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Abstract

Astrophysical jets, launched from the immediate vicinity of accreting black holes, carry away large amounts of
power in a form of bulk kinetic energy of jet particles and electromagnetic flux. Here we consider a simple
analytical model for relativistic jets at larger distances from their launching sites, assuming a cylindrical
axisymmetric geometry with a radial velocity shear, and purely toroidal magnetic field. We argue that as long as
the jet plasma is in magnetohydrostatic equilibrium, such outflows tend to be particle dominated, i.e., the ratio of
the electromagnetic to particle energy flux, integrated over the jet cross-sectional area, is typically below unity,
σ< 1. At the same time, for particular magnetic and radial velocity profiles, magnetic pressure may still dominate
over particle pressure for certain ranges of the jet radius, i.e., the local jet plasma parameter βpl< 1, and this may
be relevant in the context of particle acceleration and production of high-energy emission in such systems. The jet
magnetization parameter can be elevated up to the modest values of  ( )s 10 only in the case of extreme
gradients or discontinuities in the gaseous pressure, and a significantly suppressed velocity shear. Such
configurations, which consist of a narrow, unmagnetized jet spine surrounded by an extended, force-free layer, may
require an additional poloidal field component to stabilize them against current-driven oscillations, but even this
will not substantially elevate their σ parameter.

Unified Astronomy Thesaurus concepts: Jets (870); Plasma jets (1263); Magnetohydrodynamics (1964)

1. Introduction

Relativistic jets found in various types of astrophysical
sources of high-energy radiation, such as active galactic nuclei
(AGNs), microquasars, and gamma-ray bursts, are believed to
be formed via the efficient extraction of energy and angular
momentum, in the form of Poynting flux, from the rotating
black hole/accretion disk system (Blandford & Znajek 1977;
for an updated compendium see Meier 2012, also Komissarov
& Porth 2021 for a summary of recent developments in
numerical simulations of jet launching). At the initial stages of
their evolution, such structures are magnetically dominated,
rapidly expanding, and only mildly relativistic. Thereafter,
collimation and acceleration start to proceed in accord,
gradually converting the outflow to a fully formed plasma jet,
at the expense of the magnetic energy. However, in the
framework of the ideal magnetohydrodynamic (MHD) descrip-
tion, and in the relativistic regime, such a conversion cannot be
efficient, in the sense that the collimation and acceleration of
the flow due to the magnetic tension and magnetic pressure
gradient, respectively, are limited by the increasing electric
force, which counterbalances the magnetic force. Efficient
collimation and acceleration may, however, be reinforced by
the external pressure, for example, related to the star’s interior
in the case of gamma-ray bursts, or accretion disk winds in the
case of AGN (e.g., Lyubarsky 2009, and references therein).

Considering a power-law external pressure profile, Lyu-
barsky (2010) showed in particular that for various initial
magnetic field configurations or external pressure profiles jets
could possibly cease to be Poynting-flux dominated only at
logarithmically large distances. It is worth pointing out that the
author defines a matter-dominated jet through the condition
σ< 0.1, where σ is the ratio of the jet magnetic energy flux to
the particles’ kinetic energy flux; the reason for this is that in
the intermediate regime, 0.1< σ< 1, formation of strong
shocks within the outflow—and hence energy dissipation as
well as bulk deceleration of the flow due to interactions with
the ambient medium—proceed rather differently than in the
purely hydrodynamical case (e.g., Komissarov 1999; Kirk et al.
2000).
A contradictory conclusion follows from modeling of the

observational data for relativistic jets in AGN, which often
point toward very weak magnetization of the outflows, even at
relatively close distances from the launching site. For example,
various approaches to the spectral fitting of broadband blazar
emission typically give the estimate σ = 1 for distances
104 rg, where rg; 1014M9 cm is the gravitational radius
corresponding to the black hole mass M9≡M•/10

9Me (e.g.,
Sikora et al. 2009; Ghisellini et al. 2010; Rueda-Becerril et al.
2014; Saito et al. 2015; but see also in this context Sobacchi &
Lyubarsky 2019). This would be consistent with the maximum
efficiency of Poynting-to-matter energy flux conversion
achieved relatively close to the jet base, followed by a steady
and basically dissipation-free propagation of a relativistic
matter-dominated outflow. Beyond the ideal MHD approx-
imation, such a maximum efficiency could possibly be
achieved with the help of dissipation processes, in particular,
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magnetic reconnection, or the nonlinear development of
various MHD instabilities, rapidly converting the jet magnetic
energy into kinetic energies of the jet particles (e.g., Sikora
et al. 2005; Giannios & Spruit 2006; Chatterjee et al. 2019).

