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Light-Assisted Collisions and Quantum State Tomography of Single-Atom Motion in Optical Tweez-

ers

Thesis directed by Prof. Cindy Regal

This thesis presents experiments with single 87Rb atoms trapped in arrays of tightly confining

optical tweezers. Optical tweezer arrays are a pioneering new platform for studying ultracold atomic

physics and quantum computation. I begin by presenting our recent work in the preparation of

large atom arrays and the quantum motional control of single atoms. Then, I present a new optical

tweezer loading technique and our studies of the processes by which single atoms can be loaded

near-deterministically into the microtraps. These processes depend sensitively on the long-range

molecular physics of pairs of atoms, so I additionally discuss our theoretical calculations of the

molecular potential landscapes relevant for such collisions. Finally, I present our all-mechanical

time-of-flight-based quantum tomography of atoms in carefully prepared excited motional states of

the optical tweezers.
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Chapter 1

Introduction

1.1 Optical Tweezer Arrays: Historical Background

The field of neutral atom atomic physics has undergone a number of evolutions, but it received

a particularly great boost with the invention of the laser. Coming soon after the maser, the laser

was first publicly conceptualized in the late 1950’s and first implemented in 1960 [1, 2]. The optical

tweezer would be invented a decade later where it was first used to trap microparticles [3]. After a

couple years in 1975, laser cooling was proposed and implemented in 1978 [4, 5, 6]. The magneto

optical trap (MOT), capable of trapping a large cloud of neutral atoms, was developed a decade

afterwards [7]. Then, single atoms would be isolated and studied in a MOT [8]. There are many

useful reviews of the physics and history of these foundational developments to which I would direct

the interested reader [9, 10, 11, 12].

In the ’90s and early 2000s, the great progress was made in the study of degenerate quantum

gases of bosonic atoms [13, 14], fermionic atoms [15], and molecules [16, 17]. These degenerate

gases continue to be fruitful areas of study to this day and are the starting points for many new

experiments [18, 19, 20]. For example, quantum gas microscope experiments often start by using

condensation and related phase transitions to prepare low-entropy states, and follow with leveraging

single atom imaging and increasingly fine control over potentials and ultracold dynamics to conduct

novel quantum simulation experiments [21, 22, 23, 24, 25, 26, 27].

In parallel, developments in the loading of single atoms and molecules into optical tweezers

have enabled a more bottom-up approach to studying atomic systems. Beginning in 2001, this
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work continued for about ten years at a smaller scale, where research focused on establishing the

core functionality and characterizations of such systems [28, 29, 30, 31, 32] and then harnessing

strong and long-range Rydberg interactions [33, 34, 35, 36]. In the past ten years or so, there has

been a small explosion of optical-tweezer based single-atom experiments and increasing interest in

the platform. Now, there exist many more projects utilizing similar systems for studying fermions,

molecules, alkali-earth atoms, and even some commercial enterprises hoping to use the platform

for quantum computing [37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

1.2 This Thesis

In general, improvements in quantum state readout and state preparation herald progress in

the field of atomic physics. New methods for optical trapping predicted a new generation of trapped-

atom experiments. Motional ground-state preparation via Raman sideband cooling preceded a

wave of quantum information experiments with trapped ions. The preparation of Bose-Einstein

condensates anticipated the current plethora of quantum simulation experiments.

With the optical tweezer platform, we push the limits of single neutral atom control into new

regimes. Here, we are equipped with single-atom imaging and spin and motional control optical

pumping, microwaves, and Raman transitions, and the mechanical manipulation of our tweezers.

More uniquely, we also have control over the exact number and position of the atoms we work with.

One of the major scientific themes of this thesis is the use of these tools to study light-

assisted multi-atom collisions in new regimes for the development of novel techniques for the loading

of single particles into tightly confining optical potentials. Light-assisted collisions are routinely

used in the field, but under their technical application lies rich molecular physics waiting to be

studied [47, 48, 49, 39]. We apply the tools enabled by our single-atom control and the interplay

of laser-cooling techniques to study this problem. In our experiments, we find that because of

the combination of the ultracold temperatures of our atoms and the tight but overall low-energy

confinement of the optical potential, that tweezer platforms are uniquely situated to study very

long-range and low-energy light-assisted molecular collisions.
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Another major scientific theme of this thesis is the quantum control of single particles near

their motional ground state. While the optical tweezer platform is particularly attractive for Ryd-

berg atom-based experiments and quantum computing, our focus has often been on near-ground-

state physics [50, 51, 52]. Quantum motional control, as distinct from control of quantum spins,

comes with unique opportunities for unique measurement techniques, such as time-of-flight imag-

ing, and applications in the quantum control of macroscopic objects [43, 53, 54]. Working with

ground-state atoms entails its own set of challenges and rewards. Optical tweezers are in many

ways more individually controllable than alternative traps such as optical lattices, and so tweezers

promise many unique ways to prepare states and dynamics potentials that would be more chal-

lenging in other systems. These capabilities include dynamic movement and reconfiguration of the

array of atoms, including into structures which are closely-spaced on the order of the wavelength of

atomic transitions, capabilities which can be used for whole other category of experiment involving

atom-light interactions [55, 56].

One of the core components of this control in our experiments is quantum tunneling from

tweezer to tweezer. An optical lattice, achieving its potential structure through the interference

of only two beams, it is a very clean and suitable environment for realizing tunneling [57]. In

a tweezer system, however, the potential must be constructed piece by piece, which makes it a

technically challenging endeavor [51, 58, 42]. In this thesis, I characterize and push our motional

control to further limits, enabling the production and tomography of non-classical motional states.

We study these states using free-space imaging in the first such measurement of single ground-state

bosons. We also apply methods similar to those used in optical homodyne tomography to map

out the quantum state of our single particles. Our demonstration will enable future experiments

with single atoms or larger particles to explore quantum effects in more complex and macroscopic

systems [59, 60, 61, 62].
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1.3 Outline

The scientific content of this thesis focuses primarily on the developments we made in en-

hanced loading, molecular physics, and quantum tomography. While I contributed to experiments

in vector magnetometry, metalens optics, and in a more distant sense, Rydberg physics, I would

point readers to the future but relatively forthcoming theses from our group of Christopher Kiehl

and Ting-Wei Hsu for more information about this work.

Chapter 2 is titled “Apparatus for Ground-State Optical Tweezer Experiments”. Here, I will

discuss the experimental apparatus upgrades I made, mostly in the earlier stages of my PhD. This

includes upgrades to laser and optics systems, mechanical innovations, our control system, and

other important physical developments made during my PhD.

In Chapter 3, I will discuss a number of atom-based experiments, techniques, and upgrades

we developed. This includes new, previously unpublished iterations on Raman sideband cooling

and quantum tunneling experiments conducted in recent years, as well as novel rearrangement

techniques among other new technical developments.

Chapter 4 is all about our new technique for the enhanced loading of single atoms into optical

tweezers. It reviews our published work [63] and explores further unpublished experiments we have

recently conducted to learn more about this mysterious process, including details on the role of the

Λ-enhancement and gray-molasses level structure on the loading process.

In Chapter 5, I will present theoretical calculations of the ultra-long range molecular po-

tentials that we believe are important for the enhanced loading technique discussed in Chapter

4. Previous works have modeled the collisional process but tend to approximate the effect of the

excited state molecular potential on the loading dynamics. By calculating the potentials fully, we

find that the true nature of these potentials significantly alters our conception of how the loading

process works. These calculations pave the way for future experiments and understanding of these

complicated dynamics.

Lastly, Chapter 6 will focus on our all-mechanical time-of-flight-based quantum tomography
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experiment. This experiment makes use of the rapid cycle time of the experimental apparatus, our

ground state cooling, quantum tunneling, and new free-space imaging techniques. The measure-

ments give direct access to new observables and unprecendented information about single particle

quantum states in our apparatus. We leverage all these tools to do full quantum tomography on

motionally excited states of our optical tweezer potentials.

1.4 List of Publications

For reference, I am including here a list of papers which I have contributed to.

1. B. J. Lester, Y. Lin, M. O. Brown, A. M. Kaufman, R. J. Ball, E. Knill, A. M. Rey,

and C. A. Regal, Measurement-Based Entanglement of Noninteracting Bosonic Atoms, Phys. Rev.

Lett. 120, 193602 (2018).

2. T. Thiele, Y. Lin, M. O. Brown, and C. A. Regal, Self-Calibrating Vector Atomic

Magnetometry through Microwave Polarization Reconstruction, Phys. Rev. Lett. 121, 153202

(2018).

3. M. O. Brown, T. Thiele, C. Kiehl, T.-W. Hsu, and C. A. Regal, Gray-Molasses Optical-

Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly, Phys. Rev. X 9, 011057

(2019).

4. T.-W. Hsu, W. Zhu, T. Thiele, M. O. Brown, S. B. Papp, A. Agrawal, and C. A.

Regal, Single Atom Trapping in a Metasurface Lens Optical Tweezer, ArXiv:2110.11559 [Physics,

Physics:Quant-Ph] (2021).

5. M. O. Brown, S. R. Muleady, W. J. Dworschack, R. J. Lewis-Swan, A. M. Rey, O.

Romero-Isart, and C. A. Regal, Time-of-Flight Quantum Tomography of Single Atom Motion,

arXiv:2203.03053 [quant-ph] (2022).

6. M. O. Brown, et al., Molecular Potentials for Ultra-Long Range 87Rb Dimers, (unpub-

lished).



Chapter 2

Apparatus for Ground-State Optical Tweezer Experiments

2.1 Overview

In this section I introduce the physical apparatus used to conduct the experiments discussed

elsewhere in this thesis. The experimental apparatus originated through the hard work of Adam

Kaufman and Brian Lester among others, and as such, many details about the apparatus at earlier

times are best found in Adam’s thesis [64] and Brian’s thesis [65]. However, here I will provide a

brief overview for completeness, while more discussion of new and modified systems will begin in

Sec. 2.2.

An experiment for cooling and trapping single atoms must take place in ultra-high vacuum,

or else collisions between the atoms of interest and other atoms and molecules will contribute to

heating and loss from traps. The vacuum apparatus we use is very simple, consisting of an ion

pump, evaporative rubidium getters, and a single glass cell in the shape of an octagonal prism where

the cooling and trapping occurs. The vacuum system we use is itself unchanged from the vacuum

system developed by Adam Kaufman and described in his thesis [64]. We anticipate changing

the vacuum system at some point in the future in order to introduce fresh 87Rb getters, upgrade

the glass cell to a version with flatter windows and more specialized optical coatings, and make

use of a 2D+ magneto optical trap (MOT) cell we purchased from Cold Quanta. Many other

species of atoms require more specialized vacuum apparatus such as Zeeman slowers, source ovens,

or make use of multi-chamber systems in other ways. Thanks to the simple electronic structure

and favorable physical parameters of 87Rbsuch as having a large mass, such complications are not
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necessary here (Table 2.1).

Parameter Value Units Source
Mass 1.44316060(11)× 10−25 kg [66]
Relative Natural Abundance 27.83(2) % [66]
F = 2 ↔ F = 2 Scattering lengths 95.44 a0 [67]
F = 1 ↔ F = 1 Scattering Length 100.4 a0 [67]
F = 1 ↔ F = 2 Scattering Length 98.006 a0 [67]

D2 Transition (5S1/2 → 5P3/2)
Decay Rate 38.11(6)× 106 s−1 [66]
Natural Linewidth (Γ) 2π × 6.065(9) MHz [66]
Recoil Velocity 5.8845 mm/s [66]
Recoil Temperature 361.96 nK [66]
Doppler Temperature 146 µK [66]
Isat D2 Resonant Isotropic Polarization 2 → 3′ 3.576(4) mw/cm2 [66]
Isat D2 Resonant Cycling |2, 2⟩ → |3, 3⟩ 1.669(2) mw/cm2 [66]
Isat D2 Far-Detuned 2.503(3) mw/cm2 [66]

D1 Transition (5S1/2 → 5P1/2)
Decay Rate 36.10(5)× 106 s−1 [66]
Natural Linewidth (Γ) 2π × 5.746(8) MHz [66]
Recoil Velocity 5.7754 mm/s [66]
Recoil Temperature 348.66 nK [66]
Doppler Temperature 138 µK [66]
Isat D1 Far-Detuned 4.484(5) mw/cm2 [66]

Table 2.1: Table of Selected 87Rb Constants. A table displaying a variety of 87Rb constants
that I have found useful over the years. Also see Fig. 2.3.

In order to cool and trap atoms in this cell, we must make use of a plethora of lasers and

laser systems. These systems have changed non-trivially and are therefore documented in detail in

Sec. 2.2.1. The physical arrangement of the laser systems around the vacuum chamber is viewable

in Fig. 2.1 and Fig. 2.2.

At the heart of the electrical control system for our experiment is our digital output (DO)

system, which outputs a series of precisely timed digital pulses. These pulses trigger other devices,

such as cameras and radio frequency (RF) waveform generators at the appropriate time, they

open and close electrical gates such as those for magnetic field coils, and they open and close RF

switches which has the effect turning on or off laser beams. This system originated as a DIO-64

event analyzer/control module (long since discontinued) system from Viewpoint Systems, and more



8Figure
2.1:

T
he

M
ain

E
xperim

ent
A

pparatus
Layout.

T
his

figure
is

not
precisely

to
scale

but
care

has
been

taken
to

m
ake

it
a

relatively
accurate

representation
ofthe

experim
ent

layout.
850

nm
light

is
show

n
as

red
light,795

nm
light

is
orange,and

780
nm

light
is

yellow
.

W
here

two
beam

s
overlap,the

two
colors

are
represented

w
ith

colored
hatches

in
the

beam
.

Platform
s

are
indicated

by
shaded

boxes,w
here

darkershadesindicate
higherelevations.M

ostcom
m

on
opticsare

identified
in

the
legend

in
the

top
leftcorner.T

he
tweezers

diverge
afterthe

objective
and

are
notblocked,butthisdivergence

and
othersim

ilarunused
beam

sare
notshow

n
forclarity.T

he
vacuum

cham
ber

is
roughly

outlined
in

green.
T

he
bottom

R
am

an
path

goes
underneath

the
vacuum

cham
ber,as

is
m

ore
evident

by
looking

at
Fig.2.2

w
hich

is
a

com
panion

to
this

figure.



9

Figure 2.2: The Main Experiment Apparatus Layout, Viewed from the Side. This figure
is viewed from the side of the objective lens, rather than the side of the axial beam path. It is more
evident from this angle that the bottom Raman beam goes under the vacuum chamber. See legend
in Fig. 2.1.

recently has been implemented through a custom FPGA system designed to emulate the DIO-64

system.

Also crucial are analog input and output systems. Analog outputs (voltage range -10 V to

+10 V) are mostly used for controlling relative laser powers or magnetic field currents. As other
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systems in the experiment are increasingly digital, we find fewer uses for analog outputs now than

we used to. Analog inputs are primarily used for experiment diagnostics and automatic laser power

calibrations. The analog inputs and outputs we use are National Instruments cards PCI-6221 and

PXI-6722 respectively.

Laser cooling sequences and spin state preparation typically require careful control over

magnetic fields in the vicinity of the atoms. To control the magnetic fields, we use 8 electric

coils, 2 of which are configured in an anti-Helmholtz configuration for the creation of a MOT, and

6 of which are in a Helmholtz configuration for zeroing background magnetic fields or setting a

constant magnetic field. As we only need to drive currents less than 10 amps, these coils are simple

copper coils and are driven by custom but simple current servo systems based off of Hall detectors.

We use a number of Keysight (formerly Agilent) arbitrary waveform generators, mostly mod-

els 33522A/B for a number of purposes:

• Time-varying intensity servo set points for our tweezer servo system

• Square waves with specific relative phases and duty cycles for flashing imaging techniques

• Calibrated pulses for pulsed Raman sideband cooling techniques.

We currently use voltage-controlled oscillators (VCOs) for a number of purposes, including

determining lock offsets and driving acousto-optical deflectors and modulators (AODs and AOMs).

However, we are slowly gravitating toward the use of a home-built direct digital synthesis (DDS) RF

generator based on Analog Devices AD9959 evaluation boards. These have numerous advantages

in that they provide cleaner, programmable outputs, have wider frequency output ranges, and are

more stable than VCOs, which are useful features for most of our applications. Our system for

driving the optical tweezer deflection AODs is more non-trivial and discussed in Sec. 2.4.2.

Lastly, we require a flexible microwave source for driving electro-optical modulators and a

sawed-off microwave horn. In particular, even for a single experiment we generally need to be

able to change the microwave frequency during different experiment stages, for example from the

settings optimized for Λ-enhanced grey molasses (ΛGM) loading to those optimized for in-trap
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ΛGM cooling. This is typically accomplished using a “list”-mode, where the generator switches

from one list entry (containing a frequency and power to output) to another on being triggered by

the DO system.

In the past, we have used a Rhode-Schwarz microwave generator (RSG) to generate the

signals we need for these devices. Recently, especially after a power supply failure in the RSG, we

have gravitated toward using devices from Windfreak Technologies. The devices we use are the

“SynthHD PRO (10MHz – 24 GHz) Dual Channel Microwave Generator”, and the “SynthHD (54

MHz – 13.6 GHz) Dual Channel Microwave Generator”.

2.2 An Updated Physical Apparatus

In the time since Brian’s departure, there have been a number of changes to our physical

setup with important optics and electronics were introduced among other things which I will discuss

in detail.

2.2.1 Laser Systems

87Rb is the only atom species we use in the lab. We have numerous laser systems that we use

to address the various 87Rb transitions (Fig. 2.3). At the start of my PhD, most of the lasers in

the lab were external cavity diode lasers (ECDLs), typically constructed with anti-reflection coated

diodes from Eagleyard Photonics and a laser grating in a Littrow configuration. These lasers were

not initially very stable and would come unlocked several times a day. I eventually tracked this

down to be a fixable electronics issue in the servo systems. Afterwards, these lasers were very

functional, however they were still relatively sensitive to vibrations, temperature, and humidity

drifts due to the macroscopic cavity that exists outside of the laser diode. As such, it was still

difficult to keep them locked for more than a day or so. Meanwhile, the company Photodigm began

refining their distributed Bragg reflector (DBR) lasers to have a low enough linewidth to be useable

for our 87Rb systems. As a result, we slowly started switching from ECDLs to DBR lasers until at

this point we only use DBRs.
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Figure 2.3: A 87Rb Level Diagram. Not to scale. Values are primarily from [66]. The dips
on the right-hand-side of the levels are reflective of the relative light shifts of the 850 nm optical
tweezer traps. Shown on the left hand side are lines indicating the major laser systems we use in
our experiment, including the tweezer lasers, 780 nm lasers, and both configurations of 795 nm
laser systems that have been used.

The DBR lasers have only a few downsides, including that they are relatively expensive (∼$5k

per module), and some models, in particular our initial high power 795 nm models, broke faster
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than expected (∼ 6 months) under normal use. In the past several years, however, we have not

had such troubles. None of our 780 nm modules have died, including one that has been in use for

∼ 10 years.

One of our strategies, both for dealing with these occasional issues and for characterizing

our lasers, is to separate the “head” of the laser system (i.e. the laser module itself followed by

any required beam shaping and optical isolation) from the rest of the laser system by an optical

fiber connection. This approach has several advantages: if a laser dies, it is easy to immediately

replace the laser head with a portable “platform laser” which can substitute for the table-mounted

laser until a replacement arrives and is installed without needing to realign the rest of the laser

system. As well, the early fiber launcher provides an easy way to test the laser’s wavelength with

a wavemeter, and the fiber spatially filters the laser for the rest of the system’s alignment. This

split setup is visible in the 795 laser schematic (Fig. 2.4).

2.2.1.1 780 nm Laser System

We use four main 780 nm lasers in our experiment. One is the Raman laser, which is ∼50

GHz red-detuned and typically unlocked. This laser is split into the four Raman beams that go to

the experiment.

I will call the other lasers the “D2 master” laser, the “D2 f = 2” laser, and the “D2 f = 1”

laser, where f is the total angular momentum including electronic orbital, electronic spin, and

nuclear spin angular momentum. Historically, the D2 f = 2 laser has also been called the “MOT”

laser despite it being used for more than just MOT light, and the D2 f = 1 laser has been called

the “repump” laser. The term “master” here is for historical continuity purposes. If renaming

it today I would call it the “reference” laser, since the laser is not the “master” in either the

“mastery”, “master/slave” or “master/replica” senses. The D2 master laser is static throughout all

experiments and is locked to the 87Rb D2 f = 2 → f ′′ = 3 line (Fig. 2.3) (the f ′ symbol will be

reserved for the 87Rb D1 line). We use a standard saturation spectroscopy setup in order to create

the relevant line structure, and use a frequency modulation spectroscopy setup to convert these
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transition lines into usable error signals [68, 69, 70]. This is as opposed to modulation transfer

spectroscopy setups which are also common in the field [71]. The frequencies of the other two

lasers are changed dynamically throughout a single experiment repetition, and they are locked

with reference to the master laser via an offset lock system. As the linewidth of 87Rb transitions

is relatively large and the level structure forgiving, the locking electronics we use are custom but

simple proportional-integration (PI) systems.

The D2 f = 1 laser is split into two separate beams, referred to as the “repump” beam and

the “σ+ repump” beam, both tuned near the f = 1 → f ′′ = 2 transition. The repump beam

serves to repump the atoms during the standard MOT, red-detuned polarization gradient cooling

(RPGC), and imaging phases of a typical experiment. The σ+ repump is specifically used during

any optical pumping procedures to minimize the number of photons needed to optically pump into

the |f,mf ⟩ = |2, 2⟩ state. This is especially important for Raman sideband cooling procedures.

The D2 f = 2 laser is split into many more beams. As such, we need slightly more power from

this laser, so the DBR laser seeds a 1 W 780 nm tapered amplifier from Eagleyard. The beam then

splits into what are typically referred to as the “diag. MOT”, “side MOT”, “σ+ optical pumping

(OP)”, and “probe” beams. Most of these are tuned to the D2 f = 2 → f ′′ = 3 transition, with

the exception of the optical pumping beam, which is given a slight shift via AODs to be resonant

with the D2 f = 2 → f ′′ = 2 transition.

2.2.1.2 795 nm Laser System

ΛGM Paper Configuration Originally, the 795 nm laser system used for our Λ-enhanced

gray molasses (ΛGM) scheme (discussed in Chapter 4) consisted of a single laser. Early in the

beam handling, the laser was split along two paths, with one path going into an AOD and then

a standard saturation spectroscopy setup which locked the laser frequency on this path to the

87Rb D1 f = 2 → f ′ = 2 transition. Then, when changing the frequency that this AOD operated

at, the lock would compensate and shift the laser current to maintain the lock, thus shifting the

other path’s frequency relative to that of the locked path. The other path would go through a
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fiber-based electro-optical modulator (EOM) and then a tapered amplifier. This setup worked well

enough for that paper, but pretty significantly limited the effective frequency range that we could

scan over during that experiment. It also wasn’t that stable.

Modern Configuration Before too long therefore, we upgraded this system to have two

separate lasers, which I will refer to as the “D1 master laser” and the “D1 f = 2” laser. (Note,

the D1 f = 2 laser has had a number of informal names in the lab over the years, including the

“worker” laser and the “main D1” laser, before I settled on this more operational name).

The D1 master laser in this new configuration is locked (with no AOD this time) directly to

the 85Rb f = 2 → f ′ = 1 transition (note the different species!) (Fig. 2.3). The lock is a relatively

standard lock, using saturation spectroscopy to get the desired transition line signal, and then again

frequency modulation spectroscopy to generate an error signal. This configuration is very similar

to that of the 780 nm master lock.

The D1 f = 2 laser is then offset locked by a variable detuning red-shifted from the master

laser (Fig. 2.3). Being red-shifted by a small amount from the 85Rb D1 f = 2 → f ′ = 1 transition

puts you blue-shifted from the 87Rb D1 f = 2 → f ′ = 2 transition, as is desired for the Λ-enhanced

grey molasses (ΛGM) scheme. Our offset lock configuration is much more widely tunable, with a

tuning range of approximately 1 GHz, far superior to our previous tuning range of ∼ 40 MHz.

The D1 f = 2 laser then enters a fiber EOM which is driven with an approximately 6.834 GHz

signal in order to give a tunable sideband on the D1 f = 2 light that are close to the 87Rb D1

f = 1 → f ′ = 2 transition which can act as coherent repumping light, as is desired for ΛGM

(Fig. 2.3). The fiber-EOM is not particularly efficient or stable, and so the resulting light is passed

through a 3 W Tapered Amplifier (TA) in order to get enough light for conducting ΛGM. We don’t

need anywhere near 3 W, this was just the only tapered amplifier available at the time.

This arrangement works well, although it has a couple downsides. The EOM coupling is not

particularly stable, which mostly only makes it a nuisance to maintaining laser powers. Nowadays

these powers are part of an automatic calibration system, so there are no problems as long as the

overall power doesn’t drop too low. One might also generally worry that the extra sidebands of
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the EOM could complicate the effect of the ΛGM, although we have seen no direct symptoms of

this. An alternative would be adding a separate, 3rd D1 f = 1 laser for repumping, mimicking

our 780 nm setup, and upgrading our offset locking system to be capable of a robust phase lock

between these two lasers. Quite possibly the resulting light would still need to seed a TA in order

to get sufficient power, but this different configuration might help with some of the other issues.

Figure 2.4: The D1 Laser Layout. Visible are the D1 master laser, D1 f = 2 laser, saturation
spectroscopy and offset lock beating setup on the left-hand side. The tapered amplifier and diagonal
/ side path splitting setup is on the right-hand side. See legend in Fig. 2.1.

2.2.1.3 850 nm Laser System (Tweezers)

The tweezer light source has changed many times over the years, but most recently comes

from a temporally incoherent light source. The incoherent light source that we use is a super-

luminescent LED (SLED) module from a company called Superlum, with part number BLMS-

mini-381-HP3-PM-PD-OI. The module outputs about 25 mW of light with a bandwidth of 15 nm,

which we immediately filter down to a full-width half-maximum of 3.2 nm using a band pass filter

from Semrock, part number LL01-852-12.5. The resulting light has a fairly short coherence length

of ∼80µm. As a result of this short coherence length, reflections and back reflections of the

tweezer light in our tweezer rail system should generally not coherently interfere with the main

tweezer beams. This type of interference was generally a concern for us, as we are very sensitive

to temporal fluctuations of our tweezer potentials, slow or fast. When we implemented this, we
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saw some improvement in the relative bias fluctuations of our tweezers, but we did not see any

serious improvement of the overall performance of the system as measured by the atom’s response

to the potentials, in the form of the measured trap shape or tunneling properties. However, we still

use this source, mostly as there’s little reason to use anything else and this might still help on the

margins.

In the past, we have used a number of TA setups, including a single-pass 1 W TA, a double-

pass 2 W TA, and currently a 1 W TA followed by a 3 W TA (Fig. 2.5). The double-pass 2 W

TA setup worked somewhat well but did not seem very stable and was tricky to align properly.

Therefore, when the TA eventually died, we decided to change our setup to the two-TA system we

use now.

After filtering down the SLED output, we only have a couple mW of incoherent light, which

is not enough to properly seed a TA, as TAs typically require ∼30-50 mW to get their full power

output. Therefore, we use the incoherent light to first seed a 1 W TA, which is under seeded but can

still easily output 100’s of mW of power. The excess light has occasionally been used for additional

beams or tests in our system, but usually we just use this to have comfortably enough power to

properly seed the 3 W TA with the required amount of power.

In general, we find that these TA modules die rather quickly (with a lifetime of 1-2 years)

if driven at their full power consistently, while they last much longer if driven at lower powers.

Therefore, while we have in the past operated our 3 W TA at full power (in particular to get

enough power to load 100 traps during the ΛGM paper), recently we drive it at about half of it’s

maximum output power and work more conservatively with smaller arrays of traps, which are all

that is necessary for our current work regardless.

2.2.1.4 Ti:Sapphire Laser

We own a Ti:Sapphire laser which has been used for a number of purposes over the course of

my PhD. It is a very flexible laser, capable of outputting on the order of 1 W of optical power at

all wavelengths that we use in the lab. It is seeded by a 10 W green pump laser from Lighthouse
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Figure 2.5: The 850 nm tweezer TA laser layout. Visible is the 1 W TA setup above, which
seeds the 3 W TA setup below. Beam shaping after the TA chips is tricky. Sometimes an extra
pickoff would be added after the two isolators in the 1 W section in order to get some extra 850 nm
light. The multiple filters may be unnecessary but are attractive in reducing any long tail of
amplified spontaneous emission (ASE) that the TA chips may output. See legend in Fig. 2.1.

Photonics, a “Sprout” model. Higher power models are available. As such, it has at various times

been used as our Raman laser, tweezer laser, and even for some 795 nm testing purposes. Soon, we

plan on using it to create an optical lattice to compliment the tweezer potentials.
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2.2.2 Mechanical Shutters

In an experiment such as this it is often required to completely extinguish light entering the

experiment apparatus from a given laser path. This is especially true for lasers that are resonant

with an atomic transition and which if left unattended, would result in slow heating of the atoms

after they have been ground-state cooled. It is also crucial to block the input to our EMCCD

camera at various times, especially in the tomography experiment discussed in chapter 6. At the

height of data taking for this experiment, because of the large number of images necessary, we were

destroying the imaging shutter every couple weeks.

In general, we use acousto-optical deflectors with varying RF input powers to variably atten-

uate laser beams for dynamic control during an experiment. Even after extinguishing the RF power

completely, however, one is still limited by scattering off of the AOD crystal which can scatter into

an optical fiber at small but significant rates. It is possible, and possibly optimal, to use chained

acoustic optical modulators in order to attenuate by a significant enough amount for our purposes.

However this is rather expensive and creates longer and less stable laser paths. It is worth noting

as well that double-pass AOD configurations do not generally solve this scattering effect, as one

may be limited by backwards-scattering from the first pass through the AOD unless the crystal is

large enough to support two physically separated deflection regions for each pass.

We therefore often turn to mechanical shutters which physically obstruct the laser path in

order to completely extinguish laser beams when necessary. Originally we primarily used expensive

shutters from the company Uniblitz, typically model LS6 6 mm. These shutters are fast and

have convenient mounting configurations, especially for connecting to our EMCCD where we need

to be able to block the entire opening to the camera sensor. However they are at this moment

still relatively expensive. We also experimented with Thorlabs shutters (part number SHB025T),

however these have similar drawbacks to the Uniblitz shutters.

Other experiments deal with similar challenges. However, the relatively fast repetition rate

of our experiments compared to other cold-neutral-atom experiments, combined with the relatively
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slow rate of the actual science experiment compared to more strongly interacting systems like ions,

create a perfect storm. We really need shutters to get sufficient extinction during the longer science

stages of the experiment, but we actuate them frequently enough that they break on relatively

short time-scales.

As a result, over the course of my PhD, we have used a number of different designs for

custom mechanical shutters. We tried designs based on speaker actuators as outlined by [72], and

by rotating flags driven by simple motors as outlined by [73]. Both of these designs are cheaper than

commercial options, but in our experiment both can also break frequently and perform irregularly

in devious ways. A shutter that occasionally sticks or bounces open is worse than no shutter at all.

We had relatively more success with the rotary design [73], and a lucky few shutters have lasted

a number of years and are still in use. However, our continued struggles lead us to consider other

alternatives.

Our most recent innovation is the use of free-space micro-electromechanical system (MEMS)

technology from the company Agiltron, specifically their 700µm FSVOA devices. As the name

suggests these devices can be used as variable optical attenuators, but if carefully configured, these

devices can be completely attenuating, and we believe that their reliance on MEMS-technology,

as well demonstrated by the telecom industry, will lead to significantly longer lifetimes than other

designs which involve mechanical collisions as the shutters close. Indeed, none of the 4 devices we

originally made two years ago have failed or had any issues, a much better track record than our

other custom solutions. The small aperture size means one must focus through the device. We are

currently working on implementing one of these shutters for use in our imaging system as well. This

was an original idea and is unpublished. Ideally one might use fiber-based MEMS shutters, but

unfortunately we struggled to find fiber-based MEMS shutters which were polarization-maintaining

and single-mode at the wavelengths of interest to us (780 nm - 850 nm). Perhaps in the future such

devices will be available.
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2.2.3 Sill Objective Lens

At the start of my PhD, the lab was using a high numerical aperture (NA) objective lens

from the company ASE Optics. The lens performed at around an effective NA of ∼ 0.5, and while

this was good enough for a wide variety of experiments, it is generally desirable to have as tight and

well-behaved optical tweezers as possible. This is especially true for experiments with side-band

cooling, where our ground-state fidelity is limited primarily by having relatively low axial trap

frequencies, and for experiments with tunneling, which are thought to be sensitive to aberrations

in the trap in a number of ways. As such, before my thesis started, the lab purchased two high-NA

objectives from the company Sill Optics. The initial motivation for purchasing two lenses was for

their potential for double-objective setups with one objective on either side of the vacuum chamber,

although we have never attempted this in practice.

Figure 2.6: Photos of the Sill Objective Lens. (Left) The Sill lens viewed from the front.
Visible is a ring assembly which has been epoxied to the front of the lens using Hysol, which holds
two mirrors in place. The mirrors are angled to make it possible to create an axial lattice with a
single beam, although this has never been utilized. (Right) The sill lens viewed in situ. Visible
on the bottom side of the image is the phase plate, which has been attached to the objective via J.
B. Weld epoxy.
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2.2.3.1 Sill Lens Objective Characterization

It was found after the objective lenses arrived that the two objectives were defective and

could not meet their quoted performance. As such, near the beginning of my PhD, we embarked

on a long sequence of tests and modifications in order to try to improve the performance of the

lenses. This report is a collection of work done by various students in the lab, including myself,

Junling Long, and Ludovic Brossard.

The first task was to measure the aberrations of the objective lens. This was done using what

was effectively a Michelson interferometer setup. A large input beam was split along two paths,

with one path hitting a flat mirror, and the other traveling through the objective and hitting a

reference sphere held inside an unevacuated vacuum chamber cell. The reference sphere was held

inside the unevacuated vacuum chamber cell primarily in order to best mimic the effect of the cell

window on the performance of the objective. The reference sphere was a small silicon-nitride ball

bearing.

The primary results of the measurement are listed in Table 2.2.3.1. As can be seen here, the

main measured aberration is coma, which has an egregious magnitude above twice the wavelength

in phase, a clear explanation of the problems we encountered early on with the lens. The RMS

wavefront error of the uncorrected lens was 0.92 λ at 850 nm.

After this measurement, we commissioned a phase plate, a very slightly shaped piece of

glass, that was designed in order to correct these aberrations. The piece was ordered from Light

Machinery. Although originally spec’d to correct the Sill lens to a very high accuracy, the company

also had trouble machining the specific profile we ordered, and the result was imperfect aberration

correction. The measured aberrations of the corrected Sill lens are also denoted in table 2.2.3.1. The

results, while not as good as hoped, reduced the remaining aberrations to approximately the level

which we expect from out “rail” system that we use to generate the tweezer array: an RMS error

of approximately λ/5. We realized that for further improvement, we would have to try something

more active.
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Name H. Astig. V. Astig. H. Coma V. Coma Spherical RMS

Abberation Coordinates (2,-2) (2,2) (3,-1) (3,1) (4,0)
Unmodified -0.08 0.00 1.44 2.05 0.08 0.92

With Phase Plate 0.10 0.16 0.02 -0.18 -0.01 0.147

Table 2.2: Sill Objective Lens Aberration Coefficients. Listed are the coefficients before and
after various corrections. Numbers are in units of λ, the wavelength, at 850 nm. Even after adding
the phase plate, there were non-trivial aberrations remaining, which we eventually corrected with
a deformable mirror.

