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Harlow, Jennifer Wightman (Ph.D., Physics)

Microwave Electromechanics: Measuring and Manipulating the Quantum State of a Macroscopic

Mechanical Oscillator

Thesis directed by Prof. Konrad W. Lehnert

In the past several years, the field of optomechanics has progressed from proof-of-principle
experiments to the realization of mechanical oscillators and measurements in the quantum regime.
Mechanical oscillators are of great interest because they can have small dissipation rates, can
couple to many different systems of interest, and are the fundamental elements of ultrasensitive
force detectors. Coupling these mechanical oscillators to microwave or optical fields provides a two-
fold advantage. Firstly, information about mechanical position can be encoded in the interrogating
field, enabling sensitive readout of the mechanical oscillator. Secondly, the radiation pressure
force of that field can be used to control the state of the mechanical oscillator. Including a high-
quality microwave or optical cavity enhances both of these effects, as the field strength is resonantly
increased.

The major questions in the field of optomechanics in the last several years have dealt with
using mechanical oscillators for ultrasensitive measurements and as tools for quantum information.
Both of these goals have the prerequisite that we be able to read out the motion of the mechanical
oscillator in a quantum efficient manner. To that end, we developed a nearly shot-noise limited
microwave interferometer capable of measuring mechanical motion with an imprecision below that
at the standard quantum limit. This achievement is not only a critical improvement for the elec-
tromechanical experiments we do, but is also an important tool for any experiment that encodes
the information of interest in microwave fields. In order to use mechanical oscillators as tools
for quantum information, the mechanical oscillator must also be cooled into the quantum regime
and fully controllable by the interrogating fields. To this end, we used the radiation pressure of

microwave fields to cool our macroscopic mechanical oscillator to less than one phonon. We also



iv
demonstrated coherent transfer between itinerant microwave states and the mechanical oscillator,
even for incident fields with less than one photon of energy.

These accomplishments have set the foundation for further experiments to extend the quan-
tum information abilities of optomechanical systems, couple diverse quantum systems via a mechan-
ical intermediary, and potentially explore the foundations of quantum mechanics at macroscopic

scales.
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Chapter 1

Introduction to optomechanics

The field of optomechanics is currently a very popular and fast-progressing area of physics
for a variety of reasons from ultrasensitive measurement applications to quantum information pro-
cessing to tests of quantum theory at macroscopic scales. The field encompasses a wide range
of experiments using electromagnetic fields at gigahertz to terahertz frequencies and mechanical
oscillators' with attogram to kilogram masses. The wide extent of this interest stems from the
very simple yet versatile basis for an optomechanical system; namely, a mechanical oscillator cou-
pled to an electromagnetic field. This coupling provides two main functions. The first is that the
electromagnetic field can be used to interrogate the mechanical oscillator, picking up information
about the mechanical position. The second is that the radiation pressure force of that field on the
mechanical oscillator can be used to control the mechanical oscillator. In this introductory chapter,
I will focus on these two universal features of optomechanical systems and provide examples of
experiments that utilize and explore them. Note that the term ‘optomechanics’ is usually used to
describe experiments employing macroscopic mechanical oscillators (collective motional modes of
many atoms). These experiments are close analogs of cold ion experiments that demonstrate con-
trol over the motion of a single trapped ion. Another resource for learning about optomechanical
systems, the effects they exhibit, and all of the experimental groups investigating these effects is a

recent review paper [1].

! Note that throughout this dissertation, I use the word ‘oscillator’ in the sense of a simple harmonic oscillator, not
an electronic oscillator. This use allows more clarity in distinguishing the mechanical element from the electromagnetic
cavity or ‘resonator’. In the few instances where the mechanical element is able to generate its own oscillations, I call
these ‘self-oscillations’.



1.1 Optomechanical systems as ultrasensitive detectors of motion

Modern measurement tools frequently employ electromagnetic fields (at either optical or
electrical frequencies), as those fields allow for fast, non-invasive, measurement of systems. Ad-
ditionally, interferometric techniques enable very sensitive detection of small phase shifts in these
fields due to a system of interest. However, electromagnetic fields are limited in their ability to
sensitively read out certain quantities of interest because they cannot image with subwavelength
resolution and they couple poorly to some systems of interest, such as sound waves or gravitational
waves. In contrast, mechanical oscillators are capable of probing very small scales and can uni-
versally couple to all forces, and thus many different systems of interest. This makes them very
good intermediaries for measurement, as the mechanical oscillator can interact with the system of
interest and then be read-out very sensitively by its interactions with an electromagnetic field.

The basic optomechanical (or electromechanical) system consists of a mechanical oscillator
coupled to an optical (or electrical) field. As an example, consider an optical field bouncing off
of a mirror attached to a mechanical oscillator (Figure 1.1(a)). The phase of the reflected wave
is very sensitive to the mechanical displacement; thus, a sensitive readout of the reflected phase
allows sensitive inference of the mechanical position. This interaction, and thus the sensitivity of
readout, can be enhanced by coupling the mechanical motion to a high-Q electromagnetic resonance,
increasing the strength of the interacting field. This situation is shown in Figure 1.1(b), where a
fixed, partially transparent mirror is placed a distance [ away from the mechanically compliant,
reflective mirror. These mirrors form a resonant cavity such that interrogating optical fields at
frequencies near the cavity resonance cause both a more intense field within the cavity as well
as an enhanced phase shift of the outgoing field. We often break this down into two steps: the
mechanical displacement changes the length, and therefore the resonant frequency of the cavity,
and then the resonant frequency change imparts a phase shift onto the outgoing field. This allows
us to extend the ideas from this basic model of cavity optomechanics to any system where the

resonant frequency of a resonant structure is coupled to the motion of a mechanical oscillator. In



Figure 1.1: Mechanical motion can be inferred from the phase shift of interrogating electromagnetic
fields. (a) An incoming light field (rightgoing, blue) reflects off of a perfect mirror (black), attached
to a mechanical oscillator with mass m and spring constant k (green). The phase of the outgoing
light field (leftgoing, red) depends on the position of the mechanical oscillator. Shown are the
outgoing field reflected from the mirror for two displacements separated by dx (shown as solid or
dashed mirrors and fields). (b) Adding a partially reflective mirror (gray) creates a resonant cavity
of length [. Again, the steady-state rightgoing (blue) and leftgoing (red) fields are shown for the
two positions of the mechanical oscillator. For interrogating fields near resonance, the field inside
the cavity is intensified and the phase shift from displacement dz is enhanced. (c) An analogous
system can be made in the microwave frequency regime by replacing the partially reflective mirror
by a coupling capacitor C., the perfectly reflecting mirror by a boundary condition (short or open),
and the freely propagating optical fields by transmission lines or more generally any resonant LC
circuit with a resonant frequency that is modulated by mechanical motion.

particular, our research focuses on an electromechanical system where mechanical motion changes
the capacitance, and therefore resonant frequency, of an L.C resonant circuit, once again imparting
a phase shift on the outgoing electrical fields (Figure 1.1(c)).

Many optomechanical experiments rely on either the canonical optical setup of a Fabry-Perot
resonator with a movable mirror [2, 3, 4, 5, (] or the canonical electrical setup of a mechanically
variable capacitance [7, 8, 9, 10, 11, 12, 13, 14, 15 16]. However, these are not the only ways to
realize coupling of mechanical motion to the resonant frequency of an electromagnetic resonant
structure. A few examples of optomechanical systems that employ novel coupling mechanisms
are shown in Figure 1.2. Figure 1.2(a) depicts a microtoroid resonator that supports whispering
gallery optical modes around its circumference. Mechanical motion of the toroid can change this

circumference, thereby changing the resonant frequency for the circular modes [17, 18]. Figure
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Figure 1.2: Novel optomechanical coupling schemes. Shown for each example are the mechanical
element (green) and right and left traveling optical modes (red and blue). (a) A microtoroid’s
mechanical motion modifies the circumference for whispering-gallery optical modes. (b) A dielectric
harmonic oscillator dispersively couples to an optical cavity mode. (c) A photonic crystal patterned
mechanical beam supports both mechanical and optical modes.

1.2(b) shows a dielectric material confined to a harmonic well and placed in the middle of a rigid
optical cavity. This dielectric material couples to the cavity resonance frequency in analogy to
dispersive coupling in atomic systems. The dielectric object can be made out of a thin membrane
[19, 20, 21], a nanoparticle [22], or even the center of mass motion of an atomic cloud [23, 241, 25].
Figure 1.2(c) shows a mechanical beam that has been patterned with a photonic crystal structure,

allowing photonic and phononic modes to exist and couple in a single structure [20].

1.1.1 Examples of optomechanical systems as ultrasensitive detectors

While the field of optomechanics has recently exploded with many different schemes to opti-
mize sensitive detection and control, the central idea of coupling electromagnetic fields to a mechan-
ical oscillator for ultrasensitive measurement is not new. In fact, Henry Cavendish’s experiment
in 1798 to detect the density of the earth could be argued to be optomechanical in nature (see
Figure 1.3 and reference [27]). Cavendish’s experiment measured the angular displacements of two
small masses hung from a torsional pendulum due to the presence of two larger, fixed masses. As
the entire experiment was enclosed in a thick wooden box to isolate it from wind and temperature
gradients, Cavendish read out the displacement of the masses by illuminating the masses with a
lamp and then observing the result with a telescope. In this way, he used mechanical oscillators to

convert gravitational forces to optically detectable information.
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Figure 1.3: Schematic of Cavendish’s experiment to determine the density of the earth, adapted
from [27]. (a) Two small masses (which I have false colored red) are free to rotate on a torsional
pendulum (yellow). Angular displacements due to their gravitational interaction with two heavier,
fixed masses (blue) are read out via light from a lamp (orange) and detected by a telescope (green).
The density of the earth was determined by comparing these measurements with measurements
of the weights of the masses and the torsional force of the pendulum wire. (b) Closer view of
the optomechanical readout mechanism. I have included an illustration of the incident (blue) and
reflected (red) light.
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Figure 1.4: Soviet surveillance using optomechanics. (a) Henry Cabot Lodge, Jr., US ambassador
to the United Nations, reveals the Great Seal bug to the UN. Image from [28]. (b) Illustration
of the surveillance device contained within the Great Seal. Image adapted from [29] and included
with permission from Dorling Kindersley.



Another early optomechanical device was cleverly employed as a surveillance bug by the
USSR during the cold war. In 1946, the United States ambassador in Moscow received a two-foot
wooden replica of the Great Seal of the United States as a gift from the Soviets (see Figure 1.4 and
a much more complete historical description at reference [30]). What the US ambassador did not
know was that the seal was outfitted with a bug designed to allow eavesdropping by Soviets located
outside of the building. The bug (illustrated in Figure 1.4(b)) consisted of a diaphragm attached to
a resonant cavity. When sound waves hit the diaphragm, they changed the resonant frequency of
the cavity and also the charge on an attached antenna. Radio waves were reflected off the antenna
from a van parked outside the embassy building. Demodulation of these waves allowed access to
information about sounds in the ambassador’s office. This device was particularly clever because
it was passive and therefore could be entirely contained in the Great Seal with far less chance of
discovery than an active bug. In fact, it took the US six years to eventually find the device.

The Cavendish experiment and the Great Seal bug are surely some of the first uses of op-
tomechanical devices for ultrasensitive measurement. However, neither of these examples really
required sensitivities approaching the fundamental limits of detection. It was instead the search for
gravitational waves that brought cavity optomechanics and ultrasensitive interferometric detection
together with the goal of understanding and approaching the ultimate sensitivity. The goal of grav-
itational wave detection is to observe a propagating curvature of spacetime by determining very
small changes in lengths. Two main schemes, one electromechanical and one optomechanical, for
detecting such small changes are described and analyzed in detail in a 1978 paper by Braginsky [31].
The first, which had already been experimentally attempted at the time, involved using a Weber
antenna or bar. This device was a long cylinder that would support vibrations upon interaction
with a gravitational wave. These vibrations could then be amplified and read out via an electric
circuit (see Figure 1.5(a)). Since the initial proposals, Weber antenna experiments for gravita-
tional wave detection have made vast improvements [7] and are still being carried out by multiple
groups [9, 11]. The second scheme proposed by Braginsky, which at the time was still in the early

stages experimentally, involved using a Michaelson optical interferometer to detect differences in the
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Figure 1.5: Optomechanical systems as ultrasensitive gravitational wave detectors. (a) Electromag-
netic readout scheme for measuring vibrations of a Weber bar due to interaction with a gravitational
wave. The Weber bar is modeled as two masses m on a spring, separated by a distance [ and is
coupled to a driven LC circuit. Image from [31]. (b) Interferometric scheme proposed for measuring
differential perpendicular displacements of two masses m. Also from [31]. (c-d) Photograph (from
[32]) and schematic (from [2]) of LIGO, demonstrating the realization of large-scale optomechanical
experiments for detecting gravitational waves. Images included with permission from LIGO and
Elsevier.

lengths of two perpendicular arms (see Figure 1.5(b)). This idea of an ultrasensitive interferometric
detection of mechanical motion has evolved from its primarily theoretical foundation in 1978 to a
very large experimental collaboration, the Laser Interferometer Gravitational Wave Observatory
(shown in Figures 1.5(c-d)). Additionally, the long-term interest in optomechanical detection by
the gravitational wave community is responsible for much of the foundational theoretic work upon

which the field of optomechanics is built.



There are also two, more recently conceived, experiments that use optomechanical coupling
for applications requiring extremely sensitive measurement at small length scales. The first, atomic
force microscopy (AFM) is a widely-used technique for imaging surfaces with nanoscale resolution
(Figure 1.6(a)). AFM employs a very sharp tip attached to the end of a cantilever (essentially a
diving board mechanical oscillator) that can interact with a very small surface area of the sample
of interest. Surface forces on the tip are translated into deflections of the cantilever, which can then
be read out by an optical field reflected off of the cantilever. The use of the mechanical oscillator
as an intermediary allows spatial measurement resolution on scales far smaller than what could
be achieved by interrogating the sample directly with an optical field. The second ultrasensitive-
measurement application aided by the use of an optomechanical system is magnetic resonance force
microscopy (MRFM). MRFM is similar to AFM, except that the force of interest is not the normal
force between the cantilever tip and the sample, but rather the magnetic dipole force between

nuclear spins in the sample and a nearby magnetic particle (Figure 1.6(b)). MRFM is also different

(b) ©2009 by The National Ultrasensitive
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Figure 1.6: Applications of optomechanical systems for ultrasensitive detection on small length
scales. (a) Artistic rendering of an AFM. A sharp tip attached to a cantilever (both white) interacts
with the sample surface (blue). The force imparted on the tip causes displacements of the cantilever,
which can be read-out by a reflected optical field. Image from [33], and included with permission
from JILA. (b) Artistic rendering of an MRFM experiment. Forces between a magnetic tip and
the nuclear spins in the sample cause displacements of a cantilever, which can again be read-out
with a reflected optical field. MRFM allows a three dimensional image of the sample by using an
external magnetic field to control the position of a resonantly sensitive slice of space (in a similar
scheme to NMR). Image from [5] and included with permission from D. Rugar.



from AFM in that the obtainable information is not limited to the surface of the sample. It uses
the techniques of nuclear magnetic resonance (NMR) imaging to obtain a three dimensional image
of the sample. So far, the best force sensitivity achieved by an optomechanical system used for
MRFM was S}/If — 0.82 aN/Hz!/2, as was demonstrated with a 5 kHz mechanical cantilever [34].
The ultimate goal of MRFM is to reach sensitivities good enough to detect single nuclear dipoles
with forces on order 10 fN. This realization would be particularly exciting, as groundbreaking

applications for three dimensional images of nanostructures such as molecules and proteins are

abundant. Cold ion systems have also produced exceptionally good force sensitivities, reaching

S;/]z = 390 yN/Hz'/? [35] and are proposed as ultrasensitive detectors of electric and magnetic
fields [36]; however, it may be more difficult to integrate these systems with samples of interest for

applications like MRFM.

1.2 Mechanical control by dynamical radiation pressure forces

At the beginning of this chapter, I emphasized that there were two functions that an optome-
chanical coupling provides. The first, which was introduced in the first section of this chapter, was
ultrasensitive measurement of the mechanical position through a phase shift in the interrogating
electromagnetic field. The second function is the ability to control the mechanical oscillator using
the radiation pressure force from the electromagnetic field. The basic idea behind radiation pres-
sure forces is simple to understand. If a continuous electromagnetic wave with power P is perfectly
reflected from a surface (I assume the surface is moving at speed much less than c¢), then the force
on that surface will be F' = dp/dt = (2/c)dE/dt = 2P/c. The idea that we can use this radiation
pressure force of photons to control a mechanical oscillator is also easy to understand if you have
ever pushed someone on a swing. If you apply a force to the person on the swing once per oscillation
as they are moving away from you, as you typically do when pushing a swing, you amplify their
motion. If you instead decide to apply a force to the person on the swing once per oscillation as
they are moving toward you, you deamplify their motion. Thus, the phase with which the radiation

pressure force acts can cause either damping or amplification of harmonic motion.
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Ideas about and observations of radiation pressure forces have a long history. Initial theoretic
understanding of radiation pressure and observations of its effect on comets go back to Kepler and
Maxwell. The tails of comets (as seen in Figure 1.7(a)), which are made of gas and dust debris from
the comet nucleus, are observed to always point away from the sun due to forces from solar radiation
pressure and solar wind [39]. Along with these observations came the idea of using radiation pressure
forces to propel a spacecraft, known as a solar sail. Until recently, such solar sails were limited
to theory and science fiction; however, in 2010 the Japan Aerospace Exploration Agency (JAXA)
launched and successfully demonstrated solar sailing with the Interplanetary Kite-craft Accelerated
by Radiation of the Sun (IKAROS). In 2011, NASA also launched and demonstrated a solar sail
called NanoSail-D [10]. To give some sense of the scale of forces involved, the solar radiation
pressure force on IKAROS (which is predominantly reflecting and has surface area 200 m?) when
it was near Venus (0.73 AU from the sun) is approximately Fy, = 3 mN. By contrast, the solar
radiation pressure force on Halley’s comet (which is predominantly absorbing and has diameter 10
km) at its closest distance to the sun (0.6 AU) is approximately Fy, = 1 kN. However, if we instead
look at the accelerations (to account for the different scales of mass), we would find a = 10 ym/s?

for IKAROS and a = 5 pm/s? for Halley’s Comet. Forces due to solar wind also effect these objects,

©2009 JAXA

Figure 1.7: Images of radiation pressure in space. (a) Image of Halley’s comet displaying a long
tail, from [37]. (b) Image of the IKAROS solar sail from [38].
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sometimes in much more complicated ways [11]. However, the absolute magnitude of the solar wind
force on IKAROS, for example, is Fis, = 1 uN, a quantity negligible compared with the radiation
pressure force.

The first quantitative measurement of the radiation pressure force was done in 1901 by E. F.
Nichols and G. F. Hull, using a so-called Nichols radiometer [12]. This experiment was similar to
Cavendish’s experiment described earlier in that it used a torsional pendulum to measure the force
and the rotation was read out from outside an enclosure using telescopes aimed at the pendulum.
The apparatus is shown in Figure 1.8 and consists of a hanging wire with two surfaces, one reflecting
and one absorbing. By shining light on these surfaces, the angle of rotation of the pendulum provides
a measure of the differential radiation pressure force on the two surfaces.

More recently, radiation pressure forces have been used to manipulate systems of interest.

Most notably, radiation pressure damping is the mechanism behind atomic cooling, which was

b
=
10 cm
pendulum
{
vacuum chamber
Figure 1.8: Nichols radiometer, adapted from [12]. The inset shows the torsional pendulum that

rotates about the axis defined by a and b, from which hangs one reflecting surface (I false colored
this red) and one absorbing surface (colored purple). The main figure shows the entire experimental
apparatus viewed from above. The pendulum hangs from the center of a vacuum enclosure. Light

(yellow) shines onto the pendulum, exerting a force on both surfaces. The light is aligned and the
rotation of the pendulum is read out using telescopes (green).
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first demonstrated in 1978 [13] and is a frequently-used tool of atomic physics. This same radiation
pressure force applied to optomechanical experiments leads to all of the same effects and is described
extensively throughout this dissertation.

In order to think about radiation pressure forces in a cavity optomechanical context, we return
to the system model in Figure 1.1(b). The optical resonator is a Fabry-Perot cavity made of one
partially reflecting mirror and one fully reflecting mirror, separated by distance [. This structure
resonates at frequency w. = mc/l and has a total loss rate x associated with internal losses as well
as coupling to the itinerant optical modes through the partially reflecting mirror. The amount
of energy stored in the cavity can be quantified in terms of number of photons n. = E/(hw.).
The fully reflecting mirror is mechanically compliant, with mass m and spring constant k. The
resonance frequency of this mechanical oscillator is 2, = \/% and the loss rate is I'y,. The
energy of the mechanical mode can be quantified in terms of number of phonons ny,, = E/(hQy,).
The combined optical cavity and mechanical oscillator can be understood by looking at an energy
level representation of their state (Figure 1.9). The number of mechanical phonons increases from
left to right, and the number of photons increases by one from the lower to upper row of states.
Any state is separated in energy from the neighboring photon states by hw. and the neighboring
phonon states by Af),,. The linewidth x of the cavity appears by broadening the levels, determining
the bandwidth for resonant processes. Assuming that I'y, is much smaller than all of the other rates
in the problem, it does not play a role in the qualitative understanding of cooling presented here.

Figures 1.9(a,c,e) show a representation of the different frequencies involved in each of three
different cavity drive schemes. Each of these images shows the cavity lineshape with the resonant
frequency w. and linewidth s, as well as the cavity drive (shown as a tall arrow). The resulting
output fields (called sidebands on the drive) are shown as short arrows, with line thickness indicating
intensity. Figures 1.9(b,d,f) show the accompanying energy level diagrams. The straight arrows
show the cavity drives, while the wavy arrows show photons being emitted from the cavity. Only
processes where a mechanical phonon is added or destroyed are shown. In Figures 1.9(a,b), the

cavity drive is applied at the cavity resonance frequency. Two processes are present that add or
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Figure 1.9: Energy level diagrams for different cavity drive choices. For each drive choice, a
frequency diagram and energy level diagram are shown. Field intensities are indicated by arrow
thickness. The three drive choices are (a,b) on-resonant, (c,d) blue-detuned, and (e,f) red-detuned.

destroy phonons. First, an on-resonant photon can be converted to a higher frequency photon by
extracting a phonon of energy from the mechanical oscillator: Awcne + AQmnm + hwe — hwene +
hQm(nm — 1) + A(we + Q). Alternatively, the on-resonant photon can be converted to a lower
frequency, giving up a phonon to the mechanical oscillator: hwene + AQ2mnm + hwe — hwene +
hQm(nm + 1) + h(we — Q). These processes are both equally off-resonant and the sidebands they
produce will therefore be equally filtered by the cavity. The result is that, for a large mechanical
occupation Fock state, no net energy will be added or removed from the mechanical oscillator.
Note that for even a large occupation mechanical state, there will be a significant contribution
from the ground state and the asymmetry of these processes in that case (discussed later in this
introduction) will exert quantum fluctuations that drive the mechanical oscillator. Figures 1.9(c,d)
show the case of a drive detuned above the cavity resonance frequency (blue-detuned) by the
mechanical frequency. This drive is now resonant with the process that down-converts the photon
by giving a phonon to the mechanical oscillator. The other process is highly suppressed by the
cavity response. Therefore, the blue-detuned drive preferentially gives up energy to the mechanical
oscillator, amplifying its motion. Figures 1.9(e,f) show the case of a drive detuned below the cavity

frequency (red-detuned). In this case, the resonant process is the one that up-converts photons by
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extracting energy from the mechanical oscillator. The net effect of this process is thus to cool the
oscillator. The cavity linewidth s and relative positions of the sidebands determine the balance of
the up and down-conversion processes. The preference for processes with sidebands near the cavity
frequency can be attributed to resonant vs. off-resonant energy level transitions, a higher density
of available states near the cavity frequency, or simply suppression of sidebands far off resonance by
the cavity response, but these are all different ways of saying the same thing. For optomechanical
systems in the resolved sideband regime ({2, > &, also sometimes called the ‘good cavity limit’ in
our field), the imbalance between sidebands due to a drive detuned from the cavity frequency by
4+, is large and the off-resonant sidebands can be ignored. However, for optomechanical systems
not in the resolved sideband regime (€, < k, also sometimes called the ‘bad cavity limit’ in
our field), the imbalance is smaller and the off-resonant process can limit the potential cooling or
amplification.

Cooling the mechanical oscillator into its quantum ground state was a long-standing goal
of the optomechanics field, inspired by ground-state cooling of trapped atomic ions [11], as it
is a prerequisite to many interesting experiments involving quantum information and studies of
fundamental quantum theory. Therefore, nearly every recent cavity optomechanical experiment
has demonstrated radiation pressure damping and cooling to some degree or another [7, 8, 45, 19,

, 12,47, 21]. References [18, 19] have used radiation pressure cooling to achieve ground state

mechanical occupation, and will be discussed more fully later in this introduction.

1.3 Quantum measurement and backaction

As measurements of mechanical position using optomechanical systems become more and
more accurate, we might wonder what sets the fundamental physical limits on how sensitive a
measurement is possible. The answer is that the quantum properties of light enforce a Heisenberg
principle between the measurement uncertainty of the mechanical position and the perturbation of
the mechanical momentum. I first describe this uncertainty closely following reference [50], which I

find to be a very good introductory reference on quantum measurement. I then take a look at a few
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of the optomechanics experiments that have been able to see the enforcement of the uncertainty

principle on quantum measurement.

1.3.1 Quantum measurement and the associated Heisenberg uncertainty relations

I consider an example measurement of the position of a free mass m where a wave packet
with a single photon of energy (E = hw) is reflected off of the mass (illustrated in Figure 1.10). The
position of the mass can be inferred by measuring the time ¢ it takes for the photon to leave from and
return to x = 0, such that zy meas = ¢t/2. To understand the uncertainty in this measurement, we
need to consider the both the wave-like and particle-like properties of the photon wavepacket. If the
wave packet has duration 7, then the uncertainty in its frequency is Aw = 1/7 and the uncertainty
in its position (relative to its mean position x,) is Az, = c7/2. These relationships combine
to put a Heisenberg limit on the simultaneous knowledge of the displacement x;, and momentum
pp = hw/c of the photon: Ap,Ax, > h/2. This Heisenberg uncertainty between the simultaneous
photon position and momentum knowledge will then lead to an uncertainty in the mass’ position
AZm meas = At/2 = Az /2 = cr/4. We could therefore imagine simply making the photon wave
packet shorter and shorter in duration to get a more and more accurate measurement. However,
this increase in sensitivity is accompanied by an increasingly strong disturbance back on the mass.