Keeping in mind the results and findings summarized above,
here we consider the simplest analytical model for a relativistic,
current-carrying jet at a large distance from the launching site,
where the outflow can be considered as fully collimated and
accelerated to terminal bulk velocities. In particular, we assume
a cylindrical axisymmetric geometry for a nonrotating jet, with
a radial velocity shear; moreover, we assume that the jet
magnetic field has only a toroidal component, the jet is in
magnetohydrostatic equilibrium, and finally that the jet
particles obey an ultrarelativistic equation of state.

In the framework of this approximation, introduced in more
detail in Section 2, we argue that the outflows tend to be matter
dominated, in the sense that the ratio of the jet Poynting and
particle energy fluxes, integrated over the jet cross-sectional
area, i.e., the jet magnetization σ parameter, is less than unity,
as long as the radial pressure profiles are smooth with no
extreme gradients or discontinuities. In Section 3, we provide
simple analytical proof for this statement, valid however for
only a certain class of magnetic field profiles, namely, those for
which the rest-frame magnetic pressure attains its global
maximum at the jet boundary. In Section 4, we explore further
numerical solutions corresponding to various parameterizations
of the generalized magnetic and velocity profiles, as well as
various boundary conditions. There we observe that, even in
the case of matter-dominated outflows with σ< 1, it is possible
for the magnetic pressure to exceed particle pressure at certain
ranges of the jet radii, or in other words for the local plasma
beta parameter to alternate between βpl> 1 and βpl< 1
depending on the distance from the jet axis. We also explore
cases with tangential discontinuities in the jet gaseous pressure,
arguing that, for such, one may formally obtain magnetic-
dominated outflows with  ( )s 10 , however, at the price of
huge pressure jumps by orders of magnitude. In Section 5, we
discuss our findings in the general context of particle
acceleration in astrophysical jets, commenting also on the
stability of the analyzed structures against current-driven
oscillations, and on a role of an additional component of a
poloidal magnetic field, in particular, when confined to the
narrow spine of the jet.

2. Jet Model

Let us consider a nonrotating, cylindrical axisymmetric jet in
magnetohydrostatic equilibrium, for which the comoving
magnetic field ¢B is decomposed into the poloidal and toroidal
components,

ˆ ˆ ˆ ( )f¢ = ¢ + ¢ ¢ = ¢fB BB r B z Band . 1P r z T

In this paper, we analyze a purely toroidal configuration,
¢ = ¢ =B B 0r z , due to the fact that at large distances from the jet

base, any poloidal magnetic field is typically expected to be
negligible (see Begelman et al. 1984). The current I associated
with such a jet is therefore parallel or antiparallel to the jet axis,
depending on the helicity of the jet magnetic field. Note that
this would not be valid for a conical jet, for which there could
also be a radial current component. However, at large distances
from the jet base, effectively beyond the host galaxy, the
background pressure should not be that of the interstellar

medium, but instead of the hot, over-pressured jet cocoon, and
as such should be independent of z, justifying our model
assumption regarding a cylindrical jet geometry (see in this
context Begelman & Cioffi 1989). The only nonzero comp-
onent of the current density, ˆ¢ = ¢J J z , is then

( ) ( )
p

¢ =
¢
¶ ¢ ¢f¢J

c

r
r B

4
, 2r

so that the magnetohydrostatic equilibrium condition
¶ = - ¢ ¢f¢c P J Br , where P denotes the comoving particle

pressure, gives the radial profile

⎛

⎝
⎜

⎞

⎠
⎟ ( )

p
¶ = - ¶

G
f

P
r

r B1

8
, 3r r2

2 2

2

where = ¢ Gf fB B and ( )bG = - -1 2 1 2 is the bulk Lorentz
factor of the portion of the fluid with the velocity β (see, e.g.,
Appl & Camenzind 1992). The jet current, ( )= fI c r B Rj

