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P H Y S I C S

Hamiltonian engineering of spin-orbit–coupled 
fermions in a Wannier-Stark optical lattice clock
Alexander Aeppli1†, Anjun Chu1,2†, Tobias Bothwell1†, Colin J. Kennedy1, Dhruv Kedar1, 
Peiru He1,2, Ana Maria Rey1,2*, Jun Ye1*

Engineering a Hamiltonian system with tunable interactions provides opportunities to optimize performance for 
quantum sensing and explore emerging phenomena of many-body systems. An optical lattice clock based on 
partially delocalized Wannier-Stark states in a gravity-tilted shallow lattice supports superior quantum coherence 
and adjustable interactions via spin-orbit coupling, thus presenting a powerful spin model realization. The relative 
strength of the on-site and off-site interactions can be tuned to achieve a zero density shift at a “magic” lattice 
depth. This mechanism, together with a large number of atoms, enables the demonstration of the most stable atomic 
clock while minimizing a key systematic uncertainty related to atomic density. Interactions can also be maximized 
by driving off-site Wannier-Stark transitions, realizing a ferromagnetic to paramagnetic dynamical phase transition.

INTRODUCTION
The joint advance of quantum metrology and quantum simulation 
provides exciting new opportunities to explore the frontiers of mea-
surement science and the emergence of many-body complexity. An 
outstanding example has been the development of optical lattice 
clocks (OLCs) where excellent quantum coherence and exquisite 
quantum control of many atoms have enabled rapid advances in 
metrological capabilities (1–7), culminating in the recent demon-
stration of clock measurement precision at 7.6 × 10−21 and near 
minute-long atomic coherence (6). To achieve this level of per-
formance, we use a shallow, vertically aligned optical lattice. The 
acceleration due to local gravity lifts the degeneracy of neighboring 
sites, supporting partially delocalized Wannier-Stark (WS) eigen-
states. This trapping scheme, first suggested in 2005 (8), allows us to 
operate the clock at substantially smaller lattice depths, greatly sup-
pressing detrimental motional-, light scattering–, and atomic density–
induced decoherence.

The use of tilted optical lattices to manipulate motional degrees 
of freedom in ultracold gases has been widely reported. They have 
been used to suppress direct tunneling but not spin transport and 
realize new types of spin Hamiltonians (9–11), generate spin-orbit 
coupling (SOC) via laser-assisted tunneling (12–15), emulate 
magnetic models in spinless bosons (16, 17), probe nonergodicity 
due to kinetic constraints (18) and subdiffusive transport (19) in 
Fermi-Hubbard chains and many-body localization in trapped ions 
(20), as well as measure gravity in Raman interferometers (21–23). 
In this work, we demonstrate how a tilted optical lattice combined 
with pristine quantum coherence and exquisite spectral resolu-
tion offer new capabilities to engineer, drive, and understand many-
body systems.

As we continue to push the OLC to new levels of precision, a key 
remaining issue for clock accuracy is related to frequency shifts 
associated with atomic interactions. Quantum statistics dictates that 
identical fermions experience only odd partial wave interactions 

that are suppressed at ultralow temperatures (24–29). Yet, even the 
weak elastic and inelastic p-wave collisions were found to substantially 
affect clock operation and limit the number of interrogated atoms 
at deep lattice depths. As atoms delocalize along neighboring sites 
in the shallow lattice, p-wave collisions are reduced but s-wave 
interactions can emerge from the SOC generated by the differential 
clock laser phase (30–32). The superior quantum coherence obtained 
in our gravity-tilted OLC stems from better control over motional and 
internal degrees of freedom (6), allowing the engineering of s- and 
p-wave interactions in driven spin-orbit–coupled fermionic atoms. By 
operating at the “magic” lattice depth where s-wave interactions pre-
cisely cancel residual p-wave interactions, we reduce atomic-interaction 
induced shifts in our one-dimensional (1D) lattice clock to a frac-
tional frequency shift of 5.0 (1.7) × 10−21 per atom at a single site.

