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AWannier-Stark optical lattice clock has demonstrated unprecedented measurement precision for optical
atomic clocks. We present a systematic evaluation of the lattice light shift, a necessary next step for
establishing this system as an accurate atomic clock. With precise control of the atomic motional states in
the lattice, we report accurate measurements of the multipolar and the hyperpolar contributions and the
operational lattice light shift with a fractional frequency uncertainty of 3.5 × 10−19.
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Introduction.—Optical lattice clocks are advancing
measurement precision to an unprecedented level [1,2].
Achieving a similar level of measurement accuracy is both
an expected natural development and a necessary condition
for the future redefinition of time [3–12].
The Sr optical lattice clock at JILA Sr1 employs a shallow

one-dimensional (1D) optical lattice with enhanced atomic
coherence and record low self-synchronous frequency
instability [1]. This 1D lattice is established within an
optical cavity oriented along the direction of gravity.
Since neighboring sites are detuned by the gravitational
potential energy difference, ultracold atoms confined in the
lattice are described byWannier-Stark (WS) wave functions
[13]. Important ingredients for such significant progress in
clock precision include cooling a large yet dilute sample of
fermionic 87Sr atoms to below 100 nK, well-characterized
motional states, microscopic imaging spectroscopy, long
atomic coherence time (> 30 s), and the precise control of
atomic interaction effects. Further, at low lattice depths
atom-atom interactions aremodified, effectively eliminating
density-dependent frequency shifts [14]. Thus, a shallow,
partially delocalized, WS optical lattice clock contains ideal
characteristics for next generation timekeeping.
While the spectroscopy lattice depth is far lower than

previous clocks, the light shift associated with the lattice
trapping light remains a key systematic. In this Letter, we
report a detailed investigation of clock operation under engi-
neered motional states within this titled lattice [Fig. 1(a)].
We provide a detailed study of lattice light shifts for lattice
frequency, atomic motional states, and lattice depths near
zero. In addition to reducing the total uncertainty of the
lattice light shift down to 3.5 × 10−19 fractional frequency,
we also report measurements of the light shift coefficients
associated with the electric quadrupole (E2), magnetic
dipole (M1) moments, and the hyperpolarizability.
Lattice light shift model.—Before we set out to perform

systematic measurements of the lattice light shift, we take

important steps to reduce systematic effects. The cavity-
based lattice establishes a stable and well-defined light
mode and intensity calibrated directly to the trap depth. The
density related frequency shift is reduced and precisely
measured to remove the atomic interaction effects when the
lattice depth is varied. The motional state and related
transverse temperature are monitored with an independent
probe, which is important for measuring the contribution
from the E2-M1 term.
The lattice light shift model is proposed for a lattice

without considering the tunneling effect [16–18]. Since the
gravitational tilt of the lattice is small compared to the band
gap, the model is valid with WS states [19]. Here, we vary
the lattice trap depth ranging from the WS regime to the
more traditional isolated lattice configuration to explore the
light shift effects.
The lattice light shift of the clock transition ΔνLS can be

expressed as a function of three control parameters: the
lattice depth u, lattice frequency νL, and the axial state
quantum number nz. Following the convention established
in Refs. [16,17], the lattice light shift can be written as

hΔνLSðu; δL; nzÞ ≈
�
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The transverse motional effect is accounted for with the use
of an effective depth, uj ¼ ð1þ jkBTr=u0ErÞ−1uj0, where
kB is the Boltzmann constant, Tr the radial temperature
measured by transverse Doppler spectroscopy [Fig. 1(d)],
u0 ¼ U0=Er is the peak lattice depth, and the superscript j
represents the thermally averaged jth power of the lattice
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depth [18]. Er ¼ h2=2mλ2L, wherem is the mass of 87Sr and
λL ¼ c=νL the lattice wavelength, h is the Planck constant,
with c the speed of light. δL ¼ νL − νE1 is the detuning
from E1 magic frequency (νE1), including both the differ-
ential scalar shift and an experiment-specific differential
tensor shift.
There are four dependent coefficients to be character-

ized, including νE1. ∂α̃E1=∂ν is the frequency derivative of
the differential electric dipole (E1) polarizability between
j1S0; mF ¼ � 5