2.2.3.2 Deformable Mirror

As a result of the limitations of the phase-plate, we purchased a deformable mirror from

Boston Micromachines for further objective correction. The deformable mirror is an active optic

which uses electrostatic actuators to continuously deform a continuous mirror surface. Options are

available with segmented surfaces for less interactuator coupling but high-frequency artifacts from

the actuator edges. We purchased a multi-C model, which features 137 actuators capable of 1.5µm

stroke in an approximately circular configuration.

The deformable mirror model has numerous advantages over other adaptive optics. Unlike

digital mirror devices commonly used in quantum gas microscope experiments, the mirror is nearly

perfectly efficient [74]. Unlike liquid-crystal based spatial light modulators, the device is driven with

a static voltage, reducing noise concerns, and it is fast, featuring up to 100 kHz update speeds [75].

It is important to realize, however, that the deformable mirror is in this case primarily to be used

for static, or very slowly (over days) changing aberrations, as the aberration calibration process

itself is slow.

The deformable mirror is placed before either tweezer AOD in our rail system, so that the

same aberration configuration is applied to all tweezers uniformly. The configuration is visible in

schematic form in Fig. 2.1 and is visible in Fig. 2.7. The downside of this configuration is that the

beam must travel through a long optical path from the Deformable Mirror (DM) before creating

the tweezers, and because of limitations imposed by the pre-existing rail setup, the DM is not in a

precise 4-f configuration with the tweezers. Therefore, applying coma for example on the DM will
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not result in exactly coma being applied to the tweezers. A future configuration might place the

DM in a 4-f configuration with the tweezers, with the DM being placed in-between the AODs and

the large tweezer expansion telescope. This might make the operations of the DM more predictable

and result in better optimizations.

Figure 2.7: Photos of the Tweezer Rail System. (Left) The horizontal Intraaction AOD,
nestled within a rather bulky custom heat sink to help maintain low thermal fluctuations in the
AOD. (Right) The deformable mirror configuration right out of the launcher into the rail setup.
The deformable mirror is visible near the top with a long ribbon cable coming out of it.

Our original calibration of our deformable mirror was slow and churning, as we had to man-

ually change the deformable mirror pattern between each measurement of the trap frequency or

depth, which we were attempting to optimize. In the end, we were able to improve the performance

of the Sill lens creating a single tweezer potential, achieving a single tweezer NA of approximately

0.64, where the Sill lens with the phase plate but with no DM corrections performed with an NA

of approximately 0.55.

Unfortunately, however, we ran into two major problems with this plan. The most important

of which is that while a single tweezer experienced this nice optimized NA, when we tested the same

DM configuration while producing many tweezers, the result was much poorer, and we did not see
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significant improvement from the DM. It may be possible to specifically optimize the performance

of an array of traps using these mechanisms, but we could no longer expect that there would be

one good configuration for all of our tweezer experiments. The most likely culprit for this behavior

is that the measured imaging point spread function (Fig. 6.8), suggests that the tweezers may have

a somewhat long tail, causing multiple tweezers to distort each other, even when they are different

frequencies and far separated.

The second issue was that the DM’s aberration correction calibration seemed to drift relatively

quickly. As mentioned, the original calibration was somewhat manual and lengthy, which decreased

our appetite for recalibrating the DM frequently. Recently, however, control over the deformable

mirror has been incorporated into our experiment control system, Chimera, and so automated

calibrations should be possible in the future which should greatly alleviate this issue.

Despite its limitations, the deformable mirror remains a powerful optic for use in our lab.

Future uses of this may include better trap optimization, or optimization in a different configuration,

or of optimization of different optics. As well, the DM can change it’s profile very fast (∼100 kHz),

and so it is possible that we could use the DM to programmatically modulate the trap shape, which

could be useful for creating non-classical superposition states. Similarly, the DM could be used to

programmatically change the trap shape to, for example, make a nearly quartic potential rather

than a nearly harmonic potential.

2.3 Computer Control Systems

2.3.1 Chimera Control

At the beginning of my PhD, the control system was split between two separate computers.

One contained the camera control system, which was a stock program (Andor Solstis) for controlling

the camera on its own computer, and the second was a computer running Windows XP that ran

the old Visual Basic 6 code, which was responsible for programming the DO system and AO

system. Many of the additional systems already discussed did not exist at the time. The setup was



26

functional, and served previous generations well. However, there were a number of limitations that

resulted from this setup:

• Communication between the different systems in this configuration is difficult. In particular,

we anticipated eventually wanting to do rearrangement of atoms within tweezers. This

requires communication between the camera system, which detects atoms, and the NIAWG

system, which is capable of moving atoms.

• With three computers, there are more potential points of failure of the system. If any

computer crashed or died, the experiment would stop.

• With three control computers, running the experiment is significantly more complicated.

Even starting a run required a non-trivial sequence of commands which had to be done in

the right order on the different computers.

• Visual Basic 6 is an old language no longer supported by modern operating systems. As

such, the computer which ran this needed to run Windows XP, which at the time of my

PhD was no longer supported by Microsoft, and so had to exist off of the JILA internet

network in order to prevent infection by malware, which is rather inconvenient.

• Being restricted to Visual Basic 6 means that it is difficult to upgrade the control system

with new modern graphical user interface (GUI) features.

I could go on, but this short list indicates the drawbacks of the previous configuration, and our

motivation for an upgrade. At the start of my PhD, I started developing an independent NIAWG

control system, and after that experience, I embarked on a complete overhaul of the rest of the

system. As the system was initially mostly a combination of these three independent systems, I

called it Chimera, a fitting reference to the mythological animal composed of many different animal

parts. To understand the system now at the end of my PhD, it is useful to understand a bit of the

history of development.
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Initially, I was ignorant of modern GUI design principles and tools. The first implementation

of the combined control program was implemented in the “raw” Win32 API in C++. As a result,

most of the original implementation was basically C-code with minimal class structure or modern

C++ design principles. At some point, I realized that there was a better API to use, called

the “Microsoft foundation classes” (MFC) application programming interface (API). This was a

step forward, but the MFC API was still Windows-exclusive and quite old, not making good use of

modern C++ design or tools. Recently, furthered by having extra remote time during the pandemic,

I performed a last upgrade, upgrading the system to using Qt 5 instead of MFC. Qt is a modern,

well-maintained, well-documented, cross-platform API for creating GUIs in a variety of languages.

It provides many powerful language features which make adding advanced GUI functionalities much

easier than with MFC. For example, adding tool-tips to GUI elements is quite complicated in MFC

and took me several months to implement properly, while in Qt it is as simple and natural as a

one-line call to a built-in function.

In the end, Chimera is mostly similar to any other system that controls experimental appa-

ratus in a lab, although I’d like to think it’s a very well-designed and modern such system. Several

illustrative screenshots are visible in Fig. 2.8. Chimera has several relatively unique features that

are worth emphasizing:

• Real-time data analysis: it is possible to select specific locations on the incoming images,

and monitor incoming data for programmable patterns such as loading, survival, tunneling,

and more.

• Automated laser calibrations: Most of our laser powers are controlled by sending a variable

DC voltage into a mixer, which variably attenuates an RF signal going to an AOD. Chimera

can programmatically vary this voltage and measure the resulting laser powers through

photodetectors which are connected to Chimera’s analog input system. It can thus create

a “voltage versus laser power” calibration curve, which can be re-run at regular intervals

to accommodate for drifting laser powers.



28

• Automated experiment calibrations: There are many regular experiments that should be

run in order to make sure all systems in the experiment are working correctly. These include

MOT loading tests, MOT temperature tests, ΛGM cooling tests, single atom loading tests,

single atom imaging tests, Raman frequency calibrations, and Raman sideband cooling

tests among others. Chimera is capable of running a set of pre-designated calibrations at

times when the experiment is not typically in use, such as the early morning, creating a

record of the system’s performance as well as keeping systems well tuned.

Figure 2.8: Screenshots of Chimera Control. (Left) The Andor camera window of Chimera.
On the right side of this window, one can see the display showing real-time images collected from
our camera, and on the left side of this window one can see real-time data analysis plots, among
other camera settings. From top to bottom, the real-time analysis plots show the (1) first picture
count histograms (different colors correspond to the different atom locations being analyzed), (2)
second picture count histograms, (3) The loading fraction as a function of the parameter being
scanned (in this case a Raman transition frequency), and (4) the survival as a function of the
parameter being scanned. (Right) The “main” window of Chimera, which shows the main status
logs and the automated laser calibration system. The listview on the bottom right shows settings
for different laser calibrations, and the plot above and on the right shows the calibration curve in
real-time as the data comes in. There are four other windows for controlling other various other
systems in the experiment not shown.

These features reflect the fact that as experiments like this one get more complicated, there

is an increased need for automation and streamlining of the data collection process. Chimera is a

heavily multithreaded program, as most GUI programs are. While the plotted real-time analysis

data above is not time-sensitive, Chimera is also capable of performing fast real-time calculations

such as those necessary for doing real-time rearrangement of single atoms in the middle of an

experiment. This will be discussed in depth in Sec. 3.6.
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2.3.2 Climate Control

We monitor the temperature and humidity in the lab with a home-made temperature moni-

toring system. The sensors are sensitive to temperatures to about 0.1 degree C, and some thought

has been put into attempting to purchase or make more sensitive sensors in the future.

In general, we find that the temperature is stable within the lab to approximately 1 degree C

over the course of the day, with the temperature fluctuating less around the somewhat isolated and

airflow-controlled main experiment table. The temperature tends to be more stable in the winter,

and less stable in the summer, presumably due to differences in the way JILA’s central air handling

system handles the two cases. Midway through my PhD, we moved the thermostat sensor from

being stationed near the door to the room, where there is presumably more noise and fluctuations

coming from the hallway and door, to the middle of the lab. We found that this improved the

stability to its current level.

2.4 Other Systems

2.4.1 Intraaction AODs

At the beginning of my PhD, we used Gooch and Housego acousto-optic devices in order

to generate the tweezers. We use a number of AOMs and AODs in the experiment, mostly from

Gooch and Housego, which at various times has labeled their products either as AOMs or AODs.

While perfectly serviceable, these devices had a relatively low bandwidth for our tweezer deflection

application, which limited the number of tweezers we could make simultaneously. So as we scaled

up the capabilities of the platform, we desired more suitable deflectors.

We eventually purchased a pair of AODs from the company Intraaction which designs AODs

with a phased-array RF-to-acoustic transducer design which allows deflections over a much wider

frequency. Most AODs are driven roughly by carefully attaching a piezo-electric transducer to one

side of the AOD crystal which converts the RF wave on the input to a mechanical wave in the

crystal. The limiting factor of the bandwidth is that the deflection angle, and therefore the correct
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matching input angle, changes as a function of the drive frequency. Therefore while the transducer

might be able to drive the crystal over a large bandwidth, the laser will only be deflected over a

relatively narrow frequency range without realignment.

By using a phased-array transducer design, it is possible for the angle of the acoustic wave to

change as a function of frequency in order to compensate this effect. This is the basic operational

principle behind the Intraaction AODs, and why they outperform our previous system.

The model number of the AODs we purchased is ATD-1803DA2.850. The center frequency of

the AODs is spec’d to be 180 MHz, with a quoted bandwidth of about 90 MHz and a corresponding

deflection range of 36 milli-radians. The AODs have an active aperture of 3x4 mm. The laser beam

inside the AOD has a 1/e2 waist of 0.8 mm. The combination of the active aperture size and

the total RF bandwidth in principle limits how many resolved tweezers it would be possible to

make, but we are limited by other factors in the experiment first. In practice, we also find that

we can use the AODs over a broader bandwidth of approximately 120 MHz. We find the driving

performance of the AODs to be slightly irregular, and find that we need between 2 W and 4 W of

RF power in order to efficiently drive the AODs. This drive leads to some non-trivial heating of

the AOD devices, and so in order to maintain thermal stability as much as possible, throughout

the experiment sequence these AODs are driven with a constant total RF power, and the AODs

are fitted with some aggressive heat sinks and fins (Fig. 2.7).

Especially when driving the AOD with many tones, intermodulation effects are significant.

Compensation for these effects is discussed at length in Sec. 3.2. In general we are able to maintain

overall 2-axis deflection efficiencies above 50% even when driving with as many as 11 RF tones,

although these efficiencies vary non-trivially with the overall RF power and details of the drive

configuration.

2.4.2 NI 5451 Arbitrary Waveform Generator

In 2015 we acquired a National Instruments arbitrary waveform generator (NIAWG collo-

quially), model 5451. This PXIe card is in principle capable of outputting arbitrary, individually
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programmed voltage samples at 400 million samples per second (MS/s) on each of two output

channels. Designed partially with IQ mixing setups in mind, this device was purchased for the

purpose of driving our two tweezer-deflection generating AODs, where we would use the arbitrary

functionality to program different relative tone powers, phases, and frequencies, while doing more

complicated operations like precise frequency ramps for moving the tweezers and carefully designed

flashing patterns, and real time programming for active rearrangement experiments.

Although expensive, the NIAWG can accomplish most of these things efficiently. In particu-

lar, our use of it in conducting rearrangement procedures will be discussed in Sec. 3.6. In working

with the device we encountered one major flaw, which is that in operating the device in our desired

mode, “scripting mode” with frequent triggering, the NIAWG is incapable of operating consistently

at its maximum sample rate of 400 MS/s and we therefore we have generally operated the device

at 320 MS/s. This means that the maximum frequency and total bandwidth we can output is

approximately 160 MHz as limited by the Nyquist limit.

Newer designs in the lab and around JILA make use of custom-programmed FPGA devices to

achieve similar functionality. While not-truly arbitrary, most of the functionality described above,

with the possible exception of some of the flashing techniques, can be accomplished with an array

of DDS cores on a sufficiently fast and large FPGA device.

Because we create tweezers with different AOD deflections, different tweezers within a given

row or column will always have slightly different frequencies and therefore not interfere, except on

fast time-scales which the atoms are not generally sensitive to. However, in a 2D array, diagonal

groupings of tweezers within the array will have the same frequency, and can interfere (Fig. 2.9).

2.4.2.1 Mix-up Setup

An astute reader will have noticed that there is a mismatch between the center frequency of

the AODs and the available frequency range of the NIAWG system. This is real, and our solution

is to mix up the NIAWG output. In this way, we get all the flexibility of the NIAWG over it’s

relatively large 160 MHz bandwidth, but at a higher frequency. We mix up the NIAWG output
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Figure 2.9: Tweezer Array Frequency Distribution. A depiction of a 10x10 tweezer array,
with the different frequencies of each tweezer represented by the color of the tweezer. Tweezers in
diagonal slices of the 2d array have the same frequency, despite shifts from the AODs. A typical
spacing for loading, imaging, and cooling is approximately 10 MHz, while a typical spacing for
tunneling is accomplished with 4-5 MHz tones.

by combining it with a 255 MHz tone from a Marconi microwave generator in a high quality mixer

from Marki Microwave, part number T3-12LQP. The output contains upper and lower sidebands,

and we use a nice custom low pass RF filter from the company K&L Microwave in order to filter

out the unneeded higher tone and carrier leakage, part number 7L340-229.5/T500-O/O{135}. The

output then goes through a pre-amplifier, and then a standard 5 W amplifier from Mini-circuits,

part number ZHL-5W-1+. In general, we find that intermodulation in the AODs themselves are

the leading contribution to non-linear effects in the RF chain, so we do not concern ourselves with

purchasing a higher power or particularly low noise amplifier.
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2.4.3 Other Devices of Note

2.4.3.1 Electro-Optical Modulators

We use fiber EOMs from the company EOSpace, part numbers PM-0S5-10-PFA-PFA-780-

SUC315-UL and PM-0K5-10-PFA-PFA-800-UL for creating sidebands for Raman transitions and

to generate a coherent repumper for the ΛGM schemes. These EOMS work well at the high 6.834

GHz frequencies required for both of these schemes, although their transmission is not very stable.

Putting more than a couple mW of optical power through these devices requires heating up the

devices in order to avoid photo-bleaching effects.



Chapter 3

Raman Sideband Cooling, Tunneling, Rearrangement, and Other Techniques

In this chapter I describe various refinements of Raman sideband cooling, quantum tunneling,

and various other experiments developed over the course of my PhD. As opposed to Chapter 2,

which deals with experiment hardware, these are all developments that use single atoms.

3.1 Larger Tweezer Arrays

At the beginning of my PhD, the largest array of atoms that we had loaded was a 2×2 array.

Larger arrays of atoms are useful for a variety of our experiments and futures plans, and so early

on we decided to embark on a number of projects designed to improve the size of the array we use.

These projects were:

• Upgrading our tweezer laser power source to a 2 W and eventually a 3 W tapered amplifier

(Sec. 2.2.1.3), in order to have sufficient optical power to generate the tweezer array.

• Switching from the ASE lens to the Sill lens (Sec. 2.2.3), hoping that the Sill lens would

have a larger field of view and produce tighter traps than the ASE lens and therefore be

able to support more tweezers among other benefits.

• Upgrading from generic waveform generators to the NIAWG 5451 (Sec. 2.4.2), which was

required to do intermodulation compensation and generating large numbers of RF tones to

create many AOD deflections.
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• Upgrading to the IntraAction AODs (Sec. 2.4.1), which have a larger bandwidth and can

therefore support more deflections than our original AODs.

As a result of these upgrades, at our peak we were able to produce and load a 10x10 array

of atoms with reasonably good performance (Fig. 3.1). Although the array could probably be

expanded a little to 11x11 or 12x12, at this size, we are running into a number of hard limitations:

• Needing more laser power. This is probably the easiest problem to fix with sufficient

funding, as I believe one could get more power than we have now with better optimized

tapered amplifier systems, or because Ti:Saph laser systems with larger seeds than our

10 W seed are commercially available.

• The bandwidth of our AODs. It is hard to get a wider bandwidth of deflections without

negatively changing the spacing of our optical tweezers per unit of RF frequency difference

between tones. It is important that this ratio remain small in order to perform quantum

tunneling. Other technologies, such as liquid crystal spatial light modulators, deformable

mirror devices, and microlens arrays, can help address this problem as the array of tweez-

ers these technologies generate. However all of these are either static or relatively slow

compared to AOD-based systems and so dynamical tunneling may be challenging using

them.

• The finite field of view and spot size of our objective. Improving this would require a new

objective system with a large field of view and similar trap performance. These objectives

are quite expensive and take a lot of time and resources to design and test.

In the meantime, a number of groups have expanded their atom systems significantly larger,

and to my knowledge the largest such system is 361 usable traps [76].
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Figure 3.1: Atom Array Images. (a) A binned, averaged picture of a 10x10 array of atoms.
Differences in intensity reflect a combination of field of view effects and background noise. (b)
An unbinned, averaged picture of a 10x10 array of atoms. Notable is a significant “pedestal” of
background noise that the atoms sit on, suggesting a long tail of the imaging point spread function,
and some aberrations affecting the atom images in the bottom left corner of the image.

3.2 The Evening of Optical Tweezers / Intermodulation Compensation

In order to create an array of tweezers, we drive our tweezer AODs with a sum of up to 10

RF tones simultaneously. In general, the maximum voltages achieved by a sum of 10 RF tones will

be much larger than the voltage achieved by a single tone, even if the same amount of total power

is in both sets of drive tones. This happens when there is a significant amount of constructive

interference between the different tones at a specific time in the waveform. As such, a sum of tones

will generally be more sensitive to nonlinearities in the AOD’s response, which will both reduce the

overall deflection efficiency, add higher order intermodulation effects outside of the original tones,

and cause relative un-evenness between the different deflections. As such, we wish to minimize

these negative effects.

To first order, the effects are very predictable by simply examining the total many-tone
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waveform. After calculating the waveform given a number of RF frequencies, amplitudes, and

phases, one can estimate how bad the intermodulation is likely to be based off of metrics such as

the peak voltage in the waveform or high order moments of the voltage of the waveform. Typically,

we will set up a function which calculates such a metric as a function of the many individual

phases, amplitudes, and frequencies of the RF tones, and then plug the function into a minimization

algorithm which will find a set of phases which minimizes this metric. These parameter spaces tend

have many local minima, so we use a basin-hopping algorithm to find a good global minimum. We

then fix the phases of our tones. One could check the resulting intermodulation on an RF spectrum

analyzer, but this routine is robust enough that we typically do not bother, and instead turn to

optimizing the evenness of the traps.

In general, after the phase-optimization algorithm described above, the traps are even enough

to at least load into all traps. However, for larger arrays, it can be helpful at this point to image the

tweezer array directly on a camera, where one can quickly see “by eye” how evened the trap is. We

can then manually even the powers of the RF tones in order to even the array by eye. In general,

due to aberrations in the objective lens, evening an array on such a camera does not result in an

evened array inside our vacuum chamber, and so at this point we must turn to optimizing based on

tests that probe the potentials that the atoms actually experience. We can measure the evenness

of the traps using a couple metrics, such as the trap depth or the trap frequency. Typically these

will not be simultaneously optimized due to fluctuating trap shapes across the field of view of the

objective. Most commonly we optimize the depth, which we measure by measuring the light-shift

of the tweezers on the D2 f = 2 → f ′′ = 3 transition [64].

This depth optimization procedure is an iterative one. We measure the depths by analyzing

the light shift they induce on an accessible transition. Then, we assume that the depths are

proportional to the powers in each of the RF tones (effectively ignoring intermodulation effects) [64].

With this assumption and a given set of powers and depths, we can predict a new set of powers

which will minimize the variation among the depths. This is our next iteration’s powers. We

again measure the depths using these new RF powers, and repeat the procedure until the depths
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converge to the desired level of precision. For a 1D array, we are limited by our ability to precisely

and quickly measure the trap depth and temporal fluctuations, but typically achieve depths that

are even to within approximately 1%. For a 2D array of traps, we are more fundamentally limited

by spatially dependent aberrations in our tweezer generation system that make it impossible to

create an evened set of traps given our limited set of controls over the tweezers. As such, we can

only achieve depths that vary with a standard deviation of approximately 5% of the average depth.

3.3 Flashing Imaging

For large atom arrays, effective imaging can be affected significantly by the uniformity of the

tweezer array. In particular, variations in the trap depths result in variable light shifts on the atom,

which can dramatically change the scattering rate of the imaging light (Fig. 3.2). Additionally, the

optical tweezer is anti-trapping for excited state 87Rb atoms, which may lead to some additional

heating in typical configurations.

Inspired by the work done at Harvard, as we ramped up the size of the arrays we were using,

we started using what we refer to as a “flashing imaging” technique [77]. The technique consists of

rapidly alternating the optical tweezer with the imaging light. The flashing is fast enough that the

atom’s motion is primarily influenced by the time averaged tweezer potential, but the configuration

is such that the light only scatters off of the atom when the tweezers are off and therefore when

the atom experiences no tweezer light shift and no anti-trapping. This avoids the issues with the

tweezer uniformity, and so is especially useful in the initial setup and calibration of the tweezer

array before the depths are evened.

In our case we typically flash the traps and imaging light with period of 0.5µs. We can

typically gain enough fluorescence to identify an atom after 5-15 ms of imaging time. Notably, the

flashing is done with the tweezer’s intensity servo AOD, which is separate from and before either

of the tweezer deflection AODs that we flashed for rearranging procedures (Sec. 3.6). The imaging

light is in a common σ+, σ− red-detuned PGC configuration with zero’d background fields. The

imaging light is typically detuned from the D2 f = 2 → f ′′ = 3 transition by about 30 MHz or about
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5Γ, where Γ is the natural linewidth of the transition. This balances the need to scatter photons at

a sufficient rate to be detectable above background light with the need to keep atoms cold enough

to remain trapped. The imaging light is flashed with a 42% duty cycle, while the trapping light

is flashed with a 50% duty cycle. In our system, the waveforms are typically applied with a phase

offset of 165 degrees in order place the imaging light to be centered in the time when the tweezers

are off, however this is in general sensitive a variety of delays determined by things such as the

position of the laser light in the AODs which are used to flash the light. Since these parameters are

all programmatically controlled via Chimera, they can easily be optimized by scanning them and

simultaneously maximizing the imaging survival and the mean count value seen when an atom is

loaded.

Our analog servo is typically active and set to a constant set point during this flashing

procedure, but the servo bandwidth, which is typically on the order of 100 kHz, is slow enough that

we do not run into significant issues with this. We have experimented with using “sample and hold”

servo techniques to mitigate some servo fluctuations that happen during and immediately after the

procedure, but we found that keeping this functionality well-tuned in our system was challenging

and generally not worth the additional effort.

3.4 Raman Sideband Cooling

Resolved Raman sideband cooling is a crucial technique in preparing ground-state atoms for

our experiments [78, 58]. Throughout this thesis, we use a pulsed method, details of which are

recorded in Adam’s thesis [64]. However, we experimented with a number of small variations while

attempting to cool larger arrays of atoms, and techniques that make use of the ΛGM we developed.

3.4.1 Use of In-Trap ΛGM for Better Initial Cooling

One of the most important parameters for Raman sideband cooling is the initial temperature

of the atoms. In order to be deep in the Lamb-Dicke regime where sideband cooling is effective, the

initial size of the atomic wave packet needs to be small, or all else being equal the atom needs to
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Figure 3.2: Direct Flashing Imaging Vs. Normal Imaging Comparison. (a) Normal
imaging, where some atom locations have dramatically reduced imaging signal compared to the
others, and (b) flashing imaging, which despite uneven and poor loading in the given data set,
can still produce reasonable count histograms. Insets: averages of the images used to produce the
histograms. Much of the variation still seen is due to the finite field of view of our objective and
other light collection issues. Notably, this data set is not particularly representative of the best
imaging signal which is possible, but it is a good direct comparison between flashing imaging and
regular imaging. Red outlines in the inset indicate tweezer locations.

already be relatively cold in the trap. We typically accomplish this with an initial stage of cooling

in between the initial atom imaging stage and the Raman sideband cooling stage. Traditionally,

a stage of in-trap optimized red-detuned polarization gradient cooling (RPGC) was used for this

stage. However, with the development of the ΛGM we use for loading techniques (Chapter 4), we

had an additional tool at our disposal here.

There are many ways to characterize the temperature of the atoms in a trap, in order to judge

how well different cooling techniques work. Near the ground state of the trap, Raman sideband

spectroscopy can be used to great effect. However for hotter temperatures such as our pre-Raman

sideband cooling temperature, we use another technique. We start by loading and imaging our

atoms and then either apply in-trap optimized ΛGM cooling, RPGC cooling, or no cooling at all,
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Figure 3.3: Harmonic Oscillator Excitation Populations. A visualization of the population
of a given quantum state n depending on the temperature of the single atom. At low populations,
the atom is increasingly concentrated in the lowest harmonic oscillator level, but as expected at
high temperatures states are increasingly evenly populated. Contours are placed at populations
of 0.1, 0.01, 0.001, and 0.0001. (a) Plot for typical radial frequency of 150 kHz, and (b) plot for
typical axial trap frequency of 35 kHz.

leaving the atom at its relatively hot post-imaging temperature. We then reduce the trap depth to

the scale of 1µK before raising the trap back to its relatively deep imaging depth and conducting

a final image. We then analyze the pair of images to determine how likely the atom is to survive

this lowering process as a function of the reduced depth. This data can be analyzed to determine

the atom’s temperature, but it also immediately indicates that the ΛGM cooling works marginally

better than the RPGC cooling (Fig. 3.5) [31]. As a result, we have used the in-trap optimized

ΛGM cooling before Raman sideband cooling ever since. The main difference of the optimization

of the ΛGM for in-trap cooling rather than loading is the detuning. While the detuning for the

loading process may be on the order of 20 MHz from the free-space resonance, the detuning of the

in-trap optimized ΛGM may be as much as 100 MHz in order to cool most effectively. Otherwise,

the procedures are identical.
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Figure 3.4: Harmonic Oscillator Statistics. A variety of useful plots showing the conversion
between various useful measures of an atom’s temperature in a harmonic potential. (a) Probability
of being in a given harmonic oscillator n level as a function of the mean occupation number n̄
which is the metric typically reported based on sideband spectroscopy. (b) Probability of being in
a given harmonic oscillator n level as a function of the atom’s temperature, using a typical radial
trap frequency of 150 kHz and a typical axial trap frequency of 35 kHz. (c) Mean occupation level
n̄ as a function of the atom’s temperature, using the same trap frequencies as (b).

Figure 3.5: The Relative Performance of In-Trap ΛGM. After applying in-trap optimized
ΛGM (blue data), a larger fraction of atoms survive at a given dropping depth than either using
RPGC (orange data) or using no additional cooling (green data). Note that the system at this
time was calibrated for large traps, and there may be a non-trivial offset to our calibration of the
trap depth here. Cooling is done at a typical trap depth of 1.0µK
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3.4.2 Raman Sideband Cooling of Larger Arrays

One topic that is of perennial interest to the group is the construction of many-atom degen-

erate gases starting from individually cooled single atoms. While we did not publish any work on

this front during my PhD, we did do various exploratory experiments in this direction (Sec. 3.5).

The pre-requisite for this work however is starting with a larger array of ground-state cooled atoms,

which is challenging in a number of ways.

The main challenge we experienced with sideband cooling of larger arrays is that of trap

uniformity. Our evening procedure (Sec. 3.2) is not capable of creating a perfectly even set of traps,

but in fact the bigger issue we faced was differences in the trap shapes that became noticeable near

the edges of a 10-by-10 array. This manifested itself most noticeably in the splitting of Raman

transitions into multiple frequencies. Similar splitting has been noticed in other experiments [79],

and is presumably due to high order aberrations in the optical tweezer potentials, making them

relatively anharmonic. In particular, simple astigmatism effects should not cause such splittings,

as the atom should always sit in the circle of least confusion of an astigmatic potential.

Still, relatively efficient cooling could be achieved of the large array of traps, at least in the

radial direction of the traps. The radial n̄ value of the data in Fig. 3.6 is 0.10(22), where the

number in parenthesis is the standard deviation of the results, obtained by fitting individual data

sets with a sum of three Gaussian distributions. This result was achieved also by modulating the

Raman cooling frequency at 10 kHz in order to effectively broaden the cooling drive. Many types

of experiments would still be sensitive to the remaining thermal population in the tweezers, but

these results are still promising for a number of types of experiments that we dream of. We believe

that the best approach for improving these results is improving the traps themselves, which could

be done with a combination of new objective systems and lattice systems.
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Figure 3.6: Simultaneous Raman Spectroscopy of 36 Atoms. Different colors represent
different atom locations, the black dataset is the average of all individual atoms and the black error
bars represent the standard deviation of the single atom values.

3.5 Tunneling

3.5.1 Dumping Techniques

A general problem in early tunneling experiments was getting the tweezers to be shallow

enough in order to have strong tunneling at large tweezer spacings. Our typical approach in the

past was to simply change the set point of our servo system in order to servo at low powers. However,

this means that for low power servoing the photodetector is detecting small optical signals which

are susceptible to noise, and that the servo system is working on very low voltage signals which

are difficult to get working properly in our analog servo. The main tweezer light at the point of

servoing typically has maximum powers ranging from 3 mW to 200 mW depending on the number

of tweezers used in a given experiment, (although only a small fraction is used to servo) which

is attenuated to give a readout of approximately 10 V on our photodetector, which is a Thorlabs
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PDA10A photodetector which has been modified with some extra filtering in order to have improved

noise performance. Without extra techniques, the minimum voltage during a tunneling experiment

might then be approximately 1 mV.

Other attempts included using a digital servo which had been utilized by some ion trapping

groups at NIST [80], and using a logarithmic photodetector which had been in use by some groups

at Harvard. These both basically worked but were not much improvement over our original system,

and came with their own technical problems.

Eventually, I found a better solution: instead of lowering the set point, we dumped extra

power in “auxiliary tweezers” that would be placed far away from the tweezers of interest. Thus,

the servo would be servoing the same overall power (counting the power in the auxiliary tweezers

in addition to the tweezers of interest), but there would be less power in the tweezers of interest

reducing the overall depth that is relevant for the atoms. This works very effectively, but requires

the ability to dump extra power into tweezers. In our system this is done by having an extra set of

tweezers a large distance (and RF frequencies) away from the main tweezes, and similar approaches

might be difficult for doing similar techniques with larger arrays where it’s difficult to put extra

tweezers far away from the tweezers of interest.

This technique allowed us to get to extra small depths spaced extra wide in order to attempt

tunneling in this regime. However, it is also generally useful in other circumstances, as in various

configurations it allows the intensity servo to be run at the same set point settings while having

the absolute depth of the tweezers change. This is particularly important for configurations that

use different numbers of atoms, as it may be desirable to, in multiple configurations, have similarly

large ranges of servoing while having very different total powers. Without this technique, one

would either have to manually alter the servo parameters between configurations or attempt to

operate the servo over an even larger range than an individual experiment requires. The latter is

undesirable because the intensity servo can be somewhat finnicky to keep working well at a variety

of different depth parameters for many experiments. It is easy for the servo to drift and start

ringing at extreme parameters.
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This trick works well enough that we can make our traps shallow enough such that even after

sideband cooling, the traps are so shallow that they only support ground-state atoms. This can be

a useful technique as it allows us to release any excited state atoms from the trap before conducting

an interesting experiment. This allows us to make cooling or temperature issues manifest as loss,

which it is generally possible to post-select away, rather than have these thermal atoms contaminate

other signals. Notably, one expects rather discretized loss from our optical tweezers as individual

levels, including eventually the ground-state, should be either supported or not supported at various

depths. We measure however that the atoms are lost gradually as we reduce the trap depth. This

is suggestive that at these extremely low depths, the traps may be affected by fluctuations in

depth or shape during the ramp process which cause some variable fraction of the atoms to be lost

during the ramp. There are no indications that atoms are gradually lost at the shallow depth as a

function of time, which might be the expected manifestation of consistent noise at the final depth

or gravitationally assisted tunneling out of the trap.

Notably, we find that we must put the dump tweezers unexpectedly far away from the main

tweezers. For example, for tunneling experiments we will typically set the NIAWG to output 75MHz

and 87MHz tones to the horizontal AOD, creating a 12MHz spacing which will shrink to a 5MHz

spacing during the tunneling portion of the experiment. We find however that we must use vertical

frequencies of 81MHz and 117MHz, a spacing of 36MHz (24MHz being insufficient), where the

81MHz tone creates the “main” tweezers which we optimize and analyze for tunneling, while extra

power is dumped into the 117MHz tweezers. We find that if we put the dump tweezers closer, that

there is a large amount of loss in the main tweezers when they move closer together to initialize the

tunnel coupling. This is surprising. The nature of intermodulation, which is normally the culprit

for effects like this, is such that each axis should independently effectively have extra (usually

weak) tweezers that are offset from the main tweezers by multiples of the frequency differences in

the driving RF tones, which should not allow for any sort of cross-coupling effects. Therefore the

nature of this issue is suggestive of a combination of cross-coupling between the two RF systems

and intermodulation. Another possibility is a combination of frequency-reducing very-high-order
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intermodulation and a second-order AOD deflection, which could conspire to produce very weak

extra light near the moving traps which could cause heating. This is one of several possibly related

indications of strange couplings within our tweezer generation system, the other main one including

issues we face with the “stiff” rearrangement scheme 3.6.3.

3.5.2 Considerations on Tunneling Fidelity

In general, we expect that quantum tunneling procedures are particularly sensitive to the

shape of our optical traps (Fig. 3.7). In order to understand this and other parts of this section, I

will briefly overview the idea behind quantum tunneling in a double-well potential.