Conservation of momentum py,; +pmi = Pp.f+Pm,t reveals the change in momentum of the mass due

Axp
—
Py
4 Ittt | g
x, x=0 X,

Figure 1.10: Simple scheme for position measurement. A single-photon wavepacket with instan-
taneous position zp, position uncertainty Axzp, and momentum p, = hw/c can be reflected off of
a mass m with displacement z;,, and momentum py,,. The mechanical position can be inferred by
measuring the round trip time for the photon to travel from x = 0, reflect off the mass, and return
tox = 0.
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to the measurement: py, ¢—pmi = (Epi+FEpy)/c = 2hw/c. Here I have assumed that the speed of the
mass is much smaller than ¢. This momentum change of 2iw/c is due to the predictable radiation
pressure described in the previous section. However, an extra unknown momentum perturbation
arises from the uncertainty in w, such that Apy perturb = 27/(c7). This perturbation will grow
for large 7, enforcing a Heisenberg principle on measurement between the measured uncertainty in
the mass’s position and the backaction perturbation on momentum: Azy measAPm perturb > 1/2.
Note that this uncertainty principle is not the same thing as the uncertainty principle that would
limit simultaneous knowledge of a mechanical oscillator’s canonically conjugate quantum variables
(the mass considered here was described as having a definite displacement xy, and position py,, a
completely classical description!) Instead, it is an uncertainty put on quantum measurement as a
consequence of the Heisenberg uncertainty of the photon. Sometimes the backaction is attributed
to the ‘shot noise’ of the photon, but this shot noise is also just the consequence of the photon’s
Heisenberg uncertainty principle. Another thing to note about this interaction is that after the
measurement, the photon frequency uncertainty and the perturbation to the mass’ momentum will
be correlated. Therefore, measurements to demonstrate the presence of a quantum backaction force
on the mass can either focus on directly observing the mass’ extra momentum perturbations or
on measuring correlations between perturbations of the mass’ momentum and the measured light
field.

I will now consider the case where the mass of interest is confined to a harmonic potential, as is
the case for our optomechanics experiments. Now, perturbations of the momentum of the mass will
evolve into perturbations of its position a quarter of an oscillation later. Therefore, many individual
measurements averaged over many oscillations will no longer know about position and momentum
separately, but rather refer to the total motion of the oscillator, which can be quantified by its energy
in terms of phonon number ny, = E/(hQy) = k2?/(2hQm) +p%/(2mAfy,)). There will be a random
contribution to the inference of mechanical motion due to the uncertainty in the measurements,

which we call the imprecision niri?p = AN meas and an uncertainty in the motion due to the extra

ba

backaction fluctuations ny

= AN perturb- The quantities Zm meas and P perturb can be re-written
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in terms of phonon number as nin® = k(AZmeas)?/(27Qm) and nk* = (Apperturd)?/ (2mAh).
The Heisenberg uncertainty product in terms of phonon number is then nimmpng? > 1/16. The
minimum total uncertainty will occur when the contributions from imprecision and backaction are
each equal to 1/4, a point called the standard quantum limit, which will be discussed in more
detail in the theory sections of this dissertation. Reaching this point requires a perfectly quantum
efficient measurement. For a measurement employing a resonant microwave cavity, it makes sense
to express the imprecision and backaction in terms of a cooperativity C (essentially measurement
strength, proportional to the number of interrogating photons per time) rather than the variable 7
above for a single photon. This gives nin® = 1/(16C) and nb» = C.

There are ways to avoid the total uncertainty limit on measurements of both quadratures
of mechanical motion by using clever schemes to access only one quadrature of the motion. Most
of these schemes will not be investigated in this dissertation, but I will address the concept of a
backaction evasion measurement, where the mechanical motion is effectively probed at 2€),,. This
could be viewed as a train of many wave packets like the one above, spaced in time by (20,)~!.
Then the backaction perturbations to momentum will always have returned to the momentum
quadrature before the next measurement, enabling a measurement of position better than that at

the standard quantum limit which introduces no extra position fluctuations due to the backaction

force. Quantum backaction evasion has been investigated theoretically in references [51, 52, 53].

1.3.2 Optomechanics experiments exploring quantum backaction

ba

The backaction motion n.?

imparted on a mechanical oscillator due to the interrogating
electromagnetic field will be observable when that motion is comparable to the thermal motion
of the oscillator nﬁg Therefore, the important parameter for observing backaction motion in an
experiment is n2/nth = C/n'h. There are currently three optomechanics experiments that have
been able to observe quantum backaction by maximizing this quantity [54, 55, 50].

The first optomechanical experiment able to observe quantum backaction was reference [54],

which used the collective motion of an ensemble of trapped atoms as the mechanical oscillator
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coupled to the optical fields within a Fabry-Perot cavity. This experiment relied on minimizing the
thermal motion of the atomic mode by employing simultaneous evaporative cooling of the atomic
cloud, effectively coupling the cloud to a very cold thermal bath. The figure of merit for observing
quantum backaction, C/nfl ~ 1 was then achievable even for relatively small C. More recently, this
group also showed vacuum noise squeezing, another signature of quantum backaction [57].

The second optomechanical experiment to observe quantum backaction [55] employed a thin,
megahertz frequency, dielectric membrane as the mechanical oscillator in the center of an optical
Fabry-Perot resonant cavity. Unlike the cold-atom experiment, the difficulty in experiments with
low-frequency mechanical oscillators is that the thermal mechanical motion is very large. In this
case, it started out at n'' = kpT/(hQy) = 7 x 10%. Therefore, in order to observe quantum
backaction, this experiment had to achieve very high cooperativity C.

The third optomechanical experiment that observed quantum backaction [56] used a mechan-
ically compliant photonic crystal as the optomechanical system. Rather than looking for excess
mechanical motion due to radiation pressure forces, this experiment showed the presence of quan-
tum radiation pressure by observing squeezing of vacuum noise due to correlations between the
optical field fluctuations (shot noise) and the additional motional fluctuations of the mechanical
oscillator.

In addition to the academic quantum measurement interests behind observing quantum back-
action, the quantum limits on measurement may soon become relevant in applications of ultrasensi-
tive measurement. The LIGO collaboration expects for their next generation experiment, advanced
LIGO, to have sensitivity limited by quantum noise fluctuations over most of the frequencies of

interest [53].

1.4 Macroscopic mechanical oscillators near the ground state

Preparing a macroscopic mechanical oscillator in its quantum ground state is a prerequisite for
many interesting experiments for applications in quantum information as well as tests of quantum

mechanics at larger and larger scales. These experiments in optomechanical systems follow in
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the steps of the cold atom/ion community, which initially cooled clouds of atoms in 1978 [59, 13]
and reached the ground state of motion in 1995 [11]. Since then, cold ions have been studied
extensively for use in quantum information applications. Optomechanical systems have similar
potential as tools for quantum information but are also capable of coupling to a more diverse set
of quantum systems. Additionally, macroscopic mechanical oscillators in the quantum regime are

interesting for studies of the intersection between quantum mechanics and gravity.

1.4.1 Achievements of ground state occupancy of macroscopic mechanical oscilla-

tors

The first, and widely attempted, step for optomechanical experiments employing macroscopic
mechanical oscillators was to prepare the mechanical oscillator in its quantum ground state and have
read-out sensitive enough to verify this ground state occupancy. There are now three experiments
that have demonstrated macroscopic mechanical oscillators with occupancy less than one.

The first experiment [13] to demonstrate ground state cooling of a macroscopic mechanical
oscillator uses a piezoelectric material to form the mechanical oscillator such that mechanical motion

is converted to electrical signals of a microwave circuit (Figure 1.11(a)). This experiment is very

Figure 1.11: Macroscopic mechanical oscillators in the ground state. (a) Piezoelectric mechan-
ical oscillator coupled to a superconducting microwave circuit. Image from [13], included with
permission from Nature and A. N. Cleland. (b) Suspended mechanical membrane also coupled
to a superconducting microwave circuit [18]. (c) Simulated optical (above) and mechanical (be-
low) modes designed to be co-localized in a photonic-phononic crystal structure. Image from [19],
included with permission from Nature and O. Painter.
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different from the two that follow in that it employs a gigahertz frequency mechanical oscillator
which, at the 25 mK temperature of this experiment, began with an occupation of less than 0.07
phonons. Therefore, no radiation pressure cooling needed to be used and the main advance over
other systems employing high-frequency mechanical oscillators was the introduction of a coupled
qubit that could sensitively read-out the state of the mechanical oscillator.

The second experiment to achieve ground state cooling [18] was also electromechanical in
nature and used a suspended mechanical membrane as the upper plate of a resonant LC circuit’s
capacitance (Figure 1.11(b)). This mechanical oscillator has a resonant frequency of 10 MHz and
therefore has an occupancy of 40 phonons even at 20 mK. Radiation pressure cooling was used to
reduce the number of phonons from 40 to 0.34. The advantages over other systems of this type that
allowed cooling to the ground state were the realization of superior electromechanical coupling and
the use of a quantum efficient microwave interferometric readout. This details of this device and the
interferometric scheme will be discussed in detail in the experimental sections of this dissertation.

The third experiment to verify mechanical occupancy less than one [19] used a nanobeam
patterned with a periodic structure designed to support localized optical and mechanical modes
that can couple via radiation pressure forces (Figure 1.11(c)). Optical input and output fields
were coupled to this structure via evanescent coupling to a fiber taper. The mechanical resonance
employed in this experiment was also in the gigahertz frequency range, but as this was an optical
experiment, it was only cooled to 20 K, where the mechanical occupancy was about 100. This
experiment used radiation pressure to cool the mechanical mode to 0.85 phonons. These three
experiments represent an exciting first step toward the big goals of optomechanics in both the

microwave and optical regimes.

1.4.2 Quantum effects in macroscopic mechanical oscillators

Cooling a mechanical oscillator to an occupancy less than one hints at the idea that it could
behave quantum mechanically, but does not in itself constitute a measurement of quantum behavior.

In fact, even if the mechanical oscillator behaved completely classically down to zero temperature,
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a measurement of average occupation less than one would be possible. Therefore, measurements of
the intrinsically quantum behavior of such an oscillator are of interest.

Perhaps the simplest indication of quantum behavior is an asymmetry of the measured me-
chanical sidebands. This effect can be understood by returning to the energy level diagrams used
earlier in this chapter (Figure 1.12). If the optomechanical cavity is driven on resonance and the
mechanical oscillator is not in its ground state (Figure 1.12(a)), the processes for adding and re-
moving energy from the mechanical oscillator will be equally probable and the measured sidebands
for these two processes will be equal in amplitude. However, if the mechanical oscillator is in its
ground state (Figure 1.12(b)), extracting energy from the mechanical oscillator is forbidden. This
therefore leads to an asymmetry in the sideband amplitudes which is a direct effect of the existence
of a lowest energy state. It turns out (as derived in detail later in this dissertation) that the upper
sideband (associated with removing energy from the mechanical oscillator) will be proportional
to the mechanical occupancy ny,, while the lower sideband (associated with adding energy to the
mechanical oscillator) will be proportional to ny, + 1. Derived from the quantum theory, this asym-
metry of exactly one comes from the commutation relations of the mechanical field operators. It is,
however, important to note that this is still a semiclassical result. If the world behaved completely

classically down to zero temperature but the light field exhibited classical fluctuations with half

@) Qu (b)
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Figure 1.12: Energy level diagram of sideband asymmetry. (a) For most phonon levels, an on reso-
nant cavity drive will excite two equally dominant processes, one each for increasing and decreasing
the phonon occupation. (b) If the mechanical oscillator resides in the ground state of motion, the
process for removing phonons is not allowed. This creates an imbalance in the two processes and
an asymmetry in the associated sidebands.
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a quantum worth of energy, the same result would arise. Nonetheless, seeing the asymmetry of
exactly one suggests quantum behavior and provides a check on inferences of phonon number near
the ground state. This asymmetry was first predicted [60] and demonstrated [61] in the 1980s in
cold ion systems, and was used as proof that the ground state had been reached.

The first experiment with a macroscopic mechanical oscillator to observe the sideband asym-
metry [62] was an extension of the third experiment highlighted for reaching the ground state above.
As the mechanical oscillator in this experiment begins with an occupancy of 100 phonons, which
would only present a 1% sideband asymmetry, it was cooled via radiation pressure to 2.8 quanta by
applying a red-detuned cooling drive to one optical mode. They then used a much weaker readout
drive applied either red or blue-detuned to a second optical mode in order to measure each sideband
individually. The readout drive was made weak enough so as not to change the total radiation pres-
sure forces present. This experiment demonstrated clear agreement with the quantum expectations
for the assymmetry.

Perhaps even more impressively, the first experiment to reach ground state cooling [13],
which was introduced above, was able to go far past simply observing occupancy or asymmetry
suggestive of quantum behavior to being able to control that quantum behavior. This achievement
was enabled by the very low thermal occupancy of the mechanical oscillator as well as its coupling
to a superconducting qubit, a quantum system capable of very good quantum state preparation
and manipulation. They were able to prepare the qubit with a single excitation and transfer
that excitation into the mechanical oscillator, realizing a single-phonon mechanical state. This
experiment demonstrated quantum control of a macroscopic mechanical oscillator unparalleled by
other optomechanics experiments to date. However, the mechanical oscillator lifetime was only 6.1
ns, only slightly longer than the state transfer time and much less than typical qubit coherence
times. That the mechanical oscillator is not long-lived compared to these other timescales limits
the future prospects for more complicated quantum manipulation and makes investigation of other
types of macroscopic mechanical oscillators with longer lifetimes still critical to the longer term

goals of the field.
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1.5 Quantum information applications of optomechanics

Once a macroscopic mechanical oscillator is in the quantum regime, it has the potential to be
a very interesting tool for storage of quantum states as well as an intermediary between otherwise
incompatible quantum systems. The history of using mechanical oscillators to store quantum states
again goes back to cold ions. Quantum control over the states of these systems was realized in the
1990s [63] and this control has progressed from then to achieve quantum memories with coherence
times on the order of minutes and coherent state manipulation capable of performing qubit logic
gates, reviewed recently in reference [64].

Most of the optomechanics experiments presented so far (with the exception of the Cleland
experiment just discussed) have employed steady-state fields to make continuous measurements of
mechanical position and cool the mechanical motion to its ground state. However, as optomechani-
cal systems move to explore quantum information applications, such as quantum state storage and
coupling between different quantum systems, fast dynamical control of the optomechanical coupling
will be required. In addition to the Cleland experiment, there are a few other demonstrations of
dynamical control of states in optomechanical systems. Reference [18] demonstrated the ability
to transfer an itinerant optical state into the mechanical oscillator, store it there, and recover the
state, albeit all in the classical regime. Reference [65] swapped a signal pulse with an amplitude
of a single quanta back and forth between an optical microtoroid cavity and the mechanical mode.
Lastly, reference [66] demonstrates coherent state transfer between itinerant microwave fields and
the mechanical oscillator at amplitudes of a single photon. This last experiment is discussed in the
last experimental chapter of this dissertation.

In addition to state transfer and storage of quantum electromagnetic signals in a single
optomechanical system, coherent quantum control over mechanical oscillators will open up the
possibility of coupling otherwise incompatible quantum systems. For instance, proposals have been
made for coupling optical and microwave systems via a mechanical oscillator [67, (8] (see Figure

1.13).
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Figure 1.13: Proposed opto-electromechanical system. By coupling the motion of a mechanical
oscillator to both an electrical resonator and an optical resonator, quantum information could be
transferred between the GHz and THz frequency regimes.

1.6 Tests of quantum theory

As quantum mechanical effects are observed in increasingly large systems, tests of fundamen-
tal quantum theory are becoming possible. Some of these tests involve investigating increasingly
complicated quantum states [69]. However, the tests that macroscopic mechanical oscillators in the
quantum regime are particularly suited for are those of the interaction between quantum mechanics
and gravity. As quantum objects approach larger and larger mass scales, the incompatibility be-
tween quantum mechanics and gravitational theory will eventually have to be reconciled. Various
proposals about what measurements might lead to advanced understanding of the intersection be-

tween quantum mechanics and gravity have been made (see [70, 71, 72, 73] and references therein).

1.7 My contributions to the field of optomechanics

There are several important ways that my PhD work contributes to the field of optomechanics,
some theoretical and some experimental.

My theoretical contributions were to extend the currently available theory to include effects
that are not treated in other works. The first of these extensions, presented in Chapter 2, was to
include reactive measurement port components in the model for a microwave circuit in order to
correctly extract the microwave resonance parameters. This idea had previously been investigated

in reference [71], but the model presented there produces different results, as discussed in Appendix
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C. The second of these extensions, presented near the end of Chapter 2, was to extend the model
and analysis of an optomechanical system, such as the one presented in [75], to allow excess photon
noise due to the internal environment of the cavity as well as the measurement ports. This noise is
often assumed to be only zero point fluctuations, as the thermal occupancy for a room temperature
optical field or a dilution refrigerator microwave field is in theory zero. However, in Chapters 8.2
and 9 we observe excess cavity photons, which we model as a ‘hot’ internal cavity bath. The
inclusion of excess cavity noise from the measurement ports in the model also makes it possible
to understand the effects of excess generator or laser noise. Including both the Fano and excess
cavity noise effects, I derived, the dressed cavity response and output spectral density for both a
single cavity drive (Chapter 3.1, similar to [75]) and two cavity drives, one optimally red-detuned
and one optimally blue-detuned (Chapter 3.1, to my knowledge this has not been done). Lastly,
I worked through the problem of how to optimally shape the transfer field (which controls the
coupling between the cavity and the mechanical oscillator) in order to achieve maximal transfer,
storage, and retrieval efficiency of an arbitrary itinerant microwave field (Chapter 3.3).

I also contributed to the field of optomechanics through many experiments involving elec-
tromechanical systems. The first of these ([15], Chapter 8.1) showed our initial attempts at using
the radiation pressure of the microwave field to cool the mechanical oscillator. For this experiment,
I fabricated the device (see Chapter 5), contributed to data taking and analysis, and provided feed-
back on the manuscript. The second experiment ([76], Chapter 7), demonstrated our development
of a quantum efficient microwave interferometer. For this experiment, I worked on the device design,
fabricated the device (again see Chapter 5), contributed to data taking and analysis, and helped
substantially with the manuscript. In the next experiment ([18], Chapter 8.2), we demonstrated
achievement of cooling the mechanical oscillator to its quantum ground state. For this experiment,
I mainly contributed to the theoretical framework necessary for analysis, as discussed above. A
substantial part of my experimental time and understanding was devoted to looking for sideband
asymmetry, which is detailed in Chapter 9. For this experiment, I developed the full theoretical

understanding for two drive measurements and meticulously examined the complicated nature of
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the calibrations required to achieve this result. The last experiment ([66], Chapter 11) showed our
achievement of state transfer of coherent itinerant microwave fields to the mechanical oscillator.

For this experiment, I provided experimental support and helped with the manuscript.



Chapter 2

Theory I: General mathematical formalism

The first step toward understanding the behavior of any system of interest is to find a set of
equations (namely the equations of motion) that fully describe its evolution. Therefore, I devote
this chapter to a very careful derivation of these equations, starting from a basic resonant circuit
model of an electromechanical system. In Section 2.1, I analyze the microwave circuit used in our
experiment, and then show how coupling a mechanical oscillator to the capacitive degree of freedom
leads to an electromechanical coupling. In Section 2.2, I will then re-express the problem using
operator formalism, which will be generally applicable to all optomechanical systems, regardless of

their physical implementation in the microwave or optical regime.

2.1 Resonant circuit analysis

Our optomechanical system is formed by a mechanical oscillator in a microwave resonant
circuit in such a way that mechanical motion modulates the capacitance, and therefore the resonant
frequency, of the circuit. There are generally many ways to realize resonant circuits in the microwave
regime: they can be made as quarter or half wave coplanar waveguides or as more lumped element
series or parallel RLC circuits. They can also be coupled either inductively or capacitively to
a measurement circuit. The goal of this section will be to show that it is generally possible to
transform any such complex circuit network, possibly with many resonances, into a simple series
RLC resonator about one of the resonances of the complex network. I will show that this is true

for one specific example, the parallel RLC resonant circuit in series with a coupling capacitor.
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2.1.1 Simple series RLC circuit

First, I will solve the simple RLC circuit with the foresight that the parallel RLC will be able
to be simplified to a similar form. Here I find expressions for the resonant frequency and impedance
looking into the series RLC circuit (Figure 2.1(a)). I have added 2’s as subscripts to the circuit
elements to distinguish them from similar elements in the parallel RLC circuit in Section 2.1.2.

The complex impedance of the series RLC resonant circuit is

. 1
Zres = ]WLZ + m + R27 (21)
where j = —y/—1 = —i (see Appendix B.1). At the resonant frequency of a resonant circuit,

there will be equal amounts of energy stored in the electric and magnetic components. Thus,
the impedance on resonance must be due only to the resistive part, which is real. Therefore, the

resonance frequency is the frequency where the imaginary part of the impedance goes to 0:

Im[Zyes]) = wlo — oy =0 when w=wy=

@ _T_ (b) _?_ (©) _?_
C
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Figure 2.1: RLC models of a resonant microwave circuit. (a) Series RLC circuit. (b) Parallel RLC
circuit with coupling capacitor. This is the model we generally used for our early devices. (c) Series
RLC circuit with coupling capacitor taken out of C5. For appropriate relations between the circuit
elements in the parallel and the series cases, the total impedance looking into each of these circuits
from their input node is Zyes. The impedance looking into the circuit from the node at voltage 1%
1S Zres-



29

I can expand the impedance to linear order about wg: w = wy + Aw

1 Aw
Zres ~ Ro+ jwoLlo + jAwLy + — — =
es 2 T Jwol2 T ] 2 jwoCa ngCg

=Ry + 2jAwL, | (2.3)

2.1.2 Analogy of parallel RLC circuit to series RLC circuit

Finding the response of the parallel RLC circuit in series with a coupling capacitor C. (Figure
2.1(b)) is more analytically complicated than the above series case, so it is helpful to simplify it by

making an analogy to the series case. The resonator impedance for this circuit is

Zies = WC‘ZC + <ij’ + 2+ ;) (2.4)
_ = N JwLR?(1 — w?LO) n W L*R (25)
wCe  R?2(1 —w?LO)2+w?l?  R%2(1—w?LC)? + w?L? '
—J JjwL w?L?

Q

. 2.
wC. T 0= w200) T R —W?L0) (2:6)

In the last step T have taken the limit of large R > wl (small internal loss). For w > (LC)~1/2,
the second term of the impedance is negative imaginary and therefore acts like a capacitance. This
capacitance adds in parallel with C,. and nothing special happens. However, when w < (LC)*l/ 2,
this term is positive imaginary and therefore acts like an inductance. This inductance can resonate

with C; at w = wy:

1 wlL 1
Im|[Z,es] = — =0 h =Wy = —F——. 2.7
mlZiel = - Y 7o e e+ Oy 27
Taylor expanding the impedance about wy and keeping only terms to lowest order gives':
A AwL(1 + wiL 2L?
Zy = 120 JAWLUFLC) | ol (2.8)
wiCe (1 —-wiLC)? R(1 —wiLC)?
_ JAWL(C + C) N FAWL(2C + C.)(C + Cy) N L(C + C.) (2.9)
B Ce C? RC? '
. (C+C)?  L(C+C.)
= |2jAwL 2 + RC? (2.10)

! Below, I will find that adding extra reactive components to the measurement circuit results in a Fano resonance
and modifies the resonant frequency by a small amount. Therefore, I really should have expanded about the new
resonant frequency, wc, instead of wo here. This would make extremely minor corrections to the expressions for Lo,
Cs, and R2 depending on the Fano parameters below. However, the important part about this section was that there
was a correspondence between the complex parallel circuit and the simple series RLC circuit. This will allow me to
use the series RLC model to find expressions for the scattering matrix and allows extraction of the resonant frequency
and damping rate. It is not important at all that I be able to exactly relate R, L, C', and C. to these quantities
because in practice R, L, C', and C. are not known, and we would only ever care to know their approximate values.
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Comparing this impedance to Equation 2.3 and the resonance frequency to Equation 2.2, I can find

equivalent series components:

(O +CN? _L(C+C.) o
LQ—L< CC > 5 R2_R76g7 02_C+CC (211)

Using reasonable values from one of our devices, L ~ 107H, C ~ 107'%F, C. ~ 10~1F, and R ~
1050, 1 find the following values for the equivalent series components: Ly ~ 1073H, Cy ~ 10718F,

Ry ~ 1034).

2.1.3 External coupling to measurement

In order to drive or read out a microwave resonant circuit, we must couple it to external
measurement lines. Typically, this involves adding one port (in a reflection geometry) or two ports
(in a transmission geometry), each with impedance Zy. Adding only these ports will result in
a purely Lorentzian response of the circuit. However, we sometimes see in experiments that the
circuit has a Fano resonant response rather than a Lorentzian. One example of such a resonance
can be found in Appendix C. A Fano resonance is generally due to the interference between a
Lorentzian resonance and a background standing wave. I attribute this to the presence of reactive
components between the measurement ports and the resonant circuit. These components can set up
an interference between standing waves in the measurement lines and the circuit response, resulting
in a non-Lorentzian resonance at the output of the experiment.

I attribute the extra reactance observed to different effects for the transmission and reflection
geometries. In the transmission geometry, the extra reactance in likely from parasitic inductance of
the wire bonds between our sample and the external microwave lines, as has also been assumed in
[74]. T can model this as some frequency-independent reactance BZj associated with each line (see
Figure 2.2(a)). In the reflection geometry, wire bonds alone cannot account for the Fano resonance
(they would just modify the resonance frequency). However, there can be a Fano shape if there is
some power being coupled out of the resonator through a very small capacitor to another invisible

‘port’. This has indeed been observed in some of our experiments where resonances on one side of
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Figure 2.2: Resonant circuit coupled to measurement ports, including sources of Fano interference
effects. (a) The transmission measurement model includes small reactive components coupling
the resonator to each port. (b) The reflection measurement model includes a very large reactive
component coupling the resonator to a second ‘port’. (c) These two situations can be thought of
as limiting cases of a more general model with reactive components X Z; and Y Zj.

a chip are visible from another, seemingly disconnected, port on the other side of the chip. I can
model this power leakage by coupling the system to a second port through a very large frequency-
independent reactance Zy/J, where J is small (see Figure 2.2(b)). The two geometries can thus be

treated as two limiting cases of the more general geometry in Figure 2.2(c):

Casel: X =Y =B Transmission geometry including wire bonds,

Case2: X=0,Y=1/J Reflection geometry with weakly coupled invisible ‘port’.

Here, B and J are 0 in the absence of the above effects and can be positive or negative. In our

experiments we typically measure |B| < 1.

2.1.4 Voltage response of circuit

In an electromechanical experiment, the quantity of interest is the motion of a mechanical
oscillator which varies the capacitance C' of a parallel RLC circuit. The only thing that this
mechanical oscillator can truly care about is the voltage V across that capacitor (Figure 2.1(b))
(this statement is verified in Appendix C). Therefore, the equivalent series circuit found above is
not completely adequate as a model of the system because it does not have access to the necessary
node. However, I can make a small modification to it by modeling the capacitor Co as two series

capacitors: the real capacitor C. and another capacitor C5 = C.Ca/(C, — C2) (see Figure 2.1(c)).
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Figure 2.3: Full circuit model including measurement ports. An applied voltage Vi, from port 1 of
the circuit will result in a response of the voltage V across the capacitor.

