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Abstract: Efficient application of ultrafast laser sources from high harmonic generation requires
an understanding of how the spectrum can be controlled – the extent of the highest harmonics and
the strength and cleanness of the harmonic lines. We study one important aspect in the coherent
build-up of macroscopic high-order harmonic generation, namely the impact of different phase
distributions in the focal area on the features of the generated radiation. Specifically, we compare
the high harmonic signals for the commonly-used Gouy distribution of a monochromatic beam
with those for the phase distribution of a short broadband Gaussian pulse. To this end, we apply
a theoretical model in which the microscopic yields are obtained via interpolation of results of
the time-dependent Schrödinger equation, which are then used in an individual-emitter approach
to determine the macroscopic signals. Regions of poor and good coherent build-up as a function
of the position of the gas jet are identified using measures for the strength of the harmonic lines
and for the impact of off-harmonic radiation. While the largest extent of the spectra as well as
the strongest contribution of off-harmonic radiation is found for positioning the gas jet after the
focus for both distributions, the relative strength of the harmonics is overall weaker for the short
Gaussian pulse distribution and the spectra differ for a gas jet positioned at the focus. These
differences are mainly caused by the additional dependence of the focal phase in the transverse
direction for the short Gaussian pulse distribution.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

High harmonic generation (HHG) is a non-perturbative and highly nonlinear frequency conversion
process, which occurs when an intense laser pulse interacts with a gaseous, liquid or solid medium
[1,2]. For bright harmonic emission, it is required that the electric field strength of the generating
laser pulse be comparable to that of the Coulomb field inside the microscopic target and that
conditions for a coherent build-up of the radiation inside the macroscopic medium are present (for
reviews, see [3–6]). The harmonics are emitted at multiples of the driving laser frequency with
wavelengths ranging from the ultraviolet [7] to the soft x-ray regime [8]. The polarization of the
harmonics can be controlled from linear to elliptical to circular [9–11] and structured harmonic
light beams with time-varying orbital angular momentum have been demonstrated [12,13]. In
view of these properties, HHG has become an important compact laser light source with many
applications in ultrashort pulse generation, time-resolved imaging of nuclear and electronic
dynamics, and imaging with high spatial resolution (for reviews, see [4,5,14–29]). To make
efficient use of HHG sources, it is important to understand both the harmonic generation process
at the microscopic single-atom level as well as the coherent build-up of harmonic radiation from
the many atomic emitters in the laser focus.

At the microscopic level the HHG spectrum results from the dipole acceleration of an electron,
initially bound inside the target atom (molecule, solid), interacting with the strong external field.
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The physical mechanism is well described by the three-step model [30–32]. According to this
model, the electric field of the intense laser pulse suppresses the Coulomb barrier of the most
weakly-bound electrons in the target. This permits tunneling of an electron wave packet, which
then propagates in the oscillating electric field. Depending on the time of release, the wave packet
can be steered back to the parent ion and, with some probability, recombine with the parent
ion under emission of a high-energy photon. In the semiclassical approach of HHG [32], the
wave packet returns via two classes of trajectories distinguished by their excursion time in the
continuum, named the short and long trajectories.

The high peak intensities necessary to drive the microscopic HHG process can be generated
by focusing a short laser pulse into an atomic gas medium. It is challenging to achieve a coherent
build-up of the HHG signals from the many atoms in the generating medium since the process
depends on several aspects [5,33,34]. One of these aspects is the spatial phase distribution of the
driving laser pulse in the focus, which results in a spatially-dependent carrier-envelope phase
(CEP). Usually, a π-phase shift across the focus – also commonly known as Gouy phase [35]
– is taken into account for the analysis of the coherent build-up of the HHG signal. However,
this phase distribution corresponds to that of a monochromatic Gaussian beam. Focused short
Gaussian pulses with a broad frequency spectrum, which are often used in a HHG experiment,
have a different spatial phase dependence [36,37]. The difference to the Gouy phase is given by
an additional focal phase term which scales with the so-called Porras factor g0 that is determined
by the specific laser system. This second term introduces a variation of the phase transverse to the
propagation direction which is not present in the Gouy phase and depends on g0 and the distance
from the focus along the propagation direction. The impact of the focal phase distribution on
short-pulse induced strong-field processes has only recently been studied for few strong-field
observations, namely electron backscattering at nanoscale metal tips [38], photoelectron spectra
in few-cycle laser pulses [39], and the angular distributions of low-order harmonics [40]. The
perspective to use HHG sources for spectroscopic and other applications require developing
understanding of how different spatial focal phase distributions affect the extent of the spectrum
to highest harmonic number, the strength and cleanness of harmonic lines, as well as the often
unwanted occurrence of radiation at off-harmonic frequencies. The goal of the present work
is to show that consideration of the phase distribution of a broadband Gaussian pulse makes
a marked difference on the coherent build-up of the macroscopic HHG signal as compared to
the case of the previously considered Gouy distribution. As a consequence, the features of the
generated harmonic radiation depend on the positioning of the gas jet with respect to the laser
focus differently for the two phase distributions.