We start by assuming that the tweezer potential is symmetric and the tweezers are far sep-

arated from each other, in which case the ground state of the system has a degeneracy of 2, and

can be constructed as any two orthogonal superpositions of the ground states of the two individual

tweezers. The natural two states of the system when the tweezers never come close are |L⟩ and

|R⟩, the two single-tweezer ground states. In the case that the tweezers couple, the ground state

degeneracy is broken, but the potential is still symmetric under the parity operator along the two-

trap axis. As a result, the parity eigenstates |ψ+⟩ = |L⟩ + |R⟩ and |ψ−⟩ = |L⟩ − |R⟩ with parity

eigenvalues +1 and −1 respectively will still be good eigensolutions of the problem. Our initial

state preparation is of atoms in the first basis, which can be represented in the second basis, for

example as |ψ⟩(0) = |L⟩ = |ψ+⟩ + |ψ−⟩. Then, when the tunnel coupling breaks the degeneracy,

the state will evolve as |ψ⟩(t) = |ψ+⟩ + |ψ−⟩e−iJt, resulting in the state at a later evolution time

t = π/J being |ψ⟩(π/J) = |ψ+⟩ − |ψ−⟩ = |R⟩, and hence we have quantum tunneling. Hong-Ou-

Mandel (HOM) interference occurs when two bosonic atoms tunnel and interfere with each other

in coupled tweezers, and is an important demonstration of the type of physics we can explore with

our system [64, 81, 51, 82, 57, 52].

With this foundation established, it is not too difficult to see in concrete ways how the detailed

nature of the tweezer potential can affect these dynamics. If the tweezer potential is not symmetric,

then the sum of single tweezer ground states is no longer an eigenstate of the parity operator, and
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the state will not transfer perfectly. The tweezer potential can be asymmetric for a number of

reasons, including that the bias or relative depth of the two tweezers can be different. Asymmetric

aberrations from our objective system may make each tweezer individually asymmetric, which

would also make the sum asymmetric. Spatially dependent aberrations may make each tweezer

different from each other, which would break this asymmetry as well.

The above analysis treats the problem in one-dimension, but the impact of the other dimen-

sions can be significant as well. In general, the different coordinates of a gaussian potential are

separable nearest to the bottom of the trap, and thus we hope that since the tunnel coupling should

ideally be a perturbation only in the radial direction, that the tunnel coupling can not couple states

with different axial excitations. However, considering that the axial excited states are energetically

close, if there is a small axial coupling, it might be easy for either off-resonant couplings or bias

fluctuations to result in transfer to excited states which would negatively affect our tunneling.

All of these issues are difficult to probe directly but guide our attempts to improve the

tunneling performance of our system.

3.5.3 Recent Two-Tweezer Tunneling

The above considerations (Sec. 3.5.2) were a major motivating factor for our work in devel-

oping the Sill lens as a replacement for our previous objective. If the tunneling is very sensitive to

the nature of the traps, then we’d like the traps to be as tight and well-behaved as possible, which

might be achievable with a new custom objective lens. It should not come as too large of a surprise

however, considering the struggles we had with the Sill lens (Sec. 2.2.3), that at this point the

tunneling with the new objective is no better than before. Key metrics, such as the single particle

tunneling contrast and the Hong-Ou-Mandel (HOM) dip were not improved by the introduction of

the new objective.

In particular, other than simply having the different objective, our improvements to our

control over the trap depth (Sec. 3.5.1) allowed us to test tunneling at even further spacings

and shallower depths, which had seemed to work well previously. Unfortunately, we did not find
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Figure 3.7: Visualizations of Tunnel-Coupled Optical Tweezers. All Gaussians have a
typical waist of 700 nm, although these plots could be also be displayed in a dimensionless fashion as
a function of the trap spacing over the trap waist. (a) Definitions of various parameters for tunnel-
coupled optical tweezers. (b) Simulated image depicting typical spacing and relative powers of main
tweezers, which hold atoms, and dump tweezers, which generally don’t and are never analyzed or
optimized, for a two main tweezer configuration during, for example, the loading stage. With only
two main tweezers, most of the power is in the dump tweezers, as the configuration with zero
dumping is typically set to support for a larger array. (c) Numerical calculation of the spacing
between the two minima of a double-gaussian potential as a function of the gaussian spacing. (d)
Visualization of variations of the bias between tweezers. (e) Visualizations of variations of the
spacing of the tweezers. When the spacing is reduced to a single trap waist, the bump between the
two potentials disappears. (f) Visualizations of variations of the single tweezer depth.

improved performance here, but rather we believe we run into more fundamental limitations of

shallow tweezer tunneling. At typical depths, the tunnel coupling between the ground and the

nearby excited nx = 1 motional state is expected to be larger than the ground-to-ground coupling

due to the tweezer geometry, but should still be finite and small enough to not significantly affect

ground-to-ground tunneling. At particularly shallow depths and larger spacings, as one approaches



50

the regime where there is only one bound state per tweezer, we expect that the ground-to-excited

coupling increases dramatically before eventually becoming ill-defined as the bound-states are lost.

In this regime, the ground-to-excited state coupling can become quite large and potentially interfere

with the ground-to-ground tunnelling on the relevant side of the tunneling resonance. This is highly

visible in Fig. 3.8(d), where the tunneling resonance in bias-space is highly asymmetric. Eventually,

we additionally suffer significant single-particle loss when working with shallower and further spaced

traps. We may also be increasingly affected by issues with the trap shape as at reduced depths

the wavefunction is larger and samples more of the flawed potential. Additionally, it is possible

that we suffer issues in coupling to axial excited states as the axial trap frequency approaches the

tunneling frequency. There are some hints of asymmetry and extra resonances in bias scans such

as Fig. 3.8(d), however it is in general difficult to tell whether these issues come from issues with

state preparation, tunneling initialization, or such extra resonances.

The tunnel coupling is generally increased by working at a closer spacing, and decreased

by working in deeper tweezers. We can therefore achieve similar tunneling coupling strengths by

both decreasing the spacing and increasing the tunneling depth, and by doing this we can attempt

to avoid the issues discussed above. In general we find that tunneling works best at tunnel rates

greater than 100 Hz, and presumably at weaker couplings we are sensitive to other types of noise

such as intensity noise in our traps. At short distances and deep traps, however, we suspect that

we are increasingly sensitive to shot-to-shot bias fluctuations. This is supported by the fact that at

deep depths, it is difficult to get coherent tunneling, where we have to consistently sit on-resonance,

but that adiabatic rapid passage works pretty well (Chapter 6, Fig. 6.7).

Even at large depths, we still see hints of unexpected, non-trivial structure in our tunnel

couplings. These are visible in scans of the bias over large ranges, which were completed in order

to find ground-to-n = 1 and ground-to-n = 2 states as was required for our quantum tomography

work (Fig. 3.8(c)). In these scans, we can see significant unexpected structure in the tunneling

transfer, which may indicate couplings to unexpected states, and is worth future investigation.

This structure may result from aberrations and structure in the tweezer potential, couplings to
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axial or orthogonal radial excitations, or combinations thereof. One should also not completely

rule out more mundane issues with state preparation and tunneling initialization, as it can be

non-trivial to cleanly create the desired initial state at the beginning of the tunneling procedure,

and we have less experience doing this in the highly asymmetric traps required for excited state

transfer.

Many of these comments regarding possible explanations for tunneling issues are at some level

speculative. The direct things that we can measure while tunneling are the tunneling contrast, HOM

contrast, and tunneling decay rates, which are all relatively indirectly related to these potential

causes, making it in general difficult to precisely identify the causes of reductions in the tunneling

performance.

An example set of coherent tunneling data with HOM interference is shown in Fig. 3.8(b).

The HOM dip is seen in data where an atom was loaded in each tweezer and manifests as a reduction

in the probability of measuring one atom in each tweezer (P11) at times when each atom has had a

chance to delocalize over the tweezer pair and interfere with the other. HOM interference causes the

bosons to bunch up and prefer to lie in the same tweezer at these times, in which case our imaging

system will tend to kick out the pair of atoms and we will observe no signal, i.e. a reduction in

P11. Ideally, after loading two atoms, we measure either one atom in each tweezer or zero atoms

at all. However, we occasionally observe a single atom in the final image, which we refer to as a

2 → 1 event (referring to two atoms in the initial image, and a single atom in the final image). This

can occur because a single atom was lost due to finite temperature effects or background collisions,

cases which should be discarded in the HOM data, or cases where at the end of the experiment,

two atoms were in the same tweezer but the imaging only kicked out one of the pair of atoms. In

this latter case, the single atom remaining is a sign of HOM bunching, and this should be included

in the data set and contribute to the P11 drop.

The data in Fig. 3.8(b) is conservative, and throws away all such single atom measurements,

resulting in a minimum HOM P11 signal of approximately 0.30. This can be viewed as a upper

bound estimate of the HOM dip, which is significantly lower than classical expectations already.



52

Aggressively including all such single atom measurements in the analysis, as if they all resulted from

imperfect imaging instead of single particle loss, yields an optimistic minimum P11 signal of approx-

imately 0.19, which can be viewed as a lower bound. Both of these limits are discussed in Adam

Kaufman’s thesis [64], and the latter is typically plotted. Independent imaging measurements, con-

ducted well after the tunneling measurements, indicate that at typical imaging parameters, when

attempting to image two atoms loaded into one tweezer, a single atom remains after the image

approximately 25% of the time, and the rest of the time zero atoms remain. This imaging im-

perfection is consistent with numbers reported by Adam. There are then several simple ways of

estimating the true P11 fraction before the imaging takes place.

(1) Knowing the expected number of single-particle loss-based 2 → 1 events based on indepen-

dent single particle loss measurements, one can attribute the remaining 2 → 1 events to

imperfect-imaging.

(2) Knowing the imaging imperfection rate (approximately 25%) and knowing the number of

2 → 0 events observed, one can calculate the number of imaging-based 2 → 1 events we

expect to have occured and include this many in the calculation of the P11 dip. This

analysis was completed and suggests a true P11 minimum of approximately 0.24, which sits

nicely in between these bounds. Confidence in this estimate could be reasonably improved

by conducting such imaging tests at the exact same parameters as were used in tunneling

measurements, and in more reasonable temporal proximity.

(3) Lastly, one can look at fluctuations in the observed 2 → 1 fraction as a function of tunneling

time, and therefore effectively the true pre-imaging P11 fraction, in order to estimate how

many of the 2 → 1 events are due to this imaging issue. This was effectively done in Adam’s

thesis [64].

This area in general is fruitful ground for interesting tests of our system, and in general we

think that there are many ways to continue to create and study interesting non-classical motional

states. However, such testing is very time-consuming, especially considering the need to keep the
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Figure 3.8: Tunneling of Single Atoms Between Two Tweezers. Shown in all plots are
the probabilities of an atom tunneling from the left tweezer to the right tweezer (red data), and
the probability of tunneling from the right tweezer to the left tweezer (blue data). (a) A typical
tunneling bias scan taken at a single-tweezer depth of 1.23µK and a spacing of 0.84µm. One can
refer to Fig. 3.7 for illustration of the bias parameter. Notably, the tunneling does not perfectly go
to zero outside of the bias resonance here, and the tunneling resonance does not rise all the way
to 1, which are a consistent problems in optimizing the tunneling. (b) A reasonably good time
tunneling scan taken at the shallow depth of 0.25µK and a gaussian spacing of 0.84µm. Shown are
the tunneling probabilities as a function of the amount of time during which the tunnel coupling
is on. Also shown are the probabilities of measuring one particle in each tweezer post-selected on
either zero or two atoms surviving, typically referred to as P11 (black data). Some typical problems
are seen here in that the tunneling atom does not transfer all the way to the opposing tweezer,
but returns to the original tweezer nicely. Typically, at these shallow depths, the tunneling time
traces remain well-behaved longer than the bias scans do. (c) A wide bias scan at the relatively
deep depth of 1.89µK and relatively wide spacing of 0.94µm which was close to what was used for
preparation of 1st and 2nd excited states for the tomography work discussed in Chapter 6. Shown
are many unexpected resonances surrounding the expected n = 0 → n = 2 resonance. Notably, the
reverse transfer is very small, a signal which is useful for diagnosing temperature issues in the state
preparation. On the far left side of the resonance, we expect increasingly incoherent dumping of
the atom from one tweezer into the other. (d) A tunneling bias scan at a relatively wide spacing
of 0.94µm and shallow depth of 0.32µK. In this regime, on the relevant side of the bias resonance,
the transfer population does not nicely go towards zero, but rather it seems that the atom is almost
immediately delocalized between the tweezers on the relevant side of the resonance.
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Raman sideband cooling highly optimized throughout testing. As a result, as it became clear that

our tunneling performance was not significantly improved over previous results, we did not delay

too much in sustained tests at this point in my PhD, and instead moved on to new experiments in

various attempts to circumvent these issues.

3.5.4 Three-Tweezer Tunneling

One of the categories of things that we were interested in was expanding the tunneling

experiments to more tweezers, and potentially involving more atoms. To that end, we wished

to analyze a single atom tunneling between 3 optical tweezer potentials. This problem can be

approximated as an implementation of the following simple Hamiltonian:
0 J3 0

J3 0 J3

0 J3 0

 (3.1)

Where each atom is directly coupled to the motional eigenstates of its nearest neighbors. We

neglect couplings to tweezers further away or any relative biases between tweezers, although this

could be easily added. Diagonalizing this Hamiltonian gives three non-degenerate eigenstates:

ψ1 =
|L⟩ − |R⟩√

2
(3.2)

ψ2 =
|L⟩+

√
2|C⟩+ |R⟩
2

ei
√
2J3t (3.3)

ψ3 =
|L⟩ −

√
2|C⟩+ |R⟩
2

e−i
√
2J3t (3.4)

(3.5)

For single-tweezer eigenstates centered on the left, center, or right tweezer being labeled

|L⟩, |C⟩, and |R⟩ respectively. Then, given that you start in the leftmost tweezer (similar to starting

in the right), the probability of being in any tweezer evolves in time as:
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|⟨L|ψ⟩|2 =
(cos(√2J3t) + 1

2

)2
(3.6)

|⟨R|ψ⟩|2 =
(cos(√2J3t)− 1

2

)2
(3.7)

|⟨C|ψ⟩|2 = 1− cos(2
√
2J3t)

4
(3.8)

While if you start in the center tweezer, the probabilities evolve with:

|⟨R|ψ⟩|2 = |⟨L|ψ⟩|2 = 1− cos(2
√
2J3t)

4
(3.9)

|⟨C|ψ⟩|2 = 1 + cos(2
√
2J3t)

4
(3.10)

These calculations form the basis of our expectations for a single particle tunneling between

three wells. In adding more wells, it becomes somewhat more tedious to set the biases of the

three tweezers to enable resonant tunneling, but I believe it is not particularly complicated. After

aligning this bias, we experimentally measure the probability of an atom being in a given tweezer

as a function of the tunneling time during which the tunnel coupling is active (Fig. 3.9).

Figure 3.9: Tunneling of a Single Atom Between Three Tweezers. Shown are the proba-
bility of an atom finishing in the center tweezer given that it starts in the left tweezer (red), the
center tweezer (green) or the right tweezer (blue). Ideally the red and blue should be identical, and
the green curve should drop completely to zero and rise completely to one.
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These results show nice, relatively coherent tunneling of a single atom between three optical

tweezers, and suggest that our system could likely be expanded to support tunneling in more

tweezers. We did not seriously examine multiparticle dynamics in three tweezers, as we expected

it to be difficult to see appreciable interference affects without significant work. However, since

our goal was to examine the interactions between many particles, we soon proceeded to other

experiments in order to explore these dynamics, and did not return to single particle tunneling

dynamics afterwards given the challenges we encountered there.

3.5.5 Predicting Two-Particle Tunneling with Interactions

In general calculating the eigenstates of double-well Gaussian tweezers is done using relatively

involved discrete variable representation (DVR) techniques. This has been done in the past in

specific circumstances with the help of theorist Michael Wall [83]. Additionally, Sean Muleady

has also assisted us in understanding how various factors such as additional couplings and thermal

population could be affecting our tunneling performance.

A simpler approach is to assume that the ground states will be approximately a sum of

Gaussians, and to use the variational principle in order to create an estimate for the parameters of

the sum of Gaussians as a function of the spacing of the two tweezers (Fig. 3.7). The variational

principle is specifically used to calculate the parameters of a single particle in a symmetric sum of

two gaussian wavefunctions, and does not involve interactions. This variational calculation could

be expanded to include two particles or asymmetric sums of the wavefunctions for more accuracy

(Fig. 3.10).

With this solution, we can then estimate the interaction strengths, kinetic energy, potential

energy and total energies as a function of the tweezer spacing. For gaussian wavefunctions with

a given spacing, these energies can be determined analytically and calculated quickly. To facili-

tate understanding of the ground-state dynamics, we calculate these parameters for four potential

combinations of the ground state, which we refer to as the “Mott-insulator”-like state, ΨMI , the

“double-filled” state ΨD, the “superfluid-like” state Ψsup, and the “anti-superfluid”-like state, or



57

what would extend to a superfluid with a single excitation, Ψasup. The states, interaction energies,

and kinetic energies are recorded for the x-dimension of the problem in Table 3.1, and the actual

values as a function of distance, using the variationally calculated parameters for two 3D gaussian

potentials, are plotted in Fig. 3.11. These parameters were mostly analyzed as a function of the

spacing of the two tweezers. Typically, we initialize the tunneling with either an intensity ramp or a

bias ramp, so these solutions might be better calculated as a function of either of those parameters.

State Definition Interaction Energy Kinetic Energy

ΨD = NDψg(x1 +
∆
2 )ψg(x2 +

∆
2 ) ID =

√
2
π

a
w0

KD = 2~2
mw2

0

ΨMI = NMI

(
ψg(x1 − ∆

2 )ψg(x2 +
∆
2 )

+ψg(x1 +
∆
2 )ψg(x2 − ∆

2 )
) ID

2
exp(2χ2)+1

KD×(
1− 2χ2

exp(2χ2)+1

)
Ψsup = Nsup

((
ψg(x1 − ∆

2 ) + ψg(x1 +
∆
2 )
)

×
(
ψg(x2 − ∆

2 ) + ψg(x2 +
∆
2 )
)) ID×

exp(2χ2)+4 exp(χ2/2)+3
exp(2χ2)+2 exp(χ2)+1

KD×(
1− 2χ2

exp(χ2)+1

)

Ψasup = Nasup

((
ψg(x1 − ∆

2 )− ψg(x1 +
∆
2 )
)

×
(
ψg(x2 − ∆

2 )− ψg(x2 +
∆
2 )
)) ID×

exp(2χ2)−4 exp(χ2/2)+3
exp(2χ2)−2 exp(χ2)+1

KD×(
1 + 2χ2

exp(χ2)+1

)

Table 3.1: Tunnel-Coupled Tweezers Analytic Calculations. Various energies of interest of
four two-particle one-dimensional wavefunctions involving various sums of Gaussians. χ = ∆/w0,
where ∆ is the spacing of the two wavefunction centers and w0 is the wavefunction waist (not the
probability distribution waist, which is used elsewhere). ψg = exp(−2x2/w2

0). The parameters of
the Gaussian are to be determined using the variational method as shown in Fig. 3.10. Adding
the energy contributions of the other dimensions is straightforward (if tedious) if one assumes that
the potential is separable and that the solutions in those dimensions are simple Gaussians.

3.5.6 Adiabatic Ramsey Experiments

In general, we have had relatively good success with adiabatic tunneling procedures, where

an adiabatic transfer between the ground-state of one tweezer and the first excited state of another

tweezer can be done with fidelities as high as 92.4+1.9
−2.5%. These procedures also leverage that the

coherence time of our tunneling procedure is relatively long. Although, there may be more nuance
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Figure 3.10: Two-Tweezer Variational Solutions. Variational Calculation of various ground
state solutions to the double-well problem. The axial and y (perpendicular to the multiple tweezer
axis) trap frequencies monotonically increase as the separation decreases and the tweezer overlap
increases, increasing the effective trap depth. The frequency along the multiple tweezer axis de-
creases as the tweezers approach each other and the barrier between the two tweezers lowers and
reduces the effective trap frequency. Lastly, the location of the wavefunctions more or less follows
the bimodal minimums of the potential rather than the actual locations of the gaussians, which
diverge at close spacings. At spacings closer than the waist of the tweezer (2σ ≈ 700 nm), data
for which is not shown, there is no barrier between the tweezers. The variational solution in this
region initially suggests a finite spacing between the multiple gaussians to effectively make a lower-
trap-frequency solution, before eventually collapsing to having no spacing.

to the state we prepare using these procedures, as is explored in Chapter 6. While the HOM contrast

with diabatically initialized tunneling was always limited, we hoped to be able to circumvent some

of these issues with an adiabatically prepared state.

Adiabatic state preparation naturally occurs very slowly, and as such it makes itself a natural

method to explore the detailed influence of atom-atom interactions on tunneling procedures. By

adiabatically preparing a multi-particle state in regimes where the interactions are significantly

stronger or weaker than the tunneling, we would hope to be able to see different tunneling behavior.

This would be an important stepping stone to observing similar regimes with more particles, and

with enough atoms we might see the transition between these regimes manifest as a quantum phase

transition between a mott insulator and a super-fluid.

The main method we used to explore this is effectively an adiabatic prepared Ramsey exper-

iment. First, we attempt to adiabatically bring a pair of traps to be resonant with each other. We

experimented in doing this either by lowering the trap depth, which slowly increases the tunnel cou-
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Figure 3.11: Two-Atom Tunneling Simulation Energies. Calculation of the various energies
in the 3D double well problem as a function of the tweezer spacing at a fixed tweezer depth. States
are defined and 1D energies are calculated in Table 3.5.5, parameters of the solutions there are
taken from the variational calculations (Fig. 3.10). (a) The total energy minus the mean potential
energy averaged between the different states. The purpose of the subtraction is simply to make
the difference between states more visible, as the potential energy is significantly larger than the
other energy scales of the problem. At large distances, the Mott-insulator-like state, which is what
we create when we do standard ground-state preparation of two atoms on the same tweezer which
contributes a positive interaction energy. (b) The interaction energy. The interaction energies
decrease slightly as the tweezers start to approach each other as the x-axis trap frequency decreases,
but eventually increases due to the increased confinement from the other axes. Superfluid and anti-
superfluid states have nonzero interactions throughout which gives them higher energy than the
ground state at large tweezer distances. (c) The kinetic energy. All kinetic energies are identical at
large distances but split as wavefunction overlap between the two tweezers becomes non-negligible.
The superfluid state minimizes the kinetic energy. (d) The potential energy of the system, which
monotonically decreases at smaller spacings as the tweezer overlap, and the effective overall depth,
increases.

pling, or by slowly changing the bias between tweezers. In the case of a single atom, this procedure

should coherently delocalize the atom between the pair of tweezer potentials. We then abruptly

change the bias of the tweezers, causing the two parts of the wavefunction to evolve depending on

how large a bias is applied. The bias is then abruptly returned to zero, and the tunnel coupling

is adiabatically reduced. Mapping out the final location of the atom as a function of the time the

wavefunction evolves in uneven traps results in measurement of characteristic Ramsey oscillations
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between the two traps. In configurations with strong interactions, we expect no delocalization and

no Ramsey oscillations, whereas with weak interactions and relatively strong tunneling, we expect

delocalization during the adiabatic passage followed by full Ramsey oscillations.

In the end, however, we were not able to observe the regime where the interactions were

stronger than the tunneling and see the effect of the interactions in an unambiguous way on the

tunneling. This may be due to a number of factors. The interaction strength in our system may

have been smaller than we expected for traps of this relatively shallow depth. Also, noise issues

may have prevented us from being adiabatic with respect to the interaction strength anyways. In

general, the interaction strength can be relatively large in deep traps. However, we need to be

adiabatic in shallower traps to still be able to tunnel effectively.

Figure 3.12: Adiabatic Ramsey Oscillations. Included are the probabilities for single particles
to be in the left well, whether they started in the left (green data) or in the right (red data).
Additionally included is the probability to measure a particle in each tweezer (black data), given
that two particles were loaded and that either two or zero survived, post-selecting out cases where
only one particle survived as this is possibly a result of single particle loss.

3.6 Rearrangement Techniques

As long as it is not possible to deterministically load an optical tweezer, rearrangement of

already loaded atoms is the best way to reduce the positional entropy associated with unloaded

tweezers, and thus is crucial for quantum simulation and quantum computation experiments with
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larger arrays of atoms. Rearrangement techniques have proven to provide fruitful ground for many

publications, starting with the first demonstrations simultaneously published [84, 85], followed by

a series of various expansions, optimizations, and implementations in different systems, including

our own. Rearrangement has been demonstrated in a number of groups working with either optical

lattices or optical tweezer arrays [86, 87, 88, 89, 90, 76, 91, 92].

The tweezer-generating system we use, which uses two orthogonal acousto-optical deflectors,

can only create grids of traps, although the grid can potentially be unevenly spaced. Additionally,

tweezers within the grid generally have different frequencies. In particular, if we attempted to use

our ordinary tweezer system to create an extra row of traps which traveled between nearby rows

in order to transport traps from one row to another, intermodulation effects within the unevenly

spaced array of tweezers would cause additional, unwanted tweezers to appear with unpredictable

amplitudes throughout the array, which would perturb other trap locations and cause loss. Practi-

cally speaking then, it is not possible to do rearrangement in this configuration and we are limited

to producing only a regularly spaced array of traps.

Unlike many groups that use slow, shear-wave acousto-optical deflectors to create tweezer

arrays, in our group we use fast longitudinal-wave devices. This opens up several possibilities

which we were eager to try to take advantage of, and which I describe below. All of these methods

worked at a reasonable level, and were sufficient to allow us to generate some nice pictures and

results that we included in the ΛGM paper. However, in order to be competitive in large arrays,

rearrangement techniques need to be able to move a particle from site to site with > 90% fidelity,

with many applications requiring > 99% in order to consistently assemble perfect large arrays. As

such, we determined that the methods we developed here were insufficient at the best fidelities

we could achieve, and that pardon any breakthroughs, in our system it would be best to simply

implement a second tweezer system which could be moved independently with respect to the array,

similar to the techniques that other groups use. However, I record the results of the techniques we

tried here in order to illustrate some of the challenges and pitfalls that others should watch out for.
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3.6.1 Flashing Rearrangement

In this first technique, we attempted to move tweezers by rapidly alternating our RF gen-

eration system between two RF configurations. One configuration would be the RF to generate a

static grid of traps, in which most atoms would sit in. The second configuration would be a single

moving trap, or occasionally several moving traps when we were feeling ambitious. If this alternat-

ing is done rapid enough, atoms should only see the average of the two optical potentials. However,

since the optical potentials are separated in time from each other, there is no interference of the

two, avoiding problem (1) above, and additionally it is possible to break the rectangular symmetry

posed in problem (2) above. So this method seems promising in principle. We use a Hungarian

minimum cost-matching algorithm to calculate the sequence of moves required to rearrange the

atoms into a given configuration.

Timing Details In these experiments, since the procedure to rearrange atoms must be

done in real time after getting information from the camera, a number of things must happen for

rearrangement to occur.

• The first image is completed and received by Chimera from the camera, which involves low

level processing by the computer which I have no control over.

• The image must be processed in order to determine where atoms have been loaded.

• The sequence of desired moves, in abstract form (this location to that location) must be

calculated

• The RF voltages (each sample must be individually calculated, as this is how the NIAWG

is programmed) corresponding to the sequence of moves must be calculated or assembled

into the total waveform if precalculated

• The total rearrangement RF waveform must be streamed to the NIAWG. In general, when

the NIAWG is in scripting mode and looping on a waveform while waiting for a trigger,

it loads only the immediate next waveform into its output buffers. During this looping
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however we are free to actively write and overwrite waveforms that are to be outputted

later in the experiment, such as a large waveform set aside for rearrangement.

Notably, the each individual move’s RF can be pre-calculated and held in memory for rea-

sonable array sizes, and so this step which might otherwise be somewhat taxing for this form of

arbitrary waveform generator is circumvented, and the stage of combining the RF for the individual

moves only takes ∼3ms. The image processing and sequence of move calculations are both quite

fast on these time-scales and take only ∼1ms. The time-limiting steps are the time it takes for the

image to be received by the Andor camera, which takes about 25 ms for typical image sizes, and

the time it takes to stream the waveform to the NIAWG, which is about 50 ms for waveforms that

contain about 100 individual moves, or 6 ms worth of moving time. It is likely possible to increase

the streaming speed by using a faster PCIe MXI card, which is the card used to communicate with

the NIAWG’s PXIe crate. We are currently using the slowest such card.

Various Rearrangement Parameters In general the depth of the tweezers being moved

is much larger than that of the static array, and the optimal depth varies depending on how fast

the move is being conducted. We found that it worked best to use relatively fast movement times

of 60µs. In particular, we found that moving slower made various issues worse rather than better.

This seems likely because there is a period of time at the start and end of a rearrangement move

where the atom sees both the static tweezer and the moving tweezer, and that this back and forth

pattern is a large perturbation that is probably capable of causing heating at frequencies that a

single move is not capable of. Generally, intensity fluctuations are symmetric and only couple

states of the same parity, causing them to drive transitions when they are near multiples of twice

the trap frequency, while pointing fluctuations such as this referenced issue are capable of driving

transitions at all multiples of the trap frequency.

Flashing Speed The biggest limitation of this technique is the speed at which tweezers

can be effectively flashed. While the AOD responds at very high frequencies, it takes a non-trivial

amount of time for an acoustic wave to travel across the body of the AOD crystal. Our AOD
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crystals are telerium-dioxide, which has a acoustic wave velocity of 4.2mm µs−1, meaning that

for our 3mm wide crystals, it takes 700 ns for the acoustic wave to travel across the crystal (the

beam size inside the crystal however only has a waist of 0.8 mm). If we naively switch the RF

configurations abruptly, inside the devices the tweezer light will hit both acoustic wave fronts at

the same time. Specifically, if switching the horizontal (vertical) AODs between RF patterns fha

and fhb (fva and fvb), while we will get the desired deflections of fha × fva and fhb × fvb, we also

get undesired tones at fha × fvb and fhb × fva. As a result, we typically operated near a flashing

rate of 1MHz, and with a dead time of ∼100 ns, considering that our tweezers do not entirely fill

the AOD devices.

Unfortunately, these speed-based limitations are hard to improve on for AOD-generated

tweezers. In general, it is desirable to make AOD crystals and the inputted laser size large, as

this increases the number of resolvable deflections that the AOD can generate. This downside is

addressable by using a smaller wavelength trap light which can, at the same size, make more spots,

but we are limited in how short of a wavelength we can use without causing significant scattering

off of the 87Rb atoms. We are therefore not able to simply focus into the AOD or use a smaller

crystal without sacrificing the size of the array. We are also limited in what materials it is feasible

to make an AOD crystal out of. Some materials, such as fused silica, have higher speeds, up to

about 6mm µs−1, but it is unclear to what extent an increase of only 50% solves this problem,

and considering the significant time investment in testing a new AOD system compared to the

effort of implementing a second independent tweezer system, and we decided the former was not

worth the potential upside. However a combination of improvements along these lines along with

better-performing objective optics might improve the performance of this method of rearrangement.

Fidelities We found that for a single, deterministic transfer between two tweezers, it was

possible to optimize the rearrangement to be highly efficient, near 100% fidelity and not easily

distinguishable from background loss in our system. However, for a system of 3×6 tweezers, which

is the size we were using at the time, there are 54 possible moves between neighbors that need

to work very efficiently. We found that it was quite challenging if not impossible to optimize our
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system to be efficient for so many different patterns at the same time. We found that our best

results, after a large amount of individual move optimization, we could prepare a single loaded

optical tweezer in a single experimental cycle with only about 90% fidelity (note that some groups

report fidelities after many repeated cycles of rearranging and re-imaging to improve results). This

was significantly higher than the loading efficiency of about 50% that we had at the time, but not

significantly better than previous results we had obtained with enhanced loading [93] (the ΛGM

procedure had not been developed yet). With an efficiency of 90%, it would be difficult to prepare

any macroscopic arrangement of atoms with a reasonable repetition rate. However, it was still

possible at these rates to create pictures of letters and spell out words (Fig. 3.14).

Flashing Rearrangement Conclusions In the end, after many optimizations, we were

faced with a number of confounding issues in the flashing rearrangement that made the technique

as a whole seem undesirable.

• Unexpected loss resonances requiring traps to be at very specific depths during the move-

ment.

• Some movements would cause loss in nearby tweezers which in principle should be unaf-

fected.

• Some unexplained issues prevented some moves from ever reaching a high move fidelity at

any parameters

• Many of the optimized parameters did not seem very stable and required re-optimization

on a weekly scale.

Many of these affects may be explained by a combination of factors:

• Nontrivial variations in trap shape across the field of view of our objective

• Our tweezers, like our PSF, may have a long tail which might be able to non-trivially affect

tweezers which we would ordinarily think are far enough away.
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It should be emphasized that it is still possible that these issues could be addressed and that

the method could work. Indeed, future systems that have more well-behaved objectives may wish

to test these ideas, as there are significant advantages in having a self-contained rearrangement

system, including the need for consistently registering the two sets of potentials. However, it is

important to remember that there is already a well-tested system for doing rearrangement, namely

the introduction of a completely separate tweezer system in order to do the rearrangement.

Figure 3.13: Rearrangement into a Line. (a) The initial loading pattern of a 3x6 array of
tweezers. Lines show an example of how atoms could be rearranged to make a one-dimensional line
of atoms. (b) A line of atoms, after being rearranged.

3.6.2 Jerk Rearrangement

Another idea which avoids some of the issues of flashing rearrangement, but introduces others,

is what I call “Jerk” rearrangement. In this method, we turn off the main array, then use a single

very deep tweezer to move the target atom from one site to another very fast (on the order of 1

µs per move), and then turn the original array back on, before the original atoms had time to fly

away. This idea is essentially flashing rearrangement in the speed limit of a single flash. Somewhat

surprisingly, it worked with a similar fidelity as the original flashing rearrangement. It suffered

from similar issues in that the exact depth (which was generally much deeper) required careful,

site-selective calibration, and the movement of the particularly deep tweezer tended to cause loss
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Figure 3.14: Atoms Spelling Out JILA. Four separate images of atoms after being arranged
into letters to spell out “JILA”.

in nearby tweezers.

3.6.3 Stiff Rearrangement

Another technique which seems simpler to implement than the others, but that is less pow-

erful, is what I call the stiff rearrangement technique. This is the technique which went into the

enhanced loading paper discussed in Chapter 4 [63]. In this technique, the initial loading configu-

ration is analyzed to determine if one can make a target final array by removing entire rows and

columns of the initial array, and the shrinking the rest (Fig. 3.15). Although all rearrangement

techniques benefit from enhanced loading techniques, this is especially true with stiff rearrangement.

After densely loading an array, we first obtain the location of each atom using a single image

(left panel Fig. 3.15(a)). Even with dense loading, the probability of loading a specific set of 6× 6

traps is exponentially small (dashed lines in Fig. 3.15(b)). However, there are many potential sets

of (sometimes disjoint) 6 × 6 traps embedded in the 10 × 10 array. We then search for such a

configuration of completely loaded 6× 6 traps. If successful, we turn off the extra traps to remove

the excess atoms, and then contract and shift the identified disjoint array in a single move (right

panel) [84]. At the time of this work, successful rearrangement to a square n = 36 (6 by 6) array
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Figure 3.15: Stiff Rearrangement in 2D. (a) Single image of 80 atoms in an array of 100
traps with separation 2 µm (left). Binarized loading (center) indicating empty traps (red squares),
occupied traps (gray pixels), and loaded traps selected for parallel rearranging (yellow pixels)
to a defect-free 6 × 6 array. For the single-shot images, in each trap pixel (background pixel)
the atom count threshold (average threshold of nearest neighbors) is subtracted for clarity from
the count number recorded by the camera (see Appendix). (b) Monte-Carlo-simulated success
probabilities (SP ) of finding a filled disjoint array of atoms within 10 × 10 traps as a function of
loading efficiencies (solid lines), and corresponding loading probability of a specific array without
rearrangement (dashed lines). Colors indicate target array sizes: 3 × 3 (red), 4 × 4 (green), 5 × 5
(blue), 6×6 (orange), and 7×7 (black). The light gray area is only accessible with average loading
greater than 80%, and the dark gray area for greater than 90%.

only worked in 0.1% of cases due to unexpected loss observed when turning off rows and columns, in

which an atom is effectively lost with a 17%-chance. This loss is technical in nature, and potential

causes include intermodulation in the tweezer-generating RF tones or collisions between the trapped

and dropped atoms. It is potentially related to other issues seen in the dumping of extra power

into distant optical tweezers (Sec. 3.5.1) and the non-trivial imaging point-spread function of our

system (Fig. 6.8).