The impedance looking into the circuit from the point with voltage V is then

~ JwlL w2L?
Dres & . 2.12
<7 (1 -w2L0) + R(1 —w?LC)? (2.12)
Expanding once again about wg and keeping terms to leading order gives
~ jwol WEL? '
Zres ~o 30 0 ) | R, (2.13)

(1-w2LC) R —w2LC)?  wyCe
Using the full model of the circuit and measurement in Figure 2.3, the voltage V can be found
in terms of the driving voltage Vi, from port 1 by solving the following equations and doing basic

circuit algebra:

L =1y + I3, V = I3, V =132 = 122y = Vi, — 1171, (2.14)

where I define Z; = Zy(1 + jX) and Zy = Zy(1 + jY). Solving these equations to eliminate Iy, I,

and I3 gives

‘7 . ZresZQ - ZresZQ AVA) B
5 - res + ) (2]—5)
Vin  Zres(Z1+ Z2) + Z1Z0  Zy+ Zo Z1+ Zs
21Z2 . lez K . 2L2

res + —— = = Ry + 2jAwLy + ———2 = 2[, (—+ w—w): . (2.16

es Zl +Z2 2 J 2 Z1 n ZQ 2 2 .7( c) XC[W] ( )
‘7 ZresZQ
—_— = . 2.17
Vo~ 2La(zi+ Z0) (247

The cavity displays a Lorentzian response with resonant frequency w. = wo — Im[Z1Z5/(Z1 +

Z9)]/(2L5), total loss rate k = (Re + Re[Z1Z2/(Z1 + Z3)])/ Lo, internal loss rate kg = Ra/L9, and
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external loss rate kexy = Re[Z122/(Z1+ Z2)|/ Lo = Zo(|Z1|? 4| Z2|?) / (L2| Z1 + Z»|?). 1 can divide up
the external coupling into separate couplings for the left and right ports, k) = Zo| Z2|?/(La|Z1+Z5|?)
and k, = Zo|Z1|*/(L2|Z1 + Z3|?). T have written the response in terms of the cavity susceptibility
Xc|w]. The addition of reactive components to the feed line changes the frequency at which V has
the largest response. Therefore, effects of optomechanical coupling should be centered around wc
rather than wy (see Appendix C). Note that, while significant for optomechanical effects, this change
in resonance frequency is not large enough to invalidate the previous assumption that a parallel
RLC circuit can be modeled as a series RLC circuit near resonance (see previous footnote). I also

define a quantity cin = VinZresZo /(2L2(Z1 4+ Z3)) for convenience, such that f/[w] /cin|w] = Xc[w]-

2.1.5 Energy stored in the circuit

Here I find the energy stored in the circuit in terms of the cavity parameters and the input

power sent into port 1 of the network. I assume that the input voltage has the form

v

Vi[t] = Re [vm[t]] = Re [Vp[t]e?!] (2.18)

where V| is complex and I could generalize this to be a sum over many frequencies if there were
multiple inputs. I assume that Vj[t] changes slowly compared to the exponential component:

Vo < jwVp. This allows me to write the input power (or available power) as

o 2
L Valt_ Re [Vl v vpppe s o v _ VP (2.19)
n — 47 B 47y N 167y - 829 - 820 | |

where I have eliminated the quickly oscillating terms. The assumption that Vy < jwVj also allows
me to use impedances to go between the scooped voltages and currents, even though I am working
in the time domain. This is illustrated by a calculation of the current through a capacitor with

voltage Vi, across it:

I[t] = Re [i[t]} = Re [cvb[t]ejwt + ijVO[t]ejm} ~ Re [jwCVp[t]e’!] = Re [jwcf/m [t]} . (2.20)
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The energy stored in the circuit near resonance is then
L L v
1 21v .2 Ly |Vt
El] = 2(=LaIslt)? z\:—lt‘:—~ 2.21
1 = 2(5Lanl?) ~ 2] = 5 |21 (2.21)
a1z | Vi | Vi [
in |l 2 t t
=P, 2.22
7+ ZF |Galt]]| |Gl (222)

8Lo

If the circuit is driven at only one frequency w, the energy stored in the circuit will be E[t] =

Punki|xe[w] |2-

The scattering matrix

2.1.6
I have calculated how the voltage across the capacitor and the energy stored in the circuit

depend on all of the circuit parameters. However, the quantity actually measured in an experiment

is the output microwave field. This is related to the input microwave field through the scattering
(2.23)

matrix (or S matrix)[77]
‘/’l: ou .
L (Vi = 0 for k # ).

[‘/out] = [S] [Vin]a Szk = V.
j,il’l
I could just calculate the S-matrix by brute force. However, there is an equivalence trick that makes

this simpler. This trick uses the impedance matrix:
Vi Vz in + Vz out .
Zig = — = — : I, =0 for k # j). 2.24
! Ik Ik,in + Ik,out ( ) ( )
For a 2-port reciprocal network such as the one of interest here, the circuit can be compared to a

T-equivalent circuit (Figure 2.4) to identify the elements of the impedance matrix. For our model,

Figure 2.4: T-equivalent circuit representation. (a) Our circuit of interest. (b) The impedance
matrix for our circuit can be easily found by comparing to the T-equivalent circuit.
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this gives

Z12 = Zr957 (225)
le = jXZO + Zres = Zres + Zl - ZO7 (226)
Z22 = ]YZO + Zres = Zres + Z2 - ZO- (227)

The S-matrix is then related to the impedance matrix by the expressions [77]

270120 (Z11 — Z0)(Za2 + Zo) — Z12221
= = 2.2
So1 N S NG ; (2.28)
AZ = (Z11 + ZO)(Z22 + Zo) — Z197291. (2.29)
For our model, the scattering elements are then
27 es 2
Sor[wp) et (2:30)

Zres(Zl + ZQ) + le2

(Z1+ Zo)\/Z7Z5 \Zi + Z3\ Z1Zy  La|Z1 + Za|? cinlwp)

VAR AN AV/ 174
_ @+ 4z, Ny — \Jrikr [«w] 7 (2.32)
(Z1+ Z2)\/ 21 23 Cin[wp)
Zves(Z1 + Zoy — 2Zy) + Zo(Zy — 2Zp)

= 2.
Sll[wp] Zres(Zl + Z2) + leZ ( 33)

_ DZi+ Z3) (Z5(Z+ 2o —2Zy)  Zo|Zef Vwp (2.34)
Z3(Z1 + Z2) Zo(ZF + Z3) Ls| Zy 4 Z5|? cinlwp) '
Zy(Z3 + Z3) V[wp)

= 2T (N g . 2.35
72+ Z2) \ T ) (2.35)

In both of these calculations, I have pulled out a factor of magnitude one in front of the expression.
This factor will only add an overall phase offset to the scattering matrix, which we do not care
about. Ignoring these prefactors, both terms of the scattering matrix can be written as one equation

with index i:

(2.36)

Sitlwp] = Ni — /K1ki Y[WP]

Cin[wp) |

In the past few expressions, N; is a complex coefficient which stores information about any reactive

components in the feed line and is also the value of the response far off-resonance. The values of



36

N, for our two measurement models are

1

Ny = 1-{?37 Ny = T+jB for the transmission geometry (2.37)
; 2JV1+ J? _
Ny = %, Ny = T4 7 +272 for the reflection geometry. (2.38)

If the circuit is driven at only one frequency, the response is that of a Fano resonance,

Sitlwp] = Ni — V/Rikixe[w] | (2.39)

In the cases of B =0 or J = 0, the response resumes a Lorentzian form.

2.1.7 Optomechanics introduced

I now consider the effect of the mechanical element, which modulates the capacitor C' and thus
the resonance frequency of the circuit. There is a force F[t] = —0F|t]/0x, sometimes referred to
as the ‘radiation pressure force’ in analogy to the optical world, exerted on the mechanical element
due to the voltage across the capacitor. When the mechanical oscillator moves infinitesimally, the
charge on the capacitor plate stays constant, while the voltage changes. Therefore, I must find the

derivative of energy with respect to C with the charge @ fixed:
OF 9 (Q? dwe\ ' Owe 8 [ Q?
I AN " I 2.4
Fl or ~ ox <2C> (ac) 9z 9C (2 (240)
B —2(C + Cy) Q? _ —EltG
= < - )G202 S —hGnelt] | (2.41)

Here, G = Ow./0x is the coupling constant between the cavity and mechanical oscillator and

ne = F/(hw.) is the number of photons in the cavity.
I can Fourier transform the force into the frequency domain (see Appendices B.1 and B.3
about Fourier transform definitions and convolutions):

Fi) = “CR2Z PR = —haalviP. (2.42)

Flu] = —hGB / T VT e dt = —hGAT ] % T[], (2.43)

The constants out front are just absorbed into 3. This force causes a displacement z{w| = x|w]F[w]

where, for an oscillator with mass m, resonant frequency €2,,, and damping I'},, the susceptibility is
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xw] = [m(Q2, — w? + jwl'y,)]~!. Note that this susceptibility is related to the mechanical suscepti-
bility xm! [w] = Tim/2 + j(w — Qum), which I will use throughout the majority of this dissertation, by
Xlw] = (xmlw] — x5 [—w])/(2jmQm). The mechanical motion due to this force then couples to the
microwave frequency such that w. — we + Gzlw]. This modifies how the voltage inside the cavity

relates to the voltage drive by convolving V with a:

Cinlw] = (g +j(w — wc)> Viw] — jGzlw] * Vw] (2.44)
Q[Cj] 3065 (] (V1] # V*[1) ) * Vo] (2.45)

In theory, this equation should provide a solution for Vv, allowing me to find the cavity response
at any frequency, given any arbitrary drive c¢ip|w]. Indeed, I have used this equation to derive the
response of the circuit optomechanical system in the presence of both one and two large drives. It is
important to realize this ability because it stresses the fact that the cavity optomechanical response
is a completely classical effect. I will not present this here as the derivation is rather complicated
with all of the convolutions and is much simpler using the quantized operator formalism that
follows. However, I do want to stress that although I use quantum formalism to derive the dressed
response in the following chapters, this quantity is fully contained in the classical equations of

motion describing an LC resonant circuit coupled to a mechanical oscillator.

2.2 Operator formalism and derivation of equations of motion

So far, I have worked completely in the circuit notation of voltages and currents. However, it
is helpful going forward to change to the canonical quantization representation of these equations,
in part for notational simplicity, and in part because I will eventually be interested in quantum
effects. Also note that as soon as I describe the electromechanical system in terms of operators, it
will be completely mathematically equivalent to any optomechanical system in the optical regime.
I will therefore switch at that point from calling the microwave circuit a ‘circuit’ to calling it a

‘cavity’.
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2.2.1 Canonical quantization

The classical series RLC circuit energy can be written in terms of the voltage Vi, across the
capacitor Cy and the current I3 through the inductor Ly (also the current through C5) or in terms

of the charge @ on the capacitor:

oL & o L2QI* | Q[
ECerult_2I[]+2V[ﬂ_ 2 +202-

(2.46)

The Lagrangian of this system is then the kinetic part of the energy minus the potential part:

L LQIP QP Oowns 5
Feienit = =5 = 50, o = 1210 = ol (2.47)

The canonical momentum is ¢, the magnetic flux through the inductor. The classical Hamiltonian
is

ol QP
/Hmrcult — 27112_’_ 202- (248)

To find the quantum Hamiltonian, I can just write these canonically conjugate classical variables

as quantum operators which obey the canonical commutation relation:
A 10} Q2 [ A A} )
= = —4h. 2.49
Hcawty 2L2 + 202 3 Q7 ¢ J ( )

Going further, I define lowering and raising operators @ and af:

~oAT — QWC a al = ;] e =
L e O
- hwe . . h N .1
7'[cavity = - 4 (CL - aT)Q + m(a + CLT)Q = | hwe <aTa + 2> . (251)

These operators are normalized such that afa = f, the photon number operator. I also define

input and output raising and lowering operators, such that a:[n(out)Ain(OUt)

= Pin(out)/(hwc)' I can

then write the cavity response in terms of the operators:

5 hewe . = VhwZy|Za| . \/ |Z1 + Zs| fl 1 a
< Zres —a / Zres CLln = = —7, (252)
in Ly Lo|Zy + Zs| V20| Zs|  Gin /Kl Gin

Sil [wp] = Ni — \//?Z'fl[wr)] . (2.53)

Qin [‘*’p]

)
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I can quantize the mechanical oscillator using raising and lowering operators in a very similar

manner to the cavity:

bt = Mmoo ) L b5t = = 1a g =

b,b 50 F 0\ g [b.8] = =% [2.9] = 1, (2.54)
~2 2 22

A D mwi —hwm ;i hwm s siio

mec = L = b—b —(b+0b 2.

Hmech 2m+ 5 1 ( )<+ 1 (b+0h) (2.55)
| POV 1

= §hwm(bbT+bTb) = | hiwm (b*b+2) : (2.56)

An interaction term in the Hamiltonian comes from modifying the cavity resonance frequency in

the cavity Hamiltonian:

1 1
e (&Ta + 2) = h(we + G#) <aTa + 2) (2.57)
ATA ]- - Mr ATA 1
= hwe aa—i—i —|—hgo<b+b) aa—i—i (2.58)
= /Hcavity + ﬁinteraction- (259)

Here, G = dw./dz, the mechanical zero point motion is z,, = \/h/2mwm, and gy = Gz,p is the

single photon coupling rate. The full system Hamiltonian is then

ﬁsystem = ﬁcavity + ,}:lmech + ﬂinteraction (260)
1 aon 1 PO 1
= | hwe <aTd + 2) + A (bTb + 2) + hgo (b + bT> <aTa + 2) . (2.61)
2.2.2 Operator model including noise and external cavity inputs

Both the cavity and mechanical oscillator dissipate energy to the external environment. The
cavity can dissipate energy to three different ports: the left measurement port, the right measure-
ment port, and the internal port (this is the energy dissipated in the resistor). The dissipation
rates to each port are ki, s, and kg. The total cavity loss rate is kK = K] + Ky + k9. The mechanical
oscillator’s dissipation is characterized by rate I'y,. The fluctuation dissipation theorem states that
any port with dissipation necessarily has fluctuations associated with it. These fluctuations are
minimally quantum noise but in general could be thermal states, so I will model them as such. I

will therefore assign a thermal noise operator éz to each of the ports, where i € {1,r,0, m} for the left
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Figure 2.5: Operator model of an optomechanical system. The cavity, described by operator a, is
coupled to a mechanical oscillator, described by operator l;, via single photon coupling rate gg. The
cavity is coupled to two measurement ports and an internal ‘port’, or thermal reservoir, while the
mechanical oscillator is only coupled to a thermal reservoir. Each of these ports is described by
an operator fz and has dissipation rate k; (or I'y,). The input fields ai, always enter from the left
port. For the transmission geometry, the output field of interest oyt is the one at the right port
(as is shown).

feed line port, right feed line port, cavity thermal bath, and mechanical thermal bath, respectively

(see Figure 2.5). The expectation values for the bath operators are
(Elmt)y =nopolt —¢]  and  (GUELRT) = 0P + D00l — 1), (262)

where ngh is the thermal occupancy number of the bath. Note that if at any point in my calculations
I set all of the bath temperatures to zero, I will recover the quantum results. The input field aiy,
will be defined to be always incident from the left and include both a large classical driving field
ain and the noise operator él. The output field Goyy will be defined to always be to the right for the
transmission geometry and always to the left in the reflection geometry. Similar models have been
used to describe an optomechanical system elsewhere, such as in [75], but they often assume that

the thermal occupation of the photon baths is zero (ni? = nth = nih)

. This is not necessarily a bad
choice, as the thermal occupancy for both optical fields at room temperature and microwave fields
at dilution refrigerator temperatures are theoretically negligible. However, in our experiments we

sometimes observe excess cavity noise that we choose to model as an elevated temperature of the

cavity bath. Allowing all of the noise baths to generally be at nonzero temperature allows us to
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include this effect and other possible ones (such as excess generator/laser noise). The extended
analysis of what happens when these baths are not set to zero is one of the most important

contributions I have made during my PhD.

2.2.3 Heisenberg-Langevin equations

I will now show how I can include the thermal baths into the Hamiltonian, resulting in a
Langevin equation of motion (following [78, Chapter 7]). In order to include the thermal bath for
the cavity directly in the Hamiltonian, I need to model it as a set of harmonic oscillators at all

frequencies, represented by operators cz[w, t] coupled to the cavity via coupling constant p[w]:

H = ﬂsystem + ,Hbath + ﬁsysfbathv (2'63)

Hpatnlt] = R / " <JT[w,t]ci[w,t] + ;) dw, (2.64)
Heoysvamnlt] = —jh /_ N plw] (ci[w,t]df[t] —d[t]cﬁ[w,ﬂ) dw, (2.65)
d[w,t],cﬁ[w’,t']} = Sw— w)oft — ). (2.66)

The Heisenberg equations for the d’s and @ are

dlw,t] = %[d[w,t],?—l[t]} = jwdlw, t] — plwlalt], (2.67)
) = L [ald), 7] = 2 [ale), Fegseeml] + /_Zu[w]d[w,ﬂdw. (2.68)

Solving for the d equations and substituting back in to the a equation, I get

t

dlw,f] = ) d[w, to] — plw] / I U=atat’ (2.69)
to

at] = %[a[t] ﬁsystem[t]}+ / plw] e 1) dlw, o) dw (2.70)

//t W]t dt doo.

At this point, there are a few approximations to make. The first is that u[w] is essentially frequency-
independent over the frequency range of interest and that we can identify the dissipation rate

k = 2mp?[w]. The second is that @ goes smoothly to zero at +oco and thus

/ LAl — #)dt = aft])2. (2.71)

to



42

The equation for a then becomes

i = %[ ], Pyt \/;/ eTt=t0) tg]dw—/ﬁ/toA[’]é[t—t']dt’ (2.72)
= [alf) Fyseemft ]} + Vitinlt] = Salt], (2.73)

where I define
ainlt] = or- / eI t=10) [, to]dw. (2.74)

Here, ai, has the following commutator and expectation value:

1 o0 < s () A ~
@l al )] = - / / I(t=10) =36 ~10) Lt 401, d [, 1] | dwde’  (2.75)
= / / @ (t=t0) =30 (=10) 50y — o |dwd’ (2.76)
— eJw(t—t")
| dw, (2.77)
= 5[t—t’] (2.78)
(i) = o / / e IO ) (s t0)dl o] dode! (279)
T J—coJ—-0
1 [ [~ o
= / eI t=t0) W (F'=t0) oy [0 6w — w']dwdw’ (2.80)
L[ o)
= nug e dw (2.81)
™ —00
= nwdft —t]. (2.82)

I assumed that the noise was white in allowing nt, to be frequency-independent, as we would
assume for a thermal bath. These are exactly the commutation relation and expectation value that
were stated above for the different noise bath operators él It is also the way to incorporate any
driving field input. The final equation for a (the cavity operator) is called a Langevin equation
of motion. There is a very similar equation for 6 (the mechanical operator). I can therefore write

down the Heisenberg-Langevin equations that correspond to my model:

@ Fayten| = Sall] + viowltl + Y VRl (2:83)

i—{Lr,0}
| {z}, ﬁsystem] ~ I 4 /T[] (2.84)

St
’1 | X

o
=
[
SIS
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The first term of each expression is just the simple Heisenberg equation of motion for that operator.
The second term of each expression accounts for the total damping of the cavity or mechanical field.
The third term of the a equation accounts for the large classical drive through the left port. The
final terms account for the coupling to all of the different thermal baths. These equations, along
with the relation between input and output fields (from the bare cavity response found above)
are all that is needed to completely describe the cavity optomechanical system and calculate any

quantity of interest:

il = — (5 —jwe) alt] +go (blt) +5'[1)) alt) + VRiawlt] + D" VR, (2:85)
i={L,r,0}

b = = () B0+ dan (alda'10+ ) + VTt (2.56)

dout,trans[t] — NZ&in[t] + Nlér[t] - ”r&[t] = NQdin[t] + Nlér[t] - \/Ela[t]’ (287)

outre[t] =  Nia[t] + No&i[t] — /mialt]. (2.88)

I have replaced the x, with a k) in the expression for dout trans(t], as &y = k1 in the transmission
geometry. This results in the nice consequence that the expressions for Gout,trans(t] and dout rea[t]
are exactly the same with N; <+ Ns. In the following chapters, I will do all calculations in the
transmission geometry. However, it is easy to recover the reflection geometry result just by switching

the N;’s.

2.3 Measurable quantities

In the previous section, I derived coupled equations of motion for the cavity and mechanical
oscillator, as well as a relation of the cavity state and input to the output field. Thus, given any
classical and noise inputs, I should be able to solve for the microwave output in terms of all of those
inputs. However, the goal is to infer the state of the mechanical oscillator from the output microwave
field. So, I will need to solve these equations for the state of the mechanical oscillator and then
write the output field in terms of that state. In the following chapter I will make assumptions about

the classical input field (be it at a single frequency or multiple frequencies), use the assumption
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that that classical field is much larger than any fluctuations in the system to linearize about it, and
then solve the above equations for l;, a, and Gous. What follows in this section are the quantities I
will need to calculate from those fields in order to understand certain measurements of the output

field.

2.3.1 Coherent dressed response of cavity
I have already introduced the scattering matrix (Equation 2.23); however, I have so far only
looked at the response when the excitation is only at one frequency:

alwp)

Qin[wp]

S@'l[wp] _ ai)ut,i[wp] _ Nz . \/FTl

Qin[wp]

= Ni — RiXc[w]. (2.89)

However, I can imagine making the same measurement with a probe tone at wy, but also drive the
cavity with another tone at wq. Measuring the response at wp now tells me about how the drive
tone effects the cavity and mechanical parameters and their coupling. This is known as the dressed
response (and is once again completely contained withing the classical equations of motion!).

2.3.2 Mechanical oscillator spectral density and occupancy

I can characterize the state of the mechanical oscillator through its spectral density (see

Appendix B.2.2):
Spplw] = <6T[—w]6[w]> . (2.90)

This reveals the spectral content of the mechanical oscillator. Integrating over this function gives

the mechanical oscillator’s final phonon occupancy nfn:
f L=
M = 5 /_Oo Sty [w]dw. (2.91)

2.3.3 Output field and voltage spectral densities

In order to infer the state of the mechanical oscillator from a measurement, I must also be

able to relate the measurement to the input fields. This comes in two parts. I first relate the state
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of the mechanical oscillator to the fields aq. immediately at the output of the cavity:

Saouston 0] = (e [~liouele]) (2.92)

In the end, I will want to express this output spectral density in terms of nfn in order to infer the

mechanical state from my measurement. Chapter 3 focuses on finding S, [w] in terms of nf

out@out
for several different input drive scenarios.
The second piece of the inference from a measurement is to relate Sy, 4., [w] to the voltage

spectral density Sy vy [w] measured at the output of a homodyne or heterodyne detection. Chapter

4 focuses on relating Sq,,a0u [w] to Syv|w].



Chapter 3

Theory II: Specific solutions to the equations of motion

Armed with the equations of motion for an optomechanical system derived in the previous
chapter (Equations 2.85-2.88), I now turn to solving these equations for different choices of the
input drive field. In Section 3.1, I assume a single large microwave drive as the input. In Section
3.2, T assume two large microwave drives, one near optimal red-detuning (wq — we = —Qy) and
one near optimal blue-detuning (wq — we = €y,). For both the one and two-drive cases, I calculate
the steady-state solutions for the mechanical field, cavity field, and output spectral density and
response. In Section 3.3, I investigate the equations of motion in the time-domain with pulsed

input tones, rather than in the steady-state regime.

