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Determination of the scattering length of erbium atoms
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An accurate knowledge of the scattering length is fundamental in ultracold quantum gas experiments and
essential for the characterization of the system as well as for a meaningful comparison to theoretical models.
Here, we perform a careful characterization of the s-wave scattering length as for the four highest-abundance
isotopes of erbium, in the magnetic field range from 0 to 5 G. We report on cross-dimensional thermalization
measurements and apply the Enskog equations of change to numerically simulate the thermalization process and
to analytically extract an expression for the so-called number of collisions per rethermalization (NCPR) to obtain
as from our experimental data. We benchmark the applied cross-dimensional thermalization technique with the
experimentally more demanding lattice modulation spectroscopy and find good agreement for our parameter
regime. Our experiments are compatible with a dependence of the NCPR with as, as theoretically expected in
the case of strongly dipolar gases. Surprisingly, we experimentally observe a dependency of the NCPR on the
density, which might arise due to deviations from an ideal harmonic trapping configuration. Finally, we apply a
model for the dependency of the background scattering length with the isotope mass, allowing us to estimate the
number of bound states of erbium.
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I. INTRODUCTION

The high degree of environmental isolation and the high
control over the large parameter-space of ultracold quantum
gases are key for their success [1]. One of the most decisive
properties in determining the many-body phases of a quantum
gas is the interaction force between atoms. Among neutral
particles, it can be isotropic and short range, as in alkali-
metal atoms, and/or anisotropic and long range. Open-shell
lanthanides, such as erbium (Er) and dysprosium (Dy), have
both interactions in place [2]. Their strong magnetic character
is reflected in a large dipole-dipole interaction (DDI), while
the contact potential is governed by the well-known scattering
length, whose value as, as in alkali-metal atoms, can be largely
controlled by so-called Fano-Feshbach resonances [3–5].

Although the concept of the scattering length itself is
well known by now, theoretical challenges to calculate as

depend on the atomic species of interest. For lanthanides,
predicting as remains a major challenge of quantum chem-
istry and microscopic scattering theories [6]. The complexity
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of describing such atoms has several reasons: the multi-
ple valence electrons, the strongly anisotropic orbital shells,
the strong coupling between core and valence electrons,
and the relativistic contributions, also made important by
the large atomic mass. To date, there are still no ab initio
models with the capacity for quantitative predictions, al-
though many general properties of the interaction potentials
(e.g., Born-Oppenheimer potentials) have been studied and
understood [7].

Yet, knowledge of the scattering length remains of prime
importance since it is an essential regulator of few- and
many-body quantum phenomena. For instance, the fascinating
supersolid state, recently discovered in Dy [8–10] and Er [9],
lives in a narrow range of only a few a0 (a0 is the Bohr radius),
and the functional forms of beyond-mean-field corrections,
which are still under discussion [11–14], depend on as in
a subtle way. In the absence of complete microscopic and
ab initio potential models, the study of as in lanthanides,
therefore, relies on experimental investigations and empirical
models.

Several different experimental methods have been applied
in previous works to extract as for Er and Dy. These in-
clude spectroscopy of the molecular binding energy close
to a broad Fano-Feshbach resonance [15,16], the anisotropic
expansion of a thermal gas [17], and the cross-dimensional
thermalization technique [18–21]. Furthermore, for the 166Er
isotope, as has been determined with high accuracy based on
a measurement of the particle-hole excitation gap in the Mott
insulator regime via lattice modulation spectroscopy [22,23].
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These techniques did not always provide consistent values,
opening up a number of fundamental questions, e.g., from the
validity of the additivity of the interaction pseudopotentials
[24–27] to the appropriateness of the Lee-Huang-Yang form
for beyond-mean-field effects [12–14,28].

In this work, we extensively study the scattering length of
the four most abundant bosonic isotopes of erbium (164Er,
166Er, 168Er, and 170Er) and its magnetic-field dependence.
For each isotope, we perform high-resolution Fano-Feshbach
spectroscopy in the low-magnetic-field region (0 to 5 G)
and identify previously unreported scattering resonances. In
this range, we then accurately determine the erbium scatter-
ing length as by developing a model based on the Enskog
equations to extract as from cross-dimensional thermalization
experiments. We benchmark our results with the ones ob-
tained from high-precision lattice-modulation spectroscopy,
which has been previously developed for 166Er [23,29] and
here expanded to 168Er. Finally, from the magnetic-field map-
ping of as, we extract for each isotope an effective background
scattering length abg

s at zero B field and we discuss the results
in the context of the isotope-mass scaling.

II. CROSS-DIMENSIONAL THERMALIZATION

The cross-dimensional thermalization technique is a very
powerful method to experimentally determine the scatter-
ing length. First successfully applied to alkali-metal atoms
[30–33], this technique has proved to be very general and,
more recently, has been used for more complex atomic
species, such as chromium [34], specific isotopes of erbium
[19] and dysprosium [21], and molecular systems [35,36].