However, as illustrated in Fig. 3.15(b), observing this array with this parallel technique would

have been impossible without enhanced loading. In increasing the loading probability P from 60%

to 80%, the percentage of experiment runs in which one could possibly extract a defect-free 6× 6
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array goes from 0.02% to 37%. Notably, this entire procedure is completed using only a pair of

acousto-optic deflectors to control the optical tweezers.



Chapter 4

Gray-Molasses Based Optical-Tweezer Loading: Controlling Collisions for
Scaling Atom-Array Assembly

In this chapter, I discuss our work on developing a new optical tweezer technique using Λ-

enhanced gray molasses. It contains a mix of work that was done for our published result, and a

variety of updated work that was done in recent months of 2021 after we could utilize a variety of

recent experimental upgrades [63].

To isolate individual neutral atoms in microtraps, experimenters have long harnessed molec-

ular photoassociation to make atom loading distributions sub-Poissonian. While a variety of ap-

proaches have used a combination of attractive (red-detuned) and repulsive (blue-detuned) molec-

ular states, to-date all loading experiments have been predicated on red-detuned cooling. In our

work, we present a shifted perspective – namely, the efficient way to capture single atoms is to

eliminate red-detuned light in the loading stage, and use blue-detuned light that both cools the

atoms and precisely controls trap loss through the amount of energy released during atom-atom

collisions in the photoassociation process. Subsequent application of red-detuned light then assures

the preparation of maximally one atom in the trap. Using Λ-enhanced gray molasses for loading,

we study and model the molecular processes and find we can trap single atoms with 90% prob-

ability even in a very shallow optical tweezer. Using 100 traps loaded with 80% probability, we

demonstrate one example of the power of enhanced loading by assembling a grid of 36 atoms using

only a single move of rows and columns in 2D. Our insight will be key in scaling the number of

particles in bottom-up quantum simulation and computation with atoms, or even molecules.
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4.1 Introduction

In quantum simulation and computing, the assembly of large arrays of individually control-

lable particles is a frontier challenge. Ultracold gases of neutral atoms have long simulated quantum

physics on a macroscopic scale, and quantum gas microscopes are now a window to microscopic

dynamics [22, 94]. However, the desire for control of individual atoms, in particular for quantum

computing, motivates pursuing bottom-up engineering of neutral atom arrays [36, 35, 51, 58]. In

a Maxwell’s demon approach, experimenters image single atoms and subsequently rearrange them

into a desired pattern. The resulting ordered arrays have presented new opportunities in studies

of multi-particle quantum dynamics [95, 96, 84, 97, 98, 99, 91, 86, 87]. Yet, compared to trapped

ions, single neutral atoms are still difficult to trap and assemble.

In our work, we form ordered atom arrays by combining dense loading of large optical tweezer

arrays with atom imaging and rearrangement [Fig. 4.1]. Using Λ-enhanced gray molasses (ΛGM)

on the D1 line of 87Rb [100, 101], we can load single atoms with high efficiency in a trap shallower

than required for standard sub-Poissonian loading [28] and nearly an order of magnitude shallower

than required for previous enhanced loading [48]. While we demonstrate the idea with an array

of optical tweezers in 2D, dense loading could also be used in optical lattices or in microtraps in

3D [86, 87]. We predict our technique will scale-up neutral-atom array assembly by expanding

rearrangement algorithms and by enabling considerably larger ordered arrays.

To isolate single atoms in optical tweezers or lattices, one typically drives light-assisted col-

lisions in the collisional blockade regime using red-detuned light [28, 29]. In this case, atoms are

photoassociated to attractive molecular states in which they accelerate towards each other and gain

kinetic energy that predominantly expels both from the trap [Fig. 4.1(a)]. If the collisions occur

quickly enough to dominate the dynamics, as is the case in microtraps, a single atom is left about

half the time. In the pioneering work of Ref. [48], after adding a blue-detuned laser to drive atoms

into repulsive molecular states, the energy gained in the collision was tuned to induce single atom

loss [48, 102, 93, 103]. Loading efficiency was enhanced to 90%, but at the cost of requiring large
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Figure 4.1: Enhanced Loading and Rearrangement in Large Arrays. (a) Sketch of laser
configuration, and molecular energies versus interatomic separation. Solid (dashed) arrows show
cooling (repump) lasers with indicated detunings. (b) Atoms loaded into an array of 100 traps with
depth U formed by optical tweezers undergo blue-detuned light-assisted collisions. (c) Schematic of
parallel rearrangement to form defect-free array with target atoms (white) after removing a subset
of loaded atoms (yellow).

trap depths (U/kB ∼ 3 mK compared to 1 mK for red-detuned loading) and hence making use of

the technique untenable in large arrays.

Here we resolve the conflict that has existed in previous work with enhanced loading – namely

that red-detuned cooling drives lossy collisions and competes with desired blue-detuned collisions.

By using ΛGM, we have the ability to cool into the trap and photoassociate with the same blue-

detuned laser [Fig. 4.1(a)], and we can control the energy atoms are given in the collision by

varying the laser’s detuning. Further, we can make use of red-detuned and blue-detuned molecular

photoassociation processes at will. In particular, we first modify the atom number distribution in

the microtrap with blue-detuned cooling (ΛGM). We then apply red-detuned light, which both

assures that not more than a single atom remains and, if it remains, images it. The loading
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behavior studied in a single trap agrees with a model of consecutive light-assisted collisions to

repulsive molecular states. Our model further allows us to identify paths to even more efficient

single-atom loading.

We find we can load a single optical tweezer with a trap depth of U/kB = 0.63(6) mK with

89(1)% efficiency, and a 10 × 10 array with 80.49(6)% efficiency [Fig. 4.1(b)]. We also demon-

strate a proof-of-principle rearrangement technique that relies on the enhanced loading to create

a 6 × 6 defect-free array using a simplified sequence of parallel moves of entire rows and columns

[Fig. 4.1(c)] [84]. Lastly, we discuss how the efficiency of both this simplified rearrangement, as

well as atom-by-atom assembly, scale exponentially with initial filling of the array.

4.2 Loading Studies and Modeling

4.2.1 Loading Experiments

Generally, in Λ-enhanced gray molasses (ΛGM) [101, 100] the cooling laser is set blue-detuned

of a type-II (F ′ ≤ F ) transition and in a Λ configuration with a coherent repump laser [Fig. 4.1(a)].

Because of its greater isolation from nearby hyperfine manifolds, we chose to operate the ΛGM

detuned from the 5P1/2|F ′ = 2⟩ state [in contrast to, e.g. 5P3/2|F ′′ = 2⟩]. Note, we were motivated

to use ΛGM mainly as a natural way to blue-detune both cooling and repump lasers, which is

a somewhat different motivation than in recent quantum degenerate gas experiments with light

atoms and molecules – namely that gray molasses works on open transitions, and Λ-enhancement

results in lower temperatures [104, 105, 106, 107, 101, 100, 108, 109, 110, 111, 112, 113, 114].

We first present results from loading a single optical tweezer using ΛGM, and compare to

standard loading using red-detuned polarization gradient cooling (RPGC) [Fig. 4.2(b,c)]. We cap-

ture 87Rb atoms in a magneto-optical trap (MOT) and then cool them into a spatially-overlapped

optical tweezer with depth U with either ΛGM or RPGC. After the cooling and loading stage,

we apply RPGC with parameters optimized for fluorescence imaging of the atoms. Initially, this

quickly removes remaining atom pairs, and then images whether a single atom or no atom remains
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Figure 4.2: ΛGM Comparative Loading Studies. (a) Flow-diagram of experiments. (b,c)
Average loading efficiency in to a single optical tweezer from 150 experiment repetitions as a function
of bare laser detuning from the free-space resonance and trap-depth, for RPGC (b) and ΛGM (c).
(d) Monte-Carlo simulated mean trap occupation with bi-linear vertical scale (black and gray
axes). In the ΛGM-step, the initial trap occupation (dashed, red line) is reduced (cyan line) by
blue-detuned collisions (blue area). In the RPGC imaging step, red collisions (red area) further
reduce the trap occupation (red line). The resultant is compared with data (gray points) from
(c) averaged for U/kB > 0.65 mK (see text). (e) Histograms (cyan) of trap occupancy from the
Monte-Carlo after the ΛGM-step for detunings indicated by the black circles in (d), compared to
a Poisson-distribution (black) with the same mean trap occupation, and atom distribution after
the RPGC-step (red in i). (f) Loading efficiency as a function of ΛGM-laser detuning ∆LGM for
a single tweezer (black) [see also cut along the black dashed line in (c)] and a regular array of 100
tweezers (purple) at U/kB ≈ 0.55(5) mK. Error bars indicate statistical 1σ-confidence interval (see
Sec. 4.7.3). Throughout panels, green lines are AC-Stark-shifted |F = 2⟩− |F ′′ = 3⟩ transition (for
RPGC) and AC-Stark-shifted |F = 2⟩ − |F ′ = 2⟩ transition δtrap (for ΛGM), and blue lines are
δtrap + 2U/h.

in the trap [Fig. 4.2(a)]. The procedure is repeated to determine average single-atom loading ef-

ficiencies, i.e., the fraction with which a single atom is found after both the loading and imaging

stages. See Fig. 4.2(a) and Sec.4.7.3 for experimental-sequence timing and details of the imaging

analysis. Also, see Fig. 4.1(a) and Sec. 4.7.2 for detailed laser configurations.
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Fig. 4.2(b,c) shows the loading probability P as a function of both laser detuning from the

closest atomic free-space resonance and trap depth, for both RPGC and ΛGM. With ΛGM we

observe 89(1)% loading efficiency at (∆ΛGM, U/kB) = (45 MHz, 0.55(5) mK), and we can still

load with ∼ 80% efficiency at trap depths of U/kB ≈ 0.27(3) mK. These findings are remarkable

as with the same optical power we can load tweezer arrays that are more densely filled and two

to three times larger compared to RPGC loading. The maximum RPGC loading of 64(1)% for

(∆RPGC, U/kB) ≈ (−14 MHz, 1.1(1) mK) is among the highest reported for RPGC [93, 103, 97,

84]. In the simplest picture of RPGC, one expects 50% loading, but, in agreement with other

studies [103], additional processes result in ∼ 35% of the collisions causing only one atom to leave

the trap.

A physically rich picture can be gained from studying the detuning dependence of ΛGM

loading [Fig. 4.2(c)]. First, note that the trap light results in an AC Stark shift δtrap = 32.8MHz
mK

U
kB

of the atomic transition in the center of the trap [green lines in Fig. 4.2(c,d,f)]. The blue line in

Fig. 4.2(c,d,f), which marks a shift of 2U/h from the trap-shifted resonance, is a key energy scale

for the physics of the enhanced loading. At shifts smaller than 2U/h, the collision does not give a

pair of zero-temperature atoms sitting at the bottom of the trap enough energy for either to escape,

while at larger detunings both atoms will be expelled. A finite temperature, and hence an initial

center of mass motion, will blur the transition, and indeed is necessary for inducing the desired

single-atom loss. Although our data are roughly consistent with this picture, we look more closely

by plotting the data of Fig. 4.2(c) against a dimensionless detuning h(∆ΛGM − δtrap)/U . We do

this for all data traces U/kB ≥ 0.65 mK [Fig. 4.2(d)], and observe a number of interesting features.

For example, we observe a ∼ 60% loading probability for small detunings and that the maximum

loading peaks below the 2U/h shift (blue line).

4.2.2 Loading in Large Arrays

We have also performed a loading study for an array of 10×10 optical tweezers spaced by 2 µm.

We display the measurement at U/kB = 0.55(5) mK as the purple line in Fig. 4.2(f). Compared to



76

the single-trap data at similar U (black), the data are shifted to smaller detunings, and we observe

a maximum loading of 80.49(6)% in a single run averaged over the 10×10 array. These effects could

be due to a variety of consequences of the larger array: variations in trap shape and depth or overall

degradation of the optical spot sizes (see Sec. 4.7.1). Note that our experimental apparatus was

designed and optimized to entangle closely-spaced atoms in ground states, in contrast to systems

that interface (farther-spaced) Rydberg atoms. This places constraints on the tweezer array, such

as acousto-optic device mode, trap-light detuning, optical power, and high-NA field-of-view, that

mean with typical loading we are limited to working with array sizes less than 10 × 10. However,

ΛGM-loading allows us to scale up both the size of our arrays as well as the total number of atoms

we can trap, and is a unique realization for enhanced loading in optical tweezers.

4.2.3 Loading Model

To elucidate trends in Fig. 4.2(c), we have carried out a Monte-Carlo calculation of the

collision dynamics. At the time of the original experiment, we had not yet dived deep into the

molecular physics of the two-atom systems, as is done in Chapter 5. Therefore, our original model

did not take into account the detailed nature of these potentials and the effect that they may have

on the loading process. Those considerations will be discussed in chapter 5. Here, I discuss our

original model.

Generally, we expect loading to be affected by both collisions and the ΛGM cooling perfor-

mance, and both may be influenced by the non-trivial light shifts and polarization gradients in the

tweezer traps. Modeling the interplay of these effects is beyond the scope of this work, but we can

understand the collisional process quantitatively if we assume the continuous ΛGM cooling can

load at least a few atoms per trap, and re-thermalizes any atoms remaining after a collision. The

simulation starts by preparing a Poisson-distributed number of atoms Natom with a mean number

N̄atom = 5 and temperature T , where N̄atom was chosen > 2.5 to avoid loading zero atoms initially.

To simulate the finite experiment cooling time, we calculate a finite number of 5000 time steps each

having two atoms collide once if they are closer than 100 nm. A collision might eject none, one, or
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both atoms out of the trap depending on the final energy of each atom, which is determined by their

pre-collision energy and the collisional energy gain E = h [∆ΛGM − δtrap]. This simple assumption

makes this simulation easier, but future more accurate simulations could take as inputs results from

the molecular physics calculations in Chapter 5. This process continually reduces Natom in each

time step. At the end, the RPGC imaging is simulated by assuming that it entails a fast collisional

process at the start of the image where red-detuned collisions reduce atom numbers in a manner

consistent with our red loading - namely we reduce any remaining Natom > 1 by 2 with a chance

of 65% and by 1 with a chance of 35% until Natom ≤ 1.

Fig. 4.2(d) shows the result of the Monte-Carlo simulation by indicating the mean trap

occupation N̄atom as a function of the normalized collisional energy gain. During ΛGM-loading, the

initial atom number (red dashed line) is reduced (cyan line). During RPGC imaging N̄atom is further

reduced [red line in Fig. 4.2(d)]. Fig. 4.2(e) shows the simulated atom-number distribution (Natom)

in the trap and how atom loss in the ΛGM and RPGC-phase modifies the Poisson distribution.

We observe three physical regimes: For E ≪ 2U [see panel (i) in Fig. 2(e)], the ΛGM-

phase has little effect as almost no atom loss occurs, hence the initial Poisson-distribution (black

distribution) is not modified (blue distribution). The initial phase of the RPGC-imaging step,

however, reduces the number of atoms to 0 or 1, yielding a RPGC-like 65% mean trap occupation

(red distribution). In contrast, for E ≫ 2U (panel iv), two-body losses dominate in the ΛGM-

phase as every collision expels both atoms from the trap resulting in Natom = 0 (Natom = 1)

in ∼ 50% of the cases if the loaded Natom was even (odd). Hence after ΛGM, Natom < 2 and

the red-detuned imaging phase does not modify the atom-number distribution anymore. At the

transition E ≈ 2U (panel iii), both single atom and two-body losses occur in the ΛGM-phase with

roughly equal probability because of the finite temperature. Since two-body losses tend toward an

equal distribution of Natom = 0 and 1, and single-atom loss toward Natom = 1, we load a single

atom (Natom = 1) in 75% of the cases. Again, RPGC-imaging does not modify the distribution

as Natom < 2 after ΛGM. Maximal loading probability is found at E < 2U (panel ii) where

only single-atom loss occurs. Here, any occurrence of Natom = 0 is a result of either no atoms
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having been loaded initially, or the ΛGM-step has not finished (finite Natom > 1 after ΛGM), and

RPGC-imaging then ejects pairs atoms.

This simple model indicates no fundamental limitations to the loading efficiency and that

by optimizing the trap size, atom temperature, and related parameters, it may be possible to

reach higher loading fractions. Note that the only free parameter that affects the prediction of

the simulation is the atom temperature T in the trap. The simulation describes our data well for

T =120(10) µK, which needs to be understood as an average value for the different trap-depths

U that were investigated. This value is close to the free-space ΛGM temperature we measure

of T ≈50µK, which is higher than typical values, likely due to non-ideal beam geometries (see

Sec. 4.7.2).

This model could be refined with a more detailed understanding of the molecular physics

involved, which we investigate in Chapter 5.

4.3 Recent Further Explorations

4.4 Role of Λ-enhancement

In gray molasses, the atom is at in general in a coherent superposition of states in a given

manifold that experiences coherent population trapping and are therefore somewhat dark (“gray”)

to the cooling light. In ΛGM configurations, the coherent superposition is extended to involve states

in multiple ground-state manifolds, which generally has the effect of improving the cooling limit.

The ΛGM configuration was originally chosen simply because it is a convenient cooling configuration

which used entirely blue-detuned light. It was not initially clear if the loading would benefit

specifically from the Λ-enhancement, and as Λ-enhancement can be technically more challenging

than regular gray molasses, we thought it would be useful to explore more thoroughly.

Unenhanced gray-molasses-like cooling is easily available for us by detuning our repump

frequency to be near-resonant with the atomic transition instead of with the Raman resonance where

there is strong Λ-enhancement. Notably, here the repump is operating on the type-I F = 1 → F ′ = 2
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transition (F ′ > F ). There exist cycling transitions here, and we therefore do not expect that any

population in this manifold can be dark to the repumping light. Rather, the dark state is entirely

in the F = 2 manifold, and the repumper only serves to pump into this state. This contrasts with

the behavior on the Raman resonance, where the dark state is in general expected to coherently

include population in both ground-state manifolds, with the F = 1 population prevented from

rotating through Raman transition into the F = 2 manifold via interference with the F = 2 state

populations. It should be noted however that, in general, predicting the dark state itself is non-

trivial as it depends carefully on the polarizations of the light fields being applied, and in the

presence of the tweezer potential would spatially vary.

Recently, we’ve taken more data indicating that we can get some enhancement with this “reg-

ular” gray-molasses, but that we get much better enhancement with the Λ configuration (Fig. 4.3).

In Fig. 4.3(a) we scan the frequency around this free-space resonance, and we see that on the

blue-detuned side of it we get some enhancement, with a maximum loading efficiency of 0.717(+27)
(−25).

However, there is significantly higher loading efficiency on the Raman resonance, where in this

configuration with 7 atoms, we get a maximum loading efficiency of 0.810(+15)
(−17).

It is as of yet not entirely clear why the loading works better with the Λ-enhancement. Several

theories exist, including that with the Raman resonance it is possible to get significant repumping

action with the repumper far blue-detuned without unnecessarily broadening the transition. Acting

on a broadened transition might prevent us from selecting specifically repulsive potentials. It is

also true that we expect the ΛGM configuration to result in a different equilibrium population

distribution among the single atom F and mF levels. This might also have impacts on the symmetry

of the colliding atoms, which could affect which transitions are excited to. More research is required

to further inform the mechanism at play here.

In addition, we note in passing that in the scan we can see the broadening of the transition

with increasing repump power, and that we strangely see the loading suddenly drop at high power.

It is not yet clear why this is and may be an uninteresting technical issue with our setup. We create

the repump light using a fiber-based EOM, and it is possible we are simply running into technical
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Figure 4.3: Scan of Repump Power and Frequency Parameters. a A wide scan, where
we see loading where the repump light is near-resonant with the atomic transition. Slight loading
enhancement without coherent Lambda-enhanced cooling is visible on the blue side of the transition.
The Raman resonance is not visible because of it’s narrowness, but exists on the right-hand side
of this data. The zero is the approximate location of the free-space resonance. b A zoom in on
the Raman resonance, where we benifit from Lambda-enhanced cooling. Note the different x-axis
scale.

issues when we drive it sufficiently hard.

4.5 Wider 87Rb D1 F ′ = 2 Parameter Scans

With a new laser system and a new laser locking configuration as discussed in Sec. 2.2.1.2, it

was later possible to take larger frequency scans than in our original work. This resut is shown in

Fig. 4.4. The broadened scan shows a number of interesting features.

We see poor loading at high detunings and low trap depth, possibly due to inefficient free-

space cooling in this regime. The loading reverts to ≤ 50%, at larger depths. Perhaps in the larger

depth the trapping volume is effectively bigger so that collisions are rarer, leading to poor loading

in this region. Perhaps the variations in the light shifts that the atom sees creates a situation where

it is difficult to tune the detuning of the loading to be relevant for all shifts. It is not yet clear.

Finally, notably the loading is non-zero at large depths and shallow detunings, where the

LGM light is red-detuned (and heating) in the deepest part of the trap. This may be due to a

mechanism like that the ΛGM is still cooling at the edges of the trap, where the light shift is
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Figure 4.4: A Wider F ′ = 2 ΛGM Scan. A scan of the loading on the F ′ = 2 ΛGM system
that is wider than original scans could be. We see a number of new interesting additional features
here at large depths and larger detunings, which are discussed in the main text.

smaller, and that it’s possible to retain an atom in this region.

4.6 Loading on the 87Rb D1 F ′ = 1 Transition

An interesting further test case that was readily available to us was attempting to load in a

different loading configuration, where the main (repump) laser is tuned to the D1 F = 2 → F ′ = 1

(F = 1 → F ′ = 1) transition instead of the D1 F = 2 → F ′ = 2 (F = 1 → F ′ = 2) D1 transition

(Fig. 2.3). The transition is such that it should support dark states similar to our traditional

loading configuration, so we can expect that it is possible to do ΛGM on this transition similarly.

In the new configuration, the lasers are all red-detuned of the F ′ = 2 transitions, but it is a-priori

not clear that this is important since these transitions are 800 MHz away from the transition of

interest.

Practically, we do this by locking the D1 Master to the 87Rb D1 F = 2 → F ′ = 2 transition

and offsetting by ∼−1000MHz (with an extra 230 MHz included to account for an AOD shift),

whereas normally we lock to the 85Rb F = 2 → F ′ = 1 transition and offset by ∼−900MHz.

Future laser locking configurations may be able to scan smoothly between these transitions without

relocking the laser.

We begin the test by checking the free-space temperature of this different ΛGM configuration,
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and find a temperature of 12µK, which is consistent with the temperatures we get from the F ′ =

2 ΛGM configuration in our system, so we can conclude that the free-space single-atom ΛGM

performance is similar to that in the F ′ = 2 configuration and should not cause significant issues.

We then examine loading in this configuration in Fig. 4.5. Qualitatively, the dependence

of the loading on the laser frequency and trap depth follows the exact same patterns as that on

the F ′ = 2 transition, with the exception that the peak loading efficiency is significantly lower,

maximizing at 0.601
(+35)
(−34). This is similar to the RPGC configuration, which was also capable of

loading slightly greater than 50%.

Figure 4.5: A D1 F
′ = 1 ΛGM Scan. Scan of the loading performance as a function of trap depth

and loading frequency with the f = 2 → F ′ = 1, f = 1 → F ′ = 1 ΛGM loading configuration.
Features of the loading are almost identical to the F ′ = 2-based configuration, except that the
maximum loading efficiency here is significantly lower, and the loading feature is generally more
flat-topped than before.

This is a very valuable result, as it is illustrative of the complexities of the ΛGM loading

mechanism. With traditional pictures of the loading, it is not at all obvious why the new configu-

ration does not enhance the loading efficiency. Our best explanation for this behavior is actually

the nature of the molecular states is significantly different on these transitions than on the F ′ = 2

based ones. In particular, in Chapter 5 we show that many of the blue-detuned molecular poten-

tials that are relevant for this transition do not have significant repulsive barriers and are actually

mostly attractive in nature (Sec. 5.7). This would be difficult to predict without the full calculation
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discussed there and goes a long way towards an explanation of this behavior.

4.7 Technical Details for Grey Molasses Optical Tweezer Loading and Re-
arranging

4.7.1 Optical Tweezers

We generate an array of optical-tweezer traps spaced by 2µm in the xy-plane by passing a

single 850 nm laser beam through two orthogonal longitudinal-wave TeO2 acousto-optical deflectors

(AODs) with center frequencies (bandwidths) of 180 MHz (90 MHz). Each modulator is driven

with a sum of radio-frequency (RF) tones with frequency (amplitude) that can be individually

and dynamically adjusted to control the position (intensity) of different tweezer-rows and columns.

The relative phases of the tones are set to minimize intermodulation in the RF setup. The array

of deflections created by the AODs is then imaged by a 0.6-NA-objective lens into a glass cell.

This creates a trap with a 0.68µm waist for a single tweezer, and traps with an average waist

of 0.75µm for a 10 × 10 array. The standard deviation of the trap depths was minimized to 8%

by optimizing the RF amplitudes. Trap depths are calibrated by measuring light-shifts of in-trap

atomic transitions as a function of trap power and applying a linear fit; the slope gives a calibration

of the intensity of trap light the atom experiences, which can be used to directly calculate the trap

depth [115]. Errors on trap depths are 1-σ errors extrapolated from the errors on the slope of the

linear fit. The lifetime of atoms in the traps is limited to 5 sec by the background pressure.

4.7.2 Laser Cooling and Loading

In all experiments, three beam paths are used to address the atoms. Two (diagonal) paths

are along the diagonals of the xy-plane, and a third (acute) path in the xz-plane is at an angle of

55° from the z-axis to avoid the objective [64]. All lasers along these paths are retro-reflected and

in a σ+σ− polarization configuration.

Our magneto-optical trap (MOT) is spatially overlapped with the trap array and cools atoms

for 500 ms to a temperature of ∼ 100µK, measured by imaging its ballistic expansion. The cooling
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(repump) laser is red-detuned from the D2 |F = 2⟩ → |F ′′ = 3⟩ (|F = 1⟩ → |F ′′ = 2⟩) transition,

and applied on all three beam paths (on only the diagonal paths). In the case of the 20-ms-long

RPGC stage we cool the atoms to 10µK. For this, we detune the cooling (repump) laser by ∆RPGC

(20 MHz), set the intensities at 1.3 Isat (0.1 Isat) on the diagonal paths and 4.5 Isat (0 Isat) on the

acute path, and zero the magnetic fields.

In the case of the 200-ms-long Λ-enhanced gray molasses (ΛGM) stage, we apply a cooling

laser that is detuned by ∆ΛGM from the D1 |F = 2⟩ → |F ′ = 2⟩ transition at 2.5 Isat (0.4 Isat)

on the acute (diagonal) paths. We create the coherent repump beam from the cooling laser on the

acute path using an electro-optic modulator. The repump beam is detuned by ∆ΛGM + 0.14 MHz

from the D1 |F = 1⟩ → |F ′ = 2⟩ transition and at 1.5 Isat. Note that the optimal ΛGM free-

space temperature of 50µK is reached for ∆ΛGM ≈ 15 MHz and is likely limited by the beam path

geometry and repump light configuration.

4.7.3 Imaging, Data, and Statistics

Regardless of the loading configuration, we image the atoms using another RPGC stage

with the cooling beam (∆RPGC = −19 MHz at 3 Isat) only on the acute path. We alternate the

tweezer-light with the imaging light at 2 MHz to scatter light when atoms are experiencing no

light shifts. This configuration is maintained for 20 ms during which we collect scattered photons

on an EMCCD camera, super binned to 4 × 4 pixels to reduce readout noise. As we now discuss

experimental evidence for, this red-detuned imaging process quickly kicks out any pairs of atoms

that might exist, for example, in the case of a gray molasses loading stage with a small detuning

[Fig. 4.2(d) and (e)]. Accordingly, it does not resolve a tweezer’s occupation number following the

gray molasses stage [illustrated by the cyan line in Fig. 4.2(d)], but rather maps the atom number

onto 0 or 1. If this loss did not occur quickly compared to the imaging time, we would sometimes

collect numbers of photons significantly larger than our calibrated single-atom scattering rate. We

do not observe this signature despite high experimental statistics, suggesting a sub-percent impact

of these effects on the imaging.
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At every atom location individually, to determine a count threshold that indicates the pres-

ence of an atom in the trap, we create a histogram of all counts during an experiment and fit it with

a sum of two Gaussians. The threshold with maximal fidelity F is found, where F = 1−(Efp+Efn),

with Efp (Efn) being the expected rate of false positives (false negatives) from the fits. This con-

verts a sequence of counts to a sequence of Booleans which is averaged to determine the loading

probability. By finding thresholds for each trap individually and subtracting them from the images

in Fig. 3.15(a), we compensate for a spatially varying background noise and, due to the limited

field of view of our high-NA lens, the different numbers of photons we collect for each trap.

All errors reported indicate 1-σ equal-tailed Jeffrey’s prior confidence intervals [116]. The

loading efficiencies reported in the main text for RPGC (64(1)%), ΛGM (89(1)%), and 10×10-ΛGM

(80.49(6)%) were obtained by analyzing 2000, 1000, and 5000-per-atom repetitions with threshold

fidelities 0.987, 0.998, and 0.993 respectively.

4.7.4 Scaling Arguments

The full potential of dense loading using ΛGM will come when combined with the most

advanced atom-by-atom rearrangement algorithms in 2D or 3D [97, 86, 87]. In principle, if the

Maxwell’s demon atom rearrangement operation is perfect, and if a large number of traps are used,

one would expect very large arrays could be created through a bottom-up approach regardless of

the loading. Practically, however, there are many factors that steeply limit creating large-scale

systems with optical tweezer assembly. In particular, a finite atom lifetime compared to the time

required for rearrangement, and also simply the number of traps that can be created and loaded.

Our approach addresses these problems because it is efficient in shallow traps. Hence, with

ΛGM more loadable traps can be created with the same amount of optical power. Additionally,

2D algorithms fill defects in a target array of size n with a sequence of m ∝ (1 − P )n1.4 single

moves, which we verified with Monte-Carlo simulations [97]. In scaling up array sizes, the time and

number of moves required become lengthy, lowering the probability of successful rearrangement

(SP ) as errors ϵ due to finite move fidelities and background collisions suppress this success rate as
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e−mϵ [97]. Increasing the loading probability P from P = 60% to P = 90% would decrease m by

a factor of 4, making larger array sizes more obtainable and exponentially improving the success

probability SP .

4.8 Conclusion

In conclusion, by gaining control over photoassociation to molecular states we have demon-

strated enhanced loading of arrays of shallow optical tweezers. As described in Secs III A and B, we

achieved a strong relative improvement on our trapped atom-numbers, but experimental platforms

designed to host more optical traps than our system will stand to benefit even more. For example,

Ref. [97] loads approximately 50 atoms with a 2D-array of 100 traps of 1 mK depth. With the same

optical power and ΛGM, one would expect to utilize 370 traps of 0.27 mK depth and, based on

the shallow-depth loading of single atoms at P = 80% of Fig. 2(c), load approximately 300 atoms

– a six-fold increase. Further, the density of the filling will affect the number of moves required

in rearrangement [84]. Using a technique that moves atoms individually [97], our Monte-Carlo

simulations indicate that rearranging 300 atoms at P = 50% requires approximately 900 moves

on average, whereas at P = 80% it requires 320 moves. As a result, the probability to retain all

300 atoms in the rearrangement protocol increases roughly from 0.1% to 10% when going from

P = 50% to P = 80%, assuming a 420 second atom lifetime [117], 1 ms per move, and a 99.3%

move fidelity [97].

We have now more thoroughly studied ΛGM on the 87Rb D1 5S1/2 − 5P1/2 transition. It

will be interesting to continue to explore a variety of other related cooling techniques in future

experiments. This could include transitions with narrower linewidths, such as the 5S1/2 → 6P1/2

transition. It is also known that gray molasses is effective on the 5S1/2 − 5P3/2 transition [113],

and future studies could compare the salient molecular physics in each manifold [118], especially

considering details of the molecular potentials which we explore in Chapter 5. Further, there is

much room for explorations of the interplay of collisions and cooling in microtraps for a host of blue-

detuned cooling mechanisms with alkali atoms, other atomic species, and even molecules [119, 110].
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In general we find that these loading studies are full of rich dynamics and unexplained be-

havior. It is both interesting from a physical perspective and important for practical applications,

so we anticipate conducting future research on this topic in order to more fully understand the

complicated multi-particle dynamics of these loading configurations.



Chapter 5

Molecular Potentials for Ultra-Long Range 87Rb Dimers

5.1 Introduction

In this chapter, we present early work on the calculation of long-range molecular potentials

for a pair of 87Rb atoms in the regime of interest for our recent recent work involving light-assisted

collisions between atoms in optical tweezers which are used, among other purposes, to load single

atoms into optical tweezers. Compared to common photo-association experiments, these collisions

are uniquely very long range (& 10 nm), and sensitive to low-energy scales on the scale of the trap

depth (∼ 20 MHz) and ultracold collisional energies (∼ 200 kHz). As such, while in general the

theory of ultracold photoassociation is well established, especially in the context of photoassociation

experiments, feschbach resonances, and Rydberg interactions, there remain many questions about

our unique regime that are yet to be studied [120, 121, 122, 123, 124, 118].

The potentials calculated include asymptotic Born-Oppenheimer (BO) interactions, fine

structure (FS) and hyperfine structure (HFS) interactions. While related potentials and calcu-

lations appear in the literature, there is relatively little explicit discussion of how to properly

symmetrize all the interactions and calculate in these potentials [125, 126]. Doing this requires

assimilating literature over a very broad range of historical times and notational standards. Speak-

ing personally, as a humble experimentalist this was a uniquely challenging endeavor. It should

be understood that developing thorough understanding of these calculations is a very subtle task.

This chapter of my thesis should be understood as my best effort to explain these calculations but

that there are numerous aspects of the molecular physics here which still elude me, and there is
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still much work that to expand upon. However, we still think it is useful to summarize my notes

here for future work and for others who may find potentials such as these useful. We find that

having explicit calculations of the potentials has significantly refined our picture of how the colli-

sions result in loading processes, and yields plausible explanations for many phenomena observed

experimentally.

Most of the work in our lab is with individual 87Rb atoms, or with many weakly-interacting

87Rb atoms in their electronic ground-states. Ground state atom-atom interactions can be approx-

imated as S-wave collisions that are parameterized by a single constant: the scattering length [127].

For 87Rb this is asc ≈ 97a0 where a0 is the Bohr radius, although the value varies by 1% depending

on the hyperfine states of the interacting atoms [127].

In the case of loading single atoms into a tweezer using light-assisted collisions, collisions

are additionally complicated as a result of the interaction of the atoms with the collisional light.

