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1Université Paris 13, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France
2CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France

3Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA
and Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA

4JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
5Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
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We perform collective spin measurements to study the buildup of two-body correlations between ≈104

spin s ¼ 3 chromium atoms pinned in a 3D optical lattice. The spins interact via long range and anisotropic
dipolar interactions. From the fluctuations of total magnetization, measured at the standard quantum limit,
we estimate the dynamical growth of the connected pairwise correlations associated with magnetization.
The quantum nature of the correlations is assessed by comparisons with analytical short- and long-time
expansions and numerical simulations. Our Letter shows that measuring fluctuations of spin populations
for s > 1=2 spins provides new ways to characterize correlations in quantum many-body systems.
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Introduction.—Experimentally characterizing quantum
correlations between different parts of a system is of
fundamental importance for the development of quantum
technologies. Quantum correlations are not only at the heart
of the most peculiar effects predicted by quantum mechan-
ics, such as entanglement, EPR steering [1–3], or Bell
nonlocality [4]; they also give advantage for different
quantum information or metrological tasks, even for non-
entangled states [5–7]. Furthermore, quantum correlations
should appear in generic quantum systems [8], and quan-
tum many-body systems are generically intractable by
classical computers. Therefore, measurements on well
controlled quantum simulators are crucial for improving
our understanding of complex quantum systems.
Proving the quantum nature of correlations is an exper-

imental challenge, which requires the measurement of
noncommuting operators. As full state tomography scales
exponentially with the number of constituents [9] and, thus,
becomes impossible in large ensembles, it is of crucial
importance to develop new protocols to infer correlations
from partial measurements such as bipartite or collective
measurements. The latter have been successful in demon-
strating entanglement [3], steering [10–12], or nonlocality
[13], in experimental platforms dealing with effective two-
level systems. Systems made of s > 1=2 particles pinned in
optical lattices are also particularly interesting for quantum
technologies, as their Hilbert space, enlarged with respect
to qubit (s ¼ 1=2) systems, offers new possibilities for
quantum information processing [14]. However, their

entanglement witnesses have a more complicated structure
compared to s ¼ 1=2 [15–17]. Extensions to s ¼ 1 systems
in spinor Bose-Einstein condensates have demonstrated
number squeezing in pair creation processes via spin-
mixing collisions [3,18–21], SU(1,1) interferometry [22],
and entangled fragmented phases [23]. Nevertheless, these
systems operated in the regime where the single-mode
approximation is valid [24], which enormously simplifies
the quantum dynamics.
In this Letter, we measure, for the first time, two-body

correlations in a macroscopic array of s ¼ 3 chromium
atoms pinned in a 3D optical lattice and coupled via long-
range and anisotropic magnetic dipolar interactions.
Previous experiments measuring out-of-equilibrium spin
dynamics in these arrays demonstrated beyond mean-field
behavior [25,26] and their approach to quantum thermal-
ization [25]. Here, we make use of the large atomic spin
to obtain a direct measurement of two-body correlations.
Specifically, after triggering out-of-equilibrium spin dynam-
ics, we acquire statistics on the 2sþ 1 ¼ 7 spin populations
and quantify the growth of interatomic spin correlations
by analyzing the statistical fluctuations of the collective
spin component along the external magnetic field, i.e., the
magnetization. The quantum nature of the correlations that
we measure is validated by agreement with exact short-
time expansions, with a high-temperature series expansion
applied to the asymptotic quantum thermalized state at long
times, and with simulations of the full quantum dynamics
via advanced phase-space numerical methods. Thus, our
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experimental measurement of a two-body correlator pro-
vides a successful test bed for this numerical method in the
spirit of quantum simulations.
Proposed correlator.—We consider a system of N spin

s > 1=2 particles. We define ŝiz as the z component of the
spin of the ith particle. The correlator Cz that we aim to
measure is

Cz ¼
XN

i≠j
ðhŝizŝjzi − hŝizihŝjziÞ ¼ VarðŜzÞ − Σz; ð1Þ

with VarðŜzÞ ¼ hŜ2zi − hŜzi2 the variance of the collective
spin component Ŝz ¼

P
N
i¼1 ŝ

i
z, and Σz the sum of individ-

ual variances, Σz ¼
P

N
i¼1ðhðŝizÞ2i − hŝizi2Þ. Σz accounts for

intraparticle correlations, which are only nontrivial for
s > 1=2, as hðŝizÞ2i ¼ 1=4 if s ¼ 1=2. The interparticle
correlations are accounted for by the two-body correlator
Cz. In this Letter, we independently determine VarðŜzÞ
and Σz from collective measurements and obtain Cz from
Eq. (1). Measurement of VarðŜzÞ requires the experiment to
be repeated many times to acquire adequate statistics (see
data analysis below). Measurement of Σz is straightforward
in the case of a homogeneous system, comprising singly
occupied lattice sites (referred to as singlons in the
following), as we now explain.