In our theoretical study we compare the coherence (or, phase matching) of high harmonic
emission in a macroscopic atomic gas jet for spatial focal phase distributions of the driving laser
pulse with and without the additional focal phase term for the focused short Gaussian laser pulse.
We focus on situations with a negative Porras factor of g0 = −2 which has been reported in
a recent experiment [38]. The comparison is based on the analysis of macroscopic harmonic
signals that are calculated as the superposition of the fields generated by individual emitters in
the focus [40,41]. This approximation applies for a thin medium or low gas density regime and
small ionization probability for which the generated radiation does not interact with the medium.
The harmonic signal generated by each of the emitters is determined by applying an interpolation
technique to make use of ab-initio solutions of the time-dependent Schrödinger equation (TDSE)
[40,42].

The article is organized as follows: In section 2, we present the theoretical methods applied
to calculate the microscopic and macroscopic high-order harmonic response. This includes
a brief outline of the techniques used to solve the time-dependent Schrödinger equation, the
interpolation method, and the individual-emitter approach used to determine the macroscopic
signal. Furthermore, we discuss the differences in the phase distribution with and without
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consideration of the phase arising for a short broadband Gaussian pulse. We then present in
section 3 our findings for the coherent build-up of macroscopic radiation for the two phase
distributions considered. First, we introduce measures for the strength of the harmonic line
and the impact of off-harmonic radiation along with a discussion of the general features of the
harmonic signal. Regions of good phase matching are next identified and discussed based on an
analysis using the different phase distributions. The article ends with a brief summary.

2. Theory

A full description of the HHG process requires the coupled solution of Maxwell’s equations
at the macroscopic level and of the time-dependent Schrödinger equation (TDSE) for each of
the atomic emitters at the microscopic level. Such an approach however requires formidable
computer resources due to the large number of atoms in the medium, for which the TDSE needs to
be solved (see [3,43,44] for further discussion). In this work we therefore apply an approximation
method [40,42] in which the macroscopic harmonic yield is determined as a superposition of
fields of point-like emitters using ab-initio TDSE results at the single-atom level. To keep the
overall simulation efficient, interpolation of TDSE results across intensity and carrier-envelope
phase is used. Next, we briefly discuss the methods to interpolate the TDSE results and then
review the macroscopic simulation for both Gouy and short Gaussian pulse phase distributions.

2.1. Microscopic TDSE calculations

We obtain ab-initio microscopic HHG spectra by solving the TDSE with the Hamiltonian (Hartree
atomic units are used: e = ℏ = m = 1 a.u.):

H(t) = −
1
2
∇2 −

1
r
+ r · E(t) , (1)

where E(t) is the electric field. In all calculations, the initial state was set to be the ground state
of the hydrogen atom potential. The laser field has been taken to be linearly polarized in the
y-direction. To ensure the electric field integrates to zero, we set the vector potential

A(t) = A0 sin2
(︂ πt
τ

)︂
sin(ω(t − τ/2)) (2)

where A0 =
c
√

I
ω , and τ = 2πN

ω and c is the speed of light, I is the peak intensity, and N is the
number of cycles in the pulse. The electric field is obtained as Ey(t) = − 1

c
∂
∂t A(t). We note that

Eqs. (1) and (2) refer to the microscopic description of the process. Macroscopically, the intensity
and, hence, the amplitudes of the vector potential and the electric field depend on the location
in the focal area. The spatial dependence of the carrier-envelope phase for monochromatic and
short Gaussian laser pulses will be introduced and discussed in Sec. 2.3.