Several other groups have previously made progress with relevant characterizations of single-atom

loading and light-assisted collisions [29, 128, 47]. To first order, this technique, which utilizes molec-

ular potentials which are blue-detuned from the separated-atom resonances, can be understood as

involving optical shielding effects which have been observed and studied in a number of other con-

texts [129, 130, 131]. In this case, atoms are excited by the loading light into an “S+P” molecular

potential, where the valence electron of one atom is in the ground state l = 0 “S” potential, where

l is the orbital angular momentum quantum number, and the other is in the excited l = 1 “P”

potential. This generally results in a significant amount of heating of pairs of atoms, causing pairs

of atoms to be lost from the tweezer. The actual dynamics of the loading procedure are presumably

then very dependent on the details of the molecular structure of the atoms. We became especially

interested in this subject matter upon discovering our gray-molasses-based loading technique, and

subsequently began to study these structures in greater detail in order to elucidate the exact mech-

anisms of the loading technique and hopefully to be able to predict and improve loading rates [63].

Starting in the spring of 2020, I began constructing these calculations with the help of regular

discussions with Jose D’Incao and some helpful notes from Paul Julienne [132].
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While 87Rb is a “simple” alkali atom, accurately calculating the molecular potentials experi-

enced by two such atoms is technically rather challenging. Despite the prevalance of 87Rb studies

in the literature, these calculations are not generally available in the region of interest for the ex-

periment. Most previous studies originate from photoassociation spectroscopy work and deal with

energy scales many orders of magnitude larger than those of interest to us. As a result, most of

the calculations in the field don’t go so far as to include the hyperfine interactions, for instance.

However, several photoassociation review articles[120, 118] are still especially useful here. Several

books are also useful references, especially for some of the theory regarding the symmetries in

molecules [133, 134].

5.2 Problem Statement

It is easy to get lost in the results of these calculations, and lose track of exactly what purpose

they serve and how they should be interpreted. As such, we start with a pedagogical explanation

of our problem, the BO approximation which is essential to our approach, our methods, and how

the results should be interpreted.

In general we are interested in characterizing the way in which two atoms collide with each

other. In particular, for single-atom loading processes, we are interested in characterizing the

amount of energy that the pair of atoms might gain in a collision, and what influences these

energies. As such, the approach is to write down the full Hamiltonian of the system and use it to

derive eigenstates, eigenenergies, and analyze scattering processes. This is challenging, however,

since the Hamiltonian representing the interaction of two neutral atoms consists of the interactions

between two nuclei and two electrons, and generally more considering the complicated electron-

electron interactions between heavy atoms that are very relevant at short distances. As such, a

simplification should be made, and the standard approach is the use of the BO approximation.

Anticipating this, in the center-of-mass frame, we can write down our Hamiltonian in a

suggestive manner:
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H = TR +HEE(R, e⃗) (5.1)

Where R is the internuclear distance, TR = −(~2/2µ)∂2/∂R2 is the relevant kinetic energy

operator with µ the reduced nuclear mass, and HEE(R, e⃗) includes “everything else” in the Hamil-

tonian, including electron kinetic energy operators, electron-electron interactions, electron-nucleus

interactions, and any other corrections one wishes to include. e⃗ represents all other coordinates,

such as electron coordinates, that would be needed to describe the Hamiltonian.

The Hamiltonian has no explicit time-dependence, so we are quickly dealing with the time-

independent Schrodinger’s equation. What we’d like to do, is to use the separability ansatz

that ψ(R, e⃗) = ψR(R)ψ∗e(e⃗), but one quickly arrives at a problem: E − TRψR(R)/ψR(R) =

HEE(R, e⃗)ψ∗e(e⃗)/ψ∗e(e⃗). At this point, continuing with standard separation of variables strate-

gies, we would normally declare that each side is a function of different variables and therefore

that in order to be equal, they must both be constant. This strategy however pales in face of the

R-dependence of the ĤEE . Therefore, we now introduce the BO approximation, that R and the

center of mass kinetic energy are effectively constant, and that the problem is effectively separable

and can be stated as solving the pair of equations:

HEE(R, E⃗)ψe(R, e⃗) = VEE(R)ψe(R, e⃗) (5.2)

EψR(R) = [TR + VEE(R)]ψR(R) (5.3)

Where we have reluctantly re-introduced the R-dependence back into ψe (and removed the

asterisk). This approximation greatly simplifies the analysis. This assumption can also be stated

as the assumption that the nuclear motion is very slow compared to all other dynamics in the

system. This should generally be true, as any nucleus is many orders of magnitude heavier than it’s

electrons. This assumption might not hold for sufficiently high energy collisions, but the collisions

we are interested in are especially cold, so we can make the assumption with some comfort.

Our problem then, can be stated as calculating VEE(R), the eigenvalues of HEE(R). Since
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each eigenvalue can be expected to have a dependence on R, the result which we will show are then

a set of R dependent potential energy curves. For a given curve, we would then get a standard

one-dimensional Schrodinger’s equation for the nuclear separation wavefunction, which could be

solved or analyzed to determine the positions of bound-states, scattering amplitudes, and other

metrics of interest.

In this paper, we will primarily work with the Hamiltonian

HEE(R) = HBO(R) +HFS +HHFS (5.4)

where HBO is the long internuclear distance asymptotic order Born-Oppenheimer Hamilto-

nian, HFS is the fine structure Hamiltonian, and HHFS is the hyperfine structure (HFS) Hamil-

tonian. The rotational Hamiltonian HR = L̂2
R/2mµR

2 where mµ is the reduced mass, could be

included as well, but as discussed in Sec. 5.8, we believe a great amount of insight can be gained

without including the rotational couplings. We still cover some of the considerations for including

rotation in Sec. 5.9 and Sec. 5.10. In general, the Born-Oppenheimer Hamiltonian includes all of

the Coulomb interactions between particles in the system among other terms, and are a function

of all of the other coordinates in the system as well. In this case, since we are only interested in

the long-range behavior of S+P molecules, we take only the asymptotic longest-range terms from

it which are dipole-dipole interactions for these molecules and which are only a function of R.

The different sub-Hamiltonians in HEE are easily stated in the bases in which they are

diagonal. However, the challenge here is that these are different bases, and none of these individual

bases will have good symmetry properties for the total Hamiltonian. We must therefore carefully

study the symmetry properties of each Hamiltonian in order to construct a final basis which has

good symmetry, and then relate the bases relevant for the above Hamiltonian to our final basis.

5.3 Definitions, Notation, and Key Relations

Now, we must introduce some complicated notation for describing the molecular states. In

general, for work such as this, it’s a good idea to reference textbooks dedicated to angular momen-
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tum algebra. There are many options, several that I’ve used are cited here [135, 136].

In the single-atom case we had 5 important angular momenta that are generally considered:

l̂a, ŝa, îa, ĵa, and f̂a. Now, we have at least all of these angular momenta for both atoms, plus the

molecule’s rotational angular momentum, and many more combinations thereof. I report all the

angular momenta in Table 5.1.

I am following several patterns in the definitions of angular momentum in this chapter, which

will hopefully make it easier to follow. Single particle angular momentum, such as la and fb, are

referred to with lower case labels and a subscript of “a” or “b”. Multi-particle angular momentum

such as J = ja + jb are referred to using upper case labels. In the previous chapters we refer to the

total single atom angular momenta as F in order to remain consistent with our previous work and

Angular momentum projections of angular momentum along a space-fixed axis are referred

to using the common mX notation, where X can be replaced with any angular momentum op-

erator. Projections along specifically the internuclear axis are referred to using Greek letters

(Λ, λα,Σ, σα,Ω, ωα,Φ, ϕα, I, ια) that still follow the capitalization scheme used for operators. The

rotational angular momentum and total angular momentum including rotation are referred to using

special symbols N , and LJR or LFR depending on whether HFS is included. Note that in some

references, J and F are used for the total angular momentum including rotation, while j and f

are the total angular momentums excluding rotation. Hopefully the Table 5.1 helps clarify any

confusion on this.

There are a couple pattern breakings, including the fact that capital “Iota” is typically

identical to the letter “I”, and so instead we use I in place of the capital “Iota” symbol. Note as

well that the symbols for the projections of various on the angular momentum (Λ,Σ,Ω) are not to

be confused with the labels of different values of Λ (Λ = 0 gets labeled Σ, Λ = 1 gets labeled Π,

etc. when referring to specific BO potentials later in this chapter).

When a combined angular momentum, such as ja = la + sa, is a good quantum number for

a state, the constituent quantum numbers are also good. The question then arises as to which

quantum numbers are included in the state descriptions. When included, they will be included in
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parentheses near the relevant quantum number such as |LΛ(lalb)⟩. There are many cases in which

there is only one reasonable way to combine angular momentum, and in these cases the extra

angular momentum are omitted. As such, I will simply declare here:

|LΛ(lalb)⟩ ≡ |LΛ⟩

|SΣ(sasb)⟩ ≡ |SΣ⟩

|II(iaib)⟩ ≡ |II⟩

|jαωα(lαsα)⟩ ≡ |jαωα⟩

|fαϕα(jα(lαsα)iα)⟩ ≡ |fαϕα⟩

(5.5)

There are notable cases with two molecules where there is at least the potential for ambiguity.

These include J which can be and will be constructed either as |JΩ(jajb)⟩ or |JΩ(LS)⟩. Notably,

these are very different states, and in general ⟨JΩ(jajb)|JΩ(LS)⟩ ̸= 1. Similarly, for F , one will need

to construct states either through |FΦ(fafb)⟩ or |FΦ(JI)⟩ states. For these cases, the constituent

quantum numbers will always be included.

5.3.1 Angular Momentum Symbols

Clebsch-Gordon Symbols: While the Clebsch-Gordon symbols are typically taught at

the undergraduate physics level, a firm understanding of them is key for later discussions and there

are even some unique nuances to their use here. We consider for example that you have a system

with any two arbitrary angular momentum, j1 and j2. You might define a basis with well-defined

such angular momentum and projections, |j1mj1⟩|j2mj2⟩. However, suppose you have an interaction

that couples the two angular momentum, an interaction with significant j1 ·j2 content. Then, states

of the form |j1mj1⟩|j2mj2⟩ are not eigenstates fo this interaction, and so these generally stop being

good quantum numbers. However, the eigenstates of the total momentum operator, j := j1+j2, are

eigenvalues of the above interaction, and so we can expect all of |jmj(j1j2)⟩ to be good quantum

numbers. Here, as elsewhere, I use the parenthesis to group together j1 and j2 in order to indicate
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that j is composed of these two angular momentum. In other words, while the individual projections

of individual spins are no longer conserved, the projection of the total spin is still conserved, as

is the total angular momentum. It is important to note that the individual spins j1 and j2 are

still conserved for every hamiltonian we deal with in this chapter, although these extra quantum

numbers are often dropped as it is typically obvious from the context what they should be (e.g.

for two electrons with total spin S, these sub-momenta would be the individual electron spins).

However I will tend to be very explicit here as there are so many to keep track of and occasionally

these details are important. As a result, depending on the presence of interaction terms, we will

need to perform basis transformations between these two bases, and to do those we need the matrix

elements ⟨jmj(j1j2)|j1mj1j2mj2⟩ := C
jmjj1j2
j1mj1

j2mj2
. These constants are known as the Clebsch-Gordon

symbols. Note again that while this ’C’ symbol is common, the extra angular momentum in the

superscript are often omitted for brevity. It is useful to note that one can consider symbols where the

values of j1 and j2 don’t match, but they are zero: ⟨jmjj3j4|j1mj1j2mj2⟩ = δj1,j3δj2,j4C
jmjj1j2
j1mj1

j2mj2

for some extra potentially independent momentum j3 and j4. We can then write the decomposition:

|jmj(j1j2)⟩ =
∑

mj1
,mj2

C
jmj(j1j2)
j1mj1

j2mj2
|j1mj1⟩|j2mj2⟩ (5.6)

9j Symbols There exist in general what are called “3j” and “6j” symbols, which are used

to describe the coupling of 2 and 3 angular momentum, but most useful in this chapter are the “9j”

symbols [135, 136]. In general, suppose you have 4 angular momentum ji for i ∈ (1, 2, 3, 4). Then,

denote ĵij = ĵi + ĵj , and j1234 ≡ j∗ for brevity. There is a common matrix element to consider

between the coupling of these four angular momentum:

⟨j∗mj∗(j12j34)|j∗mj∗(j13j24)⟩ ≡
√
j̆12j̆34j̆13j̆24


j1 j2 j12

j3 j4 j34

j13 j24 j∗


(5.7)

The matrix element almost looks like a Clebsch-Gordon symbol, but is dramatically more

complex. We use here a common abbreviation x̆ = 2x + 1 for any angular momentum quantum
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number x. The symbol is called a “breve” symbol, and this is only to shorten long equations we will

see later. The big matrix-looking term in curly brackets is not a matrix, but rather the 9j symbol.

The 9j symbol should be thought of as a function of 9 arguments which is only defined non-zero for

physically sensible angular momentum numbers. The matrix element ⟨j∗mj∗(j12j34)|j∗mj∗(j13j24)⟩

can also be written as an appropriate sum of Clebsch-Gordon coefficients.

5.4 Born-Oppenheimer Interactions

5.4.1 Introduction

In general, the problem of finding eigenenergies and eigenstates of a neutral dimer molecule

involves at least four particles, two electrons and two nuclei, each of which generally has both

a motional wavefunction and a spin wavefunction. The BO approximation (Sec. 5.2), the most

common approximation in molecular physics, is the approximation that the relative nuclear spatial

wavefunctions are separable from the rest of the system’s wavefunction. In this approximation, the

rest of the Hamiltonian is diagonalized with a constant value of R in order to get the potential

energies of the different possible collisional states at the internuclear distances R. This procedure

can be done at a variety of values of R in order to turn these eigenenergies into energy curves

V (R) which tell you what the potential energy of the system is at a particular internuclear distance

R. Then, these potential energy curves could be plugged back into Schrodinger’s equation with

the nuclear kinetic energy operator in order to find vibrational and rotational eigenstates of the

molecule, do scattering analysis, and other procedures. In this chapter, we focus only on calculating

the asymptotic potential energy curves and understanding the associated symmetries and other

physics behind them.

In order to start our analysis, it is essential to identify the relevant quantum numbers of

the states we are dealing with. Just as the relevant quantum numbers determine, for example, FS

interaction energy offsets, the quantum numbers for BO states will determine BO energies. Here,

we will start by identifying the symmetries and quantum numbers relevant when considering only
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the Born Oppenheimer potentials, and disregarding FS, HFS, and rotation. In the coming sections,

we will carefully discuss how the new interactions break previous symmetries and introduce new

symmetries. A thorough understanding of these symmetries is both key for calculating the results

as well as interpreting the resulting curves. Although these symmetries have been discussed at

length over many years, it is difficult to find text with the symmetries of all of the interactions we

will consider all discussed in the context of each other, so here we will do a thorough review.

Consider two alkali atoms that are very far separated, such that they are without any BO

interactions at all. For a hydrogen-like single atom, the potential is spherically symmetric, leading

to the nice spherical harmonics as solutions to the angular part of the equation. As such, there is

a good basis to describe the electronic states of this system, namely the separated atom basis:

|nalamla ;nblbmlb⟩ = |nalamla⟩|nblbmlb⟩ (5.8)

n, l, and ml are the principle quantum number, orbital angular momentum quantum number, and

orbital angular momentum projection quantum number respectively. The subscripts a and b here

refer to which nuclear center the quantum numbers belong to, as they will for the rest of this paper.

When we wish to refer to an arbitrary single nuclear center, we will use α. Here, the quantum

number mlα points along an arbitrary (so called “space-fixed”) axis. As we build up our set of

quantum numbers and notation for these problems, we refer the reader to Table 5.1 where we have

compiled all the quantum numbers for reference.

When the atoms are close enough to experience the non-radially symmetric BO interactions,

the spherical symmetry is broken. In general, as we get closer, eigenfunctions of the new interacting

Hamiltonian will be complex superpositions of states different of different n, l, and ml, making these

no longer good quantum numbers. We can consider a total angular momentum L̂ = l̂a + l̂b, but for

the same reason this too is not a good quantum number. It is important to realize an important

nuance here though. While the B.O. solutions themselves do not have good values of la and lb, they

asymptotically connect to the separated atom states which do. Because we are only working with

the asymptotic order B.O. interactions, the states we are working with oftentimes will be assumed
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to have good la and lb quantum numbers, and it takes care to realize when it is appropriate to

introduce these.

5.4.2 Λ Symmetry

While the molecular system is not spherically symmetric, it is instead cylindrically symmetric

about the internuclear axis. Therefore, if we pick our angular momentum’s quantization axis along

the internuclear axis, the BO interactions will not mix states of different total angular momentum

projections along this axis. We call the projection of L̂ = l̂a+l̂b, the total orbital angular momentum,

on the internuclear axis “Λ”. We can refer to the projections of the single angular momentum lα

(when relevant) along this specific axis λα, although these individual projections are not good

quantum numbers of BO eigenstates. It turns out as well, that unlike in the single atom case

where states of different mla were all degenerate without an external electric or magnetic field,

Born Oppenheimer states with different magnitudes of Λ, i.e. different values of |Λ|, are not

degenerate. Therefore, states are typically represented by their value of |Λ|, and indeed sometimes

in the literature the absolute value is dropped and understood to be implicit. We will discuss the

labels used for these states below.

5.4.3 Spin Symmetry

The BO potential includes primarily electrostatic interactions and does not include electronic

spin-dependent interactions. Therefore the total spin states Ŝ = ŝ1 + ŝ2 of the molecule are not

mixed, and S is a second good quantum number for B.O. states. Furthermore, different spin

states (singlet vs triplet) will have different energies due to the impact the spin state has on the

symmetrization of the electronic wavefunction. The spin S’s projection along the internuclear axis,

called Σ, is also unbroken by BO interactions, but states with the same S and different Σ are

degenerate until we introduce fine structure interactions in the next section.
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5.4.4 ÎBO Inversion Symmetry

For homonuclear molecules, the system is also symmetric on the inversion of all electron

coordinates through the center of charge of the molecule. For homonuclear systems this is also the

center of mass of the molecule. We label the operator which does this inversion ÎBO, and give its

eigenvalues the symbol IBO = ±1. The states of positive parity with IBO = 1 are typically called

“gerade” states (g), and states with negative parity “ungerade” (u). Oftentimes in the literature

the symbol used for its eigenvalues is given as σ = 0, 1, and then when this symmetry impacts

a phase somewhere terms are multiplied by (−1)σ instead of just IBO. This notation could be

confused with the spin projection quantum numbers, so we instead insist on using IBO.

5.4.5 κ̂BO Kronig Symmetry

Lastly, states can also be eigenstates of the operator that flips the wavefunction about a plane

containing the internuclear axis. This is sometimes called a “Kronig” symmetry. We therefore

call the operator that does this flip κ̂BO, and since it is a parity operator it has eigenvalues again

κBO = ±1. In general, I recommend carefully considering the states at hand before considering

the operation of this Kronig symmetry, as there are numerous subtleties in the action of κBO on

a given state. For example, in the long-distance limit discussed here, the result can be derived by

analyzing the single-atom basis states that the B.O. molecular states dissociate to. For a longer

discussion, we reference [134]. For the work in this paper, the following rule suffices:

κ̂BO|LΛ⟩ = (−1)−Λ|L,−Λ⟩ (5.9)

Thus states of Λ = 0 (which are called Σ states, not to be confused with Σ as the projection

of S on the internuclear axis) have positive parity. Note that states with |Λ| = 1 (which are called

Π states) at the BO level do not have well defined parity as they are usually defined, but one can

construct states of good κ̂BO parity using various Π states, for example |LΛ⟩±(−1)−Λ|L,−Λ⟩ [120].

As the B.O. hamiltonian does not contain spin-dependent interactions, we need not consider the
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action of operators like this on the spin of the state yet.

This symmetry is slightly surprising from an atomic physics perspective since states from our

normal hydrogen atom basis |nalamla⟩ are not eigenstates of this operator. However, if one wished,

one could easily use a different basis for the Hydogen atom which respected this symmetry, as e.g.

the superpositions (using |nalamla⟩ notation) |111⟩ ± |11,−1⟩ are eigenstates of this operator.

It is not hard to see from this discussion that there is some ambiguity in the definition of

κ̂BO, in particular by choosing a different plane to invert through one can reverse the phase of these

states [133]. We use the typical phase standard which was set by Condon and Shortley [137].

5.4.6 Born-Oppenheimer Symmetry Labels

With these three main good quantum numbers, BO eigenstates typically get labeled by the

following symbols: 2S+1ΛκBO
g/u . For example, for alkali atoms the ground S+S states split into only

two states: 3Σ+
g and 1Σ+

u . In fact, it is a common exercise to do a simple BO calculation for the

H2 molecule. It is much more complicated to do excited state calculations as the excited S + P

states split into 3Σ+
g , 3Σ+

u , 1Σ+
g , 1Σ+

u , 3Πg, 3Πu, 1Πg, and 1Πu. Note that as mentioned prior the

Π states are not simultaneous eigenfunctions of κ̂BO and thus have no ± superscript. For more

on these calculations, see e.g. [138]. These states can also be labeled in ket form with a more full

set of quantum numbers |LΛIBOκBOS⟩ (with la, lb, sa, and sb implicitly good quantum numbers as

well). We will introduce the nuclear spin later. In the asymptotic limit one could add la and lb to

this ket. More quantum numbers which are degenerate at this level but important later could also

be added, such as the single-atom electron and nuclear spins sα, iα, and the various projections of

these and their combined angular momenta on the internuclear axis. The correct way to construct

the bases for future calculations which require identifying these quantum numbers will be discussed

in Sec. 5.5.5.
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5.4.7 Resonant Dipole Born-Oppenheimer Interactions

BO states always have good values of S, |Λ|, IBO, κBO. At close distances, they do not have

good L values. In order to evaluate fine structure corrections at all distances it is necessary to

properly relate the BO eigenstates to the separated atom basis, which would require e.g. being

able to identify BO states in terms of a superposition of atomic states with different orbital angular

momentum. However, all BO states dissociate to states with good L at long distances. Since we

are only interested in the long-distance limit of the BO states, our BO bases will always have good

L, and more specifically L = 1, simplifying this calculation greatly. Since for homonuclear atoms

the asymptotic order BO interaction is the resonant dipole-dipole interaction, BO eigenstates are

superpositions of single-atom excitation states of the form:

|ΛIBOκBOS⟩ → |L = la,Λ = λa, IBOκBO⟩|SΣ⟩

= (|00laλa⟩+ p|laλa00⟩)|SΣ⟩/
√
2

(5.10)

where the kets in the latter equality are of the form |laλalbλb⟩ = |laλa00⟩ for example. p

should be chosen to make the entire wavefunction of the two electrons antisymmetric with respect

to particle exchange. In the case that la = lb for potentials which are not “S+P” in nature, or for

heteronuclear molecules, we can take p = 0. The other parts of the wavefunction that factor into

this are the spin part and the spatial part, so we can therefore relate p to the total spin and spatial

inversion quantum number of the state:

p = (−1)SIBO (5.11)

This relation ensures that the wavefunction of the two electrons antisymmetric with respect

to particle exchange. This parity quantum number is an alternative representation of the other

quantum numbers used. It is evidently convenient here, but in general we will continue using IBO

and S for stylistic continuity with other resources.

With the symmetries of the BO potentials established, we can move on to considering the
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magnitudes of these potentials and how to include them in our eventual calculation. The BO

potentials are extremely deep compared to the energy scales we are interested in. The magnitudes

of these potentials are on the order of the energy spacing between different angular momentum

quantum numbers, so e.g. on the order of the D1 and D2 lines for alkali earths, or hundreds of

THz. As well, the length scale at which these full calculations are important is the length at which

the overlap of the atomic electron wavefunctions about the two nuclei is significant, or typically

< 1 nm.

In general, calculating these curves exactly is quite complex. For our purposes, however,

we are interested in low-energy, very long range interactions, and so it suffices to take only the

asymptotic terms from the BO potentials, which can be approximated as being of the form Cx/R
x

for various values of x. The coefficients Cx are known as “dispersion coefficients”. For the case

of a homonuclear S + P dipole, the asymptotic order interactions are well-known to be 1/R3

resonant dipole-dipole interactions. These can be thought of as arising from a combination of

exchange symmetrization requirements and the resonant exchange of the single excitation between

the two atoms. The exact values can be calculated through relatively involved perturbation theory

calculations where the perturbation is the Coulomb interactions between atoms far apart from each

other [139]. The result to first order in perturbation theory is

V = − 1

R2le+1

(−1)le+mle+1[(−1)le+S
IBO]

2le + 1

(
2le

le +mle

)
×⟨nele|rle |ng0⟩2

(5.12)

For excited states with quantum numbers ne, le,mle and ground state quantum numbers

ng, lg = 0,mg = 0, and excited state electron cooredinate r. The term in parenthesis is a binomial

coefficient. The equation is valid for states with le ≥ 1. The first order perturbation theory to

S + S atoms with le = 0 is zero, and one must go to second order perturbation theory to get the

leading contribution, which turns out to be 1/R6 as one might have guessed.

Note that these calculations are independent of which nuclear center is excited and so we use
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the “e” subscript to reflect the excited quantum number, deviating from our “a/b” notation.

One can see in Eqn. 5.12 that for S + P molecules the asymptotically go as 1/R3, and that

because of the dipole matrix element ⟨nele|rle |ng0⟩ the coefficient will only be non-zero for states

that are connected by electric dipole transitions. This calculation does not include fine or HFS in

the states involved, but a straightforward generalization would presumably show the same thing,

which will become important later. Similarly, the asymptotic potentials for S +D molecules with

le = 2 are driven by electric quadrupole 1/R5 interactions.

The fact that the form of the dispersion coefficients for S+P potentials is relatively simple

leads it to commonly be described in terms of only a few parameters for the different BO states:

V3Σ+
g ,1Σ+

g
= −2C3

R3
+
C6

R6
+O(R−8)

V1Σ+
g ,3Σ+

u
=

2C3

R3
+
C6

R6
+O(R−8)

V3Πg ,1Πu
=
C3

R3
+
C6

R6
+O(R−8)

V1Πg ,3Πu
= −C3

R3
+
C6

R6
+O(R−8)

(5.13)

In general these constants, C3 and others, and those higher order corrections have been

measured or calculated (especially for common atoms like alkali metals) and can be looked up (for

example, [139] is a great reference here). These are the energies which I will plug into HBO.

5.5 Fine Structure Interactions

The inclusion of FS interactions was originally done by Movre and Pischler [140], and so the

resulting potentials are sometimes called Movre-Pischler potentials. The FS interactions turned

out to be quite important historically as they predicted the presence of the relatively long-range

0−g and 1u bound states in alkali atoms. These states which are relatively long range and loosely

bound compared to BO molecules, but still experimentally detectable [141]. [142] is a useful good

reference for this calculation.

The atomic fine structure interaction for atom a is given by AFS(l̂a · ŝa) where AFS is a
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typically experimentally determined constant. This energy tends to become important at large

distances where the electron wavefunction overlap becomes small. This is the regime where the two

atom’s wavefunctions overlap very little and therefore need not consider corrections such sa · lb or

la · lb. Therefore, here we consider the total FS Hamiltonian is

HFS = AFS(l̂a · ŝa + l̂b · ŝb) (5.14)

Generally the fine structure interaction will result in a spatially varying mixing of the BO

states, with the mixing being relatively weaker at short distances where the terms from the BO

interactions dominate, then becoming stronger and eventually becoming the normal single-atom

mixed states in the long distance limit. The basis in which this Hamiltonian is diagonal is the

separated atom basis with coupled lα and sα:

|jaωa; jbωb⟩ = |jaωa⟩|jaωa⟩ (5.15)

with ĵα = l̂α + ŝα and ωα = λα + σα, which satisfies

HFS|jaωa; jbωb⟩ =

AFS
∑

α∈(a,b)

(
jα(jα + 1)− lα(lα + 1)− sα(sα + 1)

)
|jaωajbωb⟩

(5.16)

Where we recall that states with good jα also have good lα and sα, but that we need not

consider the nuclear spin iα yet. To calculate the fine structure interaction matrix elements, one

must convert each two-atom BO state to the appropriate sum of single-atom fine structure states.

5.5.1 Ω Symmetry

Similar to L and lα, J and jα, (with Ĵ = ĵa + ĵb) will not be good quantum numbers due

to the HBO interactions, but the projection of J on the internuclear axis, which is called “Ω” will

be. The FS operator won’t mix states of different Ω. Thus the total matrix will be block-diagonal

in these states. Specifically, similar to |Λ|, with only FS interactions, states of different Ω but the

same |Ω| are degenerate, and so typically only positive values are reported.
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5.5.2 ÎFS Inversion Symmetry

Despite adding the electron spin into the total Hamiltonian, the problem’s two nuclei are

still identical at this stage, and so the Hamiltonian and therefore the eigenfunctions still respect

the IBO symmetry. In other words, IBO is still a good quantum number, g and u are still good

symmetry labels, and ÎBO = ÎFS.

5.5.3 κ̂FS Kronig Symmetry

It is not hard to see that the Kronig symmetry κ̂BO as defined in Eqn. 5.9 does not commute

with l̂α · ŝα terms in HFS, but that we can define a similar operator κ̂FS which flips the spin operator

as well which does commute with this term. In this case:y

κFS|LΛSΣ;Ω⟩ = (−1)L−Λ+S−Σ|L,−Λ, S,−Σ,−Ω⟩ (5.17)

Similar to before, the phase here is tricky and has some amount of arbitrariness to it. Note

that κFS is not explicitly related to κBO. As well only states with Ω = 0 have well-defined non-

degenerate κ̂FS symmetries, but the κ̂FS symmetries will be important for constructing states of

κ̂HFS symmetry in the next sections [120].

5.5.4 Fine Structure Symmetry Labels

As such, these states are typically labeled by symbols of the form ΩκFS
IFS

, where IFS values are

usually replaced by “g/u” for IFS = ±1 respectively, although I will typically still use ±1 inside

bra/ket symbols. For example, 87Rb S+P molecules support 8 different state symmetries at this

level: 0+g , 0
+
u , 0

−
g , 0

−
u , 1g, 1u, 2g, and 2u.

5.5.5 Fine Structure Basis

We aim to construct states with good Ω, IFS, and κFS quantum numbers. The first task here

is to determine how to compose states of these good quantum numbers out of BO states, which
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don’t have a well defined Σ or Ω. If you recall, the BO eigenstates have good ΛSIBO and κBO

quantum numbers, and have good L, la, and lb only in the long-distance limit. Only by correctly

constructing the new basis can we successfully add the BO energies to the FS energies. The

degeneracy responsible for this disconnect is the Σ quantum number. By enumerating the states

of different Σ, we can expand our BO basis and construct states of good BO and FS symmetry

out of the expanded basis. However, it is not enough to merely add the different Σ states to the

BO basis, as states of good Σ do not generally have good κFS. Instead we can iterate through the

new values of Σ, but construct the new states with good κFS instead. This can be achieved with

something like the following lines of pseudo-code:

for state in BO_Basis:

for Sigma in [-state['S'], ..., state['S']]:

state['Omega'] = Sigma+state['|Lambda|']

if state['|Lambda|'] != 0 and state['Omega']==0:

for kappa_FS in [-1,1]:

newState['K_FS'] = kappa_FS

expandedBasis.append(newState)

else if Sigma>=0:

state['k_FS']=(-1)^(state['L']-state['|Lambda|']+state['S']-Sigma)

if newState not in BoFsBasis:

BoFsBasis.append(newState)

The ÎFS symmetry does not need to be handled explicitly here because this quantum number

is contained in the original BO basis states. After constructing this basis, we can construct sub-

bases by simply separating out states of particular |Ω|, κFS, and IFS. Each of the above states

as constructed is already an eigenstate of the BO Hamiltonian, so the only remaining step is the

conversion of FS eigenstates to this basis. The states here can then be separated into the relevant

sub-bases based on their |Ω|, κFS, and IFS quantum numbers and handled separately.
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5.5.6 HFS Transformation

The FS Hamiltonian is diagonal in the two-atom separated jα basis

|jaωa; jbωb⟩ (5.18)

Therefore in order to add this asymptotic BO Hamiltonian, we must do a frame transforma-

tion based on the following matrix elements:

⟨|Ω|, L|Λ|;S|Σ|IBOIFSκBOκFS|jaωa; jbωb⟩ (5.19)

We will do the frame transformation in three steps. This can be viewed as first transforming

from the good FS basis to the uncoupled two-atom l-s basis, followed by transforming into the BO

basis with good Σ values, followed by transforming into the BO basis with good |Ω| and κFS:

⟨|Ω|, L|Λ|;S|Σ|; IBOκBOκFS|jaωa; jbωb⟩ =

⟨|Ω|, L|Λ|;S|Σ|IBOκBOκFS|ΩLΛ;SΣ⟩

×⟨ΩLΛ;SΣ|laλasaσa; lbλbsbσb⟩

×⟨laλasaσa; lbλbsbσb|jaωa; jbωb⟩

(5.20)

Or more specifically one will want to do this transformation for each of the sub-bases discussed

in the Sec. 5.5.4. The first element deals with complications from the κFS symmetry.

⟨|Ω|, L|Λ|;S|Σ|; IBOκBOκFS|ΩLΛ;SΣ⟩ = κFS (5.21)

for states with negative Ω and 1 for states with positive Ω, by convention. To be clear, it

is also required that the absolute values and signed angular momentum values on both sides are

consistent, this is not an accident of notation. For example the matrix element with |Λ| = 2 on the

left hand side and Λ = −1 on the right hand side would be zero. I could also express this with a lot
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of delta functions, but this would be tedious. This relationship can be understood by application

of the statement above about how κFS acts on states with the given quantum numbers.

Here is the second element:

⟨ΩLΛ;SΣ; |laλasaσa; lbλbsbσb⟩ = plaCLΛlalb
laλalbλb

CSΣsasb
saσasbσb

(5.22)

The last one is the easiest to deal with as it is only based on normal angular momentum

combination rules:

⟨laλasaσa; lbλbsbσb|jaωa; jbωb⟩ = Cjaωa

laλasaσa
Cjbωb
lbλbsbσb

(5.23)

I list the resulting total Hamiltonians HBO +HFS below. These can be viewed as the block-

diagonal components of the total Hamiltonian. The symbols to the left of the matrices indicate the

quantum numbers corresponding to the state. For example, it should be understood that the first

element of the first matrix is, in terms of the basis |0, 10; 10; 1,−11⟩, ⟨|(HBO+HFS)|0, 10; 10; 1,−11⟩.

While there are still a fair number of states here, before adding hyperfine structure it is still

reasonable to write this all down.
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0−g :

2S+1|Λ|κBO
IBO  3Σ+

g
C3
R3 − 2∆

3

√
2∆
3

3Πg

√
2∆
3 −2C3

R3 − ∆
3

0+g :

2S+1|Λ|κBO
IBO  1Σ+

g
C3
R3 − 2∆

3

√
2∆
3

3Πg

√
2∆
3

2C3
R3 − ∆

3

0−u :

 3Σ+
u −C3

R3 − 2∆
3 −

√
2∆
3

3Πu −
√
2∆
3 −2C3

R3 − ∆
3

0+u :

 1Σ+
u −C3

R3 − 2∆
3

√
2∆
3

3Πu

√
2∆
3 −2C3

R3 − ∆
3

1g :




3Σ+
g

C3
R3 − ∆

3 −∆
3

∆
3

1Π+
g −∆

3 −C3
R3 − ∆

3
∆
3

3Πg
∆
3

∆
3 −2C3

R3 − ∆
3

1u :




3Σ+
u −C3

R3 − ∆
3 −∆

3
∆
3

1Π+
u −∆

3
C3
R3 − ∆

3
∆
3

3Πu
∆
3

∆
3

2C3
R3 − ∆

3

2g :

[ ]
3Π+

g
C3
R3 2u :

[ ]
3Π+

u −C3
R3

(5.24)

Diagonalizing all of these matrices realizes at every position R yields the curves in Fig. 5.1.

