)2, (5.10)

where ∆x0 (cm) is the beam FWHM at the focus and zR (cm) is the Rayleigh range.

We can define the average photon rate at the sample Q (photons s−1) in terms of the photon

flux ϕ(x, y, z, t),

Q = g

1/2g∫
−1/2g

∞∫
−∞

∞∫
−∞

ϕ(x, y, 0, t)dxdydt =
W

hν
, (5.11)

where W (W) is the average laser or SPDC power and hν (J) is the average energy of an incident

photon. Here we have arbitrarily chosen to use the photon flux at z = 0. The peak photon flux,

ϕ0(z), can be found from Eq. (5.11) by performing the integration of ϕ(x, y, 0, t) over x, y and t,

ϕ0(z) =
W

hν

(
4ln(2)

π

)3/2 1

∆x(z)∆y(z)gτ
=

2
√
2µ

TA(z)
. (5.12)
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The second equality emphasizes, in accordance with Chapter 2 Section 2.3, that the peak photon

flux can be expressed as 2
√
2 multiplied by the mean photon number at the sample µ = Q/g

(photons pulse−1) divided by the effective mode area, A(z) (cm2), and the effective pulse duration,

T = τ/
√

2ln(2) (fs). The factors of 2 and
√
2 scale the photon rate to the effective photon rate at

the location of the beam’s peak in space and time. The effective beam area as a function of z is

found through the x and y integration of the photon flux

A(z) =
π∆x(z)∆y(z)

2ln(2)
. (5.13)

Using Eqs. (5.7), (5.9) and (5.12), and performing the integration over x, y and t, we can

rewrite Eq. (5.6) in terms of the laser power

FC =
√
2

(
ln(2)

π

)3/2 σCnW
2

τg (hν)2

l/2∫
−l/2

K(z)
′

∆x(z)∆y(z)
dz

λf∫
λi

γ(λ)Φ(λ)dλ. (5.14)

To derive the C2PA cross section, we solve for σC in Eq. (5.14),

σC =
1√
2

(
π

ln(2)

)3/2 τg (hν)2

n

FC/W
2

l/2∫
−l/2

K(z)′/(∆x(z)∆y(z))dz
λf∫
λi

γ(λ)Φ(λ)dλ

. (5.15)

All the parameters in Eq. (5.15) are known for our measurements through experiments,

simulations and specifications. The parameter τ is measured using a SwampOptics Grenouille 8-

50-USB, g and hν are specified by the laser manufacturer, n is measured (Appendix B), K(z)
′

is determined through Zemax and experimental verification (Section 5.4), ∆x0, ∆y0 and zR are

measured (Appendix F), γ(λ) is calculated based on optics’ specifications (Section 5.4), Φ(λ) is

known from published measurements and FC/W
2 (cnt s−1 µW−2) is the fit to our experimental

C2PEF data. Table 5.1 shows values for sample specific parameters and Table 5.2 shows values for

apparatus parameters general for all samples. The results of our C2PEF measurements produce

the experimental C2PA cross sections (using Eq. (5.15)), σexpC , shown in Table 5.3.

If we assume the expected E2PEF signal depends only linearly on photon flux, we can estimate
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Figure 5.3: Spectral overlap summary for two-photon excited fluorescence (2PEF) measurements
(a)-(f) of samples (a) AF455 in toluene, (b) qdot 605 in borate buffer, (c) fluorescein in pH 11 wa-
ter, (d) 9R-S in chloroform, (e) Rh6G in methanol and (f) C153 in toluene and one-photon excited
fluorescence (1PEF) collection efficiency measurements (g)-(h) of samples (g) Rh6G in ethanol and
(h) fluorescein in pH 11 water. For 2PEF, the laser (red), fluorophore emission (Em) (magenta),
PMT quantum efficiency (QE) (blue), bandpass (BP) filter (light green) and shortpass (SP) filter
(orange) spectra are shown. The laser spectrum is measured using a USB4000 OceanOptics spec-
trometer. The SPDC spectrum is shown in Fig. 3.3. For 1PEF, the laser (indigo), fluorophore
absorption (Abs) (light blue) and emission (Em) (magenta), PMT QE (blue) and BP filter (light
green) spectra are shown. The PMT QE is indicated along the left vertical axes, whereas all other
spectra use the right vertical axes. For the filters, the right vertical axes indicate the filter optical
density (OD), whereas for all other spectra the right vertical axes show a relative intensity. The
relative intensities of the laser, absorption and emission are normalized to the height of the peak
filter OD for the respective plot. The absorption and emission spectra are measured using a spec-
trophotometer and fluorometer, except for qdot 605 (data taken from ThermoFisher). The PMT
QE is taken from Hamamatsu specifications. All filter spectra are from the manufacturer, except
for the SP filter in the 350-550 nm range (spectrophotometer).



71

Table 5.1: Summary of sample parameters

Sample c× 106 Φ [Ref.]
λf∫
λi

γ(λ)Φ(λ)dλ/Φ

(mol L−1) (photon excitation−1)

AF455 1100 0.67 [79] 0.0515
Qdot 605 8 0.74± 0.04 [80] 0.0285
Fluorescein 1100 0.93 [81] 0.0789
Rh6G 1500 0.90 [82] 0.0484
C153 1100 0.82± 0.04 [83] 0.0580
9R-S 390 0.66 [47] 0.0157

the E2PEF signal FE (cnt s−1) generated in our experiment as

FE = gNE

zR∫
−zR

K(z)
′
dz

λf∫
λi

γ(λ)Φ(λ)dλ, (5.16)

where NE (excitations cm−1 pulse−1) is the number of excitations per infinitesimal step dz along

the cuvette length per laser pulse. The parameter NE is defined as

NE =
1

2
σET

Q

g
n, (5.17)

where σE (cm2 fluorophore−1) is the E2PA cross section and T is the transmittance of the photons

through all the optics between the center of the crystal and the center of the sample. The parameter

T is included in NE but not NC because of the result found in Chapter 2 Section 2.6 (in this Section,

ϕ and Q are unlabeled but represent the values at the sample). As we mentioned in Section 5.4

and Chapter 2 Section 2.3, the dependence of the E2PA rate on the spatial overlap of photons is

contained in the cross section (unlike for C2PA) and thus a cross section is only valid for a beam of

constant entanglement area and thus size. Our SPDC beam is not collimated, instead we attempt

to compensate for the changing entanglement area by setting the limits of the z integral from −zR

to zR, which is the region that we expect the majority of a potential E2PEF signal to arise from

and should have fairly uniform entanglement area and time.
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Table 5.2: Summary of apparatus parameters

Parameter unit Laser SPDC

∆x0 µm 49 51
∆y0 µm 49 84
zR mm 5.1 0.4
τ fs 111 1040
g 106 pulses s−1 80

K(z)
′ 0.154

2 erfc (2.78(|z(cm)| − 1.51))
Q photons s−1 N/A 8.9×109

T N/A 0.76
FLB cnt s−1 0.22

We can rewrite Eq. (5.16) using Eq. (5.17),

FE =
1

2
σET Qn

zR∫
−zR

K(z)
′
dz

λf∫
λi

γ(λ)Φ(λ)dλ. (5.18)

To place an upper bound on the E2PA cross section we replace FE in Eq. (5.18) with the measurable

fluorescence lower bound FLB (cnt s−1) and solve for σE , which becomes the cross-section upper

bound, σUB
E (cm2 fluorophore−1),

σUB
E =

2FLB

T Qn
zR∫

−zR

K(z)′dz
λf∫
λi

γ(λ)Φ(λ)dλ

. (5.19)

FLB is measured (Section 5.6), T is calculated based on the manufacturer’s specifications, Q is

measured (Chapter 3 Section 3.4) and the parameters n, K(z)
′
, γ(λ) and Φ(λ) are found in the

methods described for C2PEF. All parameters are listed in Tables 5.1 and 5.2.

In order to generate a curve for E2PEF as a function of the mean photon number (the

diagonals in Fig. 5.4), the slope FE
Q/g is solved for in Eq. (5.18) and a selected σE is used. This slope

is multiplied by the mean photon number on the horizontal axes.

The uncertainty on our C2PA cross sections and E2PA cross-section upper bounds are calcu-

lated by propagating the errors in all the measured and calculated parameters that go into either

Eq. (5.15) or Eq. (5.19). We multiply these values by the coverage factor (k = 2). The uncertainty

in C2PA cross sections is then ≈ 28% and for E2PA cross-section upper bounds ≈ 24%.
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5.6 Data Acquisition

In this section we describe the details of data acquisition for C2PEF and E2PEF measure-

ments. First we describe our fluorescence background subtraction method. Next we describe how

C2PEF measurements are performed. Afterwards we describe the choice of integration times for

E2PEF measurements and how those measurements are performed. Lastly we describe how the

measured quantities, including the measurable fluorescence lower bound, are determined.

The laser and SPDC beams are optically chopped to perform on-the-fly background subtrac-

tion on the fluorescence signal. The timetagger histogram, which shows counts registered on the

PMT as a function of time, is separated into background and signal portions. The background

portion (chopper blade blocking beam) is subtracted from the signal portion (chopper blade pass-

ing beam). We calibrate this background subtraction method using a strong C2PEF signal. For

≈ 5% of the measurement runtime the chopper blade is neither completely blocking nor passing

the beam; this portion of the measurement is discarded.

For C2PEF measurements, the laser power is controlled using a motorized half-wave plate

(HWP3 in Fig. E.1). The power is measured (Thorlabs S130C power sensor and PM100D meter) by

flipping the sensor into the beam using a motorized flip mount that ensures repeatable positioning.

The power sensor and meter are compared with a calibrated photodiode to determine the correction

factor necessary for absolute power readings. At each power, 3 − 5 C2PEF measurements are

performed. The integration times at higher powers are 30 seconds and at lower powers are 30

minutes.

We characterize the stability of the fluorescence measurements using an Allan deviation

analysis, and base our measurement integration time for the E2PEF measurements on the result.

To do this, we place the 1.10× 10−3 mol L−1 fluorescein sample in the cuvette, unshutter the laser

beam and measure the C2PEF signal every minute for one 14 hour period overnight and one 11

hour period during the day. We use this data to check the Allan deviation at various integration

times. The Allan deviation is found to have a minimum at 45 minutes integration time.
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For E2PEF measurements, the SPDC pump laser power is set to 30 mW and monitored

periodically. Three E2PEF measurements are performed on each sample. These measurements

are each 45 minutes long. We also block the beam periodically and take a 45 minute background

measurement. We compare these measurements with those with the beam unblocked to look for

significant changes in the signal. We find no changes.

The measurable fluorescence lower bound, FLB, is assigned by first checking the results

of C2PEF measurements at low photon flux and then by measuring “zero signal” with SPDC

excitation. We measure C2PEF at rates as low as 0.38 ± 0.24 cnt s−1 that agree well with the

quadratic fit of the C2PEF data measured at higher excitation flux. This sets our confidence in

signals at least as low as 0.38 cnt s−1. Next, we measure zero signal to determine what we should

expect in the absence of signal. To do this, we place the 1.10 × 10−3 mol L−1 fluorescein sample

in the cuvette, unshutter the SPDC beam and subsequently block the SPDC beam using black

aluminum foil tape (Thorlabs T205-1.0) placed after filters F3 in Fig. E.1. We then acquire data

for 405 minutes, or nine 45 minute measurements. The purpose of blocking the beam instead

of shuttering it is to serve as an additional check for scattered light entering the detector. The

fluorescein sample aids in this purpose by serving as a source that could be excited by either

scattered or background light. The average of these measurements is 0.04+0.22
−0.04 cnt s−1. It was clear

from these measurements that no stray signals enter the detector. From this, our FLB is set to

0.22 cnt s−1 (2σ from zero) with ≈ 95% confidence. The value of FLB sets the vertical position of

the light green region in Fig. 5.4.

5.7 Results and Discussion

We measure C2PEF over a range of photon fluxes for all six fluorophores. We use the fit to

our experimental data to derive C2PA cross sections (details in Section 5.5, values in Table 5.3).

The values strongly agree with the cross sections reported in literature. For all six fluorophores we

are unable to discern an E2PEF signal. We use our measurable fluorescence lower bound to derive

upper bounds on the E2PA cross sections (details in Section 5.5, values in Table 5.3).
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Figure 5.4: Measured (blue data points), fit (blue solid lines) and calculated (black solid and purple
dashed lines) fluorescence signal (left vertical axis in cnt s−1) for (a) 1.10 × 10−3 mol L−1 AF455
in toluene, (b) 8 × 10−6 mol L−1 qdot 605 in borate buffer, (c) 1.10 × 10−3 mol L−1 fluorescein
in pH 11 water, (d) 3.90 × 10−4 mol L−1 9R-S in chloroform, (e) 1.50 × 10−3 mol L−1 Rh6G in
methanol and (f) 1.10 × 10−3 mol L−1 C153 in toluene. The bottom horizontal axis corresponds
to the peak photon flux (photons cm−2 s−1) of the coherent source (laser) (blue data points) or
SPDC source (red data points). On the upper horizontal axis we show the SPDC mean photon
number (photons pulse−1), which corresponds to the peak photon flux on the lower horizontal axis.
A signal below 0.22 cnt s−1 is indistinguishable from zero (green region). All E2PEF measurements
produce a null result. Solid diagonal black lines show the calculated count rate expected for various
potential σE in order-of-magnitude increments (σE noted along selected lines) for each fluorophore,
assuming that the absorption rate is composed of only the linear photon-flux-dependent term. The
purple dashed diagonal line represents the calculated count rate using σUB

E (noted in purple) for
each sample.
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Table 5.3: Summary of literature C2PA cross sections (σlitC ), measured C2PA cross sections (σexpC ),
measured E2PA cross-section upper bounds (σUB

E ), estimates for the E2PA cross sections (σestE )
(based on Eq. (2.11) using Te = 1620 fs and Ae = 2.1µm2) and measured quantum advantage
upper bounds (QAUB).

Sample σlit
C [Ref.] σexp

C σUB
E × 1025 σest

E × 1030 QAUB

(GM) (cm2 fluorophore−1)

AF455 350± 30 [17] 660± 180 2.1± 0.5 190 410± 140
Qdot 605 27000± 8000 [77] 46000± 13000 480± 120 14000 730± 240
Fluorescein 21± 2 [17] 13± 4 1.0± 0.2 3.8 2000± 700
9R-S 27.9 [47] 22± 6 20± 6 6.5 7000± 2000
Rh6G 78± 7 [17] 51± 14 1.2± 0.3 15 1100± 400
C153 17± 2 [17] 14± 4 1.6± 0.4 4.1 2400± 800

Figure 5.4 shows measured fluorescence count rates as a function of peak photon flux for both

laser (blue symbols) and SPDC (red symbols) excitation for all six fluorophores on log-log plots. For

all samples, we find the fit (blue line) to the C2PEF signal to have a quadratic power dependence

(with exponents in the range 1.95−2.05); the signals are thus free of spurious events such as 1PEF

or scattered light. For AF455 (Fig. 5.4(a)), we measure C2PEF down to the lowest peak photon

flux of all the samples, 1.3× 1021 photons cm−2 s−1, which is only 620 times larger than our SPDC

peak photon flux. The C2PEF of fluorescein, 9R-S, Rh6G and C153 (Fig. 5.4(c)-(f)) is observed at

a minimum flux approximately a factor of 10 higher than for AF455 and qdot 605 (Fig. 5.4(a),(b)).