Starting from a cold thermal cloud, the basic idea of
the cross-dimensional thermalization method is to excite the
system by increasing the potential energy along one spatial di-
mension of the atomic cloud and to measure the characteristic
time τ that the system needs to re-thermalize in the orthogonal
directions [30]. In the regime of small excitations, for an
atomic cloud at a temperature T and a total atom number N ,
the characteristic time is related to the total scattering cross
section σ̄ by

τ = α

n̄σ̄vr
, (1)

where n̄ is the mean number density

n̄ = Nω̄3

√
8

(
m

2πkBT

)3/2

(2)

and vr is the mean relative velocity for two colliding atoms

vr =
√

16kBT

πm
. (3)

Here, ω̄ is the geometric mean of the harmonic trapping
frequencies, m is the atomic mass, and kB is the Boltzmann
constant. Because multiple collisions, not all contributing
equally to rethermalization, are occurring during the ther-
malization process, the parameter α can be interpreted as a
rescaling of σ̄ and, therefore, as a number of collisions per
rethermalization (NCPR). Experimentally, the knowledge of
α is fundamental for the extraction of the total scattering cross
section.

Equation (1) has two unknown parameters: as and α.
In contrast to alkali-metal atoms, where the scattering is
isotropic, the situation is more complex for dipolar atoms such
as Er and Dy [18,20]. Here, the total cross section for bosons is
not only given by the contact scattering length as, but also by
an additional contribution from the nonisotropic DDI, which
for two atoms at a distance r and polarized by an external
magnetic field B, reads as

Vdd(r, θ ) = μ0μ
2

4π

1 − 3 cos2 θ

|r|3 . (4)

Here, μ0 is the magnetic permeability, μ is the magnetic
dipole moment, and θ is the angle between B and r. Taking
an angular average of the total cross section leads to

σ̄ = 8πa2
s + 32π

45
a2

d, (5)

where ad = mμ0μ
2

8π h̄2 is the dipolar length (ad = 98.2a0 for 166Er),
with h̄ being the reduced Planck constant. Finally, we can
rewrite Eq. (1) as

τ = α

n̄σ̄vr
= α

4Nmω̄
πkBT0

(
a2

s + 4
45 a2

d

) . (6)

The interplay between the isotropic scattering length and the
anisotropic dipolar cross section leads to a dependence of α on
both the dipole orientation θ and as [37]. In the limit of weak
excitation, an analytic form of α(as, θ ) can be found based on
the Enskog equations; see later discussion.

III. EXPERIMENTAL PROCEDURE

In our experiment, we produce a spin-polarized thermal
cloud of Er atoms in the lowest Zeeman sublevel, similarly
to Ref. [38]. In brief, after cooling and trapping the Er atomic
ensemble in a narrow-line magneto-optical trap [39], we trans-
fer the atoms into a crossed optical dipole trap. Here, we
first further cool the atoms via standard evaporative cooling,
and then we tighten the trapping confinement to avoid atom
loss due to residual evaporation. Simultaneously, we ramp
B to the desired value. At this stage we typically reach a
temperature of T = 250–300 nK with N ≈ 1×105. The exact
numbers depend on the isotope choice and the individual
set of measurements. The typical final trap frequencies are
(ωx, ωy, ωz ) = 2π×[65(1), 19(1), 300(2)] Hz. For all sets of
measurements the critical temperature for the onset of Bose-
Einstein condensation, Tc, lies between 150 and 200 nK, such
that T � 1.5×Tc. The orientation of the magnetic dipoles is
controlled by the direction of the polarizing B and is repre-
sented by the angle θ between B and the vertical direction
z, defined by gravity (see inset Fig. 1). We calibrate the
value of B with an accuracy of about 1 mG by driving the
radio-frequency transition between the two lowest Zeeman
sublevels mJ = −6 to mJ = −5.

After preparing the thermal sample, we perform cross-
dimensional thermalization experiments [19]. In particular,
we excite the cloud along the y direction and probe the ther-
malization dynamics in the z direction. Our excitation scheme
relies on a rapid increase in the power of one trapping beam,
leading to a 60% increase of the trapping frequency, while
leaving the other two directions mostly unaffected. We extract
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FIG. 1. Effective temperatures Tz (blue circles) and Ty (red dia-
monds) after the increase of the trapping potential along the weakest
trapping direction y. The measurement was performed at 1 G and
θ = 0

◦
for the 166Er isotope. The red dashed line represents a guide

to the eye. The black solid line denotes the results of the Enskog sim-
ulations for this specific data set. The error bars denote the standard
error for three repetitions. The inset shows a schematic representation
of our experimental system.

the effective temperature Tz (Ty) for a variable in-trap hold
time th from the width of the momentum distribution σz(th)
[σy(th)] after a time of flight of tToF = 25 ms (20 ms). This
scheme, illustrated in the inset of Fig. 1, leads to an out-
of-equilibrium cloud with an effective temperature increase
along y from about 300 to 600 nK.

Figure 1 shows Tz and Ty as a function of th at B = 1 G. As
we excite the system along y, we observe the expected rapid
increase of Ty. After reaching a maximum effective tempera-
ture, Ty starts to decay, and simultaneously Tz increases, both
reaching the same equilibrium temperature and thus showing
thermalization dynamics. We observe oscillations in Ty, which
we attribute to a breathing mode that gets induced by the
excitation. For Tz we observe an exponential-type growth of
the form

Tz(t ) = Tf (1 − �Te−t/τ ). (7)

Here, Tf denotes the final temperature and �T denotes the
temperature increase due to the added energy. However, using
this simple fit we cannot directly extract as as additional
knowledge on α(as, θ ) is needed [see Eq. (6)].