This discussion may seem heavy-handed for the fine structure interactions where in the end

there are only 16 different states in 8 different symmetry classes, making the problem possible to

tackle “by hand” and without need for heavy systemization or rigor. However, the problem will

suddenly become much more complex when we add the HFS interactions, after which we will have

to keep track of 384 states.

5.6 Hyperfine Structure Interactions

Adding hyperfine coupling now breaks the ÎBO symmetry because the molecule is generally

not symmetric about the internuclear plane when the two nuclei can have different spins (an ex-

ception are the Φ = 5 states which both involve nuclear spins that are perfectly aligned with each

other and the electronic spins no matter which nuclear center holds the excitation). This leaves

only the total parity, the total angular momentum projection on the internuclear axis Φ, and the

symmetry about a plane that contains the internuclear axis for Φ = 0 states [125]. Notably, even at
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Figure 5.1: Molecular Potentials with Only Fine Structure Interactions. Note carefully
the different vertical an horizontal scales. Potentials are given different colors and line styles
according to their symmetry properties. a All molecular potentials at large energy scales and
relatively short distance scales. b Molecular states dissociating to the 5P3/2 + 5S1/2 atomic states,
at smaller energy scales and longer distance scales. Clearly visible are the 1u and 0+g long range
bound-state-supporting potentials predicted by this calculation. c Molecular states dissociating to
the 5P1/2 + 5S1/2 atomic states, at smaller energy scales and longer distance scales. d Molecular
states dissociating to the 5P3/2 + 5S1/2 atomic states at very small energies and distances relevant
for loading processes. The red lines, indicating the free-space hyperfine energies, are displayed
in order to give a visual indication of at what energy and distance scale we expect the hyperfine
potentials to start to become significant at.

these smaller energy scales, the asymptotic Born-Oppenheimer interactions are still the only thing

which is mixing the various single-atom eigenstates and making this problem interesting.

Evaluating the coupling constant is slightly more tricky than the fine structure constant

because there are more manifolds for the hyperfine constant whose splittings are generally very

different from one another. For example, in 87Rb, the ground state splitting is approximately 6.834

GHz, while the splitting of the D1 line is about 800 MHz. As such, to evaluate the hyperfine

coupling, I simply forced the diagonal elements of the hyperfine coupling matrix in the F basis to



111

match the experimental values. This includes explicitly plugging in the values for the 4 different

hyperfine manifolds on the D2 transition.

5.6.1 |Φ| Symmetry

Similar to previous interactions, we now must consider that the total angular momentum

is F̂ = f̂a + f̂b, which is not conserved due to the lack of spherical symmetry. However, that

again because of the cylindrical symmetry of the problem, the projection of F on the internuclear

axis, called Φ, is still conserved by all interactions in the problem. Again, until we add rotation,

magnetic fields, or other hamiltonians, the states with different-signed Φ values but the same |Φ|

are degenerate.

5.6.2 ÎHFS Inversion Symmetry

With the inclusion of the HFS interactions, the inversion symmetry becomes much more

complicated. Because the spins of the two nuclear centers in general have different states, the

problem is in general no longer symmetric under the exchange of only electron coordinates. We

can however define a new total inversion symmetry operator ÎHFS which exchanges the coordinates

of both of the electrons and both of the nuclear spins. As this is a parity operator, it again has

eigenvalues IHFS = ±1. Note that the inclusion of this symmetry is expected to make the eventual

calculation of selection rules more non-trivial, as the electromagnetic field primarily interacts with

the light electrons rather than the nucleus, and so is easier to define selection rules for states that

have good ÎBO or ÎFS symmetry.

5.6.3 κ̂HFS Kronig Symmetry

The HFS interaction has the character of a spatially-dependent îα · ĵα interaction. Our

previous Kronig symmetry operator κ̂FS does not commute with these interaction because it only

flips the electron spin and not the nuclear spin, and so we must again revise the operator to include

both a flip of the electrons spatial wavefunction about a plane, flipping the electron spin state, as
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well as the nuclear spin state. This is defined as κ̂HFS, and it more or less replaces κ̂FS.

5.6.4 Hyperfine Structure Symmetry Labels

As a result of the above considerations we label these stats of good symmetry with symbols

of the form |Φ|κHFS
IHFS

, where IHFS values are now “+/-” for IHFS = ±1 (no longer “g/u”). There are

14 different non-degenerate 87Rb S+P molecular state symmetries at this level:

|Φ|κHFS
IHFS

∈ {0++, 0+−, 0−+, 0−−, 1+, 1−, 2+, 2−, 3+, 3−, 4+, 4−, 5+, 5−} (5.25)

5.6.5 Hyperfine Structure Basis

With the symmetry properties of the different Hamiltonians established, we can now identify

a basis of good symmetry for the total Hamiltonian and begin the process of transforming our

individual Hamiltonians into this basis. In this section we will do this as discussed above without

yet including rotation. Notably, this basis reduces to the FS basis described above if one sets

ia = ib = 0. Adding rotation is rather significantly more complicated and will be discussed in

Sec. 5.10. Eigenstates of the new total Hamiltonian again fall into two categories. All states have

a good quantum number Φ, the projection of F̂ = f̂a + f̂b on the intermolecular axis. States with

Φ = 0 also have good IHFS and κHFS quantum numbers, while states with Φ ̸= 0 only have a good

IHFS quantum number. In principle one could construct states of good κHFS with Φ ̸= 0 as well

but they are degenerate until we add rotation.

There are 384 total states but states with opposite sign Φ and identical other quantum

numbers are degenerate. So there are 230 states remaining to keep track of. We can expand

the Born-Oppenheimer with fine structure to include hyperfine structure with something like the

following pseudo code:
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for state in boFsBasis:

for I_ in [|i_a-i_b|, ..., i_a + i_b]:

for Iota in [-I_,..., I_]:

for Omega in [-state['|Omega|'], state['|Omega|']]:

state['Phi'] = Iota+Omega

if Omega != 0 and Phi == 0:

for k_HFS in [-1,1]:

state['k_HFS'] = k_HFS

if newState not in boHfsBasis:

boHfsBasis.append(newState)

else:

state['k_HFS'] = state['k_FS']*(-1)^(I_-Iota)

if newState not in boHfsBasis:

boHfsBasis.append(newState)

One can then construct the basis of good total symmetries out of these states after identifying

the total inversion symmetry of each state.

5.6.6 HFS Transformation

The FS basis is often referred to with only the quantum numbers relevant for the FS inter-

action, i.e. |jaωa⟩.

Here we are interested in the transformation

⟨|Φ||Ω|;L|Λ|;S|Σ|; I|I|IBOIHFSκBOκFSκHFS|jaωaiaιa; jbωbibιb⟩

This is more or less the same as the transformation given in Sec. 5.5.5 just with the extra

nuclear spin quantum numbers which must match, so I omit any further discussion of this here.
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5.6.7 HHFS Transformation

The HFS Hamiltonian is diagonal in the two-atom separated basis |faϕa; fbϕb⟩. And therefore

we must form the basis transformation between this and the expanded BO basis out of the following

matrix elements:

⟨|Φ||Ω|;L|Λ|;S|Σ|; I|I|IBOIHFSκBOκFSκHFS|faϕa; fbϕb⟩ (5.26)

We will do this frame transformation in three steps again. This can be viewed as first trans-

forming from the good HFS basis to the uncoupled two-atom l-s-i basis, followed by transforming

the l-s-i states into the BO basis with good Σ and I values, followed by finally transforming into

the BO basis with good |Σ|, |I| and κHFS:

⟨|Φ||Ω|;L|Λ|;S|Σ|; I|I|IBOIHFSκBOκFSκHFS|faϕa; fbϕb⟩ =∑
⟨|Φ|, |Ω|, L|Λ|;S|Σ|; I|I|IBOIHFSκBOκFSκHFS|ΦΩ;LΛ;SΣ; II⟩

×⟨ΦΩLΛ;SΣ; II|laλasaσaiaιa; lbλbsbσbibιb⟩

×⟨laλasaσaiaιa; lbλbsbσbibιb|faϕa; fbϕb⟩

(5.27)

The first element deals with complications from the κHFS symmetry. It turns out that with

the way I have constructed my bases, this is a little more complicated than before. In general, a

state with good |Φ| and κHFS is composed of the two states with equal and opposite Φ with a phase

determined by κHFS:

⟨|Ω|, L|Λ|;S|Σ|; I|I|IBOκBOκFS|ΩLΛSΣ; II⟩

= κFSκHFS(−1)I−|I|
(5.28)

For elements with negative Φ and 1 for elements with positive Φ. To be clear, it is also

required that the absolute values and angular momentum values on both sides match, this is not

an accident of notation. For example the matrix element with |Λ| = 2 on the left hand side and
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Λ = −1 on the right hand side would be zero. I could also express this with a lot of delta functions,

but this would be tedious. Note that both κ symbols are ±1 so overall this is just a phase. My

bases could likely be defined in such a way to make this a little bit more sensible, but this is the

way it works in my calculations.

The second element is relatively straightforward:

⟨ΦΩLΛ;SΣ; II|laλasaσa; lbλbsbσb⟩ =
∑

pla+S
IBOC

LΛlalb
laλalbλb

CSΣsasb
saσasbσb

CIIiaib
iaιaibιb

(5.29)

The last one is the easiest to deal with as it is only based on normal angular momentum

combination rules:

⟨laλasaσaiaιa; lbλbsbσbibιb|faϕa; fbϕb⟩ =∑
Cjaωa

laλasaσa
Cjbωb
lbλbsbσb

Cfaϕa

jaωaiaιa
Cfbϕb
jbωbibιb

(5.30)

Then, to evaluate the hyperfine coupling, we simply force the eigenvalues of the hyperfine

coupling matrix to match the experimental values.

It is notable especially in this case that completely calculating the above transformation

matrices may not be the most efficient way of doing the calculation, as even after subdividing the

basis into the block-diagonal symmetry classes, we are still working with relatively large bases which

makes calculating the full transformation matrices rather numerically taxing, especially considering

that one generally has to transform into the complete l-s-i basis for part of this transformation which

is large even for 87Rb. As a result, practically speaking I generally find that it is faster to simply

transform individual good symmetry states into the relevant basis for calculating energies one at a

time rather than constructing the entire matrix above.

5.7 Hyperfine Potentials Results and Discussion

The potentials including hyperfine interactions at a zoomed out level are visible in Fig. 5.2.

A number of potentials at a more zoomed in range are visible in Fig. 5.3. Note that all the
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states with Φ ̸= 0 are doubly degenerate corresponding to the positive and negative phi states.

The legends of the figures here report the value of Φ and the number of non-degenerate states in

parentheses. These potentials reveal a number of interesting features which are worth taking note

of. In order to analyze these in the context of the loading, we note that historically it has expected

that specifically the repulsive nature of blue-detuned molecular potentials has been thought to be

important for enhanced loading processes. Additionally, beyond the linewidth of the transition

which is approximately 6 MHz, the most important energy scale of the loading problem is the trap

depth. This is up to approximately 20 MHz, which is quite small on the scale of these potentials.

On the D1 f = 1, f ′ = 2 and D1 f = 2, f ′ = 2 transitions (Fig. 5.3(c,d)), which are the set

of excitations used for the loading which works well, there is a nice repulsive potential for nearly

every symmetry which is accessible on each transition. There are only a few exceptions such as

the highest Φ symmetry states available on each transition, which only have one attractive and

one repulsive potential available to split between the two inversion symmetry classes. Specifically,

the 3+ and 4− states on the f = 1 and f = 2 transitions respectively only have a single attractive

potential. But the relative plethora of repulsive states otherwise should make it relatively easy to

primarily excite to repulsive states.

On the D1 f = 1, f ′ = 1 and D1 f = 2, f ′ = 1 transitions (Fig. 5.3(e,f)), where Λ-enhanced

gray molasses is still possible but the loading of single atoms does not work as well, we see quite

different behavior. For many available symmetry classes, especially on the f = 1 transition, there

are no available repulsive transitions, or the repulsive transitions have only very shallow repulsive

bumps. As a result, we expect it to be relatively difficult to selectively excite to repulsive potentials

and control the amount of energy gained in a collision.

Lastly, on the D2 f = 1, f ′′ = 2 and D2 f = 2, f ′′ = 2 transitions where again Λ-enhanced

gray molasses is possible, (Fig. 5.3(a,b)), we see in general a less clear picture, especially on the

f = 2 transition. However, there are a number of avoided crossings at relatively large distances

which cause many repulsive potentials to again only have relatively shallow barriers, which we

expect to be important in the loading dynamics. It is therefore not so surprising that minimal
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enhanced loading is achieved in this configuration.

Figure 5.2: Molecular Potential curves calculated with hyperfine structure included.
Different line styles and colors indicate the different symmetries of the states. Legend symbols are
of the form |Φ|κHFS

IHFS
. Zoomed out figures at the scale of Fig. 5.1 are omitted as at those large energy

scales the HFS is not visible. (a) A relatively high-energy, short distance view of potentials that
dissociate to the free space D2 line. (b) A relatively low-energy, long-distance view of potentials
that dissociate to the free space D2 ground state f = 1 states. (c) Similar, but dissociating to
the free space D2 ground state f = 2 states. (d) A relatively high-energy view of potentials that
dissociate to the free space D1 line. (e) A relatively low-energy, long-distance view of potentials
that dissociate to the free space D1 ground state f = 1 states. (f) Similar, but dissociating to the
free space D1 ground state f = 2 states.

5.8 Discussion of Rotation Effects

The Hamiltonians above are diagonal in bases of non-rotating states, such that all nuclear

motion is along the inter-nuclear axis. These rotating states are eigenstates of the Hamiltonian

L̂2
R/2mµR

2 with eigenvalues ~2ℓ(ℓ + 1)/(2mµR), for inter-nuclear angular momentum L̂R and re-

duced mass mµ. Relating the eigenbasis of this rotation Hamiltonian to the stationary bases of the

other Hamiltonians is possible but non-trivial and beyond the scope of our present analysis, which

we believe captures most of the dynamics that we are interested in.
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Figure 5.3: Molecular Potentials with Hyperfine Interactions Zoomed-In. Zoomed in
views at the hyperfine dissociation limits of some of the potentials seen in Fig. 5.2(b,c,e,f). (a)
The states which dissociate to the large separated atom D2 f = 1, f ′′ = 2 manifold. (b) The states
which dissociate to the large separated atom D2 f = 2, f ′′ = 2 manifold. Near R = 40 nm, there
are a number of avoided crossings with potentials that eventually dissociate to the higher energy
f = 2, f ′′ = 3 manifold. (c) The states which dissociate to the separated atom D1 f = 1f ′ = 2
manifold. This set of states, combined with the states in (d), are where the enhanced loading
technique generally works the best. (d) The states which dissociate to the separated atom D1

f = 2f ′ = 2 manifold. (e) The states which dissociate to the separated atom D1 f = 1f ′ = 1
manifold. This manifold in particular is lacking in good repulsive states. (f) The states which
dissociate to the separated atom D1 f = 2f ′ = 1 manifold.
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The maximum rotational kinetic energy scale of the collision is set by considering a collision

between two atoms whose kinetic energy is just below twice the trap depth and is entirely rotational,

which would be approximately 40 MHz. This energy scale is well below the HFS splitting of 87Rb.

As a result, even in this statistically improbable limit, the rotational kinetic energy should not mix

states of good symmetry as described above very significantly.

Transitions between states with different rotational kinetic energy eigenvalues are limited by

an angular momentum selection rule ∆ℓ = ±1. Therefore, the first effects one might see if including

rotation become important when neighboring rotational states have differences in energy that are

larger than the linewidth of the transition. Otherwise, the extra rotational states simply slightly

broaden existing transitions. This occurs as atoms in optical tweezers are typically loaded after sub-

doppler free-space cooling, they have relatively little kinetic energy and can only populate relatively

low energy rotational kinetic energy states. For example, typical red-detuned polarization gradient

cooling and Λ-enhanced gray molasses techniques make atoms reach free-space temperatures of

approximately 10µK or approximately 200 kHz. In the most extreme case of a glancing collision,

this energy could be entirely rotational. Our analysis of the potentials without rotation indicate

that collisions should generally happen at distances greater than 25 nm. At this distance and with

these energies, the highest rotational state which might be reasonably populated would only have

ℓ = 1. At this distance the difference in energy between ℓ = 2 and ℓ = 1 states is 0.75MHz,

which is well below the 87Rb D1 transition linewidth of ∼ 6MHz. Therefore in the worst case,

the interaction between different rotational states would contribute only a small broadening of the

normal transition, which is a small enough effect to neglect in our case. At larger distances, it is

possible to populate higher rotational kinetic energy states, but the difference in energy between

states drops still.

At the more extreme energy scale, two atoms that are very hot inside an optical tweezer

might have a rotational kinetic energy as high as nearly twice the trap depth, or on the order of

40MHz, at which point a similar calculation gives a maximal energy splitting of approximately 30

MHz, which is noticeably above the linewidth of the transition. This means that at this extreme
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some collisions which have somewhat significantly higher centrifugal repulsive barriers. However,

since for these collisions all of the kinetic energy is rotational, little distance is traveled along the

inter-nuclear axis, and so little kinetic energy, other than from photon recoil, should be gained from

this type of collision.

5.9 Fine Structure and Rotation

Adding rotation to the problem complicates matters greatly. The original reference for this

derivation is [143]. Notably, this resource is more general than my notes here and includes extra

general quantum numbers to allow one to fully define the electronic configuration for more compli-

cated atoms than alkali atoms. If you’ve made it this far, this is where the calculation gets much

more difficult. Therefore I begin by omitting the HFS which will make the angular momentum

algebra significantly easier. The rotational Hamiltonian here is

HR =
L̂2
R

2mµR2
(5.31)

where R is again the distance between atomic nuclei. The operator has standard eigenvalues

~2ℓ(ℓ+1)/2mµR
2, where ℓ is the rotational excitation quantum number. HR doesn’t commute with

either HBO or HFS , so at this point we have three Hamiltonians in our main total Hamiltonian.

Depending on R and the rotational state, any of these Hamiltonians can dominate, and so different

quantum numbers are good, and different state bases are best to describe the states. The different

cases of which terms are strongest are called Hund’s cases in the literature, and there are five of

them labeled (a)-(e). A description of Hund’s cases is available in Table 5.2. Notably, Hund’s cases

don’t consider the strength of the hyperfine interactions at all, so they will be limited to being

useful in this section. HBO is diagonal in case (a) and case (b) bases, HFS is diagonal in the case

(c) states, and HR is diagonal in cases (d) and case (e). Therefore, since we have been working in

the BO basis for all this work, the challenge of adding this to the Hamiltonian to the calculation

amounts to finding the transformation matrices which transform states from case (e), where HR is
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diagonal and easy to evaluate, to case (a), which should be the best basis to describe the states in

our case.

With rotation included in the Hamiltonian, the case (a) states do not have good rotational

angular momentum but they have good total angular momentum LJR and it’s space-fixed pro-

jection mJR, and so should be written as |LJRmJRΛSP⟩, where P is the space-fixed total parity

eigenvalue, either of ±1. Notably, many references will commonly use the letter J for the total

angular momentum including rotation in the FS case and ĵ = ĵa + ĵb for the electronic angular

momentum omitting rotation. This breaks the pattern in definitions I’ve established (and which

other references mostly follow) however. In any case there is the potential for confusion. So for this

thesis I follow my own preference and use the unique operator LJR for the total angular momen-

tum and Ĵ = ĵa + ĵb for the two-atom electronic angular momentum, maintaining the pattern that

lower-case quantum numbers with subscripts are the individual atom angular momentum, while

their capitalized counterparts are two-atom combined angular momentum. Since the projection of

the rotational angular momentum along the internuclear axis is zero by construction, the projection

of LJR along the internuclear axis is Ω, the same as J . Refer to Table 5.1 for all angular momentum

definitions.

States in case (e) are then described by quantum numbers LJR,mJR, ℓ, J, ja, and jb, and they

are related to the case (a) basis as

|LJRmJR(ℓJ(jajb))⟩ =
∑
ΛSΣ

|LJRmJRΛSΣp⟩⟨ℓJ(jajb)|ΛSΣP⟩LJR
(5.32)

Where it should be understood that the matrix element ⟨ℓJ(jajb)|ΛSΣp⟩LJR
between the

eigenstates of the rotational Hamiltonian and the eigenstates of the BO Hamiltonian varies de-

pending on the value of the total angular momentum LJR. This equation can be thought of as

the definition of this matrix element. Therefore the matrix elements we need to calculate are

⟨ℓJ(jajb)|ΛσΣ⟩. How can one calculate this? The answer is to, in a somewhat orthogonal way,

explicitly calculate the relationship between these states at large internuclear distance R, at which
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point the matrix element can be recovered. This calculation involves a good amount of non-trivial

angular momentum algebra and very careful consideration of various phase factors which I will

not attempt to reproduce here, and will instead only outline the approach. For more details and

references I encourage the reader to study the original work [143].

I start by generally constructing the states |LJRmJRΛSΣP⟩, which include rotation through

the total angular momentum quantum number LJR and it’s space-fixed projection mJR, out of the

non-rotating BO eigenstates |ΛSΣ⟩. The rotational wavefunction can be added by making use of

the Wigner D matrices which represent solutions to the rigid rotor problem in quantum mechanics

and which are related to the spherical harmonic functions. Careful consideration of symmetrization

and normalization, especially of the Wigner D matrices leads to the conclusion that this must be

|LJRmJRΛSΣP⟩ =

1√
2− δΛ0δΣ0

√
2LJR + 1

8π3

[
D∗LJR

mJRΩ(αβγ)|Λ;SΣ⟩

+ P(−1)la+lb+LJR−SD∗LJR
mJR−Ω(αβγ)| − Λ;S,−Σ⟩

] (5.33)

This equation is general and should hold for all R, which is possible because of the hidden

R dependence of the BO Eigensetates |ΛSΣ⟩. Through a non-trivial amount of nuanced angular

momentum algebra, one can expand this solution in the limit of large R to express it in terms of

the case (e) states which have good j, ℓ, ja, and jb to get the following result:

|LJRmJRΛSΣP⟩ R→∞
====⇒

∑
J,ℓ,ja,jb

|LJRmJR(ℓJ(jajb))⟩
√

2− δΛ,0δΣ,0

2π
(1− P(−1)la+lb+ℓ)(−1)ℓ−Ω−LJR

×Cℓ0
J,−ΩLJRΩ⟨JΩ(jajb)|LΛ;SΣ⟩

(5.34)

This can now be used to directly extract the transformation matrix element:
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⟨ℓJ(jajb)|ΛSΣP⟩LJR
= (−1)ℓ−Ω−LJR

1 + (−1)lb+ℓ+p(1− δΛ,0δΣ,0)√
2− δΛ,0δΣ,0

×Cℓ0
J,−ΩLJRΩ⟨JΩ(jajb)|LΛ;SΣ⟩

(5.35)

Now we can make use of the 9j relation discussed before (Eqn. 5.7), to quickly arrive at the

result for the matrix element above:

⟨JΩ(jajb)|LΛ;SΣ⟩ = ⟨JΩ(jajb)|
∑
J ′

CJ ′ΩLS
LΛSΣ |J ′Ω(LS)⟩

= CJΩLS
LΛSΣ⟨JΩ(jajb)|JΩ(LS)⟩

=

√
S̆j̆aj̆bL̆C

JΩLS
LSΛΣ


la sa ja

lb sb jb

L S J



(5.36)

With the recognition that j1 = la, j2 = lb, j3 = sa, j4 = sb, j12 = L, j34 = S, j13 = ja and

j24 = jb.

This relation allows you to calculation transformation matrices to convert all the case (e)

basis states to case (a) in order to evaluate the Hamiltonian for each value of ℓ and as a function

of R. Specifically calculating (⟨ℓJ(jajb)|ΛSΣp⟩LJR
)†HR(R)⟨ℓJ(jajb)|ΛSΣp⟩LJR

for a the relevant

bases states for a given value of LJR. With some herculean mastery of angular momentum al-

gebra, a previous author has calculated analytical forms of Eqn. 5.35 and written them down in

one reference [142]. These results are quite useful, although, we believe there is some mistake

in this reference’s equation 11, which gives a non-unitary transformation matrix which does not

numerically match my results in numerically calculating the matrix element above.

For a given value of LJR, states can have either positive or negative total parity. It turns out

that the results of these calculations result in pairs of closely spaced rotational energy levels which

have different parity, and so each state gets an additional label. States with parities (−1)LJR are

said to have “e” parity, and states with parities −(−1)LJR are said to have “f” parity. For example,

the state with LJR = 5 and negative total parity is also of “e” parity and the state with positive
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total parity is of “f” parity. This scheme ensures that each state in the doublet has different such

parity. The “e” and “f” labels are independent of the Hund’s case basis used. In other words, the

matrix elements above do not mix states of different “e/f” parity. This parity label has historically

fluctuated and been the source of confusion in the field, but was resolved in the 70’s. [144]. In the

end, these results are used to calculate the potentials seen in Fig. 5.4. Similar analysis can be done

for the hyperfine potentials discussed in the next section.

Figure 5.4: Molecular Potentials with Rotation and Fine Structure. Lines of various
red colors represent states with different total angular momentum J and gerade symmetry. Lines
of various blue colors represent states with different total angular momentum J and ungerade
symmetry. (a) Large energy scale, short distance view of the 5P3/2 potential. (b) Large energy
scale, short distance view of the 5P1/2 potential. (c) Lower energy scale, long distance view of the
5P3/2 potential. (d) Lower energy scale, long distance view of the 5P1/2 potential.

5.10 Hyperfine Structure With Rotation

This section is less well tested than the previous and should be viewed as notes on progress

to the full calculation of potentials which include HFS and rotation simultaneously. These notes

are partially aided based off of some unfinished notes which were received from Paul Julienne in
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the course of my studies [132]. The calculation should proceed similarly to the calculation above

but with more angular momentum algebra to keep track of. With the inclusion of the hyperfine

interactions, our total angular momentum is now AF and it’s space-fixed projection is mFR. In this

case with the HFS included, there are sparingly few resources to establish a common standard for

the total angular momentum quantum numbers here, so there is less room for confusion, although

some other resources may wish to define the total angular momentum as F and use f = fa+ fb for

the total atomic angular momentum without rotation. But we will stick with LFR and mFR.

Working with case (a) is slightly more tricky because we want to have states of good total par-

ity. Similarly to the case without rotation, we can start by adding rotational states to the BO states

with HFS by using the Wigner D-matrices which gives terms like
√

2LFR+1
8π2 D∗LFR

mFR,Φ(αβγ)|ΛSΣII⟩.

Here D∗LFR
mFR,Φ(αβγ) is the complex conjugate of the Wigner rotation matrix for angles α, β, and γ,

which are arbitrary angles in the present context. In general these angles are unimportant and so

will often be omitted from the matrix symbol. However, this is surprisingly not a state of good

total parity, so instead we form a linear combination of these states with appropriate parity, and

we get our case a basis:

|LFRmFRΛSΣIIP⟩ = 1√
2− δΛ0δΣ0δI0

√
2LFR + 1

8π2

×

[
D∗LFR

mFR,Φ(αβγ)|Λ;SΣ; II⟩

+ p(−1)la+lb+LFR−I−SD∗LFR
mFR,Φ(αβγ)| − Λ;S,−Σ; I,−I⟩

] (5.37)

It’s only at large R that the BO states gain good values for the quantum numbers la, lb. As

such, it’s only as R→ ∞ that
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|Λ;SΣ; II⟩ =
∑
λa,λb

|laλa⟩|lbλb⟩|SΣ⟩|II⟩⟨laλalbλb|LΛ⟩

|laλa⟩|lbλb⟩|SΣ⟩|II⟩ =
∑

F,fa,fb

|FΦ(fafb)⟩⟨FΦ(fafb)|laλalbλb;SΣ; II⟩

|FΦ(fafb)⟩ =
∑
mF

DF
mFΦ|FmF (fafb)⟩

(5.38)

It should be possible to use these relations and some non-trivial angular momentum algebra

to show that

|LFRmFRΛ;SΣ; IIP⟩ R→∞
====⇒

√
2− δΛ0δΣ0δI0

2π

×
∑

Fℓfafb

|LFRmFR(ℓF (fafb))⟩(1− P(−1)la+lb+ℓ)(−1)ℓ−Φ−LFR

×Cℓ0
F,−ΦLFRΦ⟨FΦ(fafb)|λaλbSΣII⟩

(5.39)

Where now we have a much harder additional matrix element to calculate.

And this should give the result:

⟨Fℓ(fafb)|ΛSΣIIP⟩LFR
= (−1)ℓ−Φ−LFR

1 + (−1)lb+ℓ+p(1− δΛ0δΣ0δI0)√
2− δΛ0δΣ0δI0

Cℓ0
F,−ΦLFRΦ⟨FΦ(fafb)|LΛ;SΣ; II⟩

(5.40)

There are 6 basic angular momentum and multiple ways to couple them to construct states

of total angular momentum F . In the case here, there are two ways to construct the total electronic

angular momentum J . We have Ĵ = l̂a+ ŝa+ l̂b+ ŝb, and we can first couple the two orbital angular

momentums and spins to create states |JmJ(LS)⟩, or we can construct the individual electronic

angular momentum first and create states |JmJ(jajb)⟩. Similarly, we have four angular momentum

ja, jb, ia, and ib to construct states of good F in two critical ways to create two bases: |FmF (JI)⟩

or |FmF (fafb)⟩. This is going to lead to two Wigner 9j symbols. And this is suggestive that we

are looking to construct the matrix elements ⟨FmF (fafb)|FmF (JI)⟩ and ⟨JmJ(jajb)|JmJ(LS)⟩

out of the given matrix element, both of which will reduce to Clebsch Gordon coefficients. With
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these patterns identified, it’s just angular momentum algebra to get to the result. In the following

I explicitly label fa(jaia) and similar terms until the middle of the derivation to emphasize the

cancellation with the j′a terms in the sum. It is important to keep in mind thought that any time

in these derivations fa is a good quantum number, ja (and la and sa) and ia are as well, and I just

typically omit these because there is only one standard way to combine these angular momentum.

⟨FΦ(fa(jaia)fb(jbib))|laλalbλb;SΣ; II⟩

= ⟨FΦ(fa(jaia)fb(jbib))|

(∑
L

CLΛ
laλa,lbλb

|LΛ⟩

)
|SΣ; II⟩

=
∑
L

CLΛ
laλa,lbλb

⟨FΦ(fa(jaia)fb(jbib))|
(∑

J

CJΩLS
LΛSΣ|JΩ(LS)⟩

)
|II⟩

=
∑
L,J

CLΛ
laλa,lbλb

CJΩ
LΛSΣ⟨FΦ(fa(jaia)fb(jbib))|

(∑
j′aj

′
b

|JΩj′aj′b⟩⟨JΩj′aj′b|JΩ(LS)⟩

)
|II⟩

=
∑
L,J

CLΛ
laλa,lbλb

CJΩ
LΛSΣ⟨FΦ(fafb)|

×
(∑

F ′

CF ′ΦJI
JΩII |F ′Φ(JI)⟩

)
⟨JΩ(jajb)|JΩ(LS)⟩

=
∑
L,J

CLΛ
laλa,lbλb

CJΩ
LΛSΣC

FΦJI
JΩII ⟨FΦ(fafb)|FΦ(JI)⟩⟨JΩ(jajb)|JΩ(LS)⟩

=
∑
L,J

(
CLΛlalb
laλa,lbλb

CJΩLS
LΛSΣC

FΦ
JΩII

)√
j̆aj̆bf̆af̆bL̆S̆j̆Ĭ


la sa ja

lb sb jb

L S J




ja ia fa

jb ib fb

J I F



=
∑
J

(
CJΩ1S
1ΛSΣC

FΦJI
JΩII

)√
3j̆aj̆bf̆af̆bS̆J̆ Ĭ


0 sa ja

1 sb jb

1 S J




ja ia fa

jb ib fb

J I F



(5.41)

In the last step I substitute L = 1, la = 0, lb = 1 as this is always true for alkali metals in

S+P potentials. I also remove the sum and Clebsch-Gordon coefficient and sum, as there is always

exactly one non-zero Clebsch-Gordon coefficient of value 1 in this sum. Where in second-to-last

I use the Wigner 9j relations (Eqn. 5.7) with the appropriate substitutions. If this is difficult to
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follow, consider reviewing the fine structure calculation or the notation section. Now we can really

appreciate the breve. It is useful to realize that a number of sums in this derivation, the F ′, j′a,

and j′b sums, immediately reduce to single values because of the matrix left hand side of the inner

product will select out the appropriate numbers. The Clebsch-Gordon coefficient with only orbital

angular momentum is typically 1.

5.11 Future Work

We believe that there are many avenues for future work in this area. Among the extensions

to these calculations, the primary remaining addition is the inclusion of rotation into the potentials

which have HFS. However, other additional corrections such as relativistic retardation effects have

been significant in other contexts [145], and may be interesting to explore here as well.

There are many additional properties of the potentials which are of interest. These include

the transition line strengths, excitation rates, state lifetimes, transition selection rules, and other

properties of the states relevant for loading processes [146]. Many more radical extensions of this

work are also possible, such as the studying of three-body potentials and collisions, or studying

different species with different level structures in this context.

These potentials could be used to model and study loading processes in more advanced ways.

Previous experiments with single atoms in optical tweezers have attempted to characterize and

model the nature of related collisions using a variety of methods, but without the insight that

these potentials provide. Similar methods could be used to experimentally validate some of these

calculations [47, 128].
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ŝ
b

S
Σ
=
σ
a
+
σ
b

m
S
=
m

s
a
+
m

s
b

Single
Electron

TotalA
.M

.
ĵ
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îα

f
α

ϕ
α
=
ω
α
+
ια

m
f
α
=
m

j
α
+
m

iα

TotalN
on-R

otationalA
.M

.
F̂

=
Ĵ
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Hund’s Case Energy Hierarchy
(a) |EBO| ≫ |EFS | ≫ ER

(b) |EBO| ≫ ER ≫ |EFS |
(c) |EFS | ≫ |EBO| ≫ ER

(d) ER ≫ |EBO| ≫ |EFS |
(e) |EFS | ≫ ER ≫ |EBO|

Table 5.2: Hund’s Case Energy Hierarchies. The various Hund’s cases and their energy
hierarchies. |EBO| denotes the magnitude of the electrostatic energy or the BO energy, |HFS |
denotes the magnitude of the FS energy, and ER, which is strictly positive, denotes the magnitude
of the rotational energy.



Chapter 6

Time-of-Flight Quantum Tomography of Single Atom Motion

Time of flight is an intuitive way to determine the velocity of particles and lies at the heart

of many capabilities ranging from mass spectrometry to fluid flow measurements. Here we show

time-of-flight imaging can realize tomography of a quantum state of motion of a single trapped

atom. Tomography of motion requires studying the phase space spanned by both position and

momentum. By combining time-of-flight imaging with coherent evolution of the atom in an optical

tweezer trap, we are able to access arbitrary quadratures in phase space without relying on coupling

to a spin degree of freedom. To create non-classical motional states, we harness quantum tunneling

in the versatile potential landscape of optical tweezers, and our tomography both demonstrates

Wigner function negativity and assesses coherence of non-stationary states. Our demonstrated

tomography concept has wide applicability to a range of particles and will enable characterization

of non-classical states of more complex systems or massive dielectric particles [147].

The creation and full reconstruction of quantum states featuring genuine non-classical be-

havior has played a key role in the development of quantum systems. Such reconstructions are

perhaps most familiar in quantum optics, where preparing and measuring modes of the electro-

magnetic field in non-classical states were striking demonstrations of the quantum nature of light.

