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Abstract. Laboratory courses for upper-division undergraduates often involve sophisticated equipment, relatively small class
sizes, and extended hands-on projects. These courses present distinct challenges and opportunities for the physics education
research community as these features are not often present in other undergraduate courses. Here, we focus on an upper-division
lab-based electronics course. As a first step in establishing learning goals for upper-division electronics, we interviewed
graduate students and faculty at the University of Colorado Boulder about the use of electronics in their own research labs. The
content-specific nature of electronics courses parallels the hands-on experience of graduate student researchers, so focusing on
the experiences of graduate students is ideal for informing lab course reform. From their interview responses, we developed
a framework for classifying applications of electronics. We identify five types of use and four forms of interaction with
electronics content that are consistently identified by faculty and graduate students. However, we see variations between
faculty and graduate students regarding how electronics is learned.
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INTRODUCTION

Most undergraduate physics programs, including the
one at the University of Colorado Boulder (CU), have
at least one upper-division lab course. These courses
present unique learning challenges to students by com-
bining theoretical knowledge with hands-on experience
and, in many cases, independent project-oriented work.
To physics education researchers, upper-division lab
courses represent an intersection of lab work, upper-
division content, and technology-related skills, which are
all areas in need of further study [1]. We are beginning
the process of transforming the upper-division lab-based
electronics course at CU in order to study those areas, as
well as to better serve our students. Our work is informed
by studies of the conceptual understanding of electronic
circuits, as discussed in ref. [2].

Our work follows efforts in transforming advanced
labs [3], including the senior-level lab course in the CU
physics program known as the Advanced Lab [4]. That
work established a process for transforming lab-based
courses [5]. The first step in that process was to develop
learning goals, which was done by interviewing faculty
about their views on the existing course, lab courses
in general, and the characteristics they looked for in
promising students starting in their research labs [6].

Here, we refine the process of upper-division lab re-
form, applying it to the junior-level electronics course
at CU. The existing electronics course consists mainly
of lab work in small groups, but also involves hour-long
lectures twice per week. The lectures are intended to par-

allel the lab activities. Students progress through a series
of lab experiments on analog and digital circuits during
weekly scheduled lab time and on their own, guided by
written lab guides and the instructor. The course culmi-
nates with self-selected projects spanning four weeks.

In transforming the electronics course at CU, we aim
to make the course more engaging and inspiring, as well
as a better preparation for a research career. We begin
by focusing on academic applications for practical rea-
sons. However, we believe that academia is a reasonable
proxy for electronics applications in national labs, indus-
try, and not-for-profit work as many of the techniques are
common to all areas. We conducted interviews of grad-
uate student researchers and research faculty about work
in their labs, placing a focus on graduate students’ use of
electronics.

Three main conclusions emerged from our interviews
and subsequent analyses. First, by focusing on gradu-
ate students, we were able to investigate the use of elec-
tronics more directly than by focusing on faculty. Grad-
uate students are a valuable source of information for
studying the experiences of experimentalists. This focus
is especially applicable towards electronics since profi-
ciency in electronics depends largely on specific content
knowledge. Second, by analysing interviews of graduate
students, we developed a framework for classifying the
range of electronics applications present in research labs.
Applying our framework yielded similar trends among
both faculty and graduate students, however we found
some key differences between the two groups in per-
ceptions of how electronics is learned. And third, by
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TABLE I.

Coding definitions for classifying an instance of electronics use in the lab. An instance can be classified along

two dimensions: Type and Interaction. Each dimension has several categories, which are not mutually exclusive.

Type Definition: Thinking about or working with... Example

Analog ...a continuous range of voltages, at the single component A servo loop to lock a laser to a cavity
level.

Digital ...a binary voltage signal. A moving mirror synchronized via TTL

pulses

Programming ...a programming language, abstracted away from the un- An automated DC conductivity mea-
derlying voltage levels in the device being programmed. surement

Black Box ...a piece of equipment someone else built, beyond the A spectrum analyzer
single component level.

Safety ...policies, procedures, or devices intended to reduce the risk ~ Which precautions apply when chang-
of bodily harm. ing a laser diode

Interaction Definition: Work that involves... Example

Design ...planning a strategy to solve a problem by weighing multi- Designing a rugged voltage probe to use
ple configurations or possible elements and their associated  on a rocket
trade-offs.

Build ...assembling someone else’s design by combining prese- Hooking up a motor control board
lected elements.

