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The differential rotation of the sun, as deduced from helioseismology, exhibits

a prominent layer of radial shear near the top of the convection zone. This shearing

boundary layer just below the solar surface is composed of convection possessing a

broad range of length and time scales, including granulation, mesogranulation, and

supergranulation. Such turbulent convection is likely to influence the dynamics of the

deep convection zone in ways that are not yet fully understood. We seek to assess

the effects of this near-surface shear layer through two complementary studies, one

observational and the other theoretical in nature. Both deal with turbulent convection

occurring on supergranular scales within the upper solar convection zone.

We characterize the horizontal outflow patterns associated with solar supergran-

ulation by individually identifying several thousand supergranules from a 45◦-square

field of quiet sun. This region is tracked for a duration of six days as it rotates across

the disk of the sun, using full-disk (2′′ pixels) SOI-MDI images from the SOHO space-

craft of line-of-sight Doppler velocity imaging the solar photosphere at a cadence of one

minute. This time series represents the first study of solar supergranulation at such

high combined temporal and spatial resolution over an extended period of time. The

outflow cells in this region are observed to have a distribution of sizes, ranging from

14–20 Mm across, while continuously evolving on time scales of several days. Such

evolution manifests itself in the form of cell merging, fragmentation, and advection,

as the supergranules and their associated network of convergence lanes respond to the

turbulent convection occurring a short distance below the photosphere.

We have also conducted three-dimensional numerical simulations of turbulent



iv

compressible convection within thin spherical shells located near the top of the convec-

tion zone. Vigorous fluid motions possessing several length and time scales are driven by

imposing the solar heat flux and differential rotation at the bottom of the domain. The

convection patterns form a connected network of downflow lanes in the surface layers

that break up into more plume-like structures with depth. The regions delineated by

this downflow network enclose broad upflows that fragment into smaller structures near

the surface. We find that a negative radial gradient of angular velocity Ω is maintained

against diffusion in these simulations by the tendency for the convective motions to

partially conserve their angular momentum in radial motion. This behavior suggests

that similar dynamics may be responsible for the decrease of Ω with radius as deduced

from helioseismology within the upper shear layer of the solar convection zone.
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Chapter 1

INTRODUCTION: THE DYNAMIC SOLAR CONVECTION ZONE

Our sun is the nearest star to earth and the most massive object in the solar

system. Most of this mass is concentrated near its center (the core), where the matter

is hot and dense enough to permit the fusion of its abundant supply of hydrogen into

helium. The energy produced via these thermonuclear reactions slowly diffuses through

the radiative interior until it enters the convection zone, a layer roughly 200 Mm (where

1 Mm equals 1000 km) thick occupying about the outer 30% of the sun by radius. In

this region, the entropy and temperature gradients are superadiabatic and therefore

unstable to convective overturning motions; thus, it is energetically favorable for fluid

to rise buoyantly by extracting energy from the ambient thermal field. Once the heat

reaches the surface of the sun (the photosphere), it escapes through the tenuous solar

chromosphere and corona and into outer space.

The focus of this thesis is the dynamics within the upper layers of the solar

convection zone. The convection zone as a whole contains fluid motions that vary over

widely ranging yet distinct length and time scales, all of which interact in complex

ways. In this introductory chapter, we first examine in §1.1 what has been learned

about the convection zone from observations of the photosphere, including from results

of helioseismic inversions. In §1.2 we describe the current state of numerical modeling

efforts which elucidate some of the dynamical processes present when compressible fluids

are subject to rotation and stratification. Finally, we develop and motivate the research
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presented in this thesis in §1.3.

1.1 OBSERVATIONS OF THE SOLAR SURFACE

1.1.1 Differential Rotation of the Surface and Interior

Observations of the solar photosphere show that the sun possesses a differential

rotation in which the equatorial regions rotate faster than the poles. Measurements of

Doppler shifts of photospheric absorption lines (Howard & Harvey 1970; Snodgrass &

Ulrich 1990) indicate that the surface plasma at the equator has a rotation period of

25 days, while in the polar regions it is about 33 days. Alternatively, measuring the

rotation rate of sunspots and other surface features as they rotate across the disk of the

sun (Ward 1966; Howard et al. 1984; Snodgrass & Ulrich 1990; Zappalà & Zuccarello

1991) also show a similar differential rotation profile, except that these rotation rates

are found to be faster than the plasma rate by a few percent at each latitude. This

systematic difference in rotation rates most likely indicates that the sub-surface layers

rotate faster than the surface, as the magnetic features reflect an average of angular

velocity as weighted over their radial extent.

The existence of approximately 107 resonant acoustic modes of oscillation makes

it possible to probe the solar interior in some detail using helioseismology (e.g. Ulrich

1970; Gough & Toomre 1991). Helioseismology involves the measurement and analysis

of the oscillation frequencies of these normal modes, as measured at the surface, in

order to infer properties of the medium through which the waves have traveled. Waves

of different frequencies provide information over a range of depths and latitudes, from

which it is possible to construct detailed maps of structure and large-scale flows within

the interior of the sun. For example, inversions of global modes are used to infer the

dependence of density, pressure, temperature, and sound speed with both radius and

latitude, whereas their rotational splittings provide estimates of the angular velocity
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field throughout much of the sun, as shown in Figure 1.1 for example.

Over the last seven years, two major research efforts have provided nearly unin-

terrupted observations of the solar photosphere from which the oscillation frequencies

can be measured. The Global Oscillation Network Group (GONG) operates a series of

six identical Doppler imaging instruments distributed approximately equally in longi-

tude around the earth. The data from the six observing sites are subsequently combined

to form one continuous dataset on which helioseismic inversions can be performed. In

a complementary fashion, the Michelson Doppler Imager (MDI), one of several instru-

ments on board the Solar and Heliospheric Observatory (SOHO) spacecraft, also pro-

vides continuous observations of the line-of-sight surface velocity field. From its vantage

point in space, MDI does not suffer from atmospheric seeing effects and weather-related

interruptions which can affect the data from the GONG project. On the other hand,

the ground-based GONG instruments are more accessible and can be upgraded as more

advanced instruments become available. Together, the virtually uninterrupted coverage

and high temporal resolution of the data provided by both projects enables the precise

measurements of oscillation frequencies necessary for detailed helioseismic analyses.

Global helioseismic inferences of angular velocity deduced from both GONG and

MDI data indicate that the surface differential rotation pattern of fast equatorial ro-

tation relative to the poles largely holds throughout the bulk of the convection zone,

such that radial gradients of angular velocity are small (Thompson et al. 1996; Schou

et al. 1998). Figure 1.2 shows that there exists a layer of radial shear, known as the

tachocline (Spiegel & Zahn 1992), located at the interface between the bottom of the

convection zone and the stably stratified radiative interior underneath. Much recent

attention has focused on the tachocline region, as it is thought to be the seat of the

global solar magnetic dynamo. In the near-surface layers, helioseismology also reveals

the existence of another shear layer occupying the outer 35 Mm or 5% of the sun. This

upper shear layer contains negative radial gradients in angular velocity, lending credence
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Figure 1.1: Average rotation rates Ω/2π as a function of radius and latitude inferred
from two different helioseismic analyses applied to MDI velocity images. (adapted from
Fig. 5 of Schou et al. 1998).

to the notion that subsurface fluid layers rotate faster near the surface, much as was

inferred by comparing the tracer and spectroscopic rotation rates.

1.1.2 Dynamics in the Near-Surface Layers

High-resolution observations of the photosphere indicate that the upper shear

layer contains several spatially coincident yet distinct modes of convection. White light

images show a mottled pattern known as granulation (e.g. Bray et al. 1984; Roudier

et al. 1991), representing the tops of near-surface convection cells, called granules. The

granulation pattern is observed to cover the entire visible surface, with individual gran-

ules being recognizable for about 5–10 minutes and typically measuring about 1 Mm

across. In addition, images of the line-of-sight velocity field reveal larger scales of con-

vection such as mesogranulation (measuring 5 Mm across, existing for several hours)

(November et al. 1981) and supergranulation (25–30 Mm, 1 day) (Leighton et al. 1962),

which also cover the visible surface of the sun while coexisting with the granulation

pattern.
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Figure 1.2: Average rotation rates Ω/2π inferred from the helioseismic inversion of over
4 years of GONG data using the RLS technique (adapted from Howe et al. 2000). Shear
layers (shaded), evidenced by variations of Ω with radius, are observed near the base of
the convection zone as well as near the surface. The gradients of Ω in that near-surface
shear layer at high latitudes is somewhat sensitive to the inversion method and data
sets used (e.g. see Fig. 1.1 and Schou et al. 1998).

Time-distance and ring-diagram techniques are two examples of local helioseis-

mology, in which helioseismic analyses are applied to more localized regions of the

sun. Both methods have revealed flow patterns in the near-surface layers having a

spatial scale larger than that of supergranulation. By partitioning the visible surface

into smaller sections, it is possible to infer the dependence with position and depth of

quantities such as temperature and average flow velocities by measuring the oscillation

frequencies of high-degree modes. Time-distance analyses indicate that persistent pole-

ward meridional flows of order 20 m s−1 occupy at least a 20 Mm-deep layer below

the photosphere (Giles et al. 1998). The return flow, which must be located at a level
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deeper than to which the time-distance analysis is sensitive, has not yet been detected.

Synoptic maps of the horizontal velocity field inferred from ring-diagram analyses show

extended regions of organized flow patterns evolving on time scales on the order of one

day, while longer temporal averages show banded zonal flows which propagate toward

the equator over the course of several years (Haber et al. 2000). The ring-diagram

analyses have revealed that the meridional circulations can possess an evolving double-

celled structure with latitude in the northern hemisphere, while that in the south is

single-celled (Haber et al. 2001).

In response to these various motions, small-scale magnetic elements present in the

photosphere are observed to be systematically advected by granular and supergranular

flows (Berger et al. 1998; Hagenaar et al. 1999). As a result, individual filaments of

emergent flux interact frequently with other magnetic elements, either merging with or

annihilating other elements, depending on polarity. At the same time, larger regions

of intense magnetic field, including sunspot pairs and plage regions, can persist for

time periods ranging between a few days and several months. Sunspots in particular

form regular patterns which cycle every 22 years as indicated by the timing, latitude,

and polarity of emerging sunspot pairs. At the beginning of each sunspot cycle, pairs

first appear in mid-latitude regions with an approximate east-west orientation. Sunspot

pairs in the northern hemisphere generally have the opposite polarity of pairs in the

southern hemisphere, but throughout each cycle the polarity remains the same for a

given hemisphere. As the cycle progresses, pairs emerge in increasing numbers at lat-

itudes progressively closer to the equator. After about 11 years, the sunspots at the

equator become fewer in number while the next cycle begins as sunspots reappear at

mid-latitudes. The spots of the new cycle have their polarity reversed from the spots of

the previous cycle, making the total cycle time about 22 years.

We have described several ordered phenomena, such as differential rotation, su-

pergranulation, and the 22-year magnetic cycle, which coexist with the quickly evolving
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and highly turbulent fluid motions within the convection zone. A detailed picture of

how such persistent flows and magnetic fields interact with the more intermittent fluid

motions is just beginning to emerge. Dynamical effects which are not yet accessible

to observations can only be examined with the aid of analytical models and numerical

simulations of turbulent convection, which we now review briefly.

1.2 SIMULATIONS OF TURBULENT CONVECTION

1.2.1 Mean-Field Hydrodynamic Models of the Convection Zone

With the rapid advancement of computer technology, especially over the past two

decades, theoretical modeling of turbulent convection is now playing an increasingly

larger role in gaining a better understanding of convection zone dynamics. Solar obser-

vations not only provide many clues toward such understanding, but also serve as goals

to which the theoretical models strive to attain.

Due to the complexity and vigor of the turbulence within the convection zone,

not all dynamically relevant scales of motion can be explicitly resolved in the same

simulation. The most widely adopted approach is to assume a separation of scales,

whereby large-scale or long-lived phenomena of interest, such as the differential rotation,

are typically represented by globally averaged quantities. Perturbations superposed on

these mean quantities thus describe more local phenomena. Such scale separation is

achieved by filtering the relevant physical equations in space or time, and then solving

only the averaged equations. Obtaining a solvable set of equations requires one to

somehow approximate how the dynamics of the unresolved scales of motion affect those

scales which are explicitly resolved. Given the usually intricate dependencies between

large- and small-scale dynamics of a turbulent system, however, it may not be clear

what treatment of the small-scale effects is appropriate. Furthermore, it may not even

be clear that an appropriate dividing line between small- and large-scale motions exists,
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since the very nature of turbulence is that it is characterized by a wide range of scales

of motion. Despite these limitations, such scale-separation treatments are widely used

to investigate the intricate dynamics occurring within the solar convection zone.

The broad class of mean-field models, which typically contain only at most a

few resolved large scales of motion, provided the first theoretical picture of convection

zone dynamics. Such calculations suggested that the effects of unresolved motions are

likely to make important contributions to large-scale dynamics. For example, velocity

correlations associated with turbulent eddies, commonly known as Reynolds stresses,

were found to be very effective in transporting angular momentum throughout the

convection zone and are therefore likely to play an important role in achieving the solar

differential rotation profile. By adjusting the functional forms of the Reynolds stress

terms it was possible to obtain models which compare favorably to the observed solar

surface rotation, meridional circulation, and temperature profiles (Durney & Roxburgh

1971; Kitchatinov & Rüdiger 1993). However, other choices led to very different profiles,

and there is no evident basis for preferring some functional forms over others. Many

of these models also produced cylindrically symmetric angular velocity profiles in the

interior, a result now contradicted by helioseismic inferences. One notable exception

is the model of Kitchatinov & Rüdiger (1995), which was able to produce an interior

differential rotation profile similar to that inferred from helioseismic inversions. The

main drawback of the mean-field approaches continues to be the ad hoc parameterization

of small-scale effects.

1.2.2 Multi-Mode Hydrodynamical Simulations

The continual advancement of computing technology has enabled simulations of

three-dimensional systems that explicitly resolve a diverse spectrum of size scales, rather

than only the largest few. Several recent compressible convection simulations exhibit

rich structures, such as narrow downflow plumes and concentrated vorticity fields co-
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existing with large-scale circulation (e.g. Brummell et al. 1995), suggesting that the

gross parameterizations of small-scale dynamical source terms typically employed in

mean-field treatments are physically inappropriate. However, the disparity between the

largest and smallest size scales of motion in the convection zone continues to present

severe challenges for modeling, as local dissipative processes operate on size scales that

are at least a factor of 106 smaller than the depth of the convection zone itself. Cur-

rent computer technology can explicitly resolve only 103 size scales in each of the three

physical dimensions when memory, data storage, and time-stepping limitations are con-

sidered. In terms of the Reynolds number Re (ratio of inertial to dissipative forces), the

largest current models have Re = 104, which is much lower than the value of Re = 1012

thought to exist within the solar convection zone. Values of other nondimensional

parameters of these simulations, such as the Rayleigh number Ra (ratio of buoyancy

driving to dissipative forces), Taylor number Ta (ratio of Coriolis to viscous forces),

and Prandtl number Pr (ratio of viscous to thermal diffusion) are similarly removed

from the parameter regime applicable to the actual sun. As a result, issues of scale

separation and closure still exist, although to a lesser degree than in mean-field models

since these more detailed simulations explicitly resolve a much broader range of scales.

Three-dimensional models serve as useful analogs for the real convection zone because

many physical effects relevant to the dynamics on a global scale are present to some

degree.

Solar convection zone simulations have employed several different strategies to

cope with the disparity of scales. One approach seeks to study the global dynamics

of a spherical system by approximating the convection zone as a fluid confined to a

rotating spherical shell. The available computational degrees of freedom are used to

explicitly model the largest scales of motion, while net contributions resulting from

motions occurring on sub-grid scales are approximated.

We now discuss global simulations of convection in rotating spherical shells. Un-
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like mean-field models, the largest size scales associated with convection are now explic-

itly resolved in these simulations. The first extensive research in this area was performed

by Gilman (1977, 1978a,b), who modeled a Boussinesq fluid (where the fluid is largely

incompressible except for density perturbations coupled with gravitational effects) at

Re ≈ 100, Ta = 105, and Pr = 1. Simulations having Rayleigh numbers between 104 and

105 were computed for various combinations of temperature and velocity boundary con-

ditions. For Ra . 5× 104 these models exhibited solar-like surface differential rotation

profiles, with zonal velocities faster at the equator than at mid- to high latitudes. Such

differential rotation was achieved by the equatorward transport of angular momentum

by Coriolis forces and Reynolds stresses working against diffusion. For Ra & 5×104, the

transport of angular momentum away from the equator by poleward meridional flows

became strong enough to reverse the sense of the differential rotation profile, such that

the angular velocity of equatorial latitudes became slower than at higher latitudes.

Compressibility was later included into these spherical shell models (Glatzmaier

& Gilman 1981; Glatzmaier 1984, 1985; Gilman & Miller 1986) via the anelastic ap-

proximation, first adapted from meteorology to the stellar context by Gough (1969).

These anelastic models exhibited convective structures possessing a wide range of spa-

tial and temporal scales. The most prominent velocity structures that emerged were the

so-called banana cells, visible as fluid rolls elongated in latitude oriented perpendicular

to the equator. For the more highly stratified models that were considered, a necessary

condition for surface differential rotation was that the rotational influence, characterized

by Ta, must be large enough to allow angular momentum to be deposited in equatorial

regions by Coriolis-driven Reynolds stresses. In addition, the unresolved motions need

to transport heat more efficiently than momentum, suggesting a Pr less than unity.

However, the solutions with strong enough rotation to produce a surface equatorial ac-

celeration also had the angular velocity nearly constant on cylinders aligned with the

axis of rotation, which we now know is not the case within the actual solar convection
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zone.

The advent of high-performance, massively parallel computing platforms provides

access to more turbulent regimes, allowing simulations with much lower diffusivities (and

thus higher Re and Ra) to be carried out. The models of Miesch et al. (2000) and Elliott

et al. (2000) represent the most turbulent simulations of a global variety performed to

date. In these simulations, combinations of flow parameters and boundary conditions

were found which produced a more solar-like differential rotation, breaking the tendency

for a cylindrically symmetric angular velocity profile. The increased turbulence in these

simulations was accompanied by a breakup of the banana cell structures and a more

complex evolution of convective structures than found in the earlier, less turbulent

simulations. As the driving was increased, however, the rotation profiles tended to

revert back to being aligned on cylinders. In these simulations the level of turbulence

is still substantially lower than in the actual sun, and it remains to be seen how even

more turbulent driving affects the dynamics within these systems.

Parallel computing opportunities have also permitted local studies of the tur-

bulent dynamics of rotating fluids. In contrast to the scale-separation approach, this

strategy distributes the computational degrees of freedom over the smallest scales of

motion, thereby precluding the need for parameterizing unresolved effects. As a result,

the computational domains are more restricted in overall size, and are usually Cartesian

rather than spherical, but do not include any sub-grid scale approximations found in

the global simulations described earlier. However, any large-scale structures that do

form are limited by the size of the domain and thus may not be representative of a

larger system. Because the combined effects of small-scale motions at or near the scale

of dissipation have a significant effect on the global dynamics, these models are still of

great interest.

Turbulent, compressible fluids in a Cartesian domain have been modeled by Cat-

taneo et al. (1991), with effects due to rotation later included by Brummell et al. (1996,
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1998). Rotational effects on an f -plane are included by inclining the axis of rotation with

respect to the thermal stratification, effectively representing different latitudinal posi-

tions on a sphere. These models are characterized by a more laminar thermal boundary

layer at the upper surface covering a deeper turbulent interior. Of interest in the solar

case is the behavior at Pr < 1, where compact plumes of downwelling fluid span the full

vertical extent of the fluid layer. These coherent downflows, however, contribute little

to the overall vertical transport of energy as their upward heat flux is largely balanced

by the downward transport of kinetic energy. The primary energy transport is therefore

accomplished by the smaller-scale, more turbulent motions of the system. Simulations

with a moderate rotational influence were found to drive a mean flow (although it is

rather modest when compared to the kinetic energy of the convection), owing to the

tilting of downflowing structures toward the rotation vector.

Another class of local simulations designed to provide insight into granular con-

vection in the near-surface layers has been performed by Stein & Nordlund (1998, 2000).

The fully compressible fluid equations are solved, including the effects of ionization and

radiative transfer which are important for the near-photospheric layers. Their domain

is a 6 Mm × 6 Mm wide and 3 Mm deep Cartesian box, which is large enough to contain

many granules but only encompasses a relatively shallow layer of convection near the

surface of the sun. However, these models do produce some extremely realistic results

in the appearance and evolution of granulation. The granulation pattern is shown to

be thermally driven, with radiatively cooled matter being transported downward in the

network of dark lanes separating individual granules. In addition, these granulation

simulations produce photospheric absorption line profiles, acoustic oscillation frequen-

cies and excitation characteristics in close agreement with measurements of comparable

quantities determined from observations of actual granulation.
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1.2.3 Models Including Magnetic Effects

The inclusion of magnetic effects into hydrodynamic convection models adds an-

other level of both complexity and realism. It is believed that both the large-scale and

small-scale photospheric magnetic field structures are merely the surface manifestation

of magnetism produced by the solar dynamo (Parker 1979) thought to be operating

within the solar convection zone and possibly just below its base in the overshoot layer.

The observed 22-year pattern of sunspot emergence during each solar activity cycle, as

characterized by Hale’s polarity laws, must be directly linked to a global solar dynamo

operating within the sun. On smaller scales, filaments of magnetic flux are observed to

emerge through the photosphere and are advected horizontally in response to the or-

ganized granulation and supergranulation flow patterns. Because these small-scale flux

elements possess less ordered behavior than larger magnetic structures such as sunspots

and appear to be unaffected by the 22-year global magnetic cycle, they may be the

result of a local solar dynamo that is at least partially distinct from the global dynamo

(e.g. Cattaneo 1999). Any dynamical picture must account for both the organized

large-scale dynamo activity and the small-scale magnetic filaments.

Shear flows such as the interior differential rotation profile are extremely efficient

at stretching out poloidal magnetic field into toroidal field. For sustained dynamo action

to occur in the sun, however, there must exist a mechanism which regenerates poloidal

field from toroidal field; otherwise, the toroidal magnetic field which results from the

differential rotation of the solar interior would eventually diffuse away. One promising

way such poloidal field may be created is known as the α-effect, and operates via the

cyclonic twisting of toroidal field by turbulent convective fluid motions, as originally

suggested by Parker (1955a). The earliest models which investigated the feasibility of

the α-effect in producing a solar-like global magnetic cycle were of the mean-field type.

Such models showed that dynamo action is indeed possible for systems containing both
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shear and rotation-induced helical motions (e.g. Stix 1976), but have trouble reproduc-

ing the relative strength of magnetic features observed on the sun. This effect occurs

because strong magnetic fields tend to inhibit the small-scale helical motions that may

be responsible for the α-effect, a process known as α-quenching.

We now know from helioseismology that a strong region of radial shear is located

at the base of the convection zone within the tachocline, and it is within this region

that the strongest toroidal magnetic fields are believed to be formed. The existence of

this shear layer led to the idea of interface dynamos (Parker 1993), a class of mean-

field models which contain a layer of convection placed immediately above a stably

stratified overshoot layer containing shearing flows. The flows within the shear layer

produce the toroidal field, while the poloidal field necessary to complete the dynamo

cycle is regenerated within the convection zone. Because the region of storage is spatially

distinct from the region where the α-effect occurs, the quenching problem is avoided;

however, there must now exist a mechanism that transports the magnetic flux between

each region. Toroidal magnetic structures naturally drift upward into the convecting

layer due to their magnetic buoyancy (Parker 1955b), where some fraction is converted

into poloidal field via the α-effect. Transporting this poloidal field back down into the

shear layer is more problematic, and is accomplished by turbulent diffusion in some

of the most recent interface dynamo models (e.g. Charbonneau & MacGregor 1997).

These models are successful in reproducing waves of antisymmetric dynamo activity

reminiscent of the 22-year sunspot cycle, but suffer from the drawback that the resulting

dynamo behavior depends strongly on the details of the α-effect, which results from

unresolved turbulent motions that can only be approximated in such a mean-field model.

Another mechanism which is able to regenerate poloidal field from toroidal field

stems from the Coriolis force acting on large-scale concentrations of toroidal flux. Such

dynamo models, called Babcock-Leighton or flux-transport dynamos, require magnetic

structures within the convection zone large enough and long-lived enough to be influ-
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enced by the Coriolis force. To avoid the quenching problem, the Babcock-Leighton

dynamos must also rely upon a mechanism to transport the poloidal flux down into the

tachocline. Recent mean-field models (e.g. Dikpati & Charbonneau 1999) show that

the advection of poloidal flux by a solar-like meridional circulation may be a viable

mechanism, as suggested by their ability to produce realistic dynamo activity.

One drawback of the Babcock-Leighton models, which also applies to the α-effect

models described above, is that the magnetism generated by most of these models

does not feed back on the shearing flows in any way, and thus it is unclear how these

prescribed flows are affected by the presence of a magnetic field within the domain. This

problem suggests the need for dynamically consistent models which solve for both the

flow velocities and the magnetic fields. Such full MHD simulations of Boussinesq fluids

have been computed by Gilman & Miller (1981) and Gilman (1983), with compressibility

added later by Glatzmaier (1984, 1985). For the relatively laminar parameter regimes

considered, however, it was found in both the Boussinesq and compressible simulations

that waves of dynamo activity tended to propagate poleward rather than toward the

equator. In addition, these simulations could not reproduce the alternating polarity

observed in the solar dynamo with each new sunspot emergence cycle. More turbulent

simulations are just beginning to be attempted.

The highly organized patterns of sunspot and active region emergence associated

with the 22-year magnetic cycle suggest that portions of the toroidal field must rise

coherently through the convection zone and emerge at the surface. Simulations of thin

flux tubes rising through a convectively unstable spherical shell (e.g. Moreno-Insertis

1986; D’Silva & Choudhuri 1993; Fan et al. 1993) reproduce many of the observed char-

acteristics of bipolar active regions, including the emergence and tilt angles of sunspot

pairs. These simulations, while encouraging, only consider thin flux tubes and thus

neglect effects associated with the tube thickness. Such effects may be important, as

three-dimensional magnetic structures within the solar convection zone may be subject
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to several MHD instabilities which may cause their destruction before they ever reach

the photosphere. For example, vortical motions within these flux tubes may cause their

fragmentation, after which they are likely to be shredded by the surrounding vigorous

convection (Schüßler 1979; Longcope et al. 1996). Structures which manage to remain

coherent are subject to kink instabilities which also may enhance their dissipation (Lin-

ton et al. 1996; Fan et al. 1999). In addition, strong downflow plumes within the

convection may prevent some tubes from emerging at all, as such fast downwelling fluid

motions can counteract their rising and pump the magnetic flux back into the tachocline

(Tobias et al. 1998).

Theoretical modeling of turbulent fluids has provided valuable insight toward our

understanding of convection zone dynamics. These simulations have identified likely

mechanisms for sustaining the observed solar differential rotation profile and the global

dynamo, even though severe approximations and parameterizations were used in most

cases. These results suggest that the differential rotation throughout the solar interior is

almost certainly achieved by the influence of rotation on the turbulent motions located

within the solar convection zone, while the global solar dynamo is believed to occur

via the interaction of magnetic field with strong shearing motions within the tachocline

and with the turbulent fluid motions of the convection zone. While much attention

has been focused on the relevant processes occurring within the bulk of the convection

zone and the tachocline region below, the dynamics occurring in the upper shear layer

immediately below the photosphere have not been studied in as much detail. This thesis

seeks to address this area.

1.3 SUMMARY OF RESEARCH PRESENTED IN THIS THESIS

This thesis is devoted to a study of the upper shear layer within the solar convec-

tion zone, which forms the transition region between the deep convection zone interior

and the photosphere. This layer is visible in helioseismic inversions as a region of radial
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gradients in angular velocity which occupy about the outer 5% (or 35 Mm) of the sun.

The upper shear layer is of great interest because the multiple modes of convection con-

tained therein are likely to influence both the dynamics of the deeper convection zone

as well as the photosphere in ways that are not yet well understood. Convection on

supergranular size and time scales in particular may be weakly influenced by rotation,

facilitating the transport of angular momentum. In combination with such rotational

effects, the large horizontal and radial extent of supergranular flows suggest that they

most likely play the largest role in the dynamics of this shearing boundary layer.

We first seek to characterize the supergranulation pattern using correlation track-

ing methods applied to observations of line-of-sight Doppler velocity to identify super-

granular outflows on the surface. Chapter 2 is devoted to an overview of surface flow

measurements, including a description of the correlation tracking technique and an as-

sessment of the systematic and random errors associated with this technique. We then

in Chapter 3 apply correlation tracking methods to one 45◦-square region of quiet sun

to generate flow maps of horizontal velocity for a duration of six days, representing

the longest uninterrupted time series of solar supergranulation studied to date. Dis-

tributions of supergranular sizes and lifetimes are obtained after directly identifying

individual supergranules on each image in the time series. The intricate evolution of

the supergranulation pattern is evident in the numerous examples of cell emergence, dis-

appearance, fragmentation, and merging events, as well as in the systematic advection

of intercellular lanes.

This observational study is complemented in Chapters 4 and 5 by global numer-

ical simulations of turbulent convection within thin spherical shells. Such simulations

approximate the conditions present in the upper solar convection zone as solar-like strat-

ification, rotation, and thermal forcing profiles are imposed. We find that convection

subject to solar-like density gradients naturally produces convective structures on mul-

tiple scales, the smallest of which is analogous in size to solar supergranulation. We
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investigate the influence of these supergranular-like convection cells on the global dif-

ferential rotation and meridional circulation contained within the thin shells, including

their contribution to the maintenance of shearing flows within the domain. Finally,

concluding remarks and future directions associated with this research are presented in

Chapter 6.



Chapter 2

SURFACE FLOW MEASUREMENTS

2.1 AN OVERVIEW OF SURFACE FLOWS

Observations of the velocity field at the solar surface play a vital role in the

quest to understand how the turbulent convection within the sun transports energy

and momentum throughout its interior. The dynamics of convection are responsible

for sustaining large-scale features such as the global differential rotation and meridional

circulation profiles, as well as more localized phenomena such as granulation, mesogran-

ulation, and supergranulation. We will here use measurements of horizontal velocities

to analyze flows on supergranular size scales. Measurements of surface flows fall into

three general categories: those determined by direct Doppler measurements of the sur-

face fluid, those inferred from helioseismic inversions, and those obtained by following

tracers. We now examine each measurement technique in some detail.

2.1.1 Direct Doppler Methods

Flows can be detected by direct Doppler methods by observing the shifts of pho-

tospheric spectral lines. These measurements are possible since the Doppler shifts of

these lines are proportional to the line-of-sight velocity of the emitting plasma. By

measuring variations of the same spectral line across the solar disk, one obtains a map

of line-of-sight velocities with position. Images of this kind are collectively referred to

as Dopplergrams or velocity images. A sample velocity image is presented in Figure 2.1.
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Figure 2.1: An image of line-of-sight velocity of the photosphere taken by MDI (see
§2.2.1) on 1999 May 7, 00h01m UT. The solar equator is indicated by a dashed line. Ap-
proaching (negative) velocities are dark, while receding (positive) velocities are bright.
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Some of the more groundbreaking discoveries in solar physics have been made

using velocity images (initially by photographic means), including the first detection of

solar supergranulation (Leighton et al. 1962) and of mesogranulation (November et al.

1981). In addition, the frequencies of acoustic oscillations, which form the basis for

helioseismology, are most easily measured using time series of velocity images. Fur-

thermore, measurements of large-scale velocity patterns, such as the surface differential

rotation profile (Snodgrass 1984; Snodgrass & Ulrich 1990) and torsional oscillations

(Howard & LaBonte 1980; LaBonte & Howard 1982), have been performed using time

series of velocity images.

In Figure 2.1 the Doppler signal resulting from rotation is immediately apparent as

the large-scale gradient of color across the image. Superposed on the rotation signal are

a network of supergranular outflows, which appear as small perturbations to the overall

rotation velocity. Supergranules are cellular flows in which the fluid diverges horizontally

from a central region, and are recognizable on the velocity image as an association of

dark and light regions. The side of each supergranule closest to disk center is dark

(relative to the rotation signal) since this side of the outflow is largely approaching the

observer. Similarly, the side of the supergranule closer to the limb is light due to its

velocity of recession relative to the observer. These dark/light associations were first

identified as outflows and attributed to solar convection by Leighton et al. (1962). Also

visible in the image are two sunspots, one above and to the right of disk center, and the

other at about the same latitude near the east limb.

Using direct Doppler measurements to measure horizontal flows is problematic

for several reasons. First, since only fluid motions moving toward or away from the

observer are measured, the spherical nature of the sun causes the proportion of radial

to horizontal velocities projected into the line-of-sight to vary with the angular distance

from disk center. This geometric effect makes measurements of horizontal flow fields dif-

ficult near disk center (where only a small amount of the horizontal velocity is projected
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into the line-of-sight) as well as near the limb (where foreshortening effects come into

play). In addition, only one of the two horizontal velocity components are available, as

motions moving parallel to the limb move transverse to the observer and are therefore

not projected into the line-of-sight Doppler velocity. Furthermore, one needs to make

some assumptions about the nature of the flow field in order to separate the radial flow

contributions from the horizontal components to the projected line-of-sight velocity.

2.1.2 Local Helioseismic Techniques

Helioseismic techniques are used to infer the global characteristics of the solar

interior after observing acoustic oscillations visible over the entire photosphere. By

observing smaller regions of the sun and analyzing waves which propagate into and

out of these regions, researchers are able to determine more localized properties of the

sun. As a result, such analysis techniques are termed local helioseismology. One such

measurement is of the bulk horizontal velocity of the fluid as averaged over the region of

interest, as the frequencies of waves traveling through a moving medium will be Doppler

shifted by an amount proportional to the bulk flow speed. This principle is used in both

time-distance and ring-diagram techniques.

Time-distance helioseismology (Duvall et al. 1993; D’Silva 1996; Duvall et al.

1997) uses a time series of velocity images to measure the travel times of acoustic

modes propagating along subsurface ray paths. The method involves computing the

cross-correlation function between the data at two points separated by varying distances

and times. The locations in space-time where the correlation is high indicate the upper

turning points of acoustic modes after having traversed their subsurface ray paths. The

difference in travel times between two counter-propagating waves traversing the same

ray path in opposite directions indicates the presence of a bulk flow, since waves traveling

against the flow take longer to traverse the same distance than waves traveling with the

flow. These travel-time differences can be used to construct a map of fluid velocities
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not only at the surface but also over a range of depths. This technique has been used

to measure flows in both quiet sun and under sunspots (Duvall et al. 1996), as well as

to characterize meridional flows near the surface and at depth (Giles et al. 1997; Giles

1999).

Ring-diagram analysis (Hill 1988) is based on the multi-dimensional power spectra

of the normal modes of oscillation computed from time series of velocity images. After

tracking a localized region of the solar photosphere in a frame corotating with the sun,

these time series are then Fourier decomposed, thereby transforming the (x, y, t) velocity

data into (kx, ky, ω) frequency data. The nested trumpet-like structures which appear as

maxima in frequency space indicate the eigenfrequencies of the oscillations. Projections

of these structures in the (kx, ω)-plane yield the familiar (`, ν) diagram, but projections

in the (kx, ky)-plane yield a series of concentric rings, for which this analysis technique is

named. Horizontal flows within the localized region both near the surface and at depth

cause displacements in the locations of the rings, which are then be used to infer the

magnitude and direction of such flows (Schou & Bogart 1998; Basu et al. 1999; Haber

et al. 2000).