1

2
,

where Rj is the jet radius, has to be compensated by a return
current Iret at larger scales where the outflow terminates.
Let us denote the proper enthalpy and the proper internal

energy density of the jet particles by w and u, respectively. In
the case of ultrarelativistic jet particles, i.e., for P= u /3, one
has w= P+ u= 4P, the case we analyze exclusively hereafter.
With such, the energy flux associated with the jet particles is

( )ò òp b p b= G = GL c dr r w c dr r P2 8 , 4p
2 2

while the jet Poynting flux is

( )ò òp
p

b= =f
fL c dr r

E B
c dr r B2

4

1

2
, 5B

r 2

where Er= βBf is the radial component of the jet electric field.
The jet magnetization parameter σ is then

( )ò
ò

s
p

b

b
º =

G
fL

L

dr r B

dr r P

1

16
. 6B

p

2

2

It is convenient to introduce the dimensionless parameter
x≡ r/Rj, and the normalized profiles

( )
( )
( )

( ) ( ) ( )º = ºf

f
b x

B x

B
b b

1
: 0 0, 1 1, and 7

( ) ( )
( )

( ) ( ) ( )º > ºp x
P x

P
p p

1
: 0 0, 1 1. 8

For now, we do not make any assumption regarding the
particular monotonicity of b(x) or p(x) profiles, but only that the
magnetic field has a particular helicity all along the outflow,
and that it does not vanish at the jet boundary, Bf(1)> 0; note
however that for a purely toroidal configuration, magnetic field
always drops to zero at the jet axis, Bf(0)= 0. As for the
velocity profile, we consider only the cases with the jet bulk
Lorentz factor Γ(x) decreasing monotonically along the jet
radius starting from Γ(0)≡ Γ0> 1 down to Γ(1)= 1, excluding
anomalous shear layers (see in this context Aloy &
Rezzolla 2006; Mizuno et al. 2008).
Next we introduce the parameter

( )
( )

( )
( )

( ) ( )
p

bº º ºf -q
B

P

P

P

1 8

1

1

1
1 , 9B

2

pl
1

2
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which is the ratio of the magnetic and gas pressures at the jet
boundary, i.e., the inverse of the plasma beta parameter at
x= 1. To simplify the notation, we further introduce

( ) ( )
( )

( ) ( ) ( )º
G

= =f x
b x

x
f f: 0 0, 1 1, 10

2

2

which is basically the normalized rest-frame magnetic
pressure, ( ) ( ) pµ º ¢ff x P x B 8B

2 .
With the above definitions, for a given set of profiles b(x)

and Γ(x), or equivalently f (x) and Γ(x), and with a given
boundary condition q, the magnetohydrostatic equilibrium
condition, given in Equation (3), determines the particle
pressure profile

( ) ( ) ( ) ( )ò= + - +p x q q f x q ds
f s

s
1 2 . 11

x

1

Importantly, the requirement ∀xä[0,1]: p(x)> 0, translates to the
constraint

( ) ( ) ( )ò+ > --q f x ds
f s

s
1 2 . 12

x

1
1

3. Jet σ Parameter

It was noted by Lisanti & Blandford (2007) that for the jet
model setup as considered here, numerical solutions to the jet
magnetization parameter always return σ< 1. Below we draft
simple analytical proof for this statement, valid however for
only a certain class of magnetic profiles. In particular, in this
section we consider only those magnetic profiles, for which the
comoving magnetic field pressure is continuous and attains its
maximum at the jet boundary, or in other words for which
f (x)< 1 for every x< 1, even though f (x) is not necessarily
monotonic within the entire range x ä [0, 1].