We further explore the tunability of atomic interactions by driving 
a site-changing WS transition. This leads to an atomic superposition 
that not only carries a distinct internal label but also features different 
motional orbitals. As a consequence, s-wave interactions are substan-
tially enhanced. This gives rise to a many-body dynamical phase 
transition (DPT) between dynamical ferromagnetic and paramag-
netic states controlled by the interplay between the clock drive and 
atomic interactions. Although similar DPTs have been observed in 
trapped ions (33), superconducting qubits (34), and atoms in cavities 
(35) and optical traps (36), here, we use in situ imaging to locally 
resolve the emergence of a nonlinear excitation lineshape as a func-
tion of atom number.

RESULTS
System in consideration
Several hundreds of thousands of nuclear spin-polarized fermionic 
87Sr atoms are cooled via standard techniques and loaded into a ver-
tical 1D optical lattice that defines the ​​   Z ​​ axis (6). We load the lattice at 
a depth of 300 lattice photon recoil energies (Erec) with atoms in the 
lowest motional band along the ​​   Z ​​ axis. Perpendicular to the lattice 
axis, the atoms are weakly confined and thermally populate the 
resultant radial modes with a temperature of 800 nK. We then 
adiabatically reduce the lattice depth to a much lower operational 
depth with a correspondingly reduced radial temperature measured 
with Doppler spectroscopy.

1JILA, National Institute of Standards and Technology, and Department of Physics, 
University of Colorado, Boulder, CO 80309, USA. 2Center for Theory of Quantum 
Matter, University of Colorado, Boulder, CO 80309, USA,
*Corresponding author. Email: ye@jila.colorado.edu (J.Y.); arey@jilau1.colorado.
edu (A.M.R.)
†These authors contributed equally to this work.

Copyright © 2022 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

olorado B
oulder on O

ctober 12, 2022

mailto:ye@jila.colorado.edu
mailto:arey@jilau1.colorado.edu
mailto:arey@jilau1.colorado.edu


Aeppli et al., Sci. Adv. 8, eadc9242 (2022)     12 October 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 7

The gravitational potential with local acceleration g adds a linear 
energy gradient across the lattice, with the combined single-particle 
Hamiltonian supporting WS eigenstates. The WS state Wn(Z) is 
centered at lattice site n and has eigenenergy MgaLn, where M is the 
mass of 87Sr and aL = L/2 is the lattice site spacing (Fig. 1A). Here, 
we use the strontium magic wavelength L = 813 nm, guaranteeing 
identical confinement for both clock states.

The clock laser c = 698 nm, aligned along the lattice, drives 
the ultranarrow ∣1S0, mF = ± 5/2〉→∣3P0, mF = ± 3/2〉 (∣g〉 → ∣e〉) 
clock transition, where mF is the nuclear Zeeman level. This 
-polarized transition is the least magnetically sensitive clock tran-
sition in 87Sr. Because the clock laser wavelength differs from the 
lattice spacing, adjacent lattice sites see a different clock phase φ = 
L/c ≈ 7/6. This phase difference generates SOC when the lattice 
depth is sufficiently low for atoms to tunnel during the course of the 
experiment. Thus, when tuned to appropriate frequencies, the clock 
laser effectively couples WS states between different lattice sites, 
i.e., ∣g; Wn〉 → ∣e; Wn+l〉, for a range of integer l. The correspond-
ing Rabi frequency l set by the wave function overlap is

	​​​ ​ l​​  ∝  exp ​(​​ − ​ 
​​L​ 2 ​
 ─ 

4 ​​c​ 
2​ ​√ 
_

 ​V​ 0​​ ​
 ​​)​​ ​J​ l​​​(​​ ​  4 ​J​ 0​​ ─ Mg ​a​ L​​ ​ sin (φ / 2 ) ​)​​​​	 (1)

Here, 𝒥l is a Bessel function, J0 is the nearest-neighbor tunneling 
energy of the ground band, and V0 is the lattice depth in Erec.