To solve the TDSE, we have expanded the wavefunction in 30 spherical harmonics and
discretized the radial part of the wavefunction and the potential utilizing fourth order finite
difference on a radial grid with spacing dr = 0.2 a.u. and grid sizes up to rmax = 100 a.u. The
Crank-Nicolson method has been applied to propagate the wavefunction starting from the initial
state. As absorbing boundary, we have used exterior complex scaling, where the edge of the grid
(10%) is rotated into complex space by an angle η = π/4. The HHG spectra have been obtained
by evaluating the dipole acceleration a(t) using the Ehrenfest theorem

a(t) =
⟨︃
−
∂

∂z

(︃
−

1
r

)︃⟩︃
. (3)

The harmonic response is then given by taking the Fourier transform of the dipole acceleration,

a(ω) =
∫ T

0
a(t)e−iωtdt, (4)

and the harmonic spectrum P(ω) = |a(ω)|2.
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2.2. Macroscopic model calculations

To determine the macroscopic radiation signal at a far-field detector, we consider the following
arrangement [40,42]: The driving linearly polarized laser propagates in the Ẑ = ẑ direction
and the polarization direction is in the Ŷ = ŷ direction. We denote macroscopic (microscopic)
coordinates with upper (lower) case letters. Only harmonic radiation polarized along Ŷ is being
considered. We follow the individual-emitter approach used in [41]. The macroscopic yield is
obtained as the superposition of fields generated at different points in the medium. The spectral
distribution of the total radiation is then generated by atoms located at Rj (j = 1, 2, 3, . . .) as:

E(Rd,ω) =
1

c2 |Rd |
e−i ωc |Rd |

∑︂
j

aj(ω)e−i ωc [Rj ·(R̂d−Ẑ)]Ŷ , (5)

where aj(ω) is the TDSE result for the microscopic dipole acceleration in frequency domain.
We further consider the delay of the driving laser reaching the radiator, (Rj · Ẑ)/c, by adding
the corresponding additional phase. In the calculation it has been assumed that the relative
location of the detector, Rd, is far away from the individual atoms. This leads to the following
approximations: |Rj | ≪ |Rd | and, hence, |Rd − Rj | ≈ |Rd | − Rj · R̂d and 1

|Rd−Rj |
≈ 1

|Rd |
. In the

present work we have considered macroscopic results for on-axis harmonic radiation only, i.e.
R̂d = Ẑ, which simplifies Eq. (5) significantly. The prefactor in Eq. (5) universally scales the
results; it is therefore dropped from the computations.

This approximation to the full Maxwell solution applies for the thin medium or low gas
density regimes. Furthermore, the approach does not account for any phase mismatch due to the
presence of free electrons. Therefore, in practice it is applicable at intensities low enough so
that free electron dispersion does not play a significant role. Other effects, e.g., a curving of the
wavefront, are also not present in the approach. In a typical high-harmonic gas jet experiment,
even at low-pressure densities, the number of atoms is of the order of 1012 or larger, with random
sampling of Eq. (5) converging on the scale of 104 or more emitters [42]. Obtaining TDSE
results of the microscopic harmonic response for such a large number of atoms is only feasible
with substantial computation resources. As an alternative we have applied an interpolation
technique [40,42] in which the complex spectrum a(ω) is numerically calculated for a set of peak
intensities over a desired sampling range. For a given point in frequency, the complex spectrum
is interpolated across intensities using cubic splines with not-a-knot end conditions. The impact
of the end conditions is minimized by ensuring that relevant intensities are well-contained within
the sampling range. The full complex spectrum is then reconstructed from these slices. The
applicability of the interpolation technique has been verified in previous work [40,42].

In addition to the variation of the peak intensity across the focal volume, the effects of the
carrier-envelope phase (CEP), ϕ, have to be considered for the macroscopic harmonic yields.
In few-cycle pulses CEP impacts the microscopic harmonic generation, while for pulses as
considered in this work the impact on the microscopic signal is negligible [42]. However, the
spectral phase effects and the focal phase distribution cannot be discounted in macroscopic
summation, which is a focus of the present work. The spectral phase can be approximated by
[41]:

Φ(ω, ϕ) = Φ(ω, ϕ = 0) + ϕH(ω) , (6)

where H(ω) is the harmonic number rounded to the nearest odd integer. Previously, we have
shown that in the parameter regime considered below exact TDSE results agree well with the
above approximation, which we have therefore used in the macroscopic calculations [40,42].

For the atomic gas jet we have considered hydrogen atoms distributed in a cylinder with a
Gaussian distribution aligned perpendicular to the laser propagation. In the calculations the
position of the center of the gas jet is varied along the laser propagation direction Z. To obtain the
macroscopic HHG signal we use Monte Carlo sampling of the locations of the atoms, discarding
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locations where the intensity is below a given cut-off (here, I(Rj)<0.032I0) as the corresponding
generated radiation does not contribute significantly to the total radiation.