First, let us introduce the function

( ) ( ) ( ) ( )bº Gh x x x x , 132

such that h(0)= h(1)= 0, which has exactly one maximum at a
given x0 ä (0,1) for the assumed monotonically decreasing Γ

(x). With such, the jet σ parameter can be rewritten as

( ) ( )

( ) ( )
( )

ò

ò
s =

q dx h x f x

dx h x p x2
. 140

1

0

1

We also define

( )
( )

( )
( )

ò

ò
ºH x

dy h y

dz h z
, 15

x

0

0

1

which, by definition, is monotonically increasing from H
(0)= 0 to H(1)= 1. Note that

( )
( )

( ) ( )
( )

( )
ò

¢
º =

x H x

H x

d H x

d x

x h x

dy h y

ln

ln
. 16x

0

Moreover, since β(x)Γ2(x) is a continuous, monotonically
decreasing function, from the mean value theorem (MVT) we
know that for a given fixed x, there is always ξ ä [0, x] such
that

( ) ( ) ( ) ( ) ( ) ( )ò òb b x x b x xG = G = Gdy y y y dy y x
x x

0
2 2

0

1

2
2 2 ,

and therefore

( )
( )

( ) ( )
( ) ( )

( )b

b x x

¢
=

G

G

x H x

H x

x x x

x
2. 17

2 2

1

2
2 2

In fact, ( ) ( )¢x H x H x is always monotonically decreasing
from 2 at x= 0 down to 0 at x= 1.
Using the form of the σ parameter as given in Equation (14),

along with the solution for the pressure profile, Equation (11),
and the condition for a positive gas pressure, Equation (12), we
obtain

( )
( )

( ) ( )
ò ò

s
>

- - á ñ +

á ñ

f x ds f ds

f

1

2

2 2
, 18

x

f s

s y

f s

s

1 1

where the averaging is over the h(x) distribution, namely,

( )

( )
( )ò

ò

ò
á ñ º ºX dH X

dy h y X

dy h y
, 19

0

1
0

1

0

1

with ò òº ¢dx HdH . Hence, if the right-hand side of
Equation (18) is larger than 1/2 for every x, then σ< 1.
In the case of f (x) attaining its maximum at the jet boundary,

as considered in this section, the condition, Equation (18), at
x= 1 reads as

( )

( )
ò

s
>

- á ñ +

á ñ

f ds

f

1

2

1 2
. 20

y

f s

s

1

Meanwhile, from the MVT we know that there is ηä (0, 1)
such that 〈f〉= f (η)< 1. Hence,



( ) ( )

( ) ( )

( )
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ò

ò

= ¢

=

=
¢

=
¢
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=
=

ds
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s
dy H ds

f s

s

dy H y
f y

y

H

yH
dH f
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yH
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2 2

2

2 2 , 21

y y

y

y

1

0

1 1

0

1

0

1

where we used again the MVT with a certain ζ ä (0,1), and the
fact that ( )¢H yH 1 2 for every y ä (0,1) (Equation (17)).
All in all, we therefore have

( )
( )

s h
> >

f

1

2

1
1, 22

resulting in s < 1

2
.

4. Jet Radial Profiles

In the framework of our simple model for current-carrying
jets in magnetohydrostatic equilibrium, outlined in Section 2,
the jet magnetization parameter σ is always less than unity, as
long as the comoving toroidal magnetic field pressure is
continuous and attains its maximum at the jet boundary; simple
proof of this statement has been presented in Section 3. More
complex cases, with pressure discontinuities and sharp maxima
of the magnetic pressure located well within the jet body, can
be investigated numerically, by adopting various parameteriza-
tions of the b(x) and Γ(x) profiles.

3
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4.1. Continuous Profiles

As noted in Section 2, the anticipated magnetohydrostatic
equilibrium condition determines the jet particle pressure
profile, p(x), for a given magnetic pressure and jet bulk
Lorentz factor profiles b(x) and Γ(x), as well as a given
boundary condition ( )bº -q 1pl

1 . Let us therefore consider the
three illustrative cases of certain b(x) and Γ(x) parameteriza-
tions, corresponding to the three different behaviors of the
function f (x), namely, (a) the case with monotonically
increasing f (x), (b) the case with one pronounced global
maximum of f (x) at x< 1, and (c) the case with multiple local
maxima of f (x) throughout the entire range of x.

