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Resonant light enhances phase coherence in a cavity QED simulator of fermionic superfluidity
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Cavity QED experiments are natural hosts for nonequilibrium phases of matter supported by photon-mediated
interactions. In this work, we consider a cavity QED simulation of the BCS model of superfluidity, by studying
regimes where the cavity photons act as dynamical degrees of freedom instead of mere mediators of the
interaction via virtual processes. We find an enhancement of long time coherence following a quench whenever
the cavity frequency is tuned into resonance with the atoms. We discuss how this is equivalent to enhancement
of non-equilibrium superfluidity and highlight similarities to an analogous phenomena recently studied in solid
state quantum optics. We also discuss the conditions for observing this enhanced resonant pairing in experiments
by including the effect of photon losses and inhomogeneous coupling in our analysis.
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Superconductivity and superfluidity are among the most
celebrated phenomenon of modern condensed matter theory,
both for their fundamental importance and for the promise
they hold to revolutionize power transmission [1,2]. Recent
theory and experimental efforts point at potential nonequi-
librium enhancement of superconductinglike phenomena in
platforms at the interface of condensed matter and quantum
optics, hinting at novel avenues beyond conventional hightem-
perature superconductors in solid state systems [3—5]. These
encompass pump and probe experiments in the solid state
setting [6—10], as well as proposals to enhance superconduct-
ing order using driven photonic cavities coupled to quantum
materials [11-15]. The complexity in modeling the physical
principles behind these platforms results from the necessity to
combine materials science with an understanding of the role
of driven photonic and/or phononic degrees of freedom in
many-particle physics [16-33]. It would be therefore desirable
to provide an emulator of superconductivity which, although
it may simplify the degrees of freedom involved, could shed
light on complementary mechanisms for nonequilibrium en-
hancement of superconducting order. This could then be used
as a stepping stone towards richer and more intricate scenar-
10s.

Such an emulator has been proposed in AMO physics
for quantum simulation of archetypal s-wave superconduc-
tors (for charged particles) or s-wave superfluids (for neutral
particles) [34,35]. In these works, the dynamics of the
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superfluid phase coherence, directly related to the Meissner
and Anderson-Higgs mechanisms in superconductors [2], can
be studied by monitoring the dynamics of the atomic phase
coherence. In the QED simulators considered so far, the cavity
must be far detuned from atomic frequencies so that photonic
degrees of freedom can be integrated out [36-57] and so an
effective matter-only s-wave model of superconductivity is
sufficient to describe the dynamics. In such a limit, the cavity
only contains virtual photons, and their primary purpose is to
mediate pairing interactions.

In this Letter, we investigate the effect of real photons on
the phase coherence when the cavity detuning to the atomic
transition is reduced. In this limit, the single channel s-wave
BCS Hamiltonian is no longer an accurate description, and
instead the atoms and cavity field simulates the two chan-
nel model of the BCS-BEC crossover [2,58]. In this model,
the effect of reducing photon detuning on the dynamics are
nontrivial because, on one hand, reducing the detuning yields
a stronger mediated interaction strength, while on the other
hand, reducing the detuning leads to retarded photon dynam-
ics where an instantaneous interaction is no longer valid. Here,
we find that even when the change in interaction strength is ac-
counted for, the retarded photon dynamics can maintain phase
coherence better than the instantaneous interaction. This is
demonstrated in Fig. 1, where we show that upon reducing the
photon detuning phase, coherence increases until resonance,
below which the diabatic (small detuning) limit takes over
and phase coherence is lost. While these results are mostly
obtained by a classical integrability analysis [S8—65], we also
find via numerical simulation that the phenomenon is robust to
the nonintegrable effects caused by inhomogeneous couplings
and photon loss which are typically present in realistic cavity
QED settings.

Simulation of Superfluid Phase Coherence. We consider
the simulation of the two-channel model for the BCS-BEC
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FIG. 1. Top panel: A simple schematic of the distribution of

atomic levels (see text) and the spectral response of the cavity with
detuning A, and linewidth k. Bottom panel: Time average fromt = 0
to 7 = 100/(xN) of the phase coherence S™ = 1 3,(6;") as a func-
tion of the cavity detuning A./(xN), for large disorder W/(xN) = 8.
In the adiabatic limit, A./(xN) — oo, the simulator shows van-
ishing coherence, S*(t) — 0, while coherence is maximum when
the photon is at resonance with the mean atomic transverse field
A, ~ €y = 6N (marked by a black dashed line). To make use of
an integrability analysis, we assume an ideal cavity with x = 0 for
most of the paper, and then confirm that a realistic cavity linewidth,
k/(g/N) = 1.4 x 1072, does not significantly modify the resonance
phenomenon.