2.3. Focal phase distribution

The spatial phase distribution for a short broadband Gaussian laser pulse has been derived by
Porras and co-workers as [36,37]:

∆ΦF(Z, R) = − arctan
(︃

Z
ZR

)︃
+ g0

[︃
1 − 2

(︂
R

w(Z)

)︂2
]︃

Z
ZR
+ ZR

Z

(7)

with the Porras factor
g0 =

dZR(ω)

dω

|︁|︁|︁|︁
ω0

ω0
ZR(ω0)

(8)

and the frequency-dependent Rayleigh range

ZR(ω) =
ωW2(ω)

2c
. (9)

In Eq. (7), Z and R are the positions along and transverse to the propagation of the laser, ω0 is the
central frequency of the laser, w(Z) = W0

√︂
1 + ( Z

ZR
)2 is the beam radius of the center frequency,

where ZR ≡ ZR(ω0). Furthermore, W(ω) is the frequency-dependent input waist, W0 = W(ω0) is
the central frequency beam waist at the focus and c is the speed of light. The spatially-dependent
phase determines the evolution of the CEP across the focal area and, hence, the spectral phase of
the harmonics via Eq. (6).

The first term in Eq. (7) is the Gouy phase for monochromatic beams which gives a longitudinal
phase dependence along the laser propagation direction, while in the transverse direction the
Gouy phase is constant. The second term scales with the Porras factor g0 and describes the
difference to the Gouy phase for beams with a frequency bandwidth. For a negative value of
g0 = −2, which has been considered in strong-field experiments and theory so far [38–40,42]
and will be used here as well, the focal phase term has the same sign as the Gouy phase on-axis.
However, it introduces a dependence in the transversal direction, and changes sign at certain
radial distances, which depend on g0 and Z. We may therefore expect that, besides potential
other effects, transversal phase matching of high harmonics for spatial phase distributions with
and without the second (ultrashort) focal phase term in Eq. (7) is different. It has recently been
shown [45,46] that such phase matching in the transverse direction can play a significant role,
besides the generally considered longitudinal phase matching in high harmonic generation.

3. Results and discussion

3.1. Features and measures

In order to study the signatures in the high harmonic signals for different gas jet positions for
the cases of a Gouy and the short Gaussian pulse phase spatial distribution, we first provide an
overview and introduce some measures which are useful for the further analysis. In our study
we have considered HHG induced by an intense 20-cycle laser pulse at a central wavelength of
800 nm and a peak intensity of 1.2 × 1014 W/cm2 during the interaction with atomic hydrogen.
The spatial profile of the laser is chosen to be a Gaussian beam with a beam waist of 30 µm
(ZR ≈ 3500 µm). We did not consider fluctuations in intensity and phase of the laser, which may
occur over the focal area and/or shot-by-shot in an experiment. We therefore focus on general
qualitative conclusions from the present results only. Two hundred fifty microscopic TDSE
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calculations were performed at intensities in the range from 1.0 × 1012 W/cm2 to 2.5 × 1014

W/cm2 in steps of 1012 W/cm2. The density was modeled as a Gaussian distribution of width
σ = 800 µm and a peak density of 1018 cm−3. Fluctuations of the gas density are not taken into
account in the present study, in which we focus on some basic qualitative differences in phase
matching for the two phase distributions.

In Fig. 1 we compare the macroscopic HHG signals (vertical axis) as a function of the gas jet
position (horizontal axis) for (a) the Gouy and (b) the short Gaussian pulse phase distribution
(with Porras factor g0 = −2). Each spectrum is scaled such that the strength of the fundamental is
equal to 1. The comparison reveals some obvious similarities and differences. First, it has been
reported in earlier theoretical studies based on the Gouy spatial phase distribution that the largest
extension of the harmonic spectrum is typically found for positions of the gas jet after the laser
focus [41]. Our results not only confirm this feature but also show that the same observation
holds for the results obtained for the short Gaussian pulse phase distribution. Another feature
that occurs in a similar way in both spectra is the importance of off-harmonic radiation in the
spectra. In both spectra we observe strong contributions at off-harmonic frequencies when the
gas jet is positioned in a certain region after the laser focus.

Fig. 1. Comparison of high harmonic radiation spectra as a function of the position of the gas
jet along the propagation direction of the driving laser obtained using (a) the Gouy (g0 = 0)
and (b) a short Gaussian pulse phase distribution (g0 = −2). Note that the propagation
distance is scaled in units of the Rayleigh length ZR = ZR(ω0). Laser parameters: Peak
intensity I0 = 1.2 × 1014 W/cm2, Porras factor g0 = −2, central frequency waist at focus
W0 = 30 µm, Rayleigh length ZR = 3534 µm. Gas jet parameters: Gaussian distribution of
width σ = 800 µm, peak gas density of 1 × 1018 cm−3. The vertical black line at Z = 0 is
drawn to guide the eye.