In the following numerical analysis, for clarity we follow
one particularly simple parameterization of the jet bulk
Lorentz, namely,

( ) ( ) ( ) ( )G = + G - ´ -x x1 1 1 , 23k
0

with Γ0= 10 and k= 2. For the magnetic profile b(x), on the
other hand, we consider various analytical prescriptions, selected
to ensure positive particle pressure at all jet radii. In Figure 1 we
present the three exemplary sets of b(x) and Γ(x) profiles, along
with the corresponding f (x) profiles and the resulting pressure
profiles p(x) calculated for q= 0.1 and q= 10.
As shown, the particle pressure is maximized at the jet axis,

and for monotonically increasing f (x), it decreases mono-
tonically toward the jet boundary. In the case of more complex
magnetic pressure profiles, local maxima in the b(x) profile
correspond to local minima in p(x). In general, sharp gradients
in the comoving magnetic pressure with f (x) locally exceeding
unity, often generate exponential drops in particle pressure,
leading to unphysical solutions with p(x)< 0 for some ranges
of the jet radius.
Figure 1 also indicates how the boundary condition q

impacts the resulting jet particle pressure profiles, and hence
the overall jet magnetization. Figure 2 illustrates the latter
effect explicitly, by providing the exact σ values corresponding
to different values of q ä (0.01, 100). As shown, starting from
small q, i.e., negligible magnetic pressure at the jet boundary
(with respect to the particle pressure), the jet magnetization σ
increases monotonically with increasing q, but only until
q 1; from that point, the σ parameter saturates and remains
effectively constant (always below the unity), regardless of the
ever-increasing q> 10.
Magnetohydrostatic equilibrium, assumed here for the jet,

implies that any spatial changes in the magnetic pressure across
the jet must be counter-balanced by the changes in the particle
pressure and the magnetic tension. As a result, the rest-frame
plasma beta parameter

( ) ( )
( )

( )
( )

( )b º =- x
P x

P x

q f x

p x
24B

pl
1

may change quite dramatically along the jet radius. Similarly,
the local jet magnetization σ parameter calculated for different
layers of a sheared outflow with thickness Δ, namely,

( ) ( )
( )

( ) ( )

( ) ( )
( )

ò

ò
s  D º

á ñ
á ñ

ºD

D

-D

+D

-D

+D
x

f x

p x

q dy h y f y

dy h y p y2
, 25x

x

x

x

may also vary across the jet. Those changes, corresponding to
the three sets of the b(x) and Γ(x) profiles considered in this
subsection, are shown in Figure 3, for the two selected
boundary condition values q= 0.1 and 10, with midpoints of
averaging x= {0.1, 0.3, 0.5, 0.7, 0.9} and Δ= 0.1.
In the case of a monotonic f (x), both ( )b- xpl

1 and σ(x)
increase monotonically from the jet spine toward the jet
boundary. Models for which the comoving magnetic pressure
attains a local maximum with f (x)  1 are, on the other hand,
characterized by ( )b- xpl

1 exceeding unity at the approximately
corresponding jet radii; the local σ(x) parameter may then also
approach unity for certain ranges of x, depending on the
considered layer thickness Δ. In other words, for such complex
models with alternating currents, we observe the presence of
extended domains within the outflow in which the comoving jet
magnetic pressure dominates over the gaseous pressure, while
the jet Poynting energy flux is comparable to the kinetic energy
flux of the jet particles, even though the global σ value (i.e., the
value obtained after integrating over the entire cross-sectional
area of the jet) is significantly below unity.

Figure 1. Three exemplary sets of b(x) and Γ(x) profiles, along with the
corresponding f (x) profiles, and the resulting pressure profiles p(x) calculated
for the boundary conditions q = 0.1 (dashed curves) and q = 10 (solid curves).
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Interestingly, one can give examples of particular magnetic
pressure profiles with multiple maxima across the jet, for which
the plasma beta parameter alternates between >1 and <1,
resulting in a substantial jet radial stratification with respect to
not only the bulk velocity of the jet plasma, but also the jet
plasma magnetization. The question is what relative amount of
the total energy of the outflow is carried by the layers with such
vastly different magnetizations.

