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Abstract
We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems
quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an
order parameter, which features qualitatively distinct temporal behavior on the two sides of a
certain dynamical critical point. DPTs are currently mostly understood as long-lived
prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the
system. The latter enables the dynamics to substain phases that explicitly break detailed
balance and therefore cannot be encompassed by traditional thermodynamics. Our
presentation covers both cold atoms as well as condensed matter systems. We revisit a broad
plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a
certain limit, such as for a large number of particles, large number of order parameter
components, or large spatial dimension. The systems we explore include, among others,
quantum magnets with collective interactions, φ4 quantum field theories, and Fermi–Hubbard
models. A section dedicated to experimental explorations of DPTs in condensed matter and
AMO systems connects this large variety of theoretical models.
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1. Introduction

Dynamical phase transitions occur whenever the observables
of an isolated quantum system feature distinct qualitative tem-
poral behavior as a function of a control parameter measuring
the deviation of the system from equilibrium. In this review,
we are interested in a particular class of dynamical phase tran-
sitions (DPTs) which are characterized by an order parameter
that features non-analytic behavior at the non-equilibrium crit-
ical point separating distinct dynamical phases [1]. The DPTs
we discuss here manifest during the so called pre-thermal
stage of dynamics of a quantum many body system [2–4].
The notion of pre-thermalization is broad, encompassing high
energy physics and condensed matter. A system is said to pre-
thermalize when its observables approach a long-lived quasi-
steady state at intermediate times, before inelastic collisions

set in and the system reaches thermodynamic equilibrium. In
this regard, the behavior of the order parameter witnessing the
DPT will manifest after a transient where non-universal effects
attributed to microscopic details of the model, such as lattice
properties or short-time inhomogeneousdephasing, have faded
away.

Pre-thermalization is mostly studied in the context of small
interaction quenches that can result in a long, perturbative,
window of the dynamics where the quasi-particles of some
pre-quench integrable model are weakly deformed and still
free to scatter elastically [5–11]. Interactions renormalise the
energy of these excitations, and only at later times they induce
inelastic processes responsible for the redistribution of energy
and for the eventual equilibration. Accordingly, we will refer
to pre-thermalization as a collisionless regime, which is a
shorthand to describe that inelastic collisions are still weak and
ineffective. From a formal standpoint, this is equivalent to the
vanishing of the collisional integral which governs the scatter-
ing of excitations in a Boltzmann equation picture. This can
manifest over a long time window because the system remains
close to an integrable point after an interaction quench, or
because the phase space for scattering is compressed in low
dimensions, or for a certain choice of initial conditions. After
such pre-thermal transient the collisional integral will start to
grow sizeably, dragging dynamics toward the thermal state.
Although a general criterion for such collisionless prethermal
regime is lacking, there are various ways to effectively attain
such regime in a large-N limit. Essentially all the models for
DPTs which have been systematically studied so far fall in this
class, and they constitute the core of this review.

In order to access DPTs, one routinely performs quenches
in Hamiltonian parameters. In the recent years this has become
accessible in AMO experiments and to some extent also in
condensed matter experiments. To date, the main focus has
been on DPTs that take place in some limit such that inter-
actions can still be treated non-perturbatively at the expense
of solving dynamics which are mean-field like, Gaussian or
semi-classical. The study of DPTs in this regime is the cen-
tral topic of this review. We will revisit a broad plethora of
systems exhibiting collisionless behavior within a long lived
pre-thermal window, enabled by taking a large intrinsic param-
eter in the system such as the number of particles (N)—in
sections 2.1 or 3.2, and the number of components of a field
(N )—in section 2.3. Further, some aspects of DPTs beyond
the collisionless regime can be studied in a controlled man-
ner in the limit of infinite dimensions, which is reviewed in
section 4.

The focus on a non-equilibrium order parameter, which
characterizes the DPT, distinguishes the subject of this review
from the notion of dynamical transitions explored in the con-
text of Loschmidt echoes [12–14]. We will also not review
the broad topic of non-thermal fixed points in cold atoms
[15–19] (see [20] for a review), which although appear akin
to a pre-thermal phenomenon, exhibits a different mechanism
from the large N, N , or d pre-thermal states discussed in this
review.
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Regarding experimental observation, broadly speaking,
non-equilibrium dynamical phases are observed in much wider
contexts than their equilibrium counterparts. They are rele-
vant for a variety of disciplines beyond AMO and condensed
matter physics, including chemistry, biology and even soci-
ology [21]. For example, non-equilibrium critical phenomena
have been seen in polymers, colloidal gels, molecular glasses
and spin glasses as they are cooled down below a critical
temperature, ‘glassy transition point’, at which the system?s
evolution slows down so much that it falls out of equilib-
rium [1]. The mass distribution of the Universe might also
be the result of non-equilibrium critical behavior during the
Universe formation [22]. Basically just after the ‘Big Bang’
the Universe expands and cools precipitating a sequence of
symmetry-breaking phase transitions, the last of which con-
verts quark–gluon plasma into nucleons. These transitions are
believed to be genuinely non-equilibrium given the finite time
of propagation of information between spatial regions and the
extremely slow equilibration time at criticality. Lasers also
show dynamical transitions, where the light emitted by an
array of atoms changes abruptly from incoherent to extremely
coherent when the input power (the control parameter in this
case) exceeds a certain threshold [21].

The emergence of spontaneous synchronization in cou-
pled oscillators is also an iconic example of dynamical phase
transitions where, depending on the strength of the nonlinear
interactions among the oscillators, their amplitude or phases
(or both) can get locked throughout the whole system or
a part of it [23]. Another example is liquid layers, where
the heat transport changes from conduction to convection
when the temperature-gradient between the lower and the
upper surfaces of the liquid is increased above a critical point
[24]. Finally, different dynamical phases occur in the popu-
lation dynamics or ecology when two interacting ‘kinds’ of
species, the predator and the prey, start to feature a perpet-
ual cyclic pattern when the food supply for one species is
maintained at or beyond a certain limit [25]. Similar behavior
is seen in chemical reactions where a chemical instability
triggers oscillatory patterns in which the color of the reactants
changes periodically from red to blue and vice versa [26].
Also in cellular biology, for example, it is believed that the
normal-to-cancer transition is a dynamical non-equilibrium
phenomenon, which depends on both metabolic energy supply
and local physiological conditions [27].

Although it is clear that in any of these situations the
concepts of temperature, and thermal equilibrium, do not have
a clear meaning, all of them share the fact that the familiar
notion of the order parameter, introduced by Landau for a
description of second order phase transitions, can be used to
describe the distinct change of behavior of the system as an
external control parameter is varied. This is profitable since it
allows one to treat disparate systems at a macroscopic level
with similar concepts and mathematical tools, and allows us
to make fascinating analogies between them by invoking the
concept of universality.

Nevertheless, a key point shared by all the systems
described in the above paragraph is that they belong to
the realm of non-equilibrium open systems, and therefore

their dynamics are fundamentally irreversible [21]. A more
restricted scenario, which is the one discussed in this
review, deals with evolution under fully unitary, coherent and
reversible dynamics. Under this context experimental observa-
tions of non-equilibrium phase transitions have remained more
elusive. Only in the recent years have new opportunities in
many-body physics been opened up thanks to the increased
degree of control and ability to synthesize, manipulate, and
detect ultra cold atomic systems as well as new developments
in THz pump–probe experiments. The novel experimental
capabilities are stimulating new methods to benchmark and
understand DPTs in general, and they are leading to exciting
investigations of non-equilibrium behaviors.

The review is structured as follows. In sections 2.1 and 3.2
we present the dynamics of exactly solvable fully-connected
spin models in the limit of large number of spins, N →∞.
The associated DPTs include the Ising universality class and
Richardson–Gaudin magnets. In section 2.2 we discuss dif-
ferent dynamical behaviors associated with interactions which
are not all-to-all, but decay spatially in a power law fashion.
In section 2.3, we consider the limit of a large number of
components (N ) of a φ4 field theory. This serves as an instruc-
tive toy model to show how Gaussian fluctuations can modify
the physical picture of sections 2.1 and 3.2. In section 4 we
consider DPTs arising in strongly correlated systems in the
large dimensionality limit d →∞, where an exact solution is
possible within dynamical mean field theory (DMFT); inter-
estingly the model studied in this limit exhibits ergodic behav-
ior and eventually thermalizes, allowing one to inspect aspects
of DPTs beyond pre-thermalization. Emphasis is placed on the
similarities between the DPTs observed in this class of models
and those discussed in section 2.1. Finally, section 5 discusses
the experimental platforms where DPTs have been observed
from solid state to cold atoms. This section serves as a further
connection between the other three theory sections.

2. Dynamical phase transitions and the
Landau–Ginzburg paradigm

The Landau–Ginzburg description of thermal equilibrium
phase transitions is one of the cornerstones of criticality and
universality [28] in a vast plethora of systems [29] includ-
ing soft matter (e.g. liquid–gas critical points), condensed
matter (e.g. magnets, superfluidity, and superconductivity),
as well as applications to cosmology [30]. Together with a
systematic inclusion of thermal or quantum fluctuations via a
renormalization group analysis, Landau–Ginzburg theory lays
the foundations of critical phenomena in equilibrium statistical
mechanics [31–33]. Given its success in explaining equilib-
rium [34] and relaxational dynamics of classical [35] and open
quantum systems [36–38], it was not surprising to witness in
the last decade a surge of works exploring dynamical phase
transitions after a quench, which can be understood via an
effective φ4-field theory description. Our review will there-
fore start considering those DPTs which possess an effective
description in terms of a double well picture of the energy
landscape of the underlying physical model.
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Figure 1. Upper row: quantum quench of the transverse field in the LMG model: dynamical ferromagnetism (I) with oscillations around a
non-vanishing value of σx; critical relaxation (II) at the dynamical critical point; dynamical paramagnetism (III) with persistent oscillations
around a zero mean value. Lower row: energy Hcl of the collective classical spin configuration, �σ, as a function of the magnetization σx . For
the dynamical ferromagnet the energy of the initial state (cf main text) is not sufficiently large to escape the minima of the potential (blue
line); for the paramagnetic phase the energy is above the double-well barrier (green line), and therefore the orbit of the magnetization can
encircle both minima and average out to zero over long time windows. The figure is adapted from reference [56].

We will first consider a fully connected spin model (the Lip-
kin–Meshkov–Glick model [39–51]) which is exactly solv-
able through a mean-field analysis in the thermodynamic limit
(section 2.1). Its dynamical phases can be understood using
a double well picture, providing the simplest analytically
tractable instance of a dynamical critical point.

In section 2.3, we will then consider the dynamics of a
field theory with an N -component scalar order parameter
[31], which in the N →∞ limit admits an exact solution in
terms of Gaussian fluctuations self-consistently coupled to the
motion of the order parameter. The leading 1/N correction
controls non-integrable scattering among different modes and
therefore the disappearance of the pre-thermal plateau where
the DPT of the field theory can occur. This is analogous to
the effect of 1/N corrections (where now N is the system size)
on the DPTs of LMG and Richardson models discussed in
sections 2.1 and 3, and it merges with the unifying theme
of this review: DPTs occur in collisionless non-equilibrium
states of dynamics [3–5, 7, 30, 52–55]. When collisions due to
non-linearities set it, these pre-thermal states are destabilized
and the system is attracted towards a thermal fixed point where
only equilibrium phase transitions can occur (if permitted by
dimensionality and symmetries). A further example of this
phenomenology will be provided in section 4, where DPTs
are obtained in strongly correlated systems through an exact
dynamical mean field treatment valid in the d →∞ limit (here
d are the physical dimensions).

Despite a unifying framework for DPTs is currently miss-
ing, we have decided to introduce the reader to this subject
relying first on models endowed with an effective description
in terms of a double well potential. This should appear as

familiar to the reader from a conventional equilibrium statisti-
cal mechanics perspective. Very broadly speaking, the dynam-
ical phase diagrams discussed in this work share a common
structure: upon increasing the value of the post quench cou-
pling, the system can transit from a dynamically ‘disordered’
to a dynamically ordered phase. The fact that this constitutes
only a bona fide description of the onset of DPTs in the models
reviewed in this work, reflects that a solid categorization of
DPTs remains an open outstanding question. This is aggra-
vated by the lack of a sufficiently abundant statistics of numer-
ically or analytically tractable models in the thermodynamic
limit, as it will become clear in the next sections.

2.1. Fully-connected Ising model in transverse field

In this section, we consider a class of quantum Ising systems
with spins s on a d-dimensional lattice, interacting via a ferro-
magnetic coupling, J|r−r′ |, and subject to a transverse magnetic
field pointing along the z direction

H = −
∑
r,r′

J|r−r′| σ̂
x
r σ̂

x
r′ − g

∑
r

σ̂z
r. (1)

Here the sums run over r = 1, 2, . . . , N, with N the total system
size. In equation (1), σ̂α

r are the operators corresponding to the
normalized spin components in the α = x, y, z direction. For
concreteness we consider in the following the s = 1/2 case,
although most of the results remain qualitatively unchanged
for arbitrary spin length s. The parameter g is the Larmor fre-
quency induced by the transverse field. This class of systems is
of importance for experimental realizations of DPTs in trapped
ions [57], cavity QED systems [58], and neutral atoms arrays
[59], as we discuss in section 5.
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For all-to-all interactions J|r−r′ | = λ/N, for all r, r′, the
Hamiltonian in equation (1) corresponds to the infinite-range
or fully-connected Lipkin–Meshkov–Glick (LMG) model
[39–51]

Ĥ = − λ

N

N∑
i, j=1

σ̂x
i σ̂

x
j − g

N∑
i=1

σ̂z
i , (2)

where each of the N spins interacts with all the others with the
same ferromagnetic coupling strength∝λ. The 1/N scaling of
the coupling λ in equation (2) is adopted to make the energy
extensive in the thermodynamic limit (notice that this scaling
is not always satisfied in experimental implementations, e.g.
cavity QED systems, see section 5). As N →∞ the mean-field
approximation becomes exact for the Hamiltonian (2), and
therefore the model is solvable in the thermodynamic limit: the
properly normalized commutation relations of these collective
spin operators, σ̂α ≡

∑N
i=1σ̂

α
i /N, approach the classical limit

for N →∞. In fact, these operators have a spectrum in [−1, 1]
and they satisfy

[
σ̂α, σ̂β

]
=

1
Ns

iεαβγσ̂γ , (3)

which can be used to define an effective Planck’s constant
h̄eff ≡ (N/2)−1. This property is instrumental to investigate the
corrections to the N →∞ limit via a semi-classical expan-
sion in inverse powers of N. Such corrections include [56]
wavepacket spreading with deviations from the classical tra-
jectory on Ehrenfest time scales ∝O(

√
N), recurrences on

times∼O(N) and tunnelling events between the two ferromag-
netic minima on time scales ∝O(ecN).

From equation (3), it results that, for N →∞, the model
can be exactly solved in terms of a classical, continuous
spin �σ of normalized length ρ, by neglecting the above men-
tioned finite N effects which require exact diagonalization
or a semi-classical approximation to be observed [60]. The
three-dimensional vector �σ = ρ(sin θ cosϕ, sin θ sinϕ, cos θ)
is a classical spin whose phase space is the surface of a Bloch
sphere of radius 0 < ρ � 1, with polar, θ, and azimuth angles,
ϕ. The LMG model then reduces to the classical Hamiltonian

Hcl(�σ) = −λ(σx)2 − gσz = −λρ2 sin2 θ cos2 ϕ− gρ cos θ.
(4)

For ferromagnetic interactions the system exhibits an equilib-
rium zero-temperature phase transition from a paramagnetic
ground state with 〈σ̂x〉 = 0 for g > gcr ≡ 2λ, to a pair of fer-
romagnetic ground states with 〈σ̂x〉± = ±m �= 0 for g < gcr,
characterized by the spontaneous breaking of the Z2-
symmetry. These two ferromagnetic minima can be derived
from the Bloch sphere representation of equation (4)
and they are given by (θ∗,ϕ = 0) and (θ∗,ϕ = π) with
cos θ∗ = g/gcr. Accordingly, the value of the order parameter
is σx = ±ρ sin θ∗ = ±ρ

√
1 − (g/gcr)2, where we have kept ρ

fixed since the total spin length of the system is conserved.
The associated classical energy landscape of the collec-

tive spin �σ (along the plane σy = 0) is portrayed in figure 1
as a function of the magnetization σx for the ferromagnetic
phase g < gcr = 2λρ. At equilibrium and in the thermody-
namic limit, the degenerate ground state wave-functions of

the collective spin are localized at the two classical minima
respectively, and �σ behaves like a classical particle at rest at
the bottom of one of the two wells.