On the other hand, the relative strength of the harmonics is apparently different in the two
spectra in Fig. 1. For the short Gaussian pulse distribution the maximum harmonic strengths are
weaker than those obtained for the Gouy distribution. Another difference in the two spectra is the
relative strength of each harmonic as a function of the position of the gas jet. This can be best
seen in the higher harmonics. For example in the case of the Gouy distribution, the harmonic
strength is minimum when the gas jet is near the laser focus. In contrast, for the short Gaussian
pulse distribution the results show a local maximum for Z ≈ 0, while there are two minima for
the gas jet position either before or after the focus.

In order to study the strength of the harmonics and the relevance of the off-harmonic radiation,
we use the following measures. Their application is illustrated using the example of the 9th
harmonic for the short Gaussian pulse phase distribution in Fig. 2. To investigate the strength of
the harmonic signal we have considered both the signal at the harmonic line itself as well as the
integrated signal over a small region around the harmonic, i.e.

∫ (N+δ)ω
(N−δ)ω

S(Ω)dΩ, where S(Ω) is
the macroscopic radiation signal and we have chosen δ = 0.25 in our analysis. As can be seen
from the comparison in Fig. 2(b) both measures reflect the strength of the 9th harmonic as a
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function of gas jet position, including the locations of maxima and minima. In the remainder of
our analysis we will use the integrated signal as a measure for the strength of the harmonic.

Fig. 2. (a) Radiation spectrum for short Gaussian pulse phase distribution (g0 = −2) around
9th harmonic as a function of gas jet position (signal scaling as in Fig. 1). (b) Signal S(ω) at
harmonic (dashed line) and integrated signal

∫ (N+δ)ω
(N−δ)ω

S(Ω)dΩ (solid line). (c) Half-width

∆
(9)
1/2 (dashed line) and sideband measure SB(9) (solid line) of harmonic. Laser and gas jet

parameters as in Fig. 1.

To examine the narrowness of the Nth harmonic line and the role of off-harmonic radiation
around the Nth harmonic, we define a half-width ∆(N)

1/2 via:∫ (N+∆(N)

1/2)ω

(N−∆
(N)

1/2)ω
S(Ω)dΩ∫ (N+1)ω

(N−1)ω S(Ω)dΩ
=

1
2

. (10)

If ∆(N)

1/2 is small (large) the Nth harmonic line is narrow (broad). We further utilize a sideband
measure defined as:

SB(N) =

∫ (N+δ)ω
(N−δ)ω

S(Ω)dΩ∫ (N+1)ω
(N−1)ω S(Ω)dΩ −

∫ (N+δ)ω
(N−δ)ω

S(Ω)dΩ
(11)

with δ = 0.1. For larger (smaller) SB(N), the radiation is more concentrated at (off) the Nth
harmonic line. If SB(N)<1, the radiation at the Nth harmonic line is suppressed as compared to
the off-harmonic radiation. The results in Fig. 2(c) indeed show that the minima in SB(9) (solid
line) coincide with the regions of significant off-harmonic radiation in Fig. 2(a). Especially, the
region of suppressed radiation at the 9th harmonic correlates with values below 1 for SB(9) and a
strong maximum in ∆(9)1/2 (dashed line). While the dependence of the two curves on Z are similar
in Fig. 2(c), variations between extrema in the half-width measure is much smaller and hardly
visible. Therefore, we decided to use the sideband measure SB(N) for the analysis below.

3.2. Strength of harmonics and extension of spectrum

In Fig. 3 we present the integrated signal strength of three harmonics in different regions of
the spectrum – below-threshold (7th harmonic, solid lines), plateau (13th harmonic, dashed
line) and near the cut-off (19th harmonic, dashed-dotted line) – as a function of the position of
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the gas jet obtained for (a) the Gouy phase distribution and (b) the short Gaussian pulse phase
distribution. The data provide a quantitative measure of the qualitative observations made in
the discussion of the results in Fig. 1. For the Gouy distribution the strongest below-threshold
harmonics are obtained for a gas jet position before the focus. In contrast and in agreement
with earlier observations [41], the optimum position is after the focus for harmonics above the
ionization threshold. This is most striking for the extension of the spectrum to the highest
harmonics. While for the highest harmonics the same observation holds with a short Gaussian
pulse distribution, the results for the lower harmonics in that case differ from those obtained
for the Gouy distribution. For below-threshold and plateau harmonics we find that there are
three positions – one before, one near, and one after the focus – at which the respective harmonic
signal is strong. Most distinctive is the difference between the occurrence of a maximum (short
Gaussian pulse distribution) and a minimum (Gouy distribution) for the generation of plateau
harmonics (c.f., 13th harmonic in Fig. 3) for the gas jet position near the focus.