2.1.3 Tracer-Type Measurements

Near-surface flows can also be measured by following recognizable features em-

bedded in a time series of images from frame to frame as they move around. Although

only motion transverse to the line-of-sight can be detected, such techniques have proven

useful for characterizing several aspects pertaining to granulation, mesogranulation, and

supergranulation (Title et al. 1995; Strous & Simon 1998).

Feature tracking and correlation tracking are the two tracer-type techniques most

commonly used in practice. The main difference between the two methods is that fea-

ture tracking requires the identification of structures embedded in the flow. Horizontal

velocities are then determined by identifying the same structures in subsequent images
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in the time series, measuring their horizontal displacements, and then converting these

displacements to a velocity. Alternatively, correlation tracking compares the topology

of the images surrounding predetermined measurement gridpoints with the topology in

the vicinity of the same gridpoints in subsequent images. Horizontal velocities are then

calculated by determining the optimal displacement such that the topology maximally

coincides.

The main drawback of both feature tracking and correlation tracking is that

changes in appearance may be interpreted as proper motions. For example, changes in

the shape of an object due to its evolution may affect the velocities measured by feature

tracking and correlation tracking methods. In addition, the shape of an object rotating

across the solar disk may appear to change even if it is not evolving, as projection

effects may alter how the object is viewed by an observer. In either case, a tracer-type

measurement algorithm may interpret these changes as proper motions and ascribe

spurious velocities to the region of interest. Furthermore, the underlying assumption

that the tracers are passive floaters in the fluid may be incorrect, as the proper motions

of tracers may be somewhat different than the actual velocity of the fluid. Despite

these drawbacks, tracer-type methods are useful for measuring several different aspects

of solar surface flows.

Chapter 3 will examine the general properties of the flow field on supergranular

scales by having applied the correlation tracking method to features present in time se-

ries of velocity images. We begin here by describing in detail how the near-photospheric

flow maps are obtained from time series of observational data, and then in §2.3 discuss

the sensitivities of the correlation tracking approach.

2.2 OBTAINING SURFACE FLOW FIELDS FROM MDI DATA

The flow field on supergranular scales can be deduced by applying correlation

tracking to mesogranule-sized structures evident in time series of velocity images. Such
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features have been shown to sense the supergranular flow field quite well, even near

disk center (see §3.1) where the contrast of individual mesogranules is small (DeRosa &

Toomre 1998). With this method, we are able to measure both horizontal components

of the near-surface velocity field for several supergranular lifetimes. We begin here by

briefly describing the MDI instrument, which provides the velocity time series to which

the data processing scheme is applied. Then we summarize the data processing steps

leading up to the application of the correlation tracking technique described in §2.2.2.

2.2.1 The MDI Instrument on SOHO

The Solar and Heliospheric Observatory (SOHO) spacecraft provides extended,

uninterrupted observations of the sun by viewing our star from the L1 Lagrangian point

located approximately 1.5 × 106 km sunward from earth. The suite of 12 instruments

on SOHO observe the solar interior and atmosphere as well as the solar wind from a

vantage point where images and measurements free of atmospheric seeing effects can be

obtained. Furthermore, the Doppler velocity of that position relative to the sun only

changes slowly in time, unlike in near-earth orbits, and this relative stability leads to

greatly enhanced sensitivity in Doppler measurements.

One of the instruments on SOHO, the Michelson Doppler Imager (MDI) (Scherrer

et al. 1995), was designed so that helioseismic techniques applied to its images could

be used to probe the interior structure of the sun. Such analyses are performed using

Doppler and intensity observations of the photosphere with high spatial and temporal

resolution, providing precision measurements of the many resonant mode frequencies.

From its space-based location, MDI is able to provide data undistorted by the earth’s

atmosphere and uninterrupted by diurnal gaps, allowing helioseismologists to observe

the solar interior in greater detail than previously possible. Such rapid, undistorted

time series are also ideal for the measurement and analysis of surface flows considered

here.
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MDI is able to provide images of continuum intensity, line-of-sight velocity, and

line-of-sight magnetic field by sampling the radiation field at 75 mÅ intervals surround-

ing the mid-photospheric 6768 Å absorption line of Ni i. After passing through the

telescope, the light travels through a series of fixed filters and two tunable Michelson

interferometers which are able to provide filtergrams anywhere in the vicinity of the

absorption line. Images of the sun at five equally spaced wavelengths are then linearly

combined to compute the observables listed above. The full sun can be imaged simulta-

neously onto a 1024 × 1024-pixel CCD detector (with 2′′ pixels), or a higher resolution

field (with 0.6′′ pixels) can be projected onto the same detector. Telemetry constraints

limit the quantity of data which gets beamed back to earth, but dedicated campaigns in

each of the last five years have provided continuous coverage of velocity and sometimes

intensity and magnetic field at a cadence of one minute for a duration of several months.

We use data from these so-called Dynamics Campaigns providing full-disk data with few

interruptions to perform our study of supergranular surface flows.

2.2.2 Isolating the Mesogranules

We use the line-of-sight velocity images observed by MDI in full-disk mode (2′′ pix-

els) during the 1999 Dynamics Campaign at a cadence of one minute. These time series

are processed so that the evolving mesogranular pattern can be used to track surface

flow on supergranular size scales. To accomplish this objective, one 45◦-square region

of photospheric plasma is tracked and remapped onto a latitude-longitude coordinate

system as it rotates across the disk of the sun, as illustrated in Figure 2.2. The pixel

size in the remapped images is equivalent to 1.46 Mm in both latitude and longitude,

which is approximately equal to the instrument pixel scale of 2′′ at disk center. The

entire region is tracked rigidly at a synodic rate of 13.5◦ day−1, which is slightly faster

than the Carrington rate of 13.2◦ day−1 and equal to the average supergranular rate

over the latitudinal extent of the region as measured by Snodgrass & Ulrich (1990).
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(a) (b)

45° ≈ 560 Mm

Figure 2.2: The first step in the data processing sequence. (a) The full-disk line-of-sight
velocity image observed by MDI on 1999 May 7, 00h01m UT, scaled to ±2500 m s−1. The
equator is indicated by the solid black line crossing the image. (b) The 45◦-square region
enclosed in white in (a) after remapping to a latitude-longitude coordinate system, and
scaled to ±800 m s−1. The Doppler signal due to solar rotation, visible in (a) as the large
horizontal gradient of velocity across the solar disk, is removed as part of the remapping
process. In both images, approaching velocities are dark and receding bright.

The time series spans approximately six days, or about as long as a 45◦-square

region centered in latitude near the equator remains accessible to our analysis on the

solar disk. Although all points in the tracked region remain on the earth-facing side of

the sun for longer than six days, most of that additional time places the regions within

about 25◦ of the limb where geometric foreshortening effects blur the objects of interest.

During the remapping stage, the large Doppler signal resulting from the overall

rotation of the sun is removed by subtracting an empirical fit to the observed differential

rotation profile. This empirical fit is formed by averaging together 60 consecutive full-

disk images (spanning one hour) and then fitting a planar surface to the resulting

average image. A circular mask is used so that pixels falling outside the solar disk do

not contribute to the fit. This surface fit is subtracted from each full-disk MDI velocity

image before the remapping occurs.
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(a)

(b) (c)

30° ≈ 375 Mm

Figure 2.3: The next step in the data processing sequence. (a) The central 30◦ portion of
Fig. 2.2b after the acoustic oscillations have been attenuated using a low-pass temporal
filter. (b) The image in (a) after 7.3-Mm Gaussian smoothing, and (c) the residual
of (a) and (b). Such filtering effectively separates the supergranules in (b) from the
mesogranules in (c). All three images are scaled to ±500 m s−1, with approaching
velocities dark and receding velocities bright.

To separate the radial velocity signal (arising from the acoustic oscillations) from

the horizontal velocities (resulting from supergranulation and mesogranulation), we ap-

ply a low-pass temporal filter to the time series. The filter consists of taking a 31-minute

weighted average using a tapered Gaussian filter to attenuate the high-frequency acous-
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tic oscillations. The weighting function (derived from Libbrecht & Zirin 1986) is

W (δt) = exp
(
− δt

2

2τ2

)
− exp

(
−∆t2

2τ2

)[
1 +

∆t2

2τ2
− δt2

2τ2

]
, (2.1)

where δt is the time difference from the central observing time, τ = 8 minute is the half-

width of the filter, and ∆t = 16 minute is the half-length of the filter. This weighting

function has the property that W =
dW

d(δt)
= 0 for δt = ±∆t. For these parameters,

typical p-mode oscillation amplitudes are reduced by a factor of 500 compared to the

longer-lived mesogranular and supergranular signals.

At this stage, it is assumed that the remaining structure in the velocity images

originates primarily from the horizontal motions of the supergranular, mesogranular,

and marginally resolved granular outflows. Mesogranules appear as small-scale undula-

tions superposed on the supergranular outflows, as can be seen in Figure 2.3a. The next

step in the data processing sequence is to separate the mesogranular component from

the supergranular component by applying a spatial Gaussian filter of width 7.3 Mm

(equivalent to 5 pixels) to each of the individual images comprising the time series.

Retaining the low frequencies produces an image of the supergranular pattern as in

Figure 2.3b, whereas the high-frequency image contains the mesogranules as in Fig-

ure 2.3c. The sum of these two components yields the original unfiltered image. The

filter width was chosen so that the locations of individual supergranules in the field

are difficult to determine by inspecting only the mesogranular component. Once time

sequences of mesogranular component are available, flow maps are obtained by applying

the correlation tracking technique.

2.3 THE CORRELATION TRACKING TECHNIQUE

2.3.1 The Correlation Tracking Algorithm

We now describe the correlation tracking algorithm and its sensitivities. Correla-

tion tracking methods, as applied to solar images, were primarily developed by members
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of the Lockheed-Martin Solar and Astrophysics Laboratory, most notably Neal Hurl-

burt, Dick Shine, and Alan Title (Title et al. 1995). The algorithm presented here is

the result of several rounds of fine-tuning, both on their part (Hurlburt et al. 1995) and

ours.

The correlation tracking algorithm takes as input two equally sized images I1(x, y)

and I2(x, y), where in this notation integer values of the pixel coordinates x and y index

the pixels in the two images. We now identify N coordinates in the image field as

gridpoints at which to measure the local displacement of the features embedded in the

two images. Note that while it is possible for the measurement gridpoints to be located

at fractional pixel coordinates, it is computationally more sensible to have them located

at integer pixel coordinates. In practice, the gridpoints form a regularly spaced array.

We denote each measurement gridpoint by the pixel coordinates (xn, yn), where the

variable n = 1, 2, · · · ,N indexes the measurement gridpoints.

At each gridpoint (xn, yn), the goal is to calculate the optimal displacement

(δx, δy) such that the topology of the pixels in the neighborhood of (xn, yn) in image I1

best coincide with the topology of the pixels in the neighborhood of the corresponding

gridpoint on image I2. Because we consider only those pixels in the neighborhood of

each gridpoint, the optimal displacement thus calculated serves as a measurement of

the movement of the features in the immediate area of the gridpoint. This optimal

displacement is determined by shifting the pixels in the neighborhood of each gridpoint

by varying amounts and determining the relative displacement of the best overlap. In

this formulation, the pixels closer to the gridpoint are weighted more heavily than pixels

farther out, as characterized by the e-folding width σ of the spatial weighting function.

The mathematical details of the algorithm have been omitted here, but are presented

in Appendix A for the interested reader. The end result is an array of displacements

(δx, δy) at each measurement gridpoint, which can be converted into a velocity after

dividing by the time separation between I1 and I2. Note that the spatial resolution
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of the resulting velocity field is determined by σ, and not by the gridpoint spacing.

In practice the flow maps are spatially oversampled by a factor of two or four in each

dimension.

2.3.2 Calibrating the Algorithm

To detect supergranular outflows, the algorithm needs to be able to detect dis-

placements as small as 0.004 pixels, equivalent to a structure having a velocity of

100 m s−1 given the spatial and temporal resolution of the MDI full-disk solar data. We

can assess the accuracy and precision of the correlation tracking algorithm by shifting

sample images by known amounts, and then applying the correlation tracking algorithm

to the original and shifted image pairs. Before describing the results of these calibration

tests, we first briefly describe the Fourier shifting algorithm.

2.3.2.1 The Fourier Shifting Scheme

Shifting the sample images is performed by the Fourier shift technique, whereby

the image is reconstructed at shifted gridpoints once the two-dimensional Fourier spec-

trum of the image is known. The Fourier shifting scheme was chosen since it incorporates

global information, whereas the interpolation performed as part of the correlation track-

ing technique is local. Given a two-dimensional 2M×2N -pixel image I(x, y) indexed by

x = 0, 1, · · · , 2M − 1 and y = 0, 1, · · · , 2N − 1, the discrete forward and inverse Fourier

transforms are given by

Î(ωp, ωq) =
1

4MN

2M−1∑
x=0

2N−1∑
y=0

I(x, y) e−iωpx e−iωqy (forward transform) (2.2)

and

I(x, y) =
2M−1∑
p=0

2N−1∑
q=0

Î(ωp, ωq) eiωpx eiωqy, (inverse transform) (2.3)
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where the spatial frequencies ωp and ωq are defined

ωp =
πp

M
and ωq =

πq

N
. (2.4)

To determine I(x+ δx, y + δy), we simply evaluate equation (2.3) at the shifted

points x+ δx and y + δy:

I(x+ δx, y + δy) =
2M−1∑
p=0

2N−1∑
q=0

Î(ωp, ωq) eiωp(x+δx) eiωq(y+δy) (2.5)

=
2M−1∑
p=0

2N−1∑
q=0

[
Î(ωp, ωq) eiωpδx eiωqδy

]
eiωpx eiωqy. (2.6)

Consequently, obtaining the transformed image Î(ωp, ωq) allows one to calculate the

shifted image I(x+ δx, y + δy) by taking the inverse transform of Î(ωp, ωq) modulated

by the function eiωpδxeiωqδy .

2.3.2.2 Assessing the Accuracy and Precision of Correlation Tracking

The calibration experiments were performed on the two 384 × 384-pixel images

shown in Figure 2.4. Image A (Fig. 2.4a) is the superposition of 100,000 two-dimensional

Gaussian functions whose positions, amplitudes, and widths in each the two directions

were randomly chosen. The amplitudes were allowed to be of either sign. Image B

(Fig. 2.4b) is a 45◦-square (heliographic) region of mesogranulation centered approxi-

mately just north of disk center, which was originally observed by MDI and processed

so that the mesogranules are evident, as described in §2.2.2.

To assess the accuracy and precision of correlation tracking, we shift the two

sample images by several amounts ranging from 0.001 to 0.4 pixels, and then apply the

correlation tracking algorithm to each shifted image and its unshifted parent image.

As stated earlier, we need to detect shifts as small as 0.004 pixels, but the behavior

of the algorithm at large shifts is also of interest. For each such pair of images, the

correlation tracking algorithm computes the optimal shift at each gridpoint in a 48×48

array of measurement gridpoints. These gridpoints are spaced 8 pixels apart, with the
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(a) Image A (b) Image B

Figure 2.4: Sample images used for the correlation tracking calibration tests: (a) Im-
age A, an image of 100,000 Gaussian structures whose sign, size, height are randomly
chosen to approximate the mesogranulation pattern; (b) Image B, a 45◦-square image
of mesogranulation similar to those analyzed in the next chapter.

e-folding distance σ also chosen to be 8 pixels. Because the overlap between neighboring

subimages is small, each of the 482 = 2304 displacements measured by the correlation

tracking algorithm at each gridpoint thus serves as a (mostly) independent measurement

of the actual shift in each case.

In Figure 2.5 is shown a series of scatter diagrams containing the results of shifting

Image A by several amounts in the positive x-direction. In each panel, the optimal

displacement (δx, δy) for each measurement gridpoint is plotted as a point, with the

blue cross characterizing a two-dimensional Gaussian fit to the distribution of optimal

displacements. The red cross in each panel indicates the amount each image was actually

shifted. Comparing the locations of the two crosses therefore yields the systematic error

associated with the correlation tracking algorithm, while the arm length of each blue

cross, indicating the 2σ width of the Gaussian fit in the x- and y-directions, represents

the random error.

As shown in Figure 2.5, we find that for Image A the correlation tracking algo-
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Figure 2.5: Scatter diagrams of the x- and y-displacements computed by applying the
correlation tracking technique to Image A (Fig. 2.4a). Each panel contains data from
each of nine shifts in the x-directions as indicated on top of each panel. The dots
represent the displacement measured by the correlation tracking algorithm for each of
the 2304 measurement gridpoints, while the known shift is plotted as a red cross. The
blue cross represents a two-dimensional Gaussian fit to the data, with the length of the
arms indicating the 2σ level in the x- and y-directions. Note that the overall scales for
the images in the bottom row have been broadened.
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Figure 2.6: Systematic (a) and random (b) errors for the correlation tracking algorithm
applied to Images A (green) and B (purple) of Fig. 2.4.

rithm measures an average shift in the x-direction that is systematically larger than

the actual shift, ranging from about 10% for the largest shifts to a factor of 2.5 for

the case of the 0.001-pixel shift. These results for Image A are also shown in green in

Figure 2.6a, wherein the systematic errors are plotted as a function of the known shift.

The ordinate is defined by

systematic error =
measured shift

actual shift
− 1, (2.7)

corresponding to the percentage increase of the measured shift relative to the actual

shift.

We believe the systematic errors are caused by the difficulty of the algorithm to

accurately locate the optimal displacement. As discussed in Appendix A, for each mea-

surement gridpoint (xn, yn) the algorithm searches (δx, δy)-space for the displacement

which minimizes a merit function m(δx, δy). This function is equal to the squared dif-

ference between two subimages shifted by the relative shift (δx, δy). If the function m

is somewhat lumpy in the area of the global minimum, the algorithm may settle into a
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local minimum in the vicinity of the global minimum, rather than the global minimum,

causing the merit degradation problem described in §A.5. In all nine scatter diagrams,

a large fraction (over 90%) of the gridpoints were flagged for merit degradation.

Figure 2.6b shows the random error in the x-direction for each measurement,

equal to the width of the Gaussian fit in the x-direction divided by the actual shift. We

find the random errors of the correlation tracking algorithm are generally smaller than

10% for shifts of 0.005 pixels or larger. This scatter most likely results from inaccuracies

in the interpolation scheme used to perform the image shifting. When analyzing real

solar data, we find that both spatially and temporally averaging the flow maps until

the resulting flows become coherent will attenuate the random error produced by the

algorithm. We discuss such averaging further in §3.1. The random errors in the y-

direction are less than those in the x-direction, as shown for Image A by the blue

crosses in Figure 2.5.

We have performed the same calibration experiments on Image B, containing the

solar mesogranulation pattern of Figure 2.4b. We find that both the systematic and

random errors for Image B are slightly larger than those for Image A, but otherwise

shows the same general trends. These errors are plotted in purple in Figure 2.6. We

note that the region surrounding disk center of Image B, corresponding to the washed-

out area of the image in Figure 2.4b just below center, causes a contrast gradient in the

mesogranulation pattern that is not present in Image A. This contrast gradient may be

the source of an additional source of systematic error seen in the correlation tracking

flow maps, as discussed further in §3.1.4.

The results of these simple calibration studies show that correlation tracking can

effectively measure the proper motions of moving patterns and features contained in

sample images down to displacements of about 0.004 pixels. For shifts of 0.005 pixels

and 0.05 pixels, the systematic errors in these correlation tracking measurements are

limited to about 10%. The random errors steadily descrease from 10% for a 0.005-
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pixel shift to less than 2% for a shift of 0.05 pixels. The high temporal cadence of

the time series of solar data permits spatial and temporal averaging which reduces the

random noise level below the strength of the coherent signal of interest. In the next

chapter, we use the correlation tracking technique to measure the near-surface velocity

field experienced by solar mesogranulation.



Chapter 3

THE NATURE OF SOLAR SUPERGRANULATION

We use near-photospheric flow fields to study surface convection on size scales on

the order of solar supergranulation and larger. The flow fields are obtained by applying

the correlation tracking method described in Chapter 2 to the mesogranulation pattern

extracted from time series of MDI velocity images. The time series discussed in this

chapter is of a 45◦-square region centered on the equator observed from 1999 April 14–20

during the April 1999 Dynamics Campaign of MDI.

We first provide an overview of the flow fields deduced by correlation tracking,

and their relation to other determinations of the surface velocity field. An anomalous

flow of unknown origin present in the flow fields is also discussed. In §3.2 we provide

a more dynamical description of solar supergranulation, before formally characterizing

the distributions of supergranular sizes and lifetimes in §3.3. We present in §3.4 the

results of our efforts to search for larger-scale flows by applying correlation tracking to

the supergranular flow pattern. Finally, we present concluding remarks in §3.5.

3.1 ASSESSING CORRELATION TRACKED FLOW MAPS

3.1.1 Properties of the Flow Maps

As described in §2.2 and §2.3, our dataset is a time series of one corotating region

of quiet sun measuring 45◦ on a side. Each image in the time series was extracted from

an MDI full-disk velocity image and remapped onto a latitude-longitude grid with a
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toward disk center400 m s-1

Figure 3.1: A 4-hr averaged flow map, generated by applying correlation tracking meth-
ods to a time series of mesogranules, is superposed as a pattern of arrows on the corre-
sponding time-averaged, line-of-sight velocity image. This 20◦-square region is centered
heliographically on (b, `)=(7.5◦N, 30◦E), with the direction toward disk center from the
center of the image as indicated. The background velocity image has been smoothed in
the same manner as Fig. 2.3b to bring out the supergranules, and is scaled to ±500 m s−1,
with approaching velocities dark and receding velocities light. The arrow field has an
rms velocity of 194 m s−1, and is spatially oversampled by a factor of four relative to
the gridpoint neighborhood size σ.
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toward disk center400 m s-1

Figure 3.2: The same 4-hr averaged flow map of Fig. 3.1 is superposed on an image of
its horizontal divergence. Regions of negative divergence (convergence) are dark and
positive divergence light.

pixel spacing of 1.46 Mm in each direction. The temporal cadence of the time series is

one minute. The images were then filtered (using a high-pass 7.3 Mm Gaussian kernel)

to reveal the mesogranulation pattern, after which the correlation tracking algorithm

is applied to obtain a time series of surface flow maps. For this study, we set the size

of the measurement gridpoint neighborhood at σ = 8 pixels or 11.7 Mm (see §2.3 for



41

the formal definition of σ), equal to approximately two mesogranule diameters. The

measurement gridpoints are spaced 2 pixels or 2.92 Mm apart, such that the spatial

resolution of the flow maps is oversampled by a factor of four in each dimension. The

oversampling allows the resulting flow fields to be spatially averaged in order to reduce

some of the random noise introduced by the correlation tracking algorithm.

We now examine these correlation tracked flow fields and make comparisons with

other horizontal velocity determinations. Figure 3.1 shows a 4-hr averaged flow field,

superimposed as a pattern of arrows on the corresponding 4-hr averaged image of line-of-

sight velocity that has been smoothed to show only the supergranulation pattern. The

flow map contains several prominent outflow sites of diameter 20–30 Mm which coincide

with the supergranules evident in the velocity image. Also present are diverging lanes,

where fluid motions spread out on either side of an essentially linear feature. These

lanes can result from several supergranules packed closely enough such that the spatial

resolution of the flow map is insufficient to discern the area of converging fluid in the

intercellular region.

Visually studying time series of flow map arrows can be somewhat confusing, so

we typically compute the horizontal divergence D of each flow map in our time series

and instead analyze time series of the scalar field D. The horizontal divergence D is

defined as

D(x, y) =
∂ux
∂x

+
∂uy
∂y

, (3.1)

which is computed directly from the horizontal flow field (ux, uy) using second-order

finite differences to approximate the spatial derivatives. Individual supergranules, which

by definition are cells of horizontal outflow, are consequently identified more easily from

images of D than from the preceding flow fields, as such outflow features now appear

as local maxima in divergence. The divergence image computed from the flow field of

Figure 3.1 is displayed as the background image in Figure 3.2.
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Figure 3.3: A 40◦ × 20◦ field of mesogranulation (a) and supergranulation (b) as seen
in images of Doppler velocity, accompanied by the corresponding image of horizontal
divergence (c) deduced from correlation tracking. All three images are centered on
disk center. The locations of several prominent supergranules, most clearly seen in the
divergence image, are circled in all three images.
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Figure 3.4: The rms velocity urms as a function of the temporal averaging window w.
Temporal averages of random velocity vectors would fall off as urms ∼ w−

1
2 , indicated

by the dotted lines. The flatter parts of the spectrum reflect the existence of features
with lifetimes of order w. To see the supergranular outflows, we need to average for
about 4 hr to obtain a coherent signal.

One advantage of applying correlation tracking to mesogranules is that we can

still reliably detect outflows located near disk center where the line-of-sight velocity

signal from horizontal fluid motions fades out. Figure 3.3 shows the velocity field in

the disk center region for one day in May 1999. The top two panels are Doppler

images showing the mesogranulation and supergranulation patterns respectively. One

can see that the detection of supergranules directly from the velocity images becomes

increasingly more difficult as one approaches the center of the disk due to their lower

contrast. While the mesogranules also show lower contrast levels, they remain coherent

enough to be recognizable in correlation studies. The bottom panel in Figure 3.3 is an

image of horizontal divergence calculated directly from the horizontal flow field deduced
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from correlation tracking. The locations of several prominent supergranules, as revealed

most clearly in the divergence image, are circled in each of the three images.

The flow maps are averaged in time (typically for several hours) so that only the

longer-lived flows remain, but also to reduce the random error of the flow maps. One

source of random error originates from the algorithm itself, as discussed in §2.3. In

calibration tests there, the algorithm is found to have a random noise level of approx-

imately 10% for flows on the order of 100 m s−1; averaging for several hours or more

will reduce this error below 1%. In addition to the random noise component, it is not

well known how the residual signal originating from granulation pattern manifests itself

in the flow fields. With 2′′ pixels, individual granules are at best marginally resolved

in our data, though larger resolved structures associated with solar granulation (such

as exploding granules) may still be present. We do not filter the data in any way that

specifically targets the granulation pattern, though the temporal filtering designed to

attenuate the acoustic oscillations also attenuates much of the granulation signal.

Time-averaging will abate the effects of both the residual granulation signal and

the algorithmic noise in the velocity images. In Figure 3.4 is plotted the rms velocity as

a function of the time-averaging window for a sample time series of flow maps. Flatter

regions of this curve indicate that the flow field contains temporally coherent features at

those time scales, while the steeper portions of the curve indicate incoherence on those

time scales. In this study, an averaging window of at least 4 hr (corresponding to 240

flow maps) is used because much of the random noise present in the data is reduced

while preserving the evolution of individual supergranules, a phenomenon we believe

occurs on time scales much longer than 4 hr.

3.1.2 Comparison With Direct Doppler Images

To understand how well the flow maps generated by correlation tracking sense

the actual horizontal velocity field, we can compare the disk-center-directed component
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Figure 3.5: A scatter diagram showing the correlation in Fig. 3.1 between the line-of-
sight velocity and the disk-center-directed component of the correlation tracking flow
field. A linear fit to the data is shown, with its slope indicating that the correlation
tracking velocities underrepresent the velocities measured in the velocity image by about
25%.

of each flow vector in the flow maps with its corresponding line-of-sight velocity as

measured directly from the velocity image. Using Figure 3.1 as an example, which is

centered heliographically at about (b, `)=(7.5◦N, 30◦E) so that disk center is below and

to the right in the figure, we can see how well the two velocity measurements agree.

Figure 3.5 reveals a strong correlation between the disk-center-directed velocities

measured by correlation tracking and those in the corresponding velocity image. As seen

in Figure 3.1, the strong outflow sites present in the flow map are coincident with the

supergranules present in the Doppler image, while other regions of slower mesogranular

advection correspond to regions in the velocity images where no organized supergranular

outflows exist. The correlation coefficient (defined in Burr 1974, for example) is found to
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be r = 0.720, which quantifies the visual impression that the two velocity measurements

agree well.

The line in Figure 3.5 is a linear fit to the data showing the correspondence be-

tween the correlation tracking and direct Doppler measurements of velocity. The slope

of the line indicates that the velocities derived from the correlation tracking calculation

underrepresent the velocities indicated on the velocity image by about 25%. System-

atic errors of this order of magnitude should be taken into account when interpreting

correlation tracking flow maps.

3.1.3 Comparison With Time-Distance Results

We now describe a study (see also DeRosa, Duvall, & Toomre 2000) where out-

flow sites detected using our correlation tracking technique are compared to travel-time

differences measured by time-distance analysis. This study uses a 2048-min sequence

of velocity images observed by MDI using its high-resolution (0.6′′ pixels) field-of-view

taken from 1997 January 16–18.

As stated in §2.1.2, time-distance analysis is performed by computing travel-time

differences between counterpropagating waves. Such travel-time differences arise due to

the effects of bulk fluid motions on the waves, as the mode frequencies will be Doppler

shifted when the waves are propagating upstream or downstream relative to a bulk

flow. In this study, we examine the travel-time differences between f modes (gravity

waves which propagate along the surface of the sun) traveling toward or away from each

measurement location.

The time-distance analysis was performed by first blocking the 2048-min time

series into four 512-min sequences. For each block of data, travel-time differences were

measured between f modes traveling toward and away from each measurement location.

The timing measurements were averaged radially over an annulus with inner and outer

radii of 3.72 Mm and 8.67 Mm surrounding each measurement location, and then aver-
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Figure 3.6: Comparison between the correlation tracking and time-distance helioseis-
mology techniques: (a) the image of divergence D calculated from correlation tracking
measurements of the near-surface velocity field for one of the 512-min blocks; (b) the
image of travel time differences Tio measured using time-distance helioseismology for
the same block.

aged azimuthally in space to remove all directional dependence. Finally, the data were

averaged in time over each 512-min block to increase the signal-to-noise ratio. The end

result is a map of travel-time differences Tio(x, y) as a function of position, where the

subscript “io” indicates that the sense of the difference is times from incoming waves

minus times from outgoing waves.

As a result of the directional averaging, extrema in Tio correspond to locations

where the flow is divergent or convergent (such as supergranular outflows or their asso-

ciated intercellular lanes). For example, maxima in Tio indicate places where f modes

approaching from any direction, on average, take longer to traverse the same ray path

than the corresponding outgoing f modes, signifying a horizontal outflow. Consequently,

Tio should be proportional to the horizontal divergence D of the near-surface flow field,

which can be computed directly using equation (3.1) on correlation tracking flow maps
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Figure 3.7: Scatter diagram of the travel-time vs. the divergence data shown in Fig. 3.6.
The best-fit line, having a vertical intercept and slope of −2.01× 10−4 and 4.48 respec-
tively, is determined from regression.

derived from the same data.

To test this hypothesis, we compared maps of D and Tio for each of the four

512-min blocks of data. Figure 3.6 shows the results for one of the 512-min blocks, after

artificially degrading the spatial resolution of the divergence map to match that of the

time-distance results. The accompanying scatter diagram of Tio vs. D in Figure 3.7

shows the correlation between the two images. The correlation coefficient for this block

evaluates to r = 0.887, and as averaged over all four blocks becomes r̄ = 0.890. The

statistical interpretation of this result is that 79.2% (equal to r̄2) of the scatter in D

and Tio can be explained by the fact that a linear relationship exists between the two

variables.

This result indicates that the time-distance flow maps, which are sensitive to bulk

fluid motions occurring near the solar surface, are proportional to the motions of the
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Figure 3.8: Anomalous large-scale flow present in the mesogranulation correlation track-
ing results, remapped in a heliocentric frame where the disk center point is always placed
at the origin. As a result, the April 1999 dataset, which is at fixed heliographic coor-
dinates, rotates from east to west across this coordinate system. The flow map arrows
are on the scale of 200 m s−1.

mesogranule pattern velocities, as deduced from correlation tracking. The additional

similarity between these flows and those measured directly from Doppler images imply

that we can reliably detect fluid motions associated with solar supergranulation using

the correlation tracking technique.

3.1.4 The Anomalous Flow Directed Toward Disk Center

We now discuss another source of systematic error associated with the correlation

tracking flow maps. When applying correlation tracking to the mesogranular time series

observed by the full-disk field-of-view of MDI, we find that superimposed on the super-

granular outflow pattern is a larger-scale flow of order 200 m s−1 directed everywhere
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toward disk center (from the vantage point of MDI). To characterize this anomalous

flow, we have remapped each flow field in the April 1999 time series onto a heliocentric

coordinate system and then averaged in time over the entire dataset. The heliocentric

coordinate system is defined such that the origin always coincides with disk center. The

time-averaged results are shown in Figure 3.8.

Attempts to discover the origin of this anomalous flow have suggested only that

it is a result of the changing contrast gradient of the mesogranular features with he-

liocentric distance. This contrast gradient is primarily a geometric effect, since the

changing viewing angle across the solar disk causes a variation in the amount of the

proportion of the horizontal velocity projected into the line-of-sight. It is thought that

random noise present in the images coupled with such a contrast gradient produces a

non-zero average when the optimal displacement vectors are computed by the correla-

tion tracking algorithm. As a result, this asymmetry introduces a spurious displacement

at each measurement gridpoint, thereby biasing the resulting flows in the direction of

the asymmetry. Such random variations in the mesogranular data, which we suspect

are the cause of the anomalous flow, can result from instrumental noise, unresolved

granulation, or even the signal resulting from residual acoustic oscillations.

Several artificial datasets have been constructed in order to study the anoma-

lous flow, but to date we not been able to reproduce the effect. It is also not known

whether the spurious velocities are present only using data from the MDI instrument,

which is known to be slightly astigmatic, or whether flow maps computed using data

from other instruments show the same effect. Flow fields determined by other authors

using correlation tracking on data observed by ground-based instruments routinely had

their mean flows removed because the pointing of these instruments was not known as

precisely as with MDI. The resulting pointing jitter introduces a registration error of an

unknown amount between each consecutive image in the time series, which the correla-

tion tracking algorithm subsequently interprets as a real displacement. This effect is not
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a problem for MDI as its pointing accuracy is much higher than that of ground-based

instruments.

Because the magnitude of such an anomalous flow is approximately the same

order of magnitude as the supergranular outflows, it makes analysis of the flow maps

more difficult. However, because the spatial scale of the anomalous flow is much larger

than that of the supergranulation pattern, we typically remove the empirically deter-

mined average of Figure 3.8 from our flow fields, which adequately reduces this level of

systematic error below the supergranular outflow signal. The flow fields shown in Fig-

ures 3.1 and 3.2 have had such an average removed. The anomalous flow is also present

in flow maps calculated using the high-resolution field-of-view of MDI, which were used

to perform the comparison with the time-distance results. However, the smaller pixel

size of the high-resolution data allows us to use a smaller gridpoint neighborhood size

σ when applying the correlation tracking method, which reduce the contrast gradient

across each measurement gridpoint cell. As a result, the anomalous flow magnitudes

are proportionally smaller.

In spite of the anomalous flow, we believe that correlation tracking is an effective

method of deducing the locations of supergranular outflows from time series of line-

of-sight velocity images. We are able to measure both components of the horizontal

velocity field across most of the disk, including the disk-center region where horizontal

velocities cannot be measured directly. We have also shown that our flow maps compare

favorably with direct Doppler and time-distance measurements of the near-surface hor-

izontal velocity field. We now use the flow maps determined by correlation tracking to

examine the dynamics of the supergranular flow field in more detail, both qualitatively

in the next section and quantitatively in §3.3.
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3.2 A DYNAMICAL PICTURE OF SUPERGRANULATION

The flow maps determined from this dataset, consisting of about six days of data,

represent the longest uninterrupted time series of solar supergranulation to date. The

4-hr temporal cadence allows us to study the evolution of supergranular flows with

unprecedented temporal resolution. Since supergranules are primarily defined by their

velocity structure, one way to examine these outflow patterns is by placing passive

floaters (“corks”) in our horizontal flow fields and observing their motions in response.