This minimum flux could be extended to lower values (but not as low as AF455 or qdot 605) if a

longer integration time were used for the measurements. Fluorescence signals as low as 0.22 cnt s−1

should be measurable in our experiment (Section 5.6). We denote this measurable fluorescence lower

bound as FLB. A signal below this level is masked by the noise floor. As mentioned above, we do

not observe E2PEF for any of the studied samples. This is demonstrated by the SPDC excitation

data points (shown in red) lying below the noise floor (the green region in Fig. 5.4). For these

measurements we use 30 mW pump power, which is just below the damage threshold of the SPDC

crystal, to generate an SPDC peak photon flux of 2.1× 1018 photons cm−2 s−1.

The C2PEF measurements are averaged for each sample at each power. The E2PEF measure-

ments are averaged for each sample. These averages are displayed on Fig. 5.4. The corresponding
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vertical error bars are assigned in a systematic way. First, we compare the standard deviation of

the set of measurements to the sets’ uncertainty due to Poisson counting statistics. The larger of

these two values is multiplied by two (coverage factor k = 2) and used for the vertical error bar.

The horizontal error bars correspond to the uncertainty in peak photon flux (bottom axis),

which is larger than the uncertainty in mean photon number (top axis). This larger uncertainty

arises because of the additional uncertainty in the beam size and pulse duration. The uncertainty

in the mean photon number, beam size and pulse duration is propagated to give an uncertainty in

peak photon flux. A coverage factor k = 2 is again used to achieve ≈ 95% confidence that the true

value lies within the bounds set by the error bars. We note that the conversion factor from mean

photon number to peak photon flux is different for the coherent source compared to the SPDC

source because of its shorter pulse duration and smaller beam size. The laser conversion factor

differs from that for SPDC by a factor of 16.7, thus Fig. 5.4 only shows the SPDC mean photon

flux on the top horizontal axes.

We use our experimental characterizations and the component of the E2PA rate that de-

pends linearly on excitation flux to calculate E2PEF signals for various potential values of σE

(Section 5.5). The results of these calculations are displayed as black diagonal lines in Fig. 5.4,

with the corresponding σE value noted along selected lines. The purple dashed diagonal line cor-

responds to the fluorescence signal calculated using the cross section that produces FLB at the

peak photon flux of our SPDC source. We denote this cross section the E2PA cross-section upper

bound, σUB
E . A summary of σUB

E values is given in Table 5.3 and written in purple along the dashed

diagonal lines. The sample fluorescein has the lowest σUB
E of 1.0± 0.2× 10−25 cm2 fluorophore−1.

The values of σUB
E for Rh6G, C153 and AF455 differ by less than or nearly a factor of two from

that for fluorescein. Many of the parameters for these four samples are similar in magnitude: con-

centration, quantum yield and the overlap of the emission spectra with the fluorescence collection

system’s transmittance spectrum (details on these parameters in Section 5.5). For 9R-S, the upper

bound is one order of magnitude larger, which results from the poor overlap of the emission and

system transmittance spectra. For qdot 605, the upper bound is a factor of 24 larger than for
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9R-S. This is a result of poor spectral overlap, in addition to a sample concentration two orders of

magnitude lower than that used for all other samples. As recommended by the supplier, we use the

concentration of qdot 605 as received to avoid compromising the chemical stability of the sample.

The upper bounds our measurements place on σE range from 10−25 to ≈ 5 × 10−23 cm2

fluorophore−1. These are in stark contrast to the previously reported σE values of 10−21 −

10−16 cm2 fluorophore−1 shown in Table 2.1 and Fig. 2.3. A particularly illuminating compari-

son can be made between our result and the published result for samples 9R-S and Rh6G. Using

the previously reported σE values, we estimate the expected E2PEF count rate in our setup. As-

suming sample 9R-S has σE ≈ 2.4 × 10−19 cm2 fluorophore−1 [47], our calculations predict an

E2PEF signal of 2.6× 104 cnt s−1. For Rh6G, a value of σE ≈ 1.5× 10−21 cm2 fluorophore−1 [48]

predicts an E2PEF signal of 2.7 × 103 cnt s−1. We note that Ref. [48] used 1064 nm excitation

whereas we excite at 810 nm, however, if σE follows the same dependence on excitation wavelength

as σC , 810 nm excitation should be more efficient by a factor of 7 [16]. In either case, we actually

measure a signal that is indistinguishable from zero, which is at least three to five orders of magni-

tude smaller than expected based on prior reports. We are able to reach such a high cross-section

sensitivity in part because of our relatively large incident SPDC photon rate (8.9×109 photons s−1).

Although Ae and Te likely vary between experiments, we have no reason to believe these

parameters alone differ by the many orders of magnitude required to explain this discrepancy.

However, because Ae and Te alter σE and because the role of these parameters is not completely

understood for E2PA in molecules, Ae and Te should be reported alongside σE values whenever

possible. There are other experimental parameters that vary between experiments, such as pump

laser and SPDC spectral and temporal widths and the SPDC crystal characteristics. The effects of

these differences are not well known and need more thorough study.

Table 5.3 also shows estimates of the E2PA cross section for the six fluorophores, σestE . These

estimates are based on the relation given in Eq. (2.11) using our derived σexpC given in Table 5.3 and

our estimates of Te and Ae specified in Section 5.3. We use the lower bound of Ae in this estimation

to show the largest value σestE could take on. Although we do not anticipate Eq. (2.11) to yield
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an exact result, this estimate can provide useful insight about σE values in a similar manner to

the estimates of ionization cross sections for atoms in Ref. [84]. These σestE values are three to five

orders of magnitude below our established cross-section upper bounds. These estimates provide a

reference for the cross-section sensitivity necessary to observe E2PA.

We use our C2PEF and E2PEF results to determine an upper bound on the “quantum ad-

vantage” of 2PA (QAUB). As previously mentioned (Chapter 2), we define the quantum advantage

(QA) as the ratio of the minimum photon flux required to observe C2PA to that for E2PA. By

extrapolating our C2PEF fit to FLB for the sample AF455, for example, we determine that C2PEF

should be measurable down to 8.5 × 1020 photons cm−2 s−1. E2PEF is not measurable at our

maximum SPDC photon flux, 2.1 × 1018 photons cm−2 s−1, but might be measurable at a higher

photon flux. Thus, QAUB of 2PA for this sample is 410. Values of QAUB for all the samples

(Table 5.3) range from 410− 7000, in contrast with QA of nearly 1010 in previous reports [52, 54].

It is worth mentioning that the QA can be increased if Ae and Te are decreased while all other

excitation parameters are held fixed, however a many-orders-of-magnitude increase is unlikely.

There are other publications in this field that support our findings. In particular, Ashkenazy

et al. [85] argued that using “typical” values of Ae (50µm2) and Te (50 fs), they can estimate

σE ≈ 10−29 cm2 fluorophore−1 for metallic nanoparticles with a large C2PA cross section (σC ≈

100 GM at 1050 nm). Cross sections of this size are in agreement with our established bounds

of σE . Another interesting example is provided in the recent work by Li et al. [86] who used a

single setup to measure both C2PEF and squeezed-light 2PEF (SL2PEF) of the samples DCM

in dimethyl sulfoxide and fluorescein in pH 13 water. The squeezed light generated by four-wave

mixing in a Rubidium vapor cell was varied over the range of 1013 − 1016 photons s−1 (compare

to our ≈ 1010 SPDC photons s−1). The SL2PEF signals from DCM and fluorescein are factors

of ≈ 2.0 − 2.8 and ≈ 47 larger, respectively, than the C2PEF signals at the same excitation

flux. The authors did not report values for cross sections. However, these significant but modest

enhancements and the fact that measurements were performed with a squeezed light source that

provides orders-of-magnitude higher photon rate than an SPDC source, are consistent with the
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upper bounds established in this study.

5.8 Conclusions

In this chapter, we discussed important aspects of designing and implementing a fluorescence-

based E2PA measurement. We presented an experimental apparatus for measuring E2PEF and

C2PEF in nearly identical experimental conditions. The results from C2PEF serve as a vital

reference point for the capability of our fluorescence system. Although we do not observe an

E2PEF signal, our results set upper bounds on σE of the six chosen fluorophores in the range of

10−25− 5× 10−23 cm2 fluorophore−1. Two of these samples have published σE values that are four

and five orders of magnitude larger than the upper bounds we report.

We emphasize that σE depends on spatio-temporal properties of the excitation source, unlike

σC . Without knowing the entanglement area and entanglement time, there is significant ambiguity

in comparing cross sections measured in different experimental apparatuses. For our source, we

estimated a range within which our entanglement area is constrained, 2.1 − 13, 700µm2, and we

estimated the entanglement time, 1620 fs, based on our measured SPDC spectrum and estimated

group delay dispersion. While we had hoped to measure these quantities directly, in lieu of this we

made explicit the details of our setup and the assumptions that went into the estimation of these

quantities.

Our results differ significantly from previous E2PA publications using SPDC excitation.

Our evidence indicates that E2PA cross sections are orders of magnitude smaller than previously

claimed [51, 53, 63, 52, 50, 54, 47, 64, 55, 49, 48]. As we demonstrated in this report, the clari-

fication of the inconsistencies in the field is underway. This is an important step forward in the

quantification of the achievable “quantum advantage” and thus the merit of E2PA for spectroscopy

and imaging applications.



Chapter 6

Bounding Entangled Two-Photon Absorption Cross Sections with Sensitive

Transmittance Measurements

6.1 Publication Note

This chapter is an expansion of the work summarized in:

[60] Mazurek, M.D., Parzuchowski, K.M., Mikhaylov, A., Nam, S.W., Camp, C.H., Gerrits, T.,

Jimenez, R. and Stevens, M.J., 2021, May. Bounding entangled two-photon absorption with sen-

sitive transmittance measurements. In CLEO: QELSFundamental Science (pp. FM3N-2). Optica

Publishing Group.

6.2 Introduction

In our first transmittance experiment (Chapter 4) we set upper bounds on entangled two-

photon absorption (E2PA) cross sections using a transmittance-based measurement scheme that

included an interferometer for a time delay. The sensitivity to changes in transmittance was at

the 1% level and was limited because of residual interference artifacts. In this experiment we

improve on that experiment to achieve a higher sensitivity. We incorporate a mirror mounted on

a piezo-electric transducer in the delay arm of the interferometer for quick scans over interference

fringes, we add a quadrant detector to monitor and account for pump beam power and pointing

stability, we improve the data acquisition technique to allow for long but stable measurements and

we improve the data analysis technique. We achieve a sensitivity of 0.05%. We take measurements

with seven different molecules in solution at multiple concentrations, and observe no statistically
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significant change in transmittance. We set upper bounds on the E2PA cross sections in the range

10−22 − 10−19 cm2 absorber−1.

6.3 Operating Principle of the Experiment

Fig. 6.1 displays an illustration of our experimental setup, which we use to explain the

operating procedure of our measurement technique. A photon pair passes through an interferometer

with variable time delay. Varying the photons’ temporal overlap affects the rate of 2PA in the

sample (Chapter 2 Section 2.6). By using polarizing beamsplitters we ensure that any light that

reaches detector D1 (D2) arrives via the stationary (delay) arm of the interferometer. (In reality,

due to experimental imperfections, a small fraction of the light that travels through the delay arm

may “leak-into” D1. For simplicity, in this section we assume this fraction is negligible. However,

we account for non-zero leakage in our final analysis, and we explain how in Section 6.5.)

Figure 6.1: Cartoon of our experimental setup. Photon pairs are created in the SPDC crystal, after
which they are probabilistically split via half-wave plate HWP1 and a polarizing beamsplitter (PBS)
into two paths through an interferometer before reaching a sample. The interferometer’s delay
arm D contains a moveable mirror which can add a time-delay τ relative to the interferometer’s
stationary arm, S. One-photon loss between the crystal and sample is represented by beamsplitters
inside the interferometer with transmission probabilities TS and TD. If both photons arrive at the
sample, they will be absorbed via 2PA with probability pE2PA. Half-wave plate HWP2 is rotated
to ensure that all photons which traversed through the sample via the stationary arm will be
directed to detector D1, and photons from the delay arm are sent towards D2. One-photon loss
between the sample and detectors (including internal detector inefficiencies) is represented with the
beamsplitters with transmission efficiencies η1 and η2.

The main advantage of this technique is that we can vary the 2PA rate without changing the
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contents of—and therefore the one-photon loss through—the cuvette. Furthermore, varying the

time delay does not affect light that traverses the stationary arm, and thus the total amount of

one-photon loss between the crystal and D1 should remain constant at all time delays. As a result,

if we measure a delay dependence in the click rate at D1, we can infer that 2PA has occurred.

To infer a specific 2PA rate from this delay-dependent measurement, we compare the expected

count rates at τ = 0 (where the 2PA rate is maximized) to those at a very large delay τ = T , (where

the 2PA rate is minimized). The probability that any individual photon reaches the cuvette via

the stationary arm is equal to the total transmission efficiency from the crystal to the cuvette,

TS
XS = RPBST

S where RPBS is the reflection efficiency of the PBS and TS is the transmission

efficiency of all other optics between the crystal and the cuvette along the stationary arm path.

Similarly, a photon will reach the sample via the delay arm with probability TD
XS = TPBST

D where

TPBS is the transmission efficiency of the PBS and TD is the transmission efficiency of all other

optics between the crystal and the cuvette along the delay arm path. If two photons arrive at

the sample with negligible time delay between them, they will excite the sample via 2PA with

probability pE2PA. The one-photon transmission efficiency through the cuvette and to detector D1

(D2) (and including the detector’s internal quantum efficiency) is η1 (η2). There are three paths

the photon pairs may take through the setup which can result in a click at D1—both photons can

travel through the stationary arm, one photon can travel through each arm, or one photon may

travel through the stationary arm while the other is lost. Assuming the source emits N photon

pairs each second (and assuming the source is much more likely to emit a single pair than multiple

pairs at the same time), the average click rate at D1 is given by:

S1(τ) = N
[(
TS
XS

)2
(1− pE2PA)

(
2η1 − η21

)
+ 2TS

XST
D
XS (1− f(τ)pETPA) η1 +2TS

XS

(
1− TS

XS − TD
XS

)
η1
]
.

(6.1)

The function f(τ) captures the time-dependence of the 2PA rate as a function of time delay: at

zero delay f(0) = 1 and at large delay f(T ) = 0. The normalized change in click rate at these two

time delays (also called the change in transmittance) is ∆S = (S1(T )−S1(0))
S1(T ) . Using Eq. (6.1) and
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rearranging, we find the two photon absorption probability, pE2PA as:

pE2PA =
∆S(2− TS

XSη1)

∆STS
XS(2− η1) + 2TD

XS

. (6.2)

The efficiencies TS
XS and TD

XS can be independently characterized, and the product TS
XSη1 can be

measured using a version of Klyshko’s efficiency equation [87] (see Section 6.5.1 for details).

While pE2PA is defined as the probability of exciting one molecule in the sample if exactly

one pair of photons interacts with the sample, it can also be understood as the total 2PA rate that

would occur if pairs reached the sample at an average rate of one pair per second. The E2PA rate

is defined as

RE =
1

2
σEQnl, (6.3)

where σE (cm2 molecule−1) is the E2PA cross section, Q (photons s−1) is the single photon rate

at the sample, n is the number density of the molecule in solution and l is the cuvette length.

Therefore, once pE2PA is characterized, we can solve for the E2PA cross section with:

σE =
pE2PA

nl
. (6.4)

To first order, the measured change in click rate ∆S is linearly proportional to the 2PA probability

pE2PA and also to the E2PA cross section σE . Therefore, a sensitive measurement of ∆S can

provide a sensitive characterization of σE .