Indeed, for singlons, hðŝizÞ2i ¼
P

ms
pðiÞ
msm

2
s , with p

ðiÞ
ms the

probability that the site i, uniquely populated by the ith

spin, is in thems spin state (−3 ≤ ms ≤ 3,
P

ms
pðiÞ
ms ¼ 1) so

that
P

i hðŝizÞ2i¼N
P

ms
pms

m2
s where pms

¼ N−1P
i p

ðiÞ
ms .

Homogeneity ensures that pðiÞ
ms ¼ pms

are independent of
site i, so that hŝizi2 ¼ ðPms

pms
msÞ2; therefore,

Σz

N
¼

X

ms

pms
m2

s −
�X

ms
pms

ms

�
2
: ð2Þ

In Ref. [27], we show that inhomogeneities lead to
negligible deviations from Eq. (2) in our experiment.
Therefore, the measurement of pms

¼ Nms
=N, with Nms

the total number of atoms in spin state ms, yields Σz, and
Eqs. (1), (2) provide a connected two-body correlator by
performing measurements in one basis only. Interestingly,
in the case of s > 1=2, Cz can dynamically evolve in
homogeneous systems even when Ŝz commutes with the
Hamiltonian.
Experimental setup.—The starting point of our experi-

ments is a spin-polarized 52Cr Bose-Einstein condensate
(BEC) produced in a crossed dipole trap, with, typically,
15 000 atoms polarized in the minimal Zeeman energy state
ms ¼ −3. We load the 52Cr BEC in a 3D optical lattice deep
into the Mott insulator regime. The lattice implemented
with five lasers at λL ¼ 532 nm is described in [25].
The total lattice depth is equal to 60 recoil energy at λL.

We estimate the tunneling time to be ≃20 ms. We obtain a
core of doublons comprising ≃50% of the atoms, sur-
rounded by a shell of singlons. Inhomogeneities of the
lattice potential are below 2.5% and, therefore, have a
negligible effect on spin dynamics in the Mott regime [31].
As shown in Fig. 1(a), we trigger spin dynamics by

rotating all spins with the use of a radio frequency (rf) π=2
pulse. After the pulse, all spins are oriented orthogonal to the
external magnetic field, in a coherent spin state. The Larmor
frequency fL ¼ gLμBB0=ℏ (with gL ≃ 2 the Landé factor,
μB the Bohr magneton, and B0 ¼ 0.75 Gauss the amplitude
of the magnetic field) is fL ≃ 2.1 MHz. The rf frequency
frf is set at resonance, and fluctuations of the detuning
ðfL − frfÞ ≃ 1 kHz are small compared to the rf Rabi
frequency fR, thanks to the use of a 30 Watt rf amplifier.
In practice, the rf pulse has a duration of exactly five Larmor
periods, with fR ¼ ð1=5ÞðfL=4Þ ¼ 105 kHz; the θ̄ ¼ π=2
pulse is set to have an identical initial phase at each
realization. Fluctuations of the rotation angle θ are estimated
to have a standard deviation of σθ ≃ 2.5 × 10−3 rad (see
below). After the initial state preparation with the rf pulse,
spins interact via magnetic dipolar interactions in the optical
lattice for a duration t. Then, we adiabatically ramp down the
optical lattice, and proceed to measurements.
Theoretical models.—Dipolar interactions between sin-

glons during the dark time evolution are described by the
effective dipolar Hamiltonian Ĥdd, which is a XXZ spin
model Hamiltonian

Ĥdd ¼
XN

i>j

Vij

h
ŝizŝ

j
z −

1

2
ðŝixŝjx þ ŝiyŝ

j
yÞ
i
; ð3Þ

(a)