Fig. 3. Integrated signal strength as a function of the gas jet position for 7th (solid lines),
13th (dashed lines), and 19th (dot-dashed lines) harmonics obtained using (a) the Gouy and
(b) the short Gaussian pulse phase distribution. Laser and gas jet parameters as in Fig. 1.

For a strong signal, radiation emitted from many atoms must interfere constructively. It is
therefore expected that the strongest harmonic signal is found from regions in which the variation
of the total phase is small [41]. In our calculations the total phase consists of two contributions:
On the one hand the intrinsic phase of the harmonics, which results from the microscopic
rescattering process and depends on the intensity of the laser and the harmonic number. The
second contribution is either the Gouy or the short Gaussian pulse phase (c.f., Eq. (7)). To obtain
insights into the results for the harmonic radiation, we therefore compare distributions of the
individual contributions and of the total phases along and transverse to the propagation direction
for the different harmonics in Fig. 4.
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Fig. 4. Comparison of intrinsic (left), Gouy+intrinsic (middle) and short Gaussian
pulse+intrinsic (right) phase distributions for 7th (second row), 13th (third row), and
19th (bottom row) harmonic. Top row shows the Gouy and short Gaussian pulse phase
distributions (c.f., Eq. (7). Laser and gas jet parameters as in Fig. 1.

In the top row, the Gouy (g0 = 0) and short Gaussian pulse (g0 = −2) phase distributions
(c.f. Eq. (7)) are shown. In the other rows we present the intrinsic phase of each of the three
harmonics (left column), and the total phases for the two cases, i.e. Gouy phase + intrinsic phase
(middle) and short Gaussian pulse phase + intrinsic phase (right). Since the intrinsic phase
depends on the intensity of the laser pulse only, the corresponding distributions are symmetric
with respect to the two axes Z = 0 and X = 0. The intrinsic phase increases along the Z-axis for
Z<0 and decreases for Z>0. The variation of the phase depends for each of the harmonics on
the intensity gradient. It is therefore smallest near the focus and in the tails of the distribution.
On the other hand, the intrinsic phase varies fastest near the inflection point of the Gaussian
intensity distributions. Furthermore, we note that the variation of the intrinsic phase at a given
point in the focal area depends on the harmonic number. In contrast to the intrinsic phase, the
other individual contributions – namely the Gouy and short Gaussian pulse phase distribution –
are not symmetric with respect to Z = 0. Instead, both decrease along the Z-axis for X = 0. We
note that the gradient of decrease is stronger for the short Gaussian pulse phase. Additionally, as
mentioned before, the Gouy phase is constant in the transverse direction at a given Z, while there
is a dependence in this direction for the short Gaussian pulse distribution.

We now turn to the total phases, i.e. Gouy + intrinsic phase and short Gaussian pulse +
intrinsic phase. Since the intrinsic phase is symmetric across Z = 0 but the other two distributions
are not symmetric, the two total distributions also do not exhibit a symmetry with respect to
Z = 0. As mentioned above, for the strength of the corresponding harmonics it is most interesting
to identify regions in which the variation of the total phase is small. In these regions there
can be sequences of increases and decreases in the total phase distributions. But, overall the
phase distributions are continuous and smooth as function of the spatial parameters. Any visual
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impression of discontinuities in Fig. 4 or one of the following figures is due to the discrete
sampling of locations in the numerical calculations and/or the color coding.

For the lowest harmonic and the Gouy distribution (2nd row, middle panel) there are two
regions – one before (around Z = −0.5) and one after the focus (close to Z = 1) – in which
the total phase varies rather slowly, leading to favorable conditions for a coherent build-up of
signal. Correspondingly, there are two maxima in the strength of the 7th harmonic (solid line in
Fig. 3(a)). Within the area of slowly varying phase the maxima occur for positions closest to the
focus, since those correspond to the highest intensity. The maximum strength is slightly larger
before the focus, which is likely due to the fact that for Z<0 the area of slowly varying phase
starts at smaller absolute distance to the focus, and hence at somewhat higher intensities. Since
the intrinsic phase of the higher harmonics varies more quickly, the curvature of the lines of
equal total phase for the Gouy distribution over part of the region with Z<0 changes for the 13th
and 19th harmonics as compared to the case of the below-threshold harmonic. Consequently, the
largest area of slow variation in the total (Gouy + intrinsic) phase and the strongest signal for
the higher harmonics is found for positions of the gas jet after the focus (Fig. 3(a)). This result
and the interpretation of the coherence conditions for the two higher harmonics in a Gouy phase
distribution agree with that made in an earlier work [41].