6.4 Experimental Setup

Our experimental setup consists of a photon-pair source, an interferometer, a sample and

a single-mode detection stage (Fig. 6.2). Here we give a brief overview of the setup, a thorough

description of the components is given in Appendix G. The photon-pair source is as described

in Chapter 3, Section 3.3. In this experiment we pick off a small fraction of the 405 nm pump

light and measure it with a quadrant photodiode to monitor fluctuations in total beam power and

pointing direction. Due to chromatic dispersion between the SPDC crystal and sample, wavelength

components far from the central wavelength contribute minimally to 2PA—keeping them would
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decrease the overall sensitivity of our measurement, therefore we filter the photon pairs so their

marginal spectrum has a full width at half maximum (FWHM) of about 12 nm.

Figure 6.2: Schematic of the experimental setup. The 810 nm laser (dark red) is frequency doubled
(blue) via second-harmonic generation (SHG) and focused into a type-0 ppKTP crystal to generate
collinear SPDC photon pairs at 810 nm (light red). Filters (F) are used to remove the remaining
405 nm light. A half-wave plate (HWP1) rotates the polarization of the photons such that they
are split probabilistically and equally at a polarizing beamsplitter (PBS). Half of the light travels
through the delay arm of the interferometer. This arm has a mirror mounted on a piezo which itself
is mounted on a motorized delay stage for time delay control. The other half travels through the
stationary arm. The light is recombined at a PBS and focused into a sample. The transmitted light
is collimated and detected at the single-mode detection stage. HWP2 switches between detection
modes.

We measure the joint spectral intensity (JSI) of our source using the time-of-fight spectrome-

ter described in Chapter 3 Section 3.6. The result is shown in Fig. 6.3(a). The bandwidth is set by

a bandpass filter placed after the SPDC source. The JSI projections onto vertical and horizontal

axes in Fig. 6.3(b) are used to estimate the marginal FWHM bandwidths of the photons, which are

11.1 nm and 12.8 nm. We estimate the total group delay dispersion (GDD) of our optical elements

between the ppKTP crystal and the center of the sample to be approximately 2800 fs2 at 810 nm.

We use this GDD to simulate the joint temporal intensity (JTI) using the procedure described in

Chapter 3 Section 3.7. The result is shown in Fig. 6.3(c). The FWHM of the projection of the

JTI onto the antidiagonal axis (Fig. 6.3(d)) is used to estimate the entanglement time, which is

153 fs. We note that this size of GDD has a small effect on our entanglement time due to the

narrow bandwidth of our filtered SPDC. The pulse duration of the SPDC can be estimated by the

projections of the JTI onto the horizontal and vertical axes and is ≈ 190 fs.
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Figure 6.3: (a) Measured joint spectral intensity (JSI) where λS,I are the signal and idler wave-
lengths. (b) The JSI is projected onto the horizontal axis and vertical axis showing the signal
(blue) and idler (red) spectra respectively. The FWHM of the signal and idler spectra are 11.1 and
12.8 nm respectively, which is set by an optical filter. The overlap of the spectra is evident in the
dark red region. (c) Calculated joint temporal intensity (JTI) obtained through a discrete Fourier
transform. (d) Projection onto the antidiagonal axis, tS-tI, of the JTI shown in (c) (blue) and for
a transform-limited (β = 0 fs2) pulse (red). The FWHM of these projections are 153 fs and 131 fs.

After the source stage of the experiment, a half-wave plate (HWP1) rotates the photon pairs

to diagonal linear polarization, before a polarizing beamsplitter (PBS) probabilistically splits the

pairs into two arms of a Michelson interferometer. The end mirror in the delay arm is mounted

on a piezo-electric transducer which sits on a delay stage, for fine and coarse control of delay. A

quarter-wave plate (QWP) in each interferometer arm rotates the polarization so that light from

both arms is recombined into a single beam before it is focused with a 75 mm focal length lens into

a 10 mm long quartz cuvette containing the sample under test. The beam size at the focus and

the Rayleigh range is measured using an 810 nm diode laser back-propagated through the fiber of
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the single-mode detection stage and all the optics to the sample position. The FWHM beam size

is ≈ 59µm and the Rayleigh range is ≈ 9.1 mm. The full set of samples we measure is summarized

in Table 6.1.

The light is collimated after the sample, and then travels through the single-mode detection

stage (Chapter 3 Section 3.3). Rotating half-wave plate HWP2 to 0◦ ensures that all light from the

stationary (delay) arm is sent towards detector D1 (D2), and this is the configuration we measure

2PA in. We can rotate HWP2 to 22.5◦ to observe interference in the click rates at each detector, as

well as the coincidences between them (Fig. 6.4). These interference patterns also indicate the zero-

delay position of our interferometer. Critically, the visibility of the interference pattern quantifies

the overlap of the beams from both interferometer arms—a high visibility indicates high temporal

and spatial overlap. In Chapter 4 Section 4.5 we discussed how to model this interference pattern.

To characterize each sample, we compare D1’s click rate when measured at zero delay, and

at a 4 mm delay (corresponding to 27 ps). We perform many measurements at each delay, and

repeatedly switch between them. Due to small alignment and manufacturing imperfections in the

polarization optics in our setup, a small amount of light from the delay arm leaks into detector D1.

As a result, with HWP2 set to 0 degrees and near zero delay, we measure small residual interference

fringes in the click rate at D1, with visibility on the order of ≈1%. Since these residual fringes can

lead to a roughly 1% difference in the click rates at both delays, we average over them using two

methods. First, we constantly vary the position of the delay-arm mirror via a piezo-electric mount

which is driven by a triangular voltage wave with amplitude set to average over five interference

fringes. Second, we implement further averaging by performing measurements at 14 different motor

positions around each delay value (which corresponds to averaging over roughly 2 fringes). Due

to differences in the delay-arm alignment at both delays, the amount of delay-arm light that is

coupled into D1 is different at the two delays. To measure the average leakage rate we also perform

background measurements at both delays, by physically blocking the interferometer’s stationary

arm with a shutter. Finally, to monitor drifts in the power and pointing-direction of the 405 nm

beam, we constantly measure the outputs of the quadrant photodiode. We measure each sample
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Figure 6.4: Typical interference pattern measured with HWP2 set to an angle of 22.5◦. Top panel
shows that the interferometer arms are considered balanced over a range of less than 0.1 mm of
stage delay, much less than the 2 mm of stage delay (4 mm total delay) that we move to for ‘large-
delay’ measurements. The bottom panel displays individual interference fringes near zero delay,
with a visibility V ≈ 98% — this high visibility implies that, inside the sample, light which has
arrived via the stationary interferometer arm has very high modal overlap with light that that has
arrived via the delay arm.

for a total of 34-65 hours corresponding to a total of roughly 1000-1900 independent measurements

at each delay.

6.5 Inferring 2PA Probability

In our experiment, we measure the parameter ∆S which is the relative change in the detection

rate at detector D1 as we move the interferometer from large delay to zero delay. Our task is to infer

a 2PA rate from a measurement of ∆S. In Section 6.3 we explain how to perform this inference for an
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experiment which satisfies two ideal assumptions; first that all the light that travels the stationary

(delay) arm ends up at detector D1 (D2) and second that the detectors have no background counts.

In this section we relax both of those assumptions and find a modified form of Eq. (6.2) which we

use to infer an upper bound on pE2PA from our measurement of ∆S.

To perform this inference, we begin by deriving an equation for the expected count rate S1

at detector D1 as a function of the transmission efficiencies through various sections of the setup.

For each photon pair generated at the crystal there are five distinct paths the pair can take which

may lead to a click at D1. First, both photons could make it to the sample, and this can happen

one of three ways: either both photons traverse the stationary arm (which we label path SS), both

traverse the delay arm (path DτDτ ) or one photon traverses each arm (path SDτ ). Here the τ

subscript on the delay arm labels if the interferometer is in the balanced (τ = 0) or unbalanced

(τ = T ) position. If both photons reach the sample, they will make it through the sample with

probability (1 − ppathE2PA) — the path label allows us to account for the 2PA probability to depend

on the specific path the two photons take before reaching the sample. Second, it is possible that

only one photon reaches the sample, which can happen one of two ways: one photon is lost and the

other takes the stationary arm (path S) or one photon is lost and the other takes the delay arm

(path Dτ ). When only one photon reaches the sample, no 2PA can occur. If one or two photons

are transmitted through the sample, D1 will click with a probability that depends on the number of

photons (i.e. one or two) and the specific path the photon(s) travelled. After the sample, a single

photon will make D1 click with probability ηpath1 .

To find an equation for the expected count rate at D1, we start with equations for the prob-

ability that the pair of photons traverses each of the five paths explained in the above paragraph.



90

These are:

pSS = (TS
XS)

2, (6.5)

pDτDτ = (TD
XS)

2, (6.6)

pSDτ = 2TS
XST

D
XS , (6.7)

pS = 2TS
XS(1− TS

XS − TD
XS), (6.8)

pDτ = 2TD
XS(1− TS

XS − TD
XS), (6.9)

where the transmission efficiency TS
XS (TD

XS) is the probability that a photon created at the crystal

will traverse the interferometer’s stationary (delay) arm and reach the sample. Because the path

from crystal to sample is in free-space, we expect small changes in alignment caused by moving the

delay arm to at most have a negligible effect on the delay-arm transmission efficiency TD
XS . Thus

we assume that the efficiency from the crystal to the sample via the delay arm is independent of

the time delay in the interferometer, which is why we write TD
XS without the τ subscript on the

path-label D.

Next, we write down the conditional probabilities that D1 will click, given the photon pair

has travelled a specific path:

p(click|SS) = (1− pSSE2PA)(2η
S
1 − (ηS1 )

2), (6.10)

p(click|DτDτ ) = (1− pDτDτ
E2PA)(2η

Dτ
1 − (ηDτ

1 )2), (6.11)

p(click|SDτ ) = (1− pSDτ
E2PA)(η

S
1 + ηDτ

1 − ηS1 η
Dτ
1 ), (6.12)

p(click|S) = ηS1 , (6.13)

p(click|Dτ ) = ηDτ
1 , (6.14)

where the efficiency ηS1 (ηDτ
1 ) is the probability that a single photon that travels path S (Dτ ) and

is transmitted through the sample will reach D1 and cause it to click. Because the light is coupled

into fiber between the sample and detector D1, we expect that small alignment changes in the delay

arm may lead to large changes in the fiber-coupling efficiency, and so we allow the efficiency ηDτ
1

to depend on the time delay in the interferometer.
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We can use Eqs. (6.5)-(6.14) to find the desired equation for the expected rate of clicks at

D1:

S1(τ) = N
[
(TS

XS)
2(1− pSSE2PA)(2η

S
1 − (ηS1 )

2)

+ (TD
XS)

2(1− pDτDτ
E2PA)(2η

Dτ
1 − (ηDτ

1 )2)

+ 2TS
XST

D
XS(1− pSDτ

E2PA)(η
S
1 + ηDτ

1 − ηS1 η
Dτ
1 )

+ 2TS
XS(1− TS

XS − TD
XS)η

S
1

+ 2TD
XS(1− TS

XS − TD
XS)η

Dτ
1

]
+ pBG, (6.15)

where N is the pair-production rate at the source and we have introduced the parameter pBG to

represent the background and dark count rate on D1. If we make the substitutions ηDτ
1 → 0 and

pBG → 0, we recover Eq. (6.1).

To estimate (and subtract) the rate of leakage from the delay arm into D1, we also perform

measurements with a shutter blocking the stationary interferometer arm. In this configuration, we

have TS
XS = 0, and measure

SBG
1 (τ) = N

[
(TD

XS)
2(1− pDτDτ

E2PA)(2η
Dτ
1 − (ηDτ

1 )2)

+ 2TD
XS(1− TS

XS − TD
XS)η

Dτ
1

]
+ pBG. (6.16)

We then subtract our measurement of SBG
1 (τ) from S1(τ) to find the corrected click rate at D1:

Scorr
1 (τ) = N

[
(TS

XS)
2(1− pSSE2PA)(2η

S
1 − (ηS1 )

2)

+ 2TS
XST

D
XS(1− pSDτ

E2PA)(η
S
1 + ηDτ

1 − ηS1 η
Dτ
1 )

+2TS
XS(1− TS

XS − TD
XS)η

S
1

]
. (6.17)

We calculate ∆Scorr using the corrected click rates at D1:

∆Scorr =
Scorr
1 (T )− Scorr

1 (0)

Scorr
1 (T )

. (6.18)

In general, we expect the 2PA probability to be identical for the SS and DτDτ paths, since in these

cases both photons travel identical paths between the crystal and sample and therefore should be
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perfectly overlapped in the sample. However, the modal overlap between the stationary and delay

arms may not be 100%, and thus in general we expect pSDτ
E2PA < pSSE2PA = pDτDτ

E2PA. We can quantify

this overlap by looking at the visibility, V , of the interference pattern we measure when we rotate

HWP2 to 22.5◦, and we expect pSDτ
E2PA = V pSSE2PA. At large delay, τ = T , this visibility is zero,

which is why we expect no 2PA to occur if the pair traverses the SDT path. With this definition,

we can write ∆S as a function of pSSE2PA, the near-zero-delay visibility, V , and the one-photon

transmission and detection efficiencies throughout the setup:

∆Scorr =

TD
XS

[
V pSSE2PA

(
1 +

η
D0
1

ηS1

)
+ (1− V pSSE2PA)η

D0
1 − ηDT

1

]
TS
XS

[
(1− pSSE2PA)(1−

1
2η

S
1 )− 1

]
+ 1− TD

XSη
DT
1

. (6.19)

Finally, we can rearrange Eq. 6.19 to solve for pSSE2PA, which is the main result of this section:

pSSE2PA =
∆ScorrηS1 (1− 1

2T
S
XSη

S
1 − TD

XSη
DT
1 )− ηS1 T

D
XS(η

D0
1 − ηDT

1 )

∆ScorrTS
XSη

S
1 (1− 1

2η
S
1 ) + V TD

XS(η
S
1 + ηD0

1 − ηS1 η
D0
1 )

. (6.20)

If we make the simplifying assumptions that ηDτ
1 = 0 and V = 1, we recover Eq. (6.2).

In the next section, we explain how to estimate the efficiencies ηS1 and ηDτ
1 from the count

rates we measure on detectors D1 and D2, as well as the coincidence rate between them. We are

able to estimate pSSE2PA by using Eq. (6.20) in conjunction with Eqs. (6.25) and (6.27) that we

present below.

If there is no significant E2PA probability (i.e. pSSE2PA ≈ 0), we can use pSSE2PA to upper

bound the E2PA cross section (σUB
E ). Similar to Eq. (6.4), we define

σUB
E =

pE2PA

nl
+ 2δσE , (6.21)

where δσE is the propagated error from the Allan deviation of the dataset for the selected averaging

chunk size ( as discussed in Section 6.6) and the measurement of the concentration.

6.5.1 Estimating Detection Efficiencies

Eq. (6.20) above gives us the pSSE2PA probability as a function of ∆S, the interference visibility

V , and the one-photon transmission and detection efficiencies through the setup. We have discussed
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how to measure ∆S and V , and it is relatively straightforward to measure the T path
XS efficiencies.

