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Student learning in instructional physics labs represents a growing area of research that includes
investigations of students’ beliefs and expectations about the nature of experimental physics. To directly
probe students’ epistemologies about experimental physics and support broader lab transformation
efforts at the University of Colorado Boulder and elsewhere, we developed the Colorado Learning
Attitudes about Science Survey for experimental physics (E-CLASS). Previous work with this
assessment has included establishing the accuracy and clarity of the instrument through student
interviews and preliminary testing. Several years of data collection at multiple institutions has resulted in
a growing national data set of student responses. Here, we report on results of the analysis of these data to
investigate the statistical validity and reliability of the E-CLASS as a measure of students’ epistemol-
ogies for a broad student population. We find that the E-CLASS demonstrates an acceptable level of both
validity and reliability on measures of item and test discrimination, test-retest reliability, partial-sample
reliability, internal consistency, concurrent validity, and convergent validity. We also examine students’
responses using principal component analysis and find that, as expected, the E-CLASS does not exhibit

strong factors (a.k.a. categories).
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I. INTRODUCTION

The physics education research community has a
growing body of research dedicated to investigating
students’ attitudes and epistemologies, such as what it
means to know, learn, and do physics. This attention to
students’ epistemologies stems, in part, from research
demonstrating that students’ beliefs and expectations
about the nature of doing and knowing physics can be
linked to both their decision to pursue physics (i.e.,
retention and persistence) and their content learning in a
physics course [1,2]. To further investigate these links,
researchers have developed several assessments designed
to directly measure students’ epistemologies and expect-
ations (E&E) about both physics specifically [3—5] and
the nature of science more generally [6-8].

Until recently, the available physics-specific E&E sur-
veys have focused on assessing students’ epistemologies in
the context of instruction in lecture courses. However,
laboratory courses also offer significant and potentially
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unique opportunities for students to engage in the core
practices and ideas of physics. Indeed, developing students’
E&E has been called out as an important goal of laboratory
science courses by multiple national organizations includ-
ing the American Association of Physics Teachers [9,10],
the National Research Council [11], and the President’s
Council of Advisors on Science and Technology [12].
These calls emphasize that effective laboratory instruction
should help students develop expertlike habits of mind,
experimental strategies, enthusiasm, and confidence in
research.

To support ongoing, nationwide initiatives to improve
laboratory instruction within physics based on these rec-
ommendations, researchers at the University of Colorado
Boulder (CU) recently developed the Colorado Learning
Attitudes about Science Survey for experimental physics
(E-CLASS) [13]. E-CLASS is a 30-item, Likert-style
survey designed to measure students’ epistemologies and
expectations about experimental physics (see Supplemental
Material for a list of all item prompts [14]). Items on the
E-CLASS feature a paired question structure in which
students are presented with a statement and asked to rate
their level of agreement from both their personal perspec-
tive and that of a hypothetical experimental physicist
(see Fig. 1) [15]. The instrument was developed to target
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Calculating uncertainties usually helps me under-

stand my results better.
Strongly
disagree
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1 2 3 4 5 agree

What do YOU think when
doing experiments for class?

What would experimental
physicists say about their
research?

FIG. 1. An example item from the E-CLASS. Students are
asked to rate their agreement with the statement from their own
perspective and that of an experimental physicist. See Supple-
mental Material for a list of all item prompts [14].

explicit learning goals articulated as part of laboratory
course transformations taking place at CU [16].

The development and initial validation of the E-CLASS
included both iterative faculty review and student think-
aloud interviews [13]. Twenty-three physics experts
reviewed and responded to the E-CLASS survey. These
responses were used to confirm that the instrument effec-
tively targeted the desired learning goals and determine
the consensus, expertlike response. Additionally, 42 inter-
views were conducted in which students completed
the survey while explaining their reasoning out loud.
The E-CLASS was modified based on these interviews in
order to ensure the prompts were clear and correctly
interpreted. For example, the prompt “What do YOU think
when doing experiments for class?” was reworded from
the original, simpler version “What do YOU think?”
The addition of the phrase “when doing experiments
for class” was motivated by evidence from interviews
that students with prior research experience would some-
times pull from their personal research experiences, rather
than their laboratory course experience, when responding
to the survey [13].