IV. THEORETICAL ESTIMATE OF α(as, θ)

To compute α(as, θ ), we utilize the Enskog equations of
change [40]: a coupled set of differential equations derived in
closed-form for dipolar gases, by linearization of the Boltz-
mann equation, and the assertion of a Gaussian phase-space
distribution [41]. These equations permit an analytic deriva-
tion of α(as, θ ) in the limit of short times and small excitations
[37]. For the current experiment with excitation along y and
thermalization measured along z, the NCPR is described by a
simple analytic formula, which reads

α(as, θ ) = 14
(
45a2

s + 4a2
d

)
252a2

s + 96asad + (3 cos(4θ ) + 13)a2
d

. (8)
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FIG. 2. (a) Dependency of α on θ and as for as = 0a0, 5a0, 10a0,
36.5a0, and 68.3a0. These values are chosen such that the angle
dependence at small as becomes visible. Note that, at 68.3a0 (as at
1 G, see later measurements) the variation of α with θ is strongly
suppressed. (b) α vs as for θ = 0

◦
. The inset shows an enlargement

of the region for as between 0a0 and 400. The gray dashed lines show
the values of α for s-wave and p-wave scattering, respectively.

The quantity α(as, θ ) exhibits an anisotropic character via its
angle dependence, as already observed for dipolar fermionic
atoms [19] and molecules [36].

Figure 2 shows α(as, θ ) as a function of θ [panel (a)]
and as [panel (b)], for our experimental configuration of a
pancake-shaped trap. Figure 2(a) shows that the anisotropic
character of α(as, θ ) competes with the contact one. Indeed,
while for small as (� 10a0), α(as, θ ) exhibits a pronounced
angle-dependence with a maximum at 45◦, for increasing as

such behavior progressively washes out. For as ≈ 70a0, the
thermalization behavior becomes basically independent of θ ;
however, α(as, θ ) acquires a number below the one expected
for purely contact-interacting s-wave collisions. This suggests
faster thermalization for dipolar particles, arising from a more
efficient diversion of velocities of the scattering constituents.
In the experiment, we only measure rethermalization for rel-
atively large values of as � 30a0, and therefore, we are not
sensitive to the angle dependence of α(as, θ ). In the course
of this work, we thus focus on the case θ = 0◦, simplifying
Eq. (8) to

α(as, θ = 0 ◦) = 14
(
45a2

s + 4a2
d

)
252a2

s + 96asad + 16a2
d

. (9)

As shown in Fig. 2(b), after an initial decrease, α(as, 0
◦
)

increases for as � 36.7a0—and thus the thermalization loses
efficiency—moving to the regime of contact-dominated in-
teraction, eventually reaching the α(as, 0

◦
) = 2.5 limit of

nonmagnetic atoms [18,42,43]. We note that, by setting
θ = 0

◦
and ad/as ≈ 2.7, the NCPR is minimized with the

value α ≈ 1.65, indicating highly efficient collisional ther-
malization. This is directly attributed to the innate anisotropic
differential cross section in dipolar bosons [18].
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FIG. 3. Atom-loss spectroscopy (orange circles) as a function of B for a fixed holding time of 250 ms. For each B value, the data point
is an average of three repetitions and it is normalized to the maximum averaged atom number recorded in the explored magnetic-field range.
Further, as extracted from cross-dimensional thermalization measurements using both the Enskog equations (red squares) and the analytic
formula of Eq. (8) (blue diamonds) is shown for 166Er. Additionally aLMS

s (black triangles) values obtained from lattice modulation spectroscopy
measurements are given. The solid black lines represent a fit of Eq. (10) to aLMS

s . Error bars and the shaded area of the fitting results denote the
standard error.

V. MAPPING OF as AS A FUNCTION OF B FOR 166Er

Before taking cross-dimensional thermalization measure-
ments for 166Er, we perform a high-resolution scan of the atom
number as a function of the magnetic field in order to record
the spectrum of Fano-Feshbach resonances, which we know
to be exceptionally dense [4,5]. We record the Fano-Feshbach
spectra in a magnetic field region from 0 to 5 G (see Fig. 3
and Appendix D). In all the measurements the magnetic field
is oriented along z.

We then perform thermalization measurements at values
of the magnetic field, where the system is not dominated by
resonant atom loss. For each thermalization curve, we extract
as using two different approaches, one numerical and one
semianalytical. The first, constitutes a direct fit of the full
Enskog solutions to the experimental data, leaving as as a float
parameter of the theory (see Appendix B for more details).
The second method is based on the exponential growth rate
τ , from Eq. (1), using the analytic expression for α(as, 0 ◦)
in Eq. (9). For the latter, since as is unknown a priori, we
use an iterative approach to determine α(as, 0 ◦) starting from
α(as, 0 ◦) = 1.7. We use the calculated as and the analytic
formula [see Eq. (9)] to obtain a new value for α(as, 0 ◦).
We stop the iteration once the relative change of α(as, 0 ◦) is
� 1×10−7.

Figure 3 summarizes as for 166Er in the region from 0 to
5 G. In the studied B-field regime, the scattering behavior
is essentially dominated by a broad resonance at 3 G and a
second one around B = 0 G. The as extracted from the Enskog
model and the semianalytic one are in very good agreement
with each other, reflecting the strength of the analytic formula
of Eq. (9).