crossover observed in ultracold fermion experlments [2 58].
The model involves fermions (with creation operator fk with
momentum vector k and spin s) that can form Cooper pairs on
the BCS side of the crossover or bind into diatomic bosonic
molecules at zero center of mass momentum (with creation
operator d) on the BEC side of the crossover. Neglecting
finite momentum molecular bosons, the dynamics are char-
acterized by the Hamiltonian:

Hf/h—zfuqfk fks+ngka lwd—i—Hc +Ad'd,

k,s

where d is the mean molecular field, A, is the molecular bind-
ing energy, and g is the coupling strength between fermions
and molecules. When the fermions condense into a super-
fluid on the BCS side of the crossover, they mostly form
Cooper palrs [2] quantified by the complex pair amplitudes
Pk = fk 1 f k. ¢) In this Letter, we focus on the dynamics of

the superfluid s-wave phase coherence ST = N Zk Pk, Which
quantifies the phase coherence between Cooper pairs with
different pairing wave vector k.

Similar to Ref. [35], the Cooper pairs can be simulated by a
collection of two level atoms (described by Pauli operators 6,
and 67) via the Anderson pseud ospin mapping [58,61,62]:

6; — f:i,Tfki,T +fjk,-,¢f;kiql -1, (M

where each atom i simulates a pair of fermion momentum
modes i — +Kk;. The above Hamiltonian can then be sim-
ulated by a cavity QED system similar to the experiments
described in references [39,40,42,66], in which the internal
levels of 2N atoms are encoded in long lived electronic states,

6" = hof

e.g., the 'So-3p; states of 38Sr atoms. The atoms are trapped
in an optical lattice and are allowed to interact with a single
cavity mode (described by a photon annihilation operator a
simulating the molecular field, @ — c?). Such a system is
modeled by the Hamiltonian [35,39,40]:

2N

Hih=)" €6} +Zg,(a+&+Hc)+ da, Q)
i=1 i=1

where A, is the detuning of the cavity from the mean atomic
frequency, 2g; is the single-photon Rabi frequency, and ¢; is an
inhomogeneous effective transverse field. Simulation of H by
the cavity QED system occurs for homogenous light-matter
coupling g; = g and for a probability distribution, p(e;), of the
inhomogeneous field, ¢;, that is designed to match the density
of states for the fermion model. We choose the density of
states as p(e;) = [B(W/2,€0/2,€;) + B(W/2, —€p/2, €;)]/2,
where B(a, xg, x) is a box distribution with mean xy and width
o (see Fig. 1). Similar to Ref. [35], such a bimodal distribution
is chosen to ensure the possibility of persistent oscillations of
the phase coherence (see below) in the W = 0 limit. When
the disorder strength of the inhomogeneities is not too large
W/2 < €, the corresponding density of states is associated to
a two band model with constant density of states within each
band. In [67] we show an example band structure and discuss
the superfluid phenomenon that would occur in the traditional
thermal equilibrium setting.

At large detuning, A, > g\/]V and A. > ¢ + W/2, the
cavity field mediates spin-exchange interactions and an effec-
tive spin model can be derived which maps into a one channel
BCS model as discussed in Ref. [35]. In this limit, an adiabatic
approximation [35,39,40] assumes the state of the light field
is in instantaneous equilibrium such that (&Zq(t)) = _%S+’
where ST = % Yooty = % > i Pk is both the atomic phase
coherence and the simulated superfluid phase coherence.
Thus, in the large detuning limit, the photon directly measures
the phase coherence S*. Inserting (@ ( (t)) back into Eq. (2)
and taking homogenous couplings, one finds a mediated in-
teraction —x »_;, 6;"6, with interaction strength x = &/,
and sign which favors effective Cooper pair formation at
low temperatures and positive detuning, A.. In this work
we will study the dynamics when the photon detuning, A,
is decreased and the adiabatic approximation is no longer
valid. One complication to this limit is that when the photon
detuning is decreased, the interaction strength y increases.
To isolate this effect we imagine that the experiment tunes
the external magnetic fields controlling €y and W such that
€o/xN and W/ xN are held constant as the photon detuning
is decreased. Such an adjustment can be done for separate
realizations of the experiment and does not require dynamical
control of the external fields during the course of a single
experimental run.