DPTs in the LMG model have been studied extensively
in the last decades [61–68]. We now overview the dynam-
ical phase diagram summarized in figure 1, primarily fol-
lowing reference [56] for the sake of concreteness. The
non-equilibrium evolution of 〈�σi(t)〉 is given by the clas-
sical equations of motion associated to the Hamiltonian in
equation (4), σ̇α = {σα,Hcl}, where the evolution is given in
terms of Poisson brackets.

We prepare the spin chain in a ferromagnetic ground state of
the Hamiltonian equation (4) with transverse field g0 < gcr =
2λρ. This choice of initial state is instrumental to illustrate
the archetypal features of the dynamical phase diagram, and it
corresponds to a quantum quench of the transverse field g. We
prepare the spin chain in the ground state of the Hamiltonian
H(g0) at t = 0, and then abruptly vary the transverse field up
to the value g so that the evolution at times t > 0 would occur
under the Hamiltonian H(g).

For a quench, H(g0) → H(g), with g < gdyn ≡ (g0 + gcr)/2,
the energy of the system remains below the barrier that sepa-
rates the two ferromagnetic sectors. Indeed, the value of gdyn

can be determined [64–69] by equating the energy of the initial
state with the height of energy ‘hill’ separating the two minima
in figure 1. Correspondingly, the spin will precess within the
starting ferromagnetic sector (trajectory I in figure 1). As
the strength of the quench increases, the precession period
increases, until for g → gdyn it takes an infinite time to com-
plete one cycle, and the unstable point at the top of the energy
barrier is approached exponentially (trajectory II in figure 1).
For deep quenches above this threshold, g > gdyn, the energy
of the system is larger than the energy barrier separating the
two minima of the double well. The orbit of the collective
spin encircles both minima, such that the symmetry is restored
after taking time-averages, and the average magnetization, σx ,
vanishes (trajectory III in figure 1). Indeed, the time-average

σx = lim
T→∞

1
T

∫ T

0
dt σx(t), (5)

as a function of the post quench value, acts as a dynamical
order parameter, and it vanishes abruptly at the dynamical
critical value gdyn.

This dynamical critical point therefore separates a dynam-
ical ferromagnetic phase with σx �= 0 from a dynamical
paramagnetic phase with σx = 0. The singularity of the equi-
librium order parameter upon approaching the critical point is
algebraic, σx ∼ (gdyn − g)β , with critical exponent β = 1/2;
in contrast, the non-equilibrium order parameter σx discussed
here displays a logarithmic singularity at the dynamical critical
point.

Similar dynamical mean-field pictures hold also for infinite
dimensional Bose–Hubbard systems [64], Jaynes–Cummings
Hamiltonians [64], or for the evolution of classical φ4-field
theories [70, 71] (see also the following section 2.3). The DPTs
occurring in these models can be all explained with a classical
cartoon for their energy landscape after a quench, as done here
for the LMG model. In section 2.3, we review a model where
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the effects of Gaussian fluctuations on top of the evolution of
a classical order parameter are instead crucial to characterize
the onset of the DPT.

2.2. Long-range interactions

DPTs beyond the exact mean-field behavior of the LMG
model can also be inspected by considering long-range cou-
plings J|r−r′ | ∝ |r − r′|−α in equation (1) (see references
[72, 73]). Forα � 3, the model describes, for instance, trapped
ions simulators (cf section 5 for experimental observations of
the DPT in a chain of trapped ions with 0.8 � α � 1). The
resulting non-equilibrium phase diagram can be derived using
a MPS time-dependent variational principle [74]. Equipped
with long-range interactions, the quantum spin model in
equation (1) interpolates from the LMG limit (α = 0) to the
short-range Ising model in transverse field (α→∞), and it
therefore offers a precious angle to analyze the interplay of
dimensionality and interactions range in the formation of a
dynamical critical point [75–81] (see also section 4 in this
regard). In particular, the authors of reference [72] have con-
sidered dynamics in one dimension starting from a fully polar-
ized state along the x̂-direction, unveiling a DPT for all values
of α � 2. This critical value of α is the same for supporting a
thermal phase transition in equilibrium long-range interacting
spin chains [48, 82–84]. An important difference with the
LMG case is that the model is now not integrable neither
can its dynamics be mapped to classical equations of motion.
As a consequence, the order parameter decays because of
inhomogeneous dephasing [85–87] towards a vanishing or
non-vanishing expectation value depending on the dynamical
phase (paramagnetic or ferromagnetic), rather than exhibiting
long-lived orbits as in the LMG model. This is a generic feature
expected for quantum many-body systems whose dynamics
cannot be simply described with the motion of a collective
mode. The model will behave as effectively short-ranged for
α > 2 (see for instance [48, 82–84]) and it will not substain
order away from the ground state [88], with the result that the
order parameter will vanish, in the long time limit, regardless
of the post quench value of g.

Furthermore, for α < 1, the order parameter acquires again
the persistent oscillatory behavior if the thermodynamic limit
is taken before the long-time asymptotics. This is again
explained by recalling that long-range Ising models with
α < 1 fall into the universality class of the LMG model
[48, 82–84]. It is therefore in the window 1 < α < 2 that a
genuine quantum many body dynamical transition is observed.
Upon changing the dimensionality, these two thresholds are
expected to change with the qualitative picture remaining
unaltered.

Interestingly, dynamical transitions monitored by the cusps
of the Loschmidt echo occur at anyα (cf reference [72]), show-
ing that these two notions of dynamical criticality describe
qualitatively different physics.

This section finds its natural experimental counterpart in
section 5 where realizations of DPTs in long-range interacting
systems are discussed in detail.

2.3. O(N ) models in the large N limit

In this section we discuss a prototypical example illustrating
the richness of non-equilibrium phase transitions of isolated
systems beyond mean-field. The model we review allows for
an exact treatment of quantum fluctuations. It is furthermore
iconic as it the deals with the quantum dynamics of a Lan-
dau–Ginzburg theory, and it might therefore offer a prototypi-
cal model for DPTs in more complex non-integrable quantum
many-body systems. We consider a N -component bosonic
order parameter Φ̂ = (φ̂1, φ̂2, . . . , φ̂N ) in d spatial dimensions,
with an O(N )-invariant Hamiltonian [31]

Ĥ(r, u) =
∫

ddx
[

1
2
Π̂2 +

1
2

(c∇φ̂)2 +
r
2
φ̂2 +

u
4!N (φ̂2)2

]
,

(6)
where Π̂ = ∂tΦ̂ is the N -component momentum canonically
conjugated to Φ̂, and r and u parametrise respectively the
mass term and the strength of the non-linearity (for quan-
tum quenches of fermionic variants of this model in the
context of DPTs, see references [89, 90]). The requirement
of invariance under rotations of the O(N ) group is the rea-
son for the appearance of scalar products only, Π̂2 and
φ̂2 = Φ̂ · Φ̂ =

∑N
i=1φ̂

2
i , in the Hamiltonian (6). The field the-

ory in equation (6) is customarily taken as an effective con-
tinuum description of a microscopic model [88] (with spin,
fermionic or bosonic degrees of freedom) and it therefore
requires an ultraviolet momentum cutoff Λ, which is usually
the inverse of the lattice spacing. Upon varyingN , equation (6)
describes the Ising (N = 1) and Heisenberg (N = 3) models,
or the Bose–Hubbard at the particle-hole symmetric point
(N = 2), to mention a few examples [88].

The success in modeling dynamical phase transitions with
the field theory (6) resides in a closure at the Gaussian
level of its hierarchy of equations of motion. Specifically, at
N →∞ the evolution of the state of the O(N ) model is fully
characterized by the dynamics of the two point functions self-
consistently coupled to the evolution of 〈Φ̂〉, with higher order
correlation functions parametrically suppressed in powers of
1/N . The large-N limit has allowed the extrapolation of
several qualitative features of the equilibrium thermal phase
diagram of the O(N ) model to finite values of N and d (see
[31, 88]). Specifically, in the limit N →∞, quartic interac-
tions in equation (6) decouple at leading order, which amounts
to the formal substitution (φ̂2)2 ∼ 〈φ̂2〉φ̂2. In field theoretical
language this corresponds to a Hartree–Fock approximation
[91, 92]. Here, we have used the fact that, if the O(N ) sym-
metry of the initial state is not broken, the average 〈φ̂aφ̂b〉 of
two generic components of Φ̂ vanishes unless a = b. Its non-
vanishing value is independent of a and equal to the fluctuation
〈φ̂2〉 of a generic component of the field.In diagrammatic lan-
guage, the large-N limit amounts to retaining only tadpole cor-
rections to r and ‘candy’ (RPA) diagram corrections to u [93].
The dynamics of the field components are therefore equivalent
to a time-dependent quadratic Hamiltonian with an effective
mass, reff(t), to be self-consistently determined from the expec-
tation value of 〈φ̂2〉 (see equation (7) below). The model
becomes then exactly solvable via a time-dependent self-
consistent Gaussian ansatz. The large-N expansion allowed
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the authors of references [70, 91, 92, 94–98] to disregard ther-
malizing collisions that are effective at times parametrically
large in N/u2, and which dictate equilibration. DPTs emerge
in such a collisionless pre-thermal regime [3, 4, 30, 99] (cf with
section 2), as we will also emphasize later in section 3.

The typical quench protocol used to probe the dynamical
phase diagram of this model consists in preparing the system
in the ground state of the non-interacting Hamiltonian Ĥ(r0, 0),
and then letting the dynamics evolve with Ĥ(r, u) at later times.
Exact solvability in theN →∞ limit allows us to elucidate the
role of fluctuations in the formation of the dynamical critical
point. The time-dependent effective mass, reff(t), dressed by
Gaussian fluctuations reads

reff(t) = r +
N + 2

6N u
∫

dd p
(2π)d

〈φ̂p(t)φ̂−p(t)〉 (7)

with φ̂p the Fourier transform of the field. The right-hand
side of equation (7) reaches a steady state value as a result
of inhomogeneous dephasing of the oscillating factors with
frequencies depending on the momenta p in the integrand.
When the post-quench value of the mass r is tuned to a critical
value rc(r0, u) such that it cancels the contribution from the
fluctuations integral in (7), the stationary value of the effective
mass r∗ ≡ reff (t →∞) vanishes and, consequently, the spatial
correlation length ξ = (r∗)−1/2 diverges, thus signalling the
onset of a dynamical critical point. Following reference [96],
we can evaluate the behaviour of the effective asymptotic mass
r∗ for small deviations in the post-quench value, δr, from the
dynamical critical point rc, finding

r∗ = δr − u
24

r∗
∫ Λ

0

pd−3 dp
(2π)d

(p2 + r0)1/2

(p2 + r∗)
, (8)

with Λ the ultraviolet momentum cutoff, typically related
to inverse lattice spacing of the microscopic model from
which the field theory is derived. For d > 4 the integral in
equation (8), which encodes the role of fluctuations, converges
upon tuning r∗ → 0 (close to criticality). For 2 < d < 4 the
integral is instead the leading term, implying the scaling r∗ ∼
(δr)2/(d−2). This yields a correlation length 1/ξ∗ ∼

√
r∗, with

a static critical exponent ν = 1/(d − 2). For d � 4 we find
the mean field exponent ν = 1/2 since, as we just discussed,
fluctuations are RG irrelevant. This upper and lower critical
dimension for the DPT of the O(N →∞) model are the same
for thermal equilibrium phase transitions [88, 99]. Although
equations (7) and (8) are structurally analogous to equilib-
rium thermal transitions, the fluctuation corrections to the bare
mass are quantitatively different, resulting in a different loca-
tion for the critical point in the thermal and non-equilibrium
cases.

In order to explore the nature of the different dynamical
phases, we assume the system is prepared with a given initial
mass, r0, and consider different post quench values of r. We
will focus in the following on the asymptotic t →∞ value of
the effective mass, r∗, on its real-time scaling features and on
momentum-resolved correlation functions. Figure 2 provides a
graphical summary of the three dynamical phases and of their

Figure 2. Sketch of the dynamical phases of the O(N →∞) model
resulting from a quench with large initial mass (r0 � Λ2). The
system is quenched above (r > rc), at (r = rc), or below (r < rc) the
dynamical critical point; in the latter case dynamics display ageing.
This dynamical critical point separates non-critical relaxation (a
dynamically disordered phase) from coarsening (a dynamically
ordered phase).

properties. We will be primarily following reference [92] in
our exposition.

(i) For r > rc(r0, u), the system undergoes a non-critical
relaxation characterized by a finite value of the correlation
length and correlation time, and by a vanishing value of the
order parameter. This is the dynamically disordered phase. The
symmetric correlation function Cp(t, t′) = −i〈{φ̂p(t), φ̂−p(t′)}〉
displays oscillations with asymptotic period set by
∼(r∗)−1/2.

(ii) For quenches to the critical point, r → rc(r0, u), slow
modes are characterized by ageing dynamics, where the sym-
metric correlation function acquires the scaling form Cp(t, t′) ∝
(tt′)θ for t � t′ and p→ 0, with a non-equilibrium universal
exponent θ = d/4 in 2 < d < 4 (see references [92, 100]).
This is the analog of the ageing exponent occurring in non-
equilibrium classical systems quenched close to critical tem-
perature [101, 102]; in contrast, in the case discussed here,
the system acts as its own bath because it is isolated from the
environment. The phenomenon is called ageing because the
characteristic relaxation time-scale is the age of the system
itself, i.e. the time, t, elapsed after the quench. As in its clas-
sical counterpart, ageing denotes a dynamical regime where
correlation functions break time-translational invariance in a
universal fashion [97]. Indeed, the exponent θ does not depend
on microscopic details, rather it is dictated by dimensionality,
symmetries and conservation laws, as in conventional theory
of critical phenomena. Remarkably, the value of the exponent
θ cannot be related to the equilibrium ones ν, η, z, etc. The
absence of a gap and therefore of a characteristic timescale at
criticality, implies that each mode has a typical relaxation time
scale of order ∼1/p. Therefore the ageing window is expected
to extend for each mode within 1/Λ � t � 1/p, and for well
separated times t � t′. For t � 1/Λ, non-universal effects due
to the microscopic details of the model will set in.

Concerning the steady state forming after deep quenches
r0 � Λ2, the infrared modes equilibrate at the effective tem-
perature Teff �

√
r0. Notice however that this does not imply

that the system has thermalized to a Gibbs state [91]; on
the contrary, higher momenta have occupations that violate
equipartition of energy. The fact that in the presence of a finite
energy density low momenta modes effectively thermalize,
while higher momentum tails do not satisfy detailed balance, is
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a general feature of non-equilibrium phase transitions, present
also in driven-open systems [38].

For small initial masses r0 � Λ2, the system undergoes a
dynamical crossover around a time scale ∼1/r0, from a regime
where dynamical scaling is characterized by a ‘quantum’
ageing exponent θ′ into a regime ruled by the effectively
thermal exponent θ we have just discussed. This additional
ageing exponent θ′ corresponds to an unstable pre-thermal
fixed point [103] whose canonical scaling properties are akin
to a zero-temperature quantum critical point (the lower and
upper critical dimensions are the same in the equilibrium and
non-equilibrium case, 1 < d < 3).