2
i and j3P0; mF ¼ � 3

2
i near νE1. This term

includes both the scalar and tensor contributions, while the

vector contribution is canceled by clock interrogation of
opposite signmF states. α̃qm=h is the differential multipolar
polarizability in units of hertz, and β̃=h is the differential
hyperpolarizability in units of hertz. The variation of nz is
critical for enhancing the sensitivity to α̃qm=h, because
different wave function extensions of jnz ¼ 1i and jnz ¼ 0i
[Fig. 1(b)] vary the weighting factor between E1 (maxi-
mum at the lattice antinode) and E2-M1 (maximum at
the node).
We systematically explore Eq. (1) by measuring the

frequency difference between two control parameter sets.
We vary the lattice depth from 3Er to 300Er, δL over
�200 MHz, and nz ¼ 0 and 1. When we modulate u and
δL, the reference is chosen to be at the magic lattice depth to
suppress the systematic error from collisional shifts [14].
We do not investigate the separation of tensor and scalar
polarizability because they are integrated into ∂α̃E1=∂ν.
Clock in tilted, shallow lattice.—Our 1D 87Sr optical

lattice clock is detailed in previous publications [1,14]. We
prepare stretched states (mF ¼ � 9

2
) spin-polarized ensem-

bles in a single motional ground state axially and Tr ∼
700 nK radially at U0 ¼ 300Er. The lattice intensity is
adiabatically ramped to a range of depths and Tr is
confirmed to vary from 700 to 60 nK. The atom number
is about 105 for ðu; νLÞ dependence measurement and
2 × 104 for nz dependence measurement. Figure 1(c)
presents a spectroscopic characterization of the motional
state distribution of the atoms. After the preparation, we
lower the lattice depth to the desired level and transfer the
spin states with a series of clock π pulses together with
cleaning pulses. In all cases, we use the magnetically
insensitive j1S0; mF ¼ � 5

2
i → j3P0; mF ¼ � 3

2
i transition.

For axial state control, a clock pulse resonant to the blue
sideband [shown in Fig. 1(a)] drives jnz ¼ 0i → jnz ¼ 1i at
U0 ¼ 22Er. Transfer efficiency is about 15%–20% and
results in aTr reduction of 40% [see Fig. 1(d)]. Nevertheless,
this temperature difference is negligible due to the low
temperature and the proximity to the E1 magic frequency.
We use a cryogenic-silicon-cavity-stabilized laser to

drive the clock transition [20,21]. Two interleaved atomic
servos at two different conditions ðu; δL; nzÞ track the clock
resonance and continuously average the differential fre-
quency shift [22]. With a cavity stability of 4 × 10−17, the
Dick effect limited self-comparison stability is about
2 × 10−16 at 1 s with 380 ms Rabi pulse and about 1 s
duty cycle. We determine the frequency shift by averaging
collected frequency differences and assign 1σ statistical
uncertainty from a fit to the overlapping Allan deviation
taken at 1=3 of the total measurement time τ. In all cases,
density shift corrected Allan deviations of the frequency
difference follow the expected white frequency noise trend
of 1=

ffiffiffi
τ

p
. Typical uncertainties are less than 3 × 10−18 for

ðu; δLÞ modulation and about 5 × 10−18 for nz modulation.
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FIG. 1. (a) Schematics of the 1D optical lattice system. Gravity
g lifts the energy degeneracy between adjacent lattice sites by
mgλL=2. The clock carrier transition drives only 1S0 − 3P0

without changing the axial quantum number nz and is used to
probe lattice light shift. For the axial state control, we use the blue
sideband (BSB) to drive jnz ¼ 0i to jnz ¼ 1i. WS� i denotes
a transition to an i-site-shifted Wannier-Stark (WS) state.
(b) Eigenstates of nz¼0 (blue) and nz ¼ 1 (red) at U0 ¼ 15Er.
The offset of the wave function corresponds to eigenenergy of the
lattice potential. (c),(d) Characterization of the motional states.
(c) The left-hand (right-hand) panel shows the axial sideband
spectrum of jnz ¼ 0i (jnz ¼ 1i). ρee is the excitation fraction. We
adiabatically ramp U0 to 10Er, which supports only two axial
states. Sidebands close to the carrier are WS� i transitions.
(d) The left-hand panel shows Rabi spectra of the two axial states.
In the middle, we enlarge the motional sideband and plot with the
theoretical line shape [15] taking into account WS� i sidebands.
The right-hand panel shows the Doppler broadening to extract Tr.
For jnz ¼ 0i, Tr is 500 nK. For jnz ¼ 1i, Tr is 40% lower, likely
due to the limited transfer efficiency and reduced trapping
potential.
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We apply a 70 μT bias magnetic field during the clock
interrogation. The direction is parallel to the polarization of
the lattice laser to minimize sensitivity to the polarization
fluctuation [23,24]. The vector shift and the field fluctua-
tions are corrected as we interrogate two opposite spins of
the atoms. After the clock interrogation, we ramp the lattice
up to 300Er and measure the excitation fraction with a
standard shelving technique. The camera readout provides
a high-resolution spatial distribution of the density and
excitation fraction. With this information, we correct the
density shift shot by shot [14], providing a robust rejection
of systematics related to the atomic density fluctuation.
To establish the lattice, we seed the in-vacuum cavity