(b)

rf pulse

FIG. 1. Principle of the experiment. (a) The cartoons zoom
over a small region of the Mott insulating distribution with
doubly occupied sites (core) and singly occupied ones (shell).
Spin-3 chromium atoms are excited at t ¼ 0 by a rf pulse, with
five cycles at the Larmor period set by the external magnetic
field B. The spin directions then make an angle θ (set to π=2 in
this Letter) with respect to B, which triggers spin dynamics.
Correlations develop between spins, while doubly occupied
sites get empty. (b) Stern-Gerlach separation provides meas-
urement of the fractional spin populations pmsðtÞ, through
fluorescence imaging, at a given time t. Repeating the experi-
ment allows us to compute the variance of the magnetization
and, hence, the correlator Cz of Eq. (1).
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with Vij ¼ Vddð1 − 3cos2θij=r3ijÞ, Vdd ¼ ðμ0ðgLμBÞ2=4πÞ,
and μ0 the magnetic permeability of vacuum. The sum runs
over all pairs of particles (i,j), rij is their corresponding
distance, θij the angle between their interatomic axis and
the external magnetic field, ŝi ¼ fŝix; ŝiy; ŝizg are s ¼ 3

angular momentum operators for atom i. The shortest
intersite distance rmin ¼ 268 nm in our lattice [25] corre-
sponds to a dipolar coupling Vdd=r3min ≃ h × 3 Hz.
Given the strong contact interactions that favor spin

alignment [32,33] and the fully polarized initial state, the
same Hamiltonian can be used to describe the dynamics of
doubly occupied sites (doublons) just by replacing ŝi by a
s ¼ 6 angular momentum operator at the corresponding site
[31], as the spin of each pair of particles is well-defined.
Furthermore, in Ref. [27], we show that Eq. (2) still holds for
doubly occupied sites. Nevertheless, as soon as the spin
excitation is performed, doublons start to leave the trap due
to dipolar relaxation [34], see Fig. 2: for 0 < t < 10 ms the
spin system comprises both singlons and doublons, but only
singlons remain for t > 10 ms and losses become negligible.
This is why we restrict our numerical simulations to the case
with singlons only, which allows for quantitative comparison
with the experiment except at short times.
As shown in previous work [25], we need to include

the one-body term ĤQ ¼ BQ
P

N
i ðŝizÞ2 accounting for light

shifts created by the lattice lasers. In the Mott regime,
tunneling-assisted superexchange processes are happening
at longer time scales and remain irrelevant for the current
measurements.
During the evolution under Ĥdd þ ĤQ, hŜzi and VarðŜzÞ

are constant, as these two operators commute with Ŝz; on
the contrary, interactions between spins lead to evolution of
spin populations, hence, of Σz and Cz. In our case, as spins
are orthogonal to the magnetic field, hŜzi ¼ 0, and Eq. (2)
reads Σz ¼ N

P
ms

pms
m2

s ; moreover, VarðŜzÞ ¼ ð3=2ÞN
as the initial state is a coherent spin state. The short-
time evolution is obtained by perturbation theory [25],
leading to Cz ≈ −ð45N=8Þt2ð3V2

eff − 4BQÞ, where V2
eff ¼P

N
i;j≠i V

2
ij=ð2NÞ, Veff ≃ h × 4.3 Hz. At longer times, we

can numerically simulate the dynamics via a semiclassical
phase space method known as the generalized discrete
truncated Wigner approximation (GDTWA) [35], which
was previously shown to capture the spin population
dynamics of this system quantitatively [25].
We also provide a theoretical estimate of the expected

correlation at long times assuming the eigenstate thermal-
ization hypothesis [9,36]. In this case, due to the build up of
quantum correlations, local observables at long times can
be described by a thermal density matrix with additional
Lagrange multipliers that account for conserved quantities.
A high-temperature T series expansion valid for our system
[25] leads to Czðt → ∞Þ ¼ ð−ð5=2Þ þ 12βBQÞN, with
β≡ ð1=kBTÞ ¼ ð5BQ þ 9V̄=48V2

eff þ 24B2
QÞ, and V̄ ¼

ð1=NÞPN
i>j Vij ≃ h × −0.6 Hz.