We can use a version of Klyshko’s method [87] to measure the detection efficiencies ηS1 and ηDτ
1 ,

and in this section we describe how to do so. We start with ηS1 , and again we begin with equations

for the rate of clicks at detectors D1, D2, and coincidences between both detectors. In the limits

pE2PA << 1, ηDτ
1 << ηS1 , and η

S
2 << ηDτ

2 , we can write our equation for the background-corrected

rate of clicks at D1 (Eq. (6.17)) as:

Scorr
1 (τ) ≈ 2NηS1 T

S
XS(1−

1

2
ηS1 T

S
XS). (6.22)

Similarly, the background-corrected rate at D2 is:

Scorr
2 (τ) ≈ 2NηDτ

2 TD
XS(1−

1

2
ηDτ
2 TD

XS), (6.23)

and the coincidence rate between the two detectors is:

C(τ) ≈ 2NTS
XST

D
XSη

S
1 η

Dτ
2 . (6.24)

We can solve the above system of equations for ηS1 , arriving at:

ηS1 =
1

TS
XS

C(τ)

Scorr
2 (τ)

(
1− 1

2

C(τ)

Scorr
1 (τ)

)(
1− 1

4

C2(τ)

Scorr
1 (τ)Scorr

2 (τ)

)−1

. (6.25)

This equation allows us to accurately estimate ηS1 directly from the count rates measured in the

experiment.

To estimate the leakage efficiencies ηDτ
1 , we consider the coincidence rate CBG(τ) we measure

when the stationary interferometer arm is blocked. In this case — ignoring background and/or dark

counts in the detectors — the only way that both detectors will click is if both photons travel to

the sample via the delay arm, are transmitted by the sample, and then one photon makes D1 click

while the other makes D2 click. Thus, in the limit pE2PA << 1, the rate is given by:

CBG(τ) ≈ 2N(TD
XS)

2ηDτ
1 ηDτ

2 . (6.26)

Using this equation and Eq. (6.24), we find:

ηDτ
1 = ηS1

TS
XS

TDτ
XS

CBG(τ)

C(τ)
. (6.27)
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6.5.2 Count Renormalization with a Quadrant Photodiode

Fluctuations in the power and pointing direction of the pump laser are one major source

of noise in our experiment. Because we have to measure the count rates Scorr
1 (0) and Scorr

1 (T )

at different times, this leads to extra noise in our measurement of ∆S. An important step in

our analysis procedure is normalizing the background-corrected count rates based on measured

fluctuations in the pump laser. In this section we explain how we perform this normalization.

We monitor fluctuations in the pump laser by directing a portion of the pump beam onto a

photodiode with an active area divided into four sections. When light is incident on the photodiode,

a photocurrent is created by each of the four sections, proportional to the amount of light absorbed

by that section. We can monitor three outputs from this photodiode: first, the sum of the signal

over all four sections, qsum, second, the difference between the signal from the bottom two sections

and the top two sections, qbt, and third the difference between the signal from the left and right

sections, qlr. The qsum signal is proportional to the total power incident on the photodiode, and the

qbt and qlr signals monitor changes in the up-down and left-right position of the incident light. Thus,

we can monitor fluctuations in the pump laser power and pointing direction with this quadrant

photodiode.

We assume that the background-corrected singles rate at D1, S
corr
1 , can depend quadratically

on these pump-laser fluctuations, via the relation:

Scorr
1 (τ) = βτ0 + βτ1 q

sum + βτ2 q
bt + βτ3 q

lr + βτ4 (q
sum)2 + βτ5 (q

bt)2 + βτ6 (q
lr)2, (6.28)

for some unknown coefficients βτi for i ∈ {0, 6}. These coefficients are unknown, and we allow them

to depend on the interferometer time delay τ .

If we know the βτi coefficients, we can renormalize the measured Scorr
1 (τ) rates using the

above model, and predict what rates we would have measured if the pump laser parameters were

identical for the measurements at zero (τ = 0) and large (τ = T ) time delays. We achieve this goal

by predicting the βτi coefficients with a linear least-squares fit.

During our data acquisition, each independent ‘zero-delay’ or ‘large-delay’ measurement ac-
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tually consists of a set of measurements, performed at 14 different delay-arm motor positions. At

each of these 14 motor positions, we perform five successive, independent measurements of the

count rates and quadrant photodiode readings. We use one of these measurements (i.e. 20% of the

data) as ‘training data’ which we fit to Eq. (6.28) to estimate the βτi coefficients. We use these

models to renormalize the other 80% of the data.

We perform our data analysis in chunks of m τ -delay measurements — this is how we aver-

age over m independent measurements and (using the Allan deviation as discussed in Section 6.6)

calculate the optimal averaging time. We begin by defining the matrix Qτ
train, which contains the

quadrant photodetector readings for all the training data acquired in a chunk ofm τ -delay measure-

ments. Qτ
train has 14m rows (corresponding to the 14m independent training-data measurements

performed at τ -delay), and the entries of Qτ
train encode the quadrant photodiode readings:

Qτ
train =


1 qsum1 (τ) qbt1 (τ) qlr1 (τ) (qsum1 (τ))2 (qbt1 (τ))

2 (qlr1 (τ))
2

...
...

...
...

...
...

...

1 qsum14m(τ) qbt14m(τ) qlr14m(τ) (qsum14m(τ))2 (qbt14m(τ))2 (qlr14m(τ))2

 . (6.29)

We also define a vector representing all 14m training-data measurements of the background-

corrected singles rate in the measurement chunk:

S⃗corr
1,train(τ) =


(Scorr

1 (τ))1
...

(Scorr
1 (τ))14m

 , (6.30)

and a vector containing the model parameters:

β⃗τ =

(
βτ0 βτ1 βτ2 βτ3 βτ4 βτ5 βτ6

)T

. (6.31)

We perform a linear least-squares fit of our model to the training data by calculating:

β⃗τ =
(
(Qτ

train)
TQτ

train

)−1
(Qτ

train)
T S⃗corr

1,train(τ). (6.32)

The remaining, (non-training) data from the chunk of m measurements can be arranged into

the matrices Qτ and vectors S⃗corr
1 (τ) — these are defined in a similar way as Qτ

train and S⃗corr
1,train(τ)
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except they each have four times as many rows, because there is four times as much non-training

data as training data. Using our model, we can predict the count rates we would have measured

given the quadrant photodiode readings, using:

S⃗pred
1 (τ) = Qτ β⃗τ . (6.33)

We can also predict the mean rate we would have measured if the zero-delay and large-delay

measurements were performed with exactly the same pump laser parameters:

Smean
1 (τ) =

1

2
(Q0 +QT ) β⃗τ . (6.34)

Finally, we arrive at our definition for the renormalized, background-corrected count rate at D1:

S⃗norm
1 (τ) =

S⃗corr
1 (τ)

S⃗pred
1 (τ)

Smean
1 (τ). (6.35)

6.6 Results

After acquiring data, our goal is to find an accurate estimate of ∆S. We want to analyze the

data in a way that is independent of as many systematic errors as possible. We begin by subtracting

the background count-rate measurements from the count rates measured at D1. We notice a corre-

lation between the quadrant detector readings and the count rates, implying that our experiment is

sensitive to instability of the pump beam. To account for this instability, we numerically fit a func-

tion of the quadrant detector outputs to the background-subtracted counts, and renormalize the

counts based on this fit—full details of this procedure are in Section 6.5.2. This procedure allows us

to account for and remove pump-laser noise that adds noise to the measured count rates. Finally,

we calculate the change in singles rates—∆S—from the background-subtracted, renormalized count

rates at each delay.

We also perform an Allan deviation analysis on each dataset in order to estimate the uncer-

tainty on our measurement of ∆S and to find the optimal total averaging time. To do this, we

begin by dividing the total dataset into a series of subsets each representing the same total number

of measurements. We apply the full analysis procedure from the above paragraph to each subset,
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Figure 6.5: Example dataset, for 1.5× 10−4 mol L−1 of ZnTPP in toluene. Plots 1-4 indicate the
plots from left to right. Plot 1 shows count rates in D1 as a function of measurement number.
We plot the background-corrected count rates (corr) at both 0 ps and 27 ps interferometer delay.
We also plot the count rates after renormalizing (norm) to minimize the impact of pump laser
fluctuations which we monitor with the quadrant photodiode. Plot 2 shows the Allan deviation
of ∆S as a function of the number of consecutive measurements we average over (i.e. the “chunk
size”). The optimal averaging time (and corresponding minimum Allan deviation) is marked by
the red point. The blue trace is the Allan deviation when we calculate ∆S with the background-
corrected counts, and the orange is the measured Allan deviation when we calculate ∆S with the
normalized counts. Our normalization procedure reduces the Allan deviation by roughly a factor
of 3, indicating that this procedure successfully removes some of the noise caused by pump-laser
fluctuations. Plot 3 shows the Allan deviation curve for our inference of pE2PA (which we infer
from our measurement of ∆S). The optimal averaging time (and corresponding Allan deviation)
is marked by the red point. Plot 4 shows all measurements of ∆S and pE2PA performed on this
sample. For this measurement, the optimal averaging time was roughly 1/9 of the total time we
collected data, and therefore we have nine independent measurements of both ∆S and pE2PA. For
this sample, there is no statistically significant indication that E2PA occurred.

resulting in a list of ∆S estimates from which we calculate an Allan deviation. We repeat this

analysis for a variety of subset sizes. Because each sample was measured on a different day, and

also because the stability of our setup varied slightly each day, the optimal averaging time varies

from dataset to dataset.

We present an example dataset in Fig. 6.5. This data was taken with a 1.5× 10−4 mol L−1

solution of Zinc-tetraphenylporphyrin (ZnTPP) in toluene. This dataset contains a total of 1842

independent measurements of the count rate at D1 at each time delay (Fig. 6.5, plot 1). After

background-correcting, normalizing, and averaging these counts, we calculate ∆S for a variety of

different averaging times. Fig. 6.5, plot 2 shows the Allan deviation of the ∆S values as a function

of averaging time, and we find the near optimal averaging time of 200 measurements gives an



98

Allan deviation of 0.0002 — we interpret this minimum Allan deviation as the uncertainty on our

measurement of ∆S. For each sample we investigate, we independently characterize the modal

overlap between the two interferometer arms with an interference measurement, and all of these

measurements returned a visibility (V) greater than 95%. We also independently characterize the

linear transmission efficiencies via each interferometer arm from the SPDC crystal to the cuvette,

and find TS
XS = 36.4 ± 2% and TD

XS = 25.9 ± 2%. Using these efficiencies and conservatively

estimating V = 0.95, we use Eq. (6.20) (a corrected form of Eq. (6.2) that makes fewer assumptions

in its derivation) to infer the probability that any pair of photons that reaches the sample is absorbed

via E2PA, pE2PA. We estimate the uncertainty on our measurement of pE2PA by calculating the

Allan deviation (Fig. 6.5, plot 3). Since this dataset has a total of 1842 measurements, and we

found it is near optimal to average over subsets of 200 measurements, this dataset contains nine

independent measurements of ∆S and pE2PA, and these are plotted in Fig. 6.5, plot 4. The

remaining 17 datasets are presented in Appendix H.
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Figure 6.6: Summary of measured change in transmittance, ∆S, for all seven samples. The sam-
ples were measured at various concentrations, including some measurements of just the solvent
(indicated with solution concentration set to 0). For all samples measured, we do not measure any
statistically significant change in the count rate at detector D1 when we vary the time delay in the
interferometer from 0 ps to 27 ps. The error bars are set by two times the Allan deviation (2σ for
≈ 95% confidence that the real value lies within the error bars) for the selected averaging chunk
size of each dataset.

In Fig. 6.6 we present the values of ∆S for all our datasets. We performed 18 independent data

runs for 18 independent samples. The samples consist of 1.9×10−4 mol L−1 and 9.4×10−3 mol L−1
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fluorescein in pH 11 water, 2.9× 10−4 mol L−1 and 6.7× 10−3 mol L−1 flavin adenine dinucleotide

(FAD) in phosphate buffered saline, 1.5×10−4 mol L−1 and 1.65×10−3 mol L−1 ZnTPP in toluene,

8 × 10−6 mol L−1 Qdot ITK carboxyl quantum dot 605 in borate buffer, 1.8 × 10−4 mol L−1 and

1.1×10−3 mol L−1 rhodamine 6G (Rh6G) in methanol, 7.3×10−4 mol L−1 of the benzodithiophene

derivative “9R-S” in chloroform, 1.7× 10−4 mol L−1 and 4.0× 10−3 mol L−1 1, 3, 5-triazine-based

octupolar molecule “AF455” in toluene and each solvent. The details on sample preparation are

in Appendix B. The solvent data runs are listed with solution concentration set to zero. For each

dataset we find that the values of ∆S and pE2PA show no statistically significant difference from

zero.

In Table 6.1 we summarize the results for all our datasets. The samples, their C2PA cross

sections from literature (σC) and an estimate for their entangled two-photon absorption cross section

(σestE ) are shown. The estimate uses the probabilistic model (Eq. (2.11)). The measured sample

concentrations (c), average detection efficiencies on detector 1 (ηS1 ), values of ∆S, pE2PA and upper

bounds on the E2PA cross section (σUB
E , found using Eq. 6.21) are listed. The σUB

E values range

from 3.1 × 10−22 to 6.6 × 10−19 cm2 absorber−1. These values are 5-8 orders of magnitude larger

than the σestE values, which is an estimate for the measurement sensitivity increase necessary to

observe a signal.

6.7 Conclusion

In this chapter, we presented a sensitive transmittance-based E2PA measurement system.

We designed a measurement technique capable of detecting changes in transmittance due only to

E2PA, rather than one-photon loss mechanisms. We designed an interferometer to measure the

difference in the singles rate at detector 1 at zero delay and a very large delay. These two delay

positions represent states in which the E2PA rate is maximized and minimized (effectively zero),

respectively. The one-photon loss between the SPDC crystal and detector 1 in these two states was

kept identical. We corrected the count rate for leakage of photons from the delay arm into detector

1 and normalized our counts based on the pointing and power stability of our pump laser. These
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techniques provided a sensitivity to changes in transmittance ∆S of 0.02-0.05%.

We performed measurements on seven independent samples at multiple concentrations and

measured no statistically significant change in transmittance. We set upper bounds on the E2PA

cross sections for the absorbers in the range 10−22− 10−19 cm2 absorber−1. For four of the studied

absorbers, E2PA cross sections have been published before [49, 53, 47, 54, 55, 48]. Our upper

bounds are lower than these cross sections by factors in the range of ≈ 6− 104.

We find that transmittance measurements are less sensitive than fluorescence measurements.

After optimizing each technique for maximum sensitivity, our transmittance measurements upper

bounds are typically three orders of magnitude higher than those for our fluorescence measure-

ments (Chapter 5). The higher sensitivity is a result of the background-free nature of fluorescence

measurements. This reduces the noise and thus the minimum signal one can detect. However,

some advantages do exist for transmittance measurements as discussed in Chapter 2 Section 2.5.

Complicated variations of E2PA transmittance measurements could be designed to increase the

sensitivity, however a many-orders-of-magnitude increase is not likely.



Chapter 7

A Toluene-Filled Hollow-Core-Fiber Platform for Two-Photon Absorption

Measurements

7.1 Introduction

In our first fluorescence experiment (Chapter 5) we measured two-photon excited fluorescence

(2PEF) from a sample contained in a cuvette. We measured both classical two-photon absorption

(C2PA) and entangled two-photon absorption (E2PA) in the same setup under nearly identical

conditions. In this chapter, we present a new platform for 2PEF measurements similar to that

presented in Ref. [88], which was used for C2PA, and in Ref. [89], which was used for Raman

spectroscopy. Here we confine a sample (two-photon absorbing molecules in solution) in a hollow-

core fiber. We focus the excitation beam into the fiber to excite the two-photon absorbing molecules.