We use Rabi spectroscopy in a dilute ensemble to demonstrate 
the partially delocalized nature of the single-particle wave functions 
in shallow, tilted lattices of four different values of V0, shown in 
Fig. 1B. The corresponding WS wave functions W0(Z) are shown in 
Fig. 1C. For each V0, we optimize the transition probability on the 
carrier transition, ∣g; Wn〉 → ∣e; Wn〉. For V0 = 12 Erec, the atoms 
are still well localized, and thus, the ∣g; Wn〉 → ∣e; Wn±1〉 transi-
tion amplitudes are substantially suppressed in comparison to the 
carrier. As V0 is reduced, we resolve a set of Rabi lines spectrally 
separated by MgaL/h = 867 Hz, where h is Planck’s constant. At 4 Erec, 
the Rabi frequency for the carrier and ∣g; Wn〉 → ∣e; Wn±1〉 transi-
tions are roughly equivalent. At 3 Erec, the carrier and ∣g; Wn〉 
→ ∣e; Wn±2〉 have similar Rabi frequencies, while the ∣g; Wn〉 
→ ∣e; Wn±1〉 transition has the greatest Rabi frequency and is 
thus overdriven. At low atomic density, we observe coherence 
times well past 10 s on ∣g; Wn〉 → ∣e; Wn+1〉 (see the Supplementary 
Materials).

Theoretical model
Under our operating conditions, where the collisional rate for mo-
tional relaxation is smaller than the internal spin dynamics and trap 
frequencies, atoms remain effectively frozen in single-particle 
eigenstates during clock interrogation. Because all atoms are initially 
prepared in a single internal state, Fermi statistics forbids double 
occupancy of motional states. Under these conditions, the quantum 
dynamics can be described with a spin Hamiltonian in energy 
space spanned by the appropriate single-particle trap eigenmodes 
(28, 29, 36–38). We identify a two-level system for an atom in mode 
n as∣↑n〉 ≡ ∣e; nX, nY, Wn〉 and ∣↓n〉 ≡ ∣g; nX, nY, Wn〉. Here, 
nX and nY label the radial harmonic oscillator modes.

Two dominant types of interatomic interactions determine the 
coupling constants in the spin model: local interactions between 
atoms within a single lattice site and nearest-neighbor interactions 
between atoms in adjacent sites. Next to nearest-neighbor inter-
actions are on the order of 10−2 of nearest-neighbor interactions or 
smaller for the operating conditions in our system and are neglected. 
The couplings between radial harmonic oscillator modes are highly 
collective as shown in previous experiments (28, 29, 37). Therefore, 
to an excellent approximation, we define collective spin operators at 
each lattice site after summing over occupied harmonic oscillator 
modes, ​​​   S ​​n​ x,y,z​ = ​ ∑ ​n​ X​​,​n​ Y​​​ ​​ ​​   S ​​n​ x,y,z​​. The dynamics of the collective spin 
vector ​〈​​  S​​ n​​ 〉 = {〈​​   S ​​n​ x ​〉, 〈​​   S ​​n​ y ​〉, 〈​​   S ​​n​ z ​〉}​ are described by the following mean-
field equation of motion written in a gauge frame where the laser 
drive is homogeneous (see the Supplementary Materials)

	​​  d ─ dt ​  〈​​  S​​ n​​〉  = ​B​​ ⊥​ × 〈​​  S​​ n​​〉​	 (2)

The synthetic magnetic field B⊥ contains contributions of the laser 
drive with detuning  from the bare transition and the self-generated 
interactions terms