3.1 Single cavity drive

In a majority of the optomechanics experiments done so far, and three out of six of those
presented in this dissertation, a single input drive has been continuously applied and the ensuing
steady state conditions of the system have been measured. This section focuses on the theoretical
expectations for this case of a single input drive, and discusses the many different limiting cases

and effects that are found.
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3.1.1 Input assumptions

In this section, I will solve Equations 2.85-2.88, given that the input is a single drive at
frequency wq:

Qlin [t] = Oéin’oejwdt. (3.1)

I can assume that the cavity field a and the output field G0yt each have a large component at wq
and smaller components at other frequencies and that the mechanical field operator b also has a

steady state value and smaller fluctuating piece:

alt] = agel®aeivat 4 g [t], blt] = bo + by [t], (3.2)
al[t] = age%ae—iwat 4 a1, bi[t] = by + bl [t],
Qout [t] = Oéout,oejwdt + &out,l[ﬂ- (33)

Here, ain ¢ and aout,0 are generally complex, but ag is defined to be real with ¢4 accounting for the
phase of the cavity field. The classical drive photon number in the cavity is nq = a%.
3.1.2 Steady state and classical solutions

To zeroth order (i.e. when aj, 131, and the f}"s are zero), solving the equations of motion gives

solutions for each field:

ian(1 4+ 202 Jba
by = J%0U+205) g = 20 (3.4)
T — 270 VFIXe[wd]

Qout0 = Naino — VR1a0e??d = (Ny — Kixe[wa])cin,o- (3.5)

where W, = we + go(bo + b)) is the new, shifted, cavity resonance frequency. The coherent cavity

photon number and powers are related by

k1P

ng = of = kilxclwa)*|ain,ol* = hoog IXclwal %, (3.6)
Pout ,  na| Mo 2

_ _ _ 3.7

hwq [tou| K1 | Xe|wad] ’ (3.7)

Pouwt = Pu|N; — Kixelwd]? (3.8)
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Although the expressions relating the photon number and powers seem simple, there is a

hidden complexity in the fact that w. depends on nq:

B A0mgs (14 2nq) o 29814
2 4402 O Qn

We = Wwet gO(bO + ba) = Wc
4k Py
hiog (,# +4 (wg — we + 2ggnd/9m)2>

Here, I have assumed a drive of many photons (nq > 1) and a high-Q mechanical oscillator

(Q, > T'yy). This results in a cubic equation for ng:

Oy 1696 5 169552 o 5 9. 9 3
2323263 \ 02, d O, ng + ggr” (427 + 1)na — 267y | =0. (3.11)

Here, z = (wq —wc)/k is the dimensionless drive detuning from the bare cavity resonance frequency,
normalized to the cavity linewidth and y = (2Png3k1)/(hwaQmk?) is a dimensionless parameter
proportional to the input power. I have added a prefactor to the cubic equation, which does not
change its solutions, in order to simplify the discriminant below. For some values of detuning and
incident power (or z and y), there is only one real solution to this equation and the cavity resonant
frequency will be stable and single-valued. For other values, there are three real solutions, resulting
in a bifurcation. In these regions, the cavity frequency and number of photons will be hysteretic as

power and detuning are changed. The discriminant of the cubic equation for nq is
D= — ((42? +1)? + 16zy(42% + 9) + 432y?) . (3.12)

The cubic equation has three real roots when D > 0 and only one real root when D < 0. Thus, the

boundaries between regions with three roots and one root occur when D = 0 at

1
+_ _ 2 2 9\3/2
y 108( 22(42% 4+ 9) + (422 - 3) ) (3.13)

In order for these boundaries to be meaningful, they must be real and positive (since all the
parameters that make up y are real and positive). The boundaries y* are real as long as |z| > v/3/2
and positive only if z is negative. Therefore, there can be no boundary for z > —+/3/2. Since D < 0

at z = 0, this region must have only one root. Looking at the derivatives of the discriminant at the
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Figure 3.1: Regions of cavity nonlinearity as a function of dimensionless drive detuning z = (wq —
we)/k and dimensionless input power y = (2Pngak1)/(hwaQmk3). The red lines are the boundaries
yT between three-solution and one-solution regions. The red shaded area between these lines shows
where there are three solutions. The blue line shows the points where the drive is centered at the
cavity frequency. The black line shows the maximum power for which there is only one solution
at all detunings. The black dashed line shows the maximum power for which there is only one
solution for the drive at the cavity frequency. (b) Zoom-in of (a) near the point of interest.

two boundaries reveals the discriminant’s behavior everywhere:

8,D 3/2
3 .

s = F8(42* = 3)) (3.14)

Therefore, there will be three roots if z < —v/3/2 and y~ < y < y* (see Figure 3.1 to see the

different regions). The highest power for which the cavity is stable for all detunings is y = 373/2,
There are some scenarios (such as the quantum backaction measurement with one drive

discussed later) where I might want the drive to be exactly on resonance (wq = @.). To achieve

this, the power and detuning must be related:

2Ky B 29(2)7’Ld z
ng = —

— 1
o z O y 1 (3.15)

The highest power for which this point is stable is y = 1/4, which occurs at z = —1, meaning that
the power applied on resonance is limited: nq < kQm/(2g2). In the remainder of this thesis, I will
assume that the power and detuning we apply is such that there is always only one solution for the

cavity frequency and number of photons.
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3.1.3 Linearized equations of motion

Substituting the derived steady-state values into the equations of motion gives the linearized

equations of motion:
(3.16)

> Vrilt,

dl[t] _ (g _]wc) dl[t] +jgej(Wdt+¢d) (bl[ ] + bT )
i=Lr,0
A Fm . - . ; . ;
hlt] = - (2—y9m> balt) + g (e aft] 4+ T O0a1) + 3/ Tdlt] (3.17)
(3.18)

No&[t] + Ni&[t] — riaat],

dout,l[t] =
where g = gg/nq is the photon enhanced coupling rate. Multiplying the a; and b; equations by

e 7%t and integrating gives the linearized equations of motion and their conjugates in the frequency

domain:
arfw] JPd (b o — bT 3.19
el g€’ (bi[w — wa] + bl w —wa]) + > VA&, (3.19)
¢ i=L,r,0
i} [~w] ida il ; 3
X*[w] = —jge J d(bl[—w + wd] =+ bl[—w + Wd]) + Z \/"?Zgz [_ (3'20)
¢ i=Lr,0
b
w] ig (ejd)da]L[OJ wa] + €~ J¢da1w+wd> + v/Tiném|w (3.21)
X [w]
B | . .
;i [Z:i] = —jg (e 394Gy [—w + wal + €%l [—w — Wd]) + VTl [—wl, (3.22)
where x.[w] = [§ + j(w — w.)] ! and Xm[w] = [FT’“ + j(w — Qm)] ! are the cavity and mechanical

susceptibilities, respectively.
These four equations can be written in terms of only four variables (afw + wq], affw — wq]

blw], and bf[w]) and can thus be solved exactly, resulting in the following solutions
i) = Xel]
1492 (Xe[w] = xe[—w + 2wa]) (Xm[w — wa] = xi[—w +wdl)
x § (1= g*xelw + 20a] (xmlw — wa] = Xiu[—w +wdl)) D Vribilw] (3.23)
i=1,r,0
229X [~ + 2wa] (Xmlw — wa] — Xl—w +wd]) Y VFiE][w — 2wd]
i=1,r,0

—g e

+19¢%1/ Ty (Xomlto = walmlew — wa] + X[~ + waléf o — wal) }
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Xe[—w]
1+ g% (Xelw + 2wa] — xE[~w]) (Xm[w + wa] = Xf[—w — wa])

X ¢ e %y [w 4 2wq] (Xm|w + wa] — X5 [~w — wa]) Z VEiilw + 2wq] (3.24)

i=Lr,0
+ (14 g%elw + 20a] (xmlw + wa] = Xiul—w —wd])) Y Vil w]
i=Lr,0

—jge 7%\ /T, (Xm[w + walémlw + wa] + x5 [~w — walél [w + wd])} ,

31 W] = Xm[w]
1+ g7 (el + wa — xe[—w + wal) (imle] — Xin[—)
x { VT (1= 2 l—w] (el + wa] = X[ + wa])) émle] (3.25)

+F( ng w] (Xelw + wq] — Xz[—w-f-wd]))éjn[w]

+ige %X clw +wa] Y VAiilw + wd]
i=1,r,0

+igel®axi—w +wa] Y VEElw—wd ¢,

i=1r,0
Al W = X [—w]
! 1+ g2 (Xelw + wa] = x¢[~w + wal) (Xm[w] = xu[-w])
x { VT (9 [w] el + wal = e[~ + wal) unfe] (3.26)

3T (14 ¢2xm[w] (xelw + wa] — X [~w + wa))) €L [w]

—jge % xe[w + wd] Z Vriilw + wa

i=1,r,0

—jgel®axi—w +wal D VEi€l[w —wd]

i=1,r,0
Here, the daggered equations contain the same information as the undaggered. However, I have
included them here because it is helpful to see how to convert between the operators and their
daggers (for any operator (A[w])t = Af[—w]). Later in this chapter I may omit daggered equations

as they are easily found from the undaggered ones.
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3.1.4 Effective mechanical susceptibility

In the absence of optomechanical coupling (¢ = 0), I can write the position of the mechanical

oscillator coupled to it’s thermal bath as

2[w] = @ap (B[] + b'[w]) = @2p /T (W] ] + X [—)f[w])- (3.27)

When I re-introduce coupling to the cavity, but keep the cavity isolated from the cavity baths, the

mechanical position is

_ Zap VT Ot [} [0] + i [~w]éh )
1+ g% (Xelw + wa] = x¢[-w + wa]) (xm[w] = Xul=w])

w] (3.28)

Here, mechanical fluctuations lead to a change in the cavity field, which exerts a force back on the
mechanical oscillator. This built in feedback effect leads to a new, effective mechanical susceptibility

for the mechanical oscillator, whose form is familiar from control theory![79, Chapter 11]:

_ Xm|W]
Xonett ] = o o o T ol = Xt + o)) o] — Xl (3.29)

In the weak-coupling limit, g < &, the effective mechanical susceptibility can be approximated
as a Lorentzian by evaluating the x.’s at w = {,. This is a good approximation because the x.’s
are fairly constant over the frequency range of interest (near the mechanical resonance frequency).
I also make the approximation that x} [—w]| near w & €, is negligible (when Q, > I')). Writing

the effective susceptibility as a function of an effective total frequency and total linewidth, I find

1 1 9
A + ¢ [Qm + wa] — xo [—Om +wd]) =
e o Y (Xe [ al = xe | al)

Ftot

+](W — Qtot)7 (331)

! Some authors like to emphasize the relationship to Dyson’s equation rather than control theory and define a
quantity called self-energy to relate the effective mechanical susceptibility to the bare susceptibility:

I T
Xmeft W] X [w]

Sl = j ( ) ~ 56° (el + wa] = X3 [—w + wal) - (3.30)

This expression is easily found from Equation 3.29 by making the approximation that xi[—w] is negligible near
w = Qm (which is valid if Qp > Tw).
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where the effective total and optomechanically induced mechanical damping and resonance fre-

quency are

Fiot = D'm+ Lopt, Qiot = Qm + Qopt, (3.32)
Topt = 29°Re[xe [Qm + wa] = X5 [~ Qm + wa]] (3.33)
= 4 <m2 + 4(2 T Om)? Ko 4(Z - Qm)2> ’ (3:34)
Qopt = —¢°Im [Xe [ + wa] — X [~ + wa] (3.35)
= 4 <m2 +i(22mﬂm)2 T2 +i(;szmnm)2> ' (8:36)

Here, A is the detuning of the drive away from the cavity resonance frequency: A = wgq — We.
The x.’s above really should have been evaluated at (. rather than ,. However, in the weak
coupling limit, the change in resonance frequency is fractionally very small, so evaluating at

will not make much difference.

3.1.5 Phonon spectrum and mechanical occupancy

I can re-write Equations 3.25-3.26 for b and bt with coefficients to simplify the subsequent

algebra:
bilw] = s1[wéf W] + s2fw (3.37)
+s3(w Z\/>£TW_Wd ] + safw Z[ﬁzw+wd
bl [~w] = sf[w]ém[—w] + s3w]éh[~w] (3.38)

W] 30\l ] + il D 4T - — wal
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As I explained in Section 2.3.2, the phonon spectrum is given by

Swle] = (H-wlble]) (3.39)
= |sufw]l? (Gml—wlghlw]) + lsolw]l (€ [~wlémlu]) (3.40)
+ |s3[w])? Z \/W <§Z —w + wd]é;[w — wd]>

+[salw ’ZM(T —w - wd]&a[W+Wd]>

= Jsifo]l? (nffs+1)+|sz[wn nih (3.41)
2 ”vi( th ) 2 Ki th
2 (pth g ot
loaloll 3057 (1) + sl 1 S
= Jstwll® (nfh + 1) + [sofu]” nlt + [sslw]l® (nf? 4+ 1) + |sale] P, (3.42)
where n'! is the thermal mechanical occupancy and nth = k! Yo 1r0’ﬁ is the total cavity

thermal occupancy. Substituting in the coefficients and simplifying, I find the mechanical spectrum:

I'm mW2 meff (W] — m_w2 t
Sl = e - ()
Lo [ @] Xt [0] = X [=w]* o

5 N (3.43)
X [w] = X [
2 2
+23 Sprl-w] menl] (nt" +1) + ] et ] 2
Here, Spp is the the radiation pressure force spectrum,
h292/€
Srrlw] = o IXelw + wd] . (3.44)
zp
This result is very similar to that in reference [75], except that they write the answer in terms of

the self energy (see Footnote 1) and there are a several minor differences in notation between their
work in mine. Perhaps the most important (and least obvious) difference is that they define the
spectral density as Sec[w] = [ dte™! (é1[t]¢[0]) = (eT[w]é[—w]). This is my definition with w — —w.
This will not affect the final mechanical occupancy, because that involves integrating the spectral
density over all negative and positive frequencies, but it does mean that their spectral density ends

up being centered about w = —€),,, rather than w = Q.
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My expression for the spectrum is peaked near w = €y,,. Therefore, I can simplify by making

the very good approximation that xm[—w| = Xmef[—w] = 0 near w ~ Qy (valid in the limit
Qm > Thy):
h T} h h 2
Sep[w] = | 2y T + th (SFF[—W](HE +1)+SFF[W]712> [Xm et [w]|” - (3.45)

This result is fully general for any coupling regime. I can specialize to the weak-coupling regime by
substituting in the effective mechanical susceptibility and making the approximation that Spplw] is
relatively constant over the frequency range of interest (near the mechanical resonance frequency).
If this is true, then I can simply evaluate it at Qy, (not o). This is reasonable because Spr|w] is a

function of only the x.’s, which change on frequencies of order x > I'y,. Making this approximation,

A2 (1 +nY ) Topt

Srrlw] =~ Sprp[Qn] = . , (3.46)
2p
R2n0 T,

Srr[~w] = Spp[—Qu] = x+m, (3.47)

7p
_ 2 2
n?n SFF[ Qm] _ RS+ 4(A + Qm) ' (3.48)
Srr[Qm] — Srr[—Qmn] 16AQ,

Here, n% is the mechanical occupancy in the absence of both mechanical damping and cavity

thermal photons (I'y, = 0, nf" = 0). For a red-detuned drive at frequency wq ~ we — O, this factor

0

is nY = x2/(1692)). Tt therefore depends on how far in the resolved sideband regime the system

is and is zero in the far resolved sideband limit (2, > k). Conversely, for a blue-detuned drive

at frequency wq = we + O, this factor is n¥ = —1 — x2/(16Q2)), which is nonzero even in the far
resolved sideband regime.

The mechanical spectrum in the weak-coupling regime is
Spplw] = <n2§I‘m + (ngh +nd + 2n2hngl> Fopt> | Xm,eff [w] 2, (3.49)

which has a Lorentzian profile of width I'yo, centered about €2io¢. The final mechanical occupancy
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in the weak coupling regime is

nto— 2T g wldw (3.50)
m 2r J_
= <nthI‘ + (nth + 18 4 2nthnd ) r t) L /OO ! dw (3.51)
m+ m c m c ''m op 21 . (Ptot/2)2 4 (w _ Qm)2

B nﬁr}ffm + (ngh + n?n + QnEhngn) Lopt
= . (3.52)
1—‘m + I‘opt

The total motion of the oscillator (including zero point motion) can be divided up into
a component originating from the thermal phonon bath and a component originating from the

various cavity baths:

T +1/2)  Tope(14+2n0)(n +1/2)  Tn(ntl +1/2
nfn + 1/2 _ m(nm + / ) + Opt( + nm)(nc + / ) — m(nm + / ) + nlr:)r?. (353)
1_‘m + I‘opt Fm + 1—‘opt 1—‘m + Fopt

The first of these components is a weighted mechanical bath occupancy. By modifying I'p, the

coupling of the mechanical oscillator to the mechanical bath can be either diluted or strengthened.

ba

o2& as it is the motion of the mechanical

The second component is called the backaction occupation n
oscillator caused by the radiation pressure of the photon field. This expression, converted to a force

spectral density, gives the same result (up to a factor of two due to the definition of spectral

densities) at that found for SE[Q)] in reference [30].

3.1.6 Important limits of the mechanical occupancy

Here, I will look at various interesting limits of Equation 3.52, the final mechanical occupancy
in the weak coupling regime. For an off-resonant drive (A = wq —w. # 0), Iopy will be nonzero and
there will be a net dynamical radiation pressure on the mechanical oscillator. Turning the drive

power up sufficiently such that [Tope| > anﬁlf, the final occupancy will be

4(Qum + A)? + K2
16Q2mA

(3.54)

nlfn =t 0l 4 onihnld = nth - (1 + 2ngh>

The detunings that minimize and maximize the final mechanical occupancies are

K2 K2
AoptimaLmin == _Qm 1 + m and Aoptimal,max = Qm 1 + m (355)
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In the far resolved sideband limit (£, > k), these detunings are just +€,, while in the far

unresolved sideband limit (2, < k), they are +x/2. Using these detunings, I will now go back to

f

the original expression for n,,

as (even ignoring technical experimental reasons) there are limits on
the largest drive powers that can be applied usefully. In the amplifying case (A > 0), increasing the
drive power will decrease the total mechanical linewidth. The mechanical oscillator can no longer
be stable once its linewidth becomes negative. Thus, the largest |Iopt| can be is I'y. As [Topt| goes
to 'y, the total linewidth goes to zero and the occupancy is amplified until it diverges. In the
cooling case (A < 0), I'gpy is positive and the total mechanical linewidth grows with power. The
mechanical oscillator will only remain an underdamped oscillator while Qo = Qtot/Ttot > 1/2.
Thus, the largest I'ioy can be is 2o and the minimum possible final occupancy (assuming an
initially high @ oscillator, Qm = /T > 1) is

th

oo m 1 (1+2nth> L (3.56)
m,min 2Qm 2 [¢ 49%1 : .

f

m,min

In order for the mechanical occupancy to reach the ground state (n < 1), the system must
have a sufficiently large initial mechanical quality factor such that n!® < 2Q,, it must be in the
resolved sideband limit (4v/2Qy, > k), and the cavity thermal occupancy must be less than one
(nth < 1). If the cavity and mechanical oscillator are coupled to baths at the same temperature,
this last requirement can be written another way: n}“}j < we/Qy. However, in experiments, we
observe excess cavity occupancy that indicates that the thermal temperature of the cavity is higher
than that of the mechanics. Thus, the requirement that n(t:h < 1 is the more fundamental one. The
last requirement is technical rather than fundamental - that the incident power can be turned up
sufficiently high that I'gpe > nﬁlfm.

In the far resolved sideband limit applicable to our most recent experiments on cooling and

control of the mechanical oscillator, the final occupancies given an optimally red and optimally
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blue-detuned drive are

th th
Ny L' + 1 Topt

f
— f =w.—N 3.57
Ny, T & Tonn OT Wq = We -~ ( )
th th
f N Iy — (nc + 1)F0Pt
— f = Q. 3.58
nm Fm + Fopt or wq We + ( )

The case of an on-resonance drive is much simpler than the detuned drive cases because I'op is zero
(although nY blows up so it is critical to use nd Lopt = 4g°K/(k* +402))). The final occupancy is

n;:n;};‘i’nga:n%l M
I (k2 +4Q2)

(3.59)
There is no net dynamic radiation pressure at this point, leaving the mechanical occupancy ap-
proximately at its initial value. However, there is an additional backaction heating term which
corresponds to the extra motion induced in the mechanical oscillator by fluctuations of the input
drive field (even when the cavity thermal occupancy is 0). Note that the quantum backaction seen
with a single, on-resonance drive is maximized in the unresolved sideband regime (when Q,, < k).

One last interesting case is that of strong coupling for a red-detuned drive in the far resolved-
sideband case. If I go back to Equation 3.42 and set the far-off resonance terms to zero (xm[—w| =
Xc|—w 4+ wq] = 0), I find the following equation for the mechanical spectrum:

(nglfm + 92n<t:h"€|Xc [w+ "Jd”z) |Xm [w]]

11+ g2Xm[w]xclw + wdl|?

2
Spplw] =

(3.60)

The denominator of this equation has roots at w = w® + j(k + I'y)/4 where w* = Q,, +

Vg% — (k — T'1y)2/16. For large couplings, the spectrum looks like two peaks of width (', + k)/2

with splitting 21/¢g2 — (k — I'm)2/16 ~ 2g. These are normal modes of the cavity and mechanical
oscillator. The expression for the mechanical spectrum can then be re-written as

nTy, (K2 + 4(w — Qm)?) + 4¢°nk

S’bb[w] = . (3.61)
((F55)2 + 4(w — w7)?) ((B5)? + 4w — wt)?)
Integrating this equation, the final occupancy is
1 00 4 2 r T th 4 2, th
- / Spfuldio = AT+ D) Ly + g7 ime (3.62)
21 J_ (k+Twm)(4g? + k')
- (4g? + KT unth 4 4g2/<m2h. (3.63)

k(492 + KkTw)



99

3.1.7 Output field spectrum

I can substitute Equations 3.23-3.24 (re-written in terms of coefficients to simply the subse-
quent algebra) into Equation 2.88 for the output field to find @ous,1 and dlut’l (remember that this

is for the transmission geometry; swap N <> Na for the reflection geometry):

Gout1[w] = Na&i[w] + M w] + rfwlél[w — wa] + rafwlémlw — wa] (3.64)
Frafol 3\ S8l — 2wl + i 3 ik
ahal-w] = N3E[-w]+ Nél[~w] + ri[wléml-w + wa] + 3l -w +wa]  (3.65)

P P
+r3w] Z ;l&[—w + 2wq] + 1 [w] Z iﬁj[—w].
i i
The spectral density of the output field operators is

Saomaan 0] = (@h1[~wldous, [w]) (3.66)
= Irafu)l? (Gml—w + walélifw — wal ) + Irafw]l? (€h[—w + walémlw — wal)
el 3 VIS 6o+ 2l — 20

+ [rafw]? Zm@ él > (3.67)

+ Mol (& [~wléll) + NP < wlérlu])

+Nori[w }:J“ w]éifuw +%m }:J“
FNarglol 3\ (Eli-ldled) + Niralol 3/ éi[—ws}[ww

= [rafel? (nfh 4+ 1) + ol nif + rafw]l? (0 +1) + [rafw] P nf?
2 * K1 * K1 th
+ <|N2| + Norj[w]y/ ~ + Nyrglw]y/ m> ny (3.68)
K K
+OMF+MﬂMM;+MMMM;yﬁ-



Remember that nt? =

60

kLS kint® for i = {1,1,0} and that if n{" or niM is nonzero, n'" has a lower

bound on its possible values. Re-written in terms of the final occupancy, the output spectrum is

T r

Saoutaout [w] = ‘Tl[ ”2 fot (nf ) —|— |f,"2 [w] |2 tot nf
T'm T,
2 (14 mm)Copt

+ (rs[w])? = |r1[w]f?

'
(1 + no )Fopt

(1
(Il et
(

I'm

'

or
Il Pt )

K

(1M + Dorgfel [ 4 Ngrafel 2 )
K K

+ (leyQ + Nurffwly [+ Niraluly /;) nth.

Re-writing the different coefficients in terms of effective mechanical susceptibility gives

1wl = g%k [Xew] | [Xmefr[—w + wd][*,
ralw]® = g*kilm [xe[w] | [Xm,eftlw — wal|*,
rslw]® = gtwmi |xe[w]]® [xel—w + 2wa]|* | Xm.et[w — wa]
W] = sk W] 1 = g%Xcw] (Xmeft[w — wd]
= (Nirffu] + Niralw])

= —2r1Re [Nz'*Xc [w] (1 — 9 Xc[w] (Xm,eff[w — wd]

3.1.8 Limiting cases of the output spectrum

I assume from here on that the feed line has a purely real impedance:

- X;kn,eﬁ”[_w + wd]) ‘2 )

2
— Xumeft[—@ + @]

o
- w[wﬂ”“’t) (n +1)

)

= Xinett[—w + wal))] -

(3.69)

(3.70)
(3.71)
(3.72)

(3.73)

(3.74)

No =1, N, = 0.

These results are now valid for either the transmission or reflection geometry. I also assume that

measurements made with a detuned drive are done with a system in the far resolved sideband

regime. Measurements with an on-resonance drive are still general for either sideband regime.

If the cavity is driven with a close to optimally red-detuned drive at w, =~ W,

— Qu, the

sideband enhanced by the cavity is the upper sideband, so I will set xmes[—w + w:] = 0 and

Xe[—w + 2w;] = 0. Not making the weak-coupling limit assumptions, the output spectrum is

).

S. w] = nth 1 ”lyXC[W”z (92Fm(n‘f}1l
Qout@out - 1

") Xmlw — wa]® + (" — nft

1+ g2 xc[ [Xm[w — wa]|?

(3.75)
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To get this expression, I used the identities ym[w] + x%[w] = Tm [xm[w]/* and xc[w] + x*[w] =
K |Xe[w]|®. In the weak coupling limit, T can assume that n% = 0 and Ty, = 4¢2/k. 1 will also
assume that the drive is very close to perfectly detuned. This allows me to only keep the y.[w]’s
not found with more narrowly varying features. I will set the others to their approximate value

near cavity resonance Yc[w.] = 2/k. The output spectrum in the weak coupling limit is
th th _  th 2 49kl ( ¢ th ,  th 2
Saauston 0] = 1P+ sy (n = nf®) Pefw]” + ~E (nh, = 2088 4+ 0f) | esrfw — wi] P (3.76)

which exhibits a constant background due to extra input fluctuations, a wide spectral component
filtered by the cavity susceptibility due to extra thermal cavity fluctuations, and a narrow feature
filtered by the mechanical susceptibility due to the final occupancy of the mechanical oscillator.
If the cavity is instead driven with a blue-detuned drive at wy, ~ W, + Qu, the sideband
of interest is the lower sideband and I set xm[w — wp] = 0 and xc[—w + 2wp] = 0. I once again

assume weak coupling and a close to perfectly detuned drive, but in this case, that requires setting

nd = —1 and [opy = —4g§//<;. The output spectrum is
Staole] =l + s (= nf?) o]
4g2kil
gbRIQ tot (nfn 1 2n£h _ nfh> X eft [~ + wb”? (3.77)

It is important to notice how the presence of thermal cavity occupancy nf® and extra input noise
nfh affects the red and blue-detuned cases. In the former (latter), cavity occupancy decreases
(increases) the size of the sideband, while input noise increases (decreases) the size of the sideband.
It is thus extremely important to independently measure nt" and nfh in order to correctly infer the
mechanical occupancy from a measurement of the output fields.

The last case I'll consider is if the cavity drive is applied on-resonance at w., no longer making
any assumption about the relative values of k and €y,. For this case, all of the x’s are important,

but the expression can be simplified a bit by the fact that y.[—w + 2w.] = x}[w] and the two
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sidebands are far separated in frequency compared to their widths. The output spectrum is

Saomans @] = i + iy (nfF = nf*) [xelw]]? (3.78)

4g%k My )
+m ((”fn -2 + nfh) K° 4 (nfn - ”fh) an) X [w — We|

492k

DI EEm (pf 1 onth - ) k2 4 (nd 41+ nt) 02 [xm[—w + @]
(K2 +402)?

m

To get this expression, I used the approximations

I'm

xellxmbo ~ Bl 4 Xl xolo T~ T2 (5 — 40 xelell* [xmleo — TP, (3.79)
el mles — T + Xl T~ T el el — T (3.50)
el + B + Xm0 + B~ T2 (62— 40) ]| Dnl 0+ B (3.81)
el Xl 1B + Xm0 1B & T ol il + T (382)

The first two approximations are only good for w &~ @, + 2, while the second two are only good
for w =~ W, — Q. It is interesting to see how ngh and nfh affect the on-resonance drive measurement
differently in the resolved or unresolved sideband limits. In the resolved sideband limit, cavity
noise is irrelevant, as the sidebands are not located near the cavity frequency, whereas input noise
interferes with the mechanical occupancy with the opposite sign as it did in the red and blue-
detuned drive cases. In the unresolved sideband limit, the extra noises add with the same sign as
for the red and blue-detuned drive cases.

In all drive cases, if the extra noises are zero, the upper sideband is proportional to nf , while
the lower sideband is proportional to nf +1. This is generally referred to as ‘sideband asymmetry’.
This asymmetry indicates the quantum nature of the effective mechanical oscillator. When viewed
in terms of the backaction mechanical occupancy introduced above, the asymmetry can also be

viewed as a consequence of the photon field shot noise (as is discussed in [31]).

3.1.9 Dressed cavity response

In this section, I will calculate the response of the cavity to a small probe tone at wy, in the

presence of a strong drive tone at wq. The amplitude of the probe tone is small enough that it
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should not change the cavity or mechanical parameters. If I were to start from Equations 2.85-
2.88, I would use the input a;, = ozin,dej“’dt + aimpejwpt, set all of the noise operators to zero, and
then linearize around the driving field. However, I have already done a lot of this work in the
previous sections, and I can just use the solution for a; (Equation 3.23), making the replacements

51[(&}] — ain,pé[w - WP] and ér’oym =0:

w] (1 — g\ [~w + 2w m|Ww — wd| — X |—w +w
&l[w] _ Xc[ }(1 ch[ +2 d] (X [ d] X [ + d]))])\//?lain,pé[o}- (3.83)

1+ g% (Xe[w] = xE[~w + 2wa]) (Xm[w — wa] — Xf[-w + wa

Substituting this into the expression for the dressed cavity response (Equation 2.89), I find (re-
member that ¢ = 2 for the transmission geometry and i = 1 for the reflection geometry) that this

quantity is

Cout,p ay [wp]
; = =N, — .84
Sale] = VR (3.84)
N A Xc [W;)] (1 - .QQX:)E*wp + 2Wd] (Xm[Wp - wd] - X:(ngjwp + Wd])) (385)
14 g% (Xelw] = x&[—wp + 2wa]) (Xm[wp — wa] — Xfu[—wp + wal)
= | N2 — Kixc[wp) + QQKIXE [wp] (ereff [wp — wa] — X;,eff[_wp + wd]) - (3.86)

The second boxed expression makes it clear that in the absence of drive photons (g = 0), the cavity
resumes its bare response, and that for large drives, there are extra features shaped like the total
mechanical susceptibility.