In these experiments, state characterization has been accomplished both with homodyne tomogra-

phy [148, 149, 150, 151] and by coupling photons to a spin degree of freedom in cavity or circuit

quantum electrodynamics (QED) [152, 153]. The associated quasiprobability distributions that are

obtained, such as the Wigner function, are useful tools in analyzing non-classical behavior. While



132

quasi-classical coherent states have strictly positive Wigner functions, other states, such as excited

Fock states and Schrödinger cat states, can exhibit regions of negative phase-space density that

have no classical analog.

For particles with mass, the observation of non-classical states of motion is equally intriguing.

Early experiments with trapped ions created non-classical states using trap displacements and

Raman sideband transitions, the spin-phonon analog to cavity QED. They verified the generation

of squeezed states, Fock states, and cat states among others [154], and have continued to explore

a rich space of tomography methods [155]. Meanwhile, the control of quantum motion of objects

has expanded greatly in recent years, for instance with the ability to couple artificial spins to

mechanical solid-state acoustical excitations [156, 157]. Another example is particle levitation,

where one can achieve environmentally-isolated masses whose wavefunction can be expanded over

large scales for fundamental studies with massive particles [158, 159, 160]. It is now possible to

cool the center-of-mass motion of a dielectric particle to its quantum ground state [53, 161, 162],

and it has been proposed that quantum state creation and characterization for these masses can

be explored using nonlinear potential landscapes and time-of-flight tomography [163, 164]. But to

date directly measuring rotated quadratures in position and momentum [165], the natural analogy

to optical homodyne tomography, has not been harnessed to characterize a non-classical state of a

single trapped particle.

In this work, we demonstrate tomography of a single neutral atom prepared in non-classical

motional states using time-of-flight imaging (Fig. 6.1). Time-of-flight samples a particle’s mo-

mentum distribution (Fig. 6.1a), and has been used in optical tweezers to measure thermal single

atoms [166] and to probe spin correlations in few-fermion systems [167]. Time-of-flight imag-

ing and detection has also been used to great effect in neutral atomic gases and optical lat-

tices [168, 169, 170, 171, 172], and has enabled momentum distribution measurements of atomic

ensembles prepared in squeezed, Fock, and superposition states [173], and tomography of the dy-

namics of a Bose-Einstein condensate [174]. In our work, using detection with single atom sensi-

tivity, and measurements at multiple quadrature angles, we carry out full tomography and reveal
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Figure 6.1: Tomography sequence and notation. (a) Many time-of-flight images of a single atom
released from the optical tweezer are averaged to measure the momentum distribution of a quantum
state of motion. (b) An initial state (green) is prepared in an optical tweezer. The state evolves
over a time te. The tweezer is turned off from a depth of Vf , and the atom expands in free space
(blue arrows) for a fixed flight time tf . (c) The distribution measured after a given evolution time
te in the trap, p̃(θ) = p̃(ωxte), is a generalized quadrature measurement of the initial state. At
specific te, this generalized quadrature can be equivalent to the momentum quadrature p = p̃(0) or
the position quadrature x = (x0/p0)p̃(π/2).
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negative valued Wigner functions with a single particle [163].

As illustrated in Fig. 6.1, to obtain a time-of-flight image we suddenly turn off the optical

tweezer and allow the atom to fly in free space for a fixed time tf . We then average many such

images to determine the momentum distribution at the time of release. We extract arbitrary

quadrature distributions by combining time-of-flight imaging with in-trap harmonic evolution for a

time te (Fig. 6.1b,c). We start with a state ψx(te = 0) that we want to characterize, and measuring

this initial state via time of flight gives the momentum quadrature p̃(te = 0) = p. If we allow the

atom with mass m to evolve in an ideal harmonic trap, the in-trap momentum after a time te is the

rotated quadrature p̃(θ) = p cos θ+(p0/x0)x sin θ (Fig. 6.1c), where θ = ωxte, and x0 =
√
~/(2mωx)

and p0 =
√
m~ωx/2 are the characteristic length and momentum of the harmonic oscillator with

angular frequency ωx. By varying the evolution time te we can extract an ensemble of quadrature

distributions p̃(θ) for θ ∈ [0, 2π], analogous to what is done in optical homodyne tomography. The

quadratures can be used to reconstruct the complete quantum state of the particle or equivalently

the Wigner function W (x, p).

In our experiments we test our protocol with multiple motional states, such as Fock states

and displaced Fock states. To create the near-ground state of a single neutral 87Rb atom, we use

Raman sideband cooling [175]. To then create non-classical motional states, we use versatile control

of quantum tunneling in the optical tweezer [58]. This capability does not rely upon internal states

and spin-motion coupling as in standard trapped ion settings [154, 176], and hence, can be extended

to polarizable particles with no controlled internal degrees of freedom. With large mass dielectric

particles, while quantum tunneling is not experimentally feasible, it has been proposed that other

non-harmonic potentials created by optical tweezers can enable quantum state synthesis [177, 178].

Our experiments start by stochastically loading single 87Rb atoms into optical tweezer traps

using grey optical molasses and ascertaining the presence or absence of an atom through an initial in-

trap fluorescence image. We then use optical molasses cooling followed by three-dimensional Raman

sideband cooling in a trap of depth 1.0mK to prepare the atom close to the three-dimensional

motional ground state |nx, ny, nz⟩ = |0, 0, 0⟩ (Sec. 6.1) [175]. The trap is then adiabatically ramped
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down to a depth of 0.33µK where remaining thermal population is allowed to escape to further

purify the initial state.

In the first set of experiments, we measure the momentum distribution of motional states

at te = 0 (Fig. 6.2). After preparing the state of interest, we adiabatically ramp the trap to

a final depth Vf/kB = 2.4µK and then abruptly turn off the trap (Sec. 6.1). We then wait a

flight time tf before applying resonant light for τ = 10 µs and collecting fluorescence through the

high numerical aperture (NA) lens that creates the optical tweezers on an electron-multiplying

CCD (EMCCD) camera. We repeat this procedure to realize multiple instances of single atom

momentum measurements, and collect enough data to create an averaged momentum distribution

that is observable above the camera noise. Experimental runs where an atom is not detected in the

initial in-trap fluorescence image are used to characterize our imaging background, which is then

subtracted from our captured momentum distribution (Sec. 6.2.3).

We first characterize the expansion dynamics of an atom prepared close to the ground state

of the optical tweezer with angular trap frequencies ωx,y,z (Fig. 6.2a,d). The initial ground-state

root mean square (RMS) size σx,y in position space is estimated as x0 = 86nm, which is well

below the resolution of our imaging system (Fig. 6.1a). At an expansion time of tf = 0.5ms, the

atomic probability distribution has expanded to an RMS size of 2.4(1) µm in the atom plane, which

is resolved by our imaging system (Fig. 6.2d). By studying the expansion as a function of flight

time tf , we can ascertain that the expansion’s kinetic energy observed in the radial directions of

(kB × 0.256(16) µK)/2 is partly driven by the expected zero-point kinetic energy of the harmonic

oscillator, Ezp/2 = ~ωx,y/4 = (kB × 0.188(1) µK)/2 (Sec. 6.3.2). The difference in energy is due to

the finite temperature of the atoms, which can also be seen in Raman spectroscopy (Sec. 6.3.1).

Starting with a ground-state atom, we create nx = 1 or nx = 2 motional Fock states using

one-dimensional tunneling in a double well. The tweezer is moved to 0.88µm from a second empty

optical tweezer on the right, and with both tweezers near a depth of 1.8µK we bring the ground

state of the left tweezer nearly energetically resonant with higher-nx states of the right tweezer.

Then, with an adiabatic sweep of the relative tweezer depths, the atom is transferred into the target
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excited state of the right tweezer (Fig. 6.2b,c) (Sec. 6.1.4) [58]. The two tweezers are then slowly

separated and the intensity of the left tweezer is ramped to zero, releasing any atom that did not

successfully transfer to avoid polluting the final image (Sec. 6.2.4). We abruptly turn the remaining

right tweezer off from 2.4µK and proceed with the same imaging procedure as for the nx = 0 state.

The resulting nx = 1 and nx = 2 momentum distributions in Fig. 6.2e,f show characteristic fringing

that is expected of the excited motional states.

a

86 nm

d

p̃(0) = p

2.4 µm

b

0.88 µm

e

c f

Figure 6.2: Single-atom Fock state preparation and imaging. (a),(b),(c) Illustration of
motional state preparation of n ∈ {0, 1, 2} states, respectively. (d),(e),(f) Time-of-flight momen-
tum distributions at te = 0 and for tf = 0.5 ms of nx = (0, 1, 2) states for which (64008, 48309,
58899) images were averaged, respectively.

We now proceed to the full tomographic characterization of motional states. In these ex-

periments, we study multiple quadrature distributions by waiting a variable amount of evolution

time te before releasing the atom and imaging the result. We can visualize the quadrature data

as time-sequence waterfall plots (Fig. 6.3a,d,g), which are derived from our raw distributions by

deconvolving with the imaging point spread function (PSF) and integrating out the vertical axis

(Sec. 6.2.4). We study states with a goal of testing the capacity of time-of-flight tomography to
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Figure 6.3: Motional quantum state tomography via time-of-flight imaging and maxi-
mum likelihood estimation. Measured quadrature data, Wigner function, and density matrix
Hinton plot for the displaced nx = ny = 0 state (a,b,c); nx = 1 state (d,e,f) and displaced nx = 1
state (g,h,i) both with a slight squeezing operator also applied. Quadrature data: Waterfall
plots (a,d,g). Each vertical slice corresponds to a raw quadrature distribution, such as in Fig. 6.2,
after deconvolving with the imaging PSF and integration along the vertical axis. The measured
data (upper waterfall plot) is compared to the expectation for ideal preparation and harmonic time
evolution based upon our protocol (lower waterfall plot). Wigner functions: Wigner functions
(b,e,h) show classical positive values as red and non-classical negative values as blue. We normalize
the Wigner function such that the ideal negativity of a pure nx = 1 state is −1/π. Density matri-
ces: Hinton plots (c,f,i) for density matrices as reconstructed via MLE. The area of each square is
proportional to the magnitude of the corresponding element’s complex value; the color of the square
represents the element’s phase. (j) p = 0 slice of reconstructed Wigner functions from (h) (red).
Equivalent slices as reconstructed through a bootstrapping method (black) that characterize the
statistical uncertainty of our reconstruction algorithm. (k) Evolution of the measured center of the
coherent state (green circles) and damped sinusoidal fit (black line), which is used to characterize
the trap frequency and anharmonicity.
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identify non-classicality and phase preservation, as well as subtle non-stationary features. First, we

create a coherent state by starting with an nx = 0 state in the Vf/kB = 2.4µK trap and abruptly

displacing the optical tweezer by 180 nm. We find the state oscillates back and forth in the trap as

expected (Fig. 6.3a). Next, we produce an nx = 1 Fock state using the same protocol as the data

presented in Fig. 6.1b. In addition, after the tunneling and optical tweezer separation, the depth is

suddenly doubled, resulting in application of a squeezing operation. The atom is then released from

a trap of Vf/kB = 3.6µK. We observe that the state is mostly stationary, as expected, with the

addition of a slight breathing from the squeezing induced by the depth jump (Fig. 6.3d). Lastly,

we combine multiple techniques by starting with an nx = 1 state, applying the sudden doubling of

the trap depth, and in addition displacing the optical tweezer by 140 nm. As shown in Fig. 6.3g,

we are able to observe the expected oscillation dynamics of the state in the trap.

To reconstruct the quantum state from the quadrature data, we choose to use maximum

likelihood estimation (MLE) [179] (Sec. 6.4.2). An appropriately designed MLE algorithm takes

the quadrature data and returns the density matrix that is most likely to reproduce this data [180].

We implement an iterative MLE protocol based on the standard optical homodyne tomography

literature [181], and from the density matrix, the Wigner function is directly recovered (Fig. 6.3).

The results of applying the MLE algorithm to the quadrature data are then presented in

Fig. 6.3b,c,e,f,h,i. The coherent state displays significant off-diagonal coherences but, as expected,

a positive Wigner function (Fig. 6.3b,c). The non-Gaussian state preparation associated with

Fig. 6.3d,g results in the density matrices and Wigner functions with negative values displayed in

Fig. 6.3e,h,f,i. The value and statistical error on the density matrix and Wigner function negativity

is estimated by a bootstrapping technique [181], in which we randomly sample predicted quadrature

and noise distributions based on the MLE result and our camera noise characterization respectively.

We then extract the density matrices of these data sets to create a statistical ensemble of density

matrices and Wigner functions (Sec. 6.5). The nearly-stationary nx = 1 state displays a dominant

nx = 1 component and the Wigner minimum is found to be −0.060(6) (Fig. 6.3e). Adding a

displacement demonstrates non-trivial off-diagonal coherences and a negative Wigner function value
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at the displaced center of −0.064(6) (Fig. 6.3h,j).

A full assessment of the reconstructed wavefunction must also consider systematic errors

(Sec. 6.5). Trap anharmonicity, for example, will result in measured quadratures that do not

simply follow from the rotated quadratures of the ideal protocol. We determine the impact of

anharmonicity by theoretically assessing the tomography protocol based on a model using measured

trap parameters. We estimate our trap anharmonicity by studying the coherent state oscillations

of Fig. 6.3a over a longer time (Fig. 6.3k). The center of the Gaussian oscillates at 7.84(5) kHz, and

decays with a time constant of 0.63(14)ms. A model of the trap containing an anharmonic term is

fitted to match the observed damping. For a displaced nx = 1 state in this model, we compare the

reconstructed states obtained from MLE after evolution in a trap with and without our modelled

anharmonic terms. We observe only a small infidelity of < 5% between the resulting reconstructed

states, and the Wigner function minimum for anharmonic evolution is smaller in magnitude by

< 0.01 compared to harmonic evolution, and remains negative (Sec. 6.5.3). In the future, the

large dynamic range and control afforded by optical traps can be used to control the harmonicity.

Specifically, a shallow double-well or other anharmonic traps could be used for state creation, and

the tomography could be carried out after ramping to a much deeper and less anharmonic trap.

We have demonstrated quantum tomography of non-classical single atom motional states.

By using time-of-flight imaging we have measured negative-valued Wigner functions with non-

trivial phase-space structure. This work lays the foundation for tomography and characterization

of massive levitated particles without exploitable spin structure [160, 177, 164]. Further, time-of-

flight imaging of single atoms will enable study of high-n motional superposition states [182], highly

squeezed states, and interference [183] of complex delocalized states.
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6.1 Optical tweezers
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Figure 6.4: Schematic timing diagram for Fock-state momentum distribution exper-
iment (Fig. 6.2) Not-to-scale experiment diagrams, showing (a) the position of the atoms and
tweezers, (b) the bias of the tweezers, and (c) the depth of the atom-holding tweezer. Stationary
Fock-state momentum distributions in which we prepared nx = 0, 1, 2 states are labeled I, II, and
III respectively. Round markers indicate adiabatic passage into an excited state is not used in
experiment I that works with the nx = 0.

6.1.1 Tweezer generation and control via acousto-optic deflectors

Tweezer generation: The optical tweezers are generated by sending light at a wavelength

of 850 nm through two orthogonal acousto-optic deflectors (AODs) that are driven simultaneously

with multiple RF tones to create multiple deflections. In the case of this experiment, the horizontal

AOD is used to generate the two deflections used for tunneling, in order to avoid complications

arising from gravity.

Depth and bias control: The vertical AOD is used to direct extra laser power far away
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Figure 6.5: Schematic timing diagram for tomography experiment (Fig. 6.3) Not-to-
scale experiment diagrams, showing (a) the position of the atoms and tweezers, (b) the bias of the
tweezers, and (c) the depth of the atom-holding tweezer. Displaced coherent state data shown in
Fig. 6.3a-c is labeled IV. Non-displaced nx = 1 data shown in Fig. 6.3d-f is labeled V. Displaced
nx = 1 data shown in Fig. 6.3g-j is labeled VI. Round markers indicate adiabatic passage into an
excited state is not used in experiment I that works with the nx = 0.

from the main tweezers that hold atoms, which allows us to reduce the depth of the main tweezers

by many orders of magnitude even given the limited dynamic range of our intensity servo. The

relative depths of the traps are modified by dynamically adjusting the amount of RF power in each

tone driving the horizontal AOD.

Tweezer position and movement: The tweezers are moved by changing the frequencies

of the RF tones that drive the AODs. The speed of this movement is then limited by the size of

the laser beam inside the AOD crystal and the time it takes the acoustic wavefront to cross this

distance (∼ 100 ns). This is very fast compared to the tweezers’ radial trap frequencies. However,

there is 10µs of electronic jitter in the time between the trigger to change the RF frequency and

when the frequency jumps. This could be easily improved in future experiments, but is the likely

explanation of small phase offsets noticeable in the center-of-mass oscillation data (Fig. 6.6).
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6.1.2 Tweezer loading

During the initial loading stage, V/kB = 0.58mK. The loading procedure is stochastic, and

the ΛGM loading technique we use is capable of up to ∼90% loading efficiency [184]. However,

because interleaving background images without atoms provides useful information, we use sub-

optimal loading (50% to 80% efficiency) (Fig. 6.4 and Fig. 6.5).

6.1.3 Trap depth and frequency calibrations

Trap depth calibration: We calibrate our trap depth V by measuring the light shift of

the trap on the D2
87Rb F = 2 → F ′ = 3 transition at relatively high depths (∼ 0.1mK to 1mK).

We extrapolate this calibration to low depths where the shift is smaller than the linewidth of the

transition and therefore difficult to measure directly.

Trap frequency calibration methods: We can measure trap frequencies ωx,y,z in deep

traps through Raman sideband spectroscopy. We can then estimate the trap frequencies at smaller

depths according to ωx,y,z ∝
√
V .

Independently, displacing a state in a harmonic oscillator ideally causes the state’s center-

of-mass momentum to oscillate at the trap frequency. These oscillations can then be measured in

order to independently determine the trap frequency at the small depths used for motional state

preparation and tomography (Fig. 6.6). The oscillations can be analyzed either by calculating

⟨p̃(te)⟩ from the deconvolved quadrature data (Fig. 6.3a,d,g), or they can be analyzed by fitting

the quadrature data and tracking the location of the fit. Specifically for the displaced nx = 0

state, which is approximately Gaussian, the fits more reliably characterize the state as the fit is

less susceptible to far-off-axis noise.

Comparing frequency calibrations: The nx = 0 state was released from a depth of

Vf = 2.4µK. Extrapolating the Raman sideband spectroscopy trap frequency calibrations to

this depth predicts ωx,y/2π = 6.8 kHz and ωz/2π = 1.4 kHz. We measure via the center-of-mass

oscillations of the displaced nx = 0 state 7.84(5) kHz (Fig. 6.6).
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Figure 6.6: Center of mass oscillations of data from Fig. 6.3. Displaced nx = 0 centers of
Gaussian fits (green circles), and for comparison ⟨p̃⟩ (open green circles) [in a 2.4µK trap]. Non-
displaced nx = 1 ⟨p̃⟩ (purple squares), and displaced nx = 1 ⟨p̃⟩ (blue diamonds) [in a 3.6µK trap].
The nx = 0 (nx = 1) is fit with a decaying sinusoid to find an nx = 0 (nx = 1) oscillation frequency
of 7.84(5) kHz (9.05(11) kHz) (black and blue curves). Inset: Re-print of Fig. 6.3k for reference,
which displays the same fitted centers of the nx = 0 data (green circles) and their fit (black curve)
over a longer time.
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The nx = 1 displaced and non-displaced states were released from a larger depth of 3.6µK,

where we measure via the center-of-mass oscillations 9.05(11) kHz for nx = 1 (Fig. 6.6). Extrapo-

lating the measured nx = 0 trap frequency to the larger depth predicts 9.60(6) kHz. The difference

between the value 9.05(11) kHz and 9.60(6) kHz is most likely due anharmonicity in these relatively

shallow traps. In Sec. 6.5.3, we discuss a theoretical model for our trap that accounts for these

observations.

6.1.4 Excited Fock state preparation via tunneling

Tunneling parameters and calibrations: In order to complete the adiabatic ground-

to-excited state transfer (Fig. 6.2b,c), we must find and characterize the appropriate tunneling

resonance and adiabatic transfer process. Tunneling is always done at a depth of V = 1.8µK and

with the tweezers spaced at a set Gaussian function spacing of 0.88µm. Assuming the tweezers

are Gaussian, the spacing between the double-well minima is expected to be 0.78µm based upon

this setting. For only the characterization of the resonances, we load atoms into both tweezers

individually in order to measure both the intended transfer from ground to excited state and

the unintended reverse transfer from excited state to ground state, which is a result of imperfect

ground-state preparation.

We calibrate the relative tunneling depth (∆V ) by comparing the width of a ground-to-

ground tunneling resonance to its oscillation frequency. This is done at shallower depths where

the ground-to-ground tunneling resonance is measurable. At the relatively deep depths used for

ground-to-excited-state tunneling, the nx = 0 → nx = 0 tunnel coupling is too weak to be easily

measured. We calculate where we expect it to be located based on the splitting between the nx = 1

and nx = 2 resonances and the assumption that the trap is harmonic, and set this location as

∆V = 0.

nx = 0 → nx = 1 characterization: We characterize the nx = 0 → nx = 1 resonant

tunneling transfer efficiency as a function of ∆V . We fit the transfer efficiency with a Gaussian

function and find that the resonance occurs at ∆V = 294.5(2) nK and has a RMS size of 3.6(3) nK
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(Fig. 6.7a). Ramping the relative depths across a width of 69.3 nK centered on this resonance

over 50ms achieves adiabatic rapid passage to the excited state at an efficiency of 92.4+1.9
−2 %.

Meanwhile, we find transfer in the reverse direction, nx = 1 → nx = 0, to be 11+3
−2%, reflecting that

there is a small population in excited states of the tweezer, which is capable of transferring the

reverse direction. This is consistent with our expectations from characterization of our single-atom

temperatures via other methods where we estimate 90% radial ground-state fraction (Sec. 6.3.1).

Figure 6.7: Excited state tunneling resonances. (a) The nx = 1 tunneling resonance.
Probability for an atom to tunnel from the ground state to nx = 1 (teal squares) and from nx = 1
to the ground state (gold circles). (b) The nx = 2 tunneling resonance. The probability for an
atom to tunnel from the ground state to nx = 2 (blue squares) and from nx = 2 to the ground
state (red circles). Due to the ground-state cooling there are nearly no atoms in the excited state
of the second tweezer to transfer backwards.

nx = 0 → nx = 2 characterization: We similarly find an nx = 0 → nx = 2 tunneling

resonance located at ∆V = 589.0(11) nK which has a RMS size of 12.1(13) nK (Fig. 6.7b). Ramping

the relative depths across a width of 111 nK centered on this resonance over 50ms achieves adiabatic

rapid passage to the excited state at an efficiency of 86.0+2
−3%. We find transfer in the reverse

direction, nx = 2 → nx = 0, to be 3.2+1.7
−1.1%, which is significantly smaller than the reverse transfer

measured on the nx = 0 → nx = 1 resonance. This reflects that there is very little population in

nx = 2 that is capable of transferring the wrong direction, as is expected after Raman sideband

cooling.
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Parameter Value
Vertical shift speed 2MHz
Horizontal shift speed 1MHz
EM gain setting ×300
Frame transfer mode Off
Pixel size 16µm
Pixel binning 1x1
Camera temperature −60 ◦C

Ideal imaging NA 0.55
Time-of-flight imaging time 10µs
RPGC imaging time 5ms

Table 6.1: Camera and imaging settings. (upper section) Camera settings directly pro-
grammed or reported by the manufacturer . Here, we report the vertical and horizontal shift speed
as they are programmed. However, our camera is mounted sideways (Fig. 6.9). (lower section)
Imaging parameters.

6.2 Imaging methods

6.2.1 Imaging setup

The camera used is an Andor IXON-EM+ back-illuminated electron-multiplying CCD (EM-

CCD) camera, model number DU-897E-C00-#BV-9GT. Camera settings for the experiment are

listed in Table 6.1. The imaging light at 780 nm is collected through the same high-NA objective

lens used to create our tweezer array, split from the optical tweezer light using a dichroic mirror,

and focused using a 1m focal-length achromatic doublet.

6.2.2 In-tweezer RPGC imaging

RPGC imaging configuration: Red-detuned polarization gradient cooling (RPGC) and

associated light scattering is used to determine if an atom is loaded at the start of the experiment.

Time-of-flight images are post-selected based the presence of an atom in the RPGC image. Some

time-of-flight images that record cosmic ray events are additionally removed in post-selection. Time-

of-flight images where atoms are not loaded are used for background analysis. The RPGC cooling

is in a balanced, σ+-σ− configuration with zeroed background magnetic field. During the imaging,

we alternate trap light and imaging light at a 2 MHz flashing rate [77, 185]. This eliminates light
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shifts and anti-trapping effects during the scattering of the imaging light to create more uniform

images.

RPGC image point spread function: One measure of the point spread function (PSF)

of our imaging system is the average of in-trap RPGC images of single atoms (Sec. 6.2.4). This

averaged image represents the effect of the lens NA, aberrations, and the finite spatial extent of the

atom in the trap during imaging. We note that this PSF may vary spatially within the field of view

of the imaging system, but we utilize the central point as a representative value. The measured

PSF (Fig. 6.8) is roughly an astigmatic Gaussian with a long asymmetric tail. We subtract the

averaged image’s background and fit the result with a 2D Gaussian to extract effective RMS PSF

sizes of 0.445(2) µm (horizontal) and 0.328(2) µm (vertical) (Table 6.2). This result is the PSF used

for deconvolution in the tomography analysis. Considerations of systematic error based on this

choice are discussed in Sec. 6.5.

Figure 6.8: Imaging system point spread function. Averaged image intensity (color bars) is
normalized so that the integration of the averaged image is 1. The image shown is the average of
131,000 RPGC images with a single atom present. (a) The PSF on a linear color scale. (b) A slice
of the PSF and a Gaussian fit to the PSF displayed on a linear y-axis. (c) The PSF displayed on
a logarithmic color scale, emphasizing the observed long tail and structure due to aberrations. (d)
A slice of the PSF and Gaussian fit to the PSF displayed on a logarithmic y-axis.
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6.2.3 Time-of-flight imaging characterization

Time-of-flight imaging configuration: The time-of-flight imaging is near-resonant and

operates with an intensity I ≫ Isat. The light is applied in a power-balanced σ+, σ− polarization

configuration on the D2 f = 2 to f ′ = 3 87Rb transition with zero background magnetic field.

Collected photon number: In a 10µs image, as we nearly saturate the atomic transition,

we expect to scatter 180 photons from a single atom. Based on the final quadrature distributions

and characterizations of our camera system’s count-to-photon conversion ratio at our EM gain

setting (0.0124 photons per count), we estimate that we collect ∼ 5 − 10 photons, depending on

which data set is analyzed, suggesting an overall collection efficiency of 3%-6%.

Time-of-flight imaging blur considerations:

In addition to the imaging resolution PSF discussed above, in time of flight there are ad-

ditional blurring effects [166, 186], and in this section we estimate these effects theoretically (Ta-

ble 6.2).

For Vf/kB = 2.4µK, the confinement of the atom prior to release, combined with the mea-

sured atom temperature, we predict an initial atomic probability distribution RMS size of 100 nm.

During the τ = 10 µs imaging time, atoms move due to their initial velocity a RMS distance of

57 nm. Atoms additionally undergo random-walk motion due to the scattering of the imaging

photons. We estimate during τ the atom moves an additional RMS distance of 0.83 nm [166].

The released atomic wavefunction expands in 3D before being imaged onto the 2D image

plane of our camera. The extent of the atom probability distribution in the z direction combined

with a finite depth of focus is another potential blurring effect. We apply geometric optics and the

expected impact of diffraction to an impulse response of the form δx, y × exp(−z2/(2σ2z)), where

σz here is the predicted z-size of the atomic wavefunction in our experiments after 0.5ms of flight

time. Diffraction alone would result in a PSF size of σx = 300 nm, and our calculation indicates

that the DOF increases this to σx = 320 nm, which is 110 nm as a value added in quadrature.

First 10µs time-of-flight distribution measurement: A useful experimental compar-
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In-trap measurement
Measured PSF σx 445(2) nm
Measured PSF σy 328(2) nm

Expectations
Expected diffraction limit σ 300 nm
In-trap thermal distribution σT (0) 100 nm

Atomic flight measurement
Measured PSF first 10µs σx 461(5) nm
Measured PSF first 10µs σy 366(4) nm

Atomic flight calculations
DOF effect σDOF 110 nm
Thermal displacement during τ , στ 57 nm
Random walk during τ , σrecoil 0.83 nm

Table 6.2: Factors contributing to imaging blur. The upper table reflects in-trap measure-
ments and the expected diffraction limit calculated using the NA of the ideal tweezer lens. The
lower table reflects blurring from effects unique to the time-of-flight imaging and that can be sen-
sitive to the length of a single image τ .
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ison to the theoretical estimate of time-of-flight blur is the size of a time-of-flight distribution of a

near ground state atom in its first 10µs of flight, the smallest time-of-flight distribution possible

without shortening the imaging time (Fig. 6.10a). This distribution is affected by the photon-

scattering random walk during a single image and some of the thermal displacement effects, al-

though not DOF effects. Note, however, that it is a noisier PSF estimate than the in-trap RPGC

based PSF estimate (Sec. 6.2) due to the significantly shorter single image time. We find this time-

of-flight distribution has Gaussian RMS size of 0.461(5) µm and 0.366(4) µm in the horizontal and

vertical directions respectively, which is only slightly larger than the in-trap measurement and is

similarly astigmatic, indicating that the dominant source of blur is the imaging optics (Table 6.2).

Error based on our ability to account all blurring effects is discussed in Sec. 6.5.

Clock-induced charge noise: We are limited by our camera’s so-called clock induced

charge (CIC) [186]. These are events in which a pixel on the camera gains a “clock-induced” charge

during the process by which photoelectrons are shifted into gain and readout registers. The CIC

is amplified the same as any charge, making it indistinguishable from the photoelectrons we wish

to measure. The number of such charges scales with the number of pixels in a single image. As

such, there is a tradeoff between improved imaging resolution and camera noise. CIC is reduced

by shifting electrons across the camera sensor and gain registers at the maximum rate. Even at

the fastest shift speed of 0.3µs per shift, Andor reports that CIC occurs at a rate of 1.8 × 10−3

events/pixel. Due to technical issues our Andor camera is only currently capable of operating at

0.5µs per shift, which will increase CIC.

Background characterization: An undesirable effect of averaging together many images

is a sensitivity to background patterns on the camera, including “hot” pixels that have consistently

higher counts, a small amount of background light, patterns in the camera’s sensitivity, large profiles

in counts which are a result of the camera’s cleaning and shifting processes, and CIC (Fig. 6.9).

Most of the spatial variation in these noise sources is only horizontal, depending on the proximity

of a column of pixels to the camera’s readout sensor. Some of these sources vary over time. To

combat these issues, backgrounds subtracted from our data are taken from the same experimental
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sequence as the data of interest, and are therefore temporally interleaved with the desired data.

Most of these sources, such as the overall profile left by the cleaning process, are large compared

to the averaged imaging signal, but very consistent.
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Figure 6.9: Background and noise analysis. (a) The measured probability of observing a
given count value in a single background image averaged over all columns in the images, which
characterizes our camera noise. (b) Inset: a representative, single, background image. High points
in the image are primarily due to CIC. (c) An averaged background, the average of many single
background images. The CIC has mostly averaged out, and a non-negligible background profile
has appeared, along with several hot spots. Vertical and horizontal integrations of the background
are also displayed, emphasizing that most of the profile is in the horizontal direction (direction of
Andor vertical shift, see Table 6.1), increasing toward the readout register on the left.

Gaussian camera noise characterization: After subtracting the background from an

averaged image but before further post-processing, there remains noise in the averaged image which

is visible, for example, near the edges of the images in Fig. 6.2, where we expect negligible real

signal. The noise on a single pixel approximately samples a Gaussian distribution and is primarily a

result of camera CIC, so we refer to this as Gaussian camera noise. Our analysis takes into account

potential spatial dependence of the noise across the camera.

We characterize this noise by first carefully measuring, from a very large data set of back-

ground images, the single-image count-probability distribution for every column of pixels (Fig. 6.9a).

If we analyze this noise probability distribution, we find an average CIC rate of 7.0×10−2 events/pix,

which is larger than ideal rates, largely due to our slower shift speed (Table 6.3) [186]. With these

column-wise-measured count-probability distributions, we can simulate an ideal uncorrelated back-
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ground image by sampling from the measured single-image count-probability distributions. We

can then create an averaged background by creating an arbitrary number N of sampled single

background images and averaging them together. We finally simulate many averaged backgrounds

in order to reconstruct the probability distribution of a count value in an averaged background for

every column of pixels. The resulting probability distribution approximately follows a Gaussian

function with a standard deviation σnoise, which decreases as N increases. We simulate σnoise as a

function of N , and fit the result with a function of the form σnoise = A/
√
N . The resulting values

of A vary slightly by column, as expected, with a mean value averaged over all columns of A = 26.5

counts and a standard deviation among the columns of 1.4.

In practice, we find that the observed noise in our tomography data is larger than this

sampling analysis would predict, as determined by analyzing the edges of background-subtracted

quadrature distributions. Specifically, we observe RMS noise (1.6, 1.05, 1.16) times larger for the

nx = 0 displaced, nx = 1 non-displaced, nx = 1 displaced states, respectively, than the predicted

noise from images with no atoms discussed above. The discrepancy is likely due to a combination

of effects, such as differences in the background between different data sets and small correlations

in the background data which average out in the larger background data set used for the above

analysis. Non-trivial correlations exist in the background between data sets which are taken in

close temporal proximity to each other, suggesting that some of the background signal may be

due to fluctuating weak light signals, for example coming from light elsewhere in the apparatus.

Some signal and noise may also come from atom-scattered photons as a result of our PSF having a

long tail (Fig. 6.8). To be consistent our observations, we always use the observed approximately

Gaussian camera RMS noise from the tomography images when bootstrapping datasets. We discuss

error based on the amount of Gaussian camera noise in Sec. 6.5.

Magnification: We first measure the magnification of our imaging system using gravity

in an atom-drop experiment. We prepare an atom in a tweezer, release it, and then take a picture

a variable amount of time later to reconstruct the gravitationally assisted descent of the atom’s

center-of-mass position. We fit the signal with a Gaussian and plot the center as a function of
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Specified camera noise
CIC specified rate (ideal) 1.8× 10−3 events/pix
Readout noise < 1e−

Dark current 1.5× 10−4 e−/(pix · sec)
Measured noise characteristics
CIC measured rate 7.0× 10−2 events/pix
Measured readout noise σ 5.4 counts
EM gain signal γ 73.1 counts
Count offset 88.4 counts

Table 6.3: Noise sources in our images. Note that we expect our CIC rate to be larger than the
specified value both due to our inability to run the camera at its fastest shift speed and because
our measured value may be contaminated by a small amount of scattered light.

flight time and fit to y(tf ) = y0 + (1/2)at2f to extract the acceleration a of the magnified signal on

the camera. The magnification is then a/(9.8m/s2), which we find to be ×64(1). This is the value

used for calculations throughout the text.

Alternatively, we can measure the magnification based on measuring the nx = 1 Fock state.

The distinctly non-Gaussian nature of the momentum distribution is a useful calibration because

the fringe pattern is measurable in the image plane and independently predictable in the atom plane

given m, ωx, and tf . In contrast to the Gaussian nx = ny = 0 state, it is discernible from thermal

population, which manifests as spatially-Gaussian-distributed signal with an RMS size dependent

on the population’s temperature. Specifically, we know how large the atom-plane σx should be

given the functional form of the nx = 1 state (Eq. 6.3,6.4,6.5), and we know from analyzing our

momentum distributions (Sec. 6.4.1) how large the image-plane σx is. Taking the ratio of these two

sizes gives us a magnification of ×66, which is consistent with our previous measurement.