	​​ B​​ ⊥​  =  {​​ 0​​, 0, −  + 2(​​ 0​​ + ​​ 1​​) 〈​​   S ​​​ 
z
​〉  + ​C​ 0​​ ​N​ loc​​}​	 (3)
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Fig. 1. The WS clock. (A) We trap 87Sr atoms in a 1D optical lattice along the ​​ ̂  Z ​​ di-
rection aligned with local gravitational acceleration g. This type of external con-
finement realizes WS states, eigenstates of the joint lattice, and the gravitational 
potential. The n-th WS state Wn(Z) is centered at lattice site n and has energy 
MgaLn, where M is the mass of 87Sr and aL = L/2 is the lattice spacing with lat-
tice wavelength L. The WS ladder creates a set of transitions from the ground 
(∣g〉 ≡ ∣1S0, mF = ± 5/2〉) to clock (∣e〉 ≡ ∣3P0, mF = ± 3/2〉) state at different lattice 
sites accessible by the differential clock laser phase between them. The black 
line indicates a carrier ∣g; Wn〉 → ∣e; Wn〉 transition. At shallow lattice depths, a 
set of off-site transitions ∣g; Wn〉 → ∣e; Wn±l〉 for integer l are indicated by blue 
and red lines. (B) At shallow lattice depths, the atomic wave function becomes 
delocalized, allowing ∣g; Wn〉 → ∣e; Wn±l〉 transition for a range of l to be addressed. 
Here, we show Rabi scans of these transitions at four different lattice depths, given 
in lattice photon recoil energy (Erec). As the depth decreases, the Rabi frequency on 
the carrier transition decreases. We correspondingly lengthen the pulse time to 
maintain a  pulse on the carrier leading to narrower lineshapes at shallow 
depths. (C) The wave function W0(Z) for the four corresponding lattice depths, 
illustrating the tunable delocalization due to the interplay between lattice and 
gravitational potential.
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Here, ​〈​​   S ​​​ 
z
​〉  = ​  1 _ 2L + 1​ ​∑ m=−L​ L  ​​  〈​​   S ​​n+m​ 

z
  ​〉​ is the average magnetization over 

a region of 2L + 1 ∼ 15 lattice sites (corresponding to 1 camera pixel 
or 6 m in our imaging spectroscopy) centered around n. Nloc is 
the number of atoms per lattice site averaged over the same region. 
The couplings, 0 = 0(Vee + Vgg − 2Veg)/2, C0 = 0(Vee − Vgg)/2 and 
1 = − 1Ueg(1 − cos φ), respectively, describe thermally averaged 
p-wave and s-wave interaction parameters between internal clock 
states as well as on the on-site (0) and nearest-neighbor (1) overlap 
matrix elements along the lattice. In the absence of SOC, φ = 0, 
the s-wave interactions vanish.

Without interactions, the collective spin features a characteristic 
Rabi lineshape profile when driven during a pulse area 0T =  
with an excitation fraction ​​n​ ​↑​​​​(t ) = 〈​​   S ​​​ 

z
​(t )〉  / ​N​ loc​​ + 1 / 2​, symmetric 

and centered around  = 0. With interactions, the time evolution 
takes place in the presence of an additional self-generated axial 
magnetic field–like term that induces a nonlinear response, result-
ing in an asymmetric lineshape. A simple estimation of the den-
sity shift can be obtained by setting it to be the value of  at which 
​​B​z​ 

⊥​  =  0​

	​  ​​ →​​  =   ​​→​ 
s  ​ +  ​​→​ 

p  ​ ​	 (4)

	​ 2 ​​→​ 
p  ​  ≈  2 ​​ 0​​ ​ς​→​ 

z  ​ + ​C​ 0​​,  2 ​​→​ 
s  ​  ≈  2 ​​ 1​​ ​ς​→​ 

z  ​​	 (5)

Here, ​ ​​→​ 
s,p  ​​ are the s-wave and p-wave contributions to the density 

shift, and  and  indicate initial and final states, ∣g〉 or ∣e〉. ​​ς​→​ 
z  ​​ is 

a fitting parameter that accounts for the time evolution of ​〈​​   S ​​​ z​〉/​N​ loc​​​ 
during the Rabi dynamics, which depends on the details of the Rabi 
drive such as the pulse area, excitation fraction, and initial condi-
tions used in the experiment (see the Supplementary Materials).