Dynamical Phases from classical integrability. To study the
dynamics of this system, we make a mean field approximation
(i.e., (01(1)02(t)) = (O1(1))(O1(t)) and adopt the notation:
(0)) = 0;) which is expected to work up to time scales
O(1/(xN)) [68-70]. The resulting classical dynamics of the
Hamiltonian in Eq. (2) show Richardson Gaudin integrability
[58-65,71,72] in the homogenous limit, g; = g. The so called
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Lax integrability analysis [58—65] is then used to study the
integrable tori of the classical mean field Hamiltonian cor-
responding to Eq. (2) and to construct a dynamical phase
diagram [35,58] characterizing the collective modes. This is
done by studying the conserved quantities to identify a min-
imum number, M, of collective degrees of freedom (DOF)
required to effectively reproduce the dynamics of collective
variables at long times [73].

The dynamical phases are then classified by the required
number of collective DOF and the dynamics of the phase co-
herence S*. First, we consider the resulting collective modes
for a quench starting from an initial state with all spins po-
larized in the % direction, (6{) =1, and the cavity in the
vacuum, (a) = 0. In the spin-only model, three phases are
found [35,58] with at most M = 2. In contrast, we identify
a fourth phase with M = 3 upon introducing the photon away
from adiabatic elimination. The three phases in the adiabatic
limit, A, — o0, are (for fixed x N and ¢y > xN):

1. Phase I (M = 0): At large disorder, all phase coherence
is lost and the simulated superfluid enters a normal state:
ST(@)— 0.

2. Phase I (M = 1): Transition to this phase occurs as
disorder is reduced, and involves only one effective degree of
freedom (M = 1). In this phase, the magnitude of the phase
coherence, |S™(¢)|, is constant at late time, and the collective
mode corresponds to precession of the phase of S*: S*(¢) —
| S+ | eiltf .

3. Phase III (M = 2): This phase occurs at even smaller
inhomogeneous atomic broadening, and has M = 2 DOF. The
collective mode shows persistent oscillations in |S*(z)| as
shown in the upper left panel of Fig. 2.

In this adiabatic limit, the critical disorder strength, Wj,
between phase I and II, and the critical disorder strength Wj;
between II and III are different W; > W, and while they
depend nontrivially on €y, they occur on the order of the
interaction strength W) &~ O(x N). They also depend on the
initial state in a nontrivial way [35,58].

At finite detuning, A, the photon becomes another DOF
in the collective oscillations of these three phases, and to
distinguish the phases of the full model we will write them
with a “+1” superscript. The phases I*! and II*' show the
same qualitative dynamics of ST () as the phases I1 and I11,
respectively, while a new phase /117! is defined by aperiodic
oscillations of |ST(¢)| and requires M = 3 collective DOF
(two macroscopically coherent spins and a photon). We show
an example of these aperiodic oscillations in the top right
panel of Fig. 2, where in contrast to phase /71, the spectrum
contains multiple incommensurate, generally irrational, fre-
quencies which create aperiodic oscillations in the real time
evolution of |S*(¢)|. As the detuning increases, the aperiodic
contribution to the oscillations of ST becomes small smoothly
as function of A, and in the large detuning limit, phase /717!
approximates phase /1. At large but finite A., the new phase
111" involves the photon performing fast oscillations around
aeq(t), the slowly evolving equilibrium value given by adia-
batic elimination (see Fig. 2 for an example). In that figure,
these extra oscillations have an amplitude A = max, |a(t) —
aeq(t)] which decreases as 4/ xN/A. with increasing detuning
A., as discussed below. The limiting behavior of the pho-
ton dynamics is similar for phases I*' and I7*', and will
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FIG. 2. Dynamics in the homogenous limit, W = 0, in both the
adiabatic, A, = 40xN, and resonant A. = ¢y = 6N limits. In the
adiabatic limit, the adiabatic approximation correctly predicts the
dynamics of the matter, but misses the extra oscillation around a.,(¢)
predicted by the Lax analysis. While on resonance, the adiabatic
approximation is completely wrong and the dynamics of |ST| show
aperiodic dynamics characteristic of phase I/1*! for any W > 0. The
Fourier spectrum, |S*|(w), also shows the difference between the
aperiodic dynamics (multiple incommensurate, generally irrational,
frequencies) characteristic of phase III*! and the periodic dynamics
(one frequency and its harmonics) characteristic of phase /1] (adia-
batic limit of phase 771*").

therefore, at large detuning, ensure these dynamical phases
approximate their adiabatic counter parts, phase / and /1,
respectively.