Figure 3.9 shows a time series of horizontal divergence images, computed from

correlation tracked flow fields of the April 1999 dataset. Cork locations as a function of

time are overplotted in red as they are advected horizontally by the evolving flow field.

Initially, the corks are distributed uniformly across the field-of-view. However, on time

scales of about 8–12 hr, the corks within each supergranule are advected away from the

cell centers at speeds of about 500 m s−1 toward lanes of convergence which occur where

neighboring outflows meet. This cleaning-out process is illustrated in the top row of

images in Figure 3.9, where most corks in the field have reached the nearest convergence

lane within 12 hr. Collectively, these corks trace out a network defining supergranule

boundaries, or in some cases, the corks outline regions of the flow field containing several

supergranules. Once within a convergence lane, the corks begin to travel along the lanes

at much slower speeds toward collection points in the network. The effect of this slower

migration toward network interstices is evident in Figure 3.9, where by the end of the

time series the connected network present at the t = 12 hr mark has split into multiple

fragments each containing corks approaching their respective collection points. Note

that the corks are permitted to coincide, accounting for the (false) impression that the

total number of corks in the figure decreases with time.

While the corks are approaching the collection points, the flow field continues

to evolve. Occasionally, a new supergranular outflow emerges at a location which was
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Figure 3.9: A 15◦-square region from the April 1999 dataset showing cork locations (red)
superimposed on the corresponding horizontal divergence images (gray scale). The corks
are first advected toward cell boundaries on time scales of 12 hr, after which they travel
toward boundary intersections on longer time scales. The regions enclosed in the circle
show the emergence of a long-lived supergranule which suddenly appears at one of the
network intersections. The boxed regions are enlarged in Fig. 3.12.
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Figure 3.10: The same time series as in Fig. 3.9, but here additional corks have been
added at random locations with time, emphasizing the newly formed convergence lanes
which have appeared after the initial 12-hr clean-out time. The time series continues
in Fig. 3.11, where the supergranule in the circle can be seen to survive for about two
days. The boxed regions are enlarged in Fig. 3.12.
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Figure 3.11: A continuation of the time series of Fig. 3.10.

formerly part of the network, as in the circled regions of Figure 3.9. At t = 36 hr, the

corks in the circled region trace out a portion of the network where three lanes intersect.

Four hours later, a new supergranule appears, as indicated by the bright spot in the

divergence image. Over the following 12 hr, the corks are advected away from this new

outflow center until they reach the edge of the emergent supergranule.

New supergranules appearing via such emergence events are less common than
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Figure 3.12: A comparison between the cork movies of Figs. 3.9 (top row) and 3.10
(bottom row) showing the different cork responses to the formation of a new convergence
lane (black box). By adding corks continuously throughout the time series in the lower
sequence, convergence lanes which form after the initial 12-hr clean-out time become
populated with corks, whereas these lanes appear free of corks when additional corks
are not added, as in the upper sequence. The panels here correspond to the regions
enclosed in the square boxes of Figs. 3.9 and 3.10.

those that result from the fragmentation of existing supergranules into multiple cells, as

new convergence lanes are continually forming within existing supergranular outflows.

These new lanes would not be populated by corks if they were to form after the initial

12-hr cleaning-out period, as no corks remain within the adjoining outflow cells to

populate the newly formed convergence lanes. To remove this dependence on the initial

time at which the corks are placed into the flow field, we have adopted the approach

of placing additional corks at random locations continually throughout the time series,
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Figure 3.13: A time series showing a large cell outlined by corks which contains several
smaller coutflow centers which evolve on time scales of several hours. These smaller
outflows are separated by weaker convergence lanes which do not exist long enough to
get populated by corks. For this time series, corks were continually introduced into the
flow field.

as illustrated by Figures 3.10 and 3.11. There, we show the same time series as in

Figure 3.9, except that additional corks are introduced at a rate such that the number

of new corks introduced over each 6-hr interval is equal to the number of corks present

initially. These added corks serve to outline convergence lanes formed after the initial

12-hr cleaning-out period, as illustrated in the close-up images of Figure 3.12.

From Figures 3.9–3.12 it is evident that some of the regions surrounded by the

cork boundaries contain several peaks in divergence separated by weaker convergence

lanes. Both the weaker lanes and associated outflow centers typically evolve on time

scales much shorter than the 12 hr it takes the flow to clean out corks in any individual
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Figure 3.14: A time series showing two convergence lanes (indicated by the arrows)
which are advected horizontally by the evolving flow field. For this time series, corks
were continually introduced into the flow field.

cell, and are often intermittent in nature. A weak convergence lane may, for example,

either become more established or disappear completely, and in the process undergo

several weakenings and strengthenings. Such evolution is evident in Figure 3.13, where

we show a large structure outlined by corks containing several smaller outflow centers.

Consequently, if one considers the network of all convergence lanes, both weak and

strong, as defining supergranular boundaries, then the typical sizes and lifetimes of

supergranulation are much smaller and much shorter than the cork network would

suggest.

If a convergence lane becomes strong relative to its neighboring outflow cells, it

will generally persist until a stronger feature appears nearby. Figure 3.14 shows a pair of
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Figure 3.15: A space-time cut across 45◦ of latitude of horizontal divergence for the
April 1999 dataset. Horizontal structures represent persistent outflow cells, with their
lengths proportional to their lifetimes.

outflow lanes which are advected horizontally in response to strengthening supergranules

in the surrounding region. In the first panel, arrows indicate two existing convergence

lanes which partially enclose a supergranule. As this supergranule weakens, two stronger

supergranules emerge on either side, whose outflows cause the two convergence lanes to

move laterally in response until the original cell vanishes.

Such dynamic behavior, including the emergence, fragmentation, and lane ad-

vection events described above, is prevalent in the supergranular flow fields deduced

by correlation tracking. The flow field also contains many outflow cells which survive

for several days and coexist with other more quickly evolving outflows. For example,

the cell circled in Figures 3.10 and 3.11 survives for about two days. We also show in

Figure 3.15 a space-time cut of horizontal divergence extracted from the same dataset.

The bright horizontal structures represent outflow cells which persist at the same loca-

tion, with the lengths of such structures indicative of their lifetimes. It is evident that
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outflow cells with lifetimes of at least 36 hr are plentiful, accompanied by other outflow

cells having much shorter lifetimes.

Throughout this section, we have illustrated several modes of evolution associ-

ated with supergranular outflows detected at the solar surface, including instances of

cell emergence, merging, and fragmentation. The associated network of convergence

lanes also changes constantly, as the network continually reorganizes itself in response

to nearby evolving outflows as well as to the turbulent motions occurring beneath the

surface. In addition to the regions where the flow pattern evolves quickly, we also find

features which persist for much longer time periods. In the next section, we substantiate

the qualitative impressions described here by measuring the distribution of supergran-

ular cell sizes and lifetimes after identifying individual outflows on our flow maps.

3.3 MEASURING SUPERGRANULAR SIZES AND LIFETIMES

3.3.1 Correlation Sizes and Lifetimes

The classical technique for measuring supergranular properties involves comput-

ing spatial and temporal correlation functions of photospheric and chromospheric data.

Separations between the maxima of spatial correlation functions yield an average sep-

aration of the supergranules evident in the data. Using line-of-sight velocity images,

the average separation between supergranular cell centers is 32 Mm, as originally found

by Leighton et al. (1962) and Simon & Leighton (1964) and confirmed by several later

studies (e.g. Wang & Zirin 1989).

Such correlation analyses can also be applied to quiet-sun images of surface mag-

netic flux, which effectively outline supergranular boundaries, since small-scale concen-

trations of magnetism visible at the photosphere are quickly advected horizontally by

supergranular outflows (Schrijver et al. 1997; Hagenaar et al. 1999; Lisle et al. 2000).

This network has been observed in the chromosphere using emission in Ca ii K as a
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proxy for magnetic field. Correlation studies of this chromospheric network yield aver-

age cell sizes of 30–35 Mm (Simon & Leighton 1964; Singh & Bappu 1981; Hagenaar

et al. 1997) in agreement with the measurements of supergranular cell sizes derived from

velocity images.

Spatial correlation and power spectral analyses applied to high resolution hori-

zontal flow maps by November (1994) also give a horizontal length scale of 32 Mm for

supergranulation, but these and other more recent flow map studies (e.g. Shine et al.

2000) show that most supergranules contain several smaller divergence centers having an

average separation of about 7 Mm, consistent with mesogranular separation distances.

The correlation tracked flow maps of this study also show large outflow cells containing

smaller divergence centers, confirming the impression that broad outflows associated

with supergranulation are comprised of several smaller divergence centers.

Cell lifetimes can also be determined by computing temporal correlation functions

among successive images in a time series. The rate at which the function declines from

its central maximum yields a measurement of the average lifetime of the supergranules

in the field of view. Simon & Leighton (1964) were able to measure the average cell

lifetime of the Ca ii K network cells to be 20 hr, equal to the length of time required for

temporal correlations of successive images to drop by a factor of e−1 from its initial value.

However, Wang & Zirin (1989) argue that proper motions and evolutionary changes in

individual supergranules in the field of view may bias the correlation lifetime toward

shorter values, due to the possibility that supergranules may alter their appearance or

location without losing their identity, and thus the actual supergranular lifetime may

be even longer than 20 hr. These effects occur on shorter time scales than typical

supergranular lifetimes, and are also reflected in the shape of the temporal correlation

function. Indeed, we have already demonstrated the existence of several supergranules

having lifetime of at least 36 hr (e.g. in Fig. 3.15) in our data.
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3.3.2 The Direct Identification Method

While correlation and power spectral analysis methods are useful for obtaining

a general idea of supergranular cell sizes and lifetimes, we propose that measurements

of such quantities should take into account the more complex phenomenology by which

individual supergranules form and evolve. Events similar to those described in §3.2,

where supergranular cells frequently merge and fragment, are observed to occur much

more frequently than cases where individual supergranules simply emerge, persist, and

disappear all without interacting with other outflow cells. In order to account for such

intricate evolutionary behavior, we have devised a pattern recognition algorithm that

identifies the outflow centers on each divergence image in our time series, from which

the detailed life histories of all supergranules in the dataset can be determined. This

information is then used to compile a statistical database of the sizes and lifetimes of

all supergranules present in the April 1999 dataset.

Before identifying the supergranules, we attenuate the random noise in the di-

vergence data by applying selected spatial and temporal filters. The data are averaged

in time using boxcar filters with widths ∆t of 4 hr, 6 hr, and 8 hr, and using spatial

smoothing using Gaussian kernels with widths w of 5.8 Mm, 8.8 Mm, and 14.6 Mm.

Such filtering operations are generally consistent with the effective spatial and temporal

resolution of the data, so we do not believe the filtering causes much loss of informa-

tion. We realize that such filtering will sometimes artificially blur together some of the

distinct objects we seek to identify, and as a result we assess the effects such filtering

may have on the resulting size and lifetime distributions in what follows.

On each filtered divergence image, we identify supergranular outflow cores, de-

fined mathematically as a contiguous grouping of pixels for which the local curvature

(i.e. second derivative) of divergence in all horizontal directions is negative. By this def-

inition, the pixels comprising each outflow core contain exactly one local maximum in



63

divergence. The identity of individual objects is established by matching outflow cores

which fully or partially overlap on successive images. To be considered supergranules,

the cores must cover at least 50 Mm2 in area (equal to 6 pixels) and survive for at least

4 hr, thresholds which are consistent with the effective spatial and temporal resolution

of the data.

Figure 3.16 shows both the flow field and the corresponding outflow cores. The

full 45◦-square field from which the figure originates contains approximately 400 outflow

cores, and by implication the same number of supergranules. The cores cover about 20%

of the total area of the image, so that the full area of each supergranule is approximately

five times that of its corresponding outflow core, assuming the supergranular pattern

fills the available area. When tabulating the areas of individual supergranules below,

we multiply the core sizes by the appropriate filling factor, determined by comparing

the area covered by the cores to the total area in the field.

To further illustrate the core identification scheme, we now show in Figures 3.17

and 3.18 the evolving cork network (colored red) of Figures 3.10 and 3.11, except that the

divergence images have been replaced by colored tiles representing the outflow cores.

Each core is assigned a solid color (other than red) at random for as long as it is

continuously recognizable on successive images. We find that the core identification

scheme performs quite well, as most regions outlined by the corks contain objects, and

objects which overlap in subsequent images have been assigned the same color. The

black object circled in Figures 3.17 and 3.18, for example, retains its identity for about

48 hr until it disappears.

In the cases where objects merge or split, the largest fragment is chosen to retain

the identity of the outflow core. Such a process is illustrated in Figure 3.19, where the

two fragments inside the circle merge together for a short time and then split up again.

After the cells have merged, at t = 36 hr one large cell (colored purple) exists at the

location previously occupied by two smaller cells. The large cell retains the color of the
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Figure 3.16: A 23◦-square field of supergranule outflow cores (blue), with the corre-
sponding averaged flow field (red arrows) overlaid. Each outflow core is represented by
a contiguous group of pixels. Several prominent supergranules possessing well defined
outflows are circled. The arrow scale is 400 m s−1, the tick marks are spaced 20 Mm
apart, and the field is approximately 23◦ square. The data were filtered using 2-hr
temporal boxcar and 8.8-Mm spatial Gaussian smoothing functions prior to the identi-
fication of the outflow cores. The field is centered in space at (b, `)=(12◦N, 38◦E) and
in time at 11h00m on 14 Apr 1999.

largest of the two fragments which merged together. After 8 hr have elapsed, the large

cell splits back into two smaller cells. Again, the largest fragment retains the identity

of the original cell. The other (smaller) fragment is assigned a new identity and color.
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t = 0h t = 4h t = 8h t = 12h

t = 16h t = 20h t = 24h t = 28h

t = 32h t = 36h t = 40h t = 44h

t = 48h t = 52h t = 56h t = 60h

t = 64h t = 68h t = 72h t = 76h

15° ≈ 187 Mm

Figure 3.17: A time series of cork positions (red) relative to the outflow cores (colored
tiles). Outflow cores recognizable on successive images are assigned the same solid color
throughout their lifetime; however, the colors are chosen randomly, making it possible
for different objects to have the same color. The time series shown here and continued
in Fig. 3.18 is the same as in Figs. 3.10 and 3.11. The long-lived object enclosed in the
circle is the same as identified in Figs. 3.10 and 3.11.
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t = 80h t = 84h t = 88h t = 92h

t = 96h t = 100h t = 104h t = 108h

t = 112h t = 116h t = 120h t = 124h

t = 128h t = 132h

15° ≈ 187 Mm

Figure 3.18: A continuation of the time series of Fig. 3.17.

In this way, each outflow core in the six-day dataset can be assigned a unique

identity, from which its lifetime and average area can be determined. We now have the

information necessary to compile statistics on the supergranulation pattern, as deduced

from their outflow cores. As discussed earlier, we assume that the area of an individual

supergranule is directly proportional to the area of its outflow core. Figure 3.20 shows

the distribution of average supergranular areas, defined as the average area of each
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t = 32h t = 34h t = 36h

t = 38h t = 40h t = 42h

t = 44h t = 46h t = 48h

12° ≈ 149 Mm

Figure 3.19: An enlarged region illustrating splitting and merging events. The objects
enclosed in the circle merge together at t = 36 hr, and subsequently dissociate at
t = 44 hr.

supergranule throughout its lifetime. The dotted line represents the best-fit Gaussian

function,

N(A) dA = C exp
(
−z

2

2

)
where z =

A− 〈A〉
B

dA, (3.2)

where the mean, width, and height, are respectively denoted by 〈A〉, B, and C. The dis-
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Figure 3.20: Average size distribution N(A) for the Ntotal supergranules identified in
the April 1999 dataset. The area A is defined as the area of the entire supergranule (not
just the outflow core) as averaged over the lifetime of each object. The outflow cores
were identified after applying 4-hr temporal boxcar and 8.8-Mm spatial Gaussian filters
to the time series. The dotted line is the best-fit Gaussian function [see eq. (3.2)] with
〈A〉 = 669 Mm2, B = 174 Mm2, and C = 239.

tribution was compiled using time series of divergence data from the April 1999 dataset

after smoothing by 4-hr temporal boxcar and 8.8-Mm spatial Gaussian filters. Fig-

ure 3.20 indicates that supergranules have an average area 〈A〉 of 669±174 Mm2, which

is approximately equivalent to a linear extent of
√
〈A〉=22–29 Mm across. However,

as one would expect, this result is sensitive to the degree of spatial smoothing applied

to the data before identifying the outflow cores. Figure 3.21 shows the dependence of

the mean sizes
√
〈A〉 on the spatial smoothing width w for each of the temporal and

spatial smoothing combinations. One would expect average sizes to increase with more

smoothing, and this is indeed realized. Extrapolating down to zero smoothing, we find
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Figure 3.21: Dependence of the mean supergranular sizes
√
〈A〉 on the width w of the

Gaussian kernel used to spatially smooth the divergence images. Extrapolating down
to zero smoothing gives a supergranular size of 17± 3 Mm across.

that supergranules have an average size of 14–20 Mm across. The amount of temporal

filtering appears to have little effect on the characteristic supergranular cell size.

One study of this sort has already been performed by Hagenaar et al. (1997),

wherein the Ca ii K network were used to determine supergranular boundaries. They

find a mean cell size of 13–18 Mm, in agreement with our result and approximately

half the average cell size measured using correlation analysis techniques. Hagenaar

et al. (1997) argue that this discrepancy arises because the correlation measurement

preferentially weights the largest cells when computing the average cell size. Direct

inspection of the Ca ii K network supports this result, in that while cells of order 32 Mm

(the average cell size found using classical corrleation analysis techniques) certainly

exist, many smaller cells can also be found. We believe that the same rules applicable

to the chromospheric Ca ii K network also apply to the outflows found by our direct

identification method.
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SUPERGRANULE LIFETIME SPECTRUM
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Figure 3.22: Distribution of supergranular lifetimes N(t) for the Ntotal supergranules
identified in the April 1999 dataset. The lifetime t is equal to the number of consecutive
frames in which each object can be identified. The outflow cores were identified after
applying 4-hr temporal boxcar and 8.8-Mm spatial Gaussian filters to the time series.
The dotted line is the best-fit exponential function [see eq. (3.3)] with the intercept
C = 434 and τ = 16 hr.

Figure 3.22 shows the distribution of supergranular lifetimes for the April 1999

dataset, along with the best-fit exponential function,

N(t) dt = Ce−t/τ dt, (3.3)

where the intercept and mean lifetime are denoted by C and τ respectively. The su-

pergranules identified by our method have a mean lifetime of τ = 16 hr, or 25% less

than the correlation lifetime of 20 hr. However, this mean value may obscure the fact

that amidst the many short-lived supergranules there exist several cells which survive

for multiple days, suggesting that the pattern as a whole cannot be adequately char-

acterized by a single time scale. In addition, approximately 10% of the supergranules
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Figure 3.23: Dependence of the distribution of supergranular lifetimes N(t) on the
temporal averaging window ∆t.

present in this dataset appear on either the first or last image in the time series, such

that the actual lifetimes of these objects are longer than those values used in compiling

the lifetime histogram of Figure 3.22. Consequently, we believe the distribution in the

figure is biased toward shorter supergranular lifetimes. We included these extra cells

in the distribution because removing them would bias the results even more so toward

shorter lifetimes, for longer-lived supergranules have a greater probability of appearing

on either the first or last image in the time series than do those supergranules with

shorter lifetimes.

The effect of the temporal averaging is shown in Figure 3.23, displaying the su-

pergranular lifetime distributions for several values of ∆t for w = 8.8 Mm. With greater

temporal averaging, the slope of the distribution function becomes flatter due to the

merging of short-lived cells into longer-lived cells. Note that the smallest value of ∆t

for which a lifetime distribution is plotted is ∆t=4 hr, corresponding to the minimum

amount of temporal averaging one needs to perform in order to reduce the random noise
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Figure 3.24: The distribution N(A,t) as a function of the average supergranular area
A vs. lifetime t for the Ntotal supergranules identified in the April 1999 dataset. The
shaded contours appear at values of N=2, 5, 10, 20, 30, 40, 50, and 60. The dots
represent locations in coordinate space where N = 1.

level in the divergence signal below the supergranular outflow signal (see Fig. 3.4). We

also find that the amount of spatial smoothing has little effect on the lifetime distribu-

tion functions.

Figure 3.24 shows the distribution of supergranular cells as a function of average

area A and lifetime t. The general trend is for larger cells to live longer, although we

note that the longest lived cells are not the largest. This effect may be caused by the

propensity for extremely large cells to fragment into smaller cells at some point during

their existence.
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3.4 FLOWS ON LARGER SCALES

It is evident that the pattern of supergranulation possesses a broad range of scales

of motion in time and space, as shown both by the heuristic impressions provided by

the cork studies in §3.2 as well as by the statistical analysis of the previous section.

We now attempt to measure surface flows occurring on larger spatial scales than that

of supergranulation, including differential rotation, meridional circulation, and possibly

giant cell circulations. Such large-scale flows detected at the surface would likely span

a significant fraction of the convection zone, and thus would provide another way to

probe the solar interior. These flows would be large enough to interact with the solar

differential rotation profile and might play a role in the 22-yr global magnetic cycle.

Several other studies using a variety of techniques have detected large-scale flows

both near the surface and at depth. Ring-diagram analyses (Haber et al. 2000) of time

series of MDI velocity data have shown extended regions of organized flows on the order

of 25–50 m s−1 which vary on time scales of about one day. Longer temporal averages (of

at least nine days) show bands of zonal flows of order 20 m s−1 which migrate toward

the equator and appear to vary with changes in solar activity. Such long temporal

averages also contain persistent poleward-directed meridional flows of order 20 m s−1

in both hemispheres and extending to depths of at least 10 Mm below the surface.

Similar meridional flows were also measured using time-distance analyses (Giles et al.

1998) applied to two months of MDI data, with poleward flows detected as deep as

20 Mm. In addition, spectral decompositions of line-of-sight velocity images reveal

large-scale banded flow patterns at the surface which persist for several solar rotations

(Beck et al. 1998; Ulrich 1998). Such flow patterns are distinct from the torsional

oscillations discovered earlier by Howard & LaBonte (1980) and are not associated with

regions of surface magnetic activity.

The supergranular flow fields discussed throughout this chapter, which were de-
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Figure 3.25: Six-day averaged flow field deduced by applying correlation tracking to 8-hr
averaged images of horizontal divergence. The flow field arrows have an rms velocity of
22 m s−1 and are scaled to 50 m s−1.

duced from applying correlation tracking to images of mesogranulation, presumably

also include a large-scale velocity component. Unfortunately, the speed of the outflows

(200–500 m s−1) combined with the 200 m s−1 anomalous flow pattern (see §3.1.4) ob-

scure the contribution to the flow maps arising from large-scale flows, which we expect

to have velocities of at most 50 m s−1. However, if the supergranular pattern itself is

horizontally advected by flows on larger scales, it may be possible to measure such large-

scale flows by applying the correlation tracking algorithm to the horizontal divergence

images, themselves produced from correlation tracked flow maps. We now discuss the

results of this effort.

We have shown that supergranules in quiet sun regions are on average about

20 Mm across. Using the supergranules as tracers for the correlation tracking technique



75

     

-20

-10

0

10

20

zo
na

l f
lo

w
 [m

 s
-1
]

a0 =  0.060 ° day-1

a2 = -0.721 ° day-1

a4 = -6.251 ° day-1

(a)

-20° -10° 0° 10° 20°
latitude

-20

-10

0

10

20
m

er
id

io
na

l f
lo

w
 [m

 s
-1
] slope =  0.318±0.051

intercept = -0.396±0.683(b)

Figure 3.26: Longitudinally averaged zonal and meridional flows from Fig. 3.25. The
fit parameters for the zonal flow are of the functional form Ω(λ) = a0 + a2 sin2(λ) +
a4 sin4(λ), where λ denotes latitude. The equatorial rate a0 is relative to the tracking
rate of the dataset of 13.5◦ day−1 synodic. The fit to the meridional flow is linear with
latitude. Negative velocities indicate eastward/southward flows while positive values
correspond to westward/northward flows.

therefore requires the size of the gridpoint neighborhood σ to be at least this size. In

practice, we find that setting σ to be about twice the size of the tracers works best, so we

here set σ=47 Mm, equivalent to a heliographic distance of 3.8◦. Figure 3.25 shows the

resulting flow field obtained by applying correlation tracking to supergranular outflow

patterns present in the divergence data. The resulting flow field is averaged over the

full duration of the time series, or about six days. The flow field arrows are binned

spatially so that the distance separating neighboring arrows is 23 Mm or 1.9◦. Both

spatial and temporal averaging are necessary to attenuate the random errors present in

the resulting flow maps.
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Figure 3.27: Residual large-scale flow field, formed by subtracting the fits to the longitu-
dinally averaged zonal and meridional flows of Fig. 3.25 from the flow field of Fig. 3.25.
Two organized outflows are enclosed in circles. The flow map vectors are scaled to
50 m s−1, and are spatially oversampled by a factor of two.

From the flow field of Figure 3.25, we first compute longitudinal averages of the

zonal and meridional components. The zonal average, displayed in Figure 3.26, contains

the differential rotation profile of the supergranulation pattern minus the mean rate of

13.5◦ day−1 (synodic) at which the dataset was originally tracked. We have fitted the

zonal flow to a function of the form

Ω(λ) = a0 + a2 sin2 λ+ a4 sin4 λ, (3.4)

where the differential rotation rate Ω is a function of latitude λ. After adding back in the

tracking rate of the region, the equatorial rate a0 deduced from these data corresponds

to a sidereal rate of 14.5◦ day−1 or 466 nHz, which is slower than the equatorial rate

for supergranules of 2.972 µrad s−1 or 473 nHz quoted by Snodgrass & Ulrich (1990),
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(b) Flows from Ring Diagrams
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Figure 3.28: A comparison between the large-scale flow field of Fig. 3.27 (a) with ring-
diagram results (b) for the same region. The correlation tracked flow field has been
spatially averaged to match the spatial resolution of the ring-diagram analysis.

but higher than the equatorial rate deduced spectroscopically (a0 = 2.851 µrad s−1 or

454 nHz) and from magnetic tracers (a0 = 2.879 µrad s−1 or 458 nHz) in the same data.

In addition, their supergranular rotation rate also decreases much more rapidly than

ours, corresponding in our units to a2 = −2.40◦ day−1 (versus the a2 = −0.721◦ day−1

for this dataset as indicated in Fig. 3.26). As a result, we conclude that our method

for measuring differential rotation only partially senses the true supergranular rotation

rate.

The lower panel of Figure 3.26 shows the meridional flow as averaged over lon-

gitude. We detect a poleward meridional flow symmetric about the equator, to within

the error of the coefficients of the linear fit. At latitudes of ±20◦ the flow has attained

speeds of approximately 5–10 m s−1, which may be slightly slower by about a factor of

two than other measurements of the surface meridional flow, such as those performed

using time-distance (e.g. Giles et al. 1997) and ring diagram (e.g. Haber et al. 2000)

analyses. We are not able to detect the asymmetry present in the meridional flow seen
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Figure 3.29: A scatter diagram comparing the large-scale flow field deduced by correla-
tion tracking Fig. 3.28a to the ring-diagram results Fig. 3.28b for the same region. Both
the correlation between the x-component (crosses) and the y-component (plusses) are
shown. The correlation coefficient is r = 0.567.

in both the time-distance and ring diagram analyses which causes the zero-crossing of

the meridional flow velocity to occur at about 5◦ of latitude north of the equator. We

note, however, that both studies use substantially longer datasets to make their mea-

surements of the meridional flow speeds, and it is possible that with greater temporal

coverage the meridional flow measurement attained using this scheme may approach the

results found in these other studies.

We now examine the residual flow field, shown in Figure 3.27, formed by remov-

ing the fits of Figure 3.26 from the large-scale flow field of Figure 3.25. Several regions

of organized fluid motions on scales of 10◦–20◦ are evident in this residual flow field,

including two regions (circled in the figure) suggestive of large-scale outflows. These di-
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vergent flows are approximately 10◦ or about 120 Mm across and have outflow velocities

on the order of 30 m s−1.

We believe the flows of Figure 3.27 are of solar origin for two reasons. First, the

flow field possesses a high amount of spatial coherence down to the resolution limit of the

data. Furthermore, our results compare favorably with ring-diagram results for the same

region, as shown in Figure 3.28. The flow vectors determined from ring-diagram analysis

are obtained by performing helioseismic inversions on 15◦-square time series of Doppler

velocity images. These square regions are typically separated by 7.5◦ in longitude and

latitude. For direct comparison, we show in Figure 3.28a the residual flow field deduced

by correlation tracking from Figure 3.27 after reducing the resolution to match that

of the corresponding ring-diagram flow vectors for the April 1999 dataset, shown in

Figure 3.28b. A scatter diagram comparing the two methods is shown in Figure 3.29,

and while there is some scatter in the data, the points appear to be correlated. The

correlation coefficient is r = 0.567 as indicated in the figure.

We find that velocity features associated with solar supergranulation are advected

by large-scale horizontal zonal and meridional flows, and as a result these flows can be

measured applying the correlation tracking technique to the supergranular flow field.

The supergranules in the April 1999 dataset possess a fast differential rotation pro-

file relative to spectroscopic and magnetic features, with a meridional circulation of

±10 m s−1 between −20◦ and 20◦ of latitude. In addition, organized flow patterns on

scales of 10◦–20◦ are evident in the residual flow field, after the longitudinally averaged

zonal and meridional flows are removed.

3.5 CONCLUSIONS

We have presented in this chapter evidence that the near-photospheric velocity

field on supergranular and larger scales is extremely complex, containing fluid motions

possessing a wide range of length and time scales. Using the correlation tracking tech-
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nique applied to full-disk MDI velocity images, we are able to study the horizontal flow

field associated with solar supergranulation for time periods as long as six days with a

combined spatial and temporal resolution unavailable before MDI. We find significant

evolution of the supergranular flow field on time scales as short as 6 hr as convergence

lanes are observed to appear and disappear and be horizontally advected by stronger

elements of the flow field. Amongst these quickly evolving flows are persistent features

which survive for time periods of 36 hr or more, encompassing not only long-lived su-

pergranules but also velocity patterns evident in the large-scale flow maps deduced from

tracking the supergranular pattern. A complete understanding of these surface patterns

requires knowledge of how these structures are formed and interact within the bulk of

convection zone. To this end, we now turn to detailed three-dimensional convection

models of a stratified fluid confined to rotating spherical shells which are designed to

simulate aspects the supergranular layer of the upper solar convection zone.



Chapter 4

NUMERICAL MODELING OF SPHERICAL SHELLS OF

CONVECTION

4.1 NUMERICAL MODELING OF ANELASTIC FLUIDS

Observations of supergranular and larger-scale flow fields, such as those presented

in Chapter 3, together with measurements of the smaller-scale patterns of mesogran-

ulation and granulation, provide the only direct look at the turbulent motions which

occupy the underlying convection zone. Such observations indicate this convection is

extremely complex, forming coherent features such as networks of upflows and down-

flows possessing a broad range of length and time scales. These vigorous overturning

motions are permeated by magnetic structures of all sizes, ranging from small flux tubes

to large-scale magnetic patterns associated with active regions and sunspots observed

at the surface. To investigate further the dynamics of such turbulent flows on super-

granular and larger scales, we now turn to three-dimensional numerical simulations of

convection occupying thin spherical shells located immediately below the solar surface.

The simulations described in the next chapter are carried out using the anelastic

spherical harmonic (ASH) code. The ASH code solves the anelastic equations of hydro-

dynamics describing a compressible fluid confined to a rotating spherical shell heated

from below. The complex structures and intricate behavior of the resulting convection

requires high spatial resolution, and the flows must be studied over extended periods

of time for statistical equilibration to be achieved. As a result, the ASH code is de-
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signed to run efficiently on massively parallel architectures such as the Cray T3E and

SGI Origin 2000 machines (Clune et al. 1999). This multi-processor version was devised

by Tom Clune, Mark Miesch, and Julian Elliott, although the numerical approach to

this problem was first implemented by Gary Glatzmaier in the early 1980’s (Glatzmaier

1984).

The ASH code employs a pseudo-spectral approach, where all fluid velocities and

state variables are projected onto orthogonal basis functions in each of the three spatial

dimensions. The radial structure of the solution variables is represented by an expansion

based on Chebyshev polynomials, while variations in the latitudinal and longitudinal

directions are expanded over spherical harmonic basis functions Y m
` , characterized by

the angular degree ` and azimuthal order m. This discretization scheme ensures that the

horizontal resolution is uniform everywhere on a sphere when all (`,m)-pairs for a given

maximum degree `max are retained in the modal expansion. Conversely, the simplest

finite-difference scheme, where computational gridpoints are distributed along lines of

latitude and longitude, suffers from the problem that the spatial resolution varies with

latitude such that the gridpoints are more closely spaced near the poles compared to

equatorial regions (colloquially known as the pole problem).

As the name implies, the ASH code solves an approximate form of the Navier-

Stokes equations known as the anelastic equations. The anelastic approximation (Gough

1969) allows us to handle the effects of compressibility while filtering out acoustic per-

turbations which would otherwise severely limit the size of the computational time step.

This approximation is valid when the convective fluid velocities are subsonic, which in

turn implies that the stratification of the fluid is only slightly superadiabatic. The filter-

ing is achieved by insisting that the time derivative of density vanishes in the continuity

equation, or thereby that the divergence of the momentum be zero, or that the mo-

mentum vector be solenoidal. This approximation is effectively equivalent to allowing

pressure disturbances to equilibrate instantaneously, forcing the system to evolve on
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convective rather than sound-speed time scales. It is therefore implicitly assumed that

sound waves do not play a significant role in the dynamical evolution of the system,

which is in agreement with the expectation that the coupling of convection, stratifi-

cation, and rotation are the major dynamical influences throughout the bulk of the

convection zone.

As with the temporal scales of motion, fully resolving all spatial scales of motion

in a numerical simulation is infeasible at this time, as the dynamically active scales in

the solar convection zone range from 102 Mm (depth of the zone) to 10−4 Mm (typi-

cal dissipation scale), thereby encompassing a factor of 106 in scale. However, current

simulations can cope with a range of only about 103 in each of three dimensions. Con-

sequently, the ASH code adopts the common approach of parameterizing the transport

properties resulting sub-grid scale (SGS) turbulent eddies and resolving only the largest

scales of convection, thus becoming a large eddy simulation (LES).

All LES-SGS simulations require a prescription for representing the effects of SGS

convective motions not explicitly resolved in the model. Such a scheme may incorpo-

rate characteristics of the resolved flows into their functional forms (see the reviews

by Canuto 1996; Lesieur 1997; Canuto & Christensen-Dalsgaard 1998), or may simply

enhance the molecular (viscous and thermal) diffusivities. We have adopted the latter

approach for simplicity, yet recognize that this aspect requires considerable attention

in the future. The main drawback of this scheme is that the enhanced diffusion draws

energy from larger resolved scales of motion which should be unaffected by such dis-

sipative effects. In one alternative approach, known as hyperviscosity, one allows the

enhanced eddy diffusivities to act on fourth (or higher) order derivatives of the velocity

field, thereby confining the diffusive effects more toward the smaller end of the spectrum.

Another class of SGS models involves adding extra stress terms to the equations of mo-

tion. Evolution equations for these additional contributions can then be constructed

once functional forms for the correlations between second-order variables are specified



84

using some kind of a closure hypothesis. As is true of all LES-SGS studies, one hopes

that the specific form by which the SGS motions are parameterized has a relatively

small effect on the global dynamics of the system.