Density shifts in the carrier transition
To measure the effect of collisional shifts on the clock transition, we 
perform extended measurements using a “clock lock” to track the 
drift of the laser. Each clock lock consists of a set of four lock points, 
a standard interleaved sequence probing opposite sign mF states to 
reject first-order Zeeman shifts. As reported in (6), we use in situ 
imaging to construct a microscopic frequency map throughout the 
extended sample, fitting a linear slope to the relationship between 
frequency and number of atoms per site at each lock point. We 
define a linear density shift coefficient →/ such that the total 
fractional frequency shift is the product of this coefficient and Nloc, 
calibrated using quantum projection noise techniques. The reported 
values of →/ are the weighted mean of →/ at every lock 
point during an extended clock lock measurement campaign. The 
statistical uncertainty is given by the Allan deviation fit at one-sixth 
total measuring time.

In Fig. 2, we plot the measured coefficients over a range of V0 for 
both the ∣g〉 → ∣e〉 and ∣e〉 → ∣g〉 transition. We typically use a 
3.2 s  pulse duration. To account for increased delocalization and 
reduced Rabi frequencies at the shallowest depths, we lengthen the 
pulse time. The effect of s-wave collisions at low lattice depths is 
readily apparent, with a marked increase in density shift between 12 
and 5 Erec, consistent with the growth of the off-site matrix element 
1 as V0 is reduced. For the ∣g〉 → ∣e〉 transition presented in Fig. 2B, 
the s-wave frequency shift has an opposite sign compared to that of 
the p-wave. At the magic lattice depth, the s-wave and p-wave shifts 
have the same magnitude, resulting in a nearly perfect cancellation for 
a vanishingly small collisional frequency shift. In the ∣e〉 → ∣g〉 case 

presented in Fig. 2C, the s-wave frequency shift has the same sign as 
that of the p-wave, and thus, the density shift remains negative over 
all lattice depths. This behavior is well described by the mean-field 
solution from Eq. 2, represented by the solid blue lines in Fig. 2B 
and Fig. 2C. The disagreement at a large V0 of 32 Erec, as shown in 
Fig. 2C, likely arises from lattice photon–assisted excited state decay 
to other spin states, leading to background s-wave interactions not 
included in our theoretical model.

In Fig. 3A, we model the fractional frequency shift over a range 
of experimentally relevant lattice depths and radial temperatures 
near this magic point. The density shift is sensitive to ensemble 
temperature, lattice depth, and excitation fraction. Experimentally, 
the lattice depth is maintained through a precise and large band-
width lattice intensity servo, and our clock lock tracks the laser drift 
to ensure a similar excitation fraction throughout the measurement 
duration. The atomic temperature is less precisely controlled, with 
small drifts in the cooling laser frequency and stray magnetic fields 
contributing to reduced cooling reproducibility and observed 10 nK 
variation. To evaluate the robustness of operating at the magic 
lattice depth, we demonstrate a 10-hour clock lock using a 3.2 s 
Rabi probe near the magic depth and report a 5.0 (1.7) × 10−21 frac-
tional frequency shift per atom, as shown in Fig. 3B. There is no 
apparent long-term trend in the density shift, and the coefficient 
seems to reach a flicker beyond ∼1000 s, as shown by the Allan de-
viation in Fig. 3C.
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Fig. 2. Engineering interactions. (A) By varying the lattice depth during clock spec-
troscopy, we modify the ratio of off-site s-wave to on-site p-wave collisional shifts, 
​ ​​→​ s  ​ /  ​​→​ p  ​​, where  and  indicate clock states. Atoms are trapped in an optical 
lattice with wavelength L and probed by clock light with wavelength C. Each 
antinode of the lattice light traps a number of atoms that interact via p-wave colli-
sions. The 698-nm clock wavelength is incommensurate with the lattice spacing, 
so atoms in neighboring lattice sites see different clock phases, φ = L/C ≈ 7/6, 
allowing s-wave interactions at low lattice depths. (B) The fractional frequency 
density shift g→e/ over a range of lattice depths. Red points and error bars indi-
cate experimental data and corresponding uncertainty in density shift and lattice 
depth. The theoretical density shift is shown as a solid blue line with the shaded 
blue region accounting for uncertainties in the s-wave scattering length and p-wave 
scattering volumes (37, 41), as well as 10 nK temperature uncertainty. (C) The density 
shift e→g/ over a range of lattice depths.
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The data presented in Fig. 3 was collected with an average of 
51 atoms per site in the studied region. For comparison, the syn-
chronous measurement presented in (6) with single-clock instability 
of 3.1 × 10−18 at 1 s used 0.5 mm length samples with an average 
of 38 atoms per site. Operating in the density shift regime near the 
magic lattice depth presented here, the average density shift magni-
tude would be approximately 1.9 (0.6) × 10−19.