Use ...deploying something that the student did not build himself ~ Adjusting servo feedback parameters to
or herself. control the temperature of a hot plate

Fix ...re-visiting design decisions and/or re-building a subset Isolating and replacing an op-amp in a

of something in light of a new problem with an existing

damaged microscope

system.

analysing our interviews of graduate student researchers,
we quantified the relative frequency of various kinds of
electronics work. By transforming the electronics course
to better reflect the distribution of real-world electronics
usage, we can better prepare undergraduate students for
a research career.

METHODS

To begin developing learning goals for electronics
courses, we interviewed graduate students at CU about
their use of electronics in their research. We solicited
a broad range of students covering different sub-
disciplines in experimental physics and times spend as
graduate students. The 22 respondents were in year 3.4
of their graduate work on average. 27% of respondents
were female. 8 respondents worked in atomic, molecular,
and optical (AMO) physics, 7.5 in condensed matter, 3.5
in space/plasma, 2 in high energy, and 1 in biophysics,
with half counts accounting for work spanning two
fields. This diversity of fields was intentional, with the
aim of sampling the range of electronics use in research.

The interviews were conducted in a semi-structured
format. The bulk of the interview was comprised of
responses to the question, “What is the most important
aspect of electronics that you need to know for your
current research?” Interviewees ultimately spoke about
several instances of electronics use. For each instance,
we heard about the type of electronics used, the way in
which the student interacted with electronics, and in what
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context the student learned the skills needed to carry
out the work. We asked directed questions to fill in the
gaps once the interviewee had volunteered information
for each instance.

We took audio recordings and written notes during
the interviews, which were analyzed afterwards. From
this analysis, we developed and evolved categories for
classifying students’ responses that we used to code the
interviews. After the definitions were finalized, records
from 20% of student interviews were re-coded by an
additional researcher in PER who was not involved in
this work, as a test of inter-rater reliability. There was a
90% agreement in coding before discussion, and a 99%
agreement afterwards.

Subsequent to the graduate student interviews, we
conducted interviews of nine physics research faculty
members at CU. These faculty were comprised of one
assistant, three associate, and five full professors. All of
these interviewees had been instructors of the CU elec-
tronics course at some point within the last four years,
and had experience in experimental research labs span-
ning fields of AMO, condensed matter, and high energy.
We asked about the use of electronics by graduate stu-
dents in their research lab using a format very similar to
the graduate student interviews. Note that only two of our
student interviewees worked in the lab of one of our fac-
ulty interviewees. Nonetheless, our representative sam-
ple of graduate students who use electronics still makes
for an illuminating comparison with our sample of un-
dergraduate electronics instructors as the research fields
of the two sample groups are similar.



RESULTS AND DISCUSSION

Analysis of our interviews resulted in a framework for
classifying the use of electronics in a research environ-
ment. Table I shows our categories of electronics use
along two distinct dimensions, with accompanying def-
initions and exemplary instances. The two dimensions
we used to classify electronics work were Type, referring
to the type of electronics content knowledge needed for
the work, and Interaction, referring to how researchers
interacted with their equipment. Of the five categories
along the Type dimension, the first four were identified
before coding, while Safety was added during coding
as an emergent category. Similarly, Fix was added as
an emergent category in the Interaction dimension. Note
that while each category is distinct from the others, they
are not meant to be mutually exclusive.

Among the Interaction categories of Design, Build,
Use, and Fix, the first three form a ordered progression.
In our coding, it was clear that Designing was always
soon followed by Building, and likewise Building was
followed directly by Using. Therefore we decided to cat-
egorize each instance as only the earliest category in
this progression. For example, categorizing an instance
as Design implicitly assumes that Building and Using
also took place, but does not explicitly count in the Build
and Use categories. Our scheme therefore defines counts
in the Build and Use categories as representing only in-
stances in which the researcher picked up the progression
sometime after the Design phase. We believe that Design
understanding is generally broader and more complete
than the understanding required to Build a design, while
the understanding required to Use is narrower still. The
understanding required to Fix, however, is harder to rank
among the other categories, but often reaches a level of
understanding akin to Designing, albeit from a different
angle.

Some combinations of Type and Interaction categories
are incompatible with each other, and thus were explic-
itly forbidden in our coding. Designing and Building
does not make sense for a Black Box, given our defini-
tion of a Black Box. While Designing and Fixing a Pro-
gram are conceptually distinct, in practice it iS impossi-
ble to distinguish between those two Interactions, since
the programmer constantly flips between Designing and
Fixing during his or her work. Therefore, we decided to
code all of those cases as Programming Design, effec-
tively excluding Programming Fix, to avoid ambiguity.
While Programming Building was not explicitly forbid-
den, there were no cases in which a graduate student re-
searcher received a Programming Design from someone
else and then Built it him or herself.