Time-stepping in the ASH code is performed using an implicit second-order

Crank-Nicholson procedure for the linear terms and a fully explicit second-order Adams-

Bashforth procedure for the nonlinear terms. Because the explicit time-stepping proce-

dure cannot be performed in the spectral domain, this scheme necessitates conversions

between the physical and spectral representations during each time step when switching

between solving the implicit and explicit terms in the evolution equations. However, the

benefits gained by avoiding the pole problem prevalent in finite difference representa-

tions outweigh the added computational time spent in performing the transformations

between the physical and spectral domains.

4.2 THE ASH CODE: EQUATION SUMMARY

4.2.1 Fluid Flow in a Rotating Frame

We first set down the equations valid for a fully compressible, rotating fluid be-

fore introducing the anelastic approximation. We choose to operate in spherical polar

coordinates (r, θ, φ), where r is the radius at each point, and θ and φ are respectively

the polar (latitude) and azimuthal (longitude) angles. The fluid is rotating with respect

to an inertial frame at constant angular velocity Ω, such that

Ω = Ω cos θ r̂ − Ω sin θ θ̂, (4.1)

as illustrated in Figure 4.1. All symbols appearing in this section are defined in Table 4.1

for convenience, and most have their usual meanings in a fluid dynamical context. The

fluid equations express the conservation of mass (mass continuity),

∂ρ

∂t
+∇ · (ρu) = 0, (4.2)
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Figure 4.1: The spherical shell domain in partial cutaway to show the empty interior.

the conservation of momentum,

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p− ρg r̂ + 2ρ(u×Ω) +∇ ·D, (4.3)

and the conservation of internal energy,

ρT

[
∂s

∂t
+ (u · ∇)s

]
= −∇ · qeff + Φ. (4.4)

In the momentum conservation equation, it is customary for the gravitational ac-

celeration term to contain contributions from both centrifugal acceleration and classical

Newtonian gravitational acceleration. For the solar models considered here, however,

the centrifugal acceleration (of order Ω2R�) is several orders of magnitude smaller than
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Table 4.1: Definitions of symbols appearing in §4.2.

Gaussian First
Symbol Unit Appears Definition

cp erg g−1 K−1 equation (4.8) specific heat at constant pressure
cv erg g−1 K−1 γ def below specific heat at constant volume
D g cm−3 s−1 equation (4.3) viscous stress tensor
e s−1 equation (4.5) strain rate tensor
g cm s−2 equation (4.3) Newtonian gravitational acceleration
p erg cm−3 equation (4.3) pressure
q erg cm−2 s−1 equation (4.8) diffusive heat flux

qeff erg cm−2 s−1 equation (4.4) effective heat flux
qturb erg cm−2 s−1 equation (4.8) turbulent heat flux

r cm §4.2.1 intro radius
r̂ dimensionless equation (4.3) radial unit vector
s erg g−1 K−1 equation (4.4) specific entropy
T K equation (4.4) temperature
t s equation (4.2) time
u cm s−1 equation (4.2) velocity
δ dimensionless equation (4.5) Kronecker delta
γ dimensionless equation (4.10) ratio cp/cv of specific heats
κr cm 2 s−1 equation (4.8) radiative diffusivity
κs cm 2 s−1 equation (4.8) turbulent thermal diffusivity
θ dimensionless §4.2.1 intro polar angle
ν cm2 s−1 equation (4.7) kinematic viscosity

νeff cm2 s−1 equation (4.5) effective kinematic viscosity
νturb cm2 s−1 equation (4.7) turbulent kinematic viscosity

ρ g cm−3 equation (4.2) density
Φ erg cm−2 s−1 equation (4.4) viscous heating
φ dimensionless §4.2.1 intro azimuthal angle
Ω s−1 equation (4.3) angular velocity of reference frame

the Newtonian gravity (of order
GM�
R2
�

), where R� and M� are the solar radius and

mass. In order to use simple spherical harmonic expansions, we ignore centrifugal ef-

fects in these models, thereby rendering the surfaces of constant gravitational potential

spherical: g = −g r̂. Note that this assumption precludes Eddington-Sweet circulations

(e.g. Tassoul 1978).
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The viscous stress tensor D appearing in equation (4.3) is defined as

D = 2ρνeff

[
e− 1

3
(∇ · u) δ

]
, (4.5)

while the viscous heating term Φ appearing in equation (4.4) can be written

Φ = 2ρνeff

[
e : e− 1

3
(∇ · u)2

]
, (4.6)

where in both equations (4.5) and (4.6) the tensor e is the strain rate tensor and is itself

a function of u.

In accordance with our SGS formulation, we define the effective viscosity νeff as

νeff = ν + νturb, (4.7)

where νturb is the turbulent eddy viscosity which accounts for viscous transport by

convective motions not formally resolved in the simulation. In the above hydrodynamic

equations, the true viscosity ν has been replaced by νeff. Additionally, we also must

account for the transport of heat by the SGS turbulence. We therefore define

qeff = q + qturb = −κrρcp∇T︸ ︷︷ ︸
q

−κsρT∇s︸ ︷︷ ︸
qturb

, (4.8)

where we have explicitly taken into account the smoothing out of entropy gradients by

unresolved SGS motions by having the eddy thermal diffusivity κs acting on∇s. Ideally,

if the simulation were to resolve all relevant scales of motion, the turbulent contributions

to νeff and qeff would be superfluous. However, fully resolved global simulations of

relevance to the sun are currently unattainable.

The heat flux q appearing in equation (4.8) should contain contributions from

both radiative diffusion and thermal conduction. For the sun, the energy flux due to

thermal conduction is much smaller than the fluxes from radiative diffusion or convec-

tion (e.g. Spitzer 1962; Hansen & Kawaler 1994) and is thus ignored in these models.

Furthermore, the radiative flux is assumed to take the form of a Fick-type diffusion law,

q = −κrρcp∇T. (4.9)
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Equations (4.2)–(4.4) are to be solved for the following seven quantities: the four

state variables ρ, p, T , s, and the three components of u. However, equations (4.2)–

(4.4) comprise only five independent relations. Since only two of the state variables are

independent, the system is closed by first specifying an equation of state relating the

state variables ρ, p, and T , and then deriving an equation for s.

In the simulations presented here, we assume the fluid is a perfect gas, thereby

ignoring the effects of ionization. The equation of state is therefore

p =
γ − 1
γ

cpρT. (4.10)

The specific entropy is then

s = cp

(
1
γ

ln p− ln ρ
)
, (4.11)

valid to within an arbitrary constant determined by specifying the value of s given ref-

erence values of p and ρ. Equations (4.2)–(4.4), (4.10), and (4.11) now form a complete

set of equations describing a compressible fluid in a spherical geometry.

4.2.2 The Anelastic Approximation

Compressibility clearly plays an important role in the dynamics of the solar con-

vection zone, as the fluid density varies by several orders of magnitude across the layer.

The density drops by a factor of approximately 100 between 0.90R� and 0.99R�, which

encompasses the upper region of the convection zone considered in this thesis. We

therefore apply the anelastic approximation to the fully compressible fluid equations in

order to accommodate a solar-like density stratification in our simulations. As discussed

earlier, sound waves and other pressure disturbances which operate on time scales faster

than the time scale of the convection are filtered out in this formulation, since including

such dynamics would otherwise limit the size of the computational time step.

The main assumption of the anelastic approximation is that such temporal fil-

tering is valid when the convective motions are subsonic, which occurs when the radial
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entropy gradient responsible for driving the convection departs only slightly from the

marginally stable entropy gradient (that is, when
∣∣∣∣dsdr
∣∣∣∣ � 1). We now estimate the

degree of superadiabaticity at a given radius within the solar convection zone using

simplified mixing-length arguments to estimate the heat transport of a convectively

unstable parcel of fluid.

We first define the dimensionless parameter ε as

ε = − λ
cp

ds

dr
, (4.12)

where ε characterizes the superadiabaticity of the fluid in terms of the entropy gradi-

ent. To make ε dimensionless, we normalize the entropy gradient by choosing cp as

the entropy scale and the mixing length λ as the characteristic length scale. The neg-

ative sign in equation (4.12) ensures that ε is positive, since superadiabatically strat-

ified (convectively unstable) fluids have negative entropy gradients. We assume that

the superadiabatic stratification
ds

dr
is prescribed throughout the convection zone, even

though the very motions which it supposedly drives most assuredly feed back and alter

the stratification.

Now consider an isolated fluid parcel, initially in equilibrium with its surround-

ings, rising through the convectively unstable medium characterized by entropy gradient
ds

dr
. The motion of this parcel is driven by the excess heat it possesses after rising a

radial distance λ. Equating the kinetic energy of the parcel with this heat excess, we

have

ρv2

2
= −λρT ds

dr
, (4.13)

where v is the upward radial velocity of the parcel, and T and ρ are representative

values of the temperature and density of the fluid. Solving for v and substituting the

definition of ε from equation (4.12) into equation (4.13), we obtain

v = (2εcpT )
1
2 . (4.14)
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The flux of energy Fconv =
1
2
ρv3 carried radially outward by these convective motions

is therefore equal to

Fconv = ρ (εcpT )
3
2 , (4.15)

where factors of order unity have been omitted from our estimate. We now determine

the degree of superadiabaticity ε necessary for convection to transport the entire solar

luminosity L� through the convection zone by equating Ftotal = Fconv, which implies

L�
4πr2

= ρ (εcpT )
3
2 , (4.16)

and solving for ε. We thus have

ε =
1
cpT

(
L�

4πr2ρ

) 2
3

. (4.17)

We can also estimate the typical Mach number Ma achieved by these convective

flows. By definition,

Ma =
v

cs
, (4.18)

where the adiabatic sound speed cs is given by

cs =
(
γp

ρ

) 1
2

. (4.19)

Substituting the expressions for v and cs from equations (4.14) and (4.19) into equa-

tion (4.18) gives

Ma =
(
εcpρT

γp

) 1
2

=
(

ε

γ − 1

) 1
2

, (4.20)

where the last equality follows from the ideal gas law, equation (4.10). Equation (4.20)

implies that convective motions driven by a fluid for which ε is small do not approach

the speed of sound.

Table 4.2 lists values for v, ε, and Ma calculated using equations (4.14), (4.17),

and (4.20) for several radii within the convection zone. Values for T and ρ are taken from



91

Table 4.2: Estimates of v, ε, and Ma using a mixing-length approach as calculated
from equations (4.14), (4.17), and (4.20) assuming L� = 3.90 × 1033 erg s−1, R� =
6.96 × 1010 cm, and cp = 4 × 108 erg g−1 K−1. The temperature T and density ρ are
taken from Model S of Christensen-Dalsgaard et al. (1993). In this model, the base of
the convection zone sits at r = 0.73R�.

r [R�] T [K] ρ [g cm−3] v [m s−1] ε Ma

0.73 2.1× 106 1.6 × 10−1 130 1× 10−7 4× 10−4

0.75 1.8× 106 1.3 × 10−1 140 1× 10−7 4× 10−4

0.80 1.4× 106 8.8 × 10−2 150 2× 10−7 5× 10−4

0.85 9.9× 105 5.2 × 10−2 170 4× 10−7 7× 10−4

0.90 6.2× 105 2.6 × 10−2 200 8× 10−7 1× 10−3

0.94 3.5× 105 1.0 × 10−2 270 3× 10−6 2× 10−3

0.96 2.2× 105 5.3 × 10−3 330 6× 10−6 3× 10−3

0.97 1.6× 105 3.1 × 10−3 400 1× 10−5 4× 10−3

0.98 1.0× 105 1.4 × 10−3 510 3× 10−5 7× 10−3

0.99 4.7× 104 3.2 × 10−4 830 2× 10−4 2× 10−2

0.999 1.3× 104 1.2 × 10−6 5300 3× 10−2 2× 10−1

an advanced one-dimensional solar model used extensively in helioseismology (Model S

of Christensen-Dalsgaard et al. 1993). Table 4.2 shows that ε is no greater than about

10−4 (and thus Ma . 10−2) throughout the bulk of the convection zone, and so the

convective motions driven at greater depths are expected to be decidedly subsonic.

Only within the last 1% by radius does ε approach unity. Above 0.99R�, the rapidly

decreasing density and temperature profiles lead to faster fluid motions involving smaller

spatial and temporal scales. In addition, the recombination of electrons with helium

and hydrogen nuclei release latent heat which then must be transported outward by the

convection. As a result, the stratification must become more superadiabatic to transport

the requisite amount of energy, rendering the anelastic approximation less valid.

4.2.3 Scaling of the Fully Compressible Fluid Equations

Because the convective motions are subsonic and the superadiabaticity within the

convection zone is small, we expect that the resulting departures of the thermodynamic
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state variables from their spherically averaged means should also be small. Therefore,

we perform a formal scale analysis on the fully compressible fluid equations (4.2)–(4.4)

introduced in §4.2.1 to separate the spherically symmetric mean state from the fluctu-

ations resulting from the convection. We express each state variable f as the sum of a

spherically symmetric mean quantity f̂(r, t) and a fluctuating quantity f ′(r, θ, φ, t):

p(r, θ, φ, t) = p̂(r, t) + p′(r, θ, φ, t),

ρ(r, θ, φ, t) = ρ̂(r, t) + ρ′(r, θ, φ, t),

T (r, θ, φ, t) = T̂ (r, t) + T ′(r, θ, φ, t),

s(r, θ, φ, t) = ŝ(r, t) + s′(r, θ, φ, t).

(4.21)

The perturbations to the state variables result from convective motions driven by the

superadiabatic stratification of the layer, which we have previously characterized by the

parameter ε defined in equation (4.12). We therefore assume
f ′

f̂
is of order ε for any

quantity f in equation (4.21).

For low Mach number flows the time scale on which pressure and density pertur-

bations get smoothed out is much faster than the time scale of the convective motions,

since such perturbations dissipate on sound-speed time scales. We perform such tem-

poral filtering by assuming

∂ρ′

∂t
= 0 (4.22)

in the mass continuity equation.

The resulting anelastic equations consist of a set of equations describing the mean

state, and a system of dynamic equations which governs the evolution of the fluctuating

quantities. The details of the formal scale separation, which include the derivations of

equations (4.23)–(4.33) which follow, are presented in §B.1 of Appendix B. We assume

that the diffusivities νeff, κr, and κs are functions of ρ̂ (and thus r) only, while the

parameters γ and cp are assumed constant throughout the domain.
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The mean momentum equation becomes

d(p̂+ p̂turb)
dr

= −ρ̂g, (4.23)

where the quantity p̂turb(r, t) represents the small departure from hydrostatic equilib-

rium caused by the combined effect of turbulent motions in the system. The mean

equations of state are

p̂ =
γ − 1
γ

cpρ̂T̂ , (4.24)

dŝ

dr
= cp

(
1
γp̂

dp̂

dr
− 1
ρ̂

dρ̂

dr

)
. (4.25)

Upon initialization, the equations (4.23)–(4.25) are solved to determine the mean

state, with the turbulent pressure p̂turb = 0 since the system is started from rest.

Because there are only three equations but four unknown mean variables, one of them is

therefore undetermined. Consequently, we take the approach of prescribing the entropy

gradient
dŝ

dr
, and then solving equations (4.23)–(4.25) to determine the other mean

variables p̂, ρ̂, and T̂ . Note that the gravitational acceleration g can either be assumed

constant throughout the layer, or can be prescribed along with the entropy gradient if

the self-gravity of the mean state is deemed important.

The equations governing the evolution of the dynamic quantities u and s are:

ρ̂
∂u

∂t
= 2ρ̂(u×Ω)− ρ̂(u · ∇)u−∇p′ − ρ′g r̂ +∇ · D̂ (4.26)

and

ρ̂T̂
∂s′

∂t
=∇ · q̂eff − ρ̂T̂ (u · ∇)(ŝ+ s′) + Φ̂, (4.27)

where the anelastic viscous stress tensor D̂ and the anelastic viscous heating term Φ̂

are defined

D̂ = 2ρ̂νeff

[
e− 1

3
(∇ · u) δ

]
(4.28)
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and

Φ̂ = 2ρ̂νeff

[
e : e− 1

3
(∇ · u)2

]
, (4.29)

and where the anelastic heat flux q̂eff is defined as

q̂eff = −κrρ̂cp∇(T̂ + T ′)− κsρ̂T̂∇(ŝ+ s′). (4.30)

The evolution of the system given by equations (4.26)–(4.27) are subject to the following

three constraints:

∇ · (ρ̂u) = 0, (4.31)

p′

p̂
=
ρ′

ρ̂
+
T ′

T̂
, (4.32)

s′

cp
=

p′

γp̂
− ρ′

ρ̂
. (4.33)

4.2.4 Energetics of the Anelastic Equations

For future reference, we now list the equations describing the kinetic and in-

ternal energy budgets of the system, while relegating the detailed derivations to §B.2

in Appendix B. The equation describing the conservation of kinetic energy density

Ek =
ρ̂u · u

2
is

∂Ek
∂t

= −u · ∇p′ − ρ′gu · r̂ + u ·
(
∇ · D̂

)
+∇ ·

[
u

(
ρ̂u · u

2

)]
. (4.34)

The terms on the right-hand side of equation (4.34) all represent sources or sinks of

kinetic energy due to work respectively done by pressure gradient forces, buoyancy

forces, shear stresses, and by inertial forces.

The equation describing the conservation of internal energy density Es = ρ̂T̂ s′ is

∂Es
∂t

=∇ · q̂eff + u · ∇p′ + ρ′gu · r̂ − cp∇ · (ρ̂T ′u) + Φ̂. (4.35)

As with the kinetic energy equation, each of the terms on the right-hand side of equa-

tion (4.35) represents either a source or sink of internal energy. The first term on
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the right-hand side represents the transport of flux via temperature/entropy gradients

throughout the domain. The next two terms denote the extraction of heat from the

thermal field by pressure-gradient and buoyancy forces. The fourth and fifth terms rep-

resent the heat generated by volume expansion and viscous dissipation, while the sixth

term may be interpreted as the radial transport of enthalpy.

The sum of equations (4.34) and (4.35) yields the following equation describing

the total energy budget of the system:

∂(Ek + Es)
∂t

=∇ ·
(
u · D̂

)
+∇ ·

[
u

(
ρ̂u · u

2

)]
+∇ · q̂eff −∇ · (cpρ̂T ′u). (4.36)

4.2.5 Streamfunction Formalism

To solve the anelastic evolution equations (4.26) and (4.27), we recognize that

the mass flux is solenoidal, which permits the quantity ρ̂u to be written in terms of

poloidal and toroidal streamfunctions W and Z,

ρ̂u =∇× (∇×W r̂) +∇× Z r̂ (4.37)

such that equation (4.31) is automatically satisfied. We now replace the anelastic mo-

mentum equation (4.26) with three scalar equations describing the evolution of W ,
∂W

∂r
,

and Z. They are the radial component of the momentum equation,

− ∂
∂t

(∇2
⊥W ) = −∂p

′

∂r
− ρ̂g + r̂ ·

[
∇ · D̂

]
+ ρ̂ r̂ ·

[
2(u×Ω)− (u · ∇)u

]
, (4.38)

the horizontal divergence of the momentum equation,

− ∂
∂t

[
∂

∂r
(∇2
⊥W )

]
= −∇2

⊥p
′ +∇⊥ ·

[
∇ · D̂

]
+ ρ̂∇⊥ ·

[
2(u×Ω)− (u · ∇)u

]
, (4.39)

and the radial component of the curl of the momentum equation,

− ∂
∂t

(∇2
⊥Z) = r̂ ·

[
∇× (∇ · D̂)

]
− ρ̂ r̂ · [∇× (u · ∇)u]

+ 2(Ω · ∇)ρ̂ur +
2ρ̂Ωuθ sin θ

r
.

(4.40)
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In the above equations, the horizontal Laplacian operator is defined

∇2
⊥ =

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2
, (4.41)

while the horizontal divergence of a vector A is defined

∇⊥ ·A =
1

r sin θ
∂(sin θ Aθ)

∂θ
+

1
r sin θ

∂Aφ
∂φ

. (4.42)

Equations (4.38)–(4.40), together with the anelastic energy equation (4.27), form the

evolution equations solved by the ASH code. Detailed derivations of these equations

are provided in §B.3 of Appendix B.

4.3 THE ASH CODE: NUMERICAL IMPLEMENTATION

We now summarize the discretization scheme and parallel implementation of the

ASH code, following the more detailed presentation of Miesch (1998).

4.3.1 Angular Discretization

The first step in the pseudo-spectral method is to express all dependent variables

as a projection over orthogonal basis functions. For the angular dependence, the basis

functions are the spherical harmonics Y m
` ,

Y m
` (θ, φ) = Cm` P

m
` (cos θ) eimφ, (4.43)

where the functions Pm` are the associated Legendre functions, and where the constants

Cm` are defined

Cm` = (−1)m
[

2`+ 1
4π

(`−m)!
(`+m)!

] 1
2

. (4.44)

The spherical harmonic functions are characterized by the angular degree ` and az-

imuthal order m. All dependent variables f(r, θ, φ, t) in the problem are expressed as

linear combinations of the spherical harmonics,

f(r, θ, φ, t) =
∞∑
`=0

∑̀
m=−`

fm` (r, t)Y m
` (θ, φ), (4.45)
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where the spectral coefficients fm` (r, t) are found by the formula

fm` (r, t) =
∫ 2π

0
dφ

∫ π

0
sin θ dθ Y m∗

` (θ, φ) f(r, θ, φ, t)

= Cm`

∫ π

0
sin θ dθ Pm` (cos θ)

∫ 2π

0
dφ e−imφ f(r, θ, φ, t).

(4.46)

Equation (4.46) constitutes the continuous spherical harmonic transform formula.

Numerical simulations are of course discretized, either by having a discrete grid

in physical space or by limiting the number of mode coefficients in spectral space. To

maximize the accuracy of the transforms, Gaussian quadrature techniques are utilized in

evaluating the integrals of equation (4.46), where continuous integrals are approximated

as weighted sums over predetermined collocation points (θi, φj) known as Gaussian

abscissae. The Gaussian abscissae depend only on the number of collocation points and

the orthogonal basis used in the expansion. Using Gaussian quadrature, the spherical

harmonic transform of equation (4.46) becomes

fm` (r, t) = Cm`

Nθ∑
i=1

wiP
m
` (cos θi)

Nφ∑
j=1

wje
−imφjf(r, θi, φj , t)

=
Nθ∑
i=1

Nφ∑
j=1

wiwjY
m∗
` (θi, φj)f(r, θi, φj , t),

(4.47)

where Nθ and Nφ are the number of collocation points used in the θ and φ directions.

In this formula, the Gaussian abscissae in φ are the Fourier collocation points φj , where

φj =
2πj
Nφ

where j = 1, 2, · · · ,Nφ, (4.48)

having weights wj of

wj =
1
Nφ

. (4.49)

The Gaussian abscissae in θ are the Legendre collocation points θi, where

θi = zeroes of PNθ(cos θ) with i = 1, 2, · · · ,Nθ, (4.50)
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having weights wi of

wi =
2

[sin2 θi P
′
Nθ

(cos θi)]2
. (4.51)

In equations (4.50) and (4.51), the functions P`(cos θ) are the Legendre functions of the

first kind, with

P ′Nθ =
dPNθ(cos θ)
d(cos θ)

∣∣∣∣
θ=θi

. (4.52)

The values Nθ and Nφ determine the angular resolution in physical space in both

the latitudinal and longitudinal directions. To ensure that the horizontal resolution is

even everywhere on a spherical surface, we set Nφ = 2Nθ, and truncate the spherical

harmonic expansion of equation (4.45) at a maximum angular degree `max, wherein all

modes for which 0 ≤ ` ≤ `max and −`max ≤ m ≤ `max are used in the expansion. To

attenuate aliasing errors when evaluating the nonlinear terms in the evolution equations,

we also choose `max to satisfy

Nθ ≥
3`max + 1

2
. (4.53)

4.3.2 Radial Discretization

As with the angular discretization, the radial discretization is handled in a similar

fashion. The radial dependence of each field is evaluated only at discrete collocation

points, and is transformed to spectral space using Gaussian quadrature. Each coefficient

fm` (r, t) is expanded over the set of Chebyshev polynomials Tn of order n, where

Tn(x) = cos(n arccos x). (4.54)

While the Tn appear trigonometric, they are in fact polynomials in x defined on (−1, 1).

The physical radii rk are scaled to the Chebyshev gridpoints xk by

rk =
1
2

[
(r1 + r2) + (r2 − r1)xk

]
, (4.55)
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where r1 and r2 are respectively the radii of the lower and upper boundary of the

physical domain such that they map to −1 and 1 in the Chebyshev domain.

Each discrete function fm` (rk, t) can be expressed as a truncated series

fm` (rk, t) =
2

Nr − 1

Nr∑
n=1

εnf
m
`n(t)Tn−1(xk), (4.56)

where the spectral coefficients fm`n are found by evaluating

fm`n =
Nr∑
k=1

wkTn−1(xk)fm` (xk, t). (4.57)

The Chebyshev collocation points xk are

xk = cos
(

(k − 1)π
Nr − 1

)
, (4.58)

while the weights wk are

wk =
εkπ

Nr − 1
. (4.59)

In this formula and in equation (4.56), the constant εk is equal to 1, unless k = 1 or

k = Nr, for which εk =
1
2

.

4.3.3 Temporal Discretization and Parallel Implementation

When transformed to spectral space, the ASH code evolution equations (4.27)

and (4.38)–(4.40) are of the form

∂y

∂t
= L+N , (4.60)

where L and N respectively designate linear and nonlinear source terms.1 Generally,

these source terms can be a function of any of the dependent variables W , Z, p, and s

as well as a function of the independent variables r, θ, φ, and t.

The time-stepping for both the linear and nonlinear source terms is performed

simultaneously using a combination of the Crank-Nicholson scheme for the linear source
1 Although the Coriolis terms are linear, they are grouped with the nonlinear source terms N in the

ASH code time-stepping algorithm.
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terms L and the Adams-Bashforth scheme for the nonlinear source terms N . Both

methods are accurate to second-order. By combining the two methods (see Appendix C),

we discretize equation (4.60) to obtain

yi+1 − yi
∆ti

=
(

1 +
1
2

∆ti
∆ti−1

)
Ni −

(
1
2

∆ti
∆ti−1

)
Ni−1 + ΘLi+1 + (1−Θ)Li, (4.61)

where subscripts are used to denote the index of the time step. For example, yi denotes

the value of y at the most recently computed time step (occurring at time ti) and yi+1

denotes the yet-to-be-computed value of y at the next time step. The time separation

between subsequent time steps is ∆ti = ti+1 − ti.

After rewriting, equation (4.61) becomes

yi+1 −∆tiΘLi+1 = yi + ∆ti

[(
1 +

1
2

∆ti
∆ti−1

)
Ni −

(
1
2

∆ti
∆ti−1

)
Ni−1 + (1−Θ)Li

]
.

(4.62)

Since the term Li+1 is linear, we may write Li+1 = A′yi+1, whereA′ is a matrix operator.

Equation (4.62) now becomes the matrix equation

Ayi+1 = B, (4.63)

where

A = 1−∆tiΘA′ (4.64)

and

B = yi + ∆ti

[(
1 +

1
2

∆ti
∆ti−1

)
Ni −

(
1
2

∆ti
∆ti−1

)
Ni−1 + (1−Θ)Li

]
. (4.65)

The updated fields yi+1 are determined by solving the matrix equation (4.63) once A

and B are calculated.

We now summarize the main loop of the ASH code:

• At the beginning of each iteration, the dependent variables yi begin in (r, `,m)-

space.
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• Spatial derivatives of the dependent variables are evaluated. First, each quantity

is transformed to (n, `,m)-space via a Chebyshev transform, then the derivatives

are evaluated using Chebyshev recursion relations, and then the derivatives are

transformed back to (r, `,m)-space via an inverse Chebyshev transform.

• The linear term Li is evaluated in (r, `,m)-space.

• The dependent variables yi are transformed to (r, θ, φ)-space via an inverse

Legendre transform (to go from ` to θ) and an inverse Fourier transform (to go

from m to φ).

• The nonlinear term Ni is evaluated in (r, θ, φ)-space.

• The nonlinear term Ni is transformed back to (r, `,m)-space via a forward

Legendre transform and a forward Fourier transform.

• The quantity B of equation (4.65) is evaluated, now that we have available the

terms Li, Ni, and Ni−1, with the latter term saved over from the previous time

step.

• The quantity A of equation (4.64) is calculated.

• The matrix equation (4.63) is solved for yi+1 using LU-decomposition.

As stated at the beginning of this chapter, the ASH code runs efficiently on

massively parallel architectures such as the Cray T3E and Origin 2000 machines (Clune

et al. 1999). These machines are of the distributed-memory configuration, where each

processor has its own local memory bank independent of the other processors. Such

a configuration requires to the programmer to devise sensible algorithms responsible

for evenly splitting up the workload (load-balancing) and coordinating interprocessor

communication when information is needed by multiple processors.
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The most computationally intensive steps of the flowchart above involve global

operations such as the spectral transforms and the solution of the matrix equation. The

strategy adopted by the ASH code is to perform all transforms between the physical

and spectral domains in-processor so as to avoid interprocessor communication during

the transform. However, such a scheme requires frequent global transposes in order to

arrange the data such that the dimension of the transform is local.



Chapter 5

SUPERGRANULAR CONVECTION IN THIN SHELL MODELS

5.1 INTRODUCTION

Helioseismology has shown that the latitudinally varying angular velocity profile

observed at the surface is largely maintained throughout the bulk of the convection

zone (Thompson et al. 1996; Schou et al. 1998). The angular velocity is nearly constant

along radial lines, particularly at mid-latitudes, as seen in Figure 5.1. However, regions

of strong radial shear (shown shaded) exist near both the bottom and the top of the

convection zone, and these shear layers are thought to play important roles in the

dynamics of the convection zone. The tachocline region at the base of the convection

zone has commanded much recent attention as it is likely the seat of the global solar

dynamo. Portions of the strong toroidal magnetic fields thought to be generated by the

shearing motions within the tachocline will likely rise buoyantly through the convection

zone in a coherent fashion until they reach the surface. Such magnetic structures are

believed to produce the observed large-scale patterns of magnetic activity visible at the

photosphere, including sunspots and bipolar active regions, that comprise the 22-year

solar magnetic activity cycle. This flux may also contribute to the production of small-

scale magnetic field elements seen at the photosphere, including bright points, pores,

and the magnetic carpet, although these features are more likely the result of local

dynamo action closer to the surface.

Prior to their emergence, the small-scale filamentary magnetic structures must



104

near-surface
shear layer

tachocline

0.50 0.60 0.70 0.80 0.90 1.00
r / R

360

380

400

420

440

460

480

Ω
 / 

2π
 [n

H
z]

0°

15°

30°

45°

60°

Figure 5.1: Average rotation rates Ω/2π inferred from the helioseismic inversion of over
4 years of GONG data using RLS inversions (adapted from Howe et al. 2000). Shear
layers (shaded), evidenced by variations of Ω with radius, are observed near the base of
the convection zone as well as near the surface, with the latter region extending from
0.95–1.00 R (where R is the radius of the sun). The gradients of Ω in that near-surface
shear layer at high latitudes is somewhat sensitive to the inversion method and data
sets used (e.g. see Schou et al. 1998).

be at least partially influenced by the dynamics within the upper shear layer of the

solar convection zone. The stratification within this region serves to drive vigorous

motions possessing a wide range of spatial and temporal scales, visible at the surface as

the convective patterns of supergranulation, mesogranulation, and granulation (Spruit

et al. 1990). The outflows associated with such convective motions are observed to

readily advect emergent magnetic flux toward intercellular lanes and concentrate these

fields on scales small enough for dissipation to occur. It is not yet known to what degree

large-scale magnetic structures such as sunspots and active regions are impacted by the
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turbulent convection occurring near the surface. In addition to reconfiguring magnetic

flux, these convective motions facilitate the transport of angular momentum along both

radial and latitudinal velocity gradients, and are likely to influence the dynamics of

the bulk of the convection zone in ways that are not yet understood. The relatively

large horizontal and radial extent of supergranular flows in particular suggest that they

play a prominent role in the dynamics within this shearing boundary layer, as such

motions may be weakly influenced by rotational effects that create the Reynolds stresses

necessary for efficient turbulent transport of angular momentum within the layer.

Velocity features larger than the spatial scale of solar supergranulation are also

evident (e.g. Giles et al. 1998; Haber et al. 2000) in the upper shear layer. Banded

zonal velocity features which propagate in latitude are visible in long-term observations

of the photosphere (LaBonte & Howard 1982; Hathaway et al. 1996; Howe et al. 2000),

suggesting a weak organization on larger spatial scales. Helioseismic observations indi-

cate a steady, longitudinally averaged, meridional flow toward the poles having speeds

of order 20 m s−1, extending to depths of at least 20 Mm below the visible surface

(Giles et al. 1998; Haber et al. 2000). The return flow necessary to satisfy mass con-

servation has not yet been detected. Despite the slower fluid velocities associated with

such large-scale flow patterns, fluid motions in the meridional plane can still effectively

redistribute angular momentum and couple widely separated regions within the solar

convection zone.

To understand more clearly some of the physical processes occurring within the

upper shear layer of the solar convection zone, we have constructed numerical simula-

tions of a compressible fluid confined to a thin spherical shell located near the top of

the convection zone. These simulations constitute the first global simulations of solar

convection at a resolution high enough to begin to explicitly resolve fluid motions on

supergranular scales. Such calculations are performed using the ASH computer code

described in Chapter 4, which runs efficiently on massively parallel computer platforms
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such as the Cray T3E and Origin 2000 machines (Clune et al. 1999). The complex

structures and intricate behavior of the resulting convection require high spatial resolu-

tion, and the flows must be studied for long periods of time for statistical equilibrium

to be achieved.

In constructing these simulations, we have adopted the viewpoint that the angu-

lar velocity profile seen in helioseismic observations is maintained within the bulk of the

convection zone, somewhere below the bottom boundary of our models, where the com-

bined effects of convection and rotation create a net equatorward transport of angular

momentum. Numerical simulations of the full convection zone suggest that such trans-

port is achieved by Reynolds stresses and large-scale meridional circulation, all working

against diffusion (e.g. Miesch et al. 2000; Elliott et al. 2000; Brun & Toomre 2001).

From this perspective, we are essentially assuming that the global differential rotation

profile is not substantially affected by the convection within our thin shells, and thus

can be imposed via the velocity boundary condition applied to the lower boundary. We

can therefore only explore the effects of such differential rotation within a thin spherical

layer of convection, but are able to investigate some of the ingredients associated with

the formation of shearing boundary layers analogous to the near-surface shear layer of

the sun.

After discussing the initialization of the four thin shell simulations in §5.2, we

begin in §5.3 by illustrating the velocity patterns and time evolution of the multiple-

scale convection driven within our simulations. We then in §5.4 examine the energy

balance responsible for the resulting axisymmetric differential rotation and meridional

circulation profiles and discuss the role of the convective motions in their maintenance.

We conclude with a discussion of the solar implications of these simulations and present

ideas for future research in §5.5.
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Table 5.1: A summary of the parameters of the thin shell convection simulations. The
differences between Case S2 and the other three simulations are set in bold.