Dynamical phase transition
By addressing a transition to a different WS state, we further modify 
the atomic interactions. We can still define an interaction spin model 
by identifying the states ∣↑n〉 ≡ ∣e; nX, nY, Wn+l〉 and ∣↓n〉 ≡ ∣g; 
nX, nY, Wn〉 as the spin-1/2 internal levels. In particular, we interrogate 
the l = 1 transition. The many-body dynamics are then described by 

the same mean field equation of motion, Eq. 2, but with a different 
effective magnetic field (see the Supplementary Materials)

	​​ B​l=1​ ⊥ ​   ≈  {​​ 1​​, 0, − ​​ 1​​ + 2 ​​1​ l=1​  〈​​   S ​​​ 
z
​〉}​	 (6)

where ​​​1​ l=1​  =  − ​​ 0​​ ​U​ eg​​ / 2​ and 1 is the detuning of the laser to the l = 1 
transition. Note that because the wave function of the excited state 
is displaced by one lattice site (see Fig. 4B), the overlap matrix ele-
ment that characterizes the s-wave interactions is proportional to 
0. Therefore, atomic interactions are substantially enhanced in this 
case and increase with higher trap depth. Although the SOC phase 
does not enter directly in ​​​1​ l=1​​, SOC still plays a key role by allowing 
the transition to be driven (see Eq. 1). The stronger interactions 
modify the spin dynamics more markedly and give rise to a DPT 
between dynamical ferromagnetic and paramagnetic phases (see the 
Supplementary Materials). The DPT appears as a sharp change in 
behavior of the long-time average excitation fraction for an initial 
state prepared with all atoms in ∣g〉, ​​_ ​n​ ​↑​​​​​  = ​  lim​ 

T→∞
​​ ​ 1 _ T​ ​∫0​ T ​​ ​n​ ​↑​​​​(t ) dt​. In the 

dynamical ferromagnetic phase, interactions dominate and the sys-
tem features small oscillations near a single pole of the Bloch sphere, 
with ​​_ ​n​ ​↑​​​​​  ≈  0​. In the dynamical paramagnetic phase, the system ex-
hibits large excursions around the Bloch sphere, and ​​_ ​n​ ​↑​​​​​​ dynamically 
adjusts itself as 1 is varied. In the interaction dominant regime, the 
DPT generates a second order critical line that distinguishes the 
two dynamical phases. The transition evolves into a smooth cross-
over region in the weakly interacting regime, where the dynamics 
are dominated by single-particle Rabi flopping.

Similar to other DPT experiments, instead of direct measurements 
of ​​_ ​n​ ​↑​​​​​​, the order parameter is estimated by measuring the excitation 
fraction at a fixed probe time. We use a 2.3 s Rabi  pulse with lattice 
depth V0 = 22 Erec and radial temperature Tr = 190 nK. Within a 
single image, we observe a density range spanning over two orders 
of magnitude (Fig. 4A). We spatially resolve the excitation frac-
tion within the sample and construct the dynamical phase diagram 
shown in Fig. 4C.