In order to investigate this issue, for the same three
illustrative magnetic and velocity profiles, and the boundary
conditions q= 0.1 and q= 10, we also calculate the cumulative
σc(x), defined as

( )
( ) ( )

( ) ( )
( )

ò

ò
s ºx

q dy h y f y

dy h y p y2
, 26c

x

x
0

0

as well as

 ( )
( ) ( )
( ) ( )

( )º
+

+
x

L x L x

L L1 1
, 27

p B

p B

which represents the fraction of the total energy flux
integrated from 0 up to a given x. Those are shown in
Figure 4. By comparing the σc(x) and ò(x) profiles with the
plasma beta parameter profiles we conclude that there
potentially is significant energy carried in the highly
magnetized jet layers (either boundaries or internal regions),
in the sense that the layers with b >- 1pl

1 may carry a
significant amount of the jet total energy flux, from a few up
to even tens of a percent.

Figure 3. Jet plasma magnetization parameters ( )b- xpl
1 and ( )s  Dx with

midpoints of averaging x = {0.1, 0.3, 0.5, 0.7, 0.9} and Δ = 0.1, calculated for
the boundary condition values q = 0.1 (dashed lines) and q = 10 (solid lines);
the three panels from top to bottom correspond to the three illustrative sets of b
(x) and Γ(x) profiles shown in Figure 1.

Figure 2. Jet magnetization parameter σ calculated for different boundary
condition values ( )bº -q 1 ;pl

1 the three panels from top to bottom correspond to
the three illustrative sets of b(x) and Γ(x) profiles shown in Figure 1.
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4.2. Tangential Discontinuities

In our analysis presented above, we have assumed that the jet
magnetic and gaseous radial profiles are continuous. For such,
we noted that sharp gradients in the comoving magnetic
pressure f (x) often generate p(x)< 0. On the other hand, in the
framework of the MHD approximation, tangential pressure
discontinuities may be present, and those may elevate the
overall jet σ parameter without unphysical negative particle
pressure.

The simplest parameterization of the f (x) profile allowing for
a sudden jump in the comoving magnetic pressure is

( ) [ ] ( )= ´ -e-f x A x H x x , 280

with ε> 0, where H[x− x0] is the Heaviside step function; note
that the normalization f (1)= 1 implies A≡ 1. The magnetohy-
drostatic equilibrium condition, along with the normalization p

(1)= 1, then gives

( ) ( ) [ ]

( ) [ ] ( )

e
e

e e
e

e

= + -
-

- -

+
-

-

e e

e

- -

-

p x
q

x
q q

x H x x

q
x H x x

1
2 2 2

2
, 29

0 0 0

0

with ε< 2. The discontinuity in the comoving magnetic field
profile at x= x0 therefore corresponds to the discontinuity in
the gaseous pressure. For example, ε= 1 corresponds to
f (x)= 0 with ( ) ( )= - - -p x q x1 1 2 0

1 for x< x0, and
f (x)= x−1 with p(x)= 1− q (1− x−1) for x> x0; at the same
time, the total jet pressure Ptot∝ p(x)+ q f (x) is continuous
across the jet.
Let us moreover assume a uniform bulk velocity across the

jet, Γ(x)= const, so that h(x)∝ x. This assumption is handy for
two different reasons. First, it significantly simplifies calcula-
tions, and second, a negligible velocity shear in fact always
maximizes the overall jet σ value (since the toroidal magnetic
field pressure is typically larger in the outer layers of a jet).
With such, we obtain
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where the gaseous pressure jump at x= x0 is

( ) ( ) ( )D º  - -
 +

= e-p x x p x
x x

p x q xlim lim . 31
0 0

0

Clearly, in the above the σ parameter is always smaller than
unity for ε� 1. In the range ε ä (1, 2), for a given set of the q
and x0 values, σ increases with ε approaching 2, and may
occasionally exceed unity. Considering, however, that

s = -e +
xlim lnq

q2 1 0, and also ~
+

1q

q1
for large q> 1,

we see that the jet magnetization increases only very slowly
(logarithmically) with decreasing x0. At the same time, the
jump in the gaseous pressure Δp increases very rapidly with
decreasing x0, ε approaching 2, and finally with increasing q, as
illustrated in Figures 5 and 6. For example, with ε= 1.9,
q= 10, and x0= 0.01, we have σ; 3.3 and Δp∼ 3× 103;
lowering x0 by one order of magnitude results in only slightly
higher σ; 4.5, but dramatically larger Δp∼ 3× 105.
All in all, we conclude that by allowing tangential

discontinuities in the gaseous and magnetic pressure profiles,
and at the same time diminishing radial velocity shear, one
can elevate the jet magnetization parameter above unity.
However, values of  ( )s 10 require pressure jumps of
several orders of magnitude, which could hardly be
considered realistic.7