with an injection-seeded diode laser (< 500 mW) to reach
a lattice depth up to 300Er with the waist w0 of 260 μm. A
volume Bragg grating with 50 GHz bandwidth and the
optical cavity finesse of 1000 greatly suppress the broad
spectral background of the diode laser [25]. With the lattice
laser frequency locked to a cavity resonance, the cavity
itself is stabilized to an absolute frequency-stabilized
optical frequency comb. For lattice frequency modulation,
we vary a comb-lock offset frequency so the cavity
continuously follows the laser during the sample prepara-
tion before the last cooling stage. This scheme allows us to
change the lattice frequency by �200 MHz within 200 ms,
suitable for interleaved self-comparison.
Rabi excitation of Wannier-Stark states.—Under-

standing atom-laser interaction at the shallow lattice depth
is essential for the light shift evaluation. The tunneling rate
between the lattice sites is exponentially sensitive to u.
Hence, for small u, the extent of the delocalized atomic
wave function can be larger than the clock laser wavelength
[Fig. 1(b)], resulting in a breakdown of the Lamb-Dicke
regime and a dramatic reduction of the clock drive Rabi
frequency. We note that the long atom-light coherence is
critically important here as it ensures a resolved sideband
regime for spectroscopy. A time-domain Rabi oscillation
signal is fit with a decayed sinusoidal curve to extract the
Rabi frequency [19]. Relative Rabi frequencies of the
carrier and three site-changing transitions (WSþ i) are
shown in Fig. 2 for the nz ¼ 0 and nz ¼ 1 motional states.
Solid lines are numerically calculated Rabi frequencies
fitted to the data with two fitting parameters: the cavity-
transmitted light intensity conversion factor to lattice depth
and an overall normalization factor for Rabi frequency. We
calibrate the peak lattice depth U0 based on this fit, and the
uncertainty is 0.1ð0.6ÞEr at U0 ¼ 0ð300ÞEr.
The increased sensitivity of the Rabi frequency on the

lattice depth is reflected in its radial variation. Conse-
quently, coupling to the second order radial sidebands
becomes more pronounced, especially for jnz ¼ 1i. See
Supplemental Material for the details [19].
Deviation from the stationary state.—At very low lattice

depths (≤ 6Er), stationary Wannier-Stark states may no
longer be supported, as evidenced by the increasingly large
effective tunneling rate in Fig. S8 of Supplemental Material

[19]. We observe a deviation of the measured data from the
lattice light shift model, with a rapid deterioration of the
model fit if we include increasingly low lattice depth
data [19].
This deviation depends on the lattice depth U and is

insensitive to δL. We vary other experimental conditions
such as π-pulse duration, changing the initial state to 3P0,
and the bias field strength, with no effect on the deviation at
the lowest trap depths. Therefore, we conclude that it is not
from the lattice light shift. We compare two π-pulse
durations that differ by factor 3 and observe no difference,
suggesting the line pulling effect from the Bloch oscillation
or the superposition of different WS states do not contribute
to the deviation.
To add experimental evidence to the underlying mecha-

nism of this deviation, we compare the clock frequency
between the upward and downward propagation direction
under otherwise the same condition [19]. We find that the
frequency deviation from the model using the oppo-
site clock laser propagation has the same magnitude and

FIG. 2. Rabi frequency for the carrier and WSþ i transitions.
Measured Rabi frequencies are normalized to the maximum
value. The upper (lower) panel shows WSþ i transitions of
jnz ¼ 0i (jnz ¼ 1i). The error bars indicate 1 standard deviation
from the fitting. Solid lines are theory calculations. The lattice
depth U0 is fit to these data for the calibration. As we reduce U0,
atoms are delocalized and their coupling to the clock laser drive is
reduced significantly.