For a given Nloc, we extract the lineshape asymmetry ALR defined as 
(nR − nL)/(nR + nL) from experimental data and normalize by the max-

imum value of ALR. Here, ​​n​ R​​  = ​ ∫​​ max​​​ 
​​ max​​+f

 ​​ ​n​ ​↑​​​​() d​, ​​n​ L​​  = ​ ∫​​ max​​−f​ 
​​ max​​

 ​​ ​  n​ ​↑​​​​() d​, 

where max is the detuning for the peak value of the Rabi lineshape, 
and f/2 = 1 Hz covers almost the entire frequency range of the Rabi 
lineshape. The lineshape asymmetry allows us to characterize the 
dynamical phases. For Nloc < 63, below the dashed black line in 
Fig. 4C, the system is in a crossover regime featuring a linear density 
shift and asymmetry ALR that becomes more pronounced as the atom 
number increases. More than 63 atoms per site, the lineshape is 
near maximally asymmetric, and distinct ferromagnetic and para-
magnetic dynamical phases are identified. The phase boundary is 
experimentally determined by finding the maximum derivative of 
the lineshape as a function of detuning, plotted as green points in 
Fig. 4C, with ALR indicated by the shade. The points lie very close to the 
theoretically calculated phase boundary shown as a solid black line.

The asymmetry in the lineshape becomes apparent by viewing 
the excitation at a constant atom number, as in Fig. 4D. At densities 
well below the crossover boundary, the lineshape is only slightly 
distorted from that of an ideal Rabi response. Above the crossover 
density, the excitation displays very different behaviors for the two 
opposite signs of detuning, and the excitation becomes highly in-
sensitive to changes of detuning deep in the ferromagnetic phase. 
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  ​​ for averaging time .
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The constant detuning profiles presented in Fig. 4E further illustrate 
this DPT. At 1/2 = 0 Hz, the laser drive is on resonance with the 
noninteracting transition. Above the crossover regime, the ensemble 
features both dynamical phases, evolving from a dynamical para-
magnet to a dynamical ferromagnet for Nloc > 82. At 1/2 = − 0.72 Hz, 
the system is in the dynamical ferromagnetic phase above the cross-
over region. However, with 1/2 = 0.72 Hz detuning, the excitation 
fraction initially rises with atom number when the system is in the 
paramagnetic phase and saturates close to the phase boundary. In 
Fig. 4 (D and E), the solid lines are theoretical predictions from the 
mean-field spin model with an additional dephasing term accounting 
for mode-changing collisions (see the Supplementary Materials).

DISCUSSION
Operating in the WS regime has realized a new and optimized plat-
form for OLCs, with record coherence time and clock precision (6). 
The work here highlights the use of Hamiltonian engineering and 
control of atomic interactions to remove the compromise between 
increased precision and reduced systematic uncertainties. Operating 
with hundreds of thousands of atoms, we still limit the density-
related frequency shift well below the current state of the art, and 
further reduction in density shift is readily attainable. This work 
uses precise tuning of interactions to explore rich many-body be-
havior. With selective WS interrogation and in situ imaging, we 
efficiently map out a DPT over a range of density of more than two 
orders of magnitude.

So far, we operate in a regime where a mean-field model is 
sufficient to describe the many-body dynamics. Driving the system 
with more sophisticated pulse sequences will allow us to further 
explore quantum correlation and beyond mean-field effects. This 
will open a path for the generation of spin-squeezed states with 

a net quantum metrological advantage for state-of-the-art quan-
tum sensors.