6.2.4 Time-of-flight image analysis

Imaging signal loss: In some cases, whether due to background collisions or thermal exci-

tations, atoms that are imaged in the first RPGC image of the experiment are lost from the optical

traps before the time-of-flight imaging procedure. In the case of optical homodyne tomography,

where one typically measures the occupation of an optical mode, the loss of a photon registers as a
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measurement of the n = 0 state. In our case, the loss of an atom does not result in the measurement

of an atom in the n = 0 state; rather, it simply results in a reduction of the signal to noise of the

experiment, so no additional analysis is necessary to account for this.

Richardson-Lucy deconvolution: The point spread function (PSF) of our imaging sys-

tem is non-zero in size and astigmatic, resulting in blurring of the measured quadrature distribution.

In order to compensate for these effects, we deconvolve our measured quadrature with an estimate

of our PSF (Sec. 6.2). While convolving two-dimensional imaging data is trivial, deconvolution is

difficult numerically, being is very sensitive to any imaging noise.

We use the Richardson-Lucy deconvolution algorithm as implemented in the scikit-image

python package. This iterative algorithm consists of iterating the relation

D(k+1) = D(k) ×
( I

D(k) ~ P
~ P ∗

)
, (6.1)

where D(k) is the quadrature distribution after k iterations of the algorithm, I is the original dis-

tribution, P is the PSF, P ∗ is the PSF flipped along all axes, and ~ is the convolution operator.

Multiplication and division of all terms is done element-wise. D(0) is initialized as an array uni-

formly filled with 1. This algorithm iteratively approaches the quadruatre distribution that, when

convolved with our measured PSF, maximizes the likelihood of reproducing the measured quadru-

atre distribution, subject to Poissonian noise in our photon signal. This iterative method is similar

to one that we use for density matrix reconstruction (Sec. 6.4.2).

In the equation above, a crucial intermediary step involves division, which in the presence

of sufficient noise can produce issues related to the division by small numbers issues and floating

point arithmetic. Therefore, the algorithm implements a filter step, whereby if an element in the

term I(k) ~ P is smaller than the filter value ζ0, the division result is floored to zero. While this

retains the spirit of the algorithm, it also introduces added complexity into choosing the number of

iterations to perform. As such, given the PSF there are two free parameters in the deconvolution

algorithm: the number of iterations of the algorithm and the filter value ζ0. We discuss how we
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minimize error due to this in Sec. 6.5.

6.3 Single-atom temperature characterization

6.3.1 Raman sideband spectra

A well-established method of characterizing the temperature of a single atom in a harmonic

trap is Raman sideband spectroscopy that evaluates the imbalance between the red and blue Raman

sidebands [175]. We do Raman sideband cooling at a trap depth of 1µK where we measure a radial

trap frequency of 139(4) kHz and an axial trap frequency of 28(6) kHz. Our cooling is capable of

producing 3D ground-state fractions greater than 90%. We estimate that over the course of several

weeks of data taking required for this experiment n̄x = 0.10(4) in the radial dimension based on

Raman sideband spectroscopy. This corresponds to a temperature of (kBT/2)/(Ezp/2) = 0.83(7),

where Ezp = ~ωx/2 is the zero point energy. Our Raman sideband spectroscopy addresses both the

x and y-dimensions so we do not isolate the x-axis temperature. However, expansion momentum

distributions indicate that there is no significant difference between radial axes (Sec. 6.3.2). The

Raman spectroscopy temperature is consistent with our observation of 11+3
−2% reverse transfer

during g-e adiabatic tunneling transfer (Sec. 6.1.4). In the axial dimension, which we are relatively

insensitive to, we measure n̄z = 0.08(10).

6.3.2 Ballistic expansion

When the trap is shut off the atom’s wavefunction will expand according to the standard

ballistic expansion formula

σx(t) =

√
2EKE
m

t2f + σx(0)2, (6.2)

for a given expansion kinetic energy EKE, which is the observable we directly measure via time-of-

flight imaging. At high temperatures, EKE → kBT/2. However, as T → 0, the expansion energy

diverges from the thermal energy as EKE is asymptotically dominated by the kinetic part of the
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harmonic-oscillator ground-state zero-point energy Ezp/2 = ~ωx/4.

To measure this expansion kinetic energy, we conduct a similar experiment as that of Fig. 6.2,

but we vary the expansion time tf before imaging (Fig. 6.10a). We fit the averaged momentum

distributions with a 2D Gaussian function, and then fit the Gaussian RMS values as a function of

expansion time with Eq. 6.2 in order to extract an expansion energy from this data.

The experimentally measured results show a ballistic expansion kinetic energy of EKE =

(kB × 0.256(16) µK)/2, which is close to the theoretical minimum at these trap parameters of

(kB × 0.188(1) µK)/2 (Fig. 6.10). It makes no statistically significant difference whether we use

σx, σy, (σx + σy)/2, or if we deconvolve the time-of-flight distributions with the in-trap PSF first

with reasonable deconvolution parameters, therefore we quote the temperature obtained from an-

alyzing the mean σ of the non-deconvolved data σfit = (σx + σy)/2. This corresponds to a tem-

perature of 0.205(12) µK (Fig. 6.10c), which is significantly different than the ballistic expansion

energy. The temperature determined from ballistic expansion corresponds to a normalized energy

of (kBT/2)/(Ezp/2) = 1.08+11
−10, which is similar to the value measured via Raman spectroscopy of

(kBT/2)/(Ezp/2) = 0.83(7) (Sec. 6.3.1). The slight discrepancy may suggest that the trap depth

ramps that occurs between Raman cooling and the release of the atom for ballistic imaging are not

perfectly adiabatic, or it may arise from fluctuations in the Raman cooling efficiency during the

long experiments required to measure the atoms in free-space.

6.4 Quantum state tomography and related characterizations

6.4.1 Single Fock-state momentum distribution analysis

In general, the momentum space wavefunction is related to the position space wavefunction

via a Fourier transform. The momentum space distribution of the nx = 0, nx = 1, and nx = 2

states with ground-state RMS momentums p0,x =
√
m~ωx/2 and p0,y =

√
m~ωy/2 are

|ϕ0(px, py)|2 =
1

2πp0,xp0,y
exp

(
−
( p2x
2p20,x

+
p2y

2p20,y

))
, (6.3)
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Figure 6.10: Ground state expansion. (a) The averaged time-of-flight distributions used in
the temperature measurement, labeled by the starting time of the 10µs time-of-flight image. Color
scales for different distributions are set individually. (b) The average RMS size σfit = (σx+σy)/2 of
the 2D fits of the data in part (a) (black circles) and their ballistic expansion fit (green line) versus
expansion time tf . Error bars are too small to be visible. (c) Relation between the measurable
expansion kinetic energy EKE and the underlying thermal kinetic energy kBT/2 (blue line), a slope-
1 reference (black line) and our measured data point (red point) which is significantly offset from
the slope-1 reference, indicating that the zero-point energy is significant in this expansion.
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|ϕ1(px, py)|2 =
1

2πp30,xp0,y
p2x exp

(
−
( p2x
2p20,x

+
p2y

2p20,y

))
, (6.4)

|ϕ2(px, py)|2 =
1

4πp0,xp0,y

( p2x
p20,x

− 1
)2

exp
(
−
( p2x
2p20,x

+
p2y

2p20,y

))
. (6.5)

As a baseline estimate of the stationary state, we can fit the raw momentum distributions

from Fig. 6.2d-f with a variable-weighted sum of the above momentum-space distributions convolved

with our imaging PSF to estimate the populations in the different states we prepare. We scale the

RMS x and y sizes of the above nx = 0 (nx = 1 and nx = 2) states based on our displacement-based

trap-frequency measurement of the nx = 0 (nx = 1) states, tf , and the independently measured

imaging magnification of ×64(1). It is important to fix the RMS size for characterization of the

ground-state, as a ground-state Gaussian of one trap frequency can be easily confused with a

thermal state with a smaller trap frequency. The excited state momentum distributions, which

do not suffer from this issue, can be used as independent calibrations of the magnification system

(Sec. 6.2.4), but for this analysis we fix the size of these functions as well. This analysis is a

useful preliminary diagnostic of our state preparation and imaging system. The nx = 0 state was

measured to have nx = (0, 1, 2) populations of (0.93(3), 0.07(2), 0.00(2)) which is consistent with our

expectations based on Raman sideband spectroscopy (Sec. 6.3.1), free-space expansion (Sec. 6.3.2),

and excited state preparation (Sec. 6.1.4). The nx = 1 state was measured to have diagonal

populations of (0.260(10), 0.651(14), 0.089(15)), and the nx = 2 state had diagonal populations

of (0.395(14), 0.125(18), 0.480(16)). Deviations of these excited state results from the ideals of

(0, 1, 0) and (0, 0, 1) likely result from a combination of imperfect state preparation (Sec. 6.1.4) and

blurring effects in the imaging which are not accounted for by the PSF deconvolution (Sec. 6.2).

Most such blurring effects that reduce the fringe contrast naturally manifest as population in lower

states, so these numbers can be reasonably understood as lower-bound estimates on our Fock state

preparation procedure. These considerations are treated in more detail in the context of the full

tomography in Sec. 6.5.
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6.4.2 Maximum likelihood estimation algorithm

We now turn to analysis of the full tomographic quadrature data of Fig. 6.3.

Quadrature data: The data in Fig. 6.3a,d,g for displaced nx = 0, non-displaced nx =

1, and displaced nx = 1 states consist of data sets of 9, 64, and 64 quadrature measurements

respectively. Each quadrature measurement is the average of a variable number of pictures. The

median numbers of pictures averaged for these individual quadrature measurements were 10852,

6191, and 11320 pictures for the data in Fig. 6.3a,d,g. The non-displaced nx = 1 data was taken

with notably fewer pictures than the other data sets.

We note that N quadrature measurements are needed to distinguish phase oscillations in

the quadrature distributions differing in angular frequency by Nωx, assuming the quadrature mea-

surements are equally spaced by phase angle 2π/N . Hence, N such measurements are needed to

reconstruct a density matrix occupying Fock states up to nx = N/2 [179]. However, even in the case

where we have occupation of states with nx ≥ N/2, we expect to accurately capture the density

matrix up to the N/2 off-diagonal. Given the expected form of the density matrix, considering

independent measures of the atom temperature and the size of the trap displacements, we estimate

the number of quadrature measurements used is sufficient for capturing all non-trivial elements of

the density matrix within error bounds.

MLE algorithm: Maximum likelihood estimation (MLE) is a common statistical tech-

nique for estimating the free parameters of a model based on how likely they are to reproduce a

given data set. In the case of quantum tomography, we can take the quantum state as a model

for producing measured observables, where the free parameters are typically the complex-valued

matrix elements of the density matrix in some basis. MLE will then return the density matrix most

likely to result in the observed data. This approach is attractive as we may a priori impose physical

assumptions about our state, as opposed to other methods like the inverse Radon transform that

may predict nonphysical states [181].

To determine the density matrix, we utilize an iterative MLE algorithm based off of the dis-
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cussion in Ref. [181], which we briefly review here. Suppose we have a set of projective measurement

outcomes, {(p̃j , θj)}, with shorthand p̃ = p̃(θ), labelled by index j and occurring with frequency fj

in our data set. Here, p̃j is the result of a measurement of p̃(θj) = p cos θj+mωxx sin θj , correspond-

ing to the quadrature distribution at phase angle θj . For any given pair (p̃, θ), we may form the

projection operator Π(p̃, θ) = |p̃, θ⟩⟨p̃, θ| so that the probability of obtaining such a measurement

in the state ρ is given by

P (p̃, θ) = Tr (ρΠ(p̃, θ)) . (6.6)

The problem of MLE then corresponds to finding the quantum state ρ that maximizes the likelihood

of obtaining the data set {(p̃j , θj)},

L (ρ) =
∏
j

P (p̃j , θj)
fj , (6.7)

while also subjecting the resulting state to various physical constraints. Namely, ρ must be a trace-

normalized, Hermitian, positive semi-definite matrix in a convenient, physically-motivated basis of

our choosing.

An iterative algorithm to maximize Eq. (6.7) is motivated by the observation that, for the

state ρ0 maximizing L, we must have fj ∝ P (p̃j , θj) in the large sample limit. Introducing the

operator

R (ρ̂) =
∑
j

fj
P (p̃j , θj)

Π (p̃j , θj) , (6.8)

and noting that
∑

j Π(p̃j , θj) ∝ I for identify matrix I, this translates to the condition

ρ0 ∝ R (ρ0) ρ0R (ρ0) . (6.9)

We may then leverage this to form the basis of an iterative algorithm,

ρ(k+1) ∝ R
(
ρ(k)

)
ρ(k)R

(
ρ(k)

)
, (6.10)

where we start with the initial trial state ρ(0) ∝ J , where J is a matrix of ones in our truncated

Fock basis, which has a nonzero probability for each possible outcome. We iterate this procedure
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until the error, as defined via T
(
ρ(k), ρ(k+1)

)
for trace distance T (ρ, ρ′) = 1

2Tr(
√
(ρ− ρ′)2) is less

than 10−4 or 500 iterations have been completed.

In practice, it is necessary to choose an appropriate reduced basis in which to restrict the set

of possible states. For our purposes, we restrict ourselves to motional Fock states with occupation

n ≤ nmax for a maximum occupation nmax = 25. The projection operators can then be defined via

Πmn (p̃, θ) = ⟨m|Π(p̃, θ) |n⟩

= ⟨m|p̃, θ⟩⟨p̃, θ|n⟩
(6.11)

with the standard harmonic oscillator matrix element

⟨n|p̃, θ⟩ = ie−inθ
( 1

2πp20

)1/4Hn

(
p̃/p0

√
2
)

√
2nn!

e−(p̃/p0)2/4 (6.12)

for Hermite polynomials Hn.

After reconstructing the density matrix, the state’s Wigner function may be obtained via

W (x, p) =
1

π

nmax∑
m,n=0

ρmn(−1)ke−iϕ(m−n)e−|α|2/2

√
k!

(k +∆)!
|α|∆L∆

k (|α|2) (6.13)

for α = x/x0 + ip/p0, ϕ = arg(α), k = min(m,n), and ∆ = |m− n|, where L∆
k are the generalized

Laguerre polynomials.

6.4.3 Alternative tomography methods

There are many alternatives to our use of maximum likelihood estimation. We explored

several in order to better understand and support our state preparation and tomography. Each

method has different drawbacks, making different assumptions about our states. We discuss several

alternative methods below for thoroughness.

Inverse Abel transform. It is possible to derive the Wigner function based on a single

time-of-flight image based on the assumption that the state’s Wigner function should be radially

symmetric [187], such that the quadrature distribution is time-invariant. These assumptions should

hold for Fock states and phase-randomized states.
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The Wigner functions of harmonic oscillator eigenstates are radially symmetric, meaning that

W (x, px) →W (p̃). In particular,

Wnx=0(x, px) =
1

2πx0p0
exp(− x2

2x20
− p2x

2p20
) (6.14)

Wnx=1(x, px) =
1

π

(2p2
~2

+
2x2

σ2x
− 1
)
exp

(
− σ2xp

2

~2
− x2

σ2x

)
(6.15)

The prepared states displayed in Fig. 6.2 should be primarily of fock state character. To the

extent that they are not pure Fock states, it is reasonable to suspect that they are an incoherent

or phase-randomized mixture of Fock states, as this infidelity would likely be driven by thermal

population, laser intensity and bias noise issues, and other issues which we do not coherently control.

Such incoherent or phase-randomized states would have Wigner functions which would be radially

symmetric. It has been shown and demonstrated that for radially symmetric Wigner functions, the

Wigner function is related to it’s quadrature distribution via the inverse Abel transform [187, 150]:

W (p̃) = − 1

2π

[∫ −∞

−p̃
+

∫ ∞

p̃

]
Φ′(p̃)√
r2 + p̃2

[dr] (6.16)

We use this result to reconstruct the approximate Wigner function of our single atom states

based on the assumptions discussed above. Specifically, we integrate the deconvolved profiles of

the raw data in Fig. 6.2 vertically, average the quadruatre distribution between the positive and

negative values of p̃, and numerically evaluate the above integral to obtain the Wigner function

(Fig. 6.11).

Inverse Radon transform. Another alternative method for the construction of a states

Wigner function is the use of the inverse Radon transform [188], which is given by the following

relation:

W (x, p) =
1

4π2

∫ ∞

−∞
[dp̃]

∫ ∞

−∞
[dη]

∫ π

0
[dθ]Φ(p̃, θ)

× |η| exp(iη(p̃− x cos(θ)− p sin(θ)))
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Figure 6.11: Inverse Abel Transform Wigner Function a The Wigner function the n = 1 state
data from Fig. 6.2 as reconstructed through the inverse Abel transform. Here, the one-dimensional
result of the transform is symmetrically wrapped around the origin in order to compare to other
estimation of the Wigner function. b The raw one-dimensional Wigner function used to create part
a of this figure. To obtain this result, we assume our data in Fig. 6.2 are stationary. c The raw
image reprinted from Fig. 6.2 which this Wigner function is derived from.
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Where Φ(p̃, θ) is the measured quadrature distribution. The inverse Radon transform is

widely used in the field of medical topographical imaging. Both the inverse Radon transform and

maximum likelihood estimation make assumptions about the underlying system. For the integral

transform such assumptions are necessary to evaluate the divergent kernel in the above relation,

and in MLE one must pick a finite basis with which to use in the algorithm. Maximum likelihood

estimation is widely preferred in quantum state tomography, however, because it is easier to enforce

reasonable physical assumptions about the state in this method than with the integral transform.

In particular, the inverse Radon transform can result in obviously non-physical states which have

non-Hermitian density matrices which have non-unity trace and negative diagonal values. When

we evaluate it for our tomography data presented in Fig. 6.3, it suggests, as an explanation for

camera noise in our data, non-trivial populations in unreasonably highly excited states. However,

it can still be illustrative to view the results of the inverse Radon transform, as it still consistently

reconstructs the main features of the data, including a strongly negative and displaced center for

our displaced nx = 1 atom data. Therefore, we include the result of taking the inverse Radon

transform of our deconvolved quadrature data in Fig. 6.12.

Pattern function overlap. Another method for reconstructing the density matrix is the

use of the so-called ”pattern functions”. These can be used to reconstruct a density matrix directly

from the measured quadrature distributions without the use of maximum likelihood estimation.

The pattern functions f̃k,ℓ(fp̃) are not unique, but one convenient form is given by [189]:

f̃k,ℓ(fp̃) = f̃ℓ,k(fp̃) = π(−i)ℓ−k

√
2kk!

2ℓℓ!
|fp̃|f ℓ−k

p̃ (6.17)

× exp(−f2p̃ /4)Lℓ−k
k (f2p̃ /2) (6.18)

These can be used to construct a density matrix via the following relation:
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Figure 6.12: Inverse Radon transform Wigner function. The measured Wigner function of a
displaced nx = 1 state. The inverse Radon transform is more sensitive in many ways to camera noise
than the maximum likelihood estimation is, although both methods result in a Wigner function
with the same primary features.
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ρk,ℓ =
1

4π2

∫ +∞

−∞
[dfx]

∫ 2π

0
[dθ]w̃(fp̃, θ) (6.19)

× exp(i(k − ℓ)θ)f̃k,l(−fp̃) (6.20)

Where w̃(fp̃, θ) is the 1-dimensional Fourier-transform of the quadrature data w(x, θ), and

fp̃ is the spatial frequency coordinate, and Ln
m(z) is the generalized Laguerre polynomial.

The main downside to this method is that like the inverse-Radon transform, when applied

to noisy data, this method produces unphysical density matrices with negative diagonal elements.

Normalization and comparison to other methods when these effects are significant are not trivial.

Error from this method can be estimated with a similar bootstrapping routine.

6.5 Error estimation

6.5.1 Estimating statistical error through bootstrapping

To present the Wigner functions distributions in Fig. 6.3 we apply MLE directly to the

observed quadrature data. When this is done, we obtain Wigner function maximum negativities

of -0.052 (-0.043) for the non-displaced (displaced) nx = 1 states discussed in Fig. 6.3. However,

this calculation does not naturally lend itself to estimation of the error on these values or on the

density matrices.

The calculation of confidence intervals for the results of the MLE algorithm is a non-trivial

task. We take the bootstrapping approach outlined in Ref. [181]. We begin by calculating the

expected quadrature distributions as a function of θ and p̃ for the non-bootstrapped MLE density

matrix, which is obtained from our measured quadrature data. For every value of θ, we then

simulate projective measurements of p̃ by sampling from these expected quadrature distributions,

and use this to generate an ensemble of bootstrapped images.

Separately, based on our Gaussian camera noise analysis, we reconstruct noise that is added to

each bootstrapped quadrature distribution. Specifically, we use Gaussian-distributed noise with a
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standard deviation consistent with what we observe in the tomography quadrature data (Sec. 6.2.3).

Note, for the highly-averaged statistics of our experiment, the quadrature distributions are well-

sampled, and the projection noise is small compared to the Gaussian camera noise.

At this point, we have an ensemble of bootstrapped quadrature distributions, which we can

run through our deconvolution algorithm and MLE, as done for our raw experimental data. This

yields an ensemble of density matrices, whose variation reflects the Gaussian camera noise in the

quadrature data.

The diagonal density matrix elements derived from the direct MLE and the bootstrapped

ensemble are displayed in Fig. 6.13a,b,c. While off-diagonal components are also important for

the state inference, this picture provides a simple method to compare different techniques and

expectations. From this comparison we can see the bootstrapped ensemble results in slightly less

population in higher nx states. From these density matrices we calculate the Wigner negativities,

as presented in the main text. The minimum value of the Wigner function for the nearly-stationary

nx = 1 state is found to be −0.060(6) and the displaced nx = 1 state of −0.064(6) Recall, for the

direct MLE analysis we obtain Wigner function maximum negativities of -0.052 (-0.043) for the

non-displaced (displaced) nx = 1 states discussed in Fig. 6.3. While all analyses clearly point to

negative Wigner values, we note the difference between the non-bootstrapped and bootstrapped

analyses is likely indicative of subtle effects such as non-ideal noise and the non-invertibility of our

numerical deconvolution routine (Sec. 6.2.3).

Lastly, we note that our reconstructed Wigner function for the displaced and non-displaced

nx = 1 states are qualitatively similar despite having independent noise patterns (Fig. 6.3d,g),

which indicates the robustness of the MLE reconstruction protocol.

6.5.2 Noise and imaging systematic effects

Systematic error due to variable Gaussian noise: We can simulate the systematic

effect of varying amounts of Gaussian noise on our MLE state reconstruction by again using our

bootstrapping procedure. For this simulation, we construct mixed states with only diagonal ele-
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Figure 6.13: State populations visualization via diagonal populations (top row) Popu-
lations of harmonic oscillator states measured in our tomography as calculated through the error
bootstrapping (blue bars) or the direct MLE result (black bars) for (a) the displaced nx = 0 state,
(b) the non-displaced nx = 1 state, and (c) the displaced nx = 1 state. (c) inset: populations
of the experimentally displaced nx = 1 data set after being displaced back to the origin. (bottom
row) For comparison, we display the populations of theoretically ideal states, which do not include
experimental imperfections in state preparation, with (red bars) and without (grey bars) the ap-
plied squeezing operator for (d) the displaced nx = 0 state, (f) the non-displaced nx = 1 state,
and (e) the displaced nx = 1 state.
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ments based on the least squares fits of the heavily averaged momentum distributions in Fig. 6.2, as

this data has the least relative noise. By adding variable amounts of Gaussian noise to this initial

state and conducting MLE on the result, we find that increasing amounts of Gaussian noise biases

the reconstruction to overestimate the population in higher-n states, and underestimates the true

negativity of the Wigner function (Fig. 6.14).
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Figure 6.14: Simulating the effects of Gaussian noise on maximum likelihood estima-
tion (a) Simulation of noise on a numerically displaced nx = 0 state with undisplaced diagonal
nx = (0, 1, 2) populations of (0.93(3), 0.07(2), 0.00(2)) and no off-diagonal populations, the values
suggested by least squares fitting of the highly-averaged momentum distributions in Fig. 6.2, for
demonstration. Shown are the mean values (solid lines) of populations nx = 0 through nx = 4,
averaged over 50 simulations at each RMS noise value. 95% of the single-simulation observed values
fall within the color bands to demonstrate variation of these parameters between simulations. (b)
Simulation of noise on an undisplaced but numerically squeezed nx = 1 state with undisplaced and
unsqueezed nx = (0, 1, 2) populations of (0.260(10), 0.651(14), 0.089(15)) picked similarly from the
least squares fitting routine for demonstration. Additionally shown are the mean Wigner values at
the location of the true minimum (xm, pm) (red line), and 95% of single-simulation Wigner function
values at this location lie within the red color band. (c) Similar to (b) with the same initial popu-
lations, but for a displaced nx = 1 state. A key reference point is the measured Gaussian camera
noise, as measured in our real quadrature data in Fig. 6.3 for each state (blue dotted lines).

Point-spread function and blurring effects: As discussed in Sec. 6.2, in order to

accurately reconstruct our state, we must take into account aberrations and blurring effects in the

time-of-flight images. Ideally, one could measure and characterize all such effects to reconstruct

the true point-spread function, which can then be used to deconvolve the measured quadrature

distribution. Because characterizing all blur is challenging for certain types of effects, we use
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a conservative value in our analysis, namely the in-trap size measured with RPGC, which is our

smallest PSF estimate (Sec. 6.2). A less conservative estimate is the larger time-of-flight distribution

of the atoms immediately after being released.

We verify that using larger PSF functions for deconvolution in the analysis of displaced and

non-displaced nx = 1 Fock state data (Fig. 6.3d-j), up to a factor of 1.5 larger in both dimensions,

results in uniformly more negative Wigner functions. For example, using the first-10µs time-of-

flight distribution (Table 6.2), which also has slightly less astigmatism, has a negligible impact on

our Wigner negativity — the reconstructed non-displaced nx = 1 Wigner function would have a

minimum value from the non-bootstrapped MLE analysis of -0.055 (instead of -0.052).

Other deconvolution parameters: In general, we expect the optimal deconvolution

parameters to depend on the nature of the state being reproduced and the amount of noise present.

To choose suitable values for our analysis, we perform bootstrapping similar to that done for

statistical error estimation, except that we allow the deconvolution parameters in the bootstrapped

ensemble to vary from the direct MLE reconstruction parameters. We then compare the resulting

bootstrapped density matrix to the direct MLE result to find optimal parameters that reproduce

the non-bootstrapped density matrix with the highest possible fidelity, where the fidelity is defined

as

F =

(
Tr
(√√

ρ1ρ2
√
ρ1

))2

. (6.21)

Let ζ0 and ζb denote the deconvolution filter values for our direct MLE and boostrapped density

matrices, respectively. We choose ζ0 such that the boostrapped density matrix with filter value ζb

yields the highest fidelity when ζb = ζ0. For the displaced nx = 1 data set, we find that a filter

value of ζb = 0.69 counts and between 2 and 10 iterations of the deconvolution algorithm reliably

reproduces the density matrix for a wide range of ζ0. We thus choose to use this value, ζ0 = 0.69,

in our main analysis. To minimize additional artifacting, we also apply only 2 iterations of the

deconvolution algorithm, for which our bootstrapping routine reproduces the non-bootstrapped

density matrix with a fidelity of 0.934(2).
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We apply a similar analysis to find that the highest-fidelity parameters for the displaced

nx = 0 analysis also corresponds to a filter value of ζ0 = 0.69, and that the best for the non-

displaced nx = 1 is ζ0 = 1.03, both similarly with 2 iterations of the algorithm. The non-displaced

nx = 1 requires slightly larger filtering to compensate for having slightly increased noise due fewer

points in this data set.

Noise and imaging analysis summary:

In conclusion, noise and imaging blur processes can influence the MLE algorithm when carry-

ing out tomography using imperfect camera imaging. We have shown through a survey of systematic

effects that their impact is either small or they result in our state reconstruction being a conser-

vative underestimate of parameters such as the magnitude of the Wigner function negativity and

state preparation fidelity.

6.5.3 Trap anharmonicity
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Figure 6.15: Best-fit dynamics for ⟨p̃(ωxte)⟩/p0 generated by Eq. (6.22) for an initial displaced
ground state (blue, dotted), compared to experimental results from Fig. 6.6 for an initial displaced
nx = 0 state (green).

Characterizing trap anharmonicity To analyze the effect of trap anharmonicity on

state reconstruction, we consider the dynamics of a single atom in a one-dimensional anharmonic

oscillator, which serves as a phenomenological model for the experimental optical tweezer potential.
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Specifically, we consider dynamics generated by the Hamiltonian

H =
p2

2m
+
mω2

xx
2

2
+ Λx4

=~ωx

[
(px0/~)2 +

1

4
(x/x0)

2 + λ(x/x0)
4

]
,

(6.22)

which describes an atom of mass m in a harmonic trap with frequency ωx, plus an additional quartic

term of characteristic strength Λ. In the second line, we have rewritten this potential in terms of

the harmonic length x0 =
√
~/(2mωx), and defined the dimensionless parameter λ = Λx40/(~ωx)

as the relative strength of the anharmonic correction.

We can obtain estimates of ωx and λ by comparing the predictions of our phenomenological

model with experimental observations. Specifically, we compare experimental data for the long-

time center-of-mass dynamics of an initially-displaced nx = 0 state (see Fig. 6.2k) to the average

momentum ⟨p̃(ωxte)⟩ obtained from Eq. (6.22) for an initially-displaced nx = 0 state. In the

case that λ < 0, we add a minimal sextic term ~ωx(2λ
2/3)(x/x0)

6 that ensures our potential

remains stable and retains only a single local minimum, and thus induces only local deformations

of our ground state; this term plays a negligible role in the resulting dynamics for the considered

parameters.

Treating ωx, λ, and the initial state displacement xi as free parameters, we perform a least-

squares fit of ⟨p̃(ωxte)⟩ to the experimental center-of-mass oscillations. We obtain best-fit values

of λ = −0.0037(4), ωx = 2π × 8.50(5) kHz (corresponding to x0 = 83nm) and xi = 166(5) nm. As

shown in Fig. 6.15, we observe that the fitted model robustly captures the observed damping. As a

crude estimate of the relative significance of the harmonic and quartic potential terms in the Hamil-

tonian when considering the dynamics of this displaced state, we can compare their expected values

at te = 0. By approximating moments by their harmonic values, we find 4|λ|⟨(x/x0)4⟩/⟨(x/x0)2⟩ ≈

0.13. While this indicates that the harmonic term remains dominant for displacements of this size,

the anharmonic term is not so small as to be easily discounted without further analysis. Separately,

we note the the best-fit estimate for the trap frequency in this model (8.50(5) kHz, with x0 = 83nm)

is comparable to the observed oscillation frequency in the experiment, 7.84(5) kHz with x0 = 86nm.
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The deviation between these values is consistent with the negative λ in our model, which generally

leads to a slower observed oscillation frequency for a displaced nx = 0 state than what is expected

for the corresponding ideal harmonic oscillator.

Maximum likelihood estimation in an anharmonic potential We now examine how

anharmonicity affects state reconstruction, utilizing the Hamiltonian in Eq. (6.22) as a model for

the tweezer potential. Following the protocol in the main text, we spatially displace an initial

state ρi by a fixed amount xi, which in the Schrödinger picture can be described by acting the

displacement operator D(xi) = e−ipxi/~ on the initial state. We then evolve for a time te, described

by the unitary operator U (t) = e−iteH/~. The resulting dynamical state is expressed as,

ρ (te) = U (te)D(xi)ρiD
†(xi)U

† (te) , (6.23)

from which we extract the time-evolved momentum distribution P (p, te) = Tr (ρ (te) |p⟩⟨p|) for

momentum eigenstate |p⟩. This distribution is used as the input for the iterative MLE algorithm

(Sec. 6.4.2).

To make connections with the experiment, we would like to analyze the effect of an anhar-

monic trap on reconstruction of a displaced nx = 1 state. Because the prepared state contains

contributions from other Fock states, we assume the initial state ρi can be well modelled by an

incoherent mixture of the low-energy eigenstates of the Hamiltonian,

ρi = P0|0⟩⟨0|+ P1|1⟩⟨1|+ P2|2⟩⟨2|. (6.24)

Here, Pnx denotes the probability of staring in the eigenstate |nx⟩; we denote this state by the

triplet P = (P0, P1, P2). By choosing Pnx that generally resembles the makeup of the state in

the experiment we are able to analyze the effects of initial mixed states in both the dynamics

and ensuing state reconstruction, and demonstrate robustness of MLE tomography over a range of

possible initial states.

As the state reconstruction data for the displaced nx = 1 state, featured in Fig. 6.3g-k, is

obtained using a deeper trap depth and smaller displacement than that used in our initial analysis
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of the anharmonic oscillator model Eq. (6.22) for the nx = 0 center-of-mass oscillations, we modify

the previously obtained best-fit parameters by an appropriate scaling. Assuming that H is linear

in the trap depth V , we have that λ ∼ 1/
√
V and ωx ∼

√
V . Hence we can rescale based on the

relative ratios of both the depth and displacement.

In Fig. 6.16a, we plot the fidelity of our reconstructed state, ρMLE, to the actual underlying

state, ρ(0) = D(xi)ρiD
†(xi), for a variety of compositions P. In the figure, we indicate P that

produces a state before displacement with a similar spatial extent in the trap as the nx = 1 states

in Fig. 6.3e, h. This point, indicated by the purple star, corresponds to P = (0.28, 0.57, 0.15), and

corresponds to estimates obtained in Fig. 6.13 for the diagonal composition of the state prepared

in the trap.

Within our model and for the indicated state, we find that the reduction in the fidelity

owing to anharmonic effects does not exceed 5%. However, for higher populations of the nx = 2

state, a larger reduction in fidelity is expected from anharmonicity, and a deeper trap or smaller

displacement would be needed to reduce the effect of anharmonicity and faithfully characterize such

states. Moreover, we find that the diagonal elements of the density matrix indicated by the purple

star remain very similar (Fig. 6.16b).

While the fidelity provides some measure of similarity between our states, of specific interest

is the robustness of the nonclassical nature of the prepared states, which may be identified through

the Wigner negativity γ ≤ 0, where γ = minx,pW (x, p). Therefore, we also plot the difference

in negativity between ρ(0) and ρMLE in Fig. 6.16c. Over the entire range of P considered, the

difference in obtained negativity never exceeds 0.06, and for the indicated estimates of our nx = 1

initial state composition, for which γ ≈ −0.04, the corresponding MLE state remains negative with

a difference in negativity of < 0.01.
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Figure 6.16: (a) Fidelity F (Eq. (6.21)) between the state ρ (0) and the reconstructed state ρMLE
for initial states ρi characterized by a range of P = (Pn=0, Pn=1, Pn=2), after evolution with our
anharmonic model Eq. (6.22). (b) Comparison of the diagonal elements for nx ≤ 10 of ρ(0) and
ρMLE after a displacement back to the origin, corresponding to P = (0.28, 0.57, 0.15) (purple star
in a). This point corresponds to a state with similar spatial extent as the nx = 1 state shown in
Fig. 6.3e, h. Here, nx labels the Fock states of the oscillator in Eq. (6.22). (c) For each P, we
then compute the Wigner negativity, γ = minx,pW (x, p), for our initial state ρ(0), as well as the
Wigner negativity γMLE of the reconstructed state. We plot the difference δγ = γ − γMLE; positive
regions indicate parameters for which ρMLE estimates more nonclassicality than the underlying
state, whereas negative regions indicate parameters for which ρMLE is an upper bound on this
negativity. The dashed black dashed line separates nonclassical states with γ < 0 from those with
γ = 0.
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