As already mentioned above the short Gaussian pulse distribution differs from the Gouy
distribution in two aspects (c.f., two panels in the top row of Fig. 4). First, the short Gaussian
pulse phase varies in the transverse direction, while the Gouy phase is constant in that direction.
This restricts the areas of slowly varying total (short Gaussian pulse + intrinsic) phase in the
transverse direction. Consequently, there is less efficient phase matching in the transverse
direction as compared to the total phase distribution for the Gouy phase, which explains the
overall observation of weaker harmonics for the short Gaussian pulse distribution. Further
indication of this transversal phase matching effect can be seen from the comparison of the results
in Fig. 5. The area over which the total phase of the 7th harmonic changes by less than π/2 at the
position of maximum signal strength is clearly smaller in the transverse direction for the short
Gaussian pulse distribution (Fig. 4(b)) than for the Gouy distribution (Fig. 4(a)). We further
observe that in the case of the short Gaussian pulse distribution the least efficient coherent signal
build-up of the two lower harmonics (c.f., Fig. 3(b) solid and dashed lines) occurs at positions at
which the total phase is varying most quickly in the transverse direction (c.f., right column in
Fig. 4). The importance of transverse phase matching has been emphasized previously [45,46].

Fig. 5. Comparison of areas over which the total phase changes by less than π/2 with
respect to the central point in the gas jet: (a) 7th harmonic, Gouy phase distribution and
(b) 7th harmonic, short Gaussian pulse phase distribution. Considered are gas jet positions
before and after the focus at which the strength of the harmonic signal is at maximum (c.f.,
Fig. 3). Note that the areas are restricted along the propagation direction by the width of the
gas jet. Laser and gas jet parameters as in Fig. 1.
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The second difference in the two phase distributions is that the longitudinal phase variation is
stronger in the short Gaussian pulse distribution. As a result, the two areas of slowly varying total
phase remain present for all harmonics for the short Gaussian pulse + intrinsic phase distribution
(c.f., right column in Fig. 4). However, the more rapidly-changing intrinsic phase at higher
harmonics causes the area to be moved farther away from the focus for positions Z<0. This
results in the suppression of harmonic strength for the cut-off harmonic before the focus (c.f.,
Fig. 3(b), dashed-dotted line) for the short Gaussian pulse distribution.

We finally consider the difference in strength near the focus for the 13th harmonic. Based on
the results in the third row of Fig. 4, our interpretation of the minimum in strength for the Gouy
distribution is related to the observation that near the focus the total phase varies most quickly in
the longitudinal direction leading to poor phase matching conditions. Regarding the longitudinal
direction similar quick variation can be observed in case of the short Gaussian pulse distribution.
However, the extension of the area with similar total phase is rather large near the focus which
likely explains the formation of a maximum in harmonic signal near the focus. We may note that
the phase variation at Z = 0 also leads to interference effects in the angular distribution of the
below-threshold harmonics for the short Gaussian pulse distribution [40].

3.3. Narrowness of harmonics and off-harmonic radiation

In this section we investigate the relevance of off-harmonic radiation as compared to the nearest
harmonic line. As an example for our study we consider the 11th harmonic and present in Fig. 6
the sideband measure SB(11) for both spatial phase distributions. Large values of SB(11) indicate
that the radiation off the harmonic line is much less intense that the 11th harmonic radiation. At
the respective gas jet positions the harmonic line is narrow, which shows that the line can be
well used for spectroscopic applications when filtered appropriately. In contrast, low values of
SB(11) indicate regions at which there occurs significant off-harmonic radiation and the harmonic
line itself may even be suppressed. The comparison in Fig. 6 shows for the short Gaussian
pulse distribution two regions with strong off-harmonic radiation around Z = ±0.5ZR, while
off-harmonic radiation is most relevant close to the focus for the Gouy distribution.

Fig. 6. Comparison of sideband measure SB(11) for the 11th harmonic as a function of the
position of the gas jet for Gouy (dashed line) and short Gaussian pulse (solid line) phase
distributions. Laser and gas jet parameters as in Fig. 1.