Upon reducing the detuning, a rich dynamical phase dia-
gram emerges as shown in the upper panel of Fig 3. In that
figure we fix g = 6N such that W/2 < €( and the density of
state always corresponds to a model with a two band structure
[67]. In the W = O limit, there is only phase 111!, while, at
finite W, the cavity field has a broad impact on the dynamical
phase diagram. In the diabatic limit, A,/ xN « 1, the dynam-
ics are much more sensitive to the inhomogeneities due to an
inability of the cavity to mediate an effective interaction, and
the transition to phase ™! occurs at much smaller disorder in
comparison to the large detuning limit. We also find a region
at large disorder, W > 4xN, where phase IIt! occurs when
A, ~ €y which suggests phase coherence can be enhanced by
setting the detuning on resonance with the atoms that have
atomic energies close to €.

Mechanism of resonant phase coherence. The enhance-
ment of phase coherence is confirmed as a function of A,
in Fig. 1 for ¢ = 6xN and W = 8x N, and we explain the
formation of this resonance by first considering finite but
large detuning, such that 1/A, is still the fastest timescale.
In this limit the dynamics are in Phase /7! and the enhance-
ment of phase coherence is very weak at long times, but
the following simple picture holds. First, on a timescale of
1/A., the initial polarization of the spins drive the photon
into an excited state oscillating around a nonzero a.,(t = 0) =
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FIG. 3. Top panel: Dynamical phase diagram as a function of
the cavity detuning and atomic disorder. The approximate resonance
condition, A, ~ €y = 6N, is marked by a black dashed line. Bottom
panel: Dynamics of |ST(¢)| for W/(xN) = 8 and different values of
A./(xN) as marked by the points in the top panel. For A./(xN) =
0.1 (red) and 10.3 (yellow), |S*(r)| evolves to a constant steady
state characteristic of phase I*!, while for the remaining values of
A./(xN), the dynamics have persistent oscillation characteristics of
phase 777!, In this figure, the initial state has (67) =1and (a) = 0.

—Ng/A.. Then, on a timescale of 1/W 2 1/A,, the spins
mostly dephase and a.,(t — 00) ~ 0. Once the spins mostly
depolarize to their steady state, the photon remains oscillating
around a small equilibrium, a(t) ~ Ae’. The Lax analysis
(see [58] and [73]) yields expressions for the frequency and
amplitude of these small oscillations which have a simple an-
alytical form when A, > W > ¢p: u = A, and A = xN/g =
VN/XN/A..

From the perspective of the matter, the photon is effec-
tively an external drive that pumps a small fraction of the
spins into a coherent steady state. In the frame of reference
of the photon (the effective external drive), the dynamics of
each spin is fully described by a constant magnetic field,
h= (e; — )z + gAX, and we can solve for the steady state as:

S+:lz g . 3)
N = (e — n)? + |gAl

Since p ~ A, this expression correctly predicts the loss of
coherence, ST, in the adiabatic limit shown in Fig. 1.

Further away from the adiabatic limit, the separation of
time scales, 1/W 2 1/A,, that yield the simple picture above
is no longer valid. Regardless, the Lax analysis still produces
the same expression, Eq. (3), for the phase coherence in phase
I but now with a different A and y that must be numerically
determined by solving for the roots of a Lax vector (see [58]
and Supplemental Material [67]). Since p gives the preces-
sion frequency of the photon, it is expected to be close to
the detuning u =~ A, and this is what we find numerically.
Equation (3) therefore predicts the atom at site i will be in
resonance when A, = ¢;. The coherence is then maximally
enhanced when most spins are driven close to resonance and

3
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FIG. 4. Top panel: Same dynamics for |S*(¢)| as in Fig. 3, but
with «/(27) = 150kHz and g/(27) = 10.8kHz as in the experi-
ments of [39,40]. Bottom panel: Cavity emission versus detuning A..
This panel is computed assuming inhomogeneous couplings and an
initial state prepared by a coherent drive through the cavity. Even
though inhomogeneities and cavity losses reduce the coherence, we
can observe a signature of the resonance as a minimum [74] in the
photon density. Note that in contrast to Fig. 3 and Fig. 1, the initial
state depends on the initial number of photons driven into the cavity
which scales as 1/A.. Both figures were obtained by numerical
simulation of the Lindblad equations of motion at mean-field. In
the top panel, the decay rate of [ST(¢)| is constant with A./xN
and proportional to 1/, but appears to increase with A./xN in the
figure because the unit for time, 1/x N, decreases with A, when g is
fixed.

occurs when the drive, A, is at the center of the band of
atomic frequencies A, ~ €. This approximation is confirmed
by the peak in coherence shown in Fig 1.