The molecules emit fluorescence and some of that light is guided back out of the fiber and can be

detected.

The benefit of this scheme is illustrated in Fig. 7.1. In the cuvette-based approach, light is

focused in free space to a waist w0 and expands quickly. The expansion is characterized by the

Rayleigh range zR. The parameter zR scales quadratically with w0, thus if one wants to increase the

beam intensity at the focus by decreasing w0, that intensity is maintained over a shorter distance

zR. In contrast, in a fiber-based approach, light is focused into a fiber with waist w0 and that

beam size is maintained over long lengths because of low-loss fiber confinement. A high intensity

of light is advantageous for 2PA because two photons must be spatially and temporally overlapped

at a molecule in order for the absorption process to occur. Maintaining that intensity over long
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Figure 7.1: The advantage of fiber confinement for 2PA measurements. Illustration of (a) a con-
ventional cuvette-based and (b) a fiber-based measurement. In the cuvette-based approach, the
light is focused in free space to a beam waist w0. The Rayleigh range zR characterizes the distance
over which the beam size is ≤

√
2w0. When w0 is decreased so is zR, thus high intensity beams

can only be maintained over short distances. In the fiber-based approach, the light is focused into
fiber with waist w0 and maintained over long lengths because of low-loss fiber confinement.

lengths increases the likelihood that the two photons will excite a molecule because those photons

will encounter more molecules.

In this chapter, we discuss the conditions we selected for low-loss fiber confinement. Then, we

present our experimental setup. We then model our experiment in order to calculate a C2PA cross

section from our measurements. Afterwards, we present characterizations of the fiber platform and

discuss our data acquisition technique. Finally, we present our results for the molecule AF455.

7.2 Light Guidance

In this experiment we seek to confine both the sample, excitation photons and fluorescence

photons along the length of the fiber. In order to achieve broadband guidance, we designed our

fiber for index guidance. In index guidance, all light traveling in the core and incident onto the

core-cladding interface at an angle (with respect to the normal to the interface) equal to or greater

than the critical angle, θc = arcsin(nclad/ncore) where nclad and ncore are the indices of refraction of

the cladding and core of the fiber, is guided through the fiber because of total internal reflection.

The critical angle is only real if the index of the cladding is smaller than the index of the core. To
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achieve this criteria, we use a standard capillary tubing with a silica cladding and fill the hollow

core with toluene. The critical angle under these conditions is real for both the excitation and

fluorescence wavelength regions.

Core
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Figure 7.2: Refractive index as a function of wavelength for the relevant media and first two modes
of guided light. The toluene-filled core (orange) and silica cladding (blue) indices are shown. The
mode indices for the fundamental (green) and the first higher-order mode (HOM, red) are shown.
Additional modes can propagate through the filled fiber with mode indices filling the blue shaded
region between the HOM and cladding indices.

The refractive indices as a function of wavelength for the toluene core and silica cladding

are plotted in Fig. 7.2. The range of indices lying between the core and cladding allows for the

propagation of multiple modes of light. The effective index of refraction of the fundamental and

first higher-order modes are shown and are calculated using Ref. [90]. We can calculate the number

of modes that can propagate along the fiber using the V-number,

V (λ) =
πd

λ

√
n2core(λ)− n2clad(λ). (7.1)

The number of modes that can propagate at a particular wavelength λ is then V (λ)2/2. For the

excitation wavelength of 810 nm, ≈ 16 modes can propagate. For the fluorescence wavelengths

of AF455 in toluene, which is peaked at 451 nm, ≈ 80 modes can propagate. In the ideal case,

all of the light would remain in the fundamental mode because this mode is less lossy, has lower

dispersion and has a Gaussian spatial profile. All of these characteristics will increase the likelihood

that 2PA can occur.
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In addition to toluene allowing broadband guidance of light in a fiber made of silica, toluene

also has a low absorption coefficient [91] at the excitation (0.0030 cm−1) and fluorescence (0.0039

cm−1) wavelengths. This is a necessary condition otherwise the long length of the fiber will add little

to no benefit since all the light would be absorbed after a short distance. For comparison, water has

an absorption coefficient that is about one order of magnitude larger at 810 nm (0.0209 cm−1 [91]).

7.3 Experimental Setup

To prepare the fiber, we first cut a clean facet on both ends of the fiber to minimize the

loss that occurs when coupling light into fiber. We use a custom-built coil heater to remove about

20 mm of the polyamide coating from each end of the fiber. Next we cleave the fiber ends in the

regions where the coatings have been removed. We inspect the ends under a digital microscope

to ensure that the cut looked smooth and to check for particle contamination. The fiber ends

are placed in a tubing sleeve to prevent breakage and to allow for simple attachment to the fiber

adapters in the setup. Images of the fiber under a digital microscope (Keyence VHX 7000) are

shown in Fig. 7.3(a)-(b).

Figure 7.3: Digital microscope images of one end of (a) the capillary and (b) the capillary inside of
the tubing sleeve. (c) sCMOS image of the 810 nm excitation laser guided through the capillary.
(d) EMCCD image of the fluorescence from AF455 guided out of the capillary. The last two images
are taken in the image plane of the fiber face. Some features of the tube and tubing sleeve are
visible in both images as described in Section 7.5.

The fiber and tubing sleeves are secured into the custom-built fiber adapters (see Appendix J

for technical drawings). One fiber adapter is connected with PEEK tubing to a syringe placed into
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a syringe pump. This pump is used to fill the fiber. Both fiber adapters are connected with PEEK

tubing to valves that serve as drainage ports. The fiber adapters are fitted for fused silica optical

windows, which are sealed onto the front for coupling light into and out of fiber. These windows

also serve as view ports to check if fluid has flowed through the fiber.

Figure 7.4: Schematic of the experimental setup. The 810 nm laser is directed through a half-wave
plate (HWP), polarizer (pol) and neutral density filters (F) to control the power. The beam is then
sent through a dichroic and focused into a toluene-filled hollow-core fiber held in two fiber adapters
at either end with fittings. Solvent or a solution is pumped into the fiber using a syringe and syringe
pump connected by PEEK tubing to one of the fiber adapters. Fluid can be drained out of the
system by opening the valves connected to either fiber adapter. Light transmitted through the fiber
can be detected on a power meter or an sCMOS camera. A fraction of the fluorescence generated
inside the fiber is directed out of the fiber in the direction of the dichroic, where it is reflected and
focused onto the EMCCD camera. Scattered light is filtered out (F). The power before the fiber
can be measured with a power meter that flips in and out of the beam. A motorized shutter can
be used to block the beam and take a background measurement.

The microfluidic and optical setup is shown in Fig. 7.4. Here we give a brief overview of the

setup, a thorough description of the components is given in Appendix I. An 810 nm, 110 fs pulsed

laser is directed through a half-wave plate (HWP), polarizing beamsplitter (PBS) and neutral

density filters (F) for control over the power. The light is directed through a dichroic beam-

splitter and focused into the 5-µm-diameter-core fiber. Light that is transmitted through the

37-cm-long fiber can be detected on a power meter or imaged on an scientific Complementary

Metal–Oxide–Semiconductor (sCMOS) camera. The power before the fiber can be measured with

a power meter that flips into the beam path. Any fluorescence generated inside of the fiber and

guided out in the direction opposite of the 810 nm beam is reflected at a dichroic beamsplitter
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and focused onto an Electron-Multiplying Charge-Coupled Device (EMCCD) camera. Filters (F)

remove any scattered 810 nm light. The sample AF455 is chosen for our measurements due to its

large C2PA cross section at 810 nm and its solubility in toluene. The details on sample preparation

are in Appendix B.

7.4 Calculating a C2PA Cross Section

In a similar manner to that shown in Chapter 5 Section 5.5, we can model the C2PEF signal

detected on the camera, FC (cnt s−1), as

FC = g

∫ l

0
NC(z)

∫ λf

λi

γ(z, λ)κ(λ)Φ(λ)dλdz, (7.2)

where g (pulses s−1) is the pulse repetition rate, l (cm) is the length of the fiber, NC(z) (excita-

tions cm−1 pulse−1) is the number of excitations per infinitesimal length of fiber dz (cm) per pulse,

λi and λf (nm) are wavelengths chosen such that the integral extends over the entire emission spec-

trum of the sample, γ(z, λ) (cnt photon−1) is the component transmission efficiency, κ(λ) is the

collection efficiency and Φ(λ) (photon excitation−1 nm−1) is the differential fluorescence quantum

yield. A proper normalization of quantum yield is used such that Φ =
∫∞
0 Φ(λ)dλ gives the value

published in literature for the total quantum yield of the fluorophore.

From this equation, we find that it is advantageous to increase the length of the fiber for

all z such that NC(z)γ(z, λ) > 0. This product never drops below zero, but can be zero if the

photons are dispersed in time far enough that two photons are never temporally overlapped at that

position z, or if the photon loss along the length l is 100% for either the excitation photons or the

fluorescence photons, or some combination of both leading to a negligible product NC(z)γ(z, λ) ≈ 0.

In this experiment we try to make l long enough that NC(l)γ(l, λ) ≈ 0, so that we can achieve the

highest signal at a given photon flux. We would like the sensitivity improvement relative to our

prior fluorescence technique (Chapter 5) to be as high as possible.

Here we define the collection efficiency as the fraction of light that can be collected by the

fiber and directed out in the direction of the detector. Here we assume that the fluorescence is
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emitted isotropically and that the fraction of that light collected can be described by the solid angle

of a cone with apex angle 2(90◦ − θc), where θc is the critical angle (Section 7.2). Then we can

write,

κ(λ) =
1

2

[
1− cos

(
arcsin

(
n2core(λ)− n2clad(λ)

ncore(λ)

))]
, (7.3)

where ncore(λ) and nclad(λ) are the indices of refraction of the core and cladding materials (toluene

and silica) at the wavelength of the fluorescence. The component transmission efficiency describes

the transmission efficiency of fluorescence from its point of generation z (cm) to the detector, under

the assumption that it is directed out of the fiber. It takes into account all the loss mechanisms from

various optical components and the media the light propagates through. We define this quantity

as

γ(z, λ) = Exp (−(asol(λ) + ϵsam(λ)c+ µ(λ))z) Twindow(λ)Tlens(λ)Rdichroic(λ)Tlens(λ)Tfilter(λ)QE(λ),

(7.4)

where asol(λ) (cm−1) is the absorption coefficient of the solvent, ϵsam(λ) (L mol−1 cm−1) is the

extinction coefficient of the sample, c (L mol−1) is the concentration of the sample, µ(λ) (cm−1)

is the scattering coefficient of the fiber, T describes the transmittance of an optic, R describes the

reflectance of an optic and QE (cnt photon−1) describes the quantum efficiency of the camera.

We describe the number of excitations per infinitesimal length dz per pulse as

NC(z) =
1

2
σCn

∫ 1/2g

−1/2g

∫ ∞

−∞

∫ ∞

−∞
ϕ(x, y, z, t)2dxdydt (7.5)

where σC (1 GM = 10−50 cm4 s photon−1 fluorophore−1) is the C2PA cross section, n (fluo-

rophores cm−3) is the number density of the fluorophores and ϕ(x, y, z, t) (photons cm−2 s−1)

is the photon flux of the laser beam. The factor of 1/2 carries units of excitations per photons

absorbed. The temporal and transverse spatial profiles of the laser beam are approximated by

Gaussian distributions. The transverse spatial profile of the light inside the fiber will not fit a

Gaussian distribution if it is confined into the higher-order modes of the fiber, but in this calcula-

tion we make a few approximations based on the assumption that all the light is in the fundamental
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mode. Assuming the laser is always on, ϕ(x, y, z, t) takes the form

ϕ(x, y, z, t) = ϕ0(z)Exp

(
−4ln2

(
x2

∆x20
+

y2

∆y20

)) ∞∑
i=−∞

Exp

(
−4ln2

(t+ i/g)2

τ(z)2

)
, (7.6)

where ϕ0(z) (photons cm
−2 s−1) is the peak photon flux as a function of z, τ(z) (fs) is the FWHM

pulse duration and ∆x0 (cm) and ∆y0 (cm) are the FWHM beam widths. The peak photon flux

has z dependence because of loss and dispersion in the fiber. We can define the average photon

rate Q(z) in terms of the photon flux,

Q(z) = g

∫ 1/2g

−1/2g

∫ ∞

−∞

∫ ∞

−∞
ϕ(x, y, z, t)dxdydt =

W (z)

hν
(7.7)

where W (z) (W) is the average power of the beam as a function of z and hν (J) is the average

energy of an incident photon. We can also write the power in a form to show its dependence on

propagation losses in fiber,

W (z) =W0Exp (−(asol(λe) + ϵsam(λe)c+ µ(λe))z) (7.8)

where W0 (W) is the average power at z = 0, λe = 810 nm and ϵsam(λe) ≈ 0. The parameter W0

is related to the power measured at the input of the fiber Win (W) by W0 = ηCWin where ηC is

the coupling efficiency into fiber. The power measured at the output of the fiber Wout is a good

estimate for W (l). We can solve for the ϕ0(z) using Eq. 7.7 by integration of the flux over x, y and

t,

ϕ0(z) =

(
4ln(2)

π

)3/2 W (z)

hνg∆x0∆y0τ(z)
. (7.9)

The pulse duration has z dependence because of dispersion and can be described by

τ(z) =
√
τ40 + (4ln2)2(D0 + βz)2/τ0 (7.10)

where D0 is the group delay dispersion (GDD) accumulated by the pulse before the fiber and β is

the total group velocity dispersion (GVD) of the fiber.

Now we can rewrite Eq. (7.2) using these equations as

FC =
√
2

(
ln(2)

π

)3/2 σCnW
2
0

g(hν)2∆x∆y

∫ l

0

Exp(−2(asol(λe) + µ(λe))z)

τ(z)

∫ λf

λi

γ(z, λ)κ(λ)Φ(λ)dλdz.

(7.11)
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Then we can solve for the C2PA cross section

σC =
1√
2

(
π

ln(2)

)3/2 g(hν)2∆x∆y

n

FC/W
2
0∫ l

0 Exp(−2(asol(λe) + µ(λe))z)/τ(z)
∫ λf

λi
γ(z, λ)κ(λ)Φ(λ)dλdz

.

(7.12)

All the parameters in Eq. 7.12 are known through experiments or simulations. The parameter τ0 is

measured using a SwampOptics Grenouille 8-50-USB, D0 is measured, β is estimated using Comsol

Multiphysics Simulation software, g and hν are specified by the laser manufacturer, n is measured,

k(λ) is calculated, ∆x0 and ∆y0 are estimated, asol(λ) is from literature [91], µ(λ) is determined

from scattering measurements (Section 7.5), Φ(λ) is known from published measurements [79]

and FC/W
2
0 (cnt s−1 µW−2) is the fit to our experimental C2PEF data. The parameter γ(λ) is

calculated based on optics’ specifications, our scattering measurements and the published extinction

coefficient and spectra of AF455 [17].

7.5 Experimental Characterization

In this section we discuss the experimental characterizations we performed in order to derive

a C2PA cross section using Eq. (7.12). First, we discuss the transmission efficiency of the fiber.

Then, we discuss the characterization of propagation losses of the fiber by imaging fiber scatter.

Afterwards, we present images of the excitation and fluorescence light at the fiber facet for iden-

tification of the mode content of the fiber. Finally, we discuss our characterization of the setup’s

dispersion.