The current version of the E-CLASS has now been
administered as an online pre- and postsurvey for five
semesters at CU and multiple other institutions across the
US. In this article, we build on the initial validation of the
E-CLASS through analysis of this national data set in
order to establish the full statistical validity and reliability
of the instrument for a broad student population. After a
general overview of the data collection and scoring of the
E-CLASS (Sec. II), we present the results of a detailed
statistical analysis of students’ responses, including test
and item scores (Sec. III A), reliability (Sec. III B), validity
(Sec. III C), and principal component analysis (Sec. 1V).
We end with a discussion of limitations and future work
(Sec. V). Throughout this article, we will focus exclusively
on analyses related to establishing the statistical validity
of the E-CLASS. Analysis of the data to address broader
research questions (e.g., impact of different pedagogical
techniques on E-CLASS scores) will be the subject of
future publications.

II. METHODS

In this section, we describe the methods used for
collection, scoring, and analysis of student responses to
the E-CLASS. We also present the general demographic
breakdown of our final data set.

A. Data sources

All data for this study were collected between January
2013 and June 2015, and, in all courses, the E-CLASS was
administered online. The survey was hosted exclusively at
CU, and all student responses were collected directly by
the CU research team without needing to be collected by
the course instructor first. To administer the E-CLASS,
participating instructors completed a course information
survey [17] in which they provided basic information about
their course, institution, and pedagogy. After completing
the course information survey, instructors received a link
to the online pre- and postinstruction E-CLASS to distrib-
ute to their students. In most cases, the pre- and postsurvey
remained open for the first and last seven days of the
course, respectively.

Instructors were recruited to administer the E-CLASS
in their courses through a variety of methods, including
presentations at national professional meetings and Emails
to professional list serves. Information on the instrument
was also available on the E-CLASS Web site [17],
providing an additional avenue for interested instructors
to learn about the survey. Over the five semesters of data
collection, we aggregated student responses to the pre-
and/or postinstruction E-CLASS from 80 distinct courses
spanning 49 institutions including CU. We have matched
pre- and postinstruction data from 71 of these courses
spanning 44 institutions. These institutions include a
variety of different types from four-year colleges to
Ph.D.-granting institutions (see Table I). Additionally,
several institutions administered the E-CLASS multiple
times in the same course during the five semesters of data
collection resulting in a total of 103 separate instances of
the E-CLASS in our matched set and 114 in the overall pre-
and postinstruction data sets. Moreover, these courses span
the full space of introductory and advanced labs. Table II
shows the breakdown between first-year and beyond-first-
year courses in the matched data set.

Certain student responses were eliminated from the final
pre- and postsurvey data sets because they were identified

TABLE I. Number of institutions of different types for which
we have either pre- or post-test responses or matched pre- and
post-test responses to the E-CLASS.

Two-year  Four-year = Master’s Ph.D.
college college granting  granting Total
All 0 25 4 20 49
Matched 0 23 4 17 44
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TABLE II. Number of first-year and beyond-first-year courses
in the matched data set. The number of students in the beyond-
first-year courses is smaller in part because of the smaller class
sizes typical of more advanced physics labs. The number of
separate instances of the E-CLASS accounts for courses that
administered E-CLASS more than once in the five semesters of
data collection.

TABLE IV. Breakdown of students by major in the matched
data sets (N = 3591). Note that “Physics” includes both physics
and engineering physics majors, and “nonscience” includes both
declared nonscience majors and students who are open option or
undeclared. The exact distribution of majors in any specific
course varies significantly based on the type and level of the
course.

Distinct Separate Number of Engineering Other science

courses instances students Physics  (nonphysics) and math Nonscience
First year 35 49 2433 Percent 23% 29% 40% 7%
Beyond first year 36 54 1158

as invalid. For a response to be considered valid, the student
must (1) include at least two of the three student identifiers
(first name, last name, and student ID number), (2) respond
to multiple survey questions, and (3) respond appropriately
to a filtering question. This filtering question asks
students to select the option “Agree” (not “Strongly
Agree”) and was included in the survey to help eliminate
responses from students who randomly selected answers
without reading the questions. Valid student responses were
then matched pre- to postinstruction using student ID
number or, when student ID matching failed, first and last
name.

The final breakdown of valid student responses overall
and by gender is given in Table III. Table III does not
include a breakdown of the racial demographics of our
sample because these data were not collected. Starting in
Fall 2015, the postinstruction E-CLASS will collect data on
the race of the participants. Data on students’ current major
were also collected on the postsurvey. Table IV reports
the breakdown of students by major in the matched data set.
Here, engineering physics majors are included in the
“Physics” category and undeclared majors are included
in the “Nonscience” category.