Figure 4. Cumulative σc(x) parameter and the share of a total energy flux ò(x),
calculated for the boundary condition values q = 0.1 (dashed lines) and q = 10
(solid lines); the three panels from top to bottom correspond to the three
illustrative sets of b(x) and Γ(x) profiles shown in Figure 1.

7 In fact, there is an intermediate class of profiles, for which the jet gaseous
and magnetic pressures, albeit continuous, change with radius by orders
of magnitude, while the jet magnetization parameter approaches/exceeds unity.
In particular, consider a simple parameterization f (x) = (1 + a) x2/(1 + ax4)
and a constant jet bulk Lorentz factor across the outflow. For such,

( ) ( ) [ ( ) ( )] ( )= + + + - -- -p x q a q a a x a qf x1 1 tan tan1 1 2 and s=
( )( ) ( )+ +

+
-a a a1 4 ln 1q

q1
1 , so that with q→∞ and a > 50 one can indeed

obtain σ  1; for example, with a = 3000 and q = 10,000, one has σ ; 2 and
p(0) ; 106.
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Figure 5. Density plots of σ given in Equation (30) as functions of x0 and q, for
the ε values of 0.5, 1.0, 1.5, and 1.9 (from top to bottom, respectively). Black
contours correspond to σ = 1.

Figure 6. Density plots of Δp given in Equation (31) as functions of x0 and q,
for the ε values of 0.5, 1.0, 1.5, and 1.9 (from top to bottom, respectively).
Black contours correspond to σ = 1.
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5. Discussion and Summary

In this paper we analyze the magnetization of a relativistic jet
at large distances from the launching site, where it can be
considered as fully formed, i.e., accelerated to terminal bulk
velocity. In our simple model, we consider perfectly cylindrical
jet geometry, purely toroidal configurations for the jet magnetic
field, monotonic radial bulk velocity shear, and ultrarelativistic
equation of state for the jet particles. We show analytically that,
as long as the jet plasma is in magnetohydrostatic equilibrium,
and the pressure radial profiles are continuous with the
comoving magnetic pressure attaining its maximum at the jet
boundary, the ratio of the electromagnetic to particle energy
fluxes, both integrated over the jet cross-section area, has to be
below unity, σ< 1.

More complex cases, in particular those with global maxima
of the magnetic pressure located well within the jet body, could
only be explored numerically. For such, we found that sharp
gradients in the comoving magnetic pressure often lead to
unphysical solutions with negative particle pressure for some
ranges of the jet radius. But when the particle pressure is
positive everywhere, the condition σ< 1 tends to hold anyway.
At the same time, however, for certain magnetic and bulk
velocity profiles, magnetic pressure may still dominate over
particle pressure for certain ranges of cylindrical radius within
the jet. In other words, even though a current-carrying outflow
as a whole is dominated by the kinetic energy flux of the jet
particles, there may be extended domains carrying a significant
fraction of the total jet energy, in which the comoving jet
magnetic pressure dominates over the gaseous pressure, while
the jet Poynting flux is comparable to the particle energy flux.
This finding may be relevant in the context of jet particle
acceleration processes, since energy dissipation in relativistic
plasma proceeds rather differently depending on the plasma
magnetization.

Recent particle-in-cell simulations find that magnetic
reconnection may proceed very efficiently in the regime of
high magnetization, βpl< 1 and σ> 1, where shocks are
expected to be weakened by strong magnetic forces. In both
pair and electron-ion plasmas, these simulations exhibit
efficient nonthermal particle acceleration, with maximum
energies and power-law indices that depend on the particular
values of the plasma magnetization parameters (e.g., Sironi &
Spitkovsky 2014; Guo et al. 2015, 2016; Werner et al.
2016, 2018; Petropoulou et al. 2019).