We maximize the transmission of the 810 nm light through the fiber by using mirrors to walk

the beam and adjusting the position of the focusing lens before the fiber. We measure the power

before and after the fiber, and the ratio of the power transmitted out to the power sent in is what

we call our transmission efficiency (Wout
Win

). This efficiency accounts for coupling, scattering and

absorption losses. The best alignment resulted in about > 55% transmission efficiency. However,

during our measurements the transmission efficiency was ≈ 40% but varied from dataset to dataset.

We characterize the loss of light along the length of the fiber by imaging the scattering. The
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intensity of the scattering is proportional to the power W (z), and thus should exponentially decay

according to Eq. (7.8) with λe replaced with the wavelength of the light propagating through the

fiber.

Figure 7.5: An image of the scatter from the alignment laser (inset) and a plot of the integrated
intensity (blue) of the scatter as a function of fiber length. The intensity of the scatter is higher
at the ends due to secondary reflections off the fiber tubing sleeves and fittings. These regions are
removed from the plotted data. The fiber is not visible inside of the fittings and fiber adapters.
The integrated intensity is fit (orange) to an exponential decay.

With only the solvent in the fiber (c = 0), we send a 458 nm alignment laser through the fiber

and image the scattering on a smart phone camera using long exposure settings as shown in Fig. 7.5.

The image is integrated vertically to find an integrated intensity as a function of fiber length. The

intensity is fit to the exponential in Eq. (7.8) to derive asol(458 nm) + µ(458 nm) = 0.0093 cm−1.

This corresponds to a loss of 96.9% of the light along the length of the fiber. We take the same

measurement with 750 nm (a visible wavelength close to our excitation wavelength) light and the

data does not fit to an exponential. We believe that asol(750 nm)+µ(750 nm) is not large enough to

measure this way. As mentioned in Section 7.2, the values of asol(λ) are known. From publications

asol(750 nm) = 0.0036 cm−1 and asol(810 nm) = 0.0030 cm−1. If we set µ(750 nm) = µ(810 nm) = 0,

we find that these absorption coefficients correspond to a loss of 12.5% and 10.5%, respectively,

of the light along the length of the fiber. Considering with our best alignment Wout
Win

> 55%,
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and that some fraction of that light is lost due to the coupling efficiency ηC in addition to the

10.5% absorption loss, we find it reasonable to estimate µ(810 nm) ≈ 0. This low scattering loss is

consistent with the light primarily occupying the fundamental mode of the fiber.

We image the 810 nm light at the output of the fiber using two lenses and the sCMOS

camera, as shown in Fig. 7.3(c). In this image, the bright larger and smaller concentric circles

are the imaged fiber cladding outer diameter and the outline of the core modes, respectively. The

larger elliptical shape is likely formed by light guided through the inside of the tubing sleeve as can

be seen by comparison to the digital microscope image in Fig. 7.3(b). Thus, we find that the light

occupies some lower intensity cladding and tubing sleeve modes in addition to the core modes.

The fluorescence is collected at the front of the fiber using the lens optimized to focus 810 nm

light into the fiber, which roughly collimates the visible fluorescence. The light is reflected at the

dichroic beamsplitter, and another lens focuses the image plane of the fiber facet onto the EMCCD,

as shown in Fig. 7.3(d). In this image, the high intensity bright spot is from fluorescence guided

through the core. Light forms an elliptical ring around this bright spot, and is likely from light

guided through the core of the tubing sleeve as can be seen by comparison to the digital microscope

image in Fig. 7.3(b). A larger circular ring of light surrounds that elliptical ring, and is likely from

light guided through the cladding of the tubing sleeve. Thus, there are many modes occupied by

the fluorescence as predicted by the calculation of a large number of modes in Section 7.2.

To measure the GDD D0 accumulated by the pulse as it propagates through the optical

setup, we use the GDD tuning function of the Chameleon Discovery laser. We increase the disper-

sion compensation in increments and take C2PA measurements at each step. The step with the

maximum C2PA signal corresponds to the value at which the GDD is optimally compensated at

the input of the fiber. We measure D0 ≈ 1300 fs2, which agrees with an independent calculation

of the GDD in the setup. To determine the fiber GVD β, a Comsol simulation is used to model

the filled fiber. The low-order modes are solved for. For the fundamental mode, β is identical to

β of toluene, thus there are no contributions from waveguide dispersion. However, for higher order

modes it’s likely that β is affected by waveguide dispersion. These higher-order modes are not
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considered in the calculations of Section 7.4.

7.6 Data Acquisition

In the Section we discuss the camera settings used for data acquistion, the characterization

of camera baseline and dark count rates, the operations that go into measuring a single frame of

data and the conversion of a camera signal to a detected fluorescence rate.

To determine which camera settings were optimal, we wrote a script to calculate the signal to

noise ratio (SNR) of our measurements at various EMCCD settings based on our expected signal

levels. We determined the optimum camera settings to be: electron multiplying (EM) output

amplifier, EM gain set to 30, preamplifier set to 1, 1 MHz horizontal shift rate, 10 s integration

time and 24x24 binned pixels (a superpixel). Although the integration time could be increased

further to increase the SNR, we found that clock-induced charge (CIC) occurred more frequently

at those integration times. Any CIC was removed from the data. To speed up frame readout on

the EMCCD, a pixel region of interest (ROI) is selected and only those pixels are read out. To

select a ROI, the fluorescence was imaged at a relatively high power and the region with significant

photon counts was selected.

Before datasets are acquired, the baseline and dark count rates of the camera are character-

ized. Both are characterized with the built-in camera shutter closed. The baseline measurements

are taken at the minimum integration time of the camera. The dark rate measurements are taken at

the 10 s measurement integration time. From each of these characterization datasets we calculate

an average value and uncertainty using an Allan deviation analysis like that shown in Fig. 7.6 for

the fluorescence rate. A typical baseline measurement in our ROI yields 570.4± 1.0 ADU pixel−1

and a typical dark rate measurement in our ROI yields 2.09± 0.05 electrons s−1 pixel−1.

Each measurement frame consists of a background and a signal measurement. The difference

between a background and a signal measurement being that the shutter (Fig. 7.4) is closed during

a background measurement. The power meter after the fiber is used to measure the power before

each signal measurement and is used for plotting the power dependence of the signal (Fig. 7.7). The
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number of measurements done at each power varied. As the power decreased, the signal decreased

and thus we performed more measurements to lower the uncertainty.

To calculate the fluorescence rate FC in cnt s−1 detected by the camera, the pixels of interest

are integrated over to determine the camera signal N (ADU). We converted N to a count rate

using,

FC =
NS

GT
, (7.13)

where S (electrons ADU−1) is the CCD sensitivity for the selected output amplifier and preamplifier,

G (electrons cnt−1) is the EM gain and T (s) is the integration time.

7.7 Results

Figure 7.6: Example dataset for 21.8 nW excitation power. (a) The average background subtracted
image is shown for the 7x7 superpixel region of interest. (b) The fluorescence count rate calculated
from each frame’s background subtracted imaged is plotted in blue vs frame number. Averaging
in chunks of 373 frames is shown in red which gives a photon rate of 0.98 cnt s−1. (c) The Allan
deviation of the photon rate is calculated as a function of chunks of frames used to average. A
1/

√
N (where N is the number of frames) line is used to guide the eye to the best number of

frames to average. The value used in the analysis is indicated by a red data point, corresponding
to averaging chunks of 373 frames with an Allan deviation of 0.52 cnt s−1. This dataset consists of
2547 frames, which took about 12 hours to run.

An example dataset is shown in Fig. 7.6 for the lowest W0 of 21.8 nW. This dataset was

acquired over ≈ 12 hours. In Fig. 7.6(a), the background-subtracted image, which is averaged over

the duration of the dataset, is shown for the 7x7 superpixel ROI. In Fig. 7.6(b) the fluorescence

rate extracted from each frame’s background-subtracted image is plotted in blue as a function of
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frame number. In Fig. 7.6(c) the Allan deviation of the fluorescence rate is plotted for different

numbers of frames averaged over. A near optimum number of frames to average of 373 is selected

which corresponds to an Allan deviation of 0.52 cnt s−1. We average the data in chunks of 373

frames and plot the result in red in Fig. 7.6(b). These measurements have an average value of

0.98 cnt s−1.

The results of our fluorescence measurements for a sample of 2 × 10−5 mol L−1 AF455 in

toluene are plotted in Fig. 7.7. Here we show measured fluorescence count rates as a function of the

power transmitted out of the fiber. The fit to the data is a linear regression performed on a log-log

scale. The slope of the fit is 2.05, which confirms the two-photon origin of the signal. The lowest

data point is measured at a power out Win of 19.5 nW, which corresponds to an initial power W0

of 21.8 nW.

Figure 7.7: Fluorescence rate measured on the detector as a function of the power transmitted out
of the fiber for a sample of 2× 10−5 mol L−1 AF455 in toluene. The fit to the data has a slope of
2.05.

Using Eq. 7.12, we derive a C2PA cross section for AF455 of 170 GM. This result is 2-4

fold lower than cross sections reported in literature [17, 19]. We suspect that our cross section is

lower due to two assumptions in our calculations that rely on all the light being confined to the
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fundamental mode of the fiber. In reality there are 16 modes which can propagate through the

fiber and a fraction of the light is likely occupying those higher order modes as shown in Fig. 7.3(c).

The photons in those higher-order modes have a decreased likelihood to be overlapped spatially

and temporally at a molecule due to the complex spatial profiles and the increased group velocity

dispersion.

7.8 Conclusions

We designed a toluene-filled hollow-core-fiber platform for two-photon excited fluorescence

measurements. We used the results of our measurements and the characterizations we performed on

the experimental setup to derive a C2PA cross section for AF455. The cross section agrees within

a factor of 2 and 4 to the values of published cross sections. We believe that using a quantitative

characterization of the mode composition of the excitation laser inside of the fiber would improve

our calculation. Nevertheless, the close agreement to literature cross sections is strong evidence

that our fiber platform can be used to derive absolute values of two-photon cross sections.

We measured C2PEF down to 21.8 nW excitation power. This is a 4-fold improvement

from the sensitivity of the cuvette-based measurement system presented in Chapter 5. We believe

that this is an underestimate of the system capabilities. Higher concentration samples should be

measurable using this platform and will likely increase the signal strength. Measurements at an

≈ 2 × 10−4 mol L−1 concentration level are feasible and would presumably lead to an additional

3-fold sensitivity improvement.

We minimized the losses in the system and optimized the alignment for 40% transmission

efficiency through the fiber rendering this platform ideal for E2PA studies, in which loss is detri-

mental to the measurement sensitivity (Chapter 2 Section 2.6). Our future studies will implement

entangled photon excitation with the goal of quantifying the first E2PA cross section, rather than

an upper bound.



Chapter 8

Conclusions and Outlook

In this thesis we presented three sensitive experiments designed and used for entangled two-

photon absorption (E2PA). Two are transmittance schemes and one is a fluorescence scheme. In

all three cases, we were unable to resolve an E2PA signal because of its very small magnitude

under excitation by typical values of spontaneous parametric down-conversion (SPDC) photon

fluxes. We were the first to set upper bounds on E2PA cross sections, and we did so for a wide

variety of absorbers - eight independent absorbers in room temperature liquids. Observing E2PA

is challenging due to the nonlinear nature of 2PA and SPDC. The former requires strong spatial,

temporal and spectral correlations between two photons while the latter occurs with a low likelihood

(≈ 10−7) set by the material of the crystal and the stringent phase-matching conditions. In our

work, our maximum SPDC photon rate, which was limited by the damage threshold of the nonlinear

crystal, is ≈ 1010 photons s−1 (a few nanowatts). For comparison, the expected classical two-

photon absorption (C2PA) rate at a few nanowatts of excitation power (in a standard scheme)

is about 1 molecule excited every few minutes – which is not detectable. Further complications

arise in the fact that the E2PA signal at this maximum photon flux is already expected to have

some contribution from the classical quadratic-photon-flux-dependent term (Eq. (2.3)). This is the

regime where photon pairs are overlapped (mean photon number ≈ 150 photons pulse−1) and a

photon from one pair and another from a separate pair can excite a two-photon transition. In the

quadratic regime, the quantum advantage of E2PA is not expected to be large.

The results of these experiments are unsurprising considering the recent theory [5, 27, 26, 25]
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and experiments [62, 57, 58] that have predicted or measured similar results. There exists the

other camp of researchers whose results disagree with ours and motivated our investigation in the

first place. However, their results do not prove the origin of the signal that they measure. In a

paper of ours that is not covered in this thesis [61], we designed an experiment to measure E2PA,

but instead measured a signal from hot-band absorption (HBA) that mimicked the behavior of

E2PA. We distinguished between the two processes by testing for signatures of E2PA, such as

the quadratic dependence of the signal on attenuation of the SPDC and by filtering the SPDC

(Chapter 2, Section 2.6). The signals measured by other groups could be HBA, scattering [58] or

some other one-photon loss mechanism.

In our efforts to measure E2PA we developed C2PA measurement systems. We made one-to-

one comparisons between E2PA and C2PA to place upper bounds on the quantum advantage on the

order of 102 − 103 in the studied photon flux regime. Our cuvette-based fluorescence measurement

system was used to derive absolute values of C2PA cross sections that agreed within a factor of two

to literature cross sections. Our most recent C2PA system is the toluene-filled hollow-core fiber

presented in Chapter 7. This system is capable of measuring C2PA at nanowatt excitation powers,

thus making it ideal to attempt an E2PA measurement with.

The absolute magnitude of E2PA cross sections has yet to be narrowed down experimentally,

as evidenced by Fig. 2.3. A few routes exist to get to that point. The first is to use waveguides

such as our hollow-core fiber system. Another route is to use recent theory to guide the choice

of experimental studies. Atomic systems may show promise due to the energy anticorrelations of

SPDC being ideal for tuning to resonance with a narrow atomic transition. These simple atomic

systems are nice starting points because they are theoretically well understood. Once an E2PA

signal is measured, a wide range of parameters can be tuned to try to improve the signal.

Going forward, the perspective around the use of E2PA is shifting. It’s clear that if there

is a measurable quantum advantage of E2PA, it’s much smaller than earlier experimental reports

had thought. All the work that goes into designing a sensitive experiment to simply attempt to

measure an E2PA signal indicates that using E2PA for microscopy is likely not going to be fruitful.
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The use of E2PA for applications like sensing and spectroscopy is possible, and leads to a more

realistic and constructive ideology.
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fanov. Super-resolution quantum imaging at the Heisenberg limit. Optica, 5(9):1150–154,
September 2018.



123

[44] W. M. McClain. Polarization of two-photon excited fluorescence. J. Chem. Phys, 58(1):324,
January 1973.

[45] Joseph R. Lakowicz, Ignacy Gryczynski, Henryk Malak, and Zygmunt Gryczynski. Two-color
two-photon excitation of fluorescence. Photochem. Photobiol, 64(4):632–635, June 1996.
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Appendix A

Literature summary

In Table A.1, a summary of data from all (to the best of our knowledge) experimental E2PA

reports in literature is shown. E2PA cross sections (σE) or cross section upper bounds (σUB
E ) are

listed for various studied absorbers. Abbreviated name are sometimes shown for the absorbers.