Case S1 Case S2 Case S3 Case D2

Radial Extent 0.94–0.98 R 0.94–0.98 R 0.94–0.98 R 0.90–0.98 R

Thickness [Mm] 28 28 28 56

Velocity BC’s
at Top

stress-free
impenetrable

stress-free
impenetrable

stress-free
impenetrable

stress-free
impenetrable

Velocity BC’s
at Bottom

no-slip
uniform rot.
impenetrable

no-slip
differential rot.
impenetrable

no-slip
differential rot.
impenetrable

no-slip
differential rot.
impenetrable

Entropy BC’s
at Top

constant entropy constant entropy constant entropy constant entropy

Entropy BC’s
at Bottom

constant flux constant flux constant flux constant flux

Ang. velocity Ω0 [nHz] 410 410 410 410

Rot. period P [days] 28.2 28.2 28.2 28.2

νtop [cm2 s−1] 1× 1012 1× 1012 5� 1011 1× 1012

κtop [cm2 s−1] 1× 1012 1× 1012 2� 1012 1× 1012

Density contrast 7.5 7.5 7.5 18

Prandtl number Pr 1 1 1
4 1

Taylor number Ta 5.4× 103 5.4× 103 5.4× 103 2.1× 105

Reynolds number Re 1.4× 102 1.4× 102 1.4× 102 2.2× 102

Rayleigh number Ra 1.9× 104 1.9× 104 1.9× 104 5.4× 105

Supercriticality
Ra
Ra,0

40 100 200 500

Averaging Interval [days] 140 140 30 36

Nr ×Nθ ×Nφ
`max

Ang. Periodicity

64×512×1024
340

four-fold

64×512×1024
340

four-fold

128×512×1024
340

four-fold

128×512×1024
340

four-fold
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Figure 5.2: The radial profiles of (a) density, (b) pressure, (c) density scale height,
and (d) temperature as a function of proportional radius used upon initialization of
the simulations (black), compared with the corresponding values taken from a one-
dimensional solar structure model (red).

5.2 SUMMARY OF SIMULATION PARAMETERS

5.2.1 Initialization of the Spherically Symmetric Mean State

We have constructed three shallow shell simulations (Cases S1, S2, and S3) that

span a radial extent of 0.94–0.98 R, equivalent to a shell thickness of 28 Mm. The

remaining simulation (Case D2) spans 0.90–0.98 R or 56 Mm, and is accordingly twice

as thick as the three shallow shell simulations but otherwise equivalent to Case S2.



109

We simulate the angular velocity profile established within the deep convection zone by

imposing a differentially rotating no-slip lower boundary on Cases S2, S3, and D2. For

comparison purposes, the lower boundary of Case S1 is maintained at a uniform rate

equal to the angular velocity Ω0 of the computational frame, with all other attributes

equivalent to Case S2. In all four cases, the upper boundary is stress-free and both the

lower and upper boundaries are impenetrable. The parameters of the four thin shell

simulations are summarized in Table 5.1.

As discussed in the previous chapter, the anelastic equations of motion are ad-

vanced in time by the ASH code using a pseudo-spectral approach, wherein functions of

θ and φ are expanded over spherical harmonic functions characterized by angular degree

` and azimuthal order m. Functions of radius are projected onto Chebyshev polynomi-

als characterized by radial order n. The four simulations presented here are calculated

using spherical harmonic functions with `max ≤ 340, so that horizontal scales as small

as about 10 Mm are explicitly resolved. The highest order Chebyshev polynomial used

is n = 64 in Cases S1 and S2, and n = 128 in Cases S3 and D2. Since we expect the

resulting convection to have a limited longitudinal scale and seek computational eco-

nomics, we impose a four-fold azimuthal symmetry by keeping every fourth m value in

the spherical harmonic expansion. Such an imposed symmetry is primarily noticeable

only in the higher latitude regions, where the convergence of meridional lines near the

poles limits the longitudinal scale of the convective structures to sizes smaller than are

present at lower latitudes.

During initialization, the radial profiles of density ρ̂(r), temperature T̂ (r), and

pressure p̂(r) are determined by jointly solving the equation of hydrostatic equilibrium

(4.23) and the mean equations of state (4.24) and (4.25), given radial profiles of the

gravitational acceleration g(r) and specific entropy gradient
dŝ

dr
throughout the do-

main. We specify the initial entropy gradient to have a slightly superadiabatic value

(e.g. −dŝ
dr

= 10−7), while the function g(r) is taken from the one-dimensional solar
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model of Brun et al. (1999). The initial values of ρ̂(r), T̂ (r), and p̂(r) obtained in

this way are shown in Figure 5.2 to compare favorably with the structure model, with

the slight discrepancy in density resulting in a greater density scale height λρ in our

simulations than in the structure model.

With our current angular resolution, we are able to place the upper boundary

of each simulation at 0.98 R and thus accommodate the intricate convective structures

driven by the imposed solar-like stratification. Above this radius, the even greater degree

of stratification is likely to drive modes of convection that are smaller in physical size and

thus below our current resolution limit. In addition, the anelastic approximation is likely

to break down as the convection becomes less efficient and typical convective velocities

become a significant fraction of the speed of sound. Furthermore, the ionization zone

of hydrogen is located above 0.98 R in the sun, suggesting that both the ideal gas

equation of state and the diffusive treatment of radiative effects currently used in these

calculations become inappropriate above this level. Consequently, the upper boundary

of all four simulations is located at 0.98 R.

The ASH code is a LES-SGS simulation and thus requires a prescription to ac-

count for the transport of energy and momentum by turbulent motions not explicitly

resolved. We have adopted the simplest approach of enhancing the molecular values of

the viscous and thermal diffusivities, while recognizing that such an SGS treatment is

unlikely to capture all dynamical effects of small-scale turbulence. The eddy diffusivities

νeff(r) and κs(r) used in these simulations are chosen to vary inversely as the square

root of the mean density profile, so that β = 1
2 in

νeff = νtop

(
ρ̂

ρ̂top

)−β
and κs = κtop

(
ρ̂

ρ̂top

)−β
. (5.1)

This particular value of β was chosen to allow some variation of the dissipation scale

with the density scale height λρ, but at the same time to prevent numerical instabilities

near the bottom of the domain where the dissipation length scale is smallest. We note
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that as computing technology becomes more advanced, the parameterization of SGS

transport effects in simulations of highly turbulent fluids should become less of an issue

because such global simulations will be able to explicitly resolve more of the energy

transport at small dynamical scales. Nevertheless, we fully acknowledge that our SGS

prescription is somewhat inadequate and requires considerable attention in the future.

The free parameters νtop and κtop in equation (5.1) are the viscous and thermal

diffusivities at the upper boundary, and their ratio determines the Prandtl number

Pr =
νtop

κtop
=
νeff

κs
of each simulation. Cases S1, S2, and D2 each have Pr = 1, while

Case S3 is constructed with Pr = 1
4 in order to investigate a turbulent fluid which

diffuses heat more readily than momentum. The lower Prandtl number of Case S3 is

achieved by increasing κtop by a factor of 2 while simultaneously decreasing νtop by a

factor of 2, relative to Case S2.

The thermal driving in all cases is accomplished by setting the heat flux at the

lower boundary equal to the solar value, while the upper boundary is held at constant

entropy. The radiative diffusivity κr(r) throughout the domain is taken from the struc-

ture model used above; however, we note that the radiative heat flux is several orders

of magnitude smaller in our simulations than convective heat flux throughout the bulk

of the domain. We have artificially increased the thermal eddy diffusivity κs near the

boundaries in order to prevent the formation of thin diffusive thermal layers with a

radial extent below our current radial resolution. This enhanced κs is applied only

to the spherically symmetric component of the thermal field. Steep entropy gradients

would otherwise be required to carry the imposed heat flux, since the radial velocities

are forced to vanish, and so too the convective transport of heat near the boundaries.

This enhanced κs profile turns out to play a sensitive role in determining the nature of

the convection near the top of the thin shell simulations.
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Case D2:  Approach to Equilibrium
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Figure 5.3: The domain-averaged kinetic energy as a function of time for Case D2.
The ramp-up time of about 30 days from seed entropy perturbations is typical of the
simulations considered here.

5.2.2 Approach to Thermal Equilibrium

Once the spherically symmetric mean state has been arranged, small seed pertur-

bations are introduced into the fluctuating entropy field s′, and the simulations advanced

in time using the evolution equations (4.26) and (4.27). The seed entropy perturbations

are soon reflected in the fluctuating density field ρ′, whose variations quickly provide

the unstable density imbalance that buoyantly accelerates the fluid from rest. After

an initial period of adjustment during which the convection kinetic energy ramps up

(typically about 30 days, as shown in Fig. 5.3 for Case D2), an approximate thermal

equilibrium is reached.

In total thermal equilibrium, the outward energy transport in these simulations

must be achieved by a balance of radiative, kinetic, enthalpy, and eddy diffusive fluxes,
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Figure 5.4: The time-averaged spherically symmetric energy balance within Cases S2
and D2 as a function of radius, showing the percentage of L� carried by kinetic energy
Fk, enthalpy Fe, and by unresolved eddies Fu. The radiative flux Fr (not shown) is
negligible in both cases.

as represented by the following:

Fk = ur

(
ρ̂u2

2

)
, (5.2)

Fe = urρ̂cp(T ′ −
〈
T ′
〉
), (5.3)

Fr = −κrρ̂cp
∂(T̂ + T ′)

∂r
, (5.4)

Fu = −κsρ̂T̂
∂(ŝ + s′)

∂r
, (5.5)

where the kinetic, enthalpy, radiative, and unresolved eddy fluxes are denoted by Fk, Fe,

Fr, and Fu respectively. The quantity T ′ − 〈T ′〉 appearing in the definition of Fe

is the temperature excess relative to the mean (spherically symmetric) value of the

temperature field at each radial level. In a true steady state, the total energy transport

at each radius within the domain must equal the energy influx at the lower boundary,
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which in terms of luminosity is equivalent to the total solar luminosity L�:

4πr2(Fk + Fe + Fr + Fu) = L�. (5.6)

Figure 5.4 shows the time-averaged energy transport within Cases S2 and D2 as a

function of radius at a late stage in the simulations. In both cases, the energy transport

achieved by unresolved eddies reflects the enhanced profile of κs applied to the spher-

ically symmetric entropy gradient. The function κs is determined during initialization

and is typically about 3 orders of magnitude larger at the top than the corresponding

κtop felt by the convection. The radial energy transport within Cases S1 and S3 is

qualitatively similar to Case S2.

5.3 GENERAL FLOW CHARACTERISTICS

5.3.1 Multi-Scale Convection

The convective flow patterns in these simulations are intricate, containing complex

evolving structures occurring on multiple size scales. We illustrate the velocity patterns

in Figures 5.5 and 5.6 by showing the radial velocity for Cases S2 and D2 at several

depths within each domain. The horizontal structure of the radial velocity fields realized

in Cases S1 and S3 are qualitatively similar to Case S2.

Figures 5.5a and 5.6a show that the largest scale of convection visible near the

top of both Cases S2 and D2 is associated with a connected network of downflow lanes

(green-blue colors) having a spatial scale of about 200 Mm. The large areas enclosed

by the downflow lanes contain a number of smaller-scale upflows (orange-red tones)

each measuring about 15–30 Mm across. Although the upflow cells in the shallow shell

(Case S2) tend to be slightly larger than those in the deeper shell (Case D2), this general

surface pattern of a network of connected downflow lanes enclosing several distinct

smaller upflows appears to be a robust property of convection within our thin shells.

We also note that the size of the smaller upflows in these simulations is approximately



115 

a

TOP (r = 0.978 R)

-50 -25 0 25 50
radial velocity [m s-1]

 

b

MIDDLE (r = 0.960 R)

-200 -100 0 100 200
radial velocity [m s-1]

 

c

BOTTOM (r = 0.942 R)

-50 -25 0 25 50
radial velocity [m s-1]

Case S2: Radial Velocity

Figure 5.5: Instantaneous snapshots of radial velocity for Case S2 near the (a) top,
(b) middle, and (c) bottom of the domain. Positive radial velocities (orange-red colors)
denote upflows and negative radial velocities (green-blue colors) denote downflows. Each
image in the top row is an orthographic projection of the velocity field, with the north
pole tilted 20◦ toward the observer and the equator indicated by a white line. Each
enlarged image in the bottom row shows a rectangular (latitude-longitude) projection
of a 45◦-square portion of the corresponding velocity field in the top row. The four-fold
azimuthal periodicity is most noticeable near the north pole.

equal to the horizontal size scale of solar supergranulation.

Figures 5.5b,c and 5.6b,c illustrate how the horizontal planforms change with

depth for Cases S2 and D2 respectively. As the downwelling fluid reaches deeper layers,

these convective structures no longer form a connected network composed of downflows

having roughly constant vertical velocities along each lane. Although it is possible

near the bottom to make out much of the pattern of downflow lanes seen near the
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Figure 5.6: Same as in Fig. 5.5 except for Case D2, showing the radial velocity structure
sampled near the (a) top, (b) middle, and (c) bottom of the deep shell simulation.

surface, the vertical velocities along each lane become increasingly less uniform, such

that the downflows fragment into more isolated and compact plume-like structures with

depth. This narrowing of scale is likely related to the larger densities found near the

bottom of each domain. In addition, the strongest downflow lanes in the equatorial

region of Case D2 possess a noticeable north-south orientation that is reminiscent of

the banana-cell modes evident in earlier, more laminar, spherical shell convection simu-

lations (e.g. Miesch 1998). The columnar structures seen in Case D2 are much thinner

and have quite a bit more variation than the banana cells in the more laminar cases, as

a result of the strong small-scale convection driven throughout the domain.
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Figure 5.7: Images of the instantaneous radial velocity for Cases S2 and D2 as a function
of latitude and radius in a cut of fixed longitude, showing the vertical structure of the
pattern of upflows and downflows within each domain.

The pattern of smaller-scale upflows visible near the upper boundary of these

simulations also changes its character with depth. The distinct upflows enclosed by

downflow lanes seen in the upper layers gradually become more uniform, forming broad

regions of upwelling fluid surrounded by an incomplete network of downflow lanes. Near

the lower boundary, these broad upflow regions have largely disappeared, except for

partial shrouds of upwelling fluid surrounding each of the stronger downflows. Figure 5.7

contains vertical cuts of the radial velocity field showing the variation with latitude and

radius for Cases S2 and D2. The radial structure of the broad upflow regions is most

evident in Case D2 (Fig. 5.7b), where the broad regions of upward moving fluid fragment

into smaller-scale yet faster upflows as the top of the domain is approached.

Figure 5.8 shows the time evolution of the radial velocity field of Case S2. Such

movie sequences illustrate the tendency for smaller flow features to be systematically

advected by larger-scale velocity patterns. One small upflow (indicated by the arrow)

as well as the downflow lane immediately to its left are both advected laterally by the
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Figure 5.8: A time series of images showing a 20◦-square region of Case S2 near the
upper boundary showing small-scale features in radial velocity being laterally advected
by larger-scale horizontal motions. The arrow points to one such small-scale upflow
which is advected away from the center of the broader upflow (indicated by the dark
cross). The time index of each image is indicated in the upper-left corner, and the
cadence is about 1.3 days between images.

horizontal outflow motions associated with the broader cell. The center of this broad

outflow cell is indicated by a cross. Such lateral transport of velocity features by larger

scales of convection is most apparent in movie sequences showing the time evolution of

the radial velocity field.

In Figure 5.9 we present space-time diagrams of radial velocity sampled in time

for four specific latitudes (and all longitudes) at a radius of 0.978 R for Case S2, plotted

with respect to the rotation rate of the computational frame Ω0. The advection of radial

velocity structures appear as slanted features in each panel, with the higher latitudes

rotating more slowly (retrograde) than those near the equator. The mean advection

rate of the radial velocity patterns at the surface approximately equals the differential

rotation rate of the fluid for the same depth. The latitudinal variation of angular

velocity shown in the figure results largely from the imposed differential rotation at

the lower boundary. It is interesting to note from Figure 5.9 that the pattern speed of
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Figure 5.9: Near-surface radial velocity structures at four specific latitudes from
Case S2, plotted as a function of time and latitude. As labeled, the four panels corre-
spond to latitudes of 0◦, 30◦, 45◦, and 60◦. The retrograde propagation rate of these
features, quantified by the tachometer, is a reflection of the no-slip differential lower
boundary.

the advected structures varies somewhat with longitude, as structures having the same

latitude but separated in longitude may exhibit different propagation rates.

The characteristic size scales of the convective structures near the top of these

thin shell simulations are sensitive to the degree of driving they experience. We find that

adjusting either the diffusivities or the superadiabaticity within the domain will alter

the appearance of the convection. The superadiabaticity depends on the functional form
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Figure 5.10: The distribution of radial velocities for the shallow and deep shells (Cases S2
and D2) attained at mid-shell as shown in Figs. 5.5b and 5.6b respectively. The corre-
sponding rms velocities are 105 m s−1 for Case S2 and 140 m s−1 for Case D2. Positive
radial velocities denote upflows and negative radial velocities denote downflows.

of the spherically symmetric κs profile, set upon the initialization of each simulation.

The functional form of this profile in essence determines how much energy needs to be

transported via convection near the top of the domain, which in turn feeds back on

the entropy gradient. We have chosen a somewhat gentle κs function, as suggested by

the profile of Fu in Figure 5.4, initialized to have an e-folding depth away from each

boundary of about 0.01 R for both the shallow and deep shell cases.

The peak radial velocities attained by the convective structures at mid-shell in

Cases S2 and D2 are 300 m s−1 and 400 m s−1 respectively, as shown in the radial

velocity distributions of Figure 5.10. The distribution of radial velocity for Case S2 at

0.96 R is noticeably asymmetric, such that mean downward velocities are much faster

than the mean upward velocities. The fastest downward velocities correspond to the

downflow lane network evident in the middle of the shell, as illustrated in Figure 5.5b.

The radial velocity distribution for Case D2 is more symmetric, indicating that the flow
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Figure 5.11: Similar to Fig. 5.6, but showing the horizontal structure of the temperature
perturbation sampled near the (a) top, (b) middle, and (c) bottom of the domain, with
the mean temperature for each level removed. Orange-red colors denote warmer fluid,
green-blue colors denote cooler fluid.

patterns at 0.94 R are more homogeneous than for higher levels.

The rms velocities associated with the radial velocity distributions of Figure 5.10

are 105 m s−1 for Case S2 and 140 m s−1 for Case D2, equivalent to an overturning

time on the order of 6–10 days, depending on the shell depth. These overturning times

suggest that the large-scale convective pattern is weakly sensitive to rotational effects,

as both Cases S2 and D2 are rotating at the solar-like mean rate of one rotation per

28 days. We will discuss the rotational influence of these convective overturning motions

in more detail in §5.4.
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Figure 5.12: The zonally averaged fluctuating temperature near the top of the domain
(r=0.979 R) for Case D2.

Figure 5.11 shows the fluctuating temperature field for Case D2, corresponding

to the velocity planforms of Figure 5.6. The mean temperature at each radius has

been subtracted out. We find that the locations of the large regions of warm and

cool temperatures correlate well with the locations of the broad upflows and narrow

downflow lanes visible in the radial velocity field, with the primary difference being

that the cooler regions tend to be much broader than their radial velocity counterparts.

Near the equator, the temperature field is dominated by columns of alternating warm

and cold fluid associated with the weak banana-cell-like structures visible in the radial

velocity images. In both temperature and radial velocity, these structures are sheared

slightly by the differential rotation within the domain, and extend up to about ±30◦ of

latitude. These large-scale columnar temperature structures are broken up by smaller-

scale variations on the temperature field which also tend to correlate well with some of

the small-scale radial velocity features. For example, the localized hot and cold spots

particularly evident in the close-up views of Figure 5.11a are coincident with some of
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the fastest fluid motions visible in the radial velocity image of Figure 5.6.

At all radii within Case D2, there exists a significant latitudinal temperature

contrast between the equator and the poles, as shown in Figure 5.12. The temperatures

in the near-polar regions are about 10–15 K warmer than near the equator, although

over half of the total equator-to-pole difference occurs within 10◦ of the pole. As stated

earlier, we believe that many characteristics of the fluid in the near-polar regions are

most likely artifacts of the four-fold azimuthal periodicity imposed in these simulations,

and should be interpreted with care.

5.3.2 Time-Averaged Axisymmetric Flows

The time-averaged axisymmetric (zonally averaged) profiles of angular velocity
Ω
2π

within all four domains are shown in Figure 5.13, with the angular velocity of the

computation frame
Ω0

2π
subtracted out. Note that we have chosen to have the equatorial

rate imposed at the lower boundary be equal to the computational frame rate, such that
Ω
2π

= 0 nHz there. The differentially rotating lower boundary imposed in Cases D2, S2,

and S3 decreases from 0 nHz at the equator to about−120 nHz at a latitude of 75◦, and is

similar in contrast and functional form to the latitudinal variation of the photospheric

plasma rate measured by Snodgrass (1984). In contrast, the no-slip lower boundary

imposed in Case S1 is not differentially rotating.

With the exception of the poles, the angular velocity profiles within all four

simulations are retrograde with respect to the rotating coordinate system specifying the

equatorial rate, with the fastest rotation rates occurring near the bottom of each shell.

Cases S1 and S2 show a largely constant negative radial gradient of angular velocity

with radius at each point (e.g. Fig. 5.18), with the overall magnitude of Ω determined by

the rotation rate imposed at the no-slip lower boundary at the corresponding latitude.

Within Cases S3 and D2, the negative radial gradients in angular velocity throughout

the bulk of each shell are smaller, with the exception of the thin viscous boundary layer
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Figure 5.13: Angular velocity Ω/2π relative to the rotating coordinate system as a
function of latitude and radius for all four cases, averaged over longitude and time. A
no-slip differentially rotating lower boundary is imposed in Cases D2, S2, and S3. That
imposed angular velocity decreases from 0 nHz at the equator to about −120 nHz at
a latitude of 75◦. Case S1 has a uniformly rotating no-slip lower boundary. The tick
marks are separated by 15◦ of latitude.

present near the lower boundary in each case.

The regions poleward of 75◦ of latitude are not shown in Figure 5.13 due to

the high angular velocities present there. Even though these regions exhibit reason-

able (linear) zonal velocities, the short moment arm produces higher values of Ω than

seen elsewhere within the domain at lower latitudes. In addition, the polar regions are

dominated by effects related to the four-fold azimuthal periodicity imposed in these sim-

ulations, producing dynamics which may not be otherwise present in similar simulations
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Figure 5.14: Axisymmetric radial velocity profiles for all cases. Positive values represent
upward moving fluid.

without such an imposed periodicity.

The time-averaged meridional circulation is illustrated in Figures 5.14 and 5.15,

showing the axisymmetric profiles of uθ and uφ. In all cases, the dominant mode driven

in these simulations is that of axisymmetric rolls that occupy the entire depth of the

domain. Cases S1, S2, and D2 contain several 15◦-wide rolls located between latitudes

of −75◦ and +75◦ with typical flow speeds of 50–75 m s−1. Rolls which have a poleward

surface component seem to be preferred, as they are generally more extended horizon-

tally and possess faster fluid velocities. In Case S3, the rolls are smaller in size but are

otherwise similar to the larger rolls of the other three simulations. We will show in §5.4
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Figure 5.15: Axisymmetric meridional velocity profiles for all cases. Positive values
represent southward flows.

that the rolls are primarily buoyantly driven.

In order to examine the form achieved by the differential rotation and meridional

circulation in each of the four cases, we derive equations describing the kinetic energy

balance within the system. Throughout the remainder of this chapter, the axisymmetric

or longitudinally averaged component of a quantity A(r, θ, φ) is denoted by an overbar,

and is given by

A(r, θ) =
1

2π

∫ 2π

0
dφA(r, θ, φ), (5.7)
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allowing the decomposition

A = A(r, θ) +A′(r, θ, φ) such that A′ = 0, (5.8)

where the prime on A′ denotes the non-axisymmetric part of A. By noting that the

axisymmetric component of a product AB is equal to

AB = A B +A′B′, (5.9)

we can therefore decompose the axisymmetric kinetic energy Ek into three parts:

Ek =
ρ̂
(
u2
r + u2

θ + u2
φ

)
2

(5.10)

=
ρ̂ uφ

2

2︸ ︷︷ ︸
DRKE

+
ρ̂
(
ur

2 + uθ
2
)

2︸ ︷︷ ︸
MCKE

+
ρ̂
(
u′r

2 + u′θ
2 + u′φ

2
)

2︸ ︷︷ ︸
NAKE

, (5.11)

where

DRKE = differential rotation kinetic energy, (5.12)

MCKE = meridional circulation kinetic energy, (5.13)

NAKE = non-axisymmetric (convective) kinetic energy. (5.14)

The balance of DRKE, MCKE, and NAKE within the shell models is now discussed in

more detail.

5.4 ENERGETICS OF AXISYMMETRIC FLOWS

5.4.1 Axisymmetric Differential Rotation Balance

We will now show that the radial gradients of Ω realized in each of the four

simulations are supported against diffusion by Reynolds stresses associated with non-

axisymmetric convective motions. This behavior is likely caused by the tendency of

convective fluid elements to partially conserve their angular momentum per unit mass

λ = Ωr2 cos2 θ as they move toward or away from the axis of rotation.
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As suggested by Foukal & Jokipii (1975), possible constancy of λ along radial

lines may also explain why surface magnetic tracers on the sun have a faster rotation

rate relative to the surface fluid, if one assumes that the magnetic features are anchored

at a radius slightly below the photosphere where the rotation rate is faster. Gilman &

Foukal (1979) tested this notion by numerically modeling Boussinesq convection confined

to a thin shell, and found that angular momentum was roughly conserved along local

radii for such an incompressible fluid. They demonstrated that the convective motions

were able to transport angular momentum inward, thereby maintaining the negative

radial gradient of rotation rate with radius. The models presented here suggest that

compressible convection behaves in a similar manner.

To quantify these ideas, we examine the evolution equation for the DRKE,

∂ (DRKE)
∂t

= RCF + LCF + RRS + LRS + ADV + VT + DIFF + CURV, (5.15)

where the abbreviations signify contributions by different physical mechanisms in a

manner similar to Gilman (1977). In a statistical steady state, the eight work terms in

equation (5.15) above must sum to zero. These work terms are:

RCF = Coriolis forces on radial motions = −2Ω ρ̂ ur uφ sin θ

LCF = Coriolis forces on latitudinal motions = −2Ω ρ̂ uθ uφ cos θ

RRS = radial Reynolds stresses = ρ̂ uruφ
∂ uφ
∂r

LRS = latitudinal Reynolds stresses = ρ̂ uθuφ
∂ uφ
∂θ

ADV = DRKE advection = −
[

1
r2

∂

∂r

(
r2 ρ̂ uφ ur uφ

)
+

1
r sin θ

∂

∂θ
(sin θ ρ̂ uφ uθuφ)

]
VT = viscous transport

=
1
r2

∂

∂r

(
r2 ν ρ̂ uφ

[
r
∂

∂r

(
uφ
r

)])
+

1
r sin θ

∂

∂θ

(
sin θ ν ρ̂ uφ

[
sin θ
r

∂

∂θ

(
uφ

sin θ

)])
DIFF = viscous losses = −νρ̂

{[
r
∂

∂r

(
uφ
r

)]2

+
[

sin θ
r

∂

∂θ

(
uφ

sin θ

)]2
}

CURV = curvature effects = − uφ
r sin θ

(ρ̂ uruφ sin θ + ρ̂ uθuφ cos θ) .
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Figure 5.16: DRKE source terms for Case S1.

5.4.2 The Radial Shear Layer Within Case S1

We begin by examining the DRKE balance within Case S1, as it contains many

of the important elements of angular momentum transfer in these simulations without

the additional effects related to the differentially rotating lower boundary condition

imposed in the other three simulations. The contributions from each of the terms in

the DRKE balance equation (5.15) are illustrated in Figure 5.16 (with the exception of

CURV, which is negligible), with Figure 5.17 showing the total DRKE and
∂DRKE

∂t

for Case S1 as a function of radius and latitude. With respect to the rotating frame,

uφ < 0 throughout most of the domain, such that a positive contribution by any of the
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source terms of equation (5.15) represents a source of DRKE which in isolation would

decrease uφ over time to more negative values. Likewise, a negative contribution to

DRKE represents an increase (to less negative values) in uφ over time. Figure 5.17

shows that Case S1 is evolving on a time scale of at least 106 s or 12 days, as indicated

by the sum total of all work terms (Fig. 5.17b) divided by the DRKE throughout the

shell (Fig. 5.17a).

In the absence of convection, the DRKE profile shown in Figure 5.17a would

achieve solid body rotation (that is, relax to zero) due to viscous dissipation in the

system. Such dissipation accounts for the negative values of the VT+DIFF profile
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Figure 5.18: Angular velocity profiles for Cases S1 (red), S2 (green), and S3 (blue) as
a function of radius for latitudes 0◦, 30◦, 45◦, and 60◦ as indicated. The dashed line in
each panel represents the angular velocity of a radially moving fluid parcel for which its
angular velocity per unit mass λ is conserved, while the dash-dot lines correspond to
the GONG data plotted in Fig. 5.1.

shown in Figure 5.16f . The goal is therefore to determine which forcing terms maintain

the radial shear in uφ against viscous diffusion. The convective motions present in

the domain drive an axisymmetric meridional circulation, as well as create non-zero

velocity correlations on smaller scales which produce axisymmetric Reynolds stresses.

Contributions from one or both of these sources, which collectively make up the forcing

terms in equation (5.15), must therefore be responsible for maintaining the non-zero

radial gradient of uφ.

The Coriolis force terms, RCF and LCF, represent exchanges between the DRKE

and MCKE equations in the form of fluid parcels tending to preserve their overall

angular momentum as they move toward or away from the axis of rotation. As a result,

the RCF profile shown in Figure 5.16a is well correlated with the axisymmetric radial
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velocity profile (shown in Fig. 5.14), such that local upflows (downflows) in ur tend to

reduce (increase) uφ and thus cause a local increase (decrease) of DRKE. In a similar

fashion, the LCF term shown in Figure 5.16b is correlated to uθ where now equatorward

(poleward) flows produce a local increase (decrease) of DRKE.

Both the RCF and LCF contributions to the DRKE balance result from global

fluid motions conserving angular momentum as they move throughout the domain.

Such transport will spin down the portions of the domain farther away from the axis

of rotation, which naturally tends to make
∂ uφ
∂r

< 0 everywhere. However, the strong

axisymmetric flows associated with the persistent latitudinal banding in ur and uθ also

advect DRKE quite efficiently, such that regions of global convergence or divergence

will respectively increase or decrease their DRKE content in response. This effect is

captured in the DRKE transport term, ADV, shown in Figure 5.16c. There it can be

seen that such transport effectively balances out the contributions to DRKE from the

RCF and LCF terms.

We find that it is the Reynolds stress terms, RRS and LRS, that are primarily

responsible for maintaining the radial shear in uφ. These terms represent exchanges

between the DRKE and NAKE equations, where the average tilt of non-axisymmetric

convective structures (similar to the downflow plumes of Case S2 discussed earlier in

§5.3.1) in the rφ- or θφ-planes in the presence of gradients of uφ can produce contribu-

tions to DRKE. Figure 5.16d shows that the RRS profile is mainly positive, suggesting

that the uruφ velocity correlation tends to be negative throughout the domain and thus

implies a retrograde tilt among small-scale radial motions. Such a tendency is exactly

what one would expect if the non-axisymmetric convection were to partially conserve

its angular momentum per unit mass λ in radial motion.

The LRS term (Fig. 5.16e) is lesser in magnitude then RRS but also plays a role in

maintaining the DRKE profile, especially at higher latitudes. The LRS term possesses

a bimodal structure in radius which contains positive contributions to DRKE in the
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upper half of the domain and negative contributions in the lower half. Such a structure

will tend to reinforce negative radial gradients in uφ in cases where uφ < 0, as is the

case here (see Fig. 5.17a).

Figure 5.18 shows the drop in total angular velocity Ωtot = Ω + Ω0 with radius

realized in Case S1 (plotted in red) for several latitudes between 0◦ and 60◦. The dashed

lines indicate the angular velocity an isolated fluid parcel moving in a purely radial

direction would have if λ = constant (that is, Ωtot ∝ r−2). There is some tendency for

fluid parcels in Case S1 to conserve λ as they move radially throughout the shell, except

near the bottom of the domain where
dΩ
dr

is larger (less negative). For comparison, the

dash-dot lines in Figure 5.18 indicate the helioseismic inferences of Ω within the near-

surface shear layer of the sun. The tendency to conserve λ is also apparent in the sun

but to a lesser degree than in the models between 0.94–0.98 R, although the helioseismic

results suggest that this effect may play a larger role closer to the photosphere where

the convection is more vigorous.

The thin viscous boundary layer near the bottom of Case S1 is formed in response

to the no-slip lower boundary. The greater influence of viscous dissipation within this

layer flattens out the angular velocity gradient at low latitudes and even produces a

positive
dΩ
dr

at higher latitudes (e.g. at 60◦ in Fig. 5.18).

5.4.3 Differential Rotation Within Cases S2, S3, and D2

Turning to Cases S2, S3, and D2, we find that the angular velocity Ω possesses

radial gradients similar to those achieved within Case S1, though there is substantially

different behavior at high latitudes. The green and blue lines of Figure 5.18, correspond-

ing to Cases S2 and S3, along with Figure 5.19, illustrate this behavior. In this section,

we show that these other three simulations are similar to Case S1, in which these radial

gradients of Ω are primarily maintained against diffusion by Reynolds stresses associ-

ated with convective motions. The primary difference is that the latitudinal structure
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Figure 5.19: Similar to Fig. 5.18, except for the deeper shell simulation, Case D2.
As before, the dashed line in each panel represents the angular velocity of a radially
moving fluid parcel for which its angular velocity per unit mass λ is conserved, while
the dash-dot lines correspond to the GONG data plotted in Fig. 5.1.

of DRKE has now changed, in response to the differentially rotating lower boundary

applied in these three cases.

Figure 5.20 shows the DRKE source terms for Case S2, which, aside from the

differentially rotating lower boundary, is otherwise identical to Case S1. This bound-

ary condition forces the fluid in contact with the lower boundary to have increasingly

negative zonal velocities with latitude, thereby constituting a continual supply of an-

gular momentum. The DRKE associated with this imposed flow is then transported in

both the radial and latitudinal directions, to give the angular velocity profile seen in

Figure 5.13. Some of this energy is converted into MCKE, driving the more vigorous

latitudinal rolls present at high latitudes (see Figs. 5.14 and 5.15), the effects of which

feed back on the DRKE balance through the RCF and LCF work terms.
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Figure 5.20: DRKE source terms for Case S2.

The DRKE energy balance within Cases D2 and S3 are shown in Figures 5.21

and 5.22 respectively. In contrast to the shallow shell (Case S2), these two cases possess

a more moderate latitudinal gradient of uφ. This form is achieved by a greater advection

of DRKE, especially at mid to high latitudes, and is evident in the larger role the ADV

term plays in the DRKE balance. A relatively lower portion of the DRKE input is

converted into MCKE, as shown by the profiles of RCF and LCF.

The latitudinal rolls within Case S3 are smaller in physical size as a consequence

of the lower Prandtl number in this simulation. Both the lower viscous diffusivity and

higher thermal diffusivity associated with the lower value of Pr drive more vigorous

convection that occurs on smaller scales. These smaller scales are evident in the various



136

(f)(e)(d)(c)(b)(a)

-2.0

-1.0

 0.0

 1.0

 2.0

erg cm-2 s-1

Case D2
(a) RCF
(b) LCF
(c) ADV
(d) RRS
(e) LRS
(f) VT+DIFF

Figure 5.21: DRKE source terms for Case D2.

DRKE source terms, shown in Figure 5.22, but otherwise the dynamics are similar to

Case S2.

In summary, the time scales of the largest overturning motions in our simulations

suggest that they are at least weakly influenced by rotational effects, which in turn

may enable Reynolds stresses to facilitate transport angular momentum inward. This

inward angular momentum transport balances the outward diffusive transport, thereby

maintaining a negative angular velocity gradient throughout the layer. This effect may

contribute to the decrease of Ω with radius in the near-surface shear layer of the sun as

deduced from helioseismic observations. Behavior at high latitudes is somewhat more

complex due to the presence of a viscous boundary layer near the lower boundary, and
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Figure 5.22: DRKE source terms for Case S3.

likewise there is some uncertainty in the helioseismic inferences about the radial gradient

in Ω achieved at latitudes of 60◦ or greater.