VI. BENCHMARKING WITH LATTICE SPECTROSCOPY

To evaluate the robustness of our approach to extract as, we
benchmark our cross-dimensional thermalization results with
the one obtained using an alternative technique based on lat-
tice modulation spectroscopy (LMS). Such a technique, which
we have developed in the past for 166Er [23,29] and 167Er
[44], is based on the measurement of the on-site interaction—
related to as—of a lattice-confined dipolar gas in a Mott

insulator state. The LMS is able to provide accurate values of
aLMS

s , but at the price of being experimentally more involved
due to its requirements of an optical lattice together with a
highly degenerate sample. Here we compare the values of
as obtained with cross-dimensional thermalization on a low-
density thermal sample, with aLMS

s values obtained from the
lattice modulation spectroscopy obtained in Ref. [29]. In brief
we extract aLMS

s as follows. We prepare an ultracold sample
of 166Er atoms in a three-dimensional optical lattice, created
by two retro reflected laser beams at 532 nm in the horizontal
plane and by one retroreflected laser beam at 1064 nm along
the vertical z direction, defined by gravity. The final lattice
depth along the three directions is (sx, sy, sz ) = (20, 20, 100),
in units of Erec = 4.2 kHz (1.05 kHz) for 532 nm (1064 nm).
The uncertainty on sx, sy, and sz is about 5%. In such a deep
lattice, the atoms are in the Mott insulator phase [23].

We then create particle-hole excitations by sinusoidally
modulating the power of the horizontal lattice beams for 90 ms
with a peak-to-peak amplitude of about 30% and measure
the recovered Bose-Einstein condensation (BEC) fraction af-
ter melting of the lattice. At the resonance condition, where
the modulation frequency matches the particle-hole excitation
gap, we observe a resonant reduction in the BEC fraction
[45]. The particle-hole excitation gap is directly given by
the on-site interaction U = Uc + Udd. Here, Uc is the contact
interaction—and thus depends on the unknown aLMS

s —while
the on-site dipolar interaction Udd can be accurately calcu-
lated. We repeat the measurements at various magnetic-field
values and, for each, we extract aLMS

s .
In Fig. 3, we compare aLMS

s with as extracted from the
thermalization measurements. We see an overall very good
agreement between the value of as extracted using the two
techniques. This shows that the cross-dimensional thermaliza-
tion approach combined with the Enskog equations is a very
reliable method to extract as, even in the case of complex
atoms for which the knowledge of α(as, θ ) is not a priori
given.

VII. DENSITY DEPENDENCE

Our measurements for the 166Er isotope were performed
in a regime of relatively low density (n̄ � 0.5×1013 cm−3).
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FIG. 4. Measurements of α(as, θ ) as a function of n̄. The blue
circles correspond to the data sets at 1 G, shown in Fig. 3. The black
solid line marks the value given by the analytic formula in Eq. (9).
All measurements were performed with θ = 0

◦
. Error bars denote

the standard error.

Interestingly, when applying the same method in a regime of
high density, we observe a dependence of the thermalization
rate on the density which goes beyond the Enskog approach.
For instance, we repeat the cross-dimensional thermalization
measurements for 166Er at B = 1 G and the variable cloud
density n̄. We control the density by either increasing N or ap-
plying a tighter trapping configuration of (ωcyl

x , ω
cyl
y , ω

cyl
z ) ≈

2π×(300, 19, 300) Hz before compression, or both. From the
lattice modulation spectroscopy, we have extracted the value
as = 68.3(7)a0 at B = 1 G. By fixing this value—meaning to
impose that the scattering length does not depend on density—
and using Eq. (1), we can determine α(as, 0

◦
) as a function of

n̄. Note that for all measurements we find a Knudsen number,
given by the ratio of the mean free path and the size of
the atomic cloud, >10. This implies that we are far away
from the hydrodynamic regime, which could otherwise lead
to modifications in the thermalization behavior [46,47].

Figure 4 shows α(as, 0
◦
) for different values of n̄. We find

a pronounced dependency on n̄, with a rapid increase and
an eventual saturation at high densities. Such a behavior is
not captured by our theoretical model, which, as reflected
in the definition of α(as, 0

◦
) in Eq. (1), predicts no density

dependence. To the best of our knowledge, such a dependence
has not been reported in previous works on cross-dimensional
thermalization. Possible explanations are rooted in various
causes, either physical or technical nature. Although be-
ing above Tc, precursors of quantum many-body phenomena
might influence the scattering behavior. Exemplary, we tried
to explicitly include effects coming from Bose enhancement
into our theoretical framework. This did not have significant
influence on the thermalization behavior. Note that, in the
experiment, we varied the initial temperature of the atomic
cloud and the excitation strength, which did not show any
influence on the observations.

Another possible explanation, based on unavoidable exper-
imental imperfections, is rooted in deviations from an ideal
harmonic trapping condition, leading to a modification of the
kinetic energy and the mean density. Such a variation would
manifest in an apparent change of α(as, 0

◦
) [see Eq. (1)].

Indeed, Eqs. (2) and (3) are only valid for an ideal harmonic
trapping confinement. Furthermore, trap anharmonicities lead
to a larger kinetic temperature after thermalization compared
to the case of purely harmonic traps as seen when formulating
the dynamics using the scaling ansatz method [48]. As this
effect is stronger for larger densities, this further suggests that
the range of low densities is the appropriate one to consider.
First Monte Carlo simulations performed by using a realistic
Gaussian trapping potential seem to support this assumption
(see Appendix C).