Here we list more formal names for the absorbers, however the reports should be referenced for a

more thorough description. The abbreviated absorbers are:

– FAD = flavin adenine dinucleotide

– ZnTPP = Zinc tetraphenylporphyrin

– Qdot 605 = Qdot ITK carboxyl quantum dot 605

– Rh6G = rhodamine 6G

– AF455 = 1,3,5-triazine-based octupolar molecule “Air Force 455”

– RhB = rhodamine B

– Dyad 1 = 9-(N-piperidinyl)perylene-3,4-dicarboximide (6PMI) linked to naphthalene-(1,4:

5,8)-bis(dicarboximide) (NDI)

– Dyad 2 = 6PMI linked to NDI via a phenyl spacer

– Triad 1 = dyad 1 with the additional link of 6PMI to a tetrathiafulvalene (TTF) donor

– Triad 2 = dyad 2 with the additional link of 6PMI to a TTF donor

– LDS 798 = styryl 11
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– C153 = coumarin 153

– OM82C = nitrogen centered tolane dendrimer

– FMN = flavin mononucleotide

– 9R = 9-Ringed benzodithiophene compound

– 9R-X = 9-Ringed benzodithiophene derivative with central atom X

– XT = thiophene dendrimers with X thiophene units

– H2TPP = tetraphenylporphyrin

A few of the references in the table did not report a σUB
E , however the information in their

report could be used to estimate σUB
E . Here we discuss how we calculated these values.

In Ref. [62], the authors designed a sensitive fluorescence measurement technique, but could

not measure a fluorescence signal due to E2PA. We can estimate σUB
E in their experiment using a

version of Eq. (5.19). From their report we find the values for the measurable fluorescence lower

bound FLB = 0.7 s−1, the concentration c = 2× 10−3 mol L−1 (n ∝ cNA, where NA is Avogadro’s

number), the cuvette length l = 1 cm, the quantum yield Φ = 0.8, the detection efficiency γ =

0.1, the collection efficiency κ = 0.019. We also find the SPDC photon pair rate at the sample

2.0 × 109 photons s−1, which is a lower bound on the photon rate because of fiber coupling. This

value intrinsically accounts for loss in the setup and effectively gives T Q = 4.0× 109 photons s−1.

We then solve for the upper bound using,

σUB
E =

2FLB

T QnκlγΦ
, (A.1)

and derive σUB
E = 1.9× 10−25 cm2 absorber−1.

In our work, Ref. [61], a sensitive fluorescence measurement was implemented for two samples.

The provided information in the paper gives the values for parameters necessary to calculate σUB
E

using Eq. (A.1). For the 3.0 × 10−4 mol L−1 LDS798 sample, a signal was measured due to hot-

band absorption (HBA). We can use the HBA signal as lower bound for the signal that could be

detected due to E2PA in this setup: FLB ≈ 33 cnt s−1 for 1.0µW SPDC excitation. The other
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Table A.1: A summary of all E2PA cross sections (σE) and cross section upper bounds (σUB
E )

published in literature prior to 2023. For each report, the publication date, group, and excitation
wavelength is listed. Each reported absorber is listed with its C2PA cross section (σE) and E2PA
cross sections (σE) or cross section upper bounds (σUB

E ). References marked with a * did not report
σUB
E , but we calculated it based on their experimental details as discussed in this Appendix.

Date [Ref.] Group Wavelength Absorber σC [Ref.] σE × 1018 σUB
E × 1024

MM/DD/YY (nm) (GM) (cm2 absorber−1) (cm2 absorber−1)

JILA/NIST 810

Fluorescein 13 ± 4 [19] 420
FAD 2.1 [54] 900
ZnTPP 20 [53] 2400

This work Qdot 605 46000 ± 13000 [19] 660000
(Chapter 6) Rh6G 51 ± 14 [19] 310

9R-S 22 ± 6 [19] 2500
AF455 660 ± 180 [19] 980

04/06/22 [57] * UNAM 810
RhB 260 ± 39 [16] 1700
ZnTPP 20 [53] 18000

05/29/22 [58] * Caltech 812 Rh6G 51 ± 14 [19] 2000 ± 1000

03/31/22 [56] Univ. Michigan 810

Dyad 1 4.06 ± 0.41 0.038 ± 0.007
Dyad 2 0.60 ± 0.05 0.19 ± 0.02
Triad 1 3.82 ± 0.21 0.092 ± 0.011
Triad 2 0.82 ± 0.14 0.071 ± 0.004

02/07/22 [61] * JILA/NIST 1064
Rh6G 9.9 ± 2.8 0.00027 ± 0.00006
LDS 798 220 ± 60 4.7 ± 1.1

08/13/21 [62] * Univ. Oregon 1064 Rh6G 9.9 ± 2.8 [61] 0.19

04/06/21 [19] JILA/NIST 810

AF455 660 ± 180 0.21 ± 0.05
Qdot 605 46000 ± 13000 48 ± 12
Fluorescein 13 ± 4 0.10 ± 0.02
9R-S 22 ± 6 2.0 ± 0.6
Rh6G 51 ± 14 0.12 ± 0.03
C153 14 ± 4 0.16 ± 0.04

03/01/21 [48] Univ. Geneva 1064 Rh6G 9.9 ± 2.8 [61] 0.0019 ± 0.0009

10/26/20 [55] Univ. Michigan 810

Bisannulene 150 [50] 4.50 ± 0.58
OM82C 370 [53] 3.08 ± 0.06
FAD 2.1 [54] 0.979 ± 0.009
ZnTPP 20 [53] 0.754 ± 0.010
FMN 1.6 [54] 0.038 ± 0.002

02/28/20 [59] JILA/NIST 810 ZnTPP 20 [53] 170000

10/22/18 [54] Univ. Michigan 800
FAD 2.1 0.29
FMN 1.6 1.4

09/25/18 [47] Univ. Michigan 800

9R 29.5 0.810 ± 0.097
9R-N 82.5 0.525 ± 0.0063
9R-S 27.9 0.202 ± 0.024
9R-Se 9.01 0.164 ± 0.020

09/21/17 [49] Uniandes 808
ZnTPP 20 [53] 42 ± 5.2
RhB 260 ± 39 [16] 4.2 ± 0.34

05/21/13 [53] Univ. Michigan 800

OM82C 370 23.3
ZnTPP 20 23.7
42T 620 12.7
90T 1130 20.8

05/24/10 [50] Univ. Michigan 800
Bisannulene 150 32
Triannulene 1650 81
Tetraannulene 2960 99

01/05/09 [52] Univ. Michigan 800

6T 6 0.13
18T 230 0.71
42T 620 2.6
90T 1130 5.9

12/07/06 [51] Univ. Michigan 800 H2TPP 10 [92] 10



130

parameters are the component transmission efficiency (which includes the detection efficiency as

well as the transmission efficiency of other optical components such as filters) γ = 0.025, the

quantum yield ϕ = 0.054, the loss between the crystal and the sample T = 0.26, the length of the

sample l = 1 cm and the collection efficiency κ = 0.042. For the 1.1 × 10−3 mol L−1 sample of

Rh6G, γ = 0.082, ϕ = 0.9 and no signal was detected, thus we use the sensitivity of the detection

system FLB = 0.5 cnt s−1. Then we derive σUB
E = 4.7 × 10−24 cm2 absorber−1 for LDS798 and

σUB
E = 2.7× 10−28 cm2 absorber−1 for Rh6G.

In Ref. [58], the authors present a sensitive transmittance and fluorescence measurement

system, but instead of measuring E2PA, they measure a scattering signal from Rh6G with cross

section (2 ± 1) × 10−21 cm2 absorber−1. The authors were not able to filter out the scattering to

achieve a higher sensitivity, thus this cross section serves as a σUB
E value as well.

In Ref. [57] the authors designed a sensitive transmittance experiment with the goal of making

their experiment insensitive to one-photon losses. The authors derived Eq. (10),

σE =
Γ

clNA
, (A.2)

where Γ is the measured one-photon loss insensitive change in transmittance, found using singles and

coincidence rates measured through sample and solvent. The authors used multiple measurement

techniques of differing levels of complexity, including a time-delay technique. For all measurement

techniques and for two samples of varying concentrations, Γ ≈ 0. To set a σUB
E , we estimate upper

bounds on Γ from their measurements. We use their measurements for the highest concentrations

of their samples, for RhB c = 5.8 × 10−2 mol L−1 and for ZnTPP c = 1.4 × 10−3 mol L−1.

Then for all measurement techniques Γ ≤ 0.060 for RhB and Γ ≤ 0.015 for ZnTPP. We plug

these upper bounds for Γ into Eq. (A.2) using the length of the sample l = 1 cm, and derive

σUB
E = 1.7× 10−21 cm2 absorber−1 for RhB and σUB

E = 1.8× 10−20 cm2 absorber−1 for ZnTPP.
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Sample preparation details

The “AF455” fluorophore [78, 79] is provided by Drs. T. Loon-Seng Tan and T. Cooper from

the Air Force Research Laboratory. Flavin adenine dinucleotide (FAD), Zinc tetraphenylporphyrin

(ZnTPP), fluorescein, rhodamine 590 (6G) and coumarin 153 (540A) are ordered from Sigma-

Aldrich and used as received. Qdot ITK Carboxyl Quantum dot 605 (qdot 605) in borate buffer

is ordered from ThermoFisher, stored at 4◦C and only used for six months after receiving. The

thienoacene fluorophore “9R-S” [47] is provided by Prof. T. Goodson from the University of

Michigan. Various solvents are used to prepare the samples including phosphate buffered saline

(PBS, prepared), toluene (≥ 99.98%), pH 11 water (Hydrion pH 11 buffer capsule in distilled water),

methanol (≥ 99.9%), ethanol (≥ 99.5%), chloroform (≥ 99.9%) and borate buffer (prepared). The

concentration and absorption/emission spectra of all samples (except qdot 605) are checked using a

UV-VIS-NIR spectrophotometer (Agilent Cary 5000 Scan) and a fluorometer (Horiba Fluorolog-3

FL3-222). The absorption and emission spectra are compared with published spectra to ensure the

samples are not contaminated or degraded.



Appendix C

Detailed experimental diagram and parts list for Chapter 4

Figure C.1: Detailed diagram of our experimental setup. See main text for abbreviation definitions
and part numbers.

In Fig. C.1, we show a detailed diagram of our setup with labeled parts. We list the part

numbers below.

Main source

– Laser source = Coherent Chameleon Discovery

– SHG = APE HarmoniXX SHG

Pair source

– HWP1 = zero-order half-wave plate 405 nm (Thorlabs WPH05M-405)

– Pol = glan laser calcite polarizer (Thorlabs GL10-A)
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– F1 = dichroic mirrors (3 x 10Q20BB.1 and TLM-400-45S-1025), interference bandpass

filters (2 x Thorlabs FBH405-10, 1 x Thorlabs FB405-10, 1 x Semrock FF01-405/10-25)

and colored glass filter (Thorlabs FGB37M)

– L1 = 300 mm focal length lens (Thorlabs LA4579-A)

– ppKTP crystal (Raicol Crystals Ltd., type-0 SHG, AR coated, 3.425 µm poling period,

10 mm long)

– crystal temperature controller (Covesion PV10) set to 30.00◦C± 0.01◦C

– F2 = interference longpass filters (Semrock BLP01-442R-25, BLP01-633R-25 and 3 x FF01-

496/LP)

– L2 = 175 mm focal length lens (KPX103AR.16)

– F3 = dichroic mirrors (2 x ARO MR6040) and bandpass filters (Thorlabs FBH800-40,

FBH810-10)

Interferometer

– HWP2 = zero-order half-wave plate 808 nm (Thorlabs WPH10M-808)

– PBS = polarizing beam splitting cube (Thorlabs PBS12-780-HP)

– hollow roof prism mirror (Thorlabs HR1015-AG)

– Newport PM10069 motorized translation stage

– Newport PM500-C precision motion controller

– PBS = polarizing beam splitting cube (Thorlabs PBS12-780-HP)

– HWP3 = half-wave plate 800 nm (Tower Optical)

Sample telescope

– L3 = 50 mm focal length lens (Thorlabs LA1131-B)

– 1 cm UV quartz sample cuvette (Starna, 23-Q-10)



134

– L4 = 50 mm focal length lens (Thorlabs LA1131-B)

Single-mode detection stage

– PBS = polarizing beam splitting cube (Thorlabs PBS12-780-HP)

– L5 and L6 = 12.7 mm focal length achromatic doublet (Thorlabs AC064-013-B)

– SMF = 2 x 5 m-long patch cables (Thorlabs 780HP), optional 2 x 500 m-long single mode

fiber (Nufern 780-OCT)

– SNSPDs = superconducting nanowire single-photon detectors (Quantum Opus, LLC, Opus

One, optimized for the 850-1200 nm wavelength region) with a detection efficiency of ≈ 75%

at 810 nm

– closed-cycle helium cryocooler (Sumitomo HC-4E2)

– temperature monitor (SIM 922)

– detector bias and readout modules (Quantum Opus, LLC, QO-SIM-CRYO)

– time tagger = picosecond event timer and time-correlated single photon counting system

(PicoQuant HydraHarp 400)
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Data for Chapter 4

Coincidence rate data recorded in our experiments (illustrated in Fig. 4.5) and used in the

analysis section are presented in Table D.1 for neat solvent and sample at zero and τ delays. All

rates are presented at 10 different 405 nm pump powers ranging from ≈ 60 µW to 10.9 mW. The

rates are listed in counts per second (cnt s−1). The rates are averaged near τ and zero delays,

marked as Rτ and R0, respectively. Measurements at each pump power are repeated multiple

times, from which averages and standard deviations (used as the uncertainties) are calculated.

Table D.1: Coincidence rates measured with solvent (solv) and sample (samp) at zero (0) and τ
delays.

Pump Power Rsolv
τ Rsamp

τ Rsolv
0 Rsamp

0

(mW) (cnt s−1) (cnt s−1) (cnt s−1) (cnt s−1)

0.06 198± 8 163± 6 195± 5 165± 5
0.10 306± 6 258± 9 300± 5 252± 6
0.45 1491± 35 1240± 60 1481± 23 1249± 39
1.08 3670± 60 3120± 70 3650± 50 3103± 48
2.15 6960± 100 59960± 120 6920± 70 5880± 110
3.25 11200± 100 9640± 140 11140± 70 9590± 170
4.72 16350± 120 14080± 140 16230± 110 14010± 230
6.53 22670± 130 19530± 310 22520± 100 19340± 330
8.60 29850± 90 25830± 310 29670± 140 25540± 300
10.9 37780± 200 32790± 380 37520± 190 32570± 270



Appendix E

Detailed experimental diagram and parts list for Chapter 5

Figure E.1: Detailed diagram of our experimental setup. See main text for abbreviation definitions
and part numbers.

In Fig. E.1, we show a detailed diagram of our setup with labeled parts. We list the part

numbers below.