(iii) Finally, for r � rc(r0, u), the time-dependent effective
mass decays with a universal ∼1/t2 behaviour on long time
scales, as it also happens for quenches at the dynamical crit-
ical point (below the upper critical dimension d < 4). For
d � 4, this decay turns into ∼t−(d−2), which can be predicted
from dimensional analysis. However, in this regime with
r < rc(c0, r0, u), the system exhibits coarsening [91, 92, 95],
and correlation functions are characterized by a form of
dynamical scaling distinct from the ageing typical of the crit-
ical point. Coarsening is caused by the formation of growing
domains with different values of the order parameter, similarly
to the phenomenon of spinodal decomposition [104]. It occurs
for quenches starting from a symmetric ground state, r0 > rc.
Physically, one expects that the system globally remains in a
symmetric state with vanishing order parameter, however, the
symmetry can be broken within spatial domains which appear
separated by walls. Within each of them, the order parameter,
φ̂, acquires the value of one of the two different Z2-symmetry
broken phases [104–106]. The average linear extension of the
ordered domains increases with time, until a specific domain
possibly prevails over the others, establishing the equilibrium
state. However, the size of domains grows algebraically and
actual equilibrium is reached only asymptotically. This lack of
an intrinsic length scale in the system affects the equal-time
two-point correlation functions which scale as Cp=0(t, t) ∼ tγ

with γ = d − 1.
We finally remark that the dynamical phases of the O(N →

∞) model remain qualitatively unaltered [107] when the value
of the mass is continuously ramped at a sufficiently fast speed
from r0 to r, rather than suddenly quenched between the same
two values. More precisely, when the duration of the ramp
is finite, the critical properties associated to the dynamical
transition are qualitatively the same as in the sudden quench
scenario, whereas if the ramp is infinitely slow the equilibrium
quantum phase transition at zero temperature is eventually
recovered.

3. Exactly solved dynamics in Richardson–Gaudin
models via the Lax spectral method

In this section, we review a class of all-to-all interacting spin
exchange models of the Richardson type (equations (12) and
(16)) whose evolution under a quantum quench is solved
exactly by a version of self-consistent mean field theory [108].
The solution reveals different dynamical phases of an order
parameter, which can decay to zero (‘phase I’) [109, 110],

assume a non-equilibrium steady-state value (‘phase II’) [111],
or even exhibit persistent oscillations (‘phase III’, a self-
generated Floquet phase [109]). Although these dynamical
phases of matter may carry some resemblance to those result-
ing from quenches of LMG-type models (cf section 2.1 above),
this section aims at emphasising their markedly different origin
that results from the classical and quantum integrability of
Richardson magnets.

The order parameter for this class of models can be defined
via

Δ ≡ −G
∑

i

s−i . (9)

This is an equal-weight sum of spin-1/2 lowering operators in
an N-spin system. It plays the role of the BCS pairing gap in
applications to quenched superfluids and superconductors (see
below).

Figure 3 shows the quench phase diagram for a system
exhibiting phases I, II, and III. In this figure, ground-state
order-parameter values for the pre- (Δi) and post-quench (Δ f )
Hamiltonian label the vertical and horizontal axes, so that
any point in the phase diagram away from the diagonal line
is a quench. In this particular system (a quenched p+ ip
superfluid), the ground state exhibits a topological transition
at a certain value of the order parameter Δi = Δ f = ΔQCP.
This extends to a line in the quench phase diagram, separat-
ing nonequilibrium phases characterized by different winding
numbers W.

The models described in this section can be realized in a
collisionless (prethermalization) regime for a range of physical
systems, as will be discussed in section 5, including

• Far-from equilibrium dynamics in solid-state supercon-
ductors, following excitation by an intense subgap (ter-
ahertz) pulse [116–122],

• Quenches in central-spin type problems (Gaudin mag-
nets), or synthetic spin-1/2 magnets with infinite-range
interactions realized in ultracold fermionic atoms in a trap
[123] and cavity QED systems [124],

• Ultracold fermionic superfluids, with different pairing
symmetries (such as s-wave or p-wave) where a quench
corresponds (e.g.) to a change in the strength of the
attractive interactions responsible for pairing, as could be
accomplished by tuning a Feshbach resonance [109–112,
125–127]. The approach has been extended to multicom-
ponent superconductors with competing orders [128].

• Quenches in topological superfluids, such as a chiral p+
ip system that can host circulating Majorana edge modes
[112, 113, 129].

All of these systems can be approximately described by a
Hamiltonian of Richardson–Gaudin type [130–132], which is
both classically and quantum mechanically integrable. Quan-
tum integrability implies that the many-body spectrum can
be obtained from the Bethe ansatz [130–138]. Instead, here
we focus on the thermodynamic (infinite-system-size) limit,
where self-consistent mean field theory can become exact
[109, 111, 139, 140]. In this case, the system resides in
a pure BCS-type state at all times (with time-dependent
coherence factors), and the dynamics of generic observables
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Figure 3. Quench phase diagram for a 2D p+ ip fermion
superfluid, from references [112, 113]. Here Δi (Δ f ) denotes the
ground-state BCS order parameter in the pre- (post-)quench
Hamiltonian. Any point with Δi �= Δ f corresponds to a quench,
while the line Δi = Δ f denotes the ground state. Δi (Δ f ) is
associated to an attractive BCS pairing interaction strength Gi (G f ),
assumed to change instantaneously at the time of the quench. The
subsequent dynamics of Δ(t) fall into three different phases I, II, III,
described in the text. The phase boundaries are indicated by the
heavy red lines; shading instead indicates topologically nontrivial
dynamical phases. Phase III is a self-generated Floquet phase, which
in the case of a p+ ip superfluid exhibits topological edge states;
dynamics for the quench marked ‘A’ are shown in figure 4. In this
figure, W = 1(W = 0) indicates topological (trivial) domains of
phase II. The region with W = 1 hosts Majorana edge states, even
for quenches that start from the trivial BEC phase (Δi > ΔQCP).
ΔQCP denotes the ground-state topological quantum phase
transition between BCS and BEC phases [114, 115]; the dashed
purple line is its nonequilibrium extension.

(Green’s functions) can be computed exactly by exploiting the
classical integrability.

The integrable models discussed here neglect nonzero
center-of-mass momentum for excited Cooper pairs, as well as
dissipative processes. Cooper pairs with finite momentum are
not expected to play a role in quench dynamics of the collision-
less prethermalization regime, for a sample size that is smaller
than or of order the superconducting coherence length [141,
142]. Dissipative processes are responsible for thermalization
on time scales longer than the collisionless prethermalization
plateau captured by the integrable model. The extent to which
integrable dynamics can be observed is sensitive to the details
of the experimental realization, and is predicted to be different
for ultracold superfluids, THz-pumped superconductors, and
synthetic atomic-spin model realizations. See sections 3.4,
5.1, and 5.2 for discussions of these various platforms. The
solid-state THz experiment [116] exhibited in figure 9 shows
an example where quench dynamics have been successfully
realized.

This section is organized as follows. First, we will describe
how the Richardson–Gaudin spin model emerges from the
description of a BCS superfluid. We will then illustrate how
the dynamical phase diagram can be obtained using the ‘Lax
spectral method’ [111, 112, 125, 139, 140], which exploits
the classical integrability and the simplifications that occur

in the thermodynamic limit. For a particularly simple class
of initial conditions (different from the usual assumption of a
BCS-ground initial state), we show explicitly how the solution
method works, giving the dynamical phases I, II, III described
above, and we will outline how to compute generic observ-
ables. Section 3.4 gives an overview of fluctuation phenomena
beyond the scope of mean-field dynamics, including quenches
from an initial normal Fermi liquid state [141, 143–149].
Finally, we summarize a few key features of quench-induced
dynamical topological phase transitions [112, 113, 129].

We limit the overview in this section to the idealized, ther-
modynamic limit for integrable Richardson–Gaudin models.
Time and length scales for observing this physics in ultracold
Fermi gases and THz-driven superconductors are discussed
later in section 5.1.

3.1. BCS superfluids and Richardson–Gaudin

Consider a spin-1/2 Fermi gas in d spatial dimensions, with
local, attractive interactions. The Hamiltonian is

H =
∑
σ∈↑,↓

∫
ddr c†σ(r)

(
− 1

2m
∇2

)
cσ(r)

− G
∫

ddr c†↑(r)c†↓(r)c↓(r)c↑(r)

=
∑
k,σ

εk c†kσ ckσ − G
∑
k,k′ ,q

c†
k+ q

2 ↑
c†−k+ q

2 ↓
c−k′+ q

2 ↓
ck′+ q

2 ↑
,

(10)

where the second equality expresses the Hamiltonian in terms
of momentum modes in a finite volume. Here εk = k2/2m is
the kinetic energy, and G > 0 denotes a local, spin-singlet
pairing interaction strength. The fermion creation and annihi-
lation operators satisfy canonical anticommutation relations,
ckσ c†k′σ′ + c†k′σ′ ckσ = δk,k′δσ,σ′ , where σ, σ′ ∈ {↑, ↓} label the
spin.

Inspired by the solution to the Cooper problem that gives
a minimal bound-state energy for a two-electron pair with
zero center-of-mass momentum, we drop interaction terms in
equation (10) with nonzero q. The resulting ‘reduced BCS
Hamiltonian’ [153] can be expressed in terms of Anderson
pseudospins [154]

S+
k ≡ c†k↑ c†−k↓,

S−
k ≡ c−k↓ ck↑,

Sz
k ≡ 1

2

(
nk↑ + n−k↓ − 1

)
,

(11)

where nkσ ≡ c†kσckσ . Simplifying notation by labeling single-
particle levels with i, j ∈ {1, . . . , N} instead of momenta, the
reduced s-wave BCS Hamiltonian is

H =

N∑
i=1

2εiS
z
i − G

N∑
i, j=1

S+
i S−

j . (12)

This ‘Richardson’ Hamiltonian [130, 131] is similar to the
Dicke model, which features all-to-all coupling of the in-plane
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Figure 4. Self-generated Floquet phase III for a sufficiently large
weak-to-strong quench in the model described in figure 3 [113,
129]. A Floquet phase is a dynamical state of matter characterized
by parameters that oscillate periodically in time [150]. Floquet
systems can exhibit topological features [114, 151] such as
protected edge states at the sample boundary, even when the
undriven system is topologically trivial [152]. The top left shows the
periodic (but strongly anharmonic) amplitude and phase of the order
parameter Δ(t), while the top right depicts its orbit in the complex
plane. On the bottom, diagonalization of a lattice-regularized strip
shows Floquet-Majorana edge states (crossing in the center gap) for
this particular quench, marked ‘A’ in figure 3. Majorana edge modes
will appear only in a fermionic superfluid or superconductor with a
physical boundary. Constraints on observing phase III in quenched
superfluids are discussed in section 3.4.

spin components, but here each spin is subject to a poten-
tially different Zeeman field 2εi. The all-to-all coupling is a
necessary, but not sufficient condition for integrability [145];
integrable variants can describe p-wave and other pairings
[133–138].

Using the SU(2) algebra of the pseudospins, the Heisenberg
equations of motion are

�̇Si = �Si × �B(εi), (13a)

�B(εi) ≡ −2εiẑ −Δ(x̂ + iŷ) −Δ∗(x̂ − iŷ), (13b)

where the BCS order parameter was defined in equation (9).
In the thermodynamic limit N →∞, the expectation of

Δ in an initial BCS pure state becomes a classical observ-
able (Ehrenfest’s theorem). Then, 〈�S(t)〉 ≡ �s(t) satisfies the
equation of motion for a classical spin in an external field. The
usual BCS ground-state equation [153] obtains by aligning
each spin to its own magnetic field [154]. The total particle
number is encoded in the conserved Sz ≡

∑
is

z
i ; its value can

be fixed by adding this to the field �B with a chemical potential.

3.2. The Lax spectral method

3.2.1. Isolated roots and phases I, II, III. The Lax spectral
method [111, 112, 125, 139, 140] simplifies the dynamics

for the classical spins generated by the BCS Hamiltonian in
equation (12). The idea is that the all-to-all coupling in this
model leads to a reduction of the collective dynamics, such
that the time evolution ofΔ(t) can be determined by solving an
emergent few-spin problem. This can be understood as a sort
of exact renormalization group: the effective few-spin problem
is governed by a ‘Lax reduced’ Hamiltonian of precisely the
same form as equation (12), but with M < N spins and renor-
malized parameters. The parameters of the reduced model can
be determined from the N-spin quench via the integrability.
Specifically, these obtain from the roots of a certain spectral
polynomial, defined below.

Here, we detail the Lax construction for the s-wave Hamil-
tonian in equation (12) [111, 125, 139, 140]. A similar con-
struction for a p+ ip superconductor can be found in [112].
See references [132–138] for the general classification of
Richardson–Gaudin models.

We define the Lax vector and its norm,

�L(u) ≡
N∑

i=1

�si

u − εi
− ẑ

G
, L2(u) ≡ �L · �L(u), (14)

where u is an arbitrary parameter. The spins can be taken
to satisfy classical Poisson brackets {sa

i , sb
j} = δi jε

abcsc
i . Then

equation (12) implies that the Lax vector satisfies the same
equation of motion as the spins,

�̇L(u) = �L(u) × �B(u). (15)

The Lax norm is conserved. Moreover, it is easy to check
that {L2(u), L2(v)} = 0 for any u, v. Using this fact and the
explicit expression for the Lax norm, one can identify a set of
N independent conserved quantities. These are Hamiltonians
of central-spin type (‘Gaudin magnets’),

Hi ≡ �si ·

⎡⎣− ẑ
G

+
∑
j�=i

�s j

εi − ε j

⎤⎦, {Hi, H j} = 0 ∀ i, j.

(16)
Up to an additive constant, the BCS Hamiltonian is the partic-
ular combination

H = −G
∑

i

2εiHi + G(Sz)2. (17)

From the conserved Lax norm, we define an order 2N
spectral polynomial in the parameter u,

Q2N(u) ≡ G2
N∏

i=1

(u − ε j)2L2(u). (18)

To see how a small number of degrees of freedom can
govern the dynamics, we trade the spins for an alternative set
of ‘separation variables’, defined as follows. Equations (14)
and (9) imply that
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L−(u) ≡ Lx(u) − iLy(u) = −Δ

G

∏N−1
α=1(u − uα)∏N
j=1(u − ε j)

. (19)

The N − 1 zeroes of this equation {uα} are complicated func-
tions of the {s−i }, the precise form of which we do not need. By
considering the d/dt

[
L−(u(t))

]
for a possibly time-dependent

u(t), we can derive the equations of motion for these separation
variables [139],

u̇α = 2i

√
Q2N(uα)∏

β �=α(uα − uβ)
. (20)

The reduction to fewer degrees of freedom is best illus-
trated by an example. Using the spin configuration that solves
the BCS equations in the ground state, one can explicitly
show that the spectral polynomial in equation (18) possesses
N − 1 doubly-degenerate zeroes along the real u-axis. Since
L2(u) = L+(u)L−(u) + [Lz(u)]2, any such zero u0 also satisfies
L−(u0) = 0. In other words, the N − 1 separation variables
{uα} are static, and confined to the real axis (equation (20)). In
addition, Q2N(u) possesses a complex-conjugate pair of zeroes
{u1, u∗

1} that encode the BCS ground-state order parameter Δ0

(which we take to be real). For a particle-hole symmetric εi

spectrum, one simply finds that u1 = iΔ0.
Consider the case of a quench, wherein some initial pure

state undergoes evolution according to the BCS Hamiltonian
in equation (12). The initial state must be expressible as a
configuration of the N pseudospins (a pure BCS state), but
is otherwise arbitrary [155]. Feeding this initial spin config-
uration into the spectral polynomial (using the Lax vector in
equation (14)), one can characterize the state of the system in
terms of the pattern of zeroes for Q2N(u), which is conserved.
For finite N and a generic initial state, one finds N complex
conjugate pairs of zeroes. In general, these are not roots of
L−(u), implying that all separation variables uα evolve non-
trivially according to equation (20). Despite the integrability
of these equations, explicit results are only available for small
N in terms of hyperelliptic functions [139, 140].

In the thermodynamic N →∞ limit, however, for certain
classes of initial conditions the situation simplifies dramati-
cally. In particular, for quenches that evolve an initial weakly
paired BCS or strongly paired BEC ground state (characterized
by coupling Gi) according to a post-quench Hamiltonian with
G ≡ G f �= Gi, one finds that only three possible dynamical
phases appear. These are termed phase I, II, and III, and
correspond respectively to zero, one, and two isolated pairs
of roots of the spectral polynomial [109–111]. Additional
pairs isolated roots are possible for more complicated initial
conditions, discussed below. The remaining roots merge into
a branch cut along the real axis, and thus correspond to a
continuum of ‘frozen’ separation variables. The separation
between isolated and remaining roots is illustrated for a finite
system in figure 5. The physics of phases I–III are as follows
(see also the example phase diagrams in figures 3 and 6.)