We emphasize that, due to the agreement with the lattice
modulation spectroscopy results and the above discussion on
anharmonicities, and since our measurements to extract as

have been performed at low densities, we are confident that
our method remains valid.

VIII. SCATTERING LENGTH FOR 164Er and 170Er

After the detailed study on 166Er and the benchmark-
ing of the results with high-precision lattice modulation
spectroscopy, we confidently apply our cross-dimensional
thermalization approach to two other isotopes, 164Er and
170Er. Again we start with a Fano-Feshbach spectroscopy
between 0 and 5 G to identify the position of the scattering
resonances as shown in Fig. 5. We note that these Fano-
Feshbach spectra have not been reported previously. For the
cross-dimensional thermalization measurements we follow a
similar experimental procedure as described above. From the
thermalization curve, we again use both the full fit of the
Enskog equations and the iterative approach on α(as, 0

◦
) to

determine as from the exponential growth rate τ .
Figure 5 shows as for the isotopes 164Er [panel (a)] and

170Er [panel (b)]. While the scattering behavior for 164Er
is, similarly to 166Er, dominated by two broad resonances
at 1.5 and 3.3 G, 170Er features several narrow overlapping
resonances, providing different test scenarios for our cross-
dimensional thermalization. Although minor deviations can
be observed in the vicinity of Fano-Feshbach resonances, for
both isotopes the extracted as values using the two approaches
are once more in good agreement.

IX. SCALING OF BACKGROUND SCATTERING
LENGTH WITH MASS

The knowledge on as as a function of the magnetic field
allows us to extract an effective background scattering length
abg

s for each isotope. The general behavior of as with B can be
described by generalizing the well-known formula [49]

as(B) = (
abg

s + sB
) Nres∏

i=1

(
1 − �Bi

B − Bi

)
(10)

to the case of Nres overlapping resonances of position Bi and
width �Bi and allowing for a smooth off-resonant variation
of as with B. We observe that a linear variation of slope s
already well reproduces the data with as(0) defined as the
effective abg

s . We note that different mechanisms could lead
to an off-resonant variation of as. For instance, the influence
of broad Fano-Feshbach resonances, which are not within our
measurement range, could lead to a smooth variation of the
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FIG. 5. Atom-loss spectroscopy (orange circles) as a function of B for a fixed holding time of (a) 250 ms for 164Er and (b) 500 ms for 170Er.
For each B value, the data point is an average of four to five repetitions and it is normalized to the maximum averaged atom number recorded
in the explored magnetic-field range. Further, as values extracted from cross-dimensional thermalization measurements using both the Enskog
equations (red squares) and the analytic formula of Eq. (8) (blue diamonds) are shown. The solid black lines represent a fit of Eq. (10) to as

obtained using the Enskog equations. Error bars and the shaded area of the fitting results denote the standard error.

background behavior, similar to that observed for cesium [50].
Alternatively, the effect could be due to the coupling induced
by DDI between the incident scattering channel and Zeeman
states that lie higher in energy. As a consequence this results
in a perturbation of the molecular potential, whose strength
depends on the magnetic field, leading to an increasing value
of the van der Waals C6 coefficient [51].

To parametrize as as a function of B, we fit Eq. (10) to the
measured as for 164Er, 166Er, 168Er, and 170Er. For 166Er and
168Er, we use the scattering lengths obtained from the lattice
modulation spectroscopy, corresponding to our most accurate
determination (see solid lines in Figs. 3 and 8. For 164Er and
170Er, we fit Eq. (10) to the as data obtained by applying
the Enskog equations to the cross-dimensional thermalization
measurements (see solid lines in Fig. 5). More details on
the fitting procedure as well as the complete list of the fit
parameters are given in Appendix F. In general, we observe
that the fitting function reproduces very well the behavior of
as for every isotope.

Figure 6 shows the value of abg
s from the fit as a function

of the isotope mass. We observe a monotonic rising of abg
s

with increasing m, which might be compatible with different
functional forms, including a simple linear increase. Under the
assumption that erbium has a similar behavior to ytterbium
and cesium, we can use the model for the mass scaling as
developed in Refs. [52–54]. Such a model assumes that as is
only given by the Van der Waals potential U (r) = −C6/r6,
with C6 being the Van der Waals coefficient. This might be
a rather severe approximation for magnetic atoms, but, in the
absence of alternative models, it is interesting to compare the
simple mass-scaling approach to erbium.

As introduced in Ref. [52], as can be written as

as = ā

[
1 − tan

(
φ − π

8

)]
, (11)

with ā = 2−3/2 
(3/4)

(5/4) ( mC6

h̄2 )1/4 being the characteristic length
and

φ =
√

m

h̄

∫ ∞

R0

√
−U (r)dr. (12)

Here, 
(x) is the Gamma function and R0 is the classical
turning point of U (r). Although the exact shape of U (r) is un-
known, Eq. (11) can be employed to extract a mass scaling due
to the dependence of φ ∝ √

m [53]. Such a scaling is valid, as
long as the mass-dependent modification of U (r) is negligible.
Furthermore, φ allows for the calculation of the number of
bound states NB via the relation NB = �φ/π − 5/8�, where
� � denotes the floor integer function.