The frequency of graduate students who mentioned
work in each Type category is shown in Fig. 1a. These re-
sults suggest that analog electronics is the most prevalent
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FIGURE 1. Graduate students’ work with electronics,

counted by interviewee (a) or by instance (b) and categorized
by Type of use. Colors in (b) indicate the breakdown of each
type by Interaction. Error bars represent the standard error of
the sample proportion.

type of electronics used by physics researchers, while
programming and the use of black boxes (such as com-
mercial test equipment) are also common.

Comparisons and relationships between dimensions
can provide insight into the best approaches for teach-
ing and learning electronics. For example, Fig. 1b shows
the Type of electronics used by graduate students col-
ored by their Interaction with that piece of electronics.
In this case, responses were counted by instance, giv-
ing more weight to interviewees who had more to say
about electronics use in their research. We constructed a
contingency table from this information and conducted
Pearson’s Chi Squared Test of Independence [7] to see
if these two dimensions are statistically independent.
We eliminated the Programming and Black Box cate-
gories from this analysis because those categories were
affected by category combinations explicitly forbidden
in our coding scheme. We found a p-value of 61%, indi-
cating little relationship between the Type of electronics
and researchers’ Interaction with it. This suggests that
student researchers Interact with electronics in a variety
of ways over the course of their work.

In addition to classifying what and how electronics is
used in research labs, we asked our interviewees how
graduate students learn the skills they need for their elec-
tronics work. Perceptions of how students learn electron-
ics are shown in Fig. 2. Our analysis shows a comparison
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FIGURE 2. The frequency of resources graduate students
used to learn electronics skills. Students and professors were
asked how graduate students learn the skills they use in lab.
The number of people who fell into each category are shown,
normalized by the total number of people interviewed. Error
bars represent the standard error of the sample proportion.

of graduate student and faculty perceptions. Eight cate-
gories emerged from the responses, as shown along the
horizontal axis of Fig. 2. We counted the number of inter-
viewees who mentioned each category and respectively
normalized those counts by the total number of graduate
students or faculty interviewed. The perceptions of stu-
dents and faculty roughly match with a few notable ex-
ceptions. More faculty than students responded that stu-
dents learn from their advisors, while more students re-
sponded that they learn from the Internet, company tech-
nicians, and the written documentation pertaining to their
lab equipment. These differences illustrate the benefit of
focusing on graduate student experiences when investi-
gating common practice in research labs.

CONCLUSIONS

By interviewing graduate students and faculty on their
use of electronics in their research labs, we gained a
sense of the use of electronics in modern physics re-
search. These findings can form the basis for learn-
ing goals and the overall transformation process for our
upper-division lab-based electronics course. Analysis of
our interviews led to a classification scheme for the use
of electronics in the lab. The frequency of each cate-
gory paints a picture of what electronics lab work looks
like, which can be used to better match an undergradu-
ate course to professional research. For example, Ana-
log electronics is the most prevalent Type of electronics
used by physics researchers, while Programming and the
use of Black Boxes (such as commercial test equipment)
are also common. Furthermore, no single Interaction was
associated with Analog, Digital, or Safety electronics.
These findings suggest that a variety of Types and In-
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teractions should be well represented in electronics cur-
ricula.

Graduate students were an important demographic to
study in learning about the use of electronics in research,
as it is these people who are most familiar with the
specific content and skills needed in the lab. Content-
specific courses such as upper-division electronics could
benefit greatly from perspectives gained through gradu-
ate student researchers. While graduate students spoke of
the same categories of electronics as faculty, some dis-
crepancies existed in perceptions of how electronics is
learned. These discrepancies may indicate, for example,
that electronics instructors should make a conscious ef-
fort to encourage the use of the Internet, written docu-
mentation, and experts outside the classroom (as a proxy
for company technicians) to learn electronics.

The classification scheme developed here could be
modified and extended to other areas of lab work be-
sides electronics, for example optics, to achieve the same
goal of better preparation for professional research. We
intend to use the findings of this work as a starting point
for developing learning goals for a lab-based electronics
course. In parallel, we will broaden and refine our in-
vestigation of the usage of electronics in research labs
by developing a survey suited for dissemination to other
institutions beside CU. Responses from this broader base
of respondents will paint a clearer picture of the role elec-
tronics plays in the varied landscape of modern physics
labs.
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