5.4.4 Axisymmetric Meridional Circulation

We now briefly investigate the meridional circulation driven within the thin shell

simulations, as these motions play an important role in the transport of DRKE (and thus

angular momentum) within the shells. Schematically, the MCKE evolution equation is

∂ (MCKE)
∂t

= RCF + LCF + RRS + LRS + GRAV + PGF

+ ADV + VT + DIFF + CURV,
(5.16)
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where the individual contributions are symbolized by:

RCF = Coriolis forces on radial motions = 2Ω ρ̂ ur uφ sin θ

LCF = Coriolis forces on latitudinal motions = 2Ω ρ̂ uθ uφ cos θ

RRS = radial Reynolds stresses = ρ̂ u2
r
∂ ur
∂r

+ ρ̂ uruθ
∂ uθ
∂r

LRS = latitudinal Reynolds stresses = ρ̂ uruθ
∂ ur
∂θ

+
ρ̂ u2

θ

r

∂ uθ
∂θ

GRAV = gravity/buoyancy driving = −ρ g ur

PGF = work done by pressure gradient forces = −
(
ur
∂ p

∂r
+
uθ
r

∂ p

∂θ

)
ADV = MCKE advection = −

{
1
r2

∂

∂r

(
r2
[
ρ̂ ur u2

r + ρ̂ uθ uruθ

])
+

1
r sin θ

∂

∂θ

(
sin θ

[
ρ̂ ur uruθ + ρ̂ uθ u

2
θ

])}

VT = viscous transport

=
1
r2

∂

∂r

[
r2 νρ̂

(
2ur

∂ ur
∂r

+ uθ

[
r
∂

∂r

(
uθ
r

)
+

1
r

∂ ur
∂θ

]
− 2ur

3
(∇ · u)

)]
+

1
r sin θ

∂

∂θ

[
sin θ νρ̂

(
ur

[
r
∂

∂r

(
uθ
r

)
+

1
r

∂ ur
∂θ

]
+ 2uθ

[
1
r

∂ uθ
∂θ

+
ur
r

]
− 2uθ

3
(∇ · u)

)]
DIFF = viscous losses = −2νρ̂

{[
∂ ur
∂r
− 1

3
(∇ · u)

]2

+
[

1
r

∂ uθ
∂θ

+
ur
r
− 1

3
(∇ · u)

]2

+
[
ur
r

+
uθ cos θ
r sin θ

− 1
3

(∇ · u)
]2

+
1
2

[
1
r

∂ ur
∂θ

+ r
∂

∂r

(
uθ
r

)]2
}

CURV = curvature effects =
ur
r

(
u2
r + u2

φ

)
+

uθ
r sin θ

(
ρ̂ uruθ sin θ − ρ̂ u2

φ cos θ
)
.

We first examine the maintenance of the meridional circulation within Case S1,

corresponding to the profiles of ur and uθ shown previously in Figures 5.14 and 5.15.

Most of the kinetic energy associated with these axisymmetric flows is contained in

the 15◦-wide latitudinal rolls distributed across the mid latitude and equatorial regions.
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Figure 5.23: MCKE source terms for Case S1.

Rolls having poleward velocities near the surface are preferred over cells which have the

opposite rotational sense, especially in the mid latitude regions.

The main contributions to the MCKE balance within Case S1 are illustrated in

Figure 5.23. We find that the energetics within the latitudinal rolls are achieved by a

near balance between the work done by buoyancy and pressure gradients (Fig. 5.23a) and

by Reynolds stresses (Fig. 5.23c). In places where the body forces drive the meridional

flows (e.g. in radial upflows) the Reynolds stresses oppose it, and conversely when the

body forces oppose the motion the Reynolds stresses act in such a way as to maintain

it.

The RCF and LCF source terms represent the conversion of DRKE to MCKE
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Figure 5.24: MCKE source terms for Case S2.

through Coriolis forces acting on the differential rotation. Because uφ < 0 throughout

most of the domain, the RCF and LCF terms will tend to enhance poleward or inward

flows associated with the latitudinal rolls, and counteract any flows moving outward in

radius or toward the equator. Figure 5.23d shows that the contributions by Coriolis

forces acting on the differential rotation in Case S1 are small relative to the body forces

and Reynolds stresses.

The differentially rotating lower boundary imposed in Cases S2, S3, and D2 af-

fects the dynamics within these domains by driving latitudinal rolls with faster velocities

than are present when the lower boundary is uniformly rotating (as in Case S1). This

energy, added to the system as DRKE, is subsequently converted to MCKE through the
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Coriolis work terms RCF and LCF. This effect is illustrated in Figure 5.24d for Case S2,

showing a more prominent driving by Coriolis forces than for Case S1 in these regions.

5.5 CONCLUSION

We have presented results of high-resolution numerical simulations of turbulence

confined to thin spherical shells, seeking to understand some of the effects of supergran-

ular scales of motion within a thin shearing layer nominally located near the top of the

solar convection zone. These simulations represent the first global simulations of solar-

like convection possessing horizontal scales on the order of supergranulation. In a series

of four closely related simulations, we find in all cases that the convection is organized

into a connected network of fast downflow lanes separating broad regions of warm more

slowly rising fluid. With depth, we find that the downflow network loses some of its

connectivity, instead forming more plume-like structures in the deeper layers.

Near the surface, the broad regions of upwelling fluid segment into more isolated,

smaller-scale upflows, each with velocities comparable to the larger-scale network of fast

downflows. These smaller upflow cells possess a spatial scale comparable to that of solar

supergranulation and only appear near the upper boundary, suggesting that their origin

stems from the more superadiabatic stratification present near the top of the shells.

That such convective structures appear in both the shallow and deep shell simulations

further suggests that it is the nature of the driving, rather than the depth of the shell,

that influences the morphology of the convection near the surface.

The angular velocity within the thin shells decreases with radius throughout each

domain, with the exception of the thin viscous boundary layer near the lower boundary

in each case. We find that such negative radial gradients of angular velocity are main-

tained against diffusion by correlations between small-scale velocity components. The

net effect of such Reynolds stresses suggests that fluid motions associated with both the

broad upflows and strong downflow network tend to conserve their angular momentum
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per unit mass as they move radially throughout the shell. We believe these Reynolds

stresses are an effect of the weak influence of rotation on the coherent convective struc-

tures realized in the simulations. We further speculate that supergranular convection in

the sun behaves in a similar fashion, thereby contributing to the near-surface shear layer

occupying the upper 5% of the sun by radius as inferred from helioseismic analyses.



Chapter 6

CONCLUDING REMARKS

We have presented the results of two complementary studies, one observational

and the other theoretical, of turbulent convection of supergranular scales of motion

within the upper solar convection zone in order to better understand the dynamical role

of such convection in shearing layers within the sun. Complex convective patterns pos-

sessing a wide range of spatial scales are evident both in observations of supergranular

outflows visible at the solar surface as well as in global numerical simulations of turbu-

lence within thin spherical shells, and are likely to influence the dynamics of the deeper

convection zone below as well as the more tenuous photosphere, chromosphere, and

corona above. We now briefly summarize our findings from both studies, and conclude

with a discussion of future directions in §6.2.

6.1 SUMMARY OF RESEARCH PRESENTED IN THIS THESIS

Chapter 3 describes an observational study entailing the characterization of cell

sizes and evolution associated with solar supergranulation, as determined from the life

histories of several thousand supergranules individually identified by their horizontal

outflow signatures. The near-surface horizontal flow fields were measured by applying

correlation tracking methods to mesogranular flow structures within a time series of

MDI full-disk (2′′ pixels) line-of-sight velocity images of the solar photosphere. This

time series contains over 8000 images separated by one minute, sampling a 45◦-square
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region of quiet sun for a duration of about six days, and represents the first study of

solar supergranulation at such high combined temporal and spatial resolution. Sites of

strong horizontal outflow were identified as supergranules using a pattern recognition

algorithm, from which the life history of all cells in the six-day dataset was recorded.

We find that supergranular outflow cells in this quiet sun region have a broad

range of sizes, distributed in an approximate Gaussian fashion, with typical length scales

of 14–20 Mm after image smoothing effects are accounted for. The supergranular pattern

appears to be surface-filling, with individual cells separated by a connected network of

thin convergence lanes that covers the entire field of view. The complex evolution of

the supergranular pattern is embodied in the wide spectrum of cell lifetimes, ranging

from time scales as long as several days down to the temporal resolution limit of 6 hr.

Such evolution typically occurs via merging and splitting of individual supergranules,

coupled with the emergence and disappearance of the associated interstitial convergence

lanes. In other instances, segments of the convergence lane network are observed to be

advected laterally as existing supergranular outflows grow or contract.

The supergranular pattern can therefore be characterized as an evolving network

of thin convergence lanes separating broad outflow cells, and is most likely the surface

manifestation of vigorous overturning motions occurring in the near-surface layers di-

rectly below the photosphere. In addition, the hierarchy of fluid motions in the upper

convection zone is not limited to supergranular scales of motion, but also encompasses

the smaller-scale patterns of mesogranulation and granulation as well as larger scales

such as banded zonal flows and weak meridional currents. To elucidate the role such

dynamics may play within the upper solar convection zone, we have constructed de-

tailed three-dimensional numerical simulations of a compressible fluid, confined to thin

rotating spherical shells positioned near the top of the solar convection zone.

The simulations presented in Chapter 5 constitute the highest resolution simula-

tion of solar-like convection within a spherical shell computed to date. Spherical har-
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monic modes with ` ≤ 340 are explicitly resolved, allowing structures of order 10 Mm

to be realized within the simulations. In all cases, a four-fold angular periodicity was

used to reduce the computational workload. Solar-like stratification, thermal forcing,

and differential rotation profiles are imposed on the fluid, in order to approximate the

conditions present in the layers where solar supergranulation is thought to be driven.

The ASH computer code, operating in a massively parallel computing environment, is

used to advance in time the anelastic equations of motion. These equations allow us

to include the effects of compressibility, yet filter out acoustic waves which would oth-

erwise severely limit the size of the computational time step. The dynamical effects

of turbulent motions not explicitly resolved in these simulations are accounted for by

simple parameterizations of energy and momentum transport included in the anelastic

equations.

The simulations suggest that convection on multiple scales may be a natural

consequence of a compressible fluid experiencing a rapidly changing stratification. Con-

vection within both shallow and deep shell cases having identical stratification near their

respective upper boundaries (both located at 0.98 R) show a prominent network of nar-

row downflow lanes having a length scale of about 200 Mm near the top of each shell.

The broad regions in between contain rising fluid that is further segmented into more

localized sites of fast upflows each measuring about 15–30 Mm across, or about equal

to the horizontal scale associated with solar supergranulation. With depth, the network

of fast downflows becomes less uniform, forming plume-like structures that extend the

full depth of each shell, while the small-scale upflows evident near in the upper layers

gradually disappear altogether to form broad regions of upwelling fluid.

In all cases studied here, the latitudinal dependence of the differential rotation

within these thin shell simulations reflects the angular velocity profile Ω imposed at

the lower boundary. Negative radial gradients of angular velocity persist throughout

each domain, and are maintained by the transport of angular momentum by the con-
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vective motions. Reynolds stresses associated with such motions, in particular the

broad regions of upflowing fluid and the surrounding network of downflows, are found

to transport angular momentum inward, balancing the outward transport achieved by

diffusion. These dynamics may be interpreted as the tendency for radially moving fluid

parcels to partially conserve their angular momentum per unit mass as they move ra-

dially throughout the shell, and are likely induced by the influence of rotation on the

convective motions. These results suggest that the dynamical effects of rotation, while

relatively weak given the short overturning time scales associated with the convection,

are still strong enough to create the necessary velocity correlations that account for the

observed angular momentum transport.

These simulations suggest that the upper shear layer of the sun may behave sim-

ilarly, with the network of narrow downflow lanes associated with the supergranulation

pattern facilitating the inward transport of angular momentum. Such transport would

than contribute to the decrease of angular velocity with radius, as seen in helioseismic

inferences of Ω. As a result, the depth of the upper shear layer may be loosely related

to the radial extent of convection associated with the supergranulation pattern visible

at the surface.

6.2 FUTURE OUTLOOK

The research presented in this thesis represents a detailed look at the intricate

convection within the upper shear layer of the solar convection zone. We have sought to

understand what scales of convection are driven, what determines the depth of the shear

layer, and what are the dynamical effects of this convection in maintaining the shear

layer. Since both the observational project and numerical simulations can be viewed as

initial building blocks toward such understanding, we now present some possible future

directions this research might take.

The correlation tracking algorithm outlined in §2.3 used to determine the super-
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granular flow field was shown to have systematic errors on the order of 10% for shifts

between 0.005 pixels and 0.05 pixels. The magnitude of such errors suggest that the

algorithm can be made more accurate by using an interpolation scheme of a higher

order, thereby reducing the systematic errors generated by the algorithm.

We have left unexplored the large body of work regarding pattern formation in

turbulent systems. The ever-changing near-surface velocity field appears to evolve in a

remarkably ordered fashion, especially given the level of turbulence that must be present

a short distance below. Consequently, it may be possible to create an evolving field of

cells using a rule-based system that produces statistical area and lifetime distributions

similar to those of solar supergranulation, thereby isolating the important length and

time scales operating within the system.

The mean differential rotation and meridional circulation profiles deduced from

the large-scale flow study of §3.4, wherein correlation tracking was applied to the su-

pergranular flow field, contain a large degree of scatter. Determining these mean flows

within many additional regions available to MDI will likely reduce this scatter.

The supergranular flow field has been shown to readily advect small-scale emer-

gent magnetic flux toward convergence lanes, thereby concentrating the flux on relatively

larger scales. This behavior is common to regions of quiet sun, such as the 45◦-square

field presented here. A logical extension of this research is therefore to investigate the

effects of more intense magnetism on supergranular flows, such as within active regions

and near sunspots. The character of supergranulation is likely to change under the

influence of stronger magnetic fields, as the stabilizing effects of such magnetism affects

the overturning motions associated with the convectively unstable fluid.

The numerical models possess several attributes that are drastically different than

the upper solar convection zone. Foremost, the sun does not possess an impermeable

lower boundary in the middle of its convection zone. Allowing mass to pass through the

lower boundary would be more realistic, as the current simulations require the convective
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overturning motions as well as any large-scale meridional circulations to close within the

confines of the thin shell domains. As an alternative to allowing permeable boundaries,

we are in the process of constructing a simulation of the entire convection zone with

a spatial resolution adequate to deal with a surface layer containing the small-scale

convective structures seen in the simulations presented here. It will be interesting to

see if a shearing boundary layer near the top of these domains forms naturally.

As computing technology increases, it will become possible to construct simula-

tions of fluid with even higher spatial resolution, which in turn would allow convection

at higher Ra and Re to be studied. Whereas attaining solar values of Ra and Re within

simulations of convection is unlikely in the foreseeable future, it is of great interest to

see whether the dynamical trends presented here also operate within more turbulent

flows.

We recognize that the representation of sub-grid scale (SGS) effects in these sim-

ulations, achieved by simply enhancing the thermal and molecular diffusivities, greatly

simplifies their true effects. As more coherent small-scale structures form within more

turbulent fluid, the inaccuracies associated with using a simplified SGS treatment are

likely to grow. It has been shown that small-scale features in the flows will not only

dissipate momentum and heat, but are also able to advectively transport these quanti-

ties. More sensible treatments of the SGS terms in the ASH code would capture more

of the dynamical effects associated with fluid motions not explicitly resolved.

The advent of continuous imaging of the solar surface carried out at high spatial

and temporal resolution has led to remarkable ways to probe the dynamics of the in-

tensely turbulent convection zone. Such efforts will be carried to new levels with the

planned Solar Dynamics Observatory mission, and likewise the upgrades to GONG will

provide uninterrupted Doppler imaging from the ground. The continuous rapid ad-

vances with massively parallel computing architectures will enable even more detailed

simulations of turbulent convective fluids analogous to the solar convection zone. We
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thus foresee complementary paths coupling major observational and theoretical efforts

in studying the complex evolving dynamics within the solar convection zone.
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Berger, T. E., Löfdahl, M. G., Shine, R. A., & Title, A. M. 1998, ApJ, 506, 439

Bray, R. J., Loughhead, R. E., & Durrant, C. J. 1984, The Solar Granulation (Cam-
bridge: Cambridge University Press)

Brummell, N., Cattaneo, F., & Toomre, J. 1995, Science, 269, 1370

Brummell, N. H., Hurlburt, N. E., & Toomre, J. 1996, ApJ, 473, 494

—. 1998, ApJ, 493, 955

Brun, A. S. & Toomre, J. 2001, in Helio- and Asteroseismology at the Dawn of the
Millennium, Proceedings of the SOHO 10/GONG 2000 Workshop, ESA SP–464, ed.
A. Wilson, 619–624
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Appendix A

CORRELATION TRACKING ALGORITHM DETAILS

A.1 SETTING UP THE GRIDPOINT ARRAY

In §2.3, it is stated that the correlation tracking algorithm is applied to two

equally sized images I1(x, y) and I2(x, y). Our notation is such that integer values of

the pixel coordinates x and y index the pixels in the two images, though we will also

need to refer to fractional pixel values in what follows. An array of N gridpoints at

which local displacements are to be detected is denoted by the coordinates (xn, yn),

where n = 1, 2, · · · ,N . By the following method, local displacements are calculated so

that the pixels in the neighborhood of (xn, yn) in image I1 optimally coincide with the

pixels in the neighborhood of (xn, yn) in image I2 when shifted by the relative amount

(δx, δy).

Before calculating the optimal displacement, we formally define the neighborhood

of each gridpoint as those pixels contained in a square subimage centered on the grid-

point in question. For example, if the subimages have 2p+ 1 pixels on a side (that is, p

is the subimage half-width), the subimage centered on the gridpoint (xn, yn) extracted

from image I1 is thus comprised of all pixels I1(xi, yj) with

xi = xn − p+ i and yj = yn − p+ j, (A.1)

where the indices i and j run from i, j = 0, 1, · · · , 2p. Therefore, this subimage is

bounded horizontally by x = xn−p and x = xn+p and bounded vertically by y = yn−p



156

and y = yn + p inclusive. As shorthand, we define Sn1 as the subimage centered on the

measurement gridpoint (xn, yn) extracted from image I1. The conventions defined above

are equally applicable to image I2.

A.2 THE MERIT FUNCTION

Given the two corresponding subimages Sn1 and Sn2 centered on the same gridpoint

(xn, yn) extracted from I1 and I2, we now wish to determine the relative shift between

the two subimages such that the topology of the two subimages maximally coincides.

To calculate this optimal displacement, we determine the displacement vector (δx, δy)

such that the following merit function is minimized:

m(δx, δy) =
2p−1∑
i=0

2p−1∑
j=0

{
W

(
xi − xn +

1
2
, yj − yn +

1
2

)

×
[
I1

(
xi +

1
2

+
δx

2
, yj +

1
2

+
δy

2

)
− I2

(
xi +

1
2
− δx

2
, yj +

1
2
− δy

2

)]2
}
.

(A.2)

In its essence, the merit function m(δx, δy) in equation (A.2) above is a weighted sum

of the squares of the differences between the pixel values of the two corresponding

subimages after shifting the two subimages with respect to each other by the relative

offset (δx, δy).

The merit function is arranged so that the fractional pixel shifts are measured

with respect to a position a half-pixel above and a half-pixel to the right of the pixels in

the subimages; that is, the fractional pixel shifts are measured with respect to the points(
xi +

1
2
, yj +

1
2

)
. This formulation explains the presence of the various

1
2

’s added to

the pixel indices, as well as the upper limit of 2p− 1 for each of the sums.

Additionally, the merit function is set up so that the subimages are shifted in a

symmetric fashion. For given horizontal and vertical displacements δx and δy, Sn1 and

Sn2 are each shifted by the same amounts
δx

2
and

δy

2
but in opposite directions. This
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symmetric shifting stabilizes the behavior of m(δx, δy) near the point (δx, δy) = (0, 0).

Both the one-half pixel offset and the symmetric shift simplify the computational

task of evaluating I1 and I2 at interpixel values. This scheme guarantees that the

interpolating point always falls within the square framed by the four pixels (xi, yj),

(xi, yj + 1), (xi + 1, yj), and (xi + 1, yj + 1), as long as only shifts of less than one pixel

are considered. For this condition to be true, we require

|δx| ≤ 1 and |δy| ≤ 1. (A.3)

For the magnitudes of the velocities we hope to measure in this work, this condition is

always met.

The function W in equation (A.2) above is a weighting function multiplying the

squared pixel differences so that the terms in the double sum arising from points closer

to the subimage center (xn, yn) are weighted more heavily in the sum than those farther

away. We use a Gaussian function for W ,

W (x, y) = exp
(
−x

2 + y2

σ2

)
, (A.4)

although any tapered function will suffice. The adjustable parameter σ is the e-folding

distance of the Gaussian, which in turn determines the spatial resolution of the result-

ing velocity field. The parameter p introduced above, which characterizes the size of

the subimages, should be chosen such that the subimages extend far enough out to

encompass the peak and falloff of W . Choosing p too large will only increase the com-

putational workload while the extra outlying points contribute little to the weighted

sum in equation (A.2). Conversely, choosing p too small may not encompass all of

the points surrounding the measurement gridpoint which have any significant weighting

in the double sum. In this work, p is chosen to be slightly larger than σ. Typically,

p = 11 pixels for σ = 8 pixels.

As seen by inspecting equation (A.2), minimizing the merit function requires a

method for evaluating I1 and I2 at fractional pixel coordinates. In general, if we know
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the value of a function f at the four bounding points (x1, y1), (x2, y1), (x1, y2), and

(x2, y2), we can bilinearly interpolate between the abscissae to estimate the value of f

at any point interior to the bounding points:

f(x1 + ∆x, y1 + ∆y) = (1−A)(1−B) f(x1, y1) +A(1−B) f(x2, y1)

+ (1−A)B f(x1, y2) +AB f(x2, y2), (A.5)

where the scaled coordinates A and B are defined

A ≡ ∆x
x2 − x1

and B ≡ ∆y
y2 − y1

. (A.6)

For the point (x1 + ∆x, y1 + ∆y) to be interior to the bounding points, we must have

0 ≤ A ≤ 1 and 0 ≤ B ≤ 1, (A.7)

otherwise we would be extrapolating rather than interpolating.

The bilinear interpolation formula (A.5) is used to evaluate I1 and I2 at fractional

pixel coordinates. Identifying the indices x1, x2, y1, and y2 in equation (A.5) with

the pixel indices xi, xi+1, yj, and yj+1, respectively, and setting ∆x =
1
2

+
δx

2
and

∆y =
1
2

+
δy

2
, we obtain the following expression for the I1 term in equation (A.2)

above:

I1

(
xi +

1
2

+
δx

2
, yj +

1
2

+
δy

2

)
=
(

1
2
− δx

2

)(
1
2
− δy

2

)
I1(xi, yj)

+
(

1
2

+
δx

2

)(
1
2
− δy

2

)
I1(xi+1, yj)

+
(

1
2
− δx

2

)(
1
2

+
δy

2

)
I1(xi, yj+1)

+
(

1
2

+
δx

2

)(
1
2

+
δy

2

)
I1(xi+1, yj+1).

(A.8)
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Likewise for I2, where now ∆x =
1
2
− δx

2
and ∆y =

1
2
− δy

2
, we have

I2

(
xi +

1
2
− δx

2
, yj +

1
2
− δy

2

)
=
(

1
2

+
δx

2

)(
1
2

+
δy

2

)
I2(xi, yj)

+
(

1
2
− δx

2

)(
1
2

+
δy

2

)
I2(xi+1, yj)

+
(

1
2

+
δx

2

)(
1
2
− δy

2

)
I2(xi, yj+1)

+
(

1
2
− δx

2

)(
1
2
− δy

2

)
I2(xi+1, yj+1).

(A.9)

Note that the restrictions on A and B given above in equation (A.7) imply that |δx| ≤ 1

and |δy| ≤ 1, as already assumed by equation (A.3). We now substitute equations (A.8)

and (A.9) into equation (A.2) to obtain

m(δx, δy) =
2p−1∑
i=0

2p−1∑
j=0

{
W

(
xi − xn +

1
2
, yj − yn +

1
2

)

×
[(

1
2
− δx

2

)(
1
2
− δy

2

)
I1(xi, yj)

+
(

1
2

+
δx

2

)(
1
2
− δy

2

)
I1(xi+1, yj)

+
(

1
2
− δx

2

)(
1
2

+
δy

2

)
I1(xi, yj+1)

+
(

1
2

+
δx

2

)(
1
2

+
δy

2

)
I1(xi+1, yj+1)

−
(

1
2

+
δx

2

)(
1
2

+
δy

2

)
I2(xi, yj)

−
(

1
2
− δx

2

)
−
(

1
2

+
δy

2

)
I2(xi+1, yj)

−
(

1
2

+
δx

2

)(
1
2
− δy

2

)
I2(xi, yj+1)

−
(

1
2
− δx

2

)(
1
2
− δy

2

)
I2(xi+1, yj+1)

]2
}
.

(A.10)

This expression for m(δx, δy) depends only upon the unknown displacement (δx, δy)

and the data values of the pixels in the two subimages extracted from I1 and I2.
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A.3 MINIMIZING THE MERIT FUNCTION

To find the values of δx and δy which minimize the merit function (A.10), we

will need to evaluate the derivatives
∂m

∂(δx)
and

∂m

∂(δy)
. This task is simplified by first

expanding the squared term in equation (A.10). To proceed, first define the quantities

d1 = I1(xj , yk)− I2(xj+1, yk+1),

d2 = I1(xj , yk+1)− I2(xj+1, yk),

d3 = I1(xj+1, yk)− I2(xj , yk+1),

d4 = I1(xj+1, yk+1)− I2(xj , yk),

and then substitute these differences into equation (A.10):

m(δx, δy) =
2p−1∑
i=0

2p−1∑
j=0

{
Wij

16

[
(1− δx)(1− δy) d1 + (1− δx)(1 + δy) d2

+ (1 + δx)(1− δy) d3 + (1 + δx)(1 + δy) d4

]2
}
,

(A.11)

where Wij = W

(
xi − xn +

1
2
, yj − yn +

1
2

)
. Then, after expanding the square and

regrouping we have

m(δx, δy) =
2p−1∑
i=0

2p−1∑
j=0

{
Wij

16

[
a1 + a2 δx

2 + a3 δy
2 + a4 δx

2δy2 + a5 δx

+ a6 δy + a7 δx δy + a8 δx
2δy + a9 δx δy

2
]}
,

(A.12)
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where, after some algebra, the a-coefficients are found to be

a1 = (d1 + d2 + d3 + d4)2,

a2 = (d1 + d2 − d3 − d4)2,

a3 = (d1 − d2 + d3 − d4)2,

a4 = (d1 − d2 − d3 + d4)2,

a5 = −2(d1 + d2 + d3 + d4)(d1 + d2 − d3 − d4),

a6 = −2(d1 + d2 + d3 + d4)(d1 − d2 + d3 − d4),

a7 = 4(d2
1 − d2

2 − d2
3 + d2

4),

a8 = −2(d1 + d2 − d3 − d4)(d1 − d2 − d3 + d4),

a9 = −2(d1 − d2 + d3 − d4)(d1 − d2 − d3 + d4).

Since the offsets δx and δy are independent of the quantities being summed over, we

can pull them out of the sum and define the coefficients

Am ≡
2p−1∑
i=0

2p−1∑
j=0

Wij

16
am, (A.13)

where m = 1, 2, · · · , 9. Substituting equation (A.13) into equation (A.12), we have

m(δx, δy) =A1 +A2 δx
2 +A3 δy

2 +A4 δx
2δy2 +A5 δx

+A6 δy +A7 δx δy +A8 δx
2δy +A9 δx δy

2.

(A.14)

Note that the Am-coefficients can be calculated as soon as the subimages have been

extracted, as they depend only upon W and the data values contained in the two

subimages Sn1 and Sn2 .

To find the point (δx, δy) which minimizes m(δx, δy), we follow the usual proce-

dure of setting the first partial derivatives of m equal to zero and solving the resulting

system of equations:

∂m

∂(δx)
= 0 =⇒

(
A5 +A7δy +A9δy

2
)

+ 2δx
(
A2 +A8δy +A4δy

2
)

= 0, (A.15)

∂m

∂(δy)
= 0 =⇒

(
A6 +A7δx+A8δx

2
)

+ 2δy
(
A3 +A9δx+A4δx

2
)

= 0. (A.16)
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At this point, we note that solving for either δx or δy using equation (A.15) or (A.16)

and substituting the resulting expression into the other yields a quintic equation. Rather

than look for zeroes in such a quintic equation, the correlation tracking algorithm uses

an iterative scheme to approximate the extremal value of (δx, δy). Starting with an

estimate for δy, the algorithm obtains an estimate for δx by solving equation (A.15).

Using this estimate for δx, a new estimate for δy is calculated by solving equation

(A.16). This stepping scheme is iterated until either δx and δy differ from its previous

estimate by less than 10−4.

A.4 ITERATING WITH BICUBIC SHIFTS

To attain a more accurate estimate of the optimal displacement (δx, δy), we could

use a higher-ordered interpolation scheme (such as bicubic interpolation) to evaluate I1

and I2 at interpixel values in the merit function (A.2) above. However, we find it

simpler to use the optimal shifts (δx, δy) calculated by minimizing m given by equation

(A.10), which uses bilinear shifts to estimate interpixel data values, as a guess for what

the optimal displacement would be had bicubic interpolation been used in minimizing

the merit function. Then one of the subimages is bicubically shifted by the known

amount (δx, δy) and the procedure is repeated. This iteration scheme is chosen because

it is computationally faster to bicubically shift images by a known amount, as opposed

to calculating an unknown displacement assuming bicubic interpolation was used to

evaluate the functions I1 and I2 at interpixel values.

The correlation tracking algorithm therefore proceeds as follows. At each mea-

surement gridpoint (xn, yn), an optimal displacement is calculated using bilinear shifts

in the merit function as described in §A.2. Define this initial displacement as (δx, δy)agg.

The subimage Sn2 is then shifted by this offset (δx, δy)agg using bicubic interpolation.

An additional optimal displacement vector (δx′, δy′) is then calculated using the merit

function containing bilinear shifts, where Sn1 and the (bicubically) shifted version of Sn2
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are now used as input images. The total displacement becomes the sum of the ini-

tial displacement and this additional displacement, so that the aggregate displacement

(δx, δy)agg = (δx, δy)old
agg + (δx′, δy′).

We now continue to add to the aggregate displacement by iterating until conver-

gence. That is, subimage Sn2 is now bicubically shifted by the aggregate displacement

(δx, δy)agg, and another additional displacement vector is calculated using Sn1 and the

newly shifted version of Sn2 . This new displacement vector is then added to the ag-

gregate. Convergence occurs when the displacement vector produced using Sn1 and a

shifted version of Sn2 has a |δx| or |δy| less than 10−4. This aggregate shift (δx, δy)agg is

then returned as the optimal displacement for the gridpoint in question. This bicubic

iteration process provides an estimate for what the optimal displacement would have

been had bicubic shifts (rather than bilinear shifts) been used to evaluate I1 and I2 at

interpixel values in equation (A.2).

A.5 CORRELATION TRACKING PITFALLS

In determining the optimal displacement for each measurement gridpoint, sev-

eral problems may befall the correlation algorithm described above. As stipulated by

equation (A.3), if either aggregate offset δxagg or δyagg is more than one pixel in either

direction, the algorithm sets the offsets to zero and the gridpoint is flagged. As stated

earlier, we do not expect the motions in the time series analyzed in this these to possess

displacements of more than one pixel.

Two problems may occur when iterating using the bicubic shifts. First, if more

than twenty iterations occur prior to convergence, the offsets are set to zero and the

gridpoint is flagged. This situation usually occurs when the merit function contains no

prominent minimum causing the algorithm to wander around in (δx, δy)-space, as is

caused by when the subimages contain no prominent topological features.

The second problem which may occur during the bicubic iteration process is a
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degradation of the merit function. Ideally, the value of the merit function continues

to decrease as the minimum value of (δx, δy) is approached. If the value of the merit

function is found to increase between iterations, suggesting that the next aggregate

offset is actually farther away from the minimum in m(δx, δy), the current aggregate

displacements are returned and the gridpoint is flagged. This problem generally occurs

when the topology of the merit function near the minimum value of (δx, δy) is somewhat

lumpy, containing several local extrema in the neighborhood of the absolute minimum.



Appendix B

ASH CODE EQUATIONS — DETAILED DERIVATIONS

This appendix supplements Chapter 4 by providing detailed derivations of the

equations presented therein. In the following section, we perform a formal scale analysis

on the fully compressible fluid equations in order to determine the anelastic momentum

and energy equations listed in §4.2.3. We then in §B.2 derive the energy conservation

equations given in §4.2.4. Lastly, in §B.3 we incorporate the streamfunction formal-

ism presented in §4.2.5 into the anelastic evolution equations, replacing them with the

evolution equations listed in §4.2.5.

B.1 ANELASTIC FLUID EQUATIONS

We now apply the scaling outlined in §4.2.3 to the fully compressible fluid equa-

tions (4.2)–(4.4) to obtain the set of anelastic equations (4.23)–(4.33), where each of

the boxed equations in §B.1.2–§B.1.4 which follow correspond to one of the anelastic

equations listed in §4.2.3. The derivations presented here follow Gilman & Glatzmaier

(1981).

B.1.1 Order in ε of All Dependent Variables

As stated in §4.2.3, we express the four thermodynamic state variables as the

sum of a spherically symmetric mean quantity and a fluctuating quantity, as in equa-
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tion (4.21) of §4.2.3:

ptotal(r, θ, φ, t) = p̂(r) + p(r, θ, φ, t),

ρtotal(r, θ, φ, t) = ρ̂(r) + ρ(r, θ, φ, t),

Ttotal(r, θ, φ, t) = T̂ (r) + T (r, θ, φ, t),

stotal(r, θ, φ, t) = ŝ(r) + s(r, θ, φ, t).

(B.1)

Note that in these equations we have altered the notation used in equation (4.21) by

removing the primes from all fluctuating quantities.

The perturbations to the state variables result from convective motions driven by

the superadiabatic stratification of the layer, which is characterized by the parameter

ε defined in equation (4.12). We therefore assume for
f

f̂
is of order ε for any quantity

f in equation (B.1), with the anelastic approximation valid when ε � 1. To filter out

sound waves, we assume

∂ρ

∂t
= 0, (B.2)

as in equation (4.22) of §4.2.3.

Before performing the scale separation on the compressible fluid equations, we

must first determine the order in ε of all variables and operators present. We examine

variables other than the thermodynamic state variables in the remainder of this section.

A summary of these results is provided in Table B.1.

It is important to note that the fluid velocity u is of order ε
1
2 , as suggested by

equation (4.14). The main reason for this scaling is that since the kinetic energy of the

motions is extracted from the stratification, we have
ρ̂u2

2
∼ ε and therefore u ∼ ε

1
2 .

Given a representative length scale λp and velocity u, the time scale dt on which the

convection modifies the stratification is thus on the order of ∆t =
λp
|u| ∼ ε−

1
2 , causing

time derivatives to scale as
∂

∂t
∼ ε 1

2 .

The heuristic arguments presented above also apply to the diffusivity coefficients.

Since we expect the eddy dissipation scale to be set by the scale of the convection, we
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Table B.1: Order in ε for all quantities and operators appearing in the fully compressible
fluid equations.

Order in ε Quantities Operators

ε0 p̂, ρ̂, T̂ , ŝ, g, δ ∇, ∇·, ∇×

ε
1
2 u, νeff, κs, Ω, e

∂

∂t

ε1 p, ρ, T , s (none)

find that νeff ≈ λpu, and thus νeff ∼ ε
1
2 since u ∼ ε

1
2 . Similar scaling arguments also

hold for κr and κs.