To get an idea of the overall response rate, we compare
the number of E-CLASS responses to the number of
students enrolled in the course. Total enrollment was
reported by the instructor on the course information survey;
however, this number represents only a rough estimate of
the actual enrollment because many instructors complete
the survey prior to the start of the term when the number
of students may still fluctuate. Moreover, the reported
enrollment is likely an overestimate as it reflects the initial

TABLE III. Number of students in the final pretest, post-test,
and matched data sets. Note that gender data were collected only
on the postinstruction E-CLASS, and a small number of students
opted not to provide their gender.

Total N Female Male
Pretest 5658 e
Post-test 4732 35% 62%
Matched pre- and post-test 3591 36% 62%

enrollment of the course and does not take into account
those students who drop the course during the term.
The overall, average response rate for our sample was
75% for the pretest and 64% for the post-test. Response
rates for individual courses varied significantly. Factors that
may have impacted the response rate include the level of
incentive provided by the instructor (i.e., normal course
participation credit, extra credit, or no credit for comple-
tion), when the instructor distributed the link, and how the
instructor framed the activity to the students.

In addition to students’ responses to the E-CLASS,
we also collected student grade data from two semesters
of the four core physics laboratory courses at CU in order to
address the relationship between E-CLASS scores and
laboratory course grade (Sec. III C 3). These courses span
both the lower- and upper-division level, and, in all cases,
students were awarded only participation credit for com-
pleting the survey. Final letter grades were collected for all
students who agreed to release their grade data. Only
students with matched postinstruction E-CLASS scores
and final course grades were included in the grade
analysis (N = 873).

B. Scoring

Students’ numerical E-CLASS scores are determined
only by their responses to the prompt targeting their
personal beliefs, rather than their prediction of what an
experimental physicist would say (see Fig. 1). Moreover,
for the purpose of validating the survey, we will focus
exclusively on students’ pre- and postinstruction scores
rather than their shifts from pre- to posinstruction. The
motivation for this is to minimize the potential for con-
founding the validation of the survey with the impact of
instruction. This also allows individual implementations
of the pre- or postinstruction E-CLASS to provide valid
and comparable results that can be used, for example, as
baseline data.

For scoring purposes, students’ responses to each 5-point
Likert item are condensed into a standardized, 3-point scale
in which the responses “(dis)agree” and “strongly (dis)
agree” are collapsed into a single category. Responses are
then given a numerical score based on whether they are
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consistent with the consensus expert response. The expert
response can be either agree or disagree depending on
particular item [13], and thus, student responses to indi-
vidual items are coded simply as favorable (41), neutral
(0), or unfavorable (—1). The collapsing of the 5-point
scale to 3 points is common in the analysis of Likert-style
items and is motivated, in part, by the inherently ordinal,
rather than interval, nature of the Likert response scale [18].
The use of the 3-point scale is also supported by previous
literature suggesting that the threshold between “Agree”
and “Strongly agree” is not always consistent between
individual students or groups with different cultural back-
grounds [19].

Previous literature on E&E surveys has often defined a
student’s overall score as the fraction of items to which they
responded favorably [3]. This 2-point scoring scheme treats
neutral and unfavorable responses the same. However, we
consider the distinction between a neutral and an unfav-
orable response to be valuable and argue that the overall
score should include this distinction. Thus, students’
overall E-CLASS scores are given by the sum of their
scores on the individual items on the 3-point scale
described above. This results in a range of possible scores
from —30 to 30 points. To explore the impact of different
scoring conventions, we performed all of the analyses
described in Sec. III using both the 2-point and 3-point
scoring schemes and found that the two schemes resulted in
the same conclusions with respect to the validity and
reliability of the E-CLASS.

C. Analysis

There are multiple potential approaches to the analysis
of multiple-choice tests [20]. We utilized two of these
approaches here: classical test theory (CTT) [21] and
principal component analysis [22]. CTT establishes the
validity and reliability of a multiple-choice assessment
based on the assumption that a student’s score is composed
solely of both their true score along with some random error
[20]. Validation of an assessment via CTT involves analysis
of student responses to calculate multiple test statistics and
evaluation of these statistics relative to accepted thresholds
(see Sec. III). One major drawback to CTT stems from the
fact that all test statistics are calculated using student
responses and, thus, are dependent on the specific pop-
ulation of students. As a consequence, there is no guarantee
that test statistics calculated for one student population
(e.g., undergraduate students) will hold for another pop-
ulation (e.g., high school students). For this reason, scores
on assessments validated through the use of CTT can only
be clearly interpreted to the extent that the student pop-
ulation matches the population with which the assessment
was validated [23].