To understand the results in terms of macroscopic coherent build-up of radiation we consider
the phase distributions for radiations emitted at frequencies below (Ω = 10.5ω), at (Ω = 11ω)
and above (Ω = 11.5ω) the 11th harmonic, presented in Fig. 7. As expected, the intrinsic phase of
the off-harmonic radiation varies much more rapidly than that of the 11th harmonic as a function
of intensity in the focal area (left column). The regions of slowest variation in the intrinsic phase
for the off-harmonic radiation are near the focus and yield similar regions just after the focus for
the Gouy (middle column) and at about Z = 0.5ZR for the short Gaussian pulse distribution (right
column). These regions indeed correspond to minima in the respective distributions for SB(11) in
Fig. 6. Moreover, for the short Gaussian pulse distribution the low-variation region for gas jet
positions after the focus is larger for the radiation at the frequency below the harmonic, which
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coincides with the qualitative observation that the off-harmonic radiation is more relevant at these
frequencies than those above the 11th harmonics (c.f., Fig. 1(b)). The explanation for the second
minimum in the sideband measure before the focus in case of the short Gaussian distribution is
different. Here, the measure primarily indicates the suppression of the harmonic line itself, as
one can see qualitatively in Fig. 1(b), while off-harmonic radiation remains relative insignificant
as well. Correspondingly, we observe in the phase distributions for all three frequencies in Fig. 7
(right column) a fast variation of the total phase for gas jet positions in this region. This clearly
indicates overall poor phase matching conditions for frequencies at and around the 11th harmonic
for the short Gaussian pulse distribution, if the gas jet is positioned in this region before the focus.

Fig. 7. Comparison of intrinsic (left), Gouy+intrinsic (middle) and short Gaussian
pulse+intrinsic (right) phase distributions for radiation at frequencies below (10.5ω, termed
H10.5, second row), at (11ω, termed H11, third row) and above (11.5ω, termed H11.5,
third row) the 11th harmonic. Top row shows the Gouy and short Gaussian pulse phase
distributions (c.f., Eq. (7)). Laser and gas jet parameters as in Fig. 1.

4. Summary and concluding remarks

In summary, similarities and differences in the coherent build-up of macroscopic high harmonic
generation signals for different phase distributions in the focal area have been studied. The
investigation is based on numerical data from a theoretical model, in which yields obtained from
the time-dependent Schrödinger equation are interpolated and then used in an individual-emitter
approach to obtain the macroscopic signals. Results assuming the Gouy phase distribution for a
monochromatic beam are compared with those resulting from the phase distribution for a short
broadband Gaussian pulse as a function of the position of the atomic gas jet. In both cases the
largest extent of the spectra – hence, the highest harmonics – are generated for a gas jet position
somewhat after the laser focus. In the same region we however also find – in both sets of spectra
– significantly more off-harmonic radiation than in cases when the gas jet is positioned before the
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focus. Both features can be explained via regions of slowly varying total phase which occur for
both the Gouy and the short Gaussian pulse distribution for the harmonic and the off-harmonic
radiation at similar gas jet positions after the focus. On the other hand, we observe that, in
general, the harmonic signals are considerably weaker for the short Gaussian pulse distribution.
This is caused by the additional dependence of the phase in the transverse direction which only
occurs for the short Gaussian pulse distribution. As a consequence, the areas of slowly varying
phase are more strongly restricted in the transverse direction leading to a less efficient build-up
of radiation. The importance of the transverse phase matching, which has been also emphasized
in previous work [45,46], is also apparent in the regions where the coherent build-up for the two
distributions is inefficient.

The results may contribute to enhance our understanding of how an efficient coherent build-up
of macroscopic high harmonic generation can be achieved for different spatial focal phase
distributions. The basic differences between a short Gaussian pulse and the commonly-assumed
Gouy phase distribution have marked impact on the strength and cleanness of the harmonic lines
as a function of the position of the gas jet in the laser focus. The conclusions drawn from the
present results – for example the stronger restriction in transverse phase matching for the short
Gaussian pulse phase distribution – are kept quite general, in view of the fact that the present
approach includes significant approximations and certain effects have been neglected. At the
present level of approximations the conclusions are qualitative only and await confirmation in
experiment. In the future it will be important to analyze the impact of free electron dispersion or
fluctuations of laser intensity and phase or in the gas jet density along with the short Gaussian
pulse phase distribution. While we do not expect that such effects impact our general conclusions,
inclusion of these and other effects in a more advanced theoretical approach are necessary towards
more quantitative predictions concerning phase matching in high harmonic generation for a short
Gaussian pulse phase distribution. Controlling the features of the generated radiation is important
for the challenging task to design HHG sources for their effective use in spectroscopic and other
applications. The present results may be relevant not only for the simulation of macroscopic high
harmonic generation in atoms and molecules [3,41,47–51] but also for theoretical investigations
of macroscopic propagation effects concerning high harmonic generation in solids [52–54].
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