In the following subsections, we substitute the scaling given in equation (B.1)

into the compressible fluid equations and derive the anelastic equations. As stated in

§4.2.3, the diffusivities νeff, κr, and κs are assumed to be functions of ρ̂ only, while the

parameters γ and cp are assumed constant throughout the domain.

B.1.2 Derivation of the Anelastic Mass Continuity Equation

By substituting equations (B.1) into the mass continuity equation (4.2), we obtain

∂ρ

∂t︸︷︷︸
vanishes

+∇ · (ρ̂u)︸ ︷︷ ︸
∼ε

1
2

+∇ · (ρu)︸ ︷︷ ︸
∼ε

3
2

= 0. (B.3)

As indicated, the time derivative of ρ vanishes by equation (B.2). Retaining the highest-

ordered term yields the anelastic mass continuity equation,

∇ · (ρ̂u) = 0. (B.4)
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B.1.3 Derivation of the Anelastic Momentum Equations

By substituting equations (B.1) into the momentum equation (4.3), and using the

definition of D, equation (4.5), we obtain

(ρ̂+ ρ)
[
∂u

∂t
+ (u · ∇)u

]
= −∇(p̂+ p)− (ρ̂+ ρ)g r̂ + 2(ρ̂+ ρ)(u×Ω)

+∇ ·
{

2(ρ̂+ ρ)νeff

[
e− 1

3
(∇ · u) δ

]}
.

(B.5)

After expanding and grouping according to their order in ε, we obtain

ρ̂
∂u

∂t
+ ρ̂(u · ∇)u︸ ︷︷ ︸
∼ε1

+ ρ
∂u

∂t
+ ρ(u · ∇)u︸ ︷︷ ︸
∼ε2

+∇p̂+ ρ̂g r̂︸ ︷︷ ︸
∼ε0

= 2ρ̂(u×Ω)−∇p− ρg r̂ +∇ ·
{

2ρ̂νeff

[
e− 1

3
(∇ · u) δ

]}
︸ ︷︷ ︸

∼ε1

+ 2ρ(u×Ω) +∇ ·
{

2ρνeff

[
e− 1

3
(∇ · u) δ

]}
︸ ︷︷ ︸

∼ε2

.

(B.6)

The mean momentum equation consists of the terms scaling as ε0, of which only the

r̂-component remains,

∂p̂

∂r
+ ρ̂g = 0. (B.7)

The first-order (ε1) terms give the fluctuating momentum equation,

ρ̂
∂u

∂t
= 2ρ̂(u×Ω)− ρ̂(u · ∇)u−∇p− ρg r̂ +∇ · D̂, (B.8)

where the anelastic viscous stress tensor D̂ is defined

D̂ = 2ρ̂νeff

[
e− 1

3
(∇ · u) δ

]
. (B.9)

B.1.4 Derivation of the Anelastic Energy Equation

By substituting equations (B.1) into the energy equation (4.4), and using the

definition of Φ, equation (4.6), we obtain

(ρ̂+ ρ)(T̂ + T )
[
∂(ŝ+ s)
∂t

+ (u · ∇)(ŝ + s)
]

= −∇ · q̂eff + 2(ρ̂+ ρ)
[
e : e− 1

3
(∇ · u)2

]
,

(B.10)
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where the anelastic heat flux q̂eff is defined

q̂eff = −κrρ̂cp∇(T̂ + T )− κsρ̂T̂∇(ŝ+ s). (B.11)

In the above equation, we have explicitly included the contributions to the diffusive

transport of internal energy by the fluctuating temperature and entropy gradients. Sim-

ilarly, we also keep the fluctuating entropy gradient in the advection term, so that the

anelastic energy equation becomes

ρ̂T̂
∂s

∂t
= −∇ · q̂eff − ρ̂T̂ (u · ∇)(ŝ+ s) + Φ̂, (B.12)

where the anelastic viscous heating term Φ̂ is defined

Φ̂ = 2ρ̂νeff

[
e : e− 1

3
(∇ · u)2

]
. (B.13)

Note that we have used the anelastic stress tensor D̂ as defined in equation (B.9).

B.1.5 Derivation of the Anelastic Equations of State

Substituting equations (B.1) into the equation of state (4.10) yields

p̂+ p =
γ − 1
γ

cp(ρ̂+ ρ)(T̂ + T ). (B.14)

Collecting the zeroth-order terms gives

p̂ =
γ − 1
γ

cpρ̂T̂ , (B.15)

while the first-order terms are

p =
γ − 1
γ

cp

(
ρT̂ + ρ̂T

)
, (B.16)

or after dividing by equation (B.15) we arrive at

p

p̂
=
ρ

ρ̂
+
T

T̂
. (B.17)
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Substituting equations (B.1) into the entropy equation (4.11) yields

ŝ+ s = cp

[
1
γ

ln(p̂+ p)− ln(ρ̂+ ρ)
]
, (B.18)

= cp

[
1
γ

(
ln p̂+ ln

[
1 +

p

p̂

])
−
(

ln ρ̂+ ln
[
1 +

ρ

ρ̂

])]
. (B.19)

Since
∣∣∣∣pp̂
∣∣∣∣� 1 and

∣∣∣∣ρρ̂
∣∣∣∣� 1, we can use the series representation of ln(1 + x),

ln(1 + x) = x− x2

2
+
x3

3
− · · · , valid for −1 < x ≤ 1. (B.20)

Keeping only the highest-order term in the series, we obtain

ŝ+ s = cp

[
1
γ

(
ln p̂+

p

p̂

)
−
(

ln ρ̂+
ρ

ρ̂

)]
. (B.21)

The zeroth-order terms are

ŝ = cp

(
1
γ

ln p̂− ln ρ̂
)
, (B.22)

which after taking a radial derivative become

dŝ

dr
= cp

(
1
γp̂

dp̂

dr
− 1
ρ̂

dρ̂

dr

)
, (B.23)

while the first-order terms give

s

cp
=

p

γp̂
− ρ

ρ̂
. (B.24)

B.2 ANELASTIC EQUATION ENERGETICS

B.2.1 Derivation of the Kinetic Energy Conservation Equation

The equation describing the conservation of kinetic energy density Ek =
ρ̂u · u

2
is formed by taking u· each term in the anelastic momentum equation (B.8),

ρ̂
∂u

∂t
= 2ρ̂(u×Ω)− ρ̂(u · ∇)u−∇p− ρg r̂ +∇ · D̂. (B.25)

Starting with the time-derivative term, we have

ρ̂u · ∂u
∂t

=
∂

∂t

(
ρ̂u · u

2

)
=
∂Ek
∂t

, (B.26)
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where we have made use of the fact that
∂ρ̂

∂t
= 0.

The Coriolis term,

2ρ̂u · (u×Ω) = 0, (B.27)

vanishes since it acts perpendicular to the motion and thus cannot perform any work.

The inertial term is

ρ̂u · [(u · ∇)u] =∇ ·
[
u

(
ρ̂u · u

2

)]
. (B.28)

This relation is most easily verified by using the following vector identity,

∇ · (fA) = A · (∇f) + f(∇ ·A), (B.29)

to expand ∇ ·
[
u

(
ρ̂u · u

2

)]
= ∇ ·

[(
ρ̂u

2

)
u · u

]
, and showing that it equals ρ̂u ·

[(u · ∇)u]:

∇ ·
[(

ρ̂u

2

)
u · u

]
=
ρ̂u

2
· [∇(u · u)] +

1
2

(u · u)∇ · (ρ̂u)︸ ︷︷ ︸
vanishes by equation (B.4)

(B.30)

= ρ̂u · [u× (∇× u)]︸ ︷︷ ︸
vanishes

+ ρ̂u · [(u · ∇)u] . (B.31)

Note that this derivation shows that the inertial term can be written as the divergence

of the kinetic energy flux.

The remaining terms are simply

u · ∇p+ ρgu · r̂ + u ·
(
∇ · D̂

)
. (B.32)

Collecting terms, we obtain the kinetic energy conservation equation listed as

equation (4.34) of Chapter 4,

∂Ek
∂t

= −u · ∇p− ρgu · r̂ + u ·
(
∇ · D̂

)
−∇ ·

[
u

(
ρ̂u · u

2

)]
. (B.33)
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B.2.2 Derivation of the Internal Energy Conservation Equation

Since the time derivatives of ρ̂ and T̂ are zero, the equation describing the time

dependence of internal energy density Es = ρ̂T̂ s is the anelastic internal energy equa-

tion (B.12),

∂Es
∂t

=∇ · q̂eff − ρ̂T̂ (u · ∇)(ŝ+ s) + Φ̂, (B.34)

where the time derivative term ρ̂T̂
∂s

∂t
has been replaced by

∂

∂t
(ρ̂T̂ s) =

∂Es
∂t

.

Additional insight may be gained by rewriting the inertial term as follows:

− ρ̂T̂ (u · ∇)s

= −cpρ̂T̂ (u · ∇)
[
T

T̂
− γ − 1

γ

p

p̂

]
= −cpρ̂T̂u ·

[
∇T
T̂
− γ − 1

γ

∇p
p̂
− T

T̂ 2

dT̂

dr
r̂ +

γ − 1
γ

p

p̂2

dp̂

dr
r̂

]

= −cpρ̂u · ∇T + u · ∇p+ cpur
ρ̂T

T̂

dT̂

dr
− ur

p

p̂

dp̂

dr

= −cp∇ · (ρ̂Tu) + u · ∇p+ cpurρ̂T

[
1
cp

dŝ

dr
+
γ − 1
γp̂

dp̂

dr

]
− ur

p

p̂

dp̂

dr

= −cp∇ · (ρ̂Tu) + u · ∇p+ urρ̂T
dŝ

dr
+ ur

[
T

T̂
− p

p̂

]
dp̂

dr

= −cp∇ · (ρ̂Tu) + u · ∇p− ur
ρ

ρ̂

dp̂

dr
+ urρ̂T

dŝ

dr︸ ︷︷ ︸
≈ 0, higher order

= −cp∇ · (ρ̂Tu) + u · ∇p+ urρg

where ur = u · r̂, and where the mean equations (B.7), (B.15), and (B.23) as well as the

dynamic equations of state (B.17) and (B.24) have been used throughout. Using this

form of the inertial term, we obtain the internal energy conservation equation listed as

equation (4.35) of Chapter 4,

∂Es
∂t

=∇ · q̂eff + u · ∇p+ ρgu · r̂ −∇ · (cpρ̂Tu) + Φ̂. (B.35)
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B.2.3 Derivation of the Total Energy Conservation Equation

Adding together the energy conservation equations (B.33) and (B.35) yields the

total energy equation (4.36) of Chapter 4,

∂(Ek + Es)
∂t

=∇ ·
(
u · D̂

)
+∇ ·

[
u

(
ρ̂u · u

2

)]
+∇ · q̂eff −∇ · (cpρ̂Tu). (B.36)

In the above equation, the viscous energy source term ∇ ·
(
u · D̂

)
is arrived at

by combining the diffusion terms in equations (B.33) and (B.35), which we now show

using indicial notation in Cartesian coordinates.

u ·
(
∇ · D̂

)
+ Φ̂ = ui

∂Dij
∂xj

+Dij
∂ui
∂xj

=
∂

∂xj
(uiDij) =∇ ·

(
u · D̂

)
, (B.37)

where the we have used the equality

Dij
∂ui
∂xj

= 2ρ̂νeff

[
eij
∂ui
∂xj
− 1

3
(∇ · u)

∂ui
∂xj

δij

]
(B.38)

= 2ρ̂νeff

[
eijeij −

1
3

(∇ · u)2

]
since

∂ui
∂xj

δij =∇ · u (B.39)

= 2ρ̂νeff

[
e : e− 1

3
(∇ · u)2

]
(B.40)

= Φ̂. (B.41)

Going from equation (B.38) to (B.39) is achieved by using the fact that the doubly

contracted tensor product of a symmetric tensor and an antisymmetric tensor is zero.

Since the strain rate tensor eij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is symmetric (as can be seen from

its Cartesian representation), the product
∂ui
∂xj

eij is equal to the product of eij and the

symmetric part of
∂ui
∂xj

, which is simply eij .
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B.3 THE NUMERICAL EVOLUTION EQUATIONS

We now proceed to derive equations (4.38)–(4.40) of Chapter 4.

B.3.1 Streamfunction Formalism

Any vector A for which ∇ ·A = 0 can be decomposed into poloidal and toroidal

streamfunctions W and Z, respectively:

A =∇× (∇×W r̂) +∇× Z r̂, (B.42)

such that ∇ ·A = 0 is identically satisfied at all times. Because

∇ · (ρ̂u) = 0, (B.43)

by equation (B.4), we may write

ρ̂u =∇× (∇×W r̂) +∇× Z r̂. (B.44)

The scalar quantities W and Z are the poloidal and toroidal streamfunctions for the

mass flux, and it is equations describing the evolution of these quantities (along with p

and s) that are solved by the ASH code. We outline the derivations of these equations

in Table B.2, while presenting detailed derivations in §B.3.4–§B.3.7.

B.3.2 Streamfunction Identities

In this section, we list some identities used in the upcoming sections. Expanding

the vector cross products from equation (B.42) in spherical polar coordinates, the three

components of ρ̂u are found to be

ρ̂u = −
(
∇2
⊥W

)
r̂ +

[
1
r

∂2W

∂r∂θ
+

1
r sin θ

∂Z

∂φ

]
θ̂ +

[
1

r sin θ
∂2W

∂r∂φ
− 1
r

∂Z

∂θ

]
φ̂, (B.45)

while the curl of ρ̂u is

∇× ρ̂u = −
(
∇2
⊥Z
)
r̂ +

[
− 1
r sin θ

∂

∂φ

(
∂2

∂r2
+∇2

⊥

)
W +

1
r

∂2Z

∂r∂θ

]
θ̂

+
[

1
r

∂

∂θ

(
∂2

∂r2
+∇2

⊥

)
W +

1
r sin θ

∂2Z

∂r∂φ

]
φ̂.

(B.46)
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Table B.2: Strategy employed to obtain the ASH code evolution equations.

Apply this to this to obtain the derived as
operator equation evolution equation for in equation

r̂· (B.8)
∂

∂t
(∇2
⊥W ) §B.3.4 (B.123)

∇⊥· (B.8)
∂

∂t

(
∇2
⊥
∂W

∂r

)
§B.3.5 (B.132)

r̂ · ∇× (B.8)
∂

∂t
(∇2
⊥Z) §B.3.6 (B.140)

[none] (B.12)
∂s

∂t
§B.3.7 (B.144)

In the above two expressions, we have used the horizontal Laplacian operator,

∇2
⊥ =

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2
, (B.47)

defined such that the total Laplacian operator is

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+∇2

⊥. (B.48)

The horizontal Laplacian operator commutes with radial derivatives in the following

manner:(
∂

∂r
∇2
⊥

)
f(r, θ, φ) = ∇2

⊥

(
∂

∂r
− 2
r

)
f(r, θ, φ), (B.49)(

∂2

∂r2
∇2
⊥

)
f(r, θ, φ) = ∇2

⊥

(
∂2

∂r2
− 4
r

∂

∂r
+

6
r2

)
f(r, θ, φ), (B.50)(

∂3

∂r3
∇2
⊥

)
f(r, θ, φ) = ∇2

⊥

(
∂3

∂r3
− 6
r

∂2

∂r2
+

18
r2

∂

∂r
− 24
r3

)
f(r, θ, φ). (B.51)

B.3.3 Components of the Divergence of the Viscous Stress Tensor

In this section, we evaluate the components of the anelastic viscous stress tensor,

∇ · D̂, in preparation for their use in §B.3.4–§B.3.7.
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B.3.3.1 Preliminaries

The anelastic stress tensor is

D̂ = 2ρ̂ν
[
e− 1

3
(∇ · u) δ

]
by equation (B.9)

= 2ν
[
ρ̂e− ρ̂

3
(∇ · u)δ

]
= 2ν

[
ρ̂e− 1

3

(
∇ · (ρ̂u)− u · ∇ρ̂

)
δ

]
= 2ν

[
ρ̂e+

β

3
ρ̂ur δ

]
, since ∇ · (ρ̂u) = 0 by equation (B.4) (B.52)

where β is defined below in equation (B.56) and where we have dropped the “eff”

subscript from νeff, hereafter using ν instead. To evaluate ∇ · D̂, we will need the

individual components of the tensor ρ̂e in spherical polar coordinates,

ρ̂err =
∂(ρ̂ur)
∂r

− βρ̂ur

ρ̂eθθ =
1
r

∂(ρ̂uθ)
∂θ

+
1
r
ρ̂ur,

ρ̂eφφ =
1

r sin θ
∂(ρ̂uφ)
∂φ

+
1
r
ρ̂ur +

cos θ
r sin θ

ρ̂uθ,

ρ̂erθ =
1
2
∂(ρ̂uθ)
∂r

− β

2
ρ̂uθ −

1
2r
ρ̂uθ +

1
2r
∂(ρ̂ur)
∂θ

,

ρ̂erφ =
1

2r sin θ
∂(ρ̂ur)
∂φ

+
1
2
∂(ρ̂uφ)
∂r

− β

2
ρ̂uφ −

1
2r
ρ̂uφ,

ρ̂eθφ =
1
2r
∂(ρ̂uφ)
∂θ

− cos θ
2r sin θ

ρ̂uφ +
1

2r sin θ
∂(ρ̂uθ)
∂φ

,

(B.53)

where we have again used the definition of β given in equation (B.56) below. It will also

prove useful to have handy the expression for ∇ · (ρ̂u) = 0,

1
r2

∂(r2ρ̂ur)
∂r

+
1

r sin θ
∂(sin θ ρ̂uθ)

∂θ
+

1
r sin θ

∂(ρ̂uφ)
∂φ

= 0, (B.54)

which vanishes by equation (B.4). Finally, we define the following functions of r,

α =
d ln ν
dr

(B.55)

and

β =
d ln ρ̂
dr

. (B.56)
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B.3.3.2 Radial Component

For any tensor T , the radial component of its divergence is

r̂ ·
(
∇ · T

)
=

1
r2

∂(r2Trr)
∂r︸ ︷︷ ︸

1

+
1

r sin θ
∂(sin θ Trθ)

∂θ︸ ︷︷ ︸
2

+
1

r sin θ
∂Trφ
∂φ︸ ︷︷ ︸

3

− Tθθ + Tφφ
r︸ ︷︷ ︸
4

. (B.57)

In this section, we evaluate equation (B.57) for T = D̂ using the definition of D̂ given

in equation (B.52) along with the strain rate tensor components of equation (B.53).

Starting with the first term, we have

1 =
1
r2

∂

∂r

[
r2 2ν

(
∂(ρ̂ur)
∂r

− 2β
3
ρ̂ur

)]
=

2ν
r2

{
αr2

[
∂(ρ̂ur)
∂r

− 2β
3
ρ̂ur

]
+

∂

∂r

(
r2

[
∂(ρ̂ur)
∂r

− 2β
3
ρ̂ur

])}
= 2να

[
∂(ρ̂ur)
∂r

− 2β
3
ρ̂ur

]
︸ ︷︷ ︸

1a

+
2ν
r2

∂

∂r

[
r2∂(ρ̂ur)

∂r

]
︸ ︷︷ ︸

1b

− 4νβ
3r2

∂(r2ρ̂ur)
∂r︸ ︷︷ ︸

1c

− 4ν
3
dβ

dr
ρ̂ur︸ ︷︷ ︸

1d

. (B.58)

The second term is

2 =
1

r sin θ
∂

∂θ

[
sin θ 2ν

(
1
2
∂(ρ̂uθ)
∂r

− β

2
ρ̂uθ −

1
2r
ρ̂uθ +

1
2r
∂(ρ̂ur)
∂θ

)]
=

ν

r sin θ
∂

∂θ

[
sin θ

(
∂(ρ̂uθ)
∂r

− βρ̂uθ −
1
r
ρ̂uθ +

1
r

∂(ρ̂ur)
∂θ

)]
= ν

∂

∂r

[
1

r sin θ
∂(sin θ ρ̂uθ)

∂θ

]
︸ ︷︷ ︸

2a

− νβ

r sin θ
∂(sin θ ρ̂uθ)

∂θ︸ ︷︷ ︸
2b

+
ν

r2 sin θ
∂

∂θ

[
sin θ

∂(ρ̂ur)
∂θ

]
︸ ︷︷ ︸

2c

,

(B.59)

while the third term is

3 =
1

r sin θ
∂

∂φ

[
2ν
(

1
2r sin θ

∂(ρ̂ur)
∂φ

+
1
2
∂(ρ̂uφ)
∂r

− β

2
ρ̂uφ −

1
2r
ρ̂uφ

)]
=

ν

r sin θ
∂

∂φ

[
1

r sin θ
∂(ρ̂ur)
∂φ

+
∂(ρ̂uφ)
∂r

− βρ̂uφ −
1
r
ρ̂uφ

]
= ν

∂

∂r

[
1

r sin θ
∂(ρ̂uφ)
∂φ

]
︸ ︷︷ ︸

3a

+
ν

r2 sin2 θ

∂2(ρ̂ur)
∂φ2︸ ︷︷ ︸

3b

− νβ

r sin θ
∂(ρ̂uφ)
∂φ︸ ︷︷ ︸

3c

. (B.60)
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The last term is

4 = −2ν
r

[
1
r

∂(ρ̂uθ)
∂θ

+
1

r sin θ
∂(ρ̂uφ)
∂φ

+
2
r
ρ̂ur +

cos θ
r sin θ

ρ̂uθ +
2β
3
ρ̂ur

]
= −2ν

r

[
1

r sin θ
∂(sin θ ρ̂uθ)

∂θ
+

1
r sin θ

∂(ρ̂uφ)
∂φ

]
− 4ν
r2
ρ̂ur −

4νβ
3r

ρ̂ur

=
2ν
r

[
1
r2

∂(r2ρ̂ur)
∂r

]
− 4ν
r2
ρ̂ur −

4νβ
3r

ρ̂ur by equation (B.54)

=
2ν
r

[
∂(ρ̂ur)
∂r

+
2
r
ρ̂ur

]
− 4ν
r2
ρ̂ur −

4νβ
3r

ρ̂ur

=
2ν
r

∂(ρ̂ur)
∂r︸ ︷︷ ︸

4a

− 4νβ
3r

ρ̂ur︸ ︷︷ ︸
4b

. (B.61)

To evaluate r̂ ·
[
∇ · D̂

]
= 1 + 2 + 3 + 4 by equation (B.57), we combine

pieces from equations (B.58)–(B.61) as indicated in the following expressions:

1c + 2b + 3c + 4b = −νβ
[

1
r sin θ

∂(sin θ ρ̂uθ)
∂θ

+
1

r sin θ
∂(ρ̂uφ)
∂φ

]
+ 1c + 4b

= νβ

[
1
r2

∂(r2ρ̂ur)
∂r

]
+ 1c + 4b by equation (B.54)

= − νβ
3r2

∂(r2ρ̂ur)
∂r

+ 4b

= −νβ
3
∂(ρ̂ur)
∂r

− 2νβ
3r

ρ̂ur + 4b

= −νβ
3
∂(ρ̂ur)
∂r

− 2νβ
r
ρ̂ur, (B.62)

1b + 2a + 3a = ν
∂

∂r

[
1

r sin θ
∂(sin θ ρ̂uθ)

∂θ
+

1
r sin θ

∂(ρ̂uφ)
∂φ

]
+ 1b

= −ν ∂
∂r

[
1
r2

∂(r2ρ̂ur)
∂r

]
+ 1b by equation (B.54)

= ν

[
∂2(ρ̂ur)
∂r2

+
2
r

∂(ρ̂ur)
∂r

+
2
r2
ρ̂ur

]
, (B.63)

2c + 3b = ν∇2
⊥(ρ̂ur) by equation (B.47). (B.64)

The remaining terms are unchanged:

1a + 1d + 4a = 2να
[
∂(ρ̂ur)
∂r

− 2β
3
ρ̂ur

]
− 4ν

3
dβ

dr
ρ̂ur +

2ν
r

∂(ρ̂ur)
∂r

. (B.65)
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Combining equations (B.62)–(B.65) and grouping by derivatives of ρ̂ur, we obtain

r̂ ·
[
∇ · D̂

]
= ν

{
∂2(ρ̂ur)
∂r2

+
[
2α− β

3
+

4
r

]
∂(ρ̂ur)
∂r

+
[
∇2
⊥ −

4αβ
3
− 4

3
dβ

dr
− 2β

r
+

2
r2

]
ρ̂ur

}
.

(B.66)

The last step is to eliminate the radial mass flux ρ̂ur in favor of the streamfunction

W by substituting ρ̂ur = −∇2
⊥W , by equation (B.45). Using the commutation identities

of equations (B.49) and (B.50), equation (B.66) thus becomes

r̂ ·
[
∇ · D̂

]
= ν∇2

⊥

{
∂2W

∂r2
+
(

2α− β

3

)
∂W

∂r

+
(
∇2
⊥ −

4αβ
3
− 4α

r
− 4

3
∂β

∂r
− 4β

3r

)
W

}
.

(B.67)

B.3.3.3 Polar Component

For any tensor T , the polar component of its divergence is

θ̂ ·
(
∇ · T

)
=

1
r2

∂(r2Trθ)
∂r︸ ︷︷ ︸
1

+
1

r sin θ
∂(sin θ Tθθ)

∂θ︸ ︷︷ ︸
2

+
1

r sin θ
∂Tθφ
∂φ︸ ︷︷ ︸

3

+
Trθ
r︸︷︷︸
4

− cos θ
r sin θ

Tφφ︸ ︷︷ ︸
5

.

(B.68)

In this section, we evaluate (B.68) for T = D̂ using the definition of D̂ given in equation

(B.52) along with the strain rate tensor components of equation (B.53). Starting with

the first term, we have

1 =
1
r2

∂

∂r

(
r2 2ν ρ̂erθ

)
= ν

(
2α+

4
r

+ 2
∂

∂r

)
(ρ̂erθ)

= 2να ρ̂erθ + ν

(
4
r

+ 2
∂

∂r

)[
1
2
∂(ρ̂uθ)
∂r

− β

2
ρ̂uθ −

1
2r
ρ̂uθ +

1
2r
∂(ρ̂ur)
∂θ

]
= 2να ρ̂erθ︸ ︷︷ ︸

1a

− ν
[
β

(
∂

∂r
+

2
r

)
(ρ̂uθ) +

dβ

dr
ρ̂uθ

]
︸ ︷︷ ︸

1b

+ ν

(
∂2

∂r2
+

1
r

∂

∂r

)
(ρ̂uθ)︸ ︷︷ ︸

1c

+
ν

r

[(
∂2

∂r ∂θ
+

1
r

∂

∂θ

)
(ρ̂ur)

]
︸ ︷︷ ︸

1d

− ν

r2
ρ̂uθ︸ ︷︷ ︸

1e

.

(B.69)
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The second term is

2 =
2ν

r sin θ
∂

∂θ

[
sin θ

(
1
r

∂(ρ̂uθ)
∂θ

+
1
r
ρ̂ur +

β

3
ρ̂ur

)]
=

2ν
r2 sin θ

∂

∂θ

[
sin θ

∂(ρ̂uθ)
∂θ

]
︸ ︷︷ ︸

2a

+
2ν

r2 sin θ
∂(sin θ ρ̂ur)

∂θ︸ ︷︷ ︸
2b

+
2νβ

3r sin θ
∂(sin θ ρ̂ur)

∂θ︸ ︷︷ ︸
2c

, (B.70)

while the third term is

3 =
ν

r sin θ
∂

∂φ

[
1
r

∂(ρ̂uφ)
∂θ

− cos θ
r sin θ

ρ̂uφ +
1

r sin θ
∂(ρ̂uθ)
∂φ

]
= ν

[
1

r2 sin θ
∂2(ρ̂uφ)
∂θ ∂φ

− cos θ
r2 sin2 θ

∂(ρ̂uφ)
∂φ

+
1

r2 sin2 θ

∂2(ρ̂uθ)
∂φ2

]
=
ν

r

∂

∂θ

[
1

r sin θ
∂(ρ̂uφ)
∂φ

]
︸ ︷︷ ︸

3a

+
1

r2 sin2 θ

∂2(ρ̂uθ)
∂φ2︸ ︷︷ ︸

3b

. (B.71)

The last two terms are

4 =
ν

r

∂(ρ̂uθ)
∂r︸ ︷︷ ︸

4a

− νβ
r

ˆρuθ︸ ︷︷ ︸
4b

− ν

r2
ρ̂uθ︸ ︷︷ ︸

4c

+
ν

r2

∂(ρ̂ur)
∂θ︸ ︷︷ ︸

4d

(B.72)

and

5 = − 2ν cos θ
r2 sin2 θ

∂(ρ̂uφ)
∂φ︸ ︷︷ ︸

5a

− 2ν cos θ
r2 sin θ

ρ̂ur︸ ︷︷ ︸
5b

− 2ν cos2 θ

r2 sin2 θ
ρ̂uθ︸ ︷︷ ︸

5c

− 2νβ cos θ
3r sin θ

ρ̂ur︸ ︷︷ ︸
5d

. (B.73)

To evaluate θ̂ ·
[
∇ · D̂

]
= 1 + 2 + 3 + 4 + 5 by equation (B.68), we combine

pieces from equations (B.69)–(B.73) as indicated in the following expressions:

1a = να

[
∂(ρ̂uθ)
∂r

− β ρ̂uθ −
1
r
ρ̂uθ +

1
r

∂(ρ̂ur)
∂θ

]
, (B.74)

1b + 2c + 4b + 5d = ν

[
2β
3r
∂(ρ̂ur)
∂θ

− β∂(ρ̂uθ)
∂r

− dβ

dr
ρ̂uθ −

3β
r
ρ̂uθ

]
, (B.75)



181

1c +
2a
2

+ 3b + 4a = ν∇2(ρ̂uθ), (B.76)

1d +
2a
2

+ 3a + 4d =
ν

r

∂

∂θ

[
∇ · (ρ̂u)

]
︸ ︷︷ ︸

=0

+
ν

r2 sin2 θ
ρ̂uθ, (B.77)

1e + 4c + 5c = − 2ν
r2 sin2 θ

ρ̂uθ, (B.78)

2b + 5b =
2ν
r2

∂(ρ̂ur)
∂θ

, (B.79)

along with

5a = − 2ν cos θ
r2 sin2 θ

∂(ρ̂uφ)
∂φ

, (B.80)

which is left unchanged. Combining equations (B.74)–(B.80) and regrouping, we obtain

θ̂ ·
[
∇ · D̂

]
= ν

{
∇2(ρ̂uθ) +

1
r

[
α+

2β
3

+
2
r

]
∂(ρ̂ur)
∂θ

+ (α− β)
∂(ρ̂uθ)
∂r

− 2 cos θ
r2 sin2 θ

∂(ρ̂uφ)
∂φ

−
[
αβ +

α

r
+
dβ

dr
+

3β
r

+
1

r2 sin2 θ

]
ρ̂uθ

}

(B.81)

The polar component will be used in combination with the azimuthal component in

§B.3.3.5 and §B.3.3.6.

B.3.3.4 Azimuthal Component

For any tensor T , the azimuthal component of its divergence is

φ̂ ·
(
∇ · T

)
=

1
r2

∂(r2Trφ)
∂r︸ ︷︷ ︸

1

+
1
r

∂Tθφ
∂θ︸ ︷︷ ︸
2

+
1

r sin θ
∂Tφφ
∂φ︸ ︷︷ ︸

3

+
Trφ
r︸︷︷︸
4

+
2 cos θ
r sin θ

Tθφ︸ ︷︷ ︸
5

. (B.82)

In this section, we evaluate equation (B.82) for T = D̂ using the definition of D̂ given

in equation (B.52) along with the strain rate tensor components of equation (B.53).
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Starting with the first term, we have

1 =
1
r2

∂

∂r

(
r2 2ν ρ̂erφ

)
= ν

(
2α+

4
r

+ 2
∂

∂r

)
(ρ̂erφ)

= 2να ρ̂erφ + ν

(
4
r

+ 2
∂

∂r

)[
1

2r sin θ
∂(ρ̂ur)
∂φ

+
1
2
∂(ρ̂uφ)
∂r

− β

2
ρ̂uφ −

1
2r
ρ̂uφ

]
= 2να ρ̂erφ︸ ︷︷ ︸

1a

− ν
[
β

(
∂

∂r
+

2
r

)
(ρ̂uφ) +

dβ

dr
ρ̂uφ

]
︸ ︷︷ ︸

1b

+ ν

(
∂2

∂r2
+

1
r

∂

∂r

)
(ρ̂uφ)︸ ︷︷ ︸

1c

+
ν

r sin θ

(
∂2

∂r ∂φ
+

1
r

∂

∂φ

)
(ρ̂ur)︸ ︷︷ ︸

1d

− ν

r2
ρ̂uφ︸ ︷︷ ︸

1e

.