• In phase I, there are no isolated roots, and Δ(t) → 0 in
the long-time limit. This occurs for large strong-to-weak
quenches, G f � Gi [110], and corresponds to an effec-
tive zero-spin problem. In a superconductor quenched to

phase I, the optical conductivity or Meissner response
would appear indistinguishable from a normal metal
[121]. Anomalous coherences persist however, encoded
in the dephased precession of Anderson pseudospins;
schemes for detecting these are discussed in [156, 159],
see section 4.2. Phase I could be accessed in a solid-state
superconductor subject to a sufficiently strong subgap
THz pulse, as illustrated in figures 5 and 6.

• In phase II there is one pair of isolated roots, correspond-
ing to an effective one-spin problem. Phase II describes
small quenches, and smoothly connects to the ground-
state configuration (no quench). Δ(t) asymptotes to a
nonequilibrium, steady-state value Δ∞. For quenches
entirely in the weak-pairing BCS regime, the approach
to this prethermalized value takes a universal form
[111, 160],

Δ(t) � α√
t

cos(2Δ∞t + φ0) +Δ∞, (21)

for some constants α,φ0. The value of Δ∞ is precisely
determined by the isolated roots of the spectral polyno-
mial for the N →∞ spin system. Decaying oscillations at
frequency 2Δ∞ were observed in the THz pump–probe
experiment reference [116], see figure 9 and section 5.1.

• In phase III, there are two pairs of isolated roots, corre-
sponding to an effective two-spin problem. This occurs
for sufficiently large weak-to-strong quenches, and con-
nects in a somewhat intricate way to a quench starting
from a normal (unpaired) Fermi liquid state [108, 143,
144], (see section 3.4, below). The isolated roots of the
spectral polynomial in the thermodynamic limit determine
the parameters of this two-spin problem, leading to an
effective equation of motion for Δ(t). The solution can
always be expressed in terms of elliptic functions, and
thus corresponds to a quench-generated Floquet phase
[109, 125], as illustrated in figure 4 for a p+ ip super-
fluid quench [112, 113, 129]. Heating is a potential diffi-
culty with driven Floquet systems [150], but the quench-
induced phase III dynamics could evade this problem. By
contrast, a numerical study of quenches in a nodal d-wave
superconductor did not exhibit phase III, which is damped
out due to excited gapless quasiparticles [161]. This d-
wave reduced BCS model is not of Richardson–Gaudin
type, due to the form of the interaction coupling.

3.3. A simple example

3.3.1. Phases I and II. In this subsection, we illustrate the Lax
spectral method for the model in equation (12). In order to keep
the analysis as simple as possible, instead of a BCS (or BEC)
initial Anderson pseudospin configuration, we consider a fully
x-polarized initial state [162]. In fact, this initial state was
used in a recent ultracold fermionic atoms experiment [123]
to probe the phase I to phase II DPT (see section 5).

�si = (1/2)x̂, ∀ i ∈ {1, . . . , N}. (22)
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Figure 5. This figure shows the Anderson pseudospin texture for a
model 2D s-wave superconductor, following a ‘quench’ induced by
a subgap electromagnetic pulse [121], see also references [118–120,
122]. This work was inspired by the results of the experiment by
Matsunaga et al [116], depicted in figure 9 and reviewed in
section 5.1, below. The Anderson pseudospin textures and the Lax
roots of the spectral polynomial are depicted immediately after the
application of an intense THz pulse. (a)–(c) Are the spin textures
after light exposure, corresponding to the roots shown in (d)–(f)
respectively. The pair of roots away from the real axis are called
isolated roots, and these encode the key properties of the BCS state.
The system is a quarter-filled square lattice tight-binding model with
24-by-24 sites (the system is chosen to be small for the purpose of
this illustration). Panels (a) and (d) correspond to a very weak pump
energy, (b) and (e) to an intermediate pump energy, and (c) and (f)
to a strong pump. The isolated roots u±1 � ±iΔ∞ for the deformed
spin textures encode the asymptotic value of Δ(t →∞) = Δ∞ in
the phase II pre-thermalization plateau. The main effect of the THz
field quench is to twist Anderson pseudospins near the Fermi energy
in the x-y plane; more intense pulses produce more disordered twist
patterns, and push the isolated roots towards the real axis. For strong
pulses ((c) and (f)), the isolated roots merge with the real axis and
the system enters phase I [109, 110] with Δ∞ = 0, see figure 6.
Phase III cannot be generated by such a single pulse.

The spectral polynomial (equation (18)) is

Q2N(u) =

[
N∏

i=1

(u − εi)2 +

(
G
2

)2

P2
N−1(u)

]
, (23a)

where

PN−1(u) ≡
N∏

i=1

(u − εi)

⎡⎣ N∑
j=1

1
u − ε j

⎤⎦. (23b)

Figure 6. Theoretical prediction for the nonequilibrium phase
diagram of an s-wave BCS superconductor subject to an ultrashort
(�monocycle) THz pulse with center frequency ω � Δ, from
reference [121], described in figure 5. The 2D square lattice has
linear size L = 1000 at quarter filling. Values of Δ∞ are extracted
from the isolated Lax roots corresponding to the spin configuration
immediately after cessation of the pump pulse. We plot Δ∞ as a
function of the peak pulse intensity Ã2, with different values of Δ/J
(J is the hopping strength). As illustrated in figure 5, more intense
pulses produce larger deformations of the pseudospins along the
Fermi surface, leading to a suppression of the asymptotic BCS
gap Δ∞.

Assume that the single-particle energies reside in the
bounded interval −2J � εi � 2J. Then, for G � 2J, Q2N(u)
possesses 2N zeroes that appear in complex conjugate pairs
close to each of the N bare real energies {εi}. On the other
hand, for G � 2J, 2(N − 1) zeroes appear close to the N − 1
real zeroes of PN−1(u). Thus there must be an additional,
isolated pair.

To take the thermodynamic N →∞ limit, we consider a
simple 1D cosine band ε→ 2J cos(k), with |k| � π. The Lax
norm evaluates to

L2(u) = (Lν0)2

[
π2

(u/J)2 − 4
+

1
g2

]
, g = ν0LG, (24)

where ν0 = 1/(2πJ) is the density of states at the band cen-
ter and L is the linear system size. The roots are u±

1 =

±J
√

4 − (πg)2. There is a dynamical phase boundary at gc ≡
2/π: for g < gc, the isolated roots are real and merge with the
continuum branch cut—this is phase I. For g > gc, the isolated
roots are purely imaginary, and we have phase II.

For phase II, the Lax reduced problem corresponds to a sin-
gle collective pseudospin �σ, with a one-spin BCS Hamiltonian
(compare to equation (12))

H1 = 2χσz − |Δ∞|2
G

, |Δ∞| = −G|σ−|. (25)

Here χ, Δ∞, and σz are all constants that must be determined
by the roots of the effective one-spin spectral polynomial,

Q2(u) = (u − u+
1 )(u − u−

1 ). (26)

Using the isolated roots from the many-body Lax norm in
equation (24), we find that

Δ∞ = |u±
1 | = 2J θ(g − gc)

√(
g
gc

)2

− 1, (27)
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where θ(x) is the unit step function.
It is important to note that not all information about the

long-time evolution of the post-quench dynamics is encoded
by the isolated roots. In a BCS ground state, each Ander-
son pseudospin �si is aligned to its magnetic field �B(εi)
(equation (13b)) (possibly modified by a chemical potential
term to fix the density). In phase II, the effective magnetic field
is determined by the asymptotic value of the gap Δ∞,

�B∞(εi) = −2εiẑ − 2Δ∞ x̂.

However, the steady-state pseudospins will in general exhibit
precession around this field at a finite canting angle,

lim
t→∞

�si(t) =
1
2

√
1 − γ2

i

{
cos[2E∞(εi)t]B̂∞(εi) × ŷ

+ sin[2E∞(εi)t]ŷ

}

− γi

2
B̂∞(εi), (28)

where E∞(εi) ≡
√
ε2

i +Δ2
∞ is the asymptotic steady-state

BCS quasiparticle energy. The function γi can be computed
exactly by evaluating the Lax norm for the precessing solution
in equation (28), discarding terms that oscillate as t →∞,
and equating this with Lax norm for the pre-quench initial
condition; we omit details here, but see references [110, 112,
125]. In phase II, the function γ i plays the role of a nonequi-
librium distribution function for the quasiparticle spectrum in
the asymptotic steady state:

− γi = 1 − 2 f i, (29)

where f i would take the Fermi–Dirac form in terms of the
quasiparticle energies for a system in thermal equilibrium.

Once the gap Δ∞ and the distribution function γ i

are known, generic n-body steady-state Green’s functions
(retarded, Keldysh, etc) can be computed for the evolving
pure BCS state. See e.g. references [112, 129, 163] for exam-
ples of one-body functions and observables such as rf spec-
troscopy, tunneling, and time-resolved ARPES, and references
[121, 164] for the current–current correlator that determines
the optical conductivity and Meissner response of a quenched
solid-state superconductor.

3.3.2. Quench-generated Floquet phase III. Phase III arises
for sufficiently large weak-to-strong pairing BCS quenches,
see e.g. figures 3 and 4. As we review below in section 3.4, a
special case corresponds to turning on attractive interactions
for an initially unpaired, noninteracting Fermi gas ground
state. Fluctuations (either quantum or thermal) play a cru-
cial role in the real dynamics of such a quench, because the
noninteracting ground state (a fully ±sz-polarized Anderson
pseudospin magnet with a sharp domain wall at the Fermi
surface) is a metastable stationary state.

Nevertheless, one can use the Lax spectral method to con-
sider the formal limit of Δi/Δ f → 0, where Δi (Δ f ) denotes
the prequench (postquench) ground state gap (associated to a
pairing strength Gi or G f , respectively). In this limit, Δ(t) pos-
sesses a soliton solution that grows from zero, reaches a peak,
and decays back to zero [108]. The undamped oscillations of

Δ(t) in phase III can be understood as a train of such solitons
[108, 111], and are thus in some sense adiabatically connected
to the quench from an initial state with a sharp Fermi step.

Instead of the metastable normal state, here we consider the
fully sx-polarized initial state in equation (22), but now with a
pair of sharp domain walls [162]:

�si = (1/2)x̂ sgn(εi). (30)

As proposed in reference [124] such an initial state can be
prepared in a cavity QED system. In that work it is discussed
how this state can used to probe phases I, II and III in a control-
lable setting. See section 5. For the 1D cosine band employed
above, the Lax norm in the continuum limit evaluates to (cf
equation (24))

L2(u) = (Lν0)2

{[
csc−1(u/2J)

]2

(u/2J)2 − 1
+

1
g2

}
. (31)

For g = 0, this has only real roots at u = ±2J. For any g > 0,
two pairs of conjugate isolated roots nucleate into the complex-
u plane. Denote these as {u1, u∗

1, u2, u∗
2}. For this particle-hole

symmetric example, u2 = −u∗
1. In the limit of large g, one has( u1

2J

)2
� 2g2

1 − i
√

4g2 − 1
. (32)

Two pairs of isolated roots corresponds to an effective two-
spin problem, with spectral polynomial

Q4(u) = (u − u1)(u − u∗
1)(u − u2)(u − u∗

2). (33)

Parameterizing the order parameter Δ(t) in terms of an ampli-
tude and phase via

Δ ≡
√

R exp(−iφ), (34)

one can solve the two-spin problem to obtain equations of
motion in terms of the roots. Details of this calculation can
be found elsewhere [108, 112, 125]. The results are

Ṙ2 = 4(R+ − R)(R − R−)(R + R̃),

φ̇ = c1 +
c2

R
,

(35)

where

R± ≡
(
|Im u1| ± |Im u2|

)2
,

R̃ ≡ [Re(u1 − u2)]2,

c1 ≡ Re(u1 + u2),

c2 ≡ [Re(u1 − u2)]
[
(Im u1)2 − (Im u2)2

]
.

(36)

In our example (equations (31) and (32)), we define ur ≡
Re u1, ui ≡ Im u1, and u2 = −u∗

1. Then the amplitude Δ(t) is
given by

Δ(t) = 2ui dn
(

2uit
∣∣∣M)

� 2ui cos

(
2πt
T

)
, (37)

where
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M = 1 + u2
r/u2

i ,

T =
1

2ui
[4K(M) + 4iK(1 − M)].

(38)

In equation (37), dn(z|M) is the Jacobi elliptic function, with
M the ‘modulo’; the approximate form of Δ(t) given by the
second equality is a very good approximation, except for very
large |ur,i|. In equation (38), K(M) is the complete elliptic inte-
gral of the first kind, and M = k2, with k the elliptic modulus
parameter.

We conclude that the x-polarized ‘domain wall’ initial con-
dition in equation (30) gives rise to a self-generated Floquet
phase III, where the order parameter is given by the elliptic
solution in equation (37). The parameters of this solution
are determined by the four isolated roots {u1, u∗

1,−u1,−u∗
1},

where u1 is given by equation (32) for sufficiently large g.
Finally, we note that more complicated initial conditions

with additional discontinuities can excite three or more pairs
of isolated roots. These typically give rise to a self-generated,
quasiperiodic Floquet phase for Δ(t) in the prethermalized
regime [111, 165]. These quasiperiodic phases have so far
received little attention, and remain an attractive avenue for
future work.

3.4. Fluctuation phenomena

The reduced BCS Hamiltonian in equation (12) is an approx-
imation to the idealized model for a Fermi gas with short-
ranged interactions in equation (10). Only Cooper pairs with
zero center-of-mass (COM) momentum are retained. This has
several consequences. Formally, when this model is coupled
to an electric field [121], appropriate for THz driving of a
solid-state superconductor, the projection to zero-COM pairs
breaks gauge invariance. This can be restored by incorporating
the vector potential into the pairs, and still gives an effective
classical system that can be efficiently simulated numerically
[166].

Two more intricate problems are of particular theoretical
and experimental interest. These are (1) a quench from the nor-
mal Fermi liquid state, either above Tc or at zero temperature
with the pairing interactions turned off, and (2) a quench in
a system of size L � ξ, where ξ is the coherence length. We
discuss these in turn.

Quenches in which attractive pairing interactions are
switched on from an equilibrium normal state above Tc have
been studied in references [146–149]. In this case, the fluctu-
ation dynamics of the pairing amplitude are overdamped and
can be treated classically, while the Keldysh method can be
employed to evaluate one- and two-fermion observables (such
as the optical conductivity [147, 148, 164]).

By contrast, a quench from a normal system with energy
density below Tc is an extreme limit of a weak-to-strong
pairing quench, and thus would be expected to induce the
self-generated Floquet phase III (see e.g. figure 3). A weak-
to-strong BCS quench from a finite-temperature initial paired
state, in a system with N pseudospins, can exhibit O

(√
N
)

oscillation cycles, which can make phase III easily observable
for N � 1. This follows from the central-limit theorem [144].
On the other hand, the quench from the normal state would

exhibit only O(ln N) oscillations [144]. This would hardly be
distinguishable from phase II (equation (21)) in an ultracold
atom experiment (where N is not exponentially large, unlike
in solid state systems).

More problematic for ultrafast THz quench experiments in
solid-state superconductors (discussed below in section 5.1)
is the fact that practical sample sizes typically have linear
dimension L � ξ, where ξ = h̄vF/πΔ is the coherence length.
It can be shown that phase III is unstable in this case to
the spontaneous generation of spatial fluctuations (‘Cooper
pair turbulence’) [141, 142]. The mechanism is paramet-
ric resonance, and arises from Cooper pairs with nonzero
center-of-mass momentum (which are neglected in the
Richardson–Gaudin model Hamiltonian equation (12)).