This dressed response is zero on resonance for an optimally red-detuned drive in the resolved
sideband limit when 4¢2 /Ty, = 2k — x. This is the point where the impedance between itinerant
photons in the microwave drive is matched to the impedance of the circuit. In this case, those
photons are turned into mechanical phonons at the same rate that phonons are dissipated from the
mechanical oscillator, and so they are completely absorbed. Note that this point is only possible

for an over-coupled circuit in the reflection geometry (k; > x/2).

3.2 Two cavity drives

Two very interesting effects appeared in the previous section for the case of an on-resonance

drive: sideband asymmetry of the measurement (see Equation 3.79) and quantum backaction of
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photon fluctuations on the mechanical oscillator (see Equation 3.59). If the system is far in the re-
solved sideband regime, an on-resonant drive results in extremely attenuated sidebands. Therefore,
I might like to apply a red or blue-detuned drive in order to enhance these sidebands. However, for
the quantum backaction measurement, this will result in a very large dynamic radiation pressure
force, dwarfing the quantum backaction. I can get around this fact by applying two drive tones,
one red-detuned and one blue-detuned, such that the net dynamic radiation pressure force is zero,
once again allowing access to the quantum backaction piece.

A similar difficulty and solution arise for the sideband asymmetry measurement. The asym-
metry is most visible when the mechanical oscillator has very few phonons, so I would like to apply a
red-detuned drive to cool the oscillator to low occupancy. Unfortunately, this will even further sup-
press the lower sideband. However, adding a second, blue-detuned, drive of smaller amplitude than
the red-detuned one will allow measurement of its lower sideband while still cooling the oscillator.

Thus, the ideal strategy for seeing both quantum backaction and sideband asymmetry in the
far resolved sideband regime is to apply two drives, one red-detuned and one blue-detuned. In
this section I will follow a similar procedure to the previous section for one drive, only this time
I will include a second drive. Therefore, some of the discussion and definitions of the quantities
I calculate will not be repeated. This situation will require more assumptions than the one-drive
case, namely that the drives are close to optimally red and blue-detuned and that the system is in

the far sideband resolved regime.

3.2.1 Input assumptions

In this section, I will once again solve Equations 2.85-2.88, this time given that there are two
inputs, one approximately red-detuned at w, =~ w. — {0, and one approximately blue-detuned at
wp ~ wWe + Qe

ainlt] = aimejw‘ft + ain’bej‘”bt. (3.87)
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I can assume that @ and aoy have large components at w, and wy, and smaller components at other

frequencies and that b also has a steady state value and smaller fluctuating piece:

alt| = opedPred@rt 1 apedPoel@nt 1 g [t b[t] = bo[t] + b1[t], (3.88)
allt] = apedPre=iwrt 4 qpei®oeiwnt 4 i), bi[t] = bi[t] + bI[],
Gout [t] = aout,rejwrt + aout,bejwbt + dout,l[t]‘ (389)

Here, aino and aout,0 are generally complex, but o, and ay, are real and are related to the photon
numbers by n, = o2 and ny, = a%. I apologize for the confusing notation between the red drive

photon number 7, and the right port thermal photon occupancy n'". However, the superscript and

context should always distinguish the two symbols.

3.2.2 Steady state solution

To zero-ith order (i.e. when ay, 51, and the éi’s are zero), solving the equations of motion
gives

3go (142 (o + af + 20rap cos [(wy — wy)t + ¢p — ¢4]))

bolt] = 3.90
ar€j¢r abe]¢b

Qiny = —F— 7 75 (&%} e e 3.91

’ \//?IXC [Wr] b \/’?IXC [Wb] ( )

Qout,r = (NQ — KRi1Xc [wr])ain,ry Qout,b = (NZ — KR1Xc [Wb])ain,ba (392)

where We = we + go(bo[t] + bj[t]) is the new, shifted, cavity resonance frequency. The number of
drive photons in the cavity and the output power from each drive are the same as if they were used

independently.



66

3.2.3 Linearized equations of motion
Plugging the derived steady-state values into the equations of motion gives the linearized

equations of motion:
] = — (g - jwc) aft] + (eﬂwr“%) o + edlrt+en) gb) (31 [t] + b [t]) (3.93)
+ ) Vi,
i=Lr,0
; I'm 6 Vi (=it én) —i(ntton), ) 4
bilt] = — 7—]Qm bilt] + j (e H@rtTor) g 4 eI\ WptTon gb> a[t] (3.94)

_+_] (ej(wrt+¢r)gr + ej(wbt+¢b)gb) (Ali [t] + \/ﬂém [t]a

where g, = go/n; and g, = go/np are the photon enhanced coupling rates. Multiplying these

equations by e™/“! and integrating gives the linearized equations of motion and their conjugates in

the frequency domain:
a1 [w] i Al
—— = 79’ (b1|lw — wy| + by |w — wy 3.95
el (b1] ] + by ) (3.95)
+igbe? (bifw — wp] + B [w —wp]) + Y Vi),
i=1r,0

af[~w] s ;

- = —jgre 7 (b][—w + wr] + b1[—w + wy)) (3.96)
Xélw]

—jgne % (O} [~w + wp] + bil—w +wp]) + Y VR [-wl,
i=Lr,0
bafw] = jgr <ej¢r&]£ [w—w] +e a1 w + wr]> (3.97)
Xm[w]
+ig (ej‘bbcﬂ [w— wp] + e 7% [w + wb]) + v/Tiém|w],
bi[—w] o (=9 jor gt
. vy —w - w ral —w — w; 3.98
] jg (e a1 [—w + wy] + 7 ay[—w w]) (3.98)
—jgn (e an[—w + ] + Pl [ — wy]) + VTl -l
where, as in the one-drive case, xc[w] = [4§ + j(w — Dc)]fl and xm[w] = [% + j(w — Qm)]71 are

the cavity and mechanical susceptibilities.
Unlike in the one-drive case, the many frequencies in these four equations mean that they

are an infinite set of coupled equations and can not be written in terms of only four variables, and
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thus cannot be solved directly for é[w] and b;[w]. However, I can eliminate all of the a;’s and
write them as equations for just the b1’s. This makes sense because I will first only be interested
in the state of the mechanics and will not care about the cavity fields until I calculate the output

spectrum. These equations for only the by’s are the following:

j;[‘[jj] = aafe] (brle] + 8} 1u)) — eile] (Brleo — AW] 4Bl — AW]) (3.99)
te1[w] (61 w+ AW] + bl [w + AW]> + Cnoise|w],
IEL_[:]] = ] (3{[—04 + b [—w]) ~ei[-w] (6{ [—w+ AW] + by [—w + AW]) (3.100)
i) (B[-w = AW] + b [-w — AW]) + éf o [-w),
] = =g (xelw +w] = xe[~w + wi]) = i (xelw +wp] = xé[~w +wp]),  (3.101)
alw] = —e TP g g (xelw + wp] = XE[~w + wi]), (3.102)
Cnoise[w] = Jgre I xe[w + wi] Y VAibilw + wi]
+igrei® i [—w +w] S VA W — wi] (3.103)
+igbe % Xe[w + wp) Z VEibilw + wp)]
g+ wn) 3 Vi o - wn] + VTl
Here, AW = wy, — w, and I note that colw] = —cf[—w].
3.2.4 Assumptions used to simplify the 2-drive case

Equations 3.99 couple the field by [w] to by fields and their daggers at all frequencies w—+ sAW,
for integer s. Therefore, in order to solve these equations for l;[w], I must approximate away terms
that are small to obtain a solvably small system of equations. I will eventually be interested in
calculating the mechanical spectrum near w = Qp,. Thus, I am interested in solving for b[{%y,] and
b [—Qu]. The fields by [w] and 31 [w] are proportional to xm[w] and X} [—w], respectively. Thus, if
Xm|w + sAW] is negligible for some integer s, then so is by [w+ sAW]. The only xu,’s that are
significant near w = €, in the resolved sideband limit are xu,[w], Xm[—w+ AW/, and their complex

conjugates. Thus, the only fields that contribute near w = €, are B[w], l;T[—w], 3[—w + AW], and
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bf [w — AW]. Note that if the system were not in the resolved sideband limit, it would not be
possible to truncate the equations like this and the system would not be easily solvable. The field

blw] only couples to bf[w — AW] and bt[—w] only couples to bjw — AW], so this reduces Equations

3.99 to two coupled equations to solve for b[w] and two for bf[—wl]:

by [w] .

i = Collbil] - cil—wlbll — AW+ uoe e, (3.104)
W = Gllbllw = AW] = al-wlbif] + e[, (3.105)
i[;[f]] = cllbl[-w] - el [AW = w] + &[], (3.106)
W = G [AW - w] = &[-w]b] [~w] + Enoiselw]- (3.107)

Here, I have defined tilded functions to make the expressions simpler: ¢ylw] = co[—w + AW],
é|w] = e1|—w + AW, énoise[w] = Cnoise[—w + AW], and ym[w] = xm|[—w + AW]. Solving these

equations results in the solutions

il = 12 1) Gnotse ] — e [~ 0] a1 5108)

T T colwlxm@]) (1= Gl @]) — e —wlé—wlxm @] vale] '
iy = 0l (00— ol ) ise[ 0] — 1 [~ ]) 5100)

T =g whanle]) (T — o] tmlw]) — e [—w]& @l @] Xm @] '

Plugging in for the é,ise terms and re-writing in terms of coefficients, I get
bilw] = pilwl€lw —wp + wr] + polwlémw] (3.110)
+p3 Z[gTW CUb +p4 Z\/7£1W+wr

bi~w] = pilwléml~w +wy — w] + pilwlél[~w] (3.111)

W] 32y Tl ] il 3 [T — .
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3.2.5 Phonon spectrum and mechanical occupancy

The phonon spectrum for the two-drive scheme is

Sule] = (Bl-wlble]) (3.112)
= 1] (Eml-w + o, — @il — wn + @]} + Ipale] | (€[~ wléml])
+ [ps[w][? Z m<€z W+Wb]fT[w wb]> (3.113)

+lpalil” - Y (€l -l + )

= \pl[w]\Q(nffiJrl) + [p2lw] > nth + |ps[w]|® (ngh+1> + |palw]|* nth. (3.114)

The coefficients p;[w] can be messy to calculate in full. However, they are much simpler if I
make either of two assumptions, which seem to be valid for the cases I am interested in. The
first is that xm[—w + AW] = 0. This approximation is valid if the sidebands are separated by
many mechanical linewidths. This will be the case for both the sideband asymmetry and quantum
backaction measurements, where we want to be able to clearly distinguish the two sidebands.
However, this approximation will not be valid if the sidebands overlap. In that case, xpm|[—w+AW] =
Xt [w] is clearly not zero. The alternative assumption is that c¢;[w] = 0. This assumption is valid if
the drives are symmetrical about the cavity frequency (regardless of whether the sidebands overlap
or not). The only case where I might like the sidebands to overlap would be a measurement of
quantum backaction evasion (see the discussion of this effect as a limiting case below), where the
drive powers are equal. This is likely best accomplished with the sidebands centered in the cavity,
so it seems reasonable that at least one of these two assumptions would be valid. If neither of them
are true (if the sidebands are overlapping and significantly detuned from the cavity frequency),
then the mechanical spectrum is very complicated and cannot be reduced to a Lorentzian.

Either of these assumptions leads to a substantial simplification of the mechanical field, letting

me easily identify the effective mechanical susceptibility:

Xm [w]

7 ~ Xm [W]énoise [W]
" T~ cofwlxmle]

= P el (3.115)

Xmeff[ ]
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Either of these assumptions also leads to the following simplification of the spectrum:

Count® + g2 (0t + 1) |xe[—w + wp]|* + 20t [xelw — w,]|?
Swle] = b (e +1) : lwl? (3116)
11— cololmle]

x2 x2

2 Sprl-wl (w4 1) + 2% S%F[w1n2h> o] (3.117)

= (ang‘ +

. (I‘mn;}f + Fopmbn?n?b (ngh + 1) + Topt,r (n(r)n,r +1) ngh> Xmew]]?  (3.118)

Q

(ang; + (n‘gh il 4 2nghn?n> ropt) et ] 2| (3.119)

In the second step, I replaced the cavity susceptibilities with the force spectral density due to the
red or blue drive alone. The total force spectrum is Spplw] = S%pw] + Shp[w]. In the third
step, I approximated the force spectral densities by evaluating them at €, and writing them in
terms of I'gpeq and n?md for each drive alone. The total optomechanically induced linewidth is
Lopt = Lopt,r + Lopt,p While the total mechanical occupancy in the absence of mechanical damping

and cavity photons is

2 2

Toptn®, = “2 Spp[— O] = “22 (85 [~ O] + S2[~ ] ) = Toptsn®yr + Toprpnlyp.  (3.120)
opt’'m — hQ FF m| — h2 FF m FF m — Lopt,r/imr opt,b’'m b- .
To get the final boxed expression for Sy, I used the fact that n?mr =0 and n?n , = —1. This results

in the same expression as for the 1-drive case, now with the quantities I'op; and n? including
contributions from both drives. The total mechanical occupancy is then also the same as in the

1-drive case:

Tt (0l 20 nd) Doy o)
me 11m + Fopt ' .
3.2.6 Important limits of the mechanical occupancy

Clearly, if one drive is turned off or substantially smaller than the other drive, this expression
limits to the one-drive case with only a red or blue detuned drive. The most notable thing that is
different than in the two-drive case happens if I apply red and blue-detuned drives that are equal

in strength, g, = g, = g. Then the mechanical occupation becomes

4 2
nf = pth ppba — pth | 29 (2ngh + 1) . (3.122)
k'm
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Once again, I find a situation in which the dynamical radiation pressure is absent and the quantum

backaction heating due to fluctuations of the input field is visible. Comparison to Equation 3.59, the

on-resonance single drive case, shows that (in the resolved sideband limit), the quantum backaction

piece is stronger here by a factor of 4Q2 /2. This is because the quantum backaction is filtered by
the cavity and so should be much stronger when the sidebands are centered in the cavity rather
than off to the sides. Thus, in the resolved sideband limit, the mechanical oscillator will exhibit far

more quantum backaction motion when driven by two, equally strong, red and blue-detuned tones

than when driven by a single tone on resonance.
3.2.7 Output field spectrum

I will next calculated the output fields for the system. Similarly to how I wrote the frequency-

domain Langevin equations in terms of only bi’s above, I can instead write them in terms of only

ay’s. Here I show the equation for ajw] (just take it’s dagger to find the one for af[—w)):
(3.123)

kolwlar[w] + k1ral [w — 2wy] + k1 pal [w — 2w] + kow]al w — wy — wy)

mw]
Xelw
+ks plwlaiw — wp + wr| + k3 rw]ar[w — wr + wp] 4+ Knoise (W],
kolw] = —g% (xmlw — wb] — Xil—w + wb)) = 67 (xmlw — wi] = xhl-w +w)),  (3.124)
kiplw] = =792 (Xmlw — wi] — Xhl-w + wi]) (3.125)
kolw] = =€/ F) g g (mlw — wi] = X [—w + wr] + Xm[w — wp] = X [—w + w])(3.126)
karlw] = =/ @) gpg (Xmlw — wi] — X [—w + w]), (3.127)
huoisel] = 50790/ Ton (€mfeo — nlmles — ] + €l — w0 + ]
+7¢/% 9\ T (nlew = wolxmlw = wo] + Ehlw —wnlnl-w+wo])  (3.128)
+Z VEikiw].
. 1 will only be interested in

Also similarly to the by’s, the field a;[w] is proportional to Ye[w]
frequencies near the cavity frequency because that is where the sidebands of interest are centered.

The only x.’s that are significant near w = w. are xc[w], Xe|—w + wy + wp], and their complex
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conjugates. This leaves the following two equations and their daggers:
iﬁ = holwlarw] + kafw]al [ — we — wp) + Foiselw], (3.129)
llo s ool wr— ) + Blelinfol + Bl (3130)
ko[—w + wr + wp), f%oise W] = Enoise|—w +

xelw]

where I have defined kolw] = ko[—w + wy + wp], kow] =
Xe|—w + wy + wp] to make the expressions simpler. Solving these equations

wy + wp), and Xc|[w]
(3.131)

gives
xeleo] ( (1 = Rl X2l noisolie] + Rl e ol noisel —u)

(1= kolwlxelw]) (1 = Rglwllw] ) — kalulg [l xelw]Relw]

arlw] =
and its dagger. Substituting the solution for a; into Equation 2.88 for agyut,1, writing out l%noise, and
writing the expression in terms of coefficients gives (with Ny <» Ny for the reflection geometry)
Gout,1[w] Noilw] + Ni&[w] + ha[w]él[w — wn] + he[w)ém[w — wi] (3.132)

hale] 3 4 Sl — e — ]+ Rl 3 /i,
(3.133)

N3 &l —w] + Ni€l[—w] + R [w)ém[—w + wb) + h3[w]€l [—w + wi

dj)ut,l [~w] =
+h3[w] Z \/ffi[—w + wy + wp) + hyw] Z %éj[—w]

+ sl (0 + 1) + [hafe] P e

The output spectrum is thus (computed in a similar manner as for the one-drive case)
2 nth
(3.134)

]l (i + 1) + halw]
th

Saout Qout [W] = 1
(1Ml 4 Mool [+ Nghafel) )
+ (Nl\2 + Nyhg[w]y /% + Nihalw]y /’Z‘) nth,

Computing the coefficients here would just be messy and is straightforward to do if needed, so
Instead, I'll specify to some interesting limiting cases to give some

I won’t write them here.
understanding of the important effects we’re interested in.
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3.2.8 Limiting cases of the output spectrum

I assume from here on that the feed line has a purely real impedance: No = 1, N1 = 0.
I also set the mechanical susceptibilities for the upper blue and lower red sidebands are zero:
Xm|w — wp] = Xm[—w + wr] = 0. T also always assume weak coupling.

I will first look at the case where the sidebands are separated in frequency by many mechanical
linewidths. In this case, there are three contributions to the output spectrum: the wide background
features that are not accompanied by any xn,’s, the features associated with the upper red sideband
where ym[—w+wp] = 0, and the features associated with the lower blue sideband where xy[w—w;| =
0. For the sideband features, I will assume the sidebands are well inside the cavity linewidth and
that I can evaluate y.[w] at @W.. I also write the output in terms of the effective mechanical

susceptibility. The spectrum is

Staseaol] = i s (n2 = i) [xele]
492k T
I (il — 208+ nf?) [ e — ] (3.135)
4gErTtor 2
% <nfn +1+ 20 — nfh) |Xm,eff [—w + wp]|

This solution displays all of the behavior I anticipated at the beginning of the section: the sideband
expressions are identical to those for the red or blue-detuned single drive, but now both sidebands
are measurable at the same time. If the red drive is larger than the blue drive, it is possible to cool
the mechanical oscillator to low occupancy while still observing the nfn, nfn +1 sideband asymmetry.
If the drives instead have equal amplitudes, the net dynamical backaction will be zero, allowing a
measurement of the quantum backaction by looking at either sideband.

The other case of interest is the one when the sidebands are exactly overlapped wy = W, — Qp
and wp = We + y and the number of drive photons from the two drives are equal g, = g, = g¢.
Now, xm|w—wr] = X} [-w+wp] and the sidebands are completely inseparable. T once again assume

that the sidebands are well inside the cavity linewidth and that I can evaluate x.[w] at @, for the
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sideband term. The output spectrum is
4¢%k )T
Stomaon ] = s (= ) el + 2B (2088 41) il — P (3.136)

Notice that the sideband height here is proportional to 2nt! 4 1. In contrast, the spectrum with
equal drives but not overlapping sidebands has a summed sideband height proportional to 2nf +
1, which includes a contribution from quantum backaction. Thus, the quantum backaction has
disappeared from the overlapping sideband measurement. The measurement scheme with two
drives and overlapping sidebands is thus termed ‘backaction evasion’. This effect arises because the
number of photons in the cavity is modulated at 2€),,, effectively measuring only one quadrature of
the mechanical motion. Therefore, the extra backaction motion will be added only to the quadrature

orthogonal to the measured quadrature.

3.2.9 Dressed cavity response

As with the one-drive case, I have already done most of the work required to find the dressed
cavity response for two drives. I can just use the solution for a; (Equation 3.131), making the
replacements & [w] = apdw — wp] and ér,oym = 0, and plug into Equation 2.88 to find the response:
velo] (1= Rafwlxzlw])

Sitlwp] = N;i — k - =
(1 = hofwlxelw]) (1 = R lwlRzlel ) — kalwlkswlxclwl e lw]

, (3.137)

where again ¢ = 1 for reflection and ¢ = 2 for transmission geometry.
In the scenario where the sidebands are separated by many linewidths but still relatively
centered in the cavity, I can separate the contributions from the cavity and each sideband and use

the effective mechanical susceptibility to write an approximate expression for the cavity response:

Si1 [wp] = N; — KiXc [wp] + Ki1Xc [WP]Q (gfxm,eff [wp —wy] — Q%Xjn,eﬁ[wb - Wp]) . (3.138)

For the case where the sidebands overlap exactly and the two drives are centered about the cavity

frequency and of equal strength, I recover the bare cavity response

Sitlwp] = Ni — Kixc|wp)- (3.139)
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3.3 Cavity optomechanics in the time-domain

To this point in this chapter, I have dealt with steady state solutions of Equations 2.85-2.88.
Now, I turn to the situation where the drive tones are turned on and off in time. If I apply a
strong red-detuned drive tone, I will find that the linearized interaction Hamiltonian resembles a
beam-splitter Hamiltonian. This means that photons and phonons can be exchanged. We have
already seen this in the steady state case of mechanical cooling: a red-detuned drive caused the
phonons coupled to a relatively warm thermal bath to be exchanged with photons coupled to a
much cooler bath, thereby cooling the mechanical oscillator. In the time-domain, I can think about
turning this coupling on and off by turning the red-detuned drive (which I will call the transfer
field) on and off. I characterize the strength of the transfer by either the transfer optomechanical
coupling gr[t] or the optomechanically induced mechanical damping rate I't[t] = 4g7[t]?/~.

One application that this control of the coupling allows is mechanical storage of information
initially contained in the input or cavity fields (this is investigated experimentally in Chapter 11).
The coupling is initially turned on to transfer the information from the cavity into the mechanical
oscillator. It is then turned off for some time, isolating the information from the cavity and storing
it in the mechanical oscillator. Lastly, the coupling is turned back on, transferring the information
back into the cavity or output fields. The choice of cavity vs. input/output (itinerant) fields
depends on the strength of the coupling tone. If the coupling between cavity and mechanics is
much weaker than the cavity coupling, 2g < &, then the state leaks into or out of the cavity fast
enough that the state is never entirely contained in the cavity, and the transfer is essentially between
the mechanical oscillator and the itinerant fields. Conversely, if the coupling is very strong, 2g > &,
then the state of the mechanics is swapped with that of the cavity faster than information can
enter or escape from the cavity. In our experiment, the mechanical loss rate is much slower than
the cavity’s (I'y, < k). Therefore, we would like to skip the cavity entirely, and thus work in the

limit of weaker coupling.
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Figure 3.2: Pulse storage timing diagram. The goal is to transfer an arbitrary preparation signal
at the cavity resonance (blue) into the mechanical oscillator and then later retrieve it. I apply a
strong, red-detuned transfer drive (green) between times 0 and ¢,, which will be shaped in time
to optimally complete the transfer process. From time t, to t},, the signal will be stored in the
mechanical oscillator. At time ¢, + t,, the transfer drive will again be turned on to read out the
state of the mechanical oscillator. There will be some unwanted power that leaks out of the cavity
during the initial transfer process - this power normalized to the input preparation power is what
I call the leakage. The power that is retrieved from the cavity in the third process normalized to
the input preparation power is the efficiency of storage.

3.3.1 Simplification of the equations of motion

The problem solved in this section is how to shape the envelope of the transfer (strong, red-
detuned) pulse in time in order to optimally store and retrieve an arbitrary known preparation
(weak, on resonance) tone in the mechanics (see Figure 3.2). Very similar theoretical and experi-
mental work has been done by many groups, both for storing and retrieving an itinerant state from
a mechanical oscillator [32, 83, 84, 85, 86, 87], and by transferring a state from one electromagnetic
field to another, via a mechanical intermediary [33, 89, 90, 91].

I will optimize the transfer efficiency by comparing the energy stored and retrieved to the
input preparation field energy. The optimal envelope should not depend on whether the state is
classical or quantum, noisy or noiseless. These characteristics are likely to affect the fidelity of the
stored and retrieved state, but not the total power conversion. I will thus ignore all noise terms
in the equations of motion. For simplicity, I will assume the feed line has no reactive components.

The Heisenberg-Langevin equations and output equation, without noise, in the reflection geometry
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al]) = = (%~ dwe) alt] + o (blt] + bT1]) alt] + v ], (3.140)
i = - (P; - ij> b[t] + o (aT[t]a[t] + ;) , (3.141)
aout[t] = ain[t] — VrKialt]. (3.142)

I have left off the hats because without noise, these equations are essentially classical. I will assume
a strong red-detuned drive and a weaker signal of interest at the cavity resonant frequency. The
cavity and output fields of interest will be near the cavity frequency, while the mechanical fields of

interest will be near the mechanical frequency. Thus, the field assumptions are:

ainlt] = ain’T[t]ej“’Tt + ainyp[t]ejwct, (3.143)
alt] = ar[t]e’?Tel Tt 4 g [t]ed¥et, (3.144)
bit] = bo[t] + by[t]e’ =, (3.145)

Qoutlt] = Qour T[t]E?T 4 aout p[t]e? (3.146)

where aip T is the input amplitude for the large transfer drive and o, is the input amplitude
for the weaker preparation field. The cavity state amplitude due to the transfer drive is ap. The
ain’s are complex, while ¢ accounts for the phase associated with the real cp. I will linearize the
equations of motion around the large transfer drive (ain[t] > ainplt] and ar[t] > a1[t]). The
steady state part of the mechanical state is by[t], while b;[t] accounts for deviations from this.

The zeroth order values (with ai[t], b1[t], tin,p[t], and aout,pt] set to zero in Equations 3.140-

3.142) are
] o 2 ej¢T a
bolt] = ]g(}(ifzjéf ), anll] = —= (Xcﬂﬂ] +dT[t]>, (3.147)
aout,T[t] = O‘in,T[t] *\//?IOZT[t]ej(ﬁTa (3148)

where W, = we + go(bo + bjj) and the linearized Langevin equations are

aft] = —gal[t]—i— 5EIT g [t]br[t] + /Ao plt], (3.149)
bl = —Pbift] + je T grltlal] (3.150)

2
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Here, g7[t] = goarp[t] is the transfer coupling rate and I have made a rotating wave approximation
to get rid of fields at frequencies that are strongly suppressed by the cavity.