(B.83)

The second term is

2 =
ν

r

∂

∂θ

[
1
r

∂(ρ̂uφ)
∂θ

− cos θ
r sin θ

ρ̂uφ +
1

r sin θ
∂(ρ̂uθ)
∂φ

]
=

ν

r2

(
∂2

∂θ2
− cos θ

sin θ
∂

∂θ

)
(ρ̂uφ)︸ ︷︷ ︸

2a

+
ν

r2 sin2 θ
ρ̂uφ︸ ︷︷ ︸

2b

+
ν

r2 sin θ

(
∂2

∂θ ∂φ
− cos θ

sin θ
∂

∂φ

)
(ρ̂uθ)︸ ︷︷ ︸

2c

,

(B.84)

while the third term is

3 =
2ν

r sin θ
∂

∂φ

[
1

r sin θ
∂(ρ̂uφ)
∂φ

+
1
r
ρ̂ur +

cos θ
r sin θ

ρ̂uθ +
β

3
ρ̂ur

]
=

2ν
r2 sin2 θ

∂2(ρ̂uφ)
∂φ2︸ ︷︷ ︸

3a

+
2ν

r2 sin θ
∂(ρ̂ur)
∂φ︸ ︷︷ ︸

3b

+
2ν cos θ
r2 sin2 θ

∂(ρ̂uθ)
∂φ︸ ︷︷ ︸

3c

+
2νβ

3r sin θ
∂(ρ̂ur)
∂φ︸ ︷︷ ︸

3d

. (B.85)

The last two terms are

4 =
ν

r2 sin θ
∂(ρ̂ur)
∂φ︸ ︷︷ ︸

4a

+
ν

r

∂(ρ̂uφ)
∂r︸ ︷︷ ︸

4b

− νβ
r
ρ̂uφ︸ ︷︷ ︸

4c

− ν

r2
ρ̂uφ︸ ︷︷ ︸

4d

(B.86)

and

5 =
2ν cos θ
r2 sin θ

∂(ρ̂uφ)
∂θ︸ ︷︷ ︸

5a

− 2ν cos2 θ

r2 sin2 θ
ρ̂uφ︸ ︷︷ ︸

5b

+
2ν cos θ
r2 sin2 θ

∂(ρ̂uθ)
∂φ︸ ︷︷ ︸

5c

. (B.87)
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To evaluate φ̂ ·
[
∇ · D̂

]
= 1 + 2 + 3 + 4 + 5 by equation (B.82), we combine

pieces from equations (B.83)–(B.87) as indicated in the following expressions:

1a = να

[
1

r sin θ
∂(ρ̂ur)
∂φ

+
∂(ρ̂uφ)
∂r

− β ρ̂uφ −
1
r
ρ̂uφ

]
, (B.88)

1b + 3d + 4c = ν

[
2β

3r sin θ
∂(ρ̂ur)
∂φ

− β∂(ρ̂uφ)
∂r

− dβ

dr
ρ̂uφ −

3β
r
ρ̂uφ

]
, (B.89)

1c + 2a +
3a
2

+ 4b + 5a = ν∇2(ρ̂uφ), (B.90)

1d + 2c +
3a
2

+ 4a + 5c =
ν

r sin θ
∂

∂φ

[
∇ · (ρ̂u)

]
= 0, (B.91)

1e + 2b + 4d + 5b =
ν

r2 sin2 θ

[
1− 2 sin2 θ − 2 cos2 θ

]
(ρ̂uφ)

= − ν

r2 sin2 θ
ρ̂uφ. (B.92)

The remaining terms are unchanged:

3b + 3c = ν

[
2

r2 sin θ
∂(ρ̂ur)
∂φ

+
2 cos θ
r2 sin2 θ

∂(ρ̂uθ)
∂φ

]
. (B.93)

Combining equations (B.88)–(B.93) and regrouping, we obtain

φ̂ ·
[
∇ · D̂

]
= ν

{
∇2(ρ̂uφ) +

1
r sin θ

[
α+

2β
3

+
2
r

]
∂(ρ̂ur)
∂φ

+ (α− β)
∂(ρ̂uφ)
∂r

+
2 cos θ
r2 sin2 θ

∂(ρ̂uθ)
∂φ

−
[
αβ +

α

r
+
dβ

dr
+

3β
r

+
1

r2 sin2 θ

]
ρ̂uφ

}

(B.94)

B.3.3.5 Perpendicular Divergence

We now use the results of the previous two sections to evaluate ∇⊥ ·
[
∇ · D̂

]
,

which serves as the diffusion term in the P equation. By definition,

∇⊥ ·A =
1

r sin θ
∂(sin θ Aθ)

∂θ
+

1
r sin θ

∂Aφ
∂φ

, (B.95)

such that

∇ ·A =
1
r2

∂(r2Ar)
∂r

+∇⊥ ·A. (B.96)
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Thus,

∇⊥ ·
[
∇ · D̂

]
=

1
r sin θ

[
∂

∂θ

(
sin θ θ̂ · ∇ · D̂

)
+

∂

∂φ

(
φ̂ · ∇ · D̂

)]
. (B.97)

The polar and azimuthal components of ∇· D̂ are given by equations (B.81) and

(B.94). We rewrite them here and label the individual terms before combining them as

per equation (B.97):

θ̂ ·
[
∇ · D̂

]
= ν

{
∇2(ρ̂uθ)︸ ︷︷ ︸

1a

+
1
r

[
α+

2β
3

+
2
r

]
∂(ρ̂ur)
∂θ︸ ︷︷ ︸

1b

+ (α− β)
∂(ρ̂uθ)
∂r︸ ︷︷ ︸

1c

− 2 cos θ
r2 sin2 θ

∂(ρ̂uφ)
∂φ︸ ︷︷ ︸

1d

−
[
αβ +

α

r
+
dβ

dr
+

3β
r

+
1

r2 sin2 θ

]
ρ̂uθ︸ ︷︷ ︸

1e

}

(B.98)

and

φ̂ ·
[
∇ · D̂

]
= ν

{
∇2(ρ̂uφ)︸ ︷︷ ︸

2a

+
1

r sin θ

[
α+

2β
3

+
2
r

]
∂(ρ̂ur)
∂φ︸ ︷︷ ︸

2b

+ (α− β)
∂(ρ̂uφ)
∂r︸ ︷︷ ︸

2c

+
2 cos θ
r2 sin2 θ

∂(ρ̂uθ)
∂φ︸ ︷︷ ︸

2d

−
[
αβ +

α

r
+
dβ

dr
+

3β
r

+
1

r2 sin2 θ

]
ρ̂uφ︸ ︷︷ ︸

2e

}
.

(B.99)
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Combining the terms containing 1a and 2a yields:

ν

r sin θ

{
∂

∂θ

[
sin θ 1a

]
+
∂ 2a
∂φ

}

=
ν

r sin θ

{
∂

∂θ

[
sin θ∇2(ρ̂uθ)

]
+

∂

∂φ

[
∇2(ρ̂uφ)

]}
=

ν

r sin θ

{
∇2

[
∂ (sin θ ρ̂uθ)

∂θ
+
∂(ρ̂uφ)
∂φ

]
− 2 cos θ

r2

∂2(ρ̂uθ)
∂θ2

+
(

4 sin θ
r2

− 2
r2 sin θ

)
∂(ρ̂uθ)
∂θ

+
2 cos θ
r2

ρ̂uθ −
2 cos θ
r2 sin2 θ

∂2(ρ̂uθ)
∂φ2

}

=
ν

r sin θ

{
sin θ∇2

[
r∇⊥ · (ρ̂u)

]
+

2 cos θ
r2 sin θ

∂2(ρ̂uφ)
∂θ ∂φ

− 2 cos θ
r2 sin2 θ

∂2(ρ̂uθ)
∂φ2

+
1

r2 sin θ
∂(ρ̂uθ)
∂θ

− cos θ
r2 sin2 θ

ρ̂uθ −
1

r2 sin2 θ

∂(ρ̂uφ)
∂φ

}
. (B.100)

Combining the terms containing 1b and 2b yields:

ν

r sin θ

{
∂

∂θ

[
sin θ 1b

]
+
∂ 2b
∂φ

}
= ν

[
α+

2β
3

+
2
r

]
∇2
⊥(ρ̂ur). (B.101)

Combining the terms containing 1c and 2c yields:

ν

r sin θ

{
∂

∂θ

[
sin θ 1c

]
+
∂ 2c
∂φ

}
=
ν(α− β)
r sin θ

∂

∂r

[
∂(sin θ ρ̂uθ)

∂θ
+
∂(ρ̂uφ)
∂φ

]
=
ν(α− β)

r

∂

∂r

[
r∇⊥ · (ρ̂u)

]
. (B.102)

Combining the terms containing 1d and 2d yields:

ν

r sin θ

{
∂

∂θ

[
sin θ 1d

]
+
∂ 2d
∂φ

}

=
ν

r sin θ

[
− ∂

∂θ

(
2 cos θ
r2 sin θ

∂(ρ̂uφ)
∂φ

)
+

∂

∂φ

(
2 cos θ
r2 sin2 θ

∂(ρ̂uθ)
∂φ

)]
=

ν

r sin θ

[
− 2 cos θ
r2 sin θ

∂2(ρ̂uφ)
∂θ ∂φ

+
2

r2 sin2 θ

∂(ρ̂uφ)
∂φ

+
2 cos θ
r2 sin2 θ

∂2(ρ̂uθ)
∂φ2

]
. (B.103)
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Finally, combining the terms containing 1e and 2e yields:

− ν

r sin θ

{
∂

∂θ

[
sin θ 1e

]
+
∂ 2e
∂φ

}

= −ν
[
αβ +

α

r
+
dβ

dr
+

3β
r

]
∇⊥ · (ρ̂u)

− ν

r sin θ

[
∂

∂θ

(
ρ̂uθ

r2 sin θ

)
+

∂

∂φ

(
ρ̂uφ

r2 sin2 θ

)]
= −ν

[
αβ +

α

r
+
dβ

dr
+

3β
r

]
∇⊥ · (ρ̂u)

+
ν

r sin θ

[
− 1
r2 sin θ

∂(ρ̂uθ)
∂θ

+
cos θ

r2 sin2 θ
ρ̂uθ −

1
r2 sin2 θ

∂(ρ̂uφ)
∂φ

]
. (B.104)

Summing together the terms in equations (B.100)–(B.104) yields

∇⊥ ·
[
∇ · D̂

]
= ν

{
1
r
∇2
[
r∇⊥ · (ρ̂u)

]
︸ ︷︷ ︸

3a

−
[
αβ +

α

r
+
dβ

dr
+

3β
r

]
∇⊥ · (ρ̂u)︸ ︷︷ ︸

3b

+
α− β
r

∂

∂r

[
r∇⊥ · (ρ̂u)

]
︸ ︷︷ ︸

3c

+
[
α+

2β
3

+
2
r

]
∇2
⊥(ρ̂ur)︸ ︷︷ ︸

3d

}
.

(B.105)

Using equation (B.96) and the fact that ∇ · (ρ̂u) = 0, we can make the substitution

∇⊥ · (ρ̂u) = − 1
r2

∂(r2 ρ̂ur)
∂r

= −∂(ρ̂ur)
∂r

− 2
r
ρ̂ur (B.106)

such that only ρ̂ur remains, and then use equation (B.45) to eliminate ρ̂ur in favor of W .

Once in terms of W , the commutation relations (B.49)–(B.51) are used to interchange

the ∇2
⊥ operator with r-derivatives. We now examine each term in equation (B.105)

above, starting with the first term:

3a =
1
r
∇2
[
r∇⊥ · (ρ̂u)

]
= −1

r
∇2

[
r
∂(ρ̂ur)
∂r

+ 2 ρ̂ur

]
= −1

r

[
1
r2

∂

∂r

(
r2 ∂

∂r

)
+∇2

⊥

] [
r
∂(ρ̂ur)
∂r

+ 2 ρ̂ur

]
= −

[
∂3(ρ̂ur)
∂r3

+
6
r

∂2(ρ̂ur)
∂r2

+
6
r2

∂(ρ̂ur)
∂r

+∇2
⊥
∂(ρ̂ur)
∂r

+
2
r
∇2
⊥(ρ̂ur)

]
= ∇2

⊥

[
∂3W

∂r3
+∇2

⊥
∂W

∂r

]
. (B.107)
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The next two terms are

3b = −
[
αβ +

α

r
+
dβ

dr
+

3β
r

]
∇⊥ · (ρ̂u)

=
[
αβ +

α

r
+
dβ

dr
+

3β
r

] [
∂(ρ̂ur)
∂r

+
2
r
ρ̂ur

]
= −∇2

⊥

[
αβ +

α

r
+
dβ

dr
+

3β
r

]
∂W

∂r
(B.108)

and

3c =
α− β
r

∂

∂r

[
r∇⊥ · (ρ̂u)

]
= −(α− β)

[
∂2(ρ̂ur)
∂r2

+
3
r

∂(ρ̂ur)
∂r

]
= ∇2

⊥

[
(α− β)

(
∂2W

∂r2
− 1
r

∂W

∂r

)]
. (B.109)

Lastly, the fourth term is simply

3d =
[
α+

2β
3

+
2
r

]
∇2
⊥(ρ̂ur) = −∇2

⊥

[
α+

2β
3

+
2
r

]
∇2
⊥W. (B.110)

Combining equations (B.107)–(B.110) and regrouping, we obtain

∇⊥ ·
[
∇ · D̂

]
= ν∇2

⊥

{
∂3W

∂r3
+ (α− β)

∂2W

∂r2

−
[
αβ +

2α
r

+
dβ

dr
+

2β
r
−∇2

⊥

]
∂W

∂r

−
[
α+

2β
3

+
2
r

]
∇2
⊥W

}
.

(B.111)

B.3.3.6 Radial Component of Curl

We now use the results of §B.3.3.3 and §B.3.3.4 to evaluate r̂ · ∇ ×
[
∇ · D̂

]
,

which serves as the diffusion term in the Z equation. By definition,

r̂ · ∇×
[
∇ · D̂

]
=

1
r sin θ

[
∂

∂θ

(
sin θ φ̂ · ∇ · D̂

)
− ∂

∂φ

(
θ̂ · ∇ · D̂

)]
. (B.112)

The polar and azimuthal components of ∇· D̂ are given by equations (B.81) and

(B.94). We rewrite them here and label the individual terms before combining them as
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per equation (B.112):

θ̂ ·
[
∇ · D̂

]
= ν

{
∇2(ρ̂uθ)︸ ︷︷ ︸

1a

+
1
r

[
α+

2β
3

+
2
r

]
∂(ρ̂ur)
∂θ︸ ︷︷ ︸

1b

+ (α− β)
∂(ρ̂uθ)
∂r︸ ︷︷ ︸

1c

− 2 cos θ
r2 sin2 θ

∂(ρ̂uφ)
∂φ︸ ︷︷ ︸

1d

−
[
αβ +

α

r
+
dβ

dr
+

3β
r

+
1

r2 sin2 θ

]
ρ̂uθ︸ ︷︷ ︸

1e

}

(B.113)

and

φ̂ ·
[
∇ · D̂

]
= ν

{
∇2(ρ̂uφ)︸ ︷︷ ︸

2a

+
1

r sin θ

[
α+

2β
3

+
2
r

]
∂(ρ̂ur)
∂φ︸ ︷︷ ︸

2b

+ (α− β)
∂(ρ̂uφ)
∂r︸ ︷︷ ︸

2c

+
2 cos θ
r2 sin2 θ

∂(ρ̂uθ)
∂φ︸ ︷︷ ︸

2d

−
[
αβ +

α

r
+
dβ

dr
+

3β
r

+
1

r2 sin2 θ

]
ρ̂uφ︸ ︷︷ ︸

2e

}
.

(B.114)

Combining the terms containing 1a and 2a yields:

ν

r sin θ

{
∂

∂θ

[
sin θ 2a

]
− ∂ 1a

∂φ

}

=
ν

r sin θ

{
∂

∂θ

[
sin θ∇2(ρ̂uφ)

]
− ∂

∂φ

[
∇2(ρ̂uθ)

]}
=

ν

r sin θ

{
∇2

[
∂ (sin θ ρ̂uφ)

∂θ
− ∂(ρ̂uθ)

∂φ

]
− 2 cos θ

r2

∂2(ρ̂uφ)
∂θ2

+
(

4 sin θ
r2

− 2
r2 sin θ

)
∂(ρ̂uφ)
∂θ

+
2 cos θ
r2

ρ̂uφ −
2 cos θ
r2 sin2 θ

∂2(ρ̂uφ)
∂φ2

}

=
ν

r sin θ

{
sin θ∇2

[
r r̂ · ∇× ρ̂u

]
− 2 cos θ
r2 sin θ

∂2(ρ̂uθ)
∂θ ∂φ

− 2 cos θ
r2 sin2 θ

∂2(ρ̂uφ)
∂φ2

+
1

r2 sin θ
∂(ρ̂uφ)
∂θ

− cos θ
r2 sin2 θ

ρ̂uφ +
1

r2 sin2 θ

∂(ρ̂uθ)
∂φ

}
. (B.115)

Combining the terms containing 1b and 2b yields:

ν

r sin θ

{
∂

∂θ

[
sin θ 2b

]
− ∂ 1b

∂φ

}
= 0. (B.116)



189

Combining the terms containing 1c and 2c yields:

ν

r sin θ

{
∂

∂θ

[
sin θ 2c

]
− ∂ 1c

∂φ

}
=
ν(α− β)
r sin θ

∂

∂r

[
∂(sin θ ρ̂uφ)

∂θ
− ∂(ρ̂uθ)

∂φ

]
=
ν(α− β)

r

∂

∂r

[
r r̂ · ∇× ρ̂u

]
. (B.117)

Combining the terms containing 1d and 2d yields:

ν

r sin θ

{
∂

∂θ

[
sin θ 2d

]
− ∂ 1d

∂φ

}

=
ν

r sin θ

[
∂

∂θ

(
2 cos θ
r2 sin θ

∂(ρ̂uθ)
∂φ

)
+

∂

∂φ

(
2 cos θ
r2 sin2 θ

∂(ρ̂uφ)
∂φ

)]
=

ν

r sin θ

[
2 cos θ
r2 sin θ

∂2(ρ̂uθ)
∂θ ∂φ

− 2
r2 sin2 θ

∂(ρ̂uθ)
∂φ

+
2 cos θ
r2 sin2 θ

∂2(ρ̂uφ)
∂φ2

]
(B.118)

Finally, combining the terms containing 1e and 2e yields:

ν

r sin θ

{
∂

∂θ

[
sin θ 2e

]
− ∂ 1e

∂φ

}

= −ν
[
αβ +

α

r
+
dβ

dr
+

3β
r

]
r̂ · ∇× ρ̂u

− ν

r sin θ

[
∂

∂θ

(
ρ̂uφ

r2 sin θ

)
+

∂

∂φ

(
ρ̂uθ

r2 sin2 θ

)]
= −ν

[
αβ +

α

r
+
dβ

dr
+

3β
r

]
r̂ · ∇× ρ̂u

+
ν

r sin θ

[
cos θ

r2 sin2 θ
ρ̂uφ +

1
r2 sin2 θ

∂(ρ̂uθ)
∂φ

− 1
r2 sin θ

∂(ρ̂uφ)
∂θ

]
. (B.119)

Summing together the terms in equations (B.115)–(B.119) yields

r̂ · ∇×
[
∇ · D̂

]
= ν

{
1
r
∇2
[
r r̂ · ∇× ρ̂u

]
−
[
αβ +

α

r
+
dβ

dr
+

3β
r

]
r̂ · ∇× ρ̂u

+
α− β
r

∂

∂r

[
r r̂ · ∇× ρ̂u

]}
.

(B.120)

We now eliminate ρ̂u in favor of Z by substituting r̂ · ∇ × ρ̂u = −∇2
⊥Z by equa-
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tion (B.46) to obtain

r̂ · ∇×
[
∇ · D̂

]
= −ν

{
1
r
∇2
[
r∇2
⊥Z
]
−
[
αβ +

α

r
+
dβ

dr
+

3β
r

]
∇2
⊥Z

+
α− β
r

∂

∂r

[
r∇2
⊥Z
]}

= −ν
{

1
r

[
1
r2

∂

∂r

(
r2 ∂

∂r

)
+∇2

⊥

] [
r∇2
⊥Z
]

−∇2
⊥

[
αβ +

α

r
+
dβ

dr
+

3β
r

]
Z +

α− β
r

∂

∂r

[
r∇2
⊥Z
]}

= −ν
{[

∂2

∂r2
+

4
r

∂

∂r
+

2
r2

+∇2
⊥

]
∇2
⊥Z

−∇2
⊥

[
αβ +

α

r
+
dβ

dr
+

3β
r

]
Z + (α− β)

[
∂

∂r
+

1
r

]
∇2
⊥Z.

}
Using the commutation identities (B.49) and (B.50), we finally obtain

r̂ · ∇×
[
∇ · D̂

]
= −ν∇2

⊥

{
∂2Z

∂r2
+ (α− β)

∂Z

∂r

−
[
αβ +

2α
r

+
dβ

dr
+

2β
r

+∇2
⊥

]
Z

}
.

(B.121)

B.3.4 Derivation of the W Equation

The evolution equation for W is obtained by taking r̂· each term in the anelastic

momentum equation (B.8). Applying r̂· to the time-derivative term gives

ρ̂ r̂ ·
(
∂u

∂t

)
=

∂

∂t
( r̂ · ρ̂u) = − ∂

∂t
(∇2
⊥W ) = −∇2

⊥
∂W

∂t
, (B.122)

where we have used equation (B.45). As a result, a schematic representation of the W

equation is

−∇2
⊥
∂W

∂t
= WPG +WGRAV +WDIFF +WCOR +WADV. (B.123)

We now compute the five terms on the right-hand side.

The pressure gradient and gravitational force terms are simply

WPG = r̂ ·
(
−∇p

)
= −∂p

∂r
, (B.124)
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and

WGRAV = r̂ ·
(
−ρg r̂

)
= −ρg. (B.125)

Equation (B.67) gives the diffusion term in terms of W :

WDIFF = r̂ ·
[
∇ · D̂

]
= νeff∇2

⊥

{
∂2W

∂r2
+
(

2α− β

3

)
∂W

∂r
+
(
∇2
⊥ −

4αβ
3
− 4α

r
− 4

3
∂β

∂r
− 4β

3r

)
W

}
,

(B.126)

where α =
d ln νeff

dr
and β =

d ln ρ̂
dr

. The Coriolis term can also be expanded in terms of

the streamfunctions:

WCOR = 2ρ̂ r̂ · (u×Ω)

= 2Ω sin θ ρ̂uφ

=
2Ω
r

[
∂2W

∂r∂φ
− sin θ

∂Z

∂θ

]
. by equation (B.45) (B.127)

Finally, the advection term can be expanded in terms of the three components of u:

WADV = −ρ̂ r̂ ·
[
(u · ∇)u

]
= −ρ̂

[
(u · ∇)ur −

u2
θ

r
−
u2
φ

r

]

= −ρ̂
[(

ur
∂

∂r
+
uθ
r

∂

∂θ
+

uφ
r sin θ

∂

∂φ

)
ur −

u2
θ

r
−
u2
φ

r

]
. (B.128)

B.3.5 Derivation of the P Equation

The evolution equation for P is obtained by taking∇⊥· each term in the anelastic

momentum equation (B.8), where the expression ∇⊥ ·A equals

∇⊥ ·A =
1

r sin θ
∂(sin θ Aθ)

∂θ
+

1
r sin θ

∂Aφ
∂φ

, (B.129)

such that

∇ ·A =
1
r2

∂(r2Ar)
∂r

+∇⊥ ·A. (B.130)
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The time-derivative term simplifies to

∇⊥ ·
(
ρ̂
∂u

∂t

)
=

∂

∂t

[
∇⊥ · (ρ̂u)

]
=

∂

∂t

[
∇ · (ρ̂u)− 1

r2

∂(r2ρ̂ur)
∂r

]
by equation (B.130)

= − ∂
∂t

[
∂(ρ̂ur)
∂r

+
2ρ̂ur
r

]
by equation (B.4)

=
∂

∂t

[
∂(∇2

⊥W )
∂r

+
2
r
∇2
⊥W

]
by equation (B.45)

= ∇2
⊥
∂

∂t

(
∂W

∂r

)
. by equation (B.49) (B.131)

Therefore, the P equation is represented by

∇2
⊥
∂

∂t

(
∂W

∂r

)
= PPG + PDIFF + PCOR + PADV. (B.132)

Note that there is no gravity term since the quantity ∇⊥ · (ρg r̂) vanishes. We now list

the remaining terms on the right-hand side in order.

The pressure gradient term simplifies to

PPG = −∇⊥ · (∇p) = −
[
∇ · (∇p)− 1

r2

∂

∂r

(
r2∂p

∂r

)]
= −∇2

⊥p, (B.133)

by equations (B.47) and (B.130). The diffusion term is given by equation (B.111):

PDIFF =∇⊥ ·
[
∇ · D̂

]
= νeff∇2

⊥

{
∂3W

∂r3
+ (α− β)

∂2W

∂r2
−
[
αβ +

2α
r

+
dβ

dr
+

2β
r
−∇2

⊥

]
∂W

∂r

−
[
α+

2β
3

+
2
r

]
∇2
⊥W

}
. (B.134)

The Coriolis term can be simplified by using

∇×∇× Z r̂ =∇×
(

1
r sin θ

∂Z

∂φ
θ̂ − 1

r

∂Z

∂θ
φ̂

)
= −

[
1

r2 sin θ
∂

∂θ

(
sin θ

∂Z

∂θ

)
+

1
r2 sin2 θ

∂

∂φ

(
1

r sin θ
∂Z

∂φ

)]
r̂

+
1
r

∂2Z

∂r∂θ
θ̂ +

1
r sin θ

∂2Z

∂r∂φ
φ̂

= −(∇2
⊥Z) r̂ +∇

(
∂Z

∂r

)
− ∂2Z

∂r2
r̂ (B.135)
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and

∇×∇×∇×W r̂ =∇×
[
−(∇2

⊥W ) r̂ +∇
(
∂W

∂r

)
− ∂2W

∂r2
r̂

]
= − 1

r sin θ
∂

∂φ

[
∇2
⊥W +

∂2W

∂r2

]
θ̂ +

1
r

∂

∂θ

[
∇2
⊥W +

∂2W

∂r2

]
φ̂

(B.136)

so that

PCOR =∇⊥ ·
[
2ρ̂u×Ω

]
= 2Ω ·

[
∇× (ρ̂u)

]
−
(
∂

∂r
+

2
r

)[
r̂ · (2ρ̂u×Ω)

]
= 2Ω(cos θ r̂ − sin θ θ̂) ·

[
∇×∇×∇×W r̂ +∇×∇× Z r̂

]
−
(
∂

∂r
+

2
r

)[
2Ω sin θ ρ̂uφ

]
= 2Ω

[
1
r

(
∇2
⊥ +

∂2

∂r2

)
∂W

∂φ
− cos θ∇2

⊥Z −
sin θ
r

∂2Z

∂r∂θ

]
−
(
∂

∂r
+

2
r

)[
2Ω
r

(
∂2W

∂r∂φ
− sin θ

∂2W

∂r∂θ

)]
. (B.137)

The advection term can be expanded in terms of the three components of u:

PADV = −∇⊥ ·
[
ρ̂(u · ∇)u

]
= − ρ̂

r sin θ

{
∂

∂θ

[
sin θ θ̂ ·

[
(u · ∇)u

]]
+
∂

∂φ

[
φ̂ ·
[
(u · ∇)u

]]}
= − ρ̂

r sin θ

{
∂

∂θ

[
sin θ

(
(u · ∇)uθ +

uruθ
r
−
u2
φ cos θ
r sin θ

)]

+
∂

∂φ

[
(u · ∇)uφ +

uruφ
r

+
uθuφ cos θ
r sin θ

]}

= − ρ̂

r sin θ

{
∂

∂θ

[
sin θ

(
ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uφ

r sin θ
∂uθ
∂φ

+
uruθ
r
−
u2
φ cos θ
r sin θ

)]

+
∂

∂φ

[
ur
∂uφ
∂r

+
uθ
r

∂uφ
∂θ

+
uφ

r sin θ
∂uφ
∂φ

+
uruφ
r

+
uθuφ cos θ
r sin θ

]}
. (B.138)

B.3.6 Derivation of the Z Equation

The evolution equation for Z is obtained by taking r̂ · ∇× each term in the

anelastic momentum equation (B.8). Applying r̂ · ∇× to the time-derivative term
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gives

r̂ · ∇× ∂(ρ̂u)
∂t

=
∂

∂t
( r̂ · ∇× ρ̂u) = − ∂

∂t
(∇2
⊥Z) = −∇2

⊥
∂Z

∂t
, (B.139)

where we have used equation (B.46). As a result, a schematic representation of the Z

equation is

−∇2
⊥
∂Z

∂t
= ZDIFF + ZCOR + ZADV. (B.140)

Note that there is no pressure gradient term since ∇×∇p = 0, and that the gravity

term vanishes since ∇× (ρg r̂) has no r̂-component. We now compute the three terms

on the right-hand side in order.

The diffusion term is given by equation (B.121):

ZDIFF = r̂ · ∇×
[
∇ · D̂

]
= −νeff∇2

⊥

{
∂2Z

∂r2
+ (α− β)

∂Z

∂r
−
[
αβ +

2α
r

+
dβ

dr
+

2β
r

+∇2
⊥

]
Z

}
. (B.141)

The Coriolis term simplifies to

ZCOR = r̂ · ∇×
[
(2ρ̂u)×Ω

]
= 2 r̂ ·

[
(Ω · ∇)(ρ̂u)

]
= 2Ω

[
cos θ

∂(ρ̂ur)
∂r

− sin θ
r

∂(ρ̂ur)
∂θ

+
ρ̂uθ sin θ

r

]
= 2Ω

[
− cos θ

∂

∂r
(∇2
⊥W ) +

sin θ
r

∂

∂θ
(∇2
⊥W ) +

sin θ
r2

∂2W

∂r ∂θ
+

1
r2

∂Z

∂φ

]
. (B.142)
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The advection term can be expanded in terms of the three components of u:

ZADV = − r̂ · ∇×
[
ρ̂(u · ∇)u

]
= − ρ̂

r sin θ

{
∂

∂θ

[
sin θ φ̂ ·

[
(u · ∇)u

]]
− ∂

∂φ

[
θ̂ ·
[
(u · ∇)u

]]}

= − ρ̂

r sin θ

{
∂

∂θ

[
sin θ

(
(u · ∇)uφ +

uruφ
r

+
uθuφ cos θ
r sin θ

)]

− ∂

∂φ

[
(u · ∇)uθ +

uruθ
r
−
u2
φ cos θ
r sin θ

]}

= − ρ̂

r sin θ

{
∂

∂θ

[
sin θ

(
ur
∂uφ
∂r

+
uθ
r

∂uφ
∂θ

+
uφ

r sin θ
∂uφ
∂φ

+
uruφ
r

+
uθuφ cos θ
r sin θ

)]

− ∂

∂φ

[
ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uφ

r sin θ
∂uθ
∂φ

+
uruθ
r
−
u2
φ cos θ
r sin θ

]}
(B.143)

B.3.7 Derivation of the S Equation

The evolution equation for S is simply equation (B.12),

ρ̂T̂
∂s

∂t
= SFLUX + SADV + SDIFF. (B.144)

where the entropy and radiative fluxes are given by

SFLUX = −∇ · q̂eff

= −κrρ̂cp∇(T̂ + T )− κsρ̂T̂∇(ŝ+ s), by equation (B.11) (B.145)

the advection term is

SADV = −ρ̂T̂ (u · ∇)(ŝ + s)

= −ρ̂T̂
(
ur

∂

∂r
+
uθ
r

∂

∂θ
+

uφ
r sin θ

∂

∂φ

)
(ŝ+ s), (B.146)

and the viscous heating term is

SDIFF = Φ̂

= 2ρ̂νeff

[
e : e− 1

3
(∇ · u)2

]
. by equation (B.13) (B.147)



Appendix C

ASH CODE TIME STEPPING

We discuss here in more detail the time stepping scheme employed by the ASH

code. The basic problem is how one numerically solves an initial value problem of the

form

∂y

∂t
= f(y(t), t). (C.1)

Since any higher-dimensional differential equation can be broken down into a system

of one-dimensional equations, solving the one-dimensional problem is sufficient. The

ASH code uses both the Crank-Nicholson and Adams-Bashforth methods to advance

the solution in time, with each described in turn.

Subscripts are used here to denote the index of the time step. For example, yi

denotes the value of y at the most recently computed time step (occurring at time ti)

and yi+1 denotes the yet-to-be-computed value of y at the next time step. The time

separation between subsequent time steps is ∆ti ≡ ti+1 − ti.

C.1 THE SECOND-ORDER CRANK-NICHOLSON METHOD

As a first step in solving equation (C.1), one notices that the function f is simply

the slope of y, suggesting the formula

yi+1 − yi
∆ti

= fi or yi+1 = yi + ∆ti fi, (C.2)
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commonly referred to as the forward Euler method. This method is explicit, meaning

that yi+1 is the only unknown quantity in the formula and thus can be readily computed.

The accuracy of this method is determined by computing the local truncation

error (LTE), which is simply the residual when the true values of y and f are substituted

into equation (C.2):

LTE = y(ti + ∆ti)− y(ti)−∆ti f(y(ti), ti). (C.3)

By noting that the Taylor expansion of y(ti + ∆ti) is

y(ti + ∆ti) = y(ti) + ∆ti
dy

dt

∣∣∣∣
ti

+
∆t2i

2
d2y

dt2

∣∣∣∣
ti

+ · · · , (C.4)

and by using the fact that f =
dy

dt
, substituting equation (C.4) into equation (C.3) gives

LTE =
∆t2i

2
d2y

dt2

∣∣∣∣
ti

+ · · · . (C.5)

Since the local truncation error only contains terms of second and higher order in ∆ti,

the forward Euler method is accurate to first order.

We now consider the backward Euler method:

yi+1 − yi
∆ti

= fi+1. (C.6)

The only difference between the backward and forward Euler methods is the use of

the unknown quantity fi+1 rather than the known quantity fi on the right-hand side.

Because we have to simultaneously solve for both yi+1 and fi+1, this method is now

implicit, and consequently requires a matrix inversion if f is linear in y. If f is nonlinear

in y, implicit schemes such as the backward Euler become even more problematic to

implement, and as a result they are generally only used to solve linear equations. As

with the forward Euler method, the backward Euler method is accurate to first order.

The Crank-Nicholson method is a weighted average of the forward and backward

Euler methods presented above:

yi+1 − yi
∆ti

= Θfi+1 + (1−Θ)fi, (C.7)
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where Θ is an adjustable parameter ranging from 0 (fully explicit) to 1 (fully implicit).

The Crank-Nicholson method can be shown to be accurate to second order. In addition,

this method is numerically stable, meaning that there is no limit on the time step size

one can use (though the accuracy of the solution might decrease if too large a time step

is chosen). In contrast, the forward Euler method is conditionally stable: choosing too

large of a time step will cause numerical errors to grow, eventually overwhelming the

actual solution.

C.2 THE SECOND-ORDER ADAMS-BASHFORTH METHOD

We now examine explicit multistep methods, where the results from more than

one previous time step are used to solve equations of the form (C.1). In this case, the

values of yi, fi and fi−1 (where the last quantity is either computed from a previous

time step or stated as initial conditions) are already available. We now assume the

unknown quantity yi+1 is given by the general form

yi+1 − yi
∆ti

= αfi + βfi−1 or yi+1 = yi + ∆ti(αfi + βfi−1), (C.8)

where the constant coefficients α and β will be determined to minimize the local trun-

cation error.

For this method to be second-order accurate, we require the local truncation error

to vanish through terms of order ∆t2i . As with the forward Euler method in the previous

section, the local truncation error is calculated by substituting into equation (C.8) the

true values of y and f at the various time steps and calculating the residual. That is,

LTE = y(ti + ∆ti)− y(ti)−∆ti [αf(y(ti), ti) + βf(y(ti −∆ti−1), ti −∆ti−1)] . (C.9)

We first must evaluate the Taylor series expansions of yi+1 and fi−1 around ti. These

expansions are given by

y(ti + ∆ti) = yi + ∆ti
dy

dt

∣∣∣∣
ti

+
∆t2i

2
d2y

dt2

∣∣∣∣
ti

+
∆t3i

6
d3y

dt3

∣∣∣∣
ti

+ · · · (C.10)
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and

f(y(ti −∆ti−1), ti −∆ti−1) = fi −∆ti−1
df

dt

∣∣∣∣
ti

+
∆t2i−1

2
d2f

dt2

∣∣∣∣
ti

−
∆t3i−1

6
d3f

dt3

∣∣∣∣
ti

+ · · · .

(C.11)

Using these Taylor expansions, and the fact that
df

dt
= y,

d2f

dt2
=
dy

dt
, etc., we can now

write equation (C.9) in terms of the coefficients α and β, plus the dependent variable y

and its derivatives evaluated at the current time step ti. Grouping by power of ∆ti, we

now have

LTE = ∆ti
dy

dt

∣∣∣∣
ti

(1− α− β) + ∆t2i
d2y

dt2

∣∣∣∣
ti

(
1
2

+ β
∆ti−1

∆ti

)
+ · · · , (C.12)

where only terms of first and second order in ∆ti are listed explicitly. Since we require

the parenthesized expressions to vanish for the method to be second-order accurate, we

must have

α = 1 +
1
2

∆ti
∆ti−1

and β = −1
2

∆ti
∆ti−1

. (C.13)

Substituting these values of α and β into equation (C.8), we obtain the second-order

Adams-Bashforth formula:

yi+1 − yi
∆ti

=
(

1 +
1
2

∆ti
∆ti−1

)
fi −

(
1
2

∆ti
∆ti−1

)
fi−1. (C.14)

Note that higher-order Adams-Bashforth formulae can be derived in a similar manner.

C.3 COMBINING THE METHODS

The ASH code evolution equations are of the form

∂y

∂t
= L+N , (C.15)

where y can represent any dependent variable in the system of equations (W , Z, p, s),

and L and N respectively designate all linear and nonlinear source terms. Generally,
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these source terms can be a function of any of the dependent variables as well as a

function of the independent variables ~r and t.

Combining the two methods, equation (C.15) becomes

yi+1 − yi
∆ti

=
(

1 +
1
2

∆ti
∆ti−1

)
Ni −

(
1
2

∆ti
∆ti−1

)
Ni−1 + ΘLi+1 + (1−Θ)Li, (C.16)

which is equation (4.61) in Chapter 4.