Finally, it must be remembered that even equation (10)
is a significant simplification for both real ultracold Fermi
gases and solid-state superconductors. In the case of gases, it
neglects the internal degrees of freedom that can lead to losses
[167–169], while for a superconductor, it neglects the retarded
character of the dynamical pairing interaction, as typically
mediated by phonons [153, 170].

3.5. Topological features

In an ordinary, s-wave fermionic superfluid or superconductor,
the BCS and BEC regimes respectively correspond to weak
and strong pairing limits. One speaks of the BCS-to-BEC
crossover in the zero-temperature quantum phase diagram, as a
function of the pairing interaction strength (G in equation (12))
[115]. The BCS regime can be pictured as a gas of weakly
bound, strongly overlapping Cooper pairs, while the cartoon
for the BEC is a bosonic condensate of tightly bound two-
fermion molecules. Since the zero temperature system is fully
gapped for any nonzero pairing strength, the BCS and BEC
regimes are limits of the same phase.

By contrast, for non-s-wave pairing, there is typically a
genuine quantum phase transition separating the BCS and
BEC regimes. In particular, for 2D p+ ip superfluid, the
weak-pairing BCS phase is topologically nontrivial. It means
there exists a quantized integer-value winding number W,
which characterizes the phase, that takes a nonzero value.
The most important physical consequence of W �= 0 is the
presence of gapless, chiral edge states that circulate around a
2D sample of finite extent [114]. This is a superconducting
analog of the quantum Hall effect, except that the circulating
edge fermions (called ‘Majorana fermions’) carry only energy
instead of charge. A p+ ip BCS superconductor can also host
so-called ‘Majorana zero modes’ in vortex cores; these are
non-abelian anyons that could be exploited for topological
quantum computation [114, 171].

On the other hand, the strongly paired BEC regime of a 2D
p+ ip superfluid is topologically trivial; there are no gapless
edge states, and it cannot host Majorana zero modes. This
is because topology is encoded in the effective bandstruc-
ture for the fermionic quasiparticles of the superfluid, but in
the strongly paired BEC, the only low-lying excitations are
bosonic molecules. The quantum phase transition separating
the BCS and BEC regimes involves a closing of the excitation
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gap, such that gapless bulk quasiparticles appear precisely at
the transition.

Other topologically nontrivial superconductors and super-
fluids are possible in three dimensions, analogous to the dis-
tinct p-wave paired 3He B and A phases [172, 173]. The former
(latter) is a fully gapped, time-reversal invariant (gapless Weyl,
time-reversal breaking) topological superfluid; both are pre-
dicted to host gapless two-dimensional Majorana fermion
surface fluids.

Because topology and its consequences (e.g., gapless edge
and surface states) are global features of a quantum phase
of matter [151], these are expected to be immune to weak
symmetry-preserving perturbations. It is therefore natural to
ask which features survive under a global quantum quench.

Quench and Floquet dynamics in topological bandstruc-
tures is already a vast subject, see e.g. references [150, 152,
174–184]. Here we confine our attention to topological fea-
tures that emerge in a self-consistent quench, studied for a
p-wave Richardson–Gaudin model in [112, 113, 129], see also
[145, 185, 186].

The dynamical phase diagram for quenches in the 2D p+ ip
Richardson–Gaudin model is shown in figure 3. It possesses
the same three dynamical phases I, II, III for the order param-
eter Δ(t) discussed above. In this case, the self-generated
Floquet phase III is topological, and features chiral Majorana
edge states, shown in figure 4. These are similar to edge states
obtained in equilibrium [114] or under external Floquet driving
[152], except that they are induced here by a sufficiently large
weak-to-strong pairing quench. It was argued in reference
[113] that phase III might be realizable in an ultracold Fermi
gas, by quenching from an undetectably small (but nonzero)
initial gap strength Δi to an intermediate strength Δ f � Δi.
Although the latter regime is associated to strong parasitic
three-body losses [167–169] that prevent the adiabatic cool-
ing to an equilibrium topological state, a parameter window
with T � t3 could possibly allow experimental observation of
phase III. Here T is the period of the Floquet phase, and t3 is
the three-body loss lifetime.

Another key feature of the phase diagram in figure 3 is
the winding number W, which takes different values in two
regions of phase II. The W = 1(W = 0) region is a topological
(trivial) phase II regime. The topological version would host
chiral gapless Majorana edge states for a realization in terms
of paired fermions, with a sample boundary.

There are different notions of winding numbers that are
equivalent in equilibrium, but which must be distinguished
for a quench. The winding number W (Volovik invariant) is
defined via [112, 172]

W ≡ εαβγ
3!

∫ ∞

−∞
dω

∫
d2k

(2π)2
Tr

×
[
Ĝ−1

(
∂αĜ

)
Ĝ−1

(
∂βĜ

)
Ĝ−1

(
∂γĜ

)]
. (39)

Here α, β, γ ∈ {ω, kx , ky} and repeated indices are
summed. The matrix Ĝ(ω, k) ≡ ĜR(iω, k); the latter is the
analytic continuation of the Fourier transform for the retarded,
Bogoliubov–de Gennes Green’s function ĜR(t − t′, k). In

the long-time steady state of phase II, this Green’s function
is time-translationally invariant and independent of the
distribution function γi (defined in equations (28) and (29),
above). Because the retarded Green’s function encodes
information about the spectrum of excitations in the phase
II steady-state, it is the appropriate topological index to
determine the post-quench topology and its consequences
(presence or absence of edge states). In figure 3, ΔQCP denotes
the ground-state topological phase transition between the BCS
and BEC regimes; the dashed purple line is its nonequilibrium
extension.

By contrast, a different winding number defined to char-
acterize the many-body state of the system does not change
following a quench in the collisionless, prethermalized regime
[112, 174, 175]. This winding number can be defined as [112]

Q ≡ 8πεabc

∫
d2k

(2π)2

1
k

sa
k ∂ksb

k ∂φk sc
k, (40)

where k,φk are polar coordinates for the momentum plane,
and a, b, c ∈ {1, 2, 3} (again with repeated indices summed).
The winding number Q characterizes the pseudospin texture
of the many-body state. For an equilibrium topological BCS
state, this is a skyrmion texture with Q = W = 1 [112, 114].
In the BEC state Q = W = 0, and the texture can instead be
deformed to a trivial ferromagnetic one. The unitary evolution
under the Richardson–Gaudin Hamiltonian (which neglects
center-of-mass spatial fluctuations for the order parameter
Δ(t)) prevents a change in Q for any quench.

In summary, W measures the winding number of the spec-
trum realized in the asymptotic prethermalization plateau,
while Q characterizes the invariant winding of the many-body
state. The latter is defined in terms of a translationally invariant
system with periodic boundary conditions, and therefore does
not encode information about edge states. Instead, edge states
are spectral features encoded by W.

The most interesting consequence of the dual wind-
ing numbers (W, Q) out-of-equilibrium appears for phase
II quenches across the topological quantum phase transi-
tion, such that W �= Q. Then, one can show that consistency
between equations (39) and (40) requires a population inver-
sion in the occupation of steady-state quasiparticle states. I.e.,
the distribution function −γ = 1 − 2 f (equations (28) and
(29)), which has γk = −1 for all quasiparticle states in either
the BCS or BEC ground state, necessarily ‘winds’ to γk = +1
for k → 0 (the bottom of the parabolic band without pairing).
This population inversion has detectable consequences for far-
from-equilibrium phase II observables, such as rf spectroscopy
or time-resolved ARPES [112, 129]. The takeaway is that, in a
far-from equilibrium situation, a topological change (W �= Q)
can be encoded in real bulk observables, due to the induced
quasiparticle population inversion [112, 187]. This predicted
bulk population inversion was very recently proposed as an
experimental signature for the topological transition in a
trapped ion magnet [188].

Finally, we note that the quenches studied of p+ ip super-
fluids in references [112, 113, 129] always assumed an ini-
tial nonzero p+ ip order (Δi �= 0 in figure 3). As discussed
in section 3.4, a quench from the normal state requires an
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analysis of thermal and or quantum fluctuations. However,
even in the superconducting phase it is possible to have an
initial combination of both p+ ip (‘Δ+’) and p− ip (‘Δ−’)
orders, given that the natural p-wave pairing interaction is
time-reversal invariant. A very recent study [189] demon-
strates that the coherent, topological phase III is replaced by a
chaotic non-Floquet phase III′, for a quench in such a p-wave
system from any simultaneously initial nonzero combination
of {Δ+,Δ−}. On the other hand, the topological Floquet
phase III is recovered for arbitrarily weak time-reversal sym-
metry breaking in the Hamiltonian, which favors (e.g.) the
development (suppression) of p+ ip (p− ip) order [189].

4. Dynamical phase transitions in infinite
dimensions

For systems which follow a collisionless time evolution, non-
thermal dynamical phases can be distinguished in terms of the
asymptotic behavior at long times. Beyond this paradigm, a
universal understanding of DPTs has yet to emerge. A generic
interacting quantum system is expected to thermalize [190],
in which case DPTs, such as between phases I to III in the
collective spin models of section 3, turn into a crossover within
the pre-thermal regime. To progress in an understanding of
DPTs in non-integrable systems, we can therefore put forward
the following questions: (i) how sharp are crossover phenom-
ena which derive from exact mean-field DPTs under experi-
mentally accessible conditions? Are they well-defined even in
a realistic solid state setting, and can they be engineered on
quantum simulation platforms? (ii) Can one identify different
dynamical transitions which are entirely characterized in terms
of the short-time dynamics? (iii) Can thermalization be inhib-
ited even in non-integrable systems, so that sharp dynamical
transitions exist in the long time behavior?

A challenge in investigating these questions is that the
time evolution in non-integrable quantum systems is typically
exponentially hard to compute. One limit in which many-body
systems can be studied in a numerically controlled way is
the limit of infinite dimensions, or infinite lattice connectivity
Z →∞ [191]. In contrast to spin models for which mean-field
theory becomes exact in this limit (cf DPTs in sections 2.1
and 3.2), the dynamics of fermionic or bosonic lattice mod-
els generally remains non-integrable and ergodic. The limit
of infinite dimensions therefore provides a useful setting to
investigate the fate of DPTs when the dynamics is no longer
collisionless. In the following section we will briefly comment
on the solution of lattice models, in particular the Hubbard
model, in this limit, and then review two types of DPTs: (i)
a crossover in the pre-thermal evolution of symmetry-broken
states (section 4.2), which is closely related to the mean-field
DPTs discussed in the first part of this review, and (ii) DPTs
in the short-time evolution (section 4.3) which either separate
distinct pre-thermal regimes or are related to Bloch oscillations
in a time-independent potential gradient.

As a remark we emphasize that the study of non-integrable
quantum dynamics is a very active field of research also in the
opposite numerically accessible limit, i.e., one-dimensional
and finite systems. In particular, many-body localized phases

in disordered systems show non-ergodic behavior [192–194],
and the separation between non-ergodic many-body localized
phases and thermal phases [195] can give rise to dynamical
phase transitions. Weak ergodicity breaking with unusually
long relaxation times has also been observed in translation-
ally invariant systems due to dynamical bottlenecks and con-
straints, somewhat analogous to arrest in glassy dynamics
[196–203], and many-body dynamics can remain constrained
to atypical eigenstates [204, 205], or quantum many-body
scars [206–208]. These settings are naturally interesting for
a study of DPTs, but a detailed review of this field of research
is beyond the scope of the present work (cf discussion in
section 5).

4.1. The Hubbard model in infinite dimensions

A paradigmatic model for strongly interacting fermions is the
Hubbard model, given by the Hamiltonian

HHub = −J
∑
〈i, j〉,σ

c†iσc j,σ + U
∑

j

n j↑n j↓. (41)

Here c j,σ (c†j,σ) is the annihilation (creation) operator for a

fermion with spin σ ∈ ↑, ↓ on a lattice site j, and n jσ = c†jσc jσ

is the onsite number operator. The model describes tunnelling
of particles between neighbouring sites 〈i, j〉 on a lattice, with
a local interaction U. Depending on interaction and filling, the
Hubbard model gives rise to Mott-insulating, magnetically-
ordered, and superconducting phases in equilibrium, making it
a suitable platform to explore DPTs. A nontrivial solvable limit
of the Hubbard model is that of infinite lattice connectivity
Z →∞. For example, the connectivity can be systematically
varied on the Bethe lattice, or on the D-dimensional hypercu-
bic lattice with Z = 2D. When the tunnelling matrix elements
are rescaled like J = J0/

√
Z, with fixed J0, interaction and

kinetic energy for a system with given nonzero filling fraction
(e.g. half filling) remain of the same order, resulting in a
meaningful competition of various phases [191]. At the same
time, the many-body self-energy Σ(k,ω) becomes local in
space (independent of momentum k) [209], and the model
can be solved exactly within dynamical mean-field theory
(DMFT) [210]. Within DMFT, the local self-energy Σ(ω) is
obtained from a quantum impurity model in which one site
of the lattice is embedded in a self-consistently determined
particle reservoir [211]. Using Keldysh Green’s functions,
DMFT can be formulated to study lattice models in different
non-equilibrium settings [212–214], including the transient
dynamics of isolated lattice systems, non-equilibrium steady
states of dissipative driven systems [215–217], and period-
ically driven systems (Floquet DMFT) [218]. The quantum
impurity model for the Hubbard model can be solved numer-
ically exactly for short times using real time quantum Monte
Carlo (QMC) [219], or matrix product state (MPS) simulations
[220]. Long-time simulations are still exponentially hard due
to the dynamical sign problem in the case of QMC, and due to
the unbounded growth of the entanglement typical for global
quenches in many-body systems in the case of MPS. Never-
theless, diagrammatic expansions on the level of the impurity
model both at weak coupling [221] and at strong coupling
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[222] allow for a solution at long times, and thus provide a
unique possibility to achieve a non-perturbative description of
the many-body dynamics in a high-dimensional system.

4.2. DPTs related to non-thermal symmetry breaking

The half-filled Hubbard model on a bipartite lattice supports
antiferromagnetic (AFM) order in the repulsive case U > 0,
and superconductivity as well as charge density wave order in
the attractive case U < 0. In the following, we focus mainly
on the repulsive model; the attractive model can be mapped
onto the repulsive one by a particle hole transformation. At
weak-coupling (U � J0), the normal (non symmetry broken)
state is metallic and the AFM phase can be understood within
mean-field theory. For U � J0, on the other hand, the normal
state is a Mott insulator, and the ordered phase is described
by a low-energy Heisenberg model. For U < 0, the two limits
correspond to BCS superconductivity at weak interactions,
and a condensate of preformed pairs (BEC) in the Mott
regime, respectively. The transition temperature is maximal at
the crossover, where U is comparable to the non-interacting
bandwidth W (which is proportional to the tunneling J0).

The dynamics of the ordered phase after quenches of the
interaction has been studied both at weak and at strong inter-
actions. The weak-coupling limit is hereby closely linked
to the mean-field models discussed in the first part of this
review. To see this, one can choose a unit cell with two
sites (corresponding to the two sub-lattices A and B) and
define momentum-space spinors ψ̂kσ = (ckAσ, ckBσ)T; here k
is a quasi-momentum in the Brillouin zone of the symmetry-
broken state, which has a doubled unit cell with respect
to the normal state due to the antiferromagnetic order-
ing. With this, one can introduce Anderson pseudo-spins
Sx

kσ = 1
2

∑
σψ̂

†
kστ̂ xψ̂kσ , Sy

kσ = 1
2

∑
σσψ̂

†
kστ̂ yψ̂kσ, and Sz

kσ =
1
2

∑
σσψ̂

†
kστ̂ zψ̂kσ , with the Pauli matrices τ̂ α. The Neél

order parameter is the sub-lattice magnetization, m = 〈nA↑〉 −
〈nB↑〉 = 〈nB↓〉 − 〈nA↓〉, which becomes m = 1

Nk

∑
k〈Sz

k〉 in
terms of the pseudo-spins. The mean-field Hamiltonian reads
(up to terms which are absorbed in the chemical potential)

Hmf =
∑

k

�Bk(t) ·�Sk, (42)

with the self-consistent pseudo-magnetic field �Bk(t) =
(2εk, 0,−Um(t))T; εk is the dispersion. Equation (42) is a spin
model with all-to-all interaction as discussed in section 3.
Upon a particle-hole transformation it is equivalent to the
mean-field models studied for BCS superconductors [109],
see also equation (12). After an interaction quench starting
from the symmetry-broken state, the order parameter m
will therefore either show damped collective oscillations
(phase II), an exponential decay (phase I), or self-sustained
oscillations (phase III). The solution of the Hubbard model
beyond mean field theory allows one to investigate the fate of
these DPTs outside the collisionless regime.