Experimental procedures.—The quantities of interest are
the total number of atoms, NðtÞ, and the fractional spin
populations pms

ðtÞ. While the fluctuations in NðtÞ from
shot to shot (with a standard deviation of about 10%) yield
large extra fluctuations on the measured absolute spin
populations Nms

¼ Npms
, this extra source of noise is

canceled when dealing with fractional populations. For
measuring the total atom number, we use absorption
imaging of the BEC. We checked that the loading in
the optical lattice does not lead to losses, and therefore,
Nðt ¼ 0Þ is equal to the atom number in the BEC. We
estimate the accuracy of this measurement to be 10%.
To measure pms

ðtÞ, we spatially separate the seven spin
components during a time of flight of 14 ms, using a Stern-
Gerlach (SG) technique. We use fluorescence imaging to
count atoms, which brings equal efficiency in the detection
of all spin components. We also make use of electron
multiplying gain, G, which increases the signal-to-noise
ratio by effectively eliminating readout noise (see Ref. [27]
for details). Atoms are excited by a saturating laser set
at 425 nm (with a transition rate Γ ¼ 2π × 5 × 106 Hz)
during typically 500 μs. The magnetic field B0 is reduced
to a small value (gμBB0 ≪ hΓ) to ensure that the fluores-
cence rates of the seven spin components are almost equal.

FIG. 2. Evolution of the atom number NðtÞ (Top), and of the
fluctuations measured in the experiment (Bottom): we show the
standard deviations of the normalized magnetization Mz and
of the technical noises featured in Eq. (4): σprep (shaded area;
preparation of the sample), σfit (fitting uncertainties), and
σshot noise (fluorescence imaging). The quantum projection noiseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=2NðtÞÞp ¼ σSQN is shown for comparison. Lines are guides
to the eye. Error bars evaluated from statistics correspond to two
standard deviations.
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We use a “delta-kick” stage [37] at the very beginning of
the time of flight, before SG: it consists of a short 0.5 ms
pulse of an intense IR laser along the separation axis of the
SG that applies a force on the atoms and helps reduce
velocity dispersion. We fine-tune the frequency of the
imaging laser and the amplitude of all three components
of the magnetic field during the fluorescence stage. The
obtained regular shape of clouds [see Fig. 1(b)] favors
efficient fitting.
By fitting of the atomic clouds with a Gaussian function,

we obtain the values of the number of counts Cms
detected

for every spin component ms which sets the value of
pms

¼ Cms
=
P

ms
Cms

. During the dynamics, NðtÞ is
deduced by multiplying Nð0Þ by the ratio of the total
number of counts at t and at t ¼ 0.
Data analysis.—As explained above, VarðŜzÞðtÞ is

expected to be equal to ð3=2ÞNðtÞ for a dipolar system
without losses, but we do not assume that this equality
holds, and we measure VarðŜzÞðtÞ by statistical analysis
of the data and thorough investigation of all different
sources of parasitic noise. In practice, we measure the
variance of the normalized magnetization of the sample,
Mz¼

P
ms
pms

ms, −3≤Mz≤3, from three to five sets of 40

pictures. In the absence of noise, VarðŜzÞ ¼ N × VarðMzÞ,
but at t ¼ 0, we obtain Nð0Þ×VarðMzÞ≃2×ð3=2Þ, which
shows that noise processes come into play in our meas-
urement of Mz: a proper determination of VarðŜzÞ requires
an evaluation of their contribution independently.
The noise contributions to Mz originate from fluctua-

tions in the preparation angle θ, in the detection process
(due to the Poissonian statistics of light) and in the
evaluation of counts on the camera (related to error in
the fitting procedure). We denote their respective contri-
bution to the standard deviation on Mz as σprep, σshot noise,
and σfit. These different noise sources are statistically
independent, so that

Var½MzðtÞ� ¼
Var½ŜzðtÞ�
N2ðtÞ þ σ2shot noiseðtÞ þ σ2fitðtÞ þ σ2prep;

ð4Þ

from which we derive VarðŜzÞðtÞ at any time t.
We determine σshot noise from the fundamental fluctua-

tions of the fluorescence signal of each spin components
(with a corresponding standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GCms

p
, see

Ref. [27]). Similarly, σfit is well evaluated from data
analysis. We use measurements at t ¼ 0 to evaluate the
last contribution, σprep. Indeed, the initial sample corre-
sponds to an uncorrelated spin coherent state, for which
VarðŜzÞ ¼ ð3=2ÞNð0Þ is guaranteed. The conservation of
magnetization during the whole spin dynamics ensures that
σprep is constant, as discussed in [27]; we stress that the

contribution of the preparation noise becomes negligible at
long times, see Fig. 2.
The noise contributions as dynamics proceeds are shown

in Fig. 2, and compared to the one of atomic projection
noise, σSQN ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=2NðtÞÞp

. We obtain σprep ¼ 0.008≃
0.7σSQN. As σprep scales like s × gL and is independent

of N0, while σSQN scales like
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs=Nð0ÞÞp