Our analysis therefore identifies an interesting possibility for
astrophysical jets to be characterized by radial stratification
with respect to both the plasma bulk velocity and the plasma
magnetization. This includes not only the case of a particle-
dominated jet spine surrounded by a magnetically dominated
boundary layer, but also the possibility of alternating-current
jets consisting of layers with low and high values of σ and βpl.
In such outflows, shocks and magnetic reconnection may
dominate alternately, resulting in the formation of highly
inhomogeneous distributions of radiating particles (with respect
to maximum particle energies and particle spectral indices).
When combined with relativistic beaming effects related to the
radial velocity shear (see, e.g., Komissarov 1990; Stawarz &
Ostrowski 2002; Aloy & Mimica 2008), this may lead to jets
having vastly diverse appearances to an observer, depending on
the jet viewing angle.

In the framework of the analyzed simple jet models with
purely toroidal magnetic field, we have found that the jet

magnetization parameter can be elevated up to relatively
modest values  ( )s 10 only in the case of extreme gradients
or discontinuities in the gas pressure, and a significantly
suppressed velocity shear. Such cases would therefore
correspond to a narrow, unmagnetized jet spine, surrounded
by an extended, essentially force-free layer with a toroidal field,
both characterized by comparable bulk Lorentz factors.
However, in the absence of velocity shear, relativistic outflows
with strong toroidal magnetic field (and no poloidal comp-
onent) are known to be susceptible to current-driven kink
instability (e.g., Mizuno et al. 2012; Nalewajko & Begelman
2012; Martí et al. 2016; Kim et al. 2018; Das & Begel-
man 2019; Sobacchi & Lyubarsky 2019 and references therein;
for a recent review on the topic see also Perucho 2019).
Let us therefore comment in this context on the role played

by an additional poloidal magnetic field, represented here for
simplicity by a purely vertical component Bz. If this component
is uniform across and along the jet, ∂fBz= ∂zBz= ∂rBz= 0,
the gaseous pressure profiles following from magnetohydro-
static equilibrium remain unchanged with respect to the ones
we have calculated and discussed above, since no additional
current component ¢ µ ¢ ´ ¢J B is associated with such an
additional field, and so the magnetohydrostatic equilibrium
¢ µ ¢ ´ ¢J BP is not affected either. Moreover, the relative
increase of the jet Poynting flux is then only in the f direction,
so it represents energy circulation around the jet and does not
add to the original Poynting flux along the z direction. Hence,
there is no net increase in the σ parameter. That is to say, a
small amount of a uniform vertical field should stabilize the jet
against the current-driven oscillations (see Mizuno et al. 2012;
Das & Begelman 2019), but should not affect our conclusions
presented above regarding the jet magnetization.
On the other hand, in the presence of pronounced radial

gradients in the vertical field, ∂rBz≠ 0 (but still
∂fBz= ∂zBz= 0), the situation may change. That is because
in such a case the particle energy flux Lp∝ ∫dr r β Γ2 P should
be affected as the gaseous pressure profile has to adjust in
response to the additional azimuthal current component,
p ¢ = - ¶ ¢f ¢J c B4 r z , following the altered magnetohydrostatic

equilibrium, namely, ( )¶ µ ¶ - ¶ Gf
- -P B B r r Br z r z r

1

2
2 2 2 2 .

We note, however, that the configuration with the vertical
field confined within a narrow jet spine, and therefore with
strong radial gradients in Bz, is to be expected rather only for
fully collimated and accelerated electromagnetic outflows, i.e.,
the ones for which the Poynting and particle energy fluxes are
in a rough equipartition ( )s ~ 1 anyway (see Beskin &
Nokhrina 2009; Lyubarsky 2009). Moreover, as discussed in
Mizuno et al. (2012), relativistic outflows consisting of a
poloidal field concentrated toward the jet axis, and a
dynamically relevant toroidal field in the outer layer, are
highly kink unstable, and as such subjected to efficient
dissipation of the magnetic energy. Hence, we conclude that
large values of the jet magnetization parameter σ should not be
realistically expected in such cases anyway.
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