163 164 165 166 167 168 169 170 171

40

60

80

100

120

140

FIG. 6. Background scattering length abg
s for four bosonic iso-

topes (red circles). The solid line represents the best fit with φ/π =
144(1) (see text). The shaded area, enclosed by the dotted lines,
represents the fitting function for φ = 143 and φ = 145. The error
bars denote the standard error of the fit of Eq. (10) to the experimental
data.
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We now apply this model to our Er case. Figure 6 shows
the fit of Eq. (11) to the experimental data (see Appendix G
for details). We obtain the best agreement for φ/π = 144(1),
leading to NB = 143(1) for 168Er. Despite the similar C6 co-
efficient, NB is approximately a factor of 2 larger than for
ytterbium [53]. Note that NB is in agreement with the result
obtained when using the same approach but assuming a hard-
core potential (see Appendix H). We would like to emphasize
once more that this model does not consider any contribution
arising from the DDI. An improved description calls for the
development of advanced theoretical models.

X. CONCLUSION

In conclusion, we report on an accurate study of the scat-
tering length of four different isotopes of erbium. Our work
focuses on the low-magnetic-field region, which is the range
of most interest in current experiments. Our experimental sur-
vey combines two different techniques: a high-precision, yet
demanding, approach based on the measurement of the on-site
interaction in a Mott insulator phase, and another one based
on measuring the re-equilibration time in cross-dimensional
thermalization experiments. From the latter, we extract the
the value of as by both numerically applying the full Enskog
equations and using the analytic formulation for α(as, θ ). All
these different approaches, benchmarked one with respect to
the others, provide a very consistent measure of the scattering
length in the region of interest. These results will be relevant
for current experiments and moreover point to a practical
manner to extract as with reduced experimental effort, which
can be readily generalized to other magnetic lanthanides.
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APPENDIX A: ANALYTIC NUMBER OF COLLISIONS
PER RETHERMALIZATION

Analytic expressions for α(as, θ ) can be derived under a
short-time approximation, with the Enskog equations

d
〈
q2

j

〉
dt

− 2

m
〈q j p j〉 = 0, (A1a)

d
〈
p2

j

〉
dt

+ 2mω2
j 〈q j p j〉 = C

[
p2

j

]
, (A1b)

d〈q j p j〉
dt

− 1

m

〈
p2

j

〉 + mω2
j

〈
q2

j

〉 = 0, (A1c)

where r j and p j are positions and momenta, respectively
( j = x, y, z), and C is the collision integral. The derivation

follows from Ref. [37], but we present a brief outline here for
completeness. The gas is assumed to be close to equilibrium,
allowing us to treat r j and p j as Gaussian distributed. Ther-
malization trajectories are then tracked using the Gaussian
widths along each axis to compute the energy differential

〈χ j〉 ≡ Ej − kBTf , (A2)

where Tf = (Tx + Ty + Tz )/3 is the final equilibration tem-
perature (obtained from the equipartition theorem), 〈. . .〉
denotes an ensemble average assuming a Gaussian phase-
space distribution whose widths are allowed to vary, and
Ej = 〈p2

j〉/(2m) + mω2
j 〈r2

j 〉/2 is the sum of kinetic and
potential energies in the jth direction. The Enskog equa-
tions dictate that the relaxation of 〈χ j〉 follows the differential
equation

d〈χ j〉
dt

= C[χ j]. (A3)

For small deviations from equilibrium and at short times,
rethermalization can be approximated with a single decay rate
γ , such that C[χ ] ≈ −γ 〈χ〉. This results in the relation

dEj

dt
= −γy j (Ej − kBTf ) = C[Ej], (A4)

where the subscript on γy j indicates that the gas was excited
along y, and rethermalization was measured along j. This then
permits us to compute

αy j = n̄σ̄vr

γy j
=

(
Ej − kBTf

C[Ej]

)
n̄σ̄vr, (A5)

which for j = z has the form in Eq. (8).

APPENDIX B: FITTING ENSKOG EQUATIONS
TO EXPERIMENTAL DATA

The extraction of the scattering lengths as from cross-
dimensional thermalization data was done here by means of
full numerical solutions to the Enskog equations. To do so,
as was left as a float parameter in the theory and then varied
until a best fit between the theoretical and experimental data
was obtained. A feature we noticed during fitting was the high
sensitivity of thermalization rates to variations in the trapping
frequencies ω, over the finite-time quench. Measurement un-
certainties, therefore, motivate us to also leave ω as a float
parameter, with allowed values within its 1-σ error bars. This
is applied to the trapping frequencies both before and after the
quench.

We performed fits using a χ2 optimization criterion,

min
ω,as

tend∑
t=t0

(
T (t ) − TE[T (0); ω, as](t )

δT (t )

)2

, (B1)

where the sum runs over measurement time instances t , T (t )
is the temperature data from the experiment, δT (t ) is the
temperature measurement uncertainty, and TE[T (0); ω, as] is
the solution to the Enskog equations with initial condition
T (0) and fit parameters as and ω.

To reduce biasing of the fits, we run an iterative algorithm
that recursively fits ω and as in succession until they converge
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FIG. 7. Benchmarking of the Enskog simulation results for Tz

(red solid line) with Monte Carlo simulations (black dashed line).
The data set is the same as that in Fig. 1.

to stable values. Such a procedure would take exceedingly
long times (approximately weeks) with full Monte Carlo
(MC) simulations, but can be done in minutes with the Enskog
equations on a current-day computing device.