, we stress the
difficulty to get such a low value for a large Nð0Þ, a large
spin s ¼ 3 and a large Landé factor gL ¼ 2. The increase of
σshot noise as a function of time (see Fig. 2) surpasses the
1=

ffiffiffiffiffiffiffiffiffi
NðtÞp

scaling due to the increasing contribution of the
highest jmsj states; the increase of σfit stems from atom
losses.
Results.—Weshowourmeasurements ofVarðŜzÞðtÞ=NðtÞ

in Fig. 3(a). The scatter of the data points around ð3=2Þ is

(a)

(b)

FIG. 3. (a) Symbols are experimental values for the two
contributions to the correlator Cz [see Eq. (1)] normalized to
atom number. Full line is results of simulations for Σz, while the
shaded area shows the expected values for VarðŜzÞ in a pure
dipolar spin system within 2 standard deviations, as a result of our
finite data sampling. (b) Experimental values of the correlator Cz
normalized to the atom number (symbols), with comparison to
simulations (full line), and short-time expansion (dotted line).
The dashed line corresponds to the calculated value in the
quantum thermalized state, while the light grey line shows the
zero value. Error bars evaluated from statistics correspond to two
standard deviations.
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comparable to the average error bars for the different points.
Therefore, our measurements are statistically compatible
with ð3=2Þ throughout the curve. We point out that the
experimental error bars are similar to the expected fluctua-
tions on the measurement associated with finite data sam-
pling, which we have estimated at t ¼ 0 with random choice
numerical simulations for 200 shots, see Fig. 3(a).
As we measure a substantial growth for ΣzðtÞ=NðtÞ, we

can assert that the correlator CzðtÞ significantly differs from
zero for t > 20 ms, as directly shown in Fig. 3(b). At the
asymptotic time t ¼ 100 ms, our measurement shows
incompatibility of Cz with zero with a confidence interval
larger than 99%. Figure 3(a) shows a good quantitative
agreement between the measured ΣzðtÞ=NðtÞ and predic-
tions from our GDTWA simulations assuming only sin-
glons, while Fig. 3(b) shows qualitative agreement for the
measured CzðtÞ with our short-time expansion. The value
of the quadratic term BQ in simulations, BQ¼h×−5.1Hz,
is inferred from population analysis during the whole
dynamics [27]; it leads to ðCz=NÞðt → ∞Þ ≃ −1.3, in good
agreement with the data. Thus, our measurement results
confirm the ability of GDTWA to estimate the growth of
correlations for large ensembles of large spins atoms.
Discussion and conclusions.—Thus, our measurements

quantify the amount of two-body correlations in the
expected highly correlated state reached at long time.
Assuming translational invariance and isotropic correla-
tions decaying exponentially with a correlation length ξ,
the measured Cz and Σz at long time can be related to the
onset of correlations with ξ ≈ 0.3 (in units of the lattice
spacing) [27]. This estimate represents a lower bound to the
actual correlation length (assuming concentration of corre-
lations at short distance); its rather small value is, none-
theless, compatible with the scenario of thermalization at
high temperature.
Now, we discuss the influence of losses. As dipolar spin

exchange dynamics proceeds, doublons can become corre-
lated with surrounding singlons, resulting in a modification
of singlon fluctuations. Therefore, quantum fluctuations of
the sample, and consequently its quantum correlations, may
differ from the singlon-only case. Rigorously taking losses
into account is difficult and would require new theoretical
models to be developed, which is beyond the scope of this
Letter. We discuss simple arguments in [27] to estimate the
contribution of losses on VarðŜzÞðtÞ and predict small
corrections at the 10 percent level. An improved exper-
imental resolution would be necessary to show deviation
from a fully unitary system. However, our experimental
results show that the growth of correlations is not signifi-
cantly hampered by dipolar losses—an example of the
strength of the quantum simulation approach when theo-
retical models are not yet available.
In conclusion, we have measured the growth of corre-

lations in a large ensemble of interacting spins by analyzing
the fluctuations of the collective magnetization. This

achievement illustrates the new possibilities offered by
s > 1=2 species, for which relevant information can be
accessed by measuring population fluctuations in one basis.
This paves theway for a better understanding of the dynamics
of quantum correlations in nonequilibrium spin systems.
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E. Maréchal, L. Vernac, and B. Laburthe-Tolra, Collective
Spin Modes of a Trapped Quantum Ferrofluid, Phys. Rev.
Lett. 121, 013201 (2018).

[34] A. de Paz, A. Chotia, E. Maréchal, P. Pedri, L. Vernac,
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