To study quenches at weak coupling, one can prepare
the system in the AFM phase at a given interaction Ui,
and suddenly decrease U to a smaller value Uf . Figure 7
shows the results for a simulation on the infinitely coordinated

Figure 7. (a) Antiferromagnetic order m after an interaction quench
in the Hubbard model on the infinitely connected Bethe lattice. All
energies (times) are measured in terms of the (inverse) tunneling J0,
the noninteracting bandwidth is W = 4. Different curves correspond
to different final interactions Uf = 1.9, 1.8, . . . , 0.9 from top to
bottom. The arrow indicates the value of the order parameter after
thermalization. (b) Analogous to (a), but for a larger initial value of
the interaction, and Uf = 2.4, 2.3, . . . , 1.4. (c) Energy and time
scales related to the transition (see text) for the initial interaction
Ui = 2, as function of the quench amplitude Uf . Figure adapted with
permission from reference [223].

Bethe lattice. For the smaller value of the initial interaction
(Ui = 2J0), one can clearly distinguish two dynamical regimes
(figure 7(a)): after weak quenches (Uf > 1.2J0), the order
parameter shows a damped oscillatory decay towards a finite
value at the longest simulation times (phase II), while for
larger quenches, it follows a monotonous exponential decay
(phase I). Similar dynamical transitions related to symmetry
broken states in infinite dimensional systems are found in
a time-dependent Gutzwiller solution of the Hubbard model
[224], and for quenches in an O(N ) model including fluctua-
tions beyond mean field [95], though both approaches cannot
describe thermalization. In the DMFT solution, interactions
lead to thermalization, and for quenches close to the dynamical
critical point Uc between the two regimes, the order parameter
will eventually decay to zero both in phase I and in phase
II. However, for sufficiently weak interactions the crossover
between the two phases remains remarkably well-defined, and
one can even extract the critical behavior close to U = Uc: the
decay time τ def of the order parameter in phase I diverges like
τ def ∼ |U − Uc|−1 and the oscillation frequency ωm in phase
II vanishes like ωm ∼ |U − Uc|. Even for interactions U which
are half the bandwidth W, this critical behavior can be observed
over an order of magnitude in time (figure 7(c)).
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Because of thermalization, the dynamical crossover
becomes less well-defined at larger interactions (figure 7(b)).
A relevant question is therefore whether one can
experimentally distinguish the decay of the order parameter
related to phase I from thermalization, although both
eventually lead to a vanishing of the order parameter. An
indirect evidence would be a crossover in the relaxation
time as the system proceeds from the dephasing dynamics to
thermalization. More interesting would be a direct measure
of the individual momentum-resolved pseudo-spins Sk: in
the dephasing scenario (phase I), the magnitude of 〈�Sk〉
remains nonzero for all k, but individual spins oscillate out
of phase. In the thermal evolution, in contrast, the magnitude
of 〈�Sk〉 for momenta at the Fermi surface decays to zero.
Information on the individual pseudo-spins may be obtained
by measuring correlations in the momentum occupations
〈nkσnk+Q,σ′ 〉 − 〈nkσ〉〈nk+Q,σ′ 〉 between momenta k and k + Q
separated by the antiferromagnetic nesting vector Q. For
cold atoms, such quantities could be addressed using noise
correlations in time of flight measurements [156–158], while
in the solid-state setting intensity correlations in time-resolved
photoemission spectroscopy may provide similar access to
such higher order correlations in the momentum distribution
and thus distinguish the phase I dephasing from thermalization
[159].

The findings for weak quenches in the Hubbard model are
reminiscent of non-thermal fixed points in bosonic models [4,
225–228]. Non-thermal critical behavior in this case has been
linked to an emergent universal form of the momentum distri-
bution function with a steady flow of energy between short and
long length scales. To what extent DPTs between phases I and
II in mean-field models give rise to non-thermal critical behav-
ior when interactions beyond mean-field are taken into account
is still an open question. For the Fermi–Hubbard model,
one could look for universal power laws in the momentum-
dependent spin structure factor (antiferromagneticcase) or pair
distribution function (superconducting case). A close passage
of the non-thermal critical point may moreover lead to a
delay in thermalization. For the DMFT simulations, however,
the dynamical crossover and subsequent thermalization have
so far been seen within the same simulation only for larger
interactions, where thermalization is fast, but at the same time
the crossover is already relatively broad.

Recent simulations of the long-time dynamics using self-
consistent second-order perturbation theory for the Z →∞
Bethe lattice have focused on the thermalization of the order
parameter in phase II after the decay of the collective oscilla-
tion [229]. The system remains in the non-thermal symmetry
broken state for a long period of time, with a slow decay of
the order, and a gap separating a valence and conduction band.
The transient state in this regime is approximately described
by a quasi-steady state with separate chemical potentials in
the valence and conduction band. At some point, however,
the dynamics speeds up, and the system rapidly approaches
the disordered state. This highly non-monotonous decay con-
trasts the conventional evolution of pre-thermal states, which
is expected to be a single exponential relaxation of slow
variables (almost conserved quantities) [4, 52, 230, 232]. The

initial bottleneck against thermalization in the ordered phase
may be linked to the gap in the electronic spectrum, so that
the non-thermal symmetry-broken phase is somehow self-
sustained. Whether such self-sustained relaxation bottlenecks
are robust beyond the second order perturbation theory and
beyond the infinite dimensional limit is yet to be seen; if so,
the prolonged pre-thermal regime would make the dynamical
crossover between phase I and II more well-defined.

Next, one can ask for the existence of phase III, i.e., self-
sustained oscillations of the order parameter, in the interacting
Hubbard model. In the mean-field model (42), phase III would
require quenches to larger interaction, for which the mean-
field description of the Hubbard model is probably no longer
valid. It is nevertheless interesting to see whether phase III
can appear in large quenches of the Hubbard model, such as
quenches from the Mott AFM to intermediate coupling, where
the AFM order is strongest. Even within DMFT, there is at
present no approach which provides an unbiased solution to
the long-time evolution in both the weak and strong coupling
regime. However, one can obtain a numerically exact solution
for short times within an MPS-based solution of the DMFT
equations, when the initial state of the model is prepared as
a perfect Neél AFM, i.e., the mean-field state of the strong-
coupling Heisenberg model [233]. In this case, no indications
of phase III are found for quenches to arbitrary interactions
[233]. For quenches to small U one finds instead a prompt
decay of the order parameter within a few hopping times. The
experimental realization of this scenario would be the analog
of quantum simulation experiments that analyzed the decay
of charge order in a Bose–Hubbard model in one dimension
[234].

Quantum quenches in the symmetry broken states have also
been performed at large U, within the Mott phase. In this
case, the Mott gap itself provides a dynamical constraint which
leads to slow thermalization of the interaction energy (double
occupancy d = 〈n j↑nj↓〉) and the kinetic energy [235, 236].
Relaxation times are found to be exponentially long in the
ratio U/J0 [237, 238], closely related to the slow decay of
doublons in cold atom experiments [239, 240]. A quenched
state can therefore relax into non-thermal phases in which
the density of doublons is fixed as a quasi-conserved quan-
tity. In particular, the repulsive single-band Hubbard model
favors superconductivity in the η-pairing channel [241] if
the doublon density is sufficiently increased with respect to
the equilibrium state at the same effective temperature [236,
242, 243]. Such non-thermal phases in Mott insulators have
been discussed in connection to possible light-induced super-
conductivity [242–246]. Because of the exponentially slow
thermalization, dynamical phases which correspond to a relax-
ation to different ordered or disordered non-thermal states can
be well-defined, with a non-thermal critical behavior [247].
However, as long as the non-thermal states are protected by
a single or few quasi-conserved quantities, dynamical tran-
sitions related to these non-thermal phases should be close
to dynamical transitions related to the relaxation to different
equilibrium phases in a model which incorporates the con-
straints. For the Hubbard model at large U, where the doubly
occupancy is the quasi-conserved quantity, the resulting model
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is a generalized t − J model, which describes two species of
fermions (holes and doubly occupied sites) moving on the
background of quantum spins that interact via an antiferromag-
netic Heisenberg exchange. The phase diagram of this model
has been studied as an approximation of the non-equilibrium
phase diagram of the photo-excited Hubbard model for both
the infinite-dimensional [242] and the one-dimensional case
[243].

4.3. DPTs between pre-thermal phases at short-time

A non-perturbative solution of the short time dynamics after
an interaction quench in the Hubbard model from the non-
interacting Fermi sea has been obtained using DMFT and
QMC [248]. The system is initially prepared in the noninter-
acting Fermi sea, and at time t = 0, the interaction is suddenly
quenched to a value Uf > 0. The subsequent dynamics can be
monitored in terms of various observables, most importantly
the momentum occupation nk(t) = 〈c†k,σck,σ〉 and the doubly
occupancy d(t) = 〈nj↑n j↓〉. In the initial state, nk shows a unit
size discontinuity ΔnF = nk−F

− nk+F
across the Fermi surface;

k±
F denotes a momentum infinitesimally above (below) the

Fermi momentum. In thermal equilibrium, the discontinuity
in the momentum distribution of a Fermi liquid exists only at
zero temperature. Because a quenched system is excited with
respect to the ground state, the existence of a finite jump ΔnF

indicates that the system is not yet thermalized. Moreover,
one can show that the jump discontinuity is robust: while
the magnitude ΔnF can change at t > 0, there remains an
exact step-singularity in the momentum distribution, and the
location of the discontinuity is precisely given by the nonin-
teracting Fermi surface [249]. Hence, ΔnF can be taken as an
order parameter to distinguish different dynamical regimes.

After the quench, one observes two distinct dynamical
regimes, see figure 8: for small quenches below a value U =
Ufc (Ufc = 3.3J0 for the infinitely connected Bethe lattice),
the Fermi surface singularity rapidly decreases to a value
ΔnF > 0. The subsequent slower decay toward the thermal
value ΔnF = 0 is not resolved within the short time simula-
tions. For quenches above Uf = Ufc, the dynamics features
damped oscillations, with zero-crossings ofΔnF. For quenches
to an interaction between the two dynamical regimes, the
whole momentum distribution thermalizes rapidly. Thermal-
ization is also verified by the fluctuation dissipation relation in
dynamical correlation functions [251].

The dynamical transition in the short time evolution is not
directly related to the equilibrium Mott transition: Ufc is about
a factor two smaller than the equilibrium Mott transition at
temperature T = 0, and the final state, after thermalization
to a given temperature T∗, is in a bad metallic regime far
from any known transition in the equilibrium phase diagram.
Intriguingly, a singularity in the equilibrium two-particle ver-
tex, which is related to multi-valuedness of self-consistent
perturbation theory [252], has been found right at the point
(Ucf , T∗) [253]. Whether this is coincidental, or whether such
vertex singularities in general are related to DPTs is an open
question.

It is useful to note that the two dynamical regimes reflect
distinct pre-thermal behavior which can be understood in

Figure 8. Upper panels: Fermi surface discontinuity ΔnF(t) for an
interaction quench in the Hubbard model on the Bethe lattice
(noninteracting bandwidth W = 4), from the noninteracting state to
interactions U as indicated. The left and right panel correspond to
the different dynamical regimes below and above Ufc = 3.3.
Adapted with permission from [248]. Lower panels: solution of the
same model using the time-dependent Gutzwiller approach: left is
the quasiparticle weight (Z) and the double occupancy (D) for
quenches below (Uf < Ufc) and above (Uf > Ufc) the DPT, right the
period of oscillations for different values of the doping δ away from
half filling, as function of Uf . A sharp DPT is observed for δ = 0
with a divergence of the period. Adapted with permission from
[250].

opposite perturbative limits (although these perturbative limits
cannot give a description of the transition itself ): quenches
from U = 0 to weak coupling have been studied using per-
turbative unitary transformations [52] which are accurate for
quenches U � J0, on a timescale t � J0/U2. The unitary
perturbation theory maps the Hubbard model on a system of
non-interacting renormalized quasiparticles; the quasiparticle
occupations ñk are conserved, providing a constraint on the
dynamics which prevents the system from reaching a ther-
mal state. For quenches to U � J0, the effective model that
describes the dynamics at least on timescales up to U/J2

0 can
be obtained by unitary perturbation theory, treating J0 as a
small parameter: it is the generalized t − J model mentioned at
the end of section 4.2, where the number of doubly occupied
sites and holes provides a constraint on the dynamics. The
oscillations are well understood in the limit J0 = 0, where the
dynamics of the system would be 2π/U-periodic, because the
many-body spectrum is perfectly equidistant (analogous to the
collapse and revival oscillations in the bosonic Hubbard model
[254, 255]).

While the two dynamical regimes can be understood in
a respective perturbative limit, an analytical model of the
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dynamical transition itself has been observed within time-
dependent Gutzwiller theory [250, 256]. The time-dependent
Gutzwiller provides a variational approach to the dynamics;
for the Hubbard model, one starts from a variational ansatz
wave function

|Ψ(t)〉 =
∏

j

e−iS j(t)P j(t)|Φ(t)〉, (43)

where |Φ(t)〉 is a time-dependent Slater determinant, P j(t) =∑
n=0,1,2 λ j,n(t)P j,n, and S j(t) =

∑
n φ j,n(t)P j,n are operators

written in terms of variational parameters λ j,n(t) and φ j,n(t)
and the local projectors P j,n on the occupation n = 0, 1, 2 on
site j. The time-dependent variational principle δ〈Φ(t)|i∂t −
H|Φ(t)〉 = 0 leads to a set of nonlinearly coupled differential
equations for the variational parameters. Within the Gutzwiller
approach, an exact dynamical transition is observed, which
shares many features with the DMFT results (see figure 8,
lower panels): for small quenches, the quasiparticle weight
Z(t), which is proportional to the jump ΔnF defined above,
oscillates around a nonzero value. Its time average Z̄ tends to
zero as Uf approaches the dynamical transition. For quenches
to the dynamical critical point, Z(t) exponentially relaxes to
its thermal value Z = 0. The value Z̄ follows the pre-thermal
plateau obtained by DMFT with quantitative accuracy [250].
For quenches beyond Uc, Z(t) oscillates with a zero crossing. In
contrast to the full solution, the Gutzwiller approach does not
describe thermalization, and the dynamical transition therefore
distinguishes the dynamics at all times.

Being computationally inexpensive, the Gutzwiller
approach has allowed one to study the DPT in a wider
range of parameters: (i) by varying the initial U = Ui, one
can map out a dynamical phase diagram which connects
the dynamical phase transition to the equilibrium Mott
transition Ueq

c : for Ui = 0, the dynamical point Ufc is below
Ueq

c , while it approaches Ueq
c as Ui is increased [250]. (ii)

Moreover, the dynamical transition persists if the interaction
is ramped up with a nonzero ramp time τ instead of a quench
[257, 258]. The dynamics after the ramp still distinguishes
different dynamical regimes, and the DPT evolves towards
the equilibrium phase transition for larger τ , as expected
for an adiabatic dynamics. (iii) When the system is doped
away from half filling, where there is no Mott transition in
equilibrium, the dynamical transition turns into a crossover.
In particular, time averages of the double occupancy and
of Z evolve smoothly as a function of Uf . Finally, (iv),
time-dependent Gutzwiller simulations have been performed
for a multi-orbital Hubbard model [259], which turns out
to be different from single-band case due to inter-orbital
fluctuations. The dynamical transition is replaced by a broad
regime in which the different occupations evolve irregularly,
which may be interpreted in terms of long-lived fluctuations
between metallic and insulating states.