Solutions to the Enskog equations have shown themselves
accurate when compared to MC simulations [37,41]. We
show their accuracy here yet again, using the parameters
from the current experimental setup. An illustrative example
is provided in the plot of Fig. 7, comparing an instance of
the Enskog solutions (red solid line), MC simulations (black
dashed line), and the experimental data (blue circles).

APPENDIX C: MONTE CARLO SIMULATIONS
INCLUDING TRAP ANHARMONICITIES

Optical dipole traps are, in many studies, assumed to
be well modeled by purely harmonic potentials. This may,
however, be inadequate in regimes with significant trap an-
harmonicity effects, which we currently attribute the density
dependence of α to. In such cases, the potential is better mod-
eled as two cross-propagating Gaussian-profile beams along
the y and z axes (with gravity). This produces the confinement

potential

VODT(r) = − 2Ũ1P1

πw1,x(z)w1,y(z)
e
−2

(
x2

w2
1,x (z)

+ y2

w2
1,y (z)

)

− 2Ũ2P2

πw2,x(y)w2,y(y)
e
−2

(
x2

w2
2,x (y)

+ z2

w2
2,z (y)

)
+ mgz,

(C1)

where P is the laser power, Ũ is an atomic polarizability
parameter, and

w(z) = w0

√
1 + z2

z2
R

, (C2)

with zR and w0 denoting Rayleigh lengths and beam widths,
respectively.

Such a potential limits the applicability of the aforemen-
tioned Enskog equations as formulated in Ref. [41]. Instead,
more robust molecular dynamics (MD) methods are required
to accurately predict thermalization trajectories. We imple-
ment an MD simulation similar to that in Ref. [20], which
evolves simulation particles under the action of VODT via the
Verlet symplectic integrator:

qk = rk (t ) + �t

2m
pk (t ), (C3a)

pk (t + �t ) = pk (t ) + Fk�t, (C3b)

rk (t + �t ) = qk + �t

2m
pk (t + �t ), (C3c)

where subscripts k denote the kth simulation particle, �t is
the simulation time-step, t is the time, and

Fk = −∇VODT(rk ). (C4)

Dipolar collisions are then computed with the direct-
simulation Monte Carlo method [56], which determines
postcollision momenta via stochastic sampling of the differ-
ential cross section.

In a preliminary study of the density dependence, ideal
Gaussian beam profiles are assumed, along with perfectly
accurate beam widths and Rayleigh lengths. Following a
trap quench, thermalization of the out-of-equilibrium gas in
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FIG. 8. Atom-loss spectroscopy (orange circles) as a function of B for a fixed holding time of 500 ms. For each B value, the data point
is an average of six to seven repetitions and it is normalized to the maximum averaged atom number recorded in the explored magnetic-field
range. Further, the measured scattering lengths as obtained for 168Er from lattice modulation spectroscopy measurements are shown. The solid
black line represents a fit to aLMS

s . The shaded area and the error bars denote the standard error.
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TABLE I. Values for abg
s and s obtained from the fit of Eq. (10) to

as for the four bosonic isotopes. The error denotes the fit error of one
standard deviation.

Isotope a0bg (a0) s (a0/G)

164 52(6) 9(3)
166 61(3) 5.4(9)
168 110(2) 11(2)
170 129(9) 20(10)

VODT indeed shows an apparent increase of α with den-
sity, qualitatively similar to that observed in the experiment.
This effect is absent in simulations with an ideal harmonic
trap. Furthermore, in higher density regimes, the simulations
with VODT predict the experimentally observed equilibration
temperatures more accurately compared to the harmonic trap
case. These early findings on density dependence from trap
anharmonicities are intriguing, and a cautionary tale for future
experiments. However, we do not develop this idea further
here and leave such analysis for future works.

APPENDIX D: FANO-FESHBACH SPECTROSCOPY

To identify the positions of the Fano-Feshbach resonances
we perform high-resolution loss spectroscopy in a cylin-
drically symmetric trap. We evaporatively cool the atoms
until they reach a temperature between T = 300 and 400
nK. At this stage, the atom number is between 6×104

and 1.2×104 with typical trap frequencies of (ωx, ωy, ωz ) =
2π×(300, 30, 300) Hz. The exact values depend on the iso-
tope choice. After reaching thermal equilibrium, we change B,
oriented along the z axis, in 1 ms to the desired value and wait
for a holding time between 250 and 500 ms. We use different
holding times for different data sets to avoid saturation effects
of the resonances for higher densities. After the holding time,
we measure the atom number using absorption imaging after
a time-of-flight expansion of 25 ms. The results of the loss-
spectroscopy measurements are shown in Figs. 3, 5, 8.

APPENDIX E: SCATTERING LENGTH FOR 168Er

To obtain as for the 168Er isotope, we follow a similar
approach as for 166Er. First, we perform loss spectroscopy
to identify the position of Fano-Feshbach resonances. We
then transfer the atoms into an optical lattice with a depth of
(sx, sy, sz ) = (20, 20, 40)Erec and apply the lattice modulation

TABLE II. Parameters for the Fano-Feshbach resonances in-
cluded in the fit of Eq. (10) to as for 164Er. The error denotes the
fit error of one standard deviation. Values without error are fixed in
the fitting procedure.