Although Eq. (3) provides an intuitive picture, similar to a
single particle resonance, when the system is in phase /7!, the
relevant enhancement of coherence at the resonance happens
in phase /1! where the cavity field and atomic coherence
must both be treated as dynamical variables. As shown in
Fig. 3, their dynamics in this regime show coupled nonlinear
oscillations [58].

Experimental Realization. In the experiments of
Refs. [39,40] an optical lattice is used to trap Sr atoms,
featuring a long-lived electronic clock transition with atomic
decay rate of y. The optical lattice is placed inside a standing
wave optical cavity with linewidth «. While both y and
k destroy phase coherence at long times, we find that
the effect of resonant phase coherence is still observable
on times O(1/«x) provided we operate at large collective
cooperativity (Ng?> > ky). Given that for long-lived Sr
atoms, « > y we neglect atomic decay. Figure 1 shows
the dependence of |S™(r)| on A., and demonstrates that the
resonant enhancement can be maintained even with cavity
loss. Furthermore, Fig. 4 depicts how the dynamics in Fig. 3
simply features a slow decay for moderate «.

The experiments in [39,40] also have inhomogeneous
couplings g; = gcos(koapi) with kpagp = 3.7 due to an
incommensurability between the optical lattice spacing, ay,

L042032-4



RESONANT LIGHT ENHANCES PHASE COHERENCE IN A ...

PHYSICAL REVIEW RESEARCH 4, 1042032 (2022)

and the cavity wavelength, 2 /ky. The inhomogeneous cou-
plings will disrupt the effect discussed in this work if we start
in a homogenous state, since the couplings will no longer
excite the photon. However, as long as the initial state is gener-
ated by coherently driving the optical cavity, inhomogeneities
do not play a detrimental effect. In this case, the initial state
involves all spins aligned with the inhomogeneities sgn(o;") =
sgn(g;) such that cavity will be coherently pumped by the
atoms. The resulting simulations show a signature of resonant
phase coherence as a minimum [75] of the time averaged
photon density shown in Fig. 4. Note that both dissipation and
inhomogeneities break Lax integrability.

Conclusion. Our work demonstrates that dynamical fluctu-
ations of a mediating field can produce enhancement of phase
coherence in cavity QED simulators of superconductivity and
superfluidity. According to our predictions, the superfluid
phase would be quickly destroyed at large detuning, while
for resonant detuning the phase coherence of the superfluid
would be maintained at long times. It is also interesting to
notice that, in addition to phases I, II, and III discussed in
Ref. [58], we find the additional phase III*!' characterized
by long time aperiodic oscillations. This new phase and the
resonance phenomenon are allowed to appear, as compared
with their absence in previous works [58,61,63], because of a
few key differences. One is that the authors in those works did
not directly study the question of the effect of the detuning
of the cavity, A, or equivalently the binding energy of the
bosonic model, and thus were unable to detect the resonance
phenomenon. Another is that we preform a quench from the
ground state of a BCS Hamiltonian with no band dispersion
and large detuning A, such that the initial state has zero
population of the bosonic mode and a Cooper pair in every
accessible fermion mode such that the condensate pairing
amplitude is maximal. Finally, in contrast to previous works,
our post quench Hamiltonian has a dispersion with two bands.

Although these conditions are amenable to prepare in a cavity
QED setting, it will be interesting to determine how stringent
such conditions are and if similar ones can be prepared to
allow the observation of enhanced superfluidity or phase 771!
in experiments with superfluid fermions.

Searching for similar physics predicted here in natural ex-
tensions of our cavity QED simulator, such as trapped ions
or quantum optics in waveguides, both of which serve as
tunable simulators of nonequilibrium quantum many body
physics, employing mediating photons or phonons [76,77]
will be also of great interest. It would also be particularly ex-
citing to search for enhanced superconductivity by a resonant
cavity in the charged superfluids of real materials in which
the light-matter couplings are structurally different from the
atom-molecule couplings of Eq. 1. Overall, our results offer
the possibility of studying novel regimes of enhanced coop-
erative lightmatter, and hint that quantum many-body optics
with active light and matter degrees of freedom has the poten-
tial to become a blossoming area of quantum simulation in the
near future.
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