Main source

– Laser source = Coherent Chameleon Discovery

– SHG = APE HarmoniXX SHG

Pair source

– HWP1 = zero-order half-wave plate 405 nm (Thorlabs WPH05M-405)
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– Pol = glan laser calcite polarizer (Thorlabs GL10-A)

– F1 = dichroic mirrors (3 x 10Q20BB.1 and TLM-400-45S-1025), interference bandpass

filters (2 x Thorlabs FBH405-10, 1 x Thorlabs FB405-10, 1 x Semrock FF01-405/10-25)

and colored glass filter (Thorlabs FGB37M)

– L1 = 300 mm focal length lens (Thorlabs LA4579-A)

– ppKTP crystal (Raicol Crystals Ltd., type-0 SHG, AR coated, 3.425 µm poling period,

10 mm long)

– crystal temperature controller (Covesion PV10) set to 30.00◦C± 0.01◦C

– F2 = interference longpass filters (Semrock BLP01-442R-25, BLP01-633R-25 and 3 x FF01-

496/LP)

– L2 = 200 mm focal length lens (Thorlabs LA1979-B)

– F3 = dichroic mirrors (2 x ARO MR6040) and interference longpass filter (Thorlabs

FELH0700)

Single-mode detection stage

– L3 = 12.7 mm focal length achromatic doublet (Thorlabs AC064-013-B)

– fiber beamsplitter (Thorlabs FC830-5OB-FC)

– SMF = 2 x 500 m-long single mode fiber (Nufern 780-OCT)

– SNSPDs = superconducting nanowire single-photon detectors (Quantum Opus, LLC, Opus

One, optimized for the 850-1200 nm wavelength region) with a detection efficiency of ≈ 75%

at 810 nm

– closed-cycle helium cryocooler (Sumitomo HC-4E2)

– temperature monitor (SIM 922)

– detector bias and readout modules (Quantum Opus, LLC, QO-SIM-CRYO)



138

– time tagger = picosecond event timer and time-correlated single photon counting system

(PicoQuant HydraHarp 400)

Multi-mode detection stage

– L4 = 50.2 mm focal length lens (Newport KPX082AR.16)

– SPAD = single-photon avalanche diode (PerkinElmer SPCM-AQR-14)

– counter = timer/counter/anaylzer (Tektronix FCA3103)

2PEF measurements

– optical chopper head and controller (New Focus 3501 Optical Chopper)

– L8 = 50 mm focal length lens (Thorlabs LA1131-B)

– UV quartz sample cuvette with 2 mm width × 10 mm path length (FireFlySci, 1FLUV2),

the narrow width is chosen to reduce fluorescence self-absorption in the sample

– machined cuvette holder designed for stability and low footprint to bring optics close to

excitation volume

– L9, L10, L11 = Collection Optic with High Numerical Aperture (COHNA) lens system [93]

– F5 = shortpass filter (Semrock FF01-758/SP-25) and sample-dependent bandpass filter

(AF455 and C153 - Semrock FF02-470/100-25, qdot 605 and 9R-S - Chroma ET610/75m,

fluorescein and Rh6G - Semrock FF01-535/150-25) (filter spectra is shown in Fig. 5.3)

– SM = spherical mirror with 15 mm focal length, 35 mm diameter (Edmund Optics, #43-

467)

– PMT = photon-counting metal package photomultiplier tube (Hamamatsu H10682-210)

– thermoelectric cooler (TEC) (CP40336) to cool PMT to 5◦C

– CPU cooler (Rosewell PB120) for heat sink of TEC

– time tagger = picosecond event timer and time-correlated single photon counting system

(PicoQuant HydraHarp 400)
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Beam alignment and characterization (details on use in Appendix F)

– L7 = 50 mm focal length lens (Thorlabs LA1131-B)

– L12 = 50 mm focal length lens (Thorlabs LA1131-B)

– L13 = 62.9 mm focal length lens (Newport KPX085AR.16)

– cam1 = UI-3590LE-C-HQ camera

– cam2 = Thorlabs UI-224XSE camera

1PA source

– 458 nm source = OBIS 458 LX

– F6 = neutral density (ND) filter wheel (Thorlabs)

Other parts

– HWP2 = zero-order half-wave plate 808 nm (Thorlabs WPH10M-808)

– HWP3 = half-wave plate 800 nm (Tower Optical)

– L5 = 88.3 mm focal length lens (Newport KPX091AR.16)

– L6 = 75 mm focal length lens (Newport KPC037AR.16)

– PBS = polarizing beam splitting cube (Thorlabs PBS122)

– F4 = longpass interference filter (FELH0700)
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Alignment details for Chapter 5

A telescope (L5 and L6) is used to resize the laser beam close to the SPDC beam size at their

foci in the sample. The alignment of the beam into the sample is checked using two cameras (cam1

and cam2). Lenses L7 and L8 are placed approximately the same distance from the flip mirror,

enabling a view on cam1 of the beams at and near their foci in the cuvette. With this camera, we

check the alignment of the beams through alignment irises, and measure beam size, Rayleigh range

and overlap of the laser and SPDC beams. Two lenses after the sample (L12 and L13) collimate

and focus either beam onto cam2. With this camera, we verify that the beams remain overlapped

after passage through the cuvette, are centered along the x-direction inside of the cuvette and

propagate nearly perpendicular to the cuvette walls they are incident on. To check that the beams

are centered in the x-direction, we first use a translation stage to translate the cuvette along this

axis and observe on the camera when the beams’ strike the walls of the cuvette. We translate the

micrometer to the midpoint of the locations of the wall striking events. To check that the beams

propagate perpendicular to the walls they are incident on, we ensure that adding the cuvette does

not displace the beams in the x and y-directions significantly.

A typical transverse spatial overlap of the two beams at their foci (cam1) in the sample is

shown in Fig. 5.2(b). The centers of the laser and SPDC beam are displaced from one another

by ≈ 5µm vertically and horizontally. Zemax simulations (Fig. 5.2) indicate that displacements

of this magnitude have no effect on the collection efficiency. The beams’ centers on cam2 are also

overlapped within ≈ 5µm vertically and horizontally. The beam overlap is checked regularly. To
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initially align the beams in the z-direction, the lens L8 is placed roughly one focal length away

from the center of the cuvette.

The COHNA lens system (L9, L10 and L11) and filters (F5) are contained within a 25.4 mm-

diameter lens tube. The spacing of the optics in the lens tube is based on Ref. [93]. The COHNA lens

system (and filters) and the spherical mirror (SM) are each placed on a three-axis stage and initially

aligned in the three directions based on the optimal spacings found using Zemax’s OpticStudio.

To optimize the alignment of the system (COHNA, SM and lens L8), we first adjust lens L8 to

optimize collected C2PEF, which ensures that the excitation volume is centered with respect to

the collection optics. Next, the COHNA lens system and the spherical mirror are each adjusted to

maximize the collection of C2PEF. This process is iterated until the collection efficiency is optimal.

A CW 458 nm source excites 1PEF in the sample to aid in the characterization of the geometrical

collection efficiency (Section 5.4).

The alignment procedure using C2PEF optimizes the alignment of the system for C2PEF.

For E2PEF, the alignment (only lens L8) must be slightly altered because we observe (on cam1) a

shift between the foci of the laser and SPDC beam in the z-direction of ≈ 500µm. We compensate

for this by shifting lens L8 so that either beam’s focus is in the center of the cuvette prior to

measurements.



Appendix G

Detailed experimental diagram and parts list for Chapter 6

Figure G.1: Detailed diagram of our experimental setup. See main text for abbreviation definitions
and part numbers.

In Fig. G.1, we show a detailed diagram of our setup with labeled parts. We list the part

numbers below.

Main source

– Laser source = Coherent Chameleon Discovery

– SHG = APE HarmoniXX SHG

Pair source

– HWP1 = zero-order half-wave plate 405 nm (Thorlabs WPH05M-405)

– Pol = glan laser calcite polarizer (Thorlabs GL10-A)
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– F1 = dichroic mirrors (3 x 10Q20BB.1 and TLM-400-45S-1025), interference bandpass

filters (2 x Thorlabs FBH405-10, 2 x Semrock FF01-405/10-25) and colored glass filter

(Thorlabs FGB37M)

– Quad detector = quadrant photodiode (First Sensor QP50-6-18u-SD2)

– L1 = 300 mm focal length lens (Thorlabs LA4579-A)

– ppKTP crystal (Raicol Crystals Ltd., type-0 SHG, AR coated, 3.425 µm poling period,

10 mm long)

– crystal temperature controller (Covesion PV10) set to 30.00◦C± 0.01◦C

– F2 = interference longpass filters (Semrock BLP01-442R-25, BLP01-633R-25 and 3 x FF01-

496/LP)

– L2 = 200 mm focal length lens (Thorlabs LA1979-B)

– F3 = dichroic mirrors (2 x ARO MR6040) and bandpass filter (Semrock FF01-810-10)

Interferometer

– HWP2 = zero-order half-wave plate 808 nm (Thorlabs WPH10M-808)

– PBS = polarizing beam splitting cube (Thorlabs PBS12-780-HP)

– QWP1 = quarter-wave plate (Tower Achromatic Waveplate A-12.7-A-250-B-2)

– QWP2 = quarter-wave plate (Thorlabs AQWP05M-980)

– shutter = optical beam shutter (Thorlabs SH05)

– piezoelectric Optic Mount (Thorlabs KC1-P)

– motorized actuator (Thorlabs Z825B)

Sample telescope

– L3 = 75 mm focal length lens (Thorlabs LA1608-B)

– 1 cm UV quartz sample cuvette (Starna, 23-Q-10)
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– L4 = 75 mm focal length lens (Thorlabs LA1608-B)

Single-mode detection stage

– HWP3 = half-wave plate 800 nm (Tower Optical)

– PBS = polarizing beam splitting cube (Thorlabs PBS12-780-HP)

– L5 and L6 = 12.7 mm focal length achromatic doublet (Thorlabs AC064-013-B)

– SMF = 2 x 5 m-long patch cables (Thorlabs 780HP) optional 2 x 500 m-long single mode

fiber (Nufern 780-OCT)

– SNSPDs = superconducting nanowire single-photon detectors (Quantum Opus, LLC, Opus

One, optimized for the 850-1200 nm wavelength region) with a detection efficiency of ≈ 75%

at 810 nm

– closed-cycle helium cryocooler (Sumitomo HC-4E2)

– temperature monitor (SIM 922)

– detector bias and readout modules (Quantum Opus, LLC, QO-SIM-CRYO)

– time tagger = picosecond event timer and time-correlated single photon counting system

(PicoQuant HydraHarp 400)



Appendix H

Data for Chapter 6

The plots that follow show the datasets for each of 17 independent measurements (1 additional

measurement shown in Chapter 6). Here I describe the layout of the plots which is common to all

datasets. Plots 1-4 indicate the plots from left to right. Plot 1 shows count rates on D1 as a function

of measurement number. We plot the background-corrected (corr) count rates at both 0 ps and

27 ps interferometer delay. We also plot the count rates after renormalizing (norm) to minimize the

impact of pump laser fluctuations which we monitor with the quadrant photodiode. Plot 2 displays

the Allan deviation of ∆S as a function of the number of consecutive measurements we average over

(i.e. the “chunk size”). The optimal averaging time (and corresponding minimum Allan deviation)

is marked by the red point. The blue trace is the Allan deviation when we calculate ∆S with the

background-corrected counts, and the orange is the Allan deviation when we calculate ∆S with

the normalized counts. Our normalization procedure reduces the Allan deviation, indicating that

this procedure successfully removes some of the noise caused by pump-laser fluctuations. Plot 3

displays the Allan deviation curve for our inference of pE2PA (which we infer from our measurement

of ∆S). The optimal averaging time (and corresponding Allan deviation) is marked by the red point.

Plot 4 shows all measurements of ∆S and pE2PA performed on the sample as a function of the

measurement chunk number.
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Figure H.1: Dataset for pH 11 water.

Figure H.2: Dataset for 1.9× 10−4 mol L−1 fluorescein in pH 11 water.

Figure H.3: Dataset for 9.4× 10−3 mol L−1 fluorescein in pH 11 water.

Figure H.4: Dataset for PBS.
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Figure H.5: Dataset for 2.9× 10−4 mol L−1 FAD in PBS.

Figure H.6: Dataset for 6.7× 10−3 mol L−1 FAD in PBS.

Figure H.7: Dataset for toluene.

Figure H.8: Dataset for 1.65× 10−3 mol L−1 ZnTPP in toluene.
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Figure H.9: Dataset for borate buffer.

Figure H.10: Dataset for 8× 10−6 mol L−1 qdot 605 in borate buffer.

Figure H.11: Dataset for methanol.

Figure H.12: Dataset for 1.8× 10−4 mol L−1 Rh6G in methanol.
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Figure H.13: Dataset for 1.1× 10−2 mol L−1 Rh6G in methanol.

Figure H.14: Dataset for chloroform.

Figure H.15: Dataset for 7.3× 10−4 mol L−1 9R-S in chloroform.

Figure H.16: Dataset for 1.7× 10−4 mol L−1 AF455 in toluene.
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Figure H.17: Dataset for 4.0× 10−3 mol L−1 AF455 in toluene.



Appendix I

Detailed experimental diagram and parts list for Chapter 7

Figure I.1: Detailed diagram of our experimental setup. See main text for abbreviation definitions
and part numbers.

In Fig. I.1, we show a detailed diagram of our setup with labeled parts. We list the part

numbers below.

Optical components for 810 nm

– Laser source = Coherent Chameleon Discovery

– HWP = zero-order half-wave plate 808 nm (Thorlabs WPH10M-808)

– Pol = polarizing beam splitting cube (Thorlabs PBS12-780-HP)

– L1 = 200 mm focal length lens (Newport KBX076AR.16)

– L2 = 175 mm focal length lens (Thorlabs KBX073AR.16)

– F1 = neutral density filters (Thorlabs ND02A, ND20A, NE06A, NE30A, NDUV10A)
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– dichroic = dichroic beamsplitter (Semrock FF738-FDi01-t3)

– shutter = optical beam shutter (Thorlabs SH05)

– K-cube solenoid controller (Thorlabs KSC101)

– power sensor 1 = photodiode sensor (Thorlabs S130C)

– power meter 1 (Thorlabs PM100D)

– motorized flip mount (Thorlabs MFF101)

– L3 = 10 mm focal length aspheric lens (Thorlabs ASL1210)

– 1 mm thick fused silica window (Edmund 84-449)

– fiber = silica capillary tubing (Molex 1068150002)

– 1 mm thick fused silica window (Edmund 84-449)

– power sensor 2 = photodiode sensor (Ophir PD300R-UV)

– power meter 2 (Ophir Starbright)

– L4 = 8 mm focal length aspheric lens (Thorlabs C240TMD)

– L5 = 125 mm focal length lens (Newport KPX097AR.16)

– sCMOS = Andor Marana back-illuminated sCMOS (MARANA-4BV6U-99BE)

Additional components for ≈ 450 nm

– 458 nm source = OBIS 458 LX

– F2 = neutral density filters (Thorlabs NE40A, NE05A)

– L6 = 125 mm focal length lens (Newport KPX097AR.14)

– F3 = filters (Semrock FF01-750/SP and FF02-470/100)

– EMCCD = Andor iXon Ultra 888 EMCCD (DU-888U3-CS0-#BV)

Microfluidics
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– KDS 230 Legacy syringe pump

– 2.5 ml stainless steel syringe (KDS 780801)

– PEEK tubing (Idex 1576)

– one-way valves (Idex P-732A)

– custom-built fiber adapters (Appendix J)

– fitting (Idex F-125 Microtight)

– tubing sleeve (Idex F-181 Microtight)

– fitting (Idex F-126SX Microtight)

– AppleRubber o-ring (Viton with inner diameter of 3.56 mm and width of 0.5 mm)



Appendix J

Fiber adapter technical drawings

Here we show the technical drawings for the fiber adapter base and clamp. This adapter is

designed to fit an o-ring (Viton with inner diameter of 3.56 mm and width of 0.5 mm) and window

(fused silica with diameter of 5 mm and width of 1 mm) in between the base and the clamp. The

adapter is used with three fittings, one for connecting to fiber (Idex F-125) and two for connecting

to PEEK tubing (Idex F-126SX).
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Figure J.1: Technical drawing of fiber adapter clamp. Hidden dimensions are shown as dashed
lines. Dimensions are shown in inches.
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Figure J.2: Technical drawing of fiber adapter base. Hidden dimensions are shown as dashed lines.
Dimensions are shown in inches.
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