Position Bi (G) Width �Bi (G)

1.52 0.22(3)
2.67 0.005
2.83 0.005
3.26 0.10(3)

TABLE III. Parameters for the Fano-Feshbach resonances in-
cluded in the fit of Eq. (10) to as for 166Er. The error denotes the
fit error of one standard deviation. Values without error are fixed in
the fitting procedure.

Position Bi (G) Width �Bi (G)

0.02(5) 0.05(2)
3.04(5) 0.15(2)
4.208 0.01
4.96 0.005

spectroscopy technique to extract as. The lattice modulation
spectroscopy follows the same lines as for the 166Er isotope
(see main text). Figure 8 summarizes the results for 168Er and
shows the Fano-Feshbach spectroscopy result as well as as as
a function of B in the magnetic field range from 0 to 5 G.

APPENDIX F: EXTRACTING BACKGROUND
SCATTERING LENGTH

To obtain a value for abg
s , we fit Eq. (10) either to as

obtained from the full Enksog equations (164Er and 170Er) or
to aLMS

s (166Er and 168Er). Due to the different numbers of
Fano-Feshbach resonances compared to the number of avail-
able data points for as, we slightly vary the fitting approach
for the individual isotopes. Depending on the position and
the width of the resonance, for some resonances, we fix the
position Bi to the minimum of the loss feature and keep only
the width �Bi as a floating parameter. For the very narrow
resonances, which have a negligible influence on the overall
scattering behavior, we fix both Bi and �Bi.

Table I gives the results for the background scattering
lengths abg

s and the slopes s for all four isotopes. Moreover,
Tables II–V contain a detailed listing of all Fano-Feshbach
resonances and how they are included in the fitting proce-
dure. Note that for 170Er we are aware of the existence of
a particularly broad resonance at 6.91 G [57], which we in-
clude with variable width. When looking closely, the onset
of this resonance can actually be seen as a reduction of N
towards higher magnetic-field values in the loss spectroscopy
[see Fig. 5(b)].

TABLE IV. Parameters for the Fano-Feshbach resonances in-
cluded in the fit of Eq. (10) to as for 168Er. The error denotes the
fit error of one standard deviation. Values without error are fixed in
the fitting procedure.

Position Bi (G) Width �Bi (G)

0.49 0.005
0.911(6) 0.032(2)
1.51 0.01
2.174(4) 0.038(2)
2.471(9) 0.19(1)
2.86 0.005
3.79 0.006(5)
4.23 0.005
4.5 0.005
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TABLE V. Parameters for the Fano-Feshbach resonances in-
cluded in the fit of Eq. (10) to as for 170Er. The error denotes the
fit error of one standard deviation. Values without error are fixed in
the fitting procedure.

Position Bi (G) Width �Bi (G)

0.35 0.005
0.86 0.028(12)
1.12 0.005
1.62 0.01
2.17 0.067(7)
2.74 0.134(9)
3.3 0.01(1)
3.57 0.01
4.38 0.005
4.49 0.01
6.91 0.8(7)

APPENDIX G: χ2 ANALYSIS FOR MASS SCALING

In this section, we describe our analysis of the background
as of the four Er isotopes (Fig. 6) with Eq. (10). To find
the best-fitting parameter φ, we analyze the agreement of the
theoretical model in Eq. (11) with our experimental data. For
each value of φ, we calculate the χ2 via

χ2 =
4∑

i=1

(
amod

s − ai
s

σ i
s

)2

. (G1)

Here, amod
s is the scattering length given by the model for the

corresponding φ, and ai
s and σ i

s are the measured as with the
corresponding standard error.

The behavior of χ2 is nonmonotonic with the appearance
of several minima. We identify the absolute minimum of χ2

for φ = 144.03. To further obtain an estimate for the error of

φ we fit a quadratic function to the local minima. We extract
the limits of the confidence interval by considering the region
where χ2 � χ2 + 1.

APPENDIX H: HARD-CORE POTENTIAL
FOR MASS SCALING

The model contains the assumption that the s-wave scat-
tering length is given at large distances by the van-der-Waals
potential scaling with UvdW(r) ∝ −C6/r6, with C6 being the
Van der Waals coefficient, and at short distances r < rc by a
hard-core potential [52]. In this specific case, the scaling of
abg

s can be described by

abg
s = ā tan(�), (H1)

where ā = 
(3/4)
2
√

(2)
(5/4)
ac, with ac = ( 2mrC6

h̄2 )1/4 being the char-
acteristic scattering length scale of the potential, and � =
a2

c
2r2

c
− 3π

8 is the semiclassical phase [52].
From theoretical calculations in Ref. [6] we use C6 =

1723 a.u. and we estimate from the theoretical interaction
potential given in Ref. [6] that rc ≈ 4a0–8a0. We fit Eq. (H2)
to abg

s of the four bosonic isotopes. Due to a large number of
possible local minima, we combine the fitting with a mini-
mization of the χ2 value while varying the start parameter for
rc. We obtain the best agreement for rc = 5.05(5)a0.

In addition, the Levinson theorem [58] allows us to esti-
mate the number of bound states NB, which can be calculated
from the semiclassical phase � using

NB =
[
�

π
− 3

8

]
+ 1, (H2)

where the square brackets mean the integer part. For the
current fitting we obtain NB ranging from 141 to 144, in
agreement with the approach in the main text. We want to
emphasize, that this modeling of abg

s is a simple approach and
a more thorough analysis could add deeper valuable insights.
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