The next simplification I will make will be to adiabatically eliminate the cavity mode dynam-
ics. Generally, this means removing the rapidly changing dynamics from the equations of motion,
leaving equations to solve for the more slowly-varying quantities. A similar argument is presented
in reference [92, Appendix BJ, but for a different system of interest. The essential assumptions for

this approximation are:

K

. K .
grt] < K, gr(t] < —grlt], 'y <k, Ginpt] < 5

2 Qinplt].  (3.151)

I will re-write the fields in the equations of motion as a1[t] = e **/2A[t] and by [t] = e "™!/2B[t] to

make them easier to integrate:

Alf] = e? (jej¢TgT[t]b1[t]+\/aam,p[t]) (3.152)
= W Tw)t/2 50097 4[4 BJH] + /2 fricin pt], (3.153)
Bltf] = e W Twlt/250=3%7 o011 A1), (3.154)

I can then integrate the A equation
¢
Alt] = / (e“*Fm)t’/? jeiT gr [t Bt] + e“f’/Q\/aaimp[t']) dt’. (3.155)

I can integrate both terms by parts, using the assumptions stated above to kill the &, and gt

pieces:
d K R K K ke R K
= (e Panplt]) = e Pamplt] + e 2aunplt] ~ FePan,lt),  (3.156)
d _ K—=Tm (n e .
4 (cornsgnfply) = B Tm et g Bl 4 T2 BY] (3.157)
+6(/€—Fm)t/29T [t]B[t]
K—Tm K— K— :
n DT g [ Blt] 4 el T g 1B, (3.158)
t
/ e Py pltdt ~ %e“t/Qam,p[t], (3.159)
t
/ 2
/ I 2 e e U0 (3.160)
2 t p .
o [ el B,



79

Substituting in the equation for B[t], T write A[t] as

2\ /K 2jelor
Aft) = 220, ] 4 2O T 2 1+

/t grlt PA[)dY.  (3.161)

[
I could substitute this solution for A[t] into the last term and integrate by parts again to get the

next order terms in grp[t]/k:

2 29 Jjér
Al = @wtﬂamp[ﬂ + el T 2 1 B (3.162)
A/m  grlt]® ior 9T e grt]\*
+ - H(K+Fm)e Qinplt] + 4je (/@—Fm)?'e B[t]+ O .

However, the approximation that gp[t] < k means that we can keep just the zeroth and first order

terms. Going back to the original variables a;[t] and b1 [t] and making the approximation I'y, <

gives
wll] = 241 ~ 2 (0 grldhl] + Vriompld) (3.163)
al] = —gal[tH §EIT gty [t] + /R plt] ~ 0. (3.164)

I find that the derivative of a1[t] is negligible compared to kai[t]/2 in these approximations (see

Figure 3.3 to see how they compare for reasonable experimental parameters). Often, this result

0.1 1 10 100 1000

Figure 3.3: Adiabatic approximation validity on different timescales. The different terms in the
equation of motion for a;[t] are plotted versus xt. The values of terms a;[t] (red) and ra[t]/2
(blue) are plotted on the y-axis as a function of kt for experimentally reasonable parameters.
The derivative a1[t] is much smaller than ka;[t]/2 for times greater than ~ 2x. The adiabatic
approximation involves setting a1 [t] = 0, changing the value of kai[t]/2 to be the sum of the two
terms (shown in green).
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is just stated as the approximation associated with adiabatic elimination (see reference [34]). The
physical interpretation of this is that the cavity field tracks the input and mechanical states and
does not depend on its own history. This makes sense because x, the rate that the cavity loses
information, is much larger than any other rate in the problem.

Substituting the solution for a; into the Langevin equation for b; leaves me with only one

equation of motion to solve:

blt] + (P; n 292['5]2) bft] = 2 G_MT\/igT[t]o‘i“’pm. (3.165)

This is a first order differential equation for by of form bi[t] + P[t]b1[t] = Q[t] which can be solved

via the method of integrating factors.

3.3.2 Integrating factor solutions

First order differential equations of the form bi[t] + P[t]bi[t] = QIt] can be solved using

integrating factors, as follows. I will assume there is some function u[t] such that

O (Wl t) = ulAQH, (3160
Wil = il + [ QI (3.16)
bl = JﬂQMMMHAQWWMW>- (3.168)

I can then write a differential equation and solution for p[t]:

ult] = “mqi&ﬁm“ﬂ—“mggﬂﬂ—umpm, (3.169)

ult] = |exp Ut:P[t’]dt]. (3.170)

The boxed equations, along with Equations 3.163 and 3.142, allow me to find all of the fields given
some input transfer and preparation fields.

I will divide the problem of state storage in the mechanical oscillator into three sections in
time: the transfer, the storage, and the retrieval, illustrated in Figure 3.2. I will treat these three

sections independently, using the final state of the system from one section as the initial condition of
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the next. This is an approximation but is valid if the time for each section is long compared with the
dynamics of the fields. During the transfer section, for times 0 < t < t,, an arbitrary preparation
signal oy p[t] is transferred into the mechanical oscillator by a time-dependent transfer field with
optomechanical coupling gr[t]. I assume the mechanical oscillator begins in state b1[0] = 0, so the

fields in the first time section are

plt] = exp [/Ot <F2m + ig%[t"]) dt”] , (3.171)

hilt] = 2jej¢’T\/§ljﬂ /0 [t g [t i p[t]dY (3.172)
Courplt] = (1=272) aunplt] - % jeIor Jrigrltlba [1). (3.173)

For the storage section, t, <t < t, + tp, the storage and preparation fields are turned off, isolating

the mechanical oscillator from the cavity. The fields during this section of time are

t
plt] = exp [ / F;dt’] = elm(t=ta)/2 (3.174)
ta
1
bilt] = mbl[ta]:bl[ta]e’rm(t’ta)/z, (3.175)
Qourplt] = 0. (3.176)

During the third section of time, t, + t, < t <ty + t, + t¢, the signal is retrieved by turning the
transfer field back on, with constant transfer rate I'qyt. As the efficiency of the storage is only
dependent on the total retrieved power, I can make this readout transfer constant in time. If a
specific output pulse temporal profile were desired, I could instead shape the output transfer to

achieve that profile. The fields during the third section of time are

t Fm FOU
uff] = exp { / (Lin + Tou) t>dt/]:e<rm+Fom><ttatw/z, (3.177)
ta+ty
1
hlt] = mb[ta + b)) = e~ TmATowe)(tta=to) 2p1y 4 4], (3.178)

. T u
Odout,p[t] = —j€]¢T Wbl [t] (3179)

Ideally, all of the preparation power would be transferred into the mechanical oscillator such

that no power leaked out of the cavity during the first time section. That power would then be
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recovered in the third time section. I define the efficiency and leakage of the storage as

ta+tpttc 2 a
o loout,plt]| dt . S g 1]

11 .
o™ lovin p[t]]” dt Jo™ lovin p[t]]? dt

(3.180)

Note that L is just the measured leakage energy and there will also be energy lost via dissipation
through the internal port of the cavity. Thus, £ and L do not in general add up to one. The
denominators of £ and L are just a function of the preparation state, which is specified at the
beginning of the problem. Thus, optimizing the efficiency is equivalent to optimizing the numerator.

I can re-write the expression for the efficiency numerator in terms of the fields found above

2 I‘out K1

o]l = === [baft]]” (3.181)
_ Foutﬂl e—(Fout-i-Fm)(t—ta—tb) ‘bl [ta + tb]‘g (3182)
K
_ Fout/{l e*(rout‘i’rm)(t*ta*tb)G*Fmtb |b1 [ta”z; (3183)
KR
ta+tb+tc I‘ ta+tb+tc
/ ouep P dt = =Tt by ] ¢~ (Mow+Tm)(t—ta=to) gy (3.184)
ta+ty K tatty
Fout (]_ _ e_(F01lt+Fm)tc) K1 Tty 9
= — mtb | h ¢ 3.185
e Bt (3.155)
F 1 _ *(Fout“l’rm)tc
_ Tow(1-e ) (3.186)
I_‘out“‘r‘m
drgeTote | ptepft] )
t'| i, p [t']dt’
x o | [ Lot

Here, I see that maximizing the efficiency is also equivalent to maximizing the state in the mechan-
ical oscillator at time ¢, or optimizing the integral fga (p[t']/plta]) gt cin p[t']dt’. This is then
an optimization problem of a functional, which can be solved by finding a stationary point of the

functional with respect to gr[t].



83

3.3.3 Optimization of efficiency

I can re-write the function I want to optimize as

. :u’[tl] / " g4 ta fa I'y 2 2 141 " / 74!
/0 ;UJ[t ]gT[t ]Oéin,p[t ]dt = /0 exp |:—/ <2 + EgT[t ]) dt ] gT[t ]Oéin,p[t ]dt (3.187)
a o
ta -
= Jf/"e“W”mmﬁﬂ RVl (3.188)
0

= \/g/ot F [t’, hlt'], h[t’]} dt’ (3.189)

Here, h[t] = exp [ t“ g> [t”]dt”} is a function that allowed me to write the argument F of the in-

tegral as a function of only A[t], its derivative, and t. By calculus of variations, this integral will find
a stationary point (optimum) of the integral only if F [t’, hE), ]| = elmt'2ag, L[]\ R R[E]

solves the Euler-Lagrange equation:

oF d oF
0 = ohle] ~ <0h[t’]> (3.190)
_ 1 Fmt /2a / h[t/] d 16Fmt /204 / h[tl]
= 2 ln7p[t ] h[t/] dt/ < ln,p[t ] h[tq) (3191)
_ Y )y e ML T BT (R d O RIE]
= 3 ol [y 2 melty g — el 50 lmww< wﬂ

This gives me a first order differential equation and solution for g&[¢']:

d { [n] / amp /h[t’]
dt’< h[t’]) t’ inp[t'] | At] (3.192)

d 1 m alnp >
———) = = : 3.193
at’ (gT [t/]> gT ( all’lp gT ( )
2 Gin p[t']
or[t] = —Zgr[t? -y P 3.194
nit) = 2o+ (5 %ww>m (3.199)

Fmt/Qaln t
grlt] = \f olt] : (3.195)
\/ Qlin,p 0]

)" 2 et e

Note here that the optimization procedure produced the optimal pulse shape given some initial
condition for the transfer field gr[0]. It did not produce an optimal pulse shape over all gr[0].
Therefore, for a given preparation pulse shape, I will still need to vary gr[0] to see which value

gives the best efficiency while keeping gp[t] within experimentally realizable values.
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3.3.4 Pulse shaping examples

In this section I will use the above solutions to solve for the optimal transfer pulse shape and
system fields for several trial preparation pulses: the rising exponential, the falling exponential,
the Gaussian, and the half wave sine squared pulse. These pulses and their optimal transfer fields
are shown in Figure 3.4 for an array of values of gr[0]. The efficiencies and maximum gr[t] for
these values are shown in Figure 3.5. All of these graphs are created using the following system
parameters: t, = 500 us, K = 27 x 370 kHz, I', = 32 kHz (I', is the preparation exponential
or Gaussian rate below). For the plots, I assume that the second transfer (readout) pulse is on
sufficiently long to read out the entire state (t. — o0). I also set I'y; = 0 for the plots in order to
better compare the different pulse shapes. This removes the factor of mechanical decoherence and
instead makes the efficiency only dependent on the transfer process. Note that I keep I'y, and ¢,

finite in the analytic expressions below.

3.3.4.1 Rising exponential

For the input field i, ,[t] = Ae'P(t~%2)/2 (Figure 3.4(a)), the efficiency is maximized for the

transfer coupling rate

(T T e To)t/2
gT[t] _ ( p)

a 2\/6(Fm+rp)t 1442 : (3.196)

Here, 6 = 2¢7[0]//k(I'm +T'p) quantifies the initial transfer rate in dimensionless units. The

efficiency for the rising exponential is

e _ e ol (L= e (TontTulie) (1 — e~ (ot Tte)” 52 (3.197)
(Tout + Trn)(Tp + i) (1 — e~ Trta) ((1 — e TotTm)ta) §2 4 e~ (TpFTm)ta) '

This efficiency is maximized for infinite §, but in practice 6 will be limited by experimental con-
straints. The efficiency is ultimately limited (even for ideal conditions {t¢,,t.} — oo and I'y, = 0)
to n2, where 1y = k)/k is the state transfer efficiency of one transfer (there are two factors in the

total efficiency, one for the initial transfer and one for the readout).
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Figure 3.4: Optimal transfer pulse shaping results. The input preparation and optimal transfer
fields are shown as a function of time. The preparation field is shown in black for each pulse shape
and corresponds to the right axis. It is normalized to have an amplitude of one. The colored traces
are the optimal transfer pulse shapes for several different values of gr[0], shown in the legends.
(a) Rising exponential. (b) Decaying exponential. Note that for this graph only, the left y-axis is

plotted logarithmically. Otherwise, it would be impossible to see the transfer pulses. (¢) Gaussian.
(d) Sine squared half-wave pulse.

85



86

100 T T 171 |||*
10—1 _(C) Sine —
squared
ISIRZ] 10-2 — =
=
@ 107 B -
|
— 10" - . -
10° nsing Gaussian |
exponential
=IIIII 1 1 |-l IIII 1 1 IIIII*
10° 102 107 10°
Max|g,[t]]/x
¥
= 10"
59
=
<
=
10 -
PR U AP BEPRPUAPE PR P |
107 10" 10°® 10" 10°
g:[0]/x

Figure 3.5: Transfer efficiency for different pulse shapes: Rising exponential (green), decaying
exponential (purple), Gaussian (red), and sine squared (blue). (a) Efficiency as a function of
different values of gr[0]. T have plotted the y-axis as 1 — /02 on a logarithmic scale to highlight
efficiencies near the maximum achievable value. The efficiency improves with larger g[0] for all
four pulse shapes. However, this graph hides the fact that improvements in efficiency come at the
cost of increasingly large transfer fields. (b) Maximum value of gr[t] as a function of different values
of gr[0]. (c) Parametric plot of efficiency as a function of maximum value of gr[t]. This graph is the
most useful as it displays efficiency achievable as a function of maximum gr[t] allowable. Keep in
mind that the solutions I have derived are only valid in the weak coupling limit I'p[t]/k < 1. This
plot shows that high efficiency is most easily achieved for the rising exponential and least easily
achieved for the decaying exponential.

3.3.4.2 Decaying exponential

For the input field ai,p[t] = AeT»¥/2 (Figure 3.4(b)), the efficiency is maximized for the

transfer coupling rate

r,— Ty —(Tp—Tm)t/2
grlt] = Yo Z Tw)e 77 . (3.198)

Ve
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Here, § = 2¢7[0]/y/k£(I'y — ') quantifies the initial transfer rate in dimensionless units. The

efficiency for the falling exponential is

e D Dy (1 ot Talte) (1 (bt 2
(Tout + Tm)(Tp = Tw) (1 — e Pota) ((1 — e Tp=Tmlta) §2 4 1)

(3.199)

Once again, this is maximized for infinite § and is ultimately limited to n2.

3.3.4.3 Gaussian

For the input field o p[t] = AeTo(t=ta/2)/2 (Figure 3.4(c)), the efficiency is maximized for
the transfer coupling rate
\/ﬁe [2(t—ta/2)%/2 eIm(t—ta/2)/2, —I'Z,/(8132)

w142, fert [Fogobte] — opp [Totelen2] o

grlt] = (3.200)

Here, 0 = g7[0] exp [((Fm + I‘gta)/(Qrp))2 /2} 71/4\/2/ /KT, quantifies the initial transfer rate in

dimensionless units and erf[z] is the error function. The efficiency for the Gaussian is

2

2
g = Malome 2 2 D(3.201)

Towt + I 9erf [Fpta} (52 (e ¢ [Fm—i-l; ta} —erf [Fm 1; taD + 1)

T (f2 +tb—m) (1 _ ef(FoutJrFm)tc) 52 (erf |:1"m+l"gta:| —erf [Fm—rgta

3.3.4.4 Sine squared half-wave pulse

For the input field iy p[t] = Asin® [rt/t,] (Figure 3.4(d)), the expressions for gr[t] is easy
to find by using Equation 3.195, but is more complicated (and less easy to display as a simple
expression) than for the previous examples. The integrals in Equation 3.187 can also not be done
analytically. However, everything can be solved numerically, given values for all of the system

parameters. This is what I have done to create the graphs in Figures 3.4(d) and 3.5.



Chapter 4

Theory III: Interferometric linear measurement

In Sections 3.1 and 3.2, T derived expressions for the field spectral density Sy, a0, [w] M-
mediately at the output of the optomechanical system. In this chapter, I will relate the voltage
spectral densities that we measure to Sq, ;agu [W]-

In the following sections I use the fact that the cavity output fields in Section 3.1 took the
form

doalo] = Y {ailwléilw — o) + Bilwlé]fw + wf - 2wal} (4.1)

i={m,l,r,0}
where the sum is over the mechanical (m), left port (1), right port (r), and internal (0) cavity
operators, wy, = wq, and w] = w, = wj = 0. The frequency dependent coefficients of each operator
are contained in the ¢;’s and f;’s. The output fields in Section 3.2 took the same form, but with
wq = (wr +wp)/2, Wy, = wy, and W] = w;, = wj = 0. As each & operator only enters the expression

. . P o
for oyt at a single frequency, there are only a few nonzero combinations of dout,1 and Aot 1!

(ausalorltonln]) = Saoao@2)dur,-n: (42)
(towalwnlabualon]) = (Somaon 1] + 1), (43)
(Gout 1 [w1]dout 1 [w2]) = =948 osslwd — W1]0u; 4205 (4.4)
<dlut,l[w1]&iut,l[w2]> = —e NG [wd + w20y 4~ (4.5)

where for the single drive case, ¢4 and wq are the phase and frequency of the drive, and for the two

drive case, ¢q — (¢r + ¢p)/2 and wg — (wr + wp)/2. The spectral densities are related to the a’s
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and B’s above by

Sammaacl] = D {lealu] Pl + Bilu] 2" + 1)} (4.6)
t={m,L,r,0}

Somane ] 1 = 3 el Pl + 1)+ |8l P} (4.7)
t={m,L,r,0}

Seross|w] = —e 2% Z {ozz- [wa + w]Bilwd — wnt™ + a[wyq — w]Bilwq + w](n® + 1)} . (4.8)
i={m,l,r,0}

I have defined the terms Scposs[w] in a way that will highlight their interference with the
Saoutaon [w]’s. For the specific output field results found in Sections 3.1, the cross terms turn out to
be zero for a red or blue drive or any heterodyne measurement (wp,o # wq). The one case where
they do not vanish is when the detection is homodyne and there is a single, on-resonant drive.
Making only the approximations that No = 1, wpo = wq = We, and Xm[—m| = 0 (true for a

high-Q mechanical oscillator), the cross terms satisfy the identity

Seross|w] + Sgrosslw] = 9251Fm(1 + Q”En)’XC[wc + W”2|Xm [W]|2 (4.9)
= Sgoutaout [wc - w] + Sgoutaout [wc + W] (410)

Here, I have used a superscript ¢ to indicate the g-dependent part of the spectral density:
0
Sgoutaout [w] = Saoutaout [w] - Sgo_u)taout [W] (411)

This division of notation is important, as the cross terms only interfere with the g-dependent part of
the spectral density, which contains information about the mechanical sidebands and is proportional

to gQ.

The cross terms do not affect the g-independent part of the spectral density, which is the
contribution in the absence of optomechanical coupling (¢ — 0) and contains information only
about the cavity and input field thermal populations (it is zero in the absence of thermal photons).

The cross terms can also be nonzero in the case where there are two equal drives, one close
to optimal red-detuning w, = W, — 2, — € and one close to optimal blue wy, = W + QA + ¢,

with the sidebands separated by many mechanical linewidths but still within the cavity linewidth

(' < € < k). If the local oscillator frequency is centered between the two sidebands at wy,o = we,
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they are folded on top of each other and the measured frequency is w = €. In this case, the cross

terms take the form

Scross[w] + S:ross[w} = QQEIFm(l + 2nfm)’XC[wC + W]|2|Xm[Qm —w+ 6”2 (412)
= Sgoutaout [wc - CL)] + Sgoutaout [wC + (JJ] (413)

Note that these cross term relations are specific to the optomechanical model used in Sections 3.1

and 3.2.

4.1 Linear, interferometric measurement

I could imagine detecting the signal at the output of the cavity by just putting a microwave
voltage detector at the output of the cavity and directly measuring the voltage spectral density
at high frequency. However, it is technically difficult to digitize and store data taken at gigahertz
frequencies, so we typically use an interferometric scheme to mix the signal down to lower frequency
(usually in the kilohertz or megahertz range). In a homodyne detection, a single input signal is
split into two parts traveling along different arms of an interferometer, the signal arm and the
local oscillator arm. The signal arm contains the system of interest, which imparts a phase shift
on the signal. Interfering this signal with the local oscillator (LO) allows the relative phase to be
measured. Homodyne (w0 = wq) and heterodyne (wr,0 # wq) detection can both be done in either
the optical or microwave regime (Figure 4.1). In the optical case, the interference is done using
a beam splitter and the detector is a photodetector. In the microwave case, a frequency mixer is
used to mix the signal with the local oscillator to produce a low frequency voltage signal which
can be digitized. Appendix D.1 details the relevant field transformations for beam splitters and
photodetectors in the optical case and explains how these elements can be combined to form a
single-quadrature or two-quadrature detector. As the physics behind the microwave and optical
cases is identical, I use this optical realization to model all interferometric detection. This chapter
relies heavily on the results in appendix D.1 and I thus recommend reading it first.

In the case of an on-resonant drive for an optomechanical system, homodyne detection folds
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Figure 4.1: Interferometric detection. (a) Homodyne detection in the optical regime. A single
laser tone is split into two pieces, one of which interacts with the system of interest in the signal
arm of the interferometer. The other arm acts as a local oscillator. Using a photodetector to
measure the interference of the two tones then allows a measurement of the phase shift due to
the system of interest in the signal arm. (b) Homodyne detection in the microwave regime. The
final beam splitter and photodetector are replaced by a frequency mixer and a voltage detector.
(c,d) Heterodyne detection in the optical and microwave regimes. These are the same as homodyne
detection except that the local oscillator is provided by a different source at a different frequency.
As explained in Appendix D.1, n,0 must be large (nLo > 1 — n1,0) in order to avoid adding extra
noise to the measurement. In the homodyne case, 7y is not particularly consequential so long as
the local oscillator power is much larger than the signal power (which could also be accomplished
by attenuation or drive tone cancellation in the signal arm.)

the two sidebands on top of each other. Mathematically, this is evidenced by the cross terms
introduced above being nonzero, allowing interference that can result in a better signal to noise
than for heterodyne. In the case of the two driving tones considered in Section 3.2, the equivalent
of homodyne detection is to place the LO at the cavity resonance, once again folding the sidebands
on top of each other. However, in many cases heterodyne detection is preferable - for instance
when the signal frequency of interest from homodyne detection is too large, or when (as is the case
for a far-detuned drive) homodyne detection does not provide an improvement in signal to noise.
Heterodyne detection would also be necessary for a sideband asymmetry measurement because the
information of interest is in the differences between the two sidebands. Therefore, from here on,
I only consider homodyne detection in the case where the single drive is near cavity resonance or
where the two drives are equal in magnitude. For all other cases, the heterodyne result is the one

that is relevant.
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4.2 Single quadrature measurement

In Appendix D.1, I define two quadratures'of the field a?[w] incident on a linear detector:

A~

Xw] = XTw] = dw+wro] + dfw — wro], (4.14)

Viw =VTw] = —j(dw+wro] — dfw —wro)). (4.15)

A linear detector modeled as just a beam splitter followed by a photodetector measures an intensity

I only dependent on a single quadrature of the incident field (Equation D.9):

fw) =I"w] = Avoviro(l —mo) (— sin[¢ro] X [w] + cos[qsLO]fV[w]) : (4.16)

where Aro and ¢r,0 are the amplitude and phase of the local oscillator, and 7o is the detection
efficiency. In this chapter, I calculate the measured intensity spectrum for a linear detection of the
output field from an optomechanical system. I introduce a beam splitter with transmission 7 placed
between the system of interest and the detector to account for any loss®. The field incident on the
linear detector is then di, = VNbous + J \/ﬂévac. Using the results in Appendix D.1 (specifically

Equation D.15) and writing in terms of Scyess|w], I find

1 1
SIp?Oton [W] = % + 5 (Saoutaout [WLO - W] + Saoutaout [WLO + W]) (417)

1 , )
d (0B o]+ OO 1)

where S}’?Oton [w] is the intensity spectral density written in photon units. For a heterodyne mea-

surement, the cross terms are zero and the previous expression reduces to

1 1
STl = g g Seowaon 10—l H Samaou w10 + ) (4.18)
1 1
= o + B (59720 wro —w] + 8970 fwro + w)) (4.19)
1
+§ (Sgoutaom [CULO - UJ} + Sgoutaom [wLo + w]) .

! Note that the quadratures I use are always defined as a sum of a field at one frequency and a daggered field at
a different frequency, where those two frequencies are symmetric about the LO frequency. Specifically, they are not
the real and imaginary part of the microwave or optical field at a single frequency.

2 The beam splitter transmission (or quantum efficiency) 7 can be related to an effective number of added noise
photons n,44 vian = (1+2nadd)7l such that the constant factor in front of the right-hand side of the single-quadrature
expressions for Srrw] becomes 1/(2n) = 1/2 + nada.
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For a homodyne measurement with an on-resonant single drive or two equal red and blue-detuned
drives, the cross terms can maximally interfere with the spectral terms (for the choice ¢ro = ¢q)*:

1 1
S??oton[w] = — 4 5 (Sg—>0 [WLO _ UJ] + Sg—>0 [WLO + w]) (420)

2,’7 QoutGout QoutGout

+ (Sgoutaout [WLO - CL)] + Sgoutaout [WLO + (.U]) '

The homodyne and heterodyne cases both have the same half-photon contribution from added
noise and the same contribution from the Sg;f’aout [w] terms (which contain only information about
thermal photons). The difference in the two expressions is the factor of two enhancement of the
S9 aent [w] terms in the homodyne case. As these terms contain the information of interest about
the mechanical sidebands, this coeflicient results in an obvious factor of two improvement in the
signal to noise of the measurement. However, there is another factor of two improvement when using
homodyne detection, as both S5, 40w [wLO —w] and S, ., 4. [wLO +w] contain sideband information
(as opposed to only one of these terms in the heterodyne case). This results in an overall factor

of four improvement in signal to noise when using homodyne over heterodyne single-quadrature

detection.