Unfortunately, DMFT simulations have so far been per-
formed neither away from half filling nor at nonzero Ui, due
to a more severe dynamical sign problem. Hence there are
so far no numerically unbiased simulations to support these
intriguing observations from the Gutzwiller approach, and a
complete picture of the dynamical transition in the Hubbard

model is yet to be developed. Another question is the extension
of the transition to lower-dimensional systems. In one dimen-
sion, the dynamics has been calculated using a systematic
solution of the equation of motion for the field operators ciσ in
terms of higher order operator products [260]. It is found that
the non-equilibrium time-evolution after interaction quenches
exhibits a similar dynamical transition as in the half-filled
case, while the transition becomes a crossover upon doping.
This may suggest that the dynamical transitions is a general
feature of quenches in such models [260]. On the other hand
the prethermalization is typically less pronounced in lower
dimensions [260, 261].

Finally, a DPT has been found in the Bose–Hubbard model
on an infinitely connected lattice [262], for quenches from the
superfluid phase toward to Mott phase. A solution of the Bose
Hubbard model within the non-equilibrium generalization of
bosonic DMFT [263] can be done at least for the short time
evolution. In this case a single DPT is replaced by a richer
dynamical phase diagram, including a non-thermal symmetry
broken phase for weak quenches, an extended regime in which
the system rapidly for intermediate quenches, and oscillations
of the order parameter for quenches deep into the Mott phase.

Alternative to quenches of the interaction, dynamical phase
transitions in infinite-dimensional lattice models have also
been observed after a sudden switch-on of a potential gradient.
In the non-interacting case, this leads to perfect Bloch oscilla-
tions if the gradient is aligned with a high-symmetry direction
of the lattice. In interacting models, these oscillations will
be damped, as the system approaches an infinite temperature
state (for ergodic systems) or a non-thermal steady state if
the system does not behave ergodic. In infinite dimensions,
the latter case is represented by the Falikov–Kimball model,
which allows for an exact solution in DMFT [264, 265].
The Falikov–Kimball model describes a Hubbard model in
which one species of fermions is frozen. Regarding the mobile
species, the dynamics obtained by DMFT in the normal (non-
symmetry broken) phase is identical to that of fermions with
quenched binary alloy disorder. The model does not thermal-
ize after a quench of the interaction, but instead reaches a
non-equilibrium steady state at infinite time [266]. The study
of Bloch oscillations in the Hubbard and Falikov Kimball
model in infinite dimensions gives a rich dynamical phase
diagram [213, 267, 268], with transitions between oscillatory
and non-oscillatory regimes.

5. Experimental observation

This section overviews a broad number of platforms which are
currently employed as quantum simulators for the evolution of
interacting many-particle systems where DPTs can be hosted.
For continuity with the two previous theory sections, we start
by discussing the state of the art in experiments realizing
dynamical phases in solid state platforms, and then move to
cold atoms experiments.

5.1. DPTs in condensed matter systems

The DPT in the integrable BCS model discussed in section 3
neglects the retarded character of the dynamical pairing
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interaction, which is typically mediated by phonons [153,
170]. Nevertheless, under specific conditions superconducting
materials could be described by the integrable BCS model
and display the three distinct dynamical phases I, II, and III
discussed in section 3.2. For that to happen, the asymptotically
exact long-time results obtained from the Richardson–Gaudin
model can be relevant to experiments which can access a
long prethermalization plateau. For a system of many particles
N � 1, this requires that the minimum inelastic lifetime due
e.g. to pair-breaking collisions or inelastic electron–phonon
scattering in a superconductor must be much larger than
tdyn � 1/Δ∞. Here tdyn is the timescale for transitioning to
the asymptotic regime and Δ∞ is the steady-state value of
the order parameter in the prethermalization plateau (phase II)
[125].

In the case of two-particle collisions for a quench entirely
confined to the weak-pairing BCS regime, the two-particle
scattering time can be estimated using Fermi liquid theory
[125, 269] tin ∼

(
εF/Δ∞

)
tdyn � tdyn, where εF is the ground-

state Fermi energy. This is consistent with simulations for the
Hubbard model in infinite dimensions (section 4.2), which find
a well-defined separation of phase I and phase II even when
inelastic collisions are taken into account.

To observe phase III, the period T of the quench-induced
Floquet oscillation should be much shorter than the minimum
inelastic lifetime. For a quench from an initial BCS state
with small (but nonzero) Δi, the Floquet period is of order

T = 2
Δ f

ln
(

Δ f
Δi

)
� τin, where now τin ∼

(
εF/Δ f

2
)
, and Δ f

denotes the ground-state pairing gap for the post-quench sys-
tem [108, 109, 113].

In addition to the above requirement, the quench that brings
the superconductor out-of-equilibrium must occur on time-
scales shorter than the inverse of the quasi-particle gap, to
ensure the quasiparticle distribution does not adiabatically
follow the variation of the system parameters. At the same
time the perturbation has to be weak enough to avoid dis-
rupting the system. The latter has been the most important
limitation. Near-visible femtosecond optical pulses, which are
used as a non-adiabatic excitation of solid state systems are
not compliant since excitations with a frequency higher than
the BCS gap can break Cooper pairs into hot quasiparticles,
and these can serve as an efficient mechanism for rapid dissi-
pation and thermalization. Nevertheless recent developments
in THz technology are allowing now the injection of near
monocycle pulses with center frequency close to the BCS
gap, opening a window to investigate the coherent transient
dynamics of superconductors in the nonadiabatic excitation
regime over a window of about 10 picoseconds (ps), well
before thermalization occurs on a time scale of 100 ps.

In particular the experiment done by Matsunaga et al
injected an intense, short-duration THz pulse with center fre-
quency ω � Δ0 into a low-temperature NbN thin film s-wave
superconductor [116, 117]. Since most of the spectral weight
of the pulse was below the optical gap edge 2Δ0, a weak pulse
would not be expected to couple to the system [170]. However,
because of the strong character of the injected pulse, it coupled
in a nonlinearly fashion and was able to excite the ‘Higgs’

Figure 9. A possible experimental realization of a phase II quench
in a solid-state superconductor by Matsunaga et al, from reference
[116], see also [117]. This figure shows pump–probe THz
spectroscopy data on thin film Nb1−xTixN. The left panel shows the
probe signal oscillations of Δ(t), and implies the approach to a
nonequilibrium value Δ∞ < Δi (weak phase II quench). The
approach of Δ(t) →Δ∞ is characterized by decaying oscillations
with frequency 2Δ∞ (top right), consistent with the theory
(equation (21)) [111, 160].

(amplitude) mode of the superconductor. After the applica-
tion of the pulse, the subsequent free evolution of Δ(t) was
expected to be described by the s-wave Richardson–Gaudin
model. The experiment [116] measured the system over a win-
dow long enough to observe decaying oscillations as predicted
by the Lax method in equation (21), as shown in figure 9.
Despite the different method of initial state preparation (THz
pulse versus instantaneous interaction quench), the phase II
dynamics was apparently observed.

A THz electric field pulse can be incorporated into the
self-consistent solution for the BCS (Bogoliubov–de Gennes)
equations. In order to induce a nontrivial evolution of the
system, it is necessary to either account for the finite (but
very small) photon momentum [118–120, 122], or to include
non-quadratic corrections to the band dispersion [121]. More-
over, in order to model the experiment in reference [116],
a short-duration Gaussian electric pulse E(t), with frequency
content mostly below the equilibrium optical gap 2Δ0, needs
to be fed into the equations of motion for the Anderson pseu-
dospins. The field twists the pseudospins in the x–y plane,
scrambling the ground state order as shown in figure 5. Impor-
tantly, the driving of the Higgs mode arises from nonlinear
coupling to the field [117, 121]. After the cessation of the
pulse, the system is expected to evolve freely according to the
Richardson–Gaudin Hamiltonian.

The Richardson–Gaudin calculation [121] predicts a transi-
tion to the gapless phase I for sufficiently strong pump energy,
as shown in figure 6. Indeed a putative gapless phase (with sup-
pressed reactive component of the optical conductivity σ2(ω))
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was observed for sufficiently strong pump powers in refer-
ence [270], potentially consistent with phase I. Strikingly, this
experiment also observed extremely slow relaxational dynam-
ics following the quench, on the order of 1000 ps. A subsequent
experiment utilizing asymmetric, multicycle pulses exhibited
an intervening ‘gapless’ phase with Δ∞ �= 0 [271].

A discrepancy between the collisionless phase II prediction
in equation (21) and the data in reference [116] is the more
rapid decay of the oscillating envelope than t−1/2. This is also
consistent with the simulations for the interacting Hubbard
model in section 4.1. A better theoretical fit can be obtained
by employing a phenomenological ‘T2’ dephasing time [272].
Another key question is whether spatial fluctuations (‘Cooper
pair turbulence’ [141]) play an important role in these solid-
state experiments [116, 117, 270, 271]. See discussion in
section 3.4.

We finish this section by noting that we have not surveyed
here work involving the steady-state of driven solid-state mate-
rials [150]. In particular, we do not review multipulse THz
driving [272] or continuous-wave mid-infrared laser excitation
of superconductors. The latter has attracted significant interest
as a possible mechanism for enhancing pairing or Tc far from
equilibrium [146–149, 273–280]. Continuous driving has also
been discussed in the context of third-harmonic generation via
the Higgs mode [117, 281–283]. Although these are certainly
interesting developments, our focus here is on the collisionless
dynamics of an effectively isolated system, free from external
driving (following the quench).

5.2. DPTs in cold atom experiments

DPT in the long-range Ising model. The first observation and
quantitative characterization of a DPT was done in a trapped
ion quantum simulator consisting of a chain of up to N = 53,
171Yb+ ions trapped in a linear radio-frequency Paul trap [57]
(see figure 10(a)). Two relevant hyperfine levels were used as
a spin 1/2 degree of freedom. Note here we are not accounting
for experimental observations of DPTs described in terms
of non-analytic behaviors of the Loschmidt echo amplitude
which were observed at a similar time [13, 284]. A discussion
of these type of experiments can be found in reference [14].

In reference [57] pairs of laser beams were used to generate
an optical dipole force that off resonantly excited vibrational
modes of the ion chain. The virtually excited phonon modes
in turn mediate tunable spin–spin interactions which lead
to long-range Ising couplings in the form of equation (1).
Explicitly, the engineered Hamiltonian is given by

1
2

∑
i> j

χi jσ̂
x
i σ̂

x
j +

B
2

∑
i

σ̂z
i , (44)

with coupling constants that fall off as χi j ≈ J0/|i − j|α, i.e.,
approximately algebraically with the distance between ions in
the chain. The power-law exponentαwas set to be between 0.8
and 1.0 in the experiment. Here σ̂x,y,z

i are Pauli matrices acting
on the ith ion. The competing transverse field proportional to
B was generated in the experiment by a controllable Stark shift
on the spins from the same laser field that generated the optical
dipole force. The transverse field B was used as the control

parameter for crossing the DPT. At time t = 0, the system was
initialized in the state with all the spins pointing along the x
direction of the Bloch sphere and the system was let to evolve
under the combined Ising plus transverse field Hamiltonian for
some time t after which the collective magnetization

〈σ̂x(t)〉 = 1
N

∑
i

〈σ̂x
i (t)〉, (45)

and the corresponding time averaged value were measured

〈σ̂x〉(T) =
1
T

∫ T

0
〈σ̂x(t)〉dt, (46)

equivalent to equation (5). At the mean field level the time
average magnetization 〈σ̂x〉 is expected to change, as dis-
cussed in section 2.1, from a finite value to zero as the system
crosses between a dynamical ferromagnetic phase (B < Bc)
to a dynamical paramagnetic phase (B > Bc). Nevertheless,
as explained in section 2.2 the quantum nature of the model
resulted in a direct decay of the order parameter towards a
vanishing or non-vanishing expectation value depending on
the dynamical phase considered, without the need of long-time
averages to classify phases.

To obtain further signatures of the DPT the experiment
measured the spatially averaged two-spin correlator

C2(t) =
1

N2

∑
i, j

〈σ̂x
i (t)σ̂x

j (t)〉. (47)

This quantity was used as a second order parameter for the
DPT. It should cross from 1 (at small B) to 1/2 (at large B)
with a dip at Bc. However, given the logarithmic scaling of C2

with N at the critical point and the limited system size of the
systems under consideration, the experiment did not observe
sharp signatures in C2 at the critical point. Nevertheless, mea-
surements of the distribution of domain sizes in the chain (a
direct measurement of higher-order correlations) accessible
in the experiment allowed it to observe a sharp change of
behavior at the critical point.

DPT in the Lipkin?Meshkov?Glick model. After this
work a similar type of DPT was observed in two dif-
ferent platforms, more specifically the one in the so
called Lipkin?Meshkov?Glick (LMG) model (equation (2) in
section 2.1), which corresponds the α = 0 limit of the system
described above with an additional longitudinal field, i.e.

Ĥ = χŜ+Ŝ− + BŜx − δŜz. (48)

Here we have introduced the collective spin operators Ŝα =∑
jσ̂

α
j /2 and Ŝ± = Ŝx ± iŜy. The summation runs over the

individual spins j = 1, . . . , N and the parameter χ sets the
strength of an infinite-range exchange interaction. To connect
with the Hamiltonian, equation (2), note that up to 1/N correc-
tions χŜ+Ŝ− ≈ χ(Ŝ · Ŝ − (Ŝz)2). Since the first term Ŝ · Ŝ is a
constant when restricted to the fully symmetric spin manifold,
which is the case of interest, the Hamiltonian simplifies to
Ĥ →−χŜ2

z + BŜx − δŜz, which up to an overall π/2 rotation
along the y axis of the Bloch sphere, coincides with the one
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Figure 10. Dynamical phase transitions (DPTs) observed in ultra-cold atomic gases: (a) the first DPT was observed in a trapped ion
quantum simulator of the long range Ising model plus transverse field, with up to 53 171Yb+ ions [57]. (b) A similar type of DPT, but in the
collective Ising limit plus an additional longitudinal fields (so called LMG model), was also observed in a cavity QED simulator with
N ≈ 105 –106 88Sr atoms [58], followed up by the observation of a similar DPT in a thermal gas of N = 104 –105 bosonic 87Rb atoms using a
sideband transition [59]. (d) Using a quantum degenerate trapped Fermi gas of N = 104 40K atoms the DPT between phase I and phase II
predicted to exist in BCS superconductors was observed in reference [123]. (e) Using three internal levels of 23Na atoms prepared in a Bose
Einstein condensate (BEC) with N ∼ 105 atoms a DPT was observed as the ratio between collective exchange interactions and an effective
quadratic magnetic field was tuned from positive to negative [293, 294].

realized in reference [57] with an extra term proportional to δ
which sets the longitudinal field (see figure 10(b)).

The observation of a DPT in the Lipkin?Meshkov?Glick
model was first achieved in a cavity-QED simulator using
ensembles of N ≈ 105–106 atoms [58]. We note that in the
context of cavity QED a great deal of experimental progress
has been done in the observation of non-equilibrium phases
characterized by different steady states which therefore depend
on parameters such as pump or loss rates but are indepen-
dent of the initial conditions [285–292]. We will not further
discuss these experiments in the following, as in this review
we exclusively focus on DPTs related to the unitary time
evolution.

In reference [58] the internal spin degree of freedom was
encoded in a long lived optical transition (linewidth γ/2π =
7.5 kHz) between the |↓〉 [1S0 (mJ = 0)] and |↑〉 [3P1 (mJ = 0)]
states of 88Sr atoms. The atoms were confined in a 1D optical
lattice and coupled to a single common mode of the optical
cavity far detuned from the atomic transition. In this regime
the photons can be adiabatically eliminated. As a result their
role is reduced to mediate infinite range elastic spin exchange
interactions between the atoms, with strength set by χ. The
transverse field was engineered by pumping the cavity with a
laser that generated, at resonance, Rabi flopping at frequency
B. The longitudinal field was simultaneously introduced by
detuning the pump laser by a frequency δ from the atomic
transition.