MATERIALS AND METHODS
The experimental apparatus and many of the sample preparation 
techniques were previously described in (6). We prepare a nuclear 
spin-polarized, cold sample of 87Sr at a high lattice depth of 300 Erec 
and then adiabatically reduce the lattice depth. To ensure the atoms 
are in the lowest motional band along the lattice (axial) direction, we 
sideband cool on the 1S0 → 3P1 transition and probe the mode filling 
using sideband spectroscopy on the clock transition. With sideband 
cooling, the red sideband is entirely eliminated, indicating sample 
preparation in the lowest axial motional state. Characteristic sideband 
spectra are shown in the Supplementary Materials. The absence of  
motional excitation is confirmed after lattice ramping to the opera-
tional depth.

As in (39), we fit the sideband spectra to extract a lattice depth. 
At very low lattice intensities, this fitting technique is no longer a 
reliable method to determine the lattice depth. Instead, we use the 
transmitted lattice power and depth fits at higher intensities to 
calculate the lattice depths at our operational points.

In addition to axial sideband cooling, we use low-field Doppler 
cooling to reduce the radial temperature. We measure the radial 
temperature Tr of the ensemble before each density shift measure-
ment by driving the narrow clock transition with a beam oriented 
perpendicular to the lattice direction and extracting a Doppler 
absorption profile. Our camera-based imaging spectroscopy tech-
nique provides a spatial map of the temperature throughout the 
millimeter-length cloud. We observe temperature variations of up 
to 10 nK over the entire sample. The temperature over the range of 
operational lattice depths V0 is well described by
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effectively become on-site, leading to a strong collisional shift. (C) Excitation fraction as a function of detuning and atom number on the ∣g; Wn〉 → ∣e; Wn+1〉 transition at 
22 Erec. Above ~63 atoms per site, denoted by the dashed black line, the system features a DPT between ferromagnetic and paramagnetic phases when varying the laser 
detuning and atomic density. The phase boundary is denoted by a solid black line from theoretical calculations and green points from the experimental data. The nor-
malized asymmetry of the lineshape ALR is indicated by the shade of these points. Arrows on the right and top axis indicate data plotted in (D) and (E) at constant atom 
number and detuning. (D) Excitation fraction as a function of detuning at different atom numbers demonstrates the notable distortion and asymmetry that arises in the 
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	​​​ T​ r​​(nK ) = ​{​​​
− 45.2 + 14.1 ​V​ 0​​ / ​E​ rec​​ (​V​ 0​​  <  15 ​E​ rec​​)​   
42 ​√ 
_

 ​V​ 0​​ / ​E​ rec​​ ​ (​V​ 0​​  >  15 ​E​ rec​​)
 ​​​	  (7)

For V0 > 15 Erec, the trend of Tr matches that expected from an adi-
abatic lowering of the trap depth. At sufficiently low lattice depths, 
the anharmonic radial trap behavior leads to a deviation from adiabatic 
temperatures. For the lowest values of Tr approaching 20 nK, our 
Doppler spectroscopy technique also reaches its limit of reliability.

We use extended clock locks to measure the spatially dependent 
average density shift. For each experimental cycle consisting of four 
Rabi probes, we construct a frequency map throughout the sample 
using in situ imaging. The total number of counts at each pixel is 
proportional to the number of atoms, calibrated using the standard 
quantum projection noise techniques (40). The four laser-frequency 
lock points probe opposite sign mF transitions. From the mean fre-
quency of these two transitions, we find the transition frequency at 
each pixel. We fit this frequency as a function of atom number with 
a linear model, weighting by the atom number to account for quan-
tum projection noise. The slope of this fit is the density shift coeffi-
cient for one experimental cycle. For each lattice depth, the density 
shift coefficient reported in the main text is the mean of all the coeffi-
cients measured over an extended clock lock sequence, with the un-
certainty arising from an Allan deviation of these coefficients. We 
noticed coefficient flicker at long measurement times for the stronger 
density shift regimes, and thus we quote the uncertainty at one-sixth 
the measurement time for all configurations.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.adc9242

View/request a protocol for this paper from Bio-protocol.
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