4.3 Two-quadrature measurement

In Appendix D.1, I model a linear detector measuring both quadratures of the incident field
as a 50/50 beam splitter followed by two single-quadrature linear detectors, one of which has an
LO that is ninety degrees out of phase. The two measured intensities then correspond to two
orthogonal quadratures of the incident field (Equations D.17 and D.19, ignoring added noise for

the moment):

V2Ii[w]

drovmo(—mo) = —sin[¢ro]X|w] + cos[¢rLo]Y [w], (4.21)
V2Iol] = sin[pro]Y[w] + cos[¢ro] X [w]. (4.22)

Arovno(1 —nro)

3 In this dissertation, I only consider the choices ¢r.0 = ¢a and ¢1r.0 = pa+7/2, which maximally constructively and
destructively interfere with the spectral terms. However, other choices for ¢ro can lead to complicated interferences.
In particular, for cos[¢a — ¢rLo] = =(3+ Anth 4+ 4nbma)7l/2, the Scross terms will interfere to create maximal squeezing
of the vacuum noise. This is the effect observed in [57, 56].
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I once again introduce a beam splitter with transmission 7 placed between the system of interest
and the detector to account for any loss*. Using Equation D.21 and writing in terms of Scross[w],

the intensity spectral densities for the I and @ quadratures and the quadrature combination Iy =

<ej9f1 + e_jefQ> /\/2 are

N 1 1
z(gt;(}?(Q)[ ] = % + 5 (Saoutaout I:LL)LO - w] + Saoutaout [WLO + LL)]) (423)
1 ; _ —9j _
ii <623(¢Lo ¢d)S:ross[W] + e 2/(¢Lo d)d)Scross[W]) Sos.or 00>
1 1—sin[20 1+ sin[26
S})ghlogton [LL)] = 5 + 2[] QoutGout [WLO - U.)] + 2|:]Saoutaout [LL)LO + UJ] (424)

The plus in the first equation corresponds to the in-phase intensity and the minus to the quadrature
intensity. The equation for Sp,;, is only valid for heterodyne measurement.

For heterodyne measurement, the information of interest is likely only contained in either
Saontaount [WLO + W] OF Saiaou [WLO — w] and thus the best signal to noise occurs when measuring the
combination intensity Ip. A choice of = 7 /4 optimizes the measurement for a signal with original
frequency greater than wr,o, while a choice of § = —7/4 optimizes the measurement for a signal
with frequency less than wr,o. This optimization leads to a result identical (up to an overall factor)
to the heterodyne single-quadrature measurement. This can be understood, as the two-quadrature
measurement results in twice as much noise, but also allows us to detect twice as much signal
information.

For homodyne measurement, the signal in the in-phase channel is optimized (while the

quadrature measurement is furthest from optimized) at ¢ro = ¢q:

1 1
S})I}}?ton[w] — ; 4 5 (SQ%O [WLO _ w] + SQHO [WLO + w]) (425)

Aoutdout AoutAout
+ (Sgoutaout [wLO B UJ] + Sgoutaout [WLO + w]) ’

Sphotenlw) = 717 ,1 (St w0 — W] + 8570 [wro +w]) - (4.26)

IQIQ 2 Qoutdout AoutAout

4 In the two quadrature expressions, I cannot just make the substitution 1 = 1+ Znadd)fl to write them in terms
of added noise. As with two amplifiers in series, the noise from two beam splitters in series does not simply add. The
effective added noise nj4q » from a second beam splitter with transmission 7, added in series with a beam splitter of
transmission 71 = (1 + Qnadd,l)fl is ngdd’g = Nada,2/M. In the case of the two-quadrature measurement, n; = 1/2
from the 50/50 beam splitter inside the linear detector, and 72 = 1 = (14-2n44a) "' = (1+2nlqam) " = (1+nhaq) "
The constant factor in front of the two-quadrature expressions then becomes 1/ =1+ n,44.
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The in-phase result is the same as the single-quadrature homodyne measurement, except with twice
the added noise. Thus, using a two-quadrature detector to make a homodyne measurement always

hurts the signal to noise by a factor of two.

4.4 Microwave detection and amplification

In the microwave regime, a frequency mixer and voltage detector replace the beam splitters
and photodetectors in the discussion above (and in Appendix D.1). The voltage measured takes the
place of the intensity, as both are a linear combination of fields and their daggers. The only differ-
ence is a normalization constant, but this can be absorbed into the proportionality between S7r[w]
and SPP"[w], which is not usually known (calibration of voltage to photon units or mechanical
displacement units is discussed in Section 6.2).

The most notable difference between microwave and optical measurements is that microwave
frequency mixers and detectors typically add many quanta of noise (the quantum efficiency 7 is
very small). To decrease the effective loss, we amplify the signal prior to the linear detector (see
Figure 4.2). The added noise at the input of the linear detector is then set by any loss (modeled as

beam splitter with transmission 7’) prior to the amplifier, which can in practice be much smaller

A A
[ &
vac ¥ vac

. ...E -

Optomechanical [—— \: G d,,—> | Linear
System N : Detector
n n

Figure 4.2: Model of amplification and added noise. Poor quantum efficiency n between the exper-
iment and the detector can be overcome by adding an amplifier prior to that loss. The added noise
is then set by the quantum efficiency 7’ before the amplifier.
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than the detector noise:
1 A . B R o1 1—n, . .
\/Wdin = dout +J \/754 ac T+ jﬁ1 / W/nfvac + amplifier noise (4.27)
=1y
R Gout + J p Euae + amplifier noise. (4.28)

For large gain, the évac term can be made much smaller than the combination of the f(,ac

term and
added amplifier noise. Then the n dependence disappears and the added noise is set by only the
loss prior to the amplifier. Note that the amplification will similarly make the half quanta of added

noise due to a two quadrature linear detector measurement negligible.

4.4.1 Phase sensitive amplification

A phase-sensitive amplifier (such as a Josephson parametric amplifier, JPA) amplifies only

one quadrature of the microwave field (as detailed in Appendix D.3.3):

Xiplw] = eI (T[] + el [ — 2wi]) (4.29)

Vil = —™* <6_j¢péin,1[w] - j€j¢péiTn,1[W - 2WJ]) ; (4.30)
Yialw]

Xl = 2Ll Vialol = g, (4.31)

where éip(out),1 is the input or output field from the JPA and L[w] is the direct amplitude gain.
When wi,o = wy and ¢,0 = ¢y — 7/4, the detected in-phase intensity (or voltage) is proportional
to the amplified quadrature X’ [w +wj]. Using a two-quadrature linear detector adds no additional
information over a single-quadrature detector, as the quadrature intensity Iq contains only deam-
plified information about Y’ (which will be hidden by the large detector noise). Thus, the choice
to use a phase-sensitive amplifier sets the measurement as single quadrature, regardless of whether
a one or two quadrature linear detection is used, and the results in Section 4.2 are the relevant ones

for an interferometer containing a phase-sensitive amplifier.
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4.4.2 Phase-insensitive amplification

A phase-insensitive amplifier (discussed in Appendix D.2) amplifies both quadratures of the
microwave field equally, requiring an extra half quantum of added noise to preserve commutation re-
lations. This is very similar to the situation of the two-quadrature linear detector. Thus, regardless
of whether a single or two-quadrature linear detection is used after the amplifier, the two-quadrature
results in Section 4.3 are the relevant ones for an interferometer containing a phase-insensitive am-
plifier. Although, in measuring only the in-phase quadrature, a single-quadrature detector may

throw some of the available information away.

4.5 Quantum limits on detection

In this section I will evaluate the above single-quadrature intensity measurement expressions
for the several important cases of optomechanical drives detailed in Sections 3.1 and 3.2 and convert
them into displacement units. This can be accomplished, as we know that the displacement spectral

density of actual mechanical motion should be
SEe[w] = 222, Tioenty X mer ]2, (4.32)

such that the number of mechanical quanta is

R T T e

Ny = =5 =
m 2 T
205,21 J_o

[w]dew. (4.33)

The measured intensity has a complicated proportionality to the displacement spectral density
(which, in addition to mechanical and cavity parameters depends on the local oscillator amplitude,
amplifier gains, quantum efficiencies, etc.) However, the area (and thus height) of the mechanical
sideband in voltage or intensity units is proportional to the actual occupancy of the mechanical
oscillator (and the proportionality coefficient can be calibrated, see Section 6.2). An apparent (or
imprecision) number of mechanical quanta can be found by comparing the height of the measured
background to the height of the sideband peak.

In this section, I will find the absolute limits on measurement imprecision and backaction for

each drive case examined. I assume that there is no excess thermal noise (n!* = n!* = nlt = 0). This
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makes all of the Sf{;toaout [w] terms zero. The results for an optimal two-quadrature measurement
can be found simply from the single-quadrature results, as they are always the same for heterodyne

measurement and a factor of two worse in imprecision for a homodyne measurement.

4.5.1 Single red-detuned drive

One very important drive case is that of the red-detuned drive, as this results in the cooling
and damping of the mechanical oscillator. I will specify to the resolved-sideband limit, as damping
and cooling are both enhanced in this limit and mechanical ground state cooling is possible. The

output spectrum in the weak-coupling regime (Equation 3.76), is then

49% k1ot
Saoutaout [W] = Sgoutaout [w] = Tonfn ><n'l7eH [W - wr] |2 (434)

For a red-detuned drive in the resolved-sideband limit, there is no advantage to making a homodyne
measurement over a heterodyne (since the lower sideband is strongly filtered by the cavity response).
A heterodyne measurement will mix the upper sideband centered at w, + €, down to frequency
w = |lwro — (wr +Qm +9)|, where § is the detuning from the sideband center frequency. The optimal

heterodyne intensity spectral density at this frequency is (from Equation 4.18)

1 +292/<61Ptot £

2
Srrjw] 2 = Moy | X eff [Qm + 0][%. (4.35)

Re-writing this measured intensity spectrum as an inferred mechanical displacement spectrum

gives
. x2 K>
Sirlw] = SgPlw] + Spalw] = 29257177 + 227, Loty [ Xom,oft [om + ]|, (4.36)

Evaluating this spectral density on resonance and writing in terms of number of mechanical quanta
gives

mp (1 +Cr):‘€'

= 4.37

tot __ , imp f
ny =Ny o+ Ny, where n

I have written the imprecision in terms of the red drive cooperativity C, = 4¢%/(kI'w), which is

proportional to drive strength. The imprecision decreases with drive power until it saturates at
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k/(4k1n), which is at minimum 1/4 for the reflection geometry or 1/2 for the transmission geometry.

These results are shown in Figure 4.3(a).

4.5.2 Single blue-detuned drive

The case of a single blue-detuned drive is very similar to the single red-detuned drive except
that the radiation pressure damping is opposite in sign, leading to amplification of mechanical
motion. Once again specializing to the resolved-sideband limit where radiation pressure effects are
maximal, and assuming the weak coupling limit and absence of excess photon noise, the output

spectrum (Equation 3.77) is

4¢*k T
Saoutaout [w] = Sgoutaout [W] = %(nfn + 1)|vaeff [—(/J + wb]‘Q‘ (438)

Once again, there is no advantage to making a homodyne measurement over a heterodyne (since this
time the upper sideband is strongly filtered by the cavity response) and a heterodyne measurement
will mix the lower sideband centered at wp — 2y, down to frequency w = |wpo — (wWp — Q. — 9)|.

The inferred displacement spectral density and mechanical quanta are

. z2 K?
Sprlwl = SEPlw] + Spylw] + 2858 [w] = 29?7%177 + 207 Dot (1, + 1) [ Xom ot [ + 8], (4.39)
niot = P 4 opl 4 oon, nimP — <14€_ Cb)ﬁ. (4.40)
bk17]

The zero point spectral density is Si» and the zero point number of quanta is nyy = 1/2. The blue
drive cooperativity is Cp, = 4¢%/(kI'wm). This time, the number of imprecision quanta decreases to
zero as the final mechanical occupation blows up at C,, = 1. These results for the blue drive are

shown alongside those for the red drive in Figure 4.3(a).

4.5.3 Single on-resonance drive, homodyne detection

The case of a single, on-resonance drive is somewhat different from the red and blue detuned
cases because there is no dynamical radiation pressure. Homodyne detection is often most preferable

because the two sidebands can be folded on top of each other, increasing the signal to noise due to
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Figure 4.3: Mechanical occupancy contributions for various drive schemes. For all graphs, n = 1,
nth = 50, k1 = K, and the best single-quadrature detection result is shown. Imprecisions (dashed),
backactions (dash-dotted), and final or thermal and zero point (solid) occupancies are shown for
each case. (a) Single red or single blue drive in the far resolved-sideband regime. The phonon
occupancies are plotted as a function of cooperativity Cq = 4¢3/(kI'wm) for d =1 and d = b. (b)
Single, on-resonant drive. Phonon occupancies are measured with a homodyne detection scheme
and plotted as a function of cooperativity. The results are shown in the unresolved sideband regime
OQm < k (purple) and the resolved-sideband regime Q,, = 5k (green). (c) Two drive scheme with
unequal drives. The occupancies are plotted as a function of red drive cooperativity with the
blue drive cooperativity fixed at C, = 0.5 (vertical black dotted line). (d) Two drive scheme with
equal drive strengths. Phonon occupancies are plotted as a function of equal cooperativity. The
imprecision is that found in a homodyne, non-overlapping sidebands measurement. Comparison to
(b) shows why the two drive scheme is preferable in the resolved-sideband regime.
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their constructive interference. In the absence of excess photon noise, the output spectrum for an
on-resonant drive (Equation 3.79) is

49251Pm _ _
Saguaon 1] = Stiec ] = 15 (ol = @l + (nfy + Dl -0 + @) . (441)
m

The optimal homodyne single-quadrature intensity (Equation 4.20) and the inferred displacement

spectral density and occupancy are

1 8¢°mI 1
photon . g Rllm f 2
S W] = 2 T2 402, (”m + 2) [Xm [m + 9]|7, (4.42)
, 22 k(1 +v) 1
Sit] = SiPle] + SLulu] + SEle] = ZEL—TC 4 20 Pu(ndy + 3) [0 + 3)14.43)
m
. 1+ 1 C
niet = plP 4t 4 4t = (166/:1): i + 5+ Ek (4.44)

In the last line, the imprecision and backaction are written in terms of cooperativity C' = 4¢?/(kT'y)

and a resolved sideband factor v = 402 /k?. The product of the imprecision and backaction

P, ba _

numbers of quanta is nm’*nb® = k/(16x1) > 1/16. This minimum imprecision-backaction product

is only met for a perfectly overcoupled cavity in the reflection geometry, measured with single-
quadrature, quantum-efficient, homodyne detection. The minimum total added noise occurs when
imp ba _ nSmQL

Nm— = Ngo = 1/4 and is called ‘the standard quantum limit’. The minimum total number of

tot _
m =

quanta at the standard quantum limit is n ni{?p +n2f‘ +nm = 1. The cooperativity required to
reach the standard quantum limit is CS?F = (1+v)/4. Figure 4.3(b) shows the different occupation
contributions resulting from an on-resonant cavity drive.

The standard quantum limit can be restated as a limit on the product of the imprecision
displacement spectral density and the backaction force spectral density (both of which are frequency

independent). These quantities, their product, and their values at the standard quantum limit are

z2, k(1 +v)

Smp - A~ 4.45
T 2CT ki (4.45)
sha RPSpalw]  _ 20TwC (4.46)
xép’Xm,eff[“’]P x%p(l + V)’
: K2
SImPSRy = ijzn?, (4.47)
222 h°T
SQL  _ zp SQL tot
SHQAL = T Spp’ = 53 (4.48)
zp
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Defining SESL in terms of I'toy rather than I'y, is inconsequential in the on-resonant drive case
(because T'tot = I'yy). However, this definition has the nice general property that

sz [Qm] FQO
16598 T Ztnfn’Xm,eﬁ Q] |? = nl,. (4.49)

Thus, plotting an output spectrum in units of Sy, [w]/ (4S§§L) allows the mechanical occupancy to

be directly read-off as the value on resonance.

4.5.4 Single on-resonance drive, heterodyne detection

While the minimum imprecision-backaction product for an on-resonant drive is achieved only
for a homodyne measurement, there are a few technical reasons it might be preferable to do a
heterodyne measurement. One is that the mechanical oscillator’s resonant frequency may be too
large to digitize easily. Another is that the amplifier may not have enough bandwidth to amplify
both sidebands (for instance if k; < 2€,). A third is that it is necessary to measure the two
sidebands independently in order to see sideband asymmetry. In these cases, it might be preferable
to do a heterodyne measurement even if the imprecision is slightly higher. Here, I assume that I
am interested in measuring the upper sideband. The lower sideband would give nearly identical
results, with the replacement nf, — nf + 1. The optimal heterodyne intensity spectral density,

inferred displacement spectral density, and number of phonons are

1 292/£1Fm
CILCBRTorN
2n K2 +4Q27
222, k(1+v)

SPMw] = by xmlw — @)%, (4.50)

f _
Stotw] = 7(?,%11—}1177 + 2m§menm|Xm [w — @] |?, (4.51)
tot K(1+v) th
= — . 4.52
M 4Ckn M (1+v) (452)
4.5.5 Generalized single-drive Heisenberg measurement relation

I can write the results of the previous few pages in a more generalized way. The general

imprecision for a single-quadrature homodyne measurement (wpo = wq, identical to a heterodyne
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measurement for off-resonant drive frequency) is

i Ftot
P = . 4.53
T A T T B P O 59
The generalized backaction fluctuations are
2k(1 + 2nth
= T2 (o = P+ xcloa + ). (4.54)
O

The product of these two quantities realizes a Heisenberg uncertainty relation between measurement

and perturbation of the motion:

£(1 4 2n8") |xclwa + Qm]]* + [Xe[wad — Qm]]?

pimppba 4.55
S el + Sl — Lot — Sl (45)
k(1 + 2nth) 4A? 1 4N?
SRS 20 (e S [ 4.56
16K1m + k24492 ) — 16 * k2 + 402, (4:56)

This uncertainty relation can be re-expressed in terms of displacement and force spectral densities:

. 8x7, . 22T ; 4N2
s = (o) (Vo) - w2 (152 )
zp m

These relations recover the results obtained above for an on-resonant drive:

imp _ (1 + V)K/ nba _ C<1 + Qn(t:h) nimpnba — H(l + zngh) > i (4 58)
m 16Crin m 1+v mom 16k~ 16° '
For an optimally red or blue-detuned drive they give:
i _ R(l+4v(1£C)  r(1+£0) b _ C(1+ 2n)(1 + 2v) L ca+ 2nh) (4.50)
m 16Ckin(1 + v) 4Crin m 1+4v(1£C) 2(1+C)
imp_ ba _ k(14 2n) (1 + 2v) 21 (4.60)
mom 16rk1m(1 + v) -8’

where the pluses are for the red-detuned case and the minuses are for the blue-detuned case.

4.5.6 Double drive scheme, sidebands not overlapping, heterodyne detection

In Section 3.2, I showed that in the far-resolved sideband regime both the sideband asymmetry
and the quantum backaction could be enhanced by using two microwave drive tones, one optimally

red-detuned and one optimally blue-detuned. For either of these measurements, it is preferable for
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the sidebands to be spaced far apart compared to the mechanical linewidth. The output spectrum,

ignoring excess photon noise, (Equation 3.136) is

_ 49? K1l'tot

462 k1T ot
f
Saoutaou [«] Tnmb(m,eff w—w]]? + %

(nL, + 1) xmer[—w + wp] 2. (4.61)

Assuming the local oscillator is not at the average frequency of the two drives (wr,o # (wy +wp)/2),
the sidebands do not fold on top of each other and the results in the single-quadrature scheme for

the red upper sideband are

1 29? K,lrtot

Sl = g+ T i e[S + (4.62)
222 K
tot _ Zzp 2 f 2
Sz(;: [UL)] == m + 2$anmrtot |Xm76ﬂ‘ [Qm + 5” 5 (463)
tot k(1 +C —Cp) £
= T s . 4.64

The imprecision for the lower blue sideband is the same with C;, — Cy, in the denominator. These im-
precisions (and the accompanying final occupancies) are shown in Figure 4.3(c) for a fixed blue drive
power as red drive power is increased. The backaction contribution to motion and the backaction-

imprecision product for the red sideband are

Cr + Gy i #(Cr + Cp)
ba _ imp, ba — 4
Ny —2(1 -G Mot T 78@/{177 ) (4.65)

If the two drives are of equal strength C; = Cp, = C, the backaction takes the form n = C (Equation
3.122). The imprecision-backaction product is then ninPnP® = x/(4rn) > 1/4. This product may
not seem impressive compared with the product achieved with an on-resonant drive. However, the
cooperativity required to reach this point is C = 1/2, making it considerably easier to achieve in

the resolved sideband limit than that required with an on-resonant drive, C = (1 + v)/4.

4.5.7 Double drive scheme, sidebands not overlapping, homodyne detection

If the interferometric measurement of the two-drive scheme is done with the local oscillator at
wro = (wr +wp)/2 and the two drives are of equal strength g, = g, = g, the signal to noise can be

improved in exactly the same way it was for the single on-resonance drive case when a homodyne
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measurement was used. The measured frequency will be w = [(wp, — wy)/2 — (Q + J)| and the

results are

2
photon o i Sg Kil'm f 1 QO 5 2 4
SII [w] - 277 + K2 (nm + 2)|XH1[ m + ” ’ ( 66)
tot Tk 2 . 2
1
ptot = B pthy 2 e (4.68)

16Ckin me2
The imprecision-backaction product is then the same as for a single, on-resonant drive measured
in the homodyne configuration: nmnb® = k/(16rkm) > 1/16. However, as with the heterodyne
two-drive detection above, this point is achieved at far less power (CSQF = 1/4) than with the

on-resonance drive (C5? = (1+v)/4) in the resolved sideband regime (compare Figure 4.3(b) and

(d))-

4.5.8 Double drive scheme, sidebands overlapping

As I showed in Section 3.2, overlapping the two sidebands from two equal drives results in
backaction evasion. This effect results from the fact that the mechanical state measured this way is
stationary and the backaction force acts on the quadrature orthogonal to the one that is measured.

In this case, the output spectrum is (Equation 3.136)

4%k T
Suomaonle] = T (208 +1) Iyl — wi]l? (4.69)

K2

The measured heterodyne intensity, inferred displacement spectral density, and mechanical occu-

pation are
oton 1 4 F
SH = g ( ) Xon 2 + 3] (4.70)
1
tot _ = 2
sz [w] - CFm’iln + 2 F < 2) |Xm [Qm + 5” ) (471)
tot K th
= 5 4.72
Mm 8Crm i 2 (4.72)

The imprecision number of phonons for the overlapping sidebands is only half of that with non-

overlapping sidebands. This makes sense from a quantum information standpoint because only one
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quadrature of the mechanical field is measured (and thus an extra half quantum of added noise

from measuring both quadratures is not required).

4.5.9 Summary of results

The imprecisions for situations in this section with large dynamical backaction (the single red
and blue-detuned drives and two drives of unequal amplitude) are listed in Table 4.1(a). Imprecision
and backaction occupations for situations with zero net dynamical backaction (the on-resonance

drive and two drives of equal amplitude) are listed in Table 4.1(b).

(a) drive pimp nba niPba
red k(1 +C)/(4riCn) C/(2(1+0)) K/ (8k1m)
blue k(1 —C)/(4riCn) c/(2(1—-C)) K/ (8kin)

double (NO) || k(1 4+ C; —Cp)/(4k1Can) | (Cr +Cp)/(2(1 4+ Cr —Cp)) | K(Cr + Cp)/(8k1Can)

(b) drive meas nimP nba nmPnba
on-res hetero || x(1+v)/(4kiCn) | C/(1+v) | k/(4Kn)
on-res homo || k(1 +v)/(16xCn) | C/(1+v) | K/(16K1n)

double (NO) | hetero k/(4K1Cn) C k/(4r1m)
double (NO) | homo k/(16k1Cn) C k/(16K1m)
double (O) | hetero k/(8x1Cn) — —

Table 4.1: Summary of imprecisions and backactions for different cavity drive cases. Quantities are
written in terms of the cooperativity C = 4g?/kTy, the resolved sideband factor v = 492 /k?, and
the interferometer quantum efficiency 7. The column ‘drive’ details the nature of the optomechan-
ical drive. ‘NO’ indicates not-overlapping sidebands while ‘O’ indicates overlapping sidebands. (a)
Results for cases where the net dynamical backaction is large, relevant for heterodyne detection in
the resolved sideband limit. The two-drive result is thus for unequal amplitude drives and refers
to the imprecision of the sideband associated with drive d. The results here apply to both single
and two-quadrature detection as well as both homodyne and heterodyne detection. (b) Results
for cases where the net dynamical backaction is negligible. The column ‘meas’ indicates ‘homo’
for homodyne measurement and ‘hetero’ for heterodyne. Thus, the two-drive cases are for equal
amplitude drives (¢ = g, = g). The results shown are all for single-quadrature detection. Two-
quadrature detection results are the same except that the imprecision is a factor of two larger for
homodyne cases.



Chapter 5

Device design and fabrication

In this chapter, I will discuss the different types of devices we have fabricated and measured.
I will first explain the types of measurements of interest and the device parameters needed to
optimize those measurements (Section 5.1). I will then discuss in detail the first major class of
devices we made, namely ones with a wire or beam as the mechanical element (Section 5.2). As
I will show, these devices do not achieve the best optomechanical coupling to date; however, they
require less fabrication capabilities than the devices that have higher coupling and do achieve very
high force sensitivity. I will first discuss the optimal parameters for this type of device and then
explain their fabrication and achieved parameters. Lastly, I will briefly discuss devices with a
suspended drum-like membrane as the mechanical oscillator, as fabricated by our colleagues at

NIST (Section 5.3).

5.1 Quantities to optimize by fabrication

There are several quantities that can be designed on the device. For the cavity design, we
control the cavity capacitance C, inductance L, coupling capacitance C., and device geometry
(transmission or reflection), or put in other terms, the cavity resonant frequency w., equivalent

parallel RLC impedance! Z. = \/L/C, and coupling rates x; and &, (these quantities were related

! The impedance Z. = 1/L/C is the cavity impedance of the parallel RLC circuit equivalent to the actual circuit of
interest. This should not be confused with the characteristic impedance of a transmission line, which is Zo = \/L/C
where £ and C are the inductance and capacitance per unit length of the transmission line. For a shorted \/4
transmission line resonant circuit as in [10] and [45], Zc = 4Zy /7, while for an open A/2 resonant circuit as in [12],
Ze =220/
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in Chapter 2).

For the mechanical design, we control the geometry and tension of the mechanical element.
For a wire device, the geometry includes the length [, width w, thickness ¢, and spacing s between the
wire and the ground plane. For a suspended membrane device, it includes the size and shape of the
membrane and the height above the substrate. These mechanical parameters control the mechanical
frequency €,, mass m, and loss rate I'y,. Both the cavity and mechanical parameters control
the optomechanical coupling G = dw./dx. Ideally, the best device would have both the highest
optomechanical coupling and lowest mass possible. However, in practice, these two quantities trade
off depending on fabrication parameters. Thus, it is important to see how measured quantities,

such a force sensitivity or optomechanical control, depend on this compromise.

5.1.1 Optomechanical control

Many of the experiments of interest, such as dynamical radiation pressure cooling and amplifi-
cation of mechanical motion (Sections 3.1-3.2), quantum backaction (Section 3.2), and preparation
and readout of the mechanical oscillator in time (Section 3.3) are optimized by having a large
single-photon optomechanical coupling gy between the mechanical oscillator and the cavity. The

coupling can be written in terms of cavity and mechanical parameters

G o dwc o dwc dC’tOt o —We dCtot o —szC dCtot (5 1)
N dr - dCtOt dx a 2Ct0t dzx N 2 dz ’ '
—wf ZC dCtot h

2 dx 2mQy

go = zep: (52)

where Ciot is the entire capacitance of the circuit (Cioy = C + C¢). From this expression, it is
clear that it is preferable to have a large cavity frequency and large zero point motion (or small
mechanical mass and resonance frequency). It is easy to see why the quantities G' and z,, trade off
- in order to achieve a large change in capacitance per motion, the mechanical oscillator should have
a large surface area. But in order to have a small mass, the mechanical oscillator should have small
dimensions. Within the microwave regime, it is not possible to dramatically increase the cavity

frequency above ~10 GHz without making the energy comparable to the superconducting gap of
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aluminum. For a given cavity frequency then, it is preferable to have large cavity impedance. This
makes sense because in a higher impedance cavity, the mechanical motion will modulate a larger
fraction of the total capacitance and thus have a higher participation ratio C’t;% (dClot/dx).