TABLE I. Summary of the light shift characterization. We per-
form a single fit to the data including both Figs. 3 and 4 to extract
the coefficients. For an operational condition [u ¼ 10ð0.2Þ,
δL ¼ 0ð0.1Þ MHz, nz ¼ 0ð0.03Þ], the uncertainty of the lattice
light shift is 3.5 × 10−19.

Quantity Value

∂να̃
E1=h 1.859ð5Þ × 10−11

νE1 (MHz) 368 554 825.9(4)
α̃qm=h (mHz) −1.24ð5Þ
β̃=h (μHz) −0.51ð4Þ
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opposite sign. Based on these observations, we exclude
data where U0 < 8Er for ðu; δLÞ modulation and U0 <
30Er for nz modulation from the fit.
Lattice light shift evaluation.—We explore Eq. (1) in a

self-contained manner with all three control parameters
ðu; δL; nzÞ and extract all the coefficients simultaneously.
The results are summarized in Table I. The residual
variance (reduced χ2) of the fit is 1.3. The overall
uncertainty includes inflation by the square root of the
reduced χ2 and other systematic uncertainties from Tr. For
an operational condition [u ¼ 10ð0.2Þ, δL ¼ 0ð0.1Þ MHz,
nz ¼ 0ð0.03Þ], the uncertainty of the lattice light shift
is 3.5 × 10−19.
Figure 3 displays the light shift measurement investigat-

ing the dependence on u and δL. For this plot, only the
carrier transition for jnz ¼ 0i is employed. By choosing the
reference condition near the magic lattice depth (10Er)
where the atomic density effect is suppressed [1,14], we
establish a reference frequency with minimal potential
systematic effects.
Figure 4 shows nz dependent light shift. For this part of

the data, we keep the other control parameters ðu; δLÞ the
same. We determine α̃qm ¼ −1.24ð5Þ mHz. This value is
close to recent measurements in deep lattices [16,26]. A
difference from Refs. [16,26] is that we use magnetic field
insensitive spin states and microscopically determined nz-
dependent density shift coefficients (∼20% difference
between nz ¼ 0, 1) to suppress systematics [1,14]. While
theory predictions still have disagreements [17,27–30], we
became aware of a new theoretical calculation of α̃qm [31]
that is in agreement with experimental observations. The
measured β̃ has a negligible contribution from the coupling
of vector and tensor polarizability [24], and it agrees with
the previous measurements [6,16,23,27,32].
Conclusion.—With precise control of the motional states

in a Wannier-Stark optical lattice, we show that an
important systematic effect, the lattice light shift, is
measured and controlled at the 3.5 × 10−19 uncertainty.
This result is unique in that the light shift model is tested for
very shallow lattices. This is important for achieving high
accuracy optical lattice clocks for the future definition of
the SI second.
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FIG. 3. Lattice depth (U0) and detuning (δL) dependent light
shift. Different markers represent different δL from the fit. For
visualization, we offset the reference condition of each data point
using the global fitting result. The inset (enlargement) empha-
sizes a nonlinearity near the zero depth. The solid lines fit the
model Eq. (1). The fitting result is summarized in Table I. We
excluded data for < 8Er (see text for the details). The error bars
show the 1σ of statistical uncertainties. The shift uncertainty is
calculated at 1=3 total measurement time using a 1=

ffiffiffi
τ

p
fit to the

overlapping Allan deviation, and the depth uncertainties are from
the lattice depth calibration.

FIG. 4. Axial state dependent light shift, ΔνLSðu; δL; nz ¼ 1Þ−
ΔνLSðu; δL; nz ¼ 0Þ, where δL < 1 MHz. We plot nz modulated
part of the dataset with good sensitivity to the multipolar
polarizability α̃qm. The solid line is fitting to the model
Eq. (1) and the shades show 1σ deviation of α̃qm. Data points
with U0 < 30Er are excluded from the fit (see text for the
details). The shift uncertainty is calculated at 1=3 total measure-
ment time using a 1=

ffiffiffi
τ

p
fit to the overlapping Allan deviation.
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