For this system the time-averaged collective magnetization

along ẑ in this case 〈Ŝz〉 ≡ limT→∞(1/T)
∫ T

0 〈Ŝz(t)〉dt serves as
an ideal order parameter as discussed in section 2.1. This is
equivalent to equation (5) up to an overall unitary rotation
that maps Sx ↔ Sz. However, in the experiment additional
inhomogeneities and other technical imperfections damped the
oscillation in the paramagnetic phase. Under these conditions
the magnetization 〈Ŝz〉 after 4 μs of time evolution served as
a proxy of the long-term time-averaged magnetization. The
experiment observed the DPT in 〈Ŝz〉 at δ = 0 using B as the
control parameter and demonstrated the expected scaling with
atom number. The DPT was also probed by varying the lon-
gitudinal field for a fixed value of the drive strength B and by
observing a sharp change of behavior of the order parameter at
the critical point. The robustness of the DPT was demonstrated
by the symmetric response of the magnetization for interaction
shift χN ↔ −χN. The experiment also explored the DPT as
a function of the initial state. It tracked the variation of the
critical point as the system was initialized in a coherent spin
state pointing along different directions.

The same LMG Hamiltonian was implemented in an exper-
iment operating with a thermal gas of N = 104–105 bosonic
87Rb atoms in a 3D harmonic trap using two hyperfine states
to set a spin-1/2 degree of freedom [59]. The two internal
states were coupled by laser fields tuned to one of the blue
side transitions, i.e. the laser not only generated a spin flip
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but at the same time increased one of the motional quantum
numbers in the trap by one unit. As a consequence the two
coupled states had different motional eigenstates. Even though
the interactions in this system are contact interactions during
s-wave collisions, effective long range interactions can emerge
in the system due to the delocalized nature of the single par-
ticle orbitals when operating in the collisionless regime. This
is achieved when the trapping potential is much larger than
the interaction strength [295, 296]. In this regime it can be
assumed, to an excellent approximation, that each atom is fixed
in a mode-space lattice with sites set by the single-particle
eigenstates of the 3D harmonic trap. The only relevant process
between two colliding atoms is to either remain in the same
internal states or to exchange them. Even when dealing with
bosonic samples restricting the Hilbert space to include only
empty or singly-occupied lattice sites is appropriate when the
gas temperature is above quantum degeneracy. Under these
conditions the contact interaction term can be mapped to a
spin-1/2 long-range XXZ spin model where the indices i, j run
over the occupied mode-space lattice sites,

Hint =
1
4

∑
i j

Ji j
�̂σi · �̂σ j +

1
4

∑
i j

χi jσ̂
z
i σ̂

z
j +

∑
i

Biσ̂
z
j. (49)

The XXZ couplings depend on the different scattering lengths
of the atoms and on the overlap integral of the corresponding
3D harmonic oscillator wave functions. The use of a blue side-
band transition that generate mismatched motional states of
the coupled internal levels allowed the experiment to generate
a finite χi j. Otherwise it would have been negligible for Rb if
the experiment had used a carrier transition (when the laser
only flips the spin). In addition to the interaction term, the
interrogating laser generated transverse and longitudinal fields
with strengths set by the Rabi frequency, and the laser detuning
from the blue sideband transition.

To observe the DPT the atoms were initialized in the |↓〉
state. For this initial state, the exchange interaction term
not only becomes a constant of motion but also locks the
atoms into the fully collective spin manifold reducing the
XXZ Hamiltonian to a LMG model with coupling con-
stants replaced by their averaged value. Similar to the cavity
experiment, instead of direct measurements of the long-time-
averaged excitation which is inevitably limited by technical
issues, the order parameter was set to be the excitation fraction
at a probe time 0.5 s. The entire phase diagram was obtained by
scanning the two-photon detuning δ for fixed transverse field
B and by varying interactions using different atomic densities
(see figure 10(c)).

We note that there is a direct connection between the
DPT in the LMG model and the phenomena of macroscopic
self-trapping and Josephson tunneling observed in coupled
atomic condensates [297–300] and in solid state polariton
condensates [301]. In this context the ferromagnetic and para-
magnetic dynamical phases can be related to the self-trapped
and tunneling phases respectively in the corresponding sys-
tems. Under this correspondence one can say that self-trapping
experiments done years back did observe indications of the

distinct dynamical behaviors. However, they did not provide
a full characterization of the DPTs.

DPT in Richardson–Gaudin models. A similar mapping
of the single-particle eigenstates of the harmonic trap onto
a lattice in mode space was used in a trapped gas of 104

ultracold fermionic potassium atoms. In this case the exper-
iment observed a DPT predicted to exist in quenched s-wave
superconductors described by Richardson–Gaudin models as
explained in section 3. As we will discuss below this DPT
has only been indirectly observed in real superconductors (see
section 5.1). The model that was simulated in the experiment
[123] was a collective Heisenberg model, in which the non-
local spin–spin couplings Ji j compete with an inhomogeneous
axial field set by hi:

Ĥ =
∑

i

hiŜ
z
i −

∑
i, j

Ji j
�̂Si · �̂S j. (50)

The inhomogeneous axial field in mode space was generated
by different harmonic confinement potentials experienced by
the two internal hyperfine levels of 40K. The strength of the
inhomogeneity was tuned in two ways. Using the polariza-
tion of one of the laser beams forming the optical trap one
change the trapping frequency in a spin dependent manner.
One can also change the temperature and therefore the dis-
tribution of the modes occupied by the atoms. Interatomic
collisions were used to generate the exchange term. Due to the
extended nature of the motional wave functions, the Ji j were
again long-ranged. The mode-dependent coupling factor Ji j

was controlled by tuning the s-wave scattering length of the
colliding atoms using a magnetic Feshbach resonance [302].
The expected critical behavior was observed in the experiment
as a function of the mean and thermally averaged interaction

strength J =
〈∑

i, jJi j/N2
〉

T
and the axial field inhomogeneity

h̃ =
〈√∑

ih
2
i /N − (

∑
ihi/N)2

〉
T

where the indices i, j run

over N populated modes (see figure 10(d)).
In the ‘all-to-all’ limit, in which coupling constants are

replaced by their mean value, Ji j → J, the Hamiltonian
becomes integrable and maps to the Bardeen–Cooper–
Schrieffer Hamiltonian for fermionic superconductors
expressed in terms of Anderson pseudospins discussed in
equation (12) with hi → 2εi and J → G. Note that at the
level of mean field the extra term (Ŝz) → 2Ŝz〈Ŝz〉 acts as a
simple collective rotation along z which does not modify the
dynamics since 〈Ŝz〉 is conserved. Moreover this term can be
removed by choosing an initial condition with 〈Ŝz〉 = 0.

Using the Lax analysis explained in section 3.2, it is
possible to obtain the dynamical phases of this model,
characterized by the total transverse magnetization S(t) =

2
√
〈Ŝx〉2 + 〈Ŝy〉2/N. The initial conditions accessible in

experiment, corresponding to a spin polarized state pointing
along the x direction of the Bloch sphere is very similar to the
simple example discussed in section 3.3, but in 3D and with a
different dispersion. In this case there is a DPT between the so
called ‘phase I’ below a critical coupling strength Jc where the
order parameter quick decays to zero and ‘phase II’ above Jc

where the order parameter S(t) exhibits transient oscillations
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at the frequency 2|J|S(∞), which slowly damp as S(t) reaches
S(∞) (see equation (21)). The oscillation frequency goes to
zero at Jc in a non-analytic manner.

The experimental work described in reference [123] not
only fully characterized the phase diagram but in addition
determined the parameter regime where the spin model was
valid. The latter was explicitly demonstrated via a many-body
echo sequence that fully reversed the spin Hamiltonian. Terms
in the Hamiltonian such as the kinetic energy, assumed to
play no role in the frozen mode approximation, were not
reversed. The experiment indeed observed full reversibility of
the dynamics in the collisionless regime where the spin model
is expected to be valid, and non-reversibility otherwise.

Although the phase diagram was characterized for the first
time in reference [123], the understanding that exchange inter-
actions can stabilize coherence in a very useful way had been
demonstrated experimentally years before. The experiments
were carried out using thermal Rb atoms, which feature a
very similar Hamiltonian to the potassium fermionic gas. Deep
in phase II (dense sample) a coherence time up to 58 s was
observed, while in phase I (dilute conditions) the coherence
time decreased to at most 3 s [303–305]. We point out that
while the Toronto experiment reference [123] was able to
observe the DPT between phase I and phase II, by simulating
a spin model, phase III has not been observed yet.

Fermionic ultracold atomic gas experiments that can actu-
ally take advantage of the Fermi statistics of the atoms instead
of an indirect mapping to Anderson pseudospins in principle
are an ideal platform for the observation of the full dynamical
phase diagram. However, unfortunately it has remained a chal-
lenge in cold atom experiments to reach conditions required to
see BCS pairing. This is because both thermal and quantum
fluctuations play a crucial role for quenches from the normal
state for systems with a finite number N of Anderson pseu-
dospins. Moreover, the control and manipulation of interac-
tions in these systems, specially for the p-wave case, typically
require Feshbach resonances. The latter unfortunately intro-
duce strong three-body processes which make the gas unstable
and destroy the desired pairing processes [113, 167–169].

Future progress on cooling these systems might allow new
opportunities in that direction. An alternative option is the use
of an ensemble of cold atoms trapped in an optical cavity. In
this case effective Cooper pairs can be encoded in internal
states of the atoms and attractive interactions between the
internal levels can be realized via the exchange of virtual
photons in the cavity. The control of the interaction strength
via the parameters of the optical cavity combined with the
tunability of the dispersion relation of the effective Cooper
pairs via Stark shifts should allow for the near term exploration
of the full dynamical phase diagram of the BCS model, as a
function of system parameters and the prepared initial state.
Reference [124] discusses a way to prepare the simple toy
model discussed in section 3.3 in a cavity setup.

DPT in multi-level systems. Beyond two-level systems,
DPTs have been also observed in spinor Bose–Einstein con-
densates (BEC) made of N ∼ 105 23Na atoms using the three
Zeeman states of the lowest hyperfine level, mF = 1, 0,−1
[293, 294] (see figure 10(e)). The experiment operated in the

regime where to an excellent approximation atoms remained
frozen in their single particle motional levels. Motional relax-
ation was only an issue at long times. Because all atoms in the
BEC share the same motional level, in this limit the bosonic
statistics enforces atoms to remain in the fully symmetric spin
manifold. The Hamiltonian that describes the internal dynam-
ics in the experiment therefore becomes a fully collective spin
model:

H =
c2

2N
Ŝ · Ŝ + q

∑
i

(Ŝz
i )

2. (51)

The first term encapsulates the spin dependent interactions,
which are infinite-range in mode space even though the atomic
collision interaction by itself is fully local. The second term
describes a quadratic Zeeman field q experienced by the atoms
from a real magnetic field plus a microwave dressing field.
Here Ŝz,i is the spin-1 operator for the ith particle along the
z component of the Bloch sphere.

To observe the DPT, the experiment prepared the majority
of the atoms in the mF = 0 level and then monitored the
number of atoms remaining in that level N0(t) as a function
of time for different values of the control parameter q. The
order parameter used in the experiment was the a quantity
Adip ≡ 1 − N0(tdip), with N0(tdip) being the value of N0(t) at
the first dip of the spin oscillations. For positive q > 0, Adip

was observed to remain almost at 0. Across the DPT transition
point of qc = 0, Adip was seen to jump to finite value which
decreased linearly with |q| when q < 0 (see figure 10(e)).
Further work in this system was able to connect the DPT
to an equilibrium phase transition not for the ground state
but for the highest energy level in a subspace with zero spin
magnetization [294].

Besides observations of DPT which happened at relatively
short times, a follow-up experiment using Rb atoms instead of
Na atoms observed another complementary type of universal
non-equilibrium behavior associated with the emergence of
non-thermal fixed points [227]. This type of behavior was
observed at intermediate times satisfying two conditions: (i)
times that are long enough to allow the frozen mode approxi-
mation used to observe the DPT to become invalid. In this case
the system loses the information about the initial conditions
due to motional relaxation. (ii) Times that are not so long that
lead the system to reach a quasi-stationary or an equilibrium
situation. In this intermediate regime it was observed that
the system develops a universal scaling behavior in time and
space. Physically the emergence of non-thermal fixed points
have been attributed to the transport of an emergent collective
conserved quantity toward low momentum scales. A similar
behavior has been observed by another experiment in a single-
component Bose gas [4, 228]. In both of these experiments
it was experimentally confirmed (by preparing different ini-
tial conditions and obtaining the same scaling behavior) that
the observed non-thermal scaling phenomenon involved no
fine-tuning of parameters.

It is clear from all the discussion presented above that
ultra-cold atomic system are opening fantastic opportunities
to probe DPTs and even more general non-equilibrium uni-
versal phenomena in controllable settings. While most of the
observations so far have been guided by theory in conditions
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where either a mean field analysis is sufficient, or when exact
calculations are possible, soon experiments will enter regimes
intractable to theory. This may lead to the discovery of new
forms of non-equilibrium phenomena not yet predicted by
theory, pushing the field into even more exciting directions.

6. Conclusions and perspectives

In this work we reviewed DPTs occurring in the large N,
N , or d limit of a broad variety of models ranging from
statistical mechanics (Ising models, φ4 field theories) to
condensed matter (Richardson–Gaudin magnets, strongly cor-
related fermions). We have also discussed numerous exper-
imental platforms where the dynamics of these models can
be realized (section 5). We have illustrated those regimes
where experiments are well fitted by the theory presented
in sections 2 and 3, as well as the limits where descrip-
tions beyond collision-less regimes may instead be required
to describe experiments. Such platforms include trapped ions,
cavity QED systems, and ultracold Bose and Fermi systems.
They can be employed to demonstrate a broad variety of
universality classes of DPTs in isolated quantum systems, and
possibly study in the near future operational regimes where
DPTs require a full quantum mechanical treatment and cannot
be captured by an effective semi-classical description.

There are promising avenues for the future of pre-thermal
collisionless DPTs. For instance, Rydberg simulators have
been recently shown to be capable to access long-lived ather-
mal states beyond the conventional pre-thermal paradigm
[306, 307], referred to as quantum scars [308] and defying
the eigenstate thermalization hypothesis. This could be poten-
tially employed in the near future to study forms of DPTs
which cannot be characterized within a simple semi-classical
description. Recent implementations of models with a frag-
mented Hilbert space using ultracold fermions [309] and Ryd-
berg atoms [310] suggest similar lines of investigation in that
context.

Another exciting direction is the understanding of the fate
of the DPTs in systems where quantum fluctuations cannot be
ignored. At the theoretical level, it will be crucial to derive
new types of order parameters that can describe the distinct
dynamical behavior even when quantum effects start to play
a role. The order parameters discussed in this review will
decay in the ordered phase whenever quantum effects start to
play a significant role. Can a properly defined order parameter
genuinely characterize the underlying phases associated with
a DPT? It is likely there is an affirmative answer to this
question. Feasible candidates are observables that measure the
interaction energy of the evolving system and therefore involve
at the least two-body correlators, as illustrated by the case
of the O(N →∞) model in section 2.3. Closely connected
with this question is the robustness of the topological order in
non-trivial phases in the presence of quantum effects. Is there a
redefinition of the winding number that remains nonzero even
in the presence of strong quantum fluctuations?

One of the most important goals of modern quantum sci-
ence is to learn how to control and entangle many-body sys-
tems, and how to use it as a resource in quantum technologies,

such as for the development of improved quantum sensors,
materials and technologies. A big limitation in this direction
comes from the fact that entangled states are difficult to prepare
and maintain, since noise and decoherence rapidly collapse
them into classical statistical mixtures. In the context of DPTs
it is likely that the same parameter regime where interactions
stabilize a finite order parameter is also promising for a genera-
tion of robust entanglement. In fact, recent investigations have
pointed out the generation of robust spin squeezing in phase II
[311]. Understanding the dynamics of entanglement across a
DPT is a fascinating new direction [312, 313]. Is entanglement
maximum at the critical point? What is the best entanglement
witness for the state across the DPT?

While all these questions are theoretically extremely
challenging, recent experimental advances in synthesizing,
manipulating and detecting quantum many-body systems are
bringing quantum control into a new paradigm [307, 314]. It is
likely that near term experiments will stimulate new theoretical
methods, which may provide unprecedented insight into novel
classes of DPTs where strong quantum fluctuations play a key
role in shaping the dynamical phases. We hope this review will
encourage future work and investigations in this direction.
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