I have so far only said that it is good to have a large go (and by association a large maximum
g = goy/nd). But large compared to what? There are three important thresholds of coupling that
allow interesting physics. The easiest coupling benchmark to reach is that of large cooperativity
C = 4¢?/(kI'ym) > 1. For a red-detuned drive in the resolved sideband limit, a cooperativity equal
to one allows doubling the mechanical linewidth and decreasing the mechanical occupancy by a
factor of two. For a blue-detuned drive, it allows a decrease of the mechanical linewidth to zero and
arbitrary amplification of mechanical motion. Cooperativity greater than or equal to one allows
access to the standard quantum limit, both for a single drive in the unresolved sideband regime or
equal red and blue-detuned drives in the resolved sideband regime. Cooperativity equal to one is
also the coupling required to realize ideal conversion between itinerant photon and phonon energies
for a red-detuned drive applied to a reflection geometry system in the resolved sideband limit.

The second interesting benchmark for the coupling is the quantum-enabled regime: C =
4¢? / (kT mnt?) > 1. This quantity is a ratio between the rate of coupling to the rate of mechanical
quantum decoherence (the rate that a single thermal phonon enters the mechanical oscillator).
Having C > 1 is thus required to transfer, store, and retrieve microwave states with energies on the
order of a single photon. For a red-detuned drive in the resolved sideband regime, the quantum
enabled regime allows cooling to a mechanical occupancy less than one. The onset of the quantum
enabled regime is also the point where the quantum backaction motion of the mechanical oscillator
becomes larger than its thermal motion, for either a single drive in the unresolved sideband regime
or two equal drives in the resolved sideband regime.

The third coupling benchmark of interest is strong coupling: S = 4¢?/k? > 1. This regime
allows the total mechanical linewidth to become equal to the cavity linewidth, causing the two
resonant structures to undergo normal mode splitting. The onset of strong coupling, S = 1, is also

the point where the equations of motion are critically damped. Below this coupling, the equations
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of motion are overdamped and application of a drive tone swaps itinerant photons to mechanical
phonons and vice versa, but there is no oscillation of energy. For stronger couplings, the equations
of motion are underdamped, and application of a drive tone causes energy to oscillate back and
forth between the cavity and mechanical oscillator faster than it can be lost from the cavity. For
example, strong coupling would be crucial for an experiment where the same cavity was coupled to
both a mechanical oscillator and a qubit and the qubit was used to prepare arbitrary states of the
mechanical oscillator. There are also many interesting things that can be done if an optomechanical
system is in the single photon strong coupling regime: 4g3/k? > 1 (see reference [93]). However,
this regime is currently out of the reach of experiments.
The three different coupling regimes, written in terms of device parameters are

c— 44> _ 2hG%ng G 44° 2h2G%ng

. 44? _ 2hG%ng
Kl emQmly’ Klpnth — kgTrmIy,’

k2 K2mQy

S= (5.3)

Here, kp is Boltzmann’s constant and 7' is the temperature of the mechanical oscillator. These
expressions all benefit from large G, small k, and small m. However, it is useful to see how they

differ in their dependence on I'y, and y,.

5.1.2 Force sensitivity

An important experiment with a different goal than optomechanical control is that of force
sensitivity. In this case, the idea is to detect some external force acting on the mechanical oscillator.
The sensitivity to this force will be limited by mechanical motion due to sources other than this
force: namely thermal, backaction and imprecision motion. Assuming that the power used to
measure is high enough to decrease the imprecision below the thermal noise but not yet high
enough to create backaction motion comparable to the thermal motion, the force sensitivity will be
limited by the thermal force spectrum: S}}IF = 4kpTmes'm, where meg is the effective mass of the
mechanical oscillator, discussed in Appendix E. The best force sensitivity is achieved by having the
smallest mass and mechanical loss and does not depend at all on the coupling strength (as long as

it is high enough to reach the regime where thermal noise is much larger than imprecision noise).
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In experiments, we observe that this simple picture is not quite true. In practice, the me-
chanical oscillator heats up as a function of incident microwave power, P,,. Using the data from
references [10] and [70], it is possible to make an empirical law for this dependence (Figure 5.1).
Fitting the two sets of data to power laws (shown in red), I find Ty, = 29P%35 for reference [10]

and Ty, = 71Pi?l'14, where Ty, here is in millikelvin and P, is in picowatts. Compromising between

1/4

./~ (shown as a black line), I find a reasonable approximation

the two with a power law of T}, o< P,
to the data. In this case, the extra noise due to this thermal backaction force on the mechanics will
hurt the force sensitivity as a function of power. It is therefore optimal to work at a power where

the imprecision and thermal backaction are in some sense balanced. The power dependence of the

two contributions at the mechanical resonance goes as

2 2 12
1/4 ; mZaQs T
/ and gimp _ eff*“m* m

Sth. = damegT i Py P =5 P (5.4)

Here, I have used « to replace kg and the proportionality constant of the power to temperature
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Figure 5.1: Power dependence of mechanical temperature in wire devices. (a) Mechanical temper-
ature as a function of incident microwave power. The data is from references [10] (purple) and [76]
(green). The purple and green lines are power law fits to the data, while the black line is a com-
promise between the two power laws. As the microwave power increases, the mechanical oscillator
is parasitically heated. (b) Force sensitivity as a function of incident power when parasitic heating
is taken into account. The power dependent thermal force spectral density is shown as a black
line. The imprecision (dashed line) and total (solid line) force spectral densities are shown for two
different coupling strengths, G = 27 x 1 kHz/nm (red) and G = 27 x 30 kHz/nm (blue). The best
force sensitivity and power required are both lower for larger coupling. This graph was made with
device parameters similar to those of reference [76].
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relation and B to store the cavity parameters and geometry as well as the added noise of the

measurement. The power that minimizes the total force noise on resonance is as follows.

2 0212
im —3/4 Bme erm
dP (S}t?h + Sp p) = amegymb;, M- W =0, (5.5)
) QQ T 4/5
Poptlmal _ ﬁmeff m' m '
: (Prenete) (5:6)
im m3 er?n 2/5
(S%h + Sp P)min = 5a?/5pl/5 <eﬂG> ) (5.7)

In this case, I find that the force sensitivity once again depends almost linearly with small mass
and mechanical loss. But I now also find that the force sensitivity is improved by small mechanical

frequency and large optomechanical coupling.

5.2 Wire devices

When we began studying optomechanics, our fabrication capabilities were limited. Thus,
we wanted to make a device that only required using planar fabrication techniques such as simple
lithography with no structures suspended above the chip. We opted to suspend the mechanical
element by etching away the silicon substrate rather than creating extra sacrificial layers. To
form an optomechanical device in a planar geometry, the mechanical oscillator must modulate a
capacitance between two pieces of metal in the same plane. A long wire is then the best choice for
maximizing surface length while also maximizing motion in the plane. We also chose to make the
cavity and mechanical oscillator out of aluminum because it is superconducting at low temperatures
and unharmed by the silicon etching. In this section, I will talk about the best design parameters

for such a wire device, how it is fabricated, and the parameters we were able to achieve.

5.2.1 Wire device design

In this section, I will try to find relationships to predict the mechanical resonance frequency,
mechanical linewidth, and optomechanical coupling based on design parameters. That will allow me

to write the quantities of interest above in terms of design parameters to see how the experimental
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quantities of interest can be optimized by design choices.

5.2.1.1 Mechanical resonance frequency

For a wire under high tension, the frequency of the fundamental mode can be found from the

speed v of propagation along the wire:

v 1 T 1 [FEpjewt 1 [FEpe)l
Qn =2 — =2 — [ — =2 — =2 — - .
AT N i T AN et (2\/ pA1> z (58)

where 7 is the tension, Fa; and pa; are the Young’s modulus and density of aluminum, and e is

the strain experienced by the aluminum. In the absence of tension (see [94, pgs. 233-236] with the

understanding that I, is incorrect and should be I,), the resonance frequency is

EI, /co\2 Ea(tw3/12) /co\2 Ea\ w
O = 07— [ EANWT ) (CONT _on s 103,/ EA ) Y .
pA ( l ) pa1(wt) < ! ) T s pal ) 12 (5.9)

where I, is the polar moment of inertia about the direction of motion [94, pg. 204], A is the cross

sectional area of the wire, and ¢y = 4.73004 specifies the mode shape of the lowest mechanical mode
of a doubly-clamped beam. Note that while the expression for high-tension does not depend on ¢
or w, this expression does and I would find a slightly different expression for the frequency of the
out of plane mode: Qy, = 27 x (1.03y/E/p)t/I>. More generally [95], the resonance frequency for

any suspended wire or beam is

EAI w 6[2

which reduces to the above expressions for very high or low tension.

The tension turns out to be a very important, controllable quantity. Without annealing, we
find that our aluminum films (and thus our wires) at room temperature are under compressive
stress. When such a wire is cooled down, the aluminum shrinks more than the silicon, making
the compressive stress smaller. The low-temperature resonant frequencies that we see for wires
fabricated without annealing are consistent with little to no tension. We fabricate high-tension

wires by annealing at a high temperature (specifically 340° C = 613 K). This makes the atoms
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in the wire more mobile and they more quickly relax to their lowest energy configuration. There
will now be some high temperature where the aluminum and silicon are the same length with no
tension, and thus the aluminum will be under tension for lower temperatures. Because we cool the
wires somewhat slowly, it is unlikely that this equilibrium temperature is 613 K, but it is above
300 K, as the annealed wires seem to be tensioned at room temperature. The equation governing
thermal expansion is dl/dT = «[T|l, where «[T] is the coefficient of thermal expansion. At high
temperatures (7' > 100 K), « is relatively constant, so I can integrate this equation to find the

expected amount of expansion/contraction:

2 2 dl
a/ dr :/ —,lp = LT, (5.11)
Ty Iy l

The coefficients of thermal expansion for aluminum and silicon near room temperature are ap; =
23 x 105 K= and ag; = 3 x 105 K='. At low temperatures, I can look up the measured relative
linear expansion coefficient Al/l referenced to room temperature in a book, such as in reference

[96]. This gives nearly temperature independent values near zero Kelvin:

Al [a1[0 K] — 1A1[300 K]
< z >A1 [1[300 K] o 12
Al Isi[0 K] — I5i[300 K]
= = = —0.0005. 5.13
( l )Si I5i[300 K] (5.13)

If the aluminum and silicon are the same natural length {* at temperature 7, then the aluminum
will want to shrink more than the silicon as it is cooled down. Because it is attached to the silicon,
it cannot do this and will end up being the length of the silicon. Thus, the aluminum will experience

a strain e. The strains near room temperature (300 Kelvin) and near zero Kelvin are:

H _ lsi[300 K] — 11[300 K] B [*e2si(300—T)

B0 K] = l 111300 K] T [reoa(300-T%) 1 (5.14)
—  elasi—aa))(300-T7) _ 1, (5.15)
Al g0 K] — 1[0 K] (1 —0.0005)Is:[300 K]
Kl = =— = = -1 1
0 K] l Ia10 K] (1 — 0.004)51300 K] (5.16)
(1 —0.0005) (ag—aa)(300-7*)
= ——Jelsi —1. 1
(1—0.004) (5:17)

The strain of the wire is related to the stress o by Hooke’s law ¢ = Fe, where E is the Young’s

modulus. The tension 7 is this stress times the cross sectional area of the wire: 7 = cwt = Epjewt.
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Assuming a range for equilibrium temperature 300 K< 7% < 600 K, I find that the strain (which,
unlike the tension, does not depend on the wire dimensions) is 0 < €[300 K] < 0.006 and 0.004 < €[15

mK] < 0.010.

5.2.1.2 Mechanical loss rate

The mechanical damping is not particularly easy to model, but can be estimated empirically
from some general experimental trends we have observed (see Figure 5.2). This figure shows that the
mechanical quality factor Qn, = Qy, /I increases at least linearly with €y, as tension is changed.
It also indicates that for the lowest frequencies (in the absence of tension), @ ~ 3000, independent

of length. So, I will make the assumptions that Qm[r = 0] = 3000 and I'y,[7] = I'n[7 = 0]. From

Q[T = 0] 1.03 [Ea \ w w
Tolr] = 2 =2 g o2 [2AL) Y g ) 1
7= 3000 ie (3000 par ) 12 B (5.18)
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Figure 5.2: Measured mechanical quality factors of tensioned aluminum wire devices. The me-
chanical quality factor is shown as a function of mechanical resonance frequency for eight different
40 pm wires (blue squares) and eight 50 pm wires (red circles). The only difference between the
eight devices in each data set is tension, which increases the mechanical frequency. The quality
factor increases at least linearly with frequency (the black line corresponds to the average I'y, for
all devices). The data is from reference [97].
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This expression, while empirical, gives some idea of the dependence of the mechanical linewidth
on mechanical oscillator parameters. At the end of this section, this will enable me to write the
quantities of interest from the previous section in terms of device parameters. A more sophisticated
analysis of damping for wire oscillators, which came out after my analysis of wire devices presented

here, can be found in reference [95].

5.2.1.3 Optomechanical coupling

The optomechanical coupling G for a mechanical oscillator coupled to a microwave circuit is

(as found above)

dwe ~w?Z, dCyire

G dr 2 ds

(5.19)

where Cyire and s are the capacitance and spacing between the wire and the ground plane. A
change in position x of the wire is equivalent to a change of the spacing s. There are a few different
ways to model the wire capacitance in order to find dCl;e/ds. Here, I model the wire and ground
plane as two parallel wires or a coplanar stripline (CPS) (Figure 5.3). I also find more specific

numerical results by simulating the full geometry.

(a) (b) (©)
S
l - ! !
4
¥ W
Y ) >« w*€

Figure 5.3: Models for wire capacitance. (a) Geometry of the device, involving a finite thickness
wire of dimensions [ x w x t spaced by distance s from a relatively infinite ground plane. (b) Parallel
wire geometry. (c) CPS geometry.
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Parallel wire model
I can model a wire near an infinite ground plane as just two parallel wires (Figure 5.3(b)). This
should give a lower bound on the capacitance for the geometry of interest. The formula for the

capacitance of two parallel wires is:

2
Cyire = megl | In s—l—w+ <5—|—w> -1

w w
PV (5.20)
5 _
— reol (ln s+ w+ /s(s+ 2w) )
w
2Z.meol s+ w+4/s(s+ 2w) -
G = el [y . (5.21)
2,/5(s + 2w) w
CPS model
The capacitance between two uneven coplanar striplines (Figure 5.3(c)) is [99, pgs. 401-402]:
K/[k] d —00

Cire = 260l : 5.22
fre = 260 K[k] w—I—sd—l—s w+s (5:22)

Here, K k] is the complete elliptic integral®of the first kind and K'[k] = K[k'], where k' and k are
complements: k% + k'? = = /s/(w+s). It is possible to include the effect of finite thickness

of the striplines [99, pg. 415] by using an effective spacing and width:

ot 4
s —=35=s5—A, w—W=w+ A, Az[l%—ln(mu)} (5.24)
47 t
Reference [99] only endorses this method for ¢/w < 0.1, whereas we typically have t/w ~ 1, so we

should be wary of results achieved this way, but they still may give some idea of how G scales with

t. Obviously, this solution will be completely unusable for A > s. The coupling G for the CPS

> : (5.25)

2 The definitions of the elliptical functions used in engineering texts are different from those in Mathematica due
to a difference in the definition of the incomplete elliptic integral of the first kind (Elliptic F) [100, , , ]:

model is

w
w+Ss

S
w—+s

d
G = —eplw?Z.— (K
ds

K[ = ElliptiCK[kz}mathematica- (523)
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Microwave Office simulation of CPS model
I can model the actual wire and ground plane CPS geometry with a finite thickness in microwave
office. The details of these simulations can be found in Appendix F. Simulating for many different

device parameters led to the following empirical formula for the coupling;:

w?Z:.1.31 x 1071
Gls, Lt w] = === ("7 + 161) 1| (5.26)
5.2.1.4 Wire device optimal parameters

There were several device optimization goals I set out at the beginning of the chapter. 1
would like to know how to design a device that either minimizes the force noise or maximizes the
coupling to reach one of the three interesting coupling regimes. However, it is not always possible
to optimize all design quantities at once. For instance, tension increases the resonance frequency,
but also makes it much easier to make a successfully suspended device. Specifically, the longest
suspended untensioned device we have ever made was 50 pum long, whereas the longest tensioned
device was 150 pum long. Therefore, in some cases it may be preferable to add tension and increase
the resonance frequency if it means that a longer length can be achieved.

In the absence of parasitic heating of the mechanical oscillator due to the microwave drive,
the force spectral density is S}?F o Meglm oc w?t/l. This quantity is minimized by having a
wire of the longest length and smallest width and thickness. Because this quantity is independent
of mechanical resonance frequency, a device made to optimize force sensitivity would be a good
example of one where we would increase tension to achieve a longer wire. When parasitic heating

is taken into account, the optimal force sensitivity is

(5.27)

3 3 7432
tot 5/2 meHQmFm w't’s Qm
(SFmin) " ox G > <s+ 16t) 14

This quantity always benefits from long length and small width, thickness, and spacing. However,
it is important to look at the compromise between length and resonance frequency on the right side
of the expression. To understand the trade off, an untensioned wire with typical width w = 150

nm and longest length [ = 50 ym would have the same force sensitivity as a tensioned one with
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a typical strain € ~ 0.006 and length [ = 85 pum. Thus, because adding tension allows wires of
length longer than [ = 85 um, it is desirable. A similar trade off can be made between [ and s.
For example, it would be preferable to make the wire longer by a factor of 1.5 even at the cost of
increasing the spacing by a factor of 2.5.

The first coupling value of merit was the cooperativity

492 G? N ((s+16t)2> 3 (5.28)

C = x ! .
For this quantity, an untensioned wire of length [ = 50 pm would be equivalent to a tensioned
one of length | = 95 ym. Thus, the possibility of making tensioned wires longer than [ = 95 um
makes adding tension desirable. The spacing and length trade off for a tensioned wire goes as
1*/s% or 1*/s*, depending on the relationship between ¢ and s. Thus, this case is more sensitive to
spacing than the force sensitivity was. Here, unlike for force sensitivity where small thickness was
always optimal, it is preferable to increase the thickness if it is larger than the spacing (to increase
coupling) and preferable to decrease the thickness if it is smaller than the spacing (to decrease
mass).

The second coupling of merit was the quantum-enabled regime

49> G?  (s+16t)%3
S o
Klmnth = mly w2tst

C=

(5.29)

This case does not depend on resonant frequency at all, so adding tension to increase the length is
always better. Again, it is preferable to increase the thickness if it is larger than the spacing and
preferable to decrease the thickness if it is smaller than the spacing.

Lastly, the strong coupling limit is

447 G? (s +16t)2\ 1

To make a wire equivalent to the 50 pm long untensioned wire in this case would require a tensioned
one of length | = 190 pm, which has not been achieved. Thus, this is the only example where an

untensioned wire might ultimately be preferable over a tensioned one. Once again, it is preferable
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to increase the thickness if it is larger than the spacing and preferable to decrease the thickness if

it is smaller than the spacing.

5.2.2 Wire device fabrication

In this section, I will describe the wire device fabrication process in an illustrative way. The
detailed step-by-step fabrication recipe can be found in Appendix G. The basic idea is to create a
microwave circuit and mechanical wire, all fabricated out of a single layer of aluminum on an silicon
substrate. A hole is then dry etched in the silicon under the wire in order to suspend (or release)
it. During the etch process, the rest of the chip is protected by a layer of silicon oxide. Tension is
added to the wire by annealing it at high temperature before the etch step.

Many of the steps in the following more detailed description involve photolithography or
electron beam (e-beam) lithography, so I will first explain this process. Lithography (literally
‘stone writing’) is the process used to pattern a design onto the device. There are two main ways
to do this. The first is to add material in a pattern on top of the device. The other is to remove
material in a pattern from the device. Either way involves first making a kind of stencil out of a
polymer resist. If material is to be added, it is then evaporated onto the device. When the resist
is then removed, it takes with it (or ‘lifts off’) the material not intended to end up on the device.
If instead material is to be removed from the device, the device is etched. The resist protects the
areas where etching should not occur.

More specifically, the general lithographic process begins with baking the chip to remove any
moisture, spinning a layer of resist on the chip, and then baking it again to set the resist. For
photolithography, the chip is then aligned to the appropriately patterned photomask, making sure
the chip is in contact with the photomask. The masked chip is exposed to ultraviolet light. For
e-beam lithography, the electron beam in the scanning electron microscope (SEM) is used to write
a pattern in the resist. Either of these processes makes exposed regions of the resist soluble in a
developer. Thus, soaking the chip in developer causes the pattern to be left in the resist. The next

step is to either evaporate metal or to etch the chip. If the former, metal is then evaporated in



121

an e-beam evaporator, after a short Oo ash to promote the metal’s adhesion to the surface. When
the chip is then soaked in acetone, the resist is removed, leaving metal only in the places that were
exposed. If the resist has a pattern for etching instead of evaporation, the chip is then either put in
the etchant (for a wet etch such as hydrofluoric acid) or put in the reactive ion etcher (RIE) for a
dry etch (such as SFg). This etches the places that were exposed and leaves the unexposed regions
unharmed.

I begin the wire device fabrication with a 1 cm square silicon chip with 150 nm thermal silicon
oxide. There are several steps of lithography, so I begin by photolithographically patterning and
evaporating titanium/gold alignment marks (Figure 5.4(a,b)). The titanium is critical to keep the
gold from peeling off of the chip, while the gold creates marks that are easily visible in both the
photo-aligner and the SEM.

I then photolithographically pattern small holes where the mechanical oscillator will eventu-
ally end up. As explained above, this starts by covering the chip with photoresist (Figure 5.5(a))
and exposing and developing the photoresist to leave the parts that were exposed bare of photore-
sist (Figure 5.5(b)). Next, I use buffered hydrofluoric acid to etch the silicon oxide, exposing the
silicon in the holes (Figure 5.5(c)). I then remove the photoresist, leaving the bare chip with holes
(Figures 5.5(d) and 5.4(c,d)).

Next, I do a double-layer resist process to create the microwave circuit and mechanical oscil-
lator in a single aluminum layer. The reason for this double layer process is that the large features
of the microwave circuit are most quickly made using photolithography, while the tiny lines and
spaces required for the mechanical wire and spacing to the ground plane are only achievable with
e-beam lithography. It is important to do the evaporation all as a single step to avoid oxides
forming between the circuit and mechanical element which could prevent good electrical contact.
The double-layer process involves spinning a layer of photoresist on top of a layer of poly(methyl
methacrylate) (PMMA) (Figure 5.5(e)). I first photolithographically pattern the microwave res-
onator into the photoresist (Figure 5.5(f)). I then oxygen ash the device in the RIE. This eats away

at both layers of resist, transferring the resonator pattern into the PMMA (Figure 5.5(g)). I then
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Figure 5.4: Illustrative top view of the fabrication process. The materials are silicon oxide (green),
gold (yellow), silicon (black), and aluminum (light grey). (a,b) Gold alignment marks allow good
alignment between holes, microwave resonators, and e-beam written wires. (c,d) Holes are patterned
and etched in to the silicon oxide where the wire will end up. (e,f,g) The microwave circuit and
mechanical element are patterned in a single layer of aluminum. The wire, ground plane adjacent
to the wire, and wire supports are written together to ensure good alignment and spacing between
these elements.
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Figure 5.5: Illustrative side view of the fabrication process. (a) A silicon/silicon oxide chip is covered
with photoresist. (b) Holes are exposed and developed in the photoresist where the wires will end
up. (c) Holes are etched into the silicon oxide. (d) The photoresist is removed, leaving just the
chip with holes in the silicon oxide. (e) The chip is covered with a double-layer resist: photoresist
on top of PMMA. (f) The microwave circuit is exposed and developed into the photoresist. (g)
The microwave circuit pattern is transferred to the PMMA by ashing. (h) The wire, supports, and
ground plane are e-beam written and developed into the PMMA. (i) Aluminum is evaporated on
the chip. (j) The PMMA is removed, leaving the circuit and wire as a single aluminum layer. (k)
The silicon is etched out from under the wire, releasing it. The rest of the chip is protected from
this etch by the silicon oxide.
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write the wire, supports, and part of the ground plane nearest to the wire using e-beam lithography
and develop the resist (Figure 5.5(h)). Writing the last bit of the ground plane in the e-beam step
allows me to have fine control over the separation between the mechanical oscillator and ground
plane. I then evaporate aluminum on the whole chip (Figure 5.5(i)). One key discovery was that
the brief oxygen ash of the chip before evaporating the aluminum (which is generally good practice
before evaporating as it makes the metal stick better) resulted in problems with later suspending
the wires because they stuck to the substrate too much. The devices were far more successful when
the oxygen ash was omitted. I finally lift off the remaining resist and unneeded metal by dissolving
the PMMA in acetone, leaving the chip with the microwave resonator and mechanical oscillator in
a single layer of aluminum (Figures 5.5(j) and 5.4(e,f,g)).

The next step is to anneal the chip by baking it in a 340 degree Celsius oven for half an
hour. This causes the atoms in the chip to rearrange into a lower energy configuration at high

temperature. When the device is then cooled back down, the aluminum will want to shrink more

Figure 5.6: SEM images of the wire suspension process. The images show one end of a wire, taken
at 30° rotation. Images that show the silicon and wire with good resolution tend to wash out the
substrate, so I have false-colored the aluminum in red. The grey is the silicon oxide, while the rough
black is the etched silicon. A line appears in the silicon where the wire has shaded the etching
process. (a) Image of a wire which has only been partially released. The part of the wire touching
the line is still stuck. (b) Image of the same wire after more etching where it is fully released. The
wire is now parallel to the line on the bottom of the hole.
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than the silicon, as its coefficient of thermal expansion is larger. Thus, the annealing process will
put the aluminum under higher tension.

The very last step was to suspend the wires. I did this by doing an SFg etch in the RIE to
etch away the silicon below the wires, releasing them (Figure 5.5(k)). It is possible to tell if a wire
is released by looking at it in the SEM at an angle. There is usually a line where the silicon in

the hole has been slightly less etched due to the shadow of the wire (see Figure 5.6). If the wire is

Figure 5.7: Images of device sample holders, which provide an interface between microwave cabling
and the on-chip device. (a,b) Original round sample holder with up to four ports. The chip, now
cut to a 6 mm square or half-square, is glued to a recessed area in the holder and the ground and
center conductors of the holder are wire bonded to the chip. We also wire bonded unconnected
grounds on the chip because we found it suppressed other unwanted modes. The vertical piece of
metal on the circle board was implemented to break up modes of the sample box near the microwave
frequencies of interest. The board interfaces with microwave cables via SMP bullet style connectors.
(c,d) Improved sample holder for our experiment. It only has two microwave