One alternative to CTT for establishing the statistical
validity of a multiple-choice assessment is item response
theory (IRT). IRT addresses many of the shortcomings of

CTT by providing a method for producing population-
independent estimates of both item and student parameters
[20,23]. In the simplest IRT models, a student’s perfor-
mance on an item is assumed to depend only on their latent
ability and the item’s difficulty. For test items that fit this
model, all item and student parameters calculated via IRT
are independent of both population and test form [20,24].
However, IRT models also assume that the assessment is
unidimensional (i.e., designed to measure a single con-
struct). The E-CLASS, on the other hand, was explicitly
designed to target multiple, potentially nonoverlapping
aspects of students’ beliefs about the nature of experimental
physics, including modeling, statistical analysis, trouble-
shooting, etc. [13]. For this reason, we have chosen to
utilize CTT, rather than IRT, to establish the statistical
validity of the E-CLASS.

Literature on existing E&E surveys often groups ques-
tions into categories (a.k.a. factors) and reports students’
scores in each of these categories. In some cases, this
categorization was based on a priori criteria imposed by the
developer (see, e.g., Ref. [4]). In other cases, the categori-
zation was based on statistical analyses such as factor
analysis, which identified statistically robust categories of
questions (see, e.g., Refs. [3,25]). However, items on the
E-CLASS were not specifically developed to match a
specific categorization scheme, but rather to target a wide
range of individual learning goals. In other words, the
E-CLASS was not designed with specific categories in
mind; thus, we have no a priori cause to believe that the
E-CLASS would exhibit strong factors.

In order to determine whether or not the E-CLASS can
be adequately characterized by a relatively small number of
question groups, we utilize principal component analysis
(PCA). PCA is a data reduction technique used to reduce
the number of variables in a data set while still capturing a
significant fraction of the variance [22,25]. PCA is typically
used in data sets where there is reason to believe that
there is significant redundancy among the variables [22]
and uses an interitem correlation matrix to identify groups
of items that appear to vary together. We performed a PCA
on students’ responses to both the pre- and postinstruction
E-CLASS from the matched data set using the statistical
software package R [26].

III. RESULTS: STATISTICAL VALIDITY

This section presents evidence for the statistical validity
and reliability [21] of the E-CLASS using the preinstruc-
tion, postinstruction, and matched data sets described in
Sec. I A. The results of the principal component analysis
will be discussed in Sec. IV.

A. Test and item scores

As described in Sec. II B, a student’s overall E-CLASS
score is given by the sum of their scores on each of the
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FIG. 2. Distribution of students pre- and postinstruction E-
CLASS scores for students with matched pre- and postinstruction
scores (N = 3591). The average E-CLASS score was 16.5 + 0.1
points (6 = 6.8) for the pretest and 15.4 + 0.1 points (¢ = 7.9)
for the post-test. The difference between the two distributions is
statistically significant (Mann-Whitney U [27], p < 0.05).

30 items where each item is scored on a 3-point scale
(favorable = +1, neutral = 0, unfavorable = —1). Figure 2
shows the distribution of overall E-CLASS scores for the
matched data set (N = 3591). The difference between
the pre- and postdistributions is statistically significant
(Mann-Whitney U [27], p < 0.05), though the effect size
is small (Cohen’s d = 0.14 [28]). The students’ overall
performance on the E-CLASS can also be summarized by
looking at the average fraction favorable relative to the
average fraction unfavorable. Table V reports these sta-
tistics for the matched pre- and postinstruction E-CLASS.

In addition to looking at the overall E-CLASS score, we
can also examine students’ scores on each item individu-
ally. A sorted graph of the average pre- and post-test scores
for each of the 30 E-CLASS items is given in Fig. 3.
Figure 3 also highlights questions for which the difference
between the pre- and postinstruction scores is statistically
significant. Statistical significance was determined at the
a = 0.05 level, and p values were corrected for multiple-
testing effects using the Holm-Bonferroni method [29].
While there is no standard criteria for acceptable item
scores on Likert items [30], it is typically argued that ideal

TABLE V. Average fraction of items with favorable and

unfavorable responses for the matched pre- and postinstruction
E-CLASS.

Standard (Standard

Average error deviation)
Favorable Pre 0.69 0.002 (0.15)
Post 0.68 0.003 (0.16)
Unfavorable Pre 0.15 0.002 (0.10)
Post 0.17 0.002 (0.12)

item scores should be targeted towards maximizing the
potential discriminatory power of each item and the test
as a whole [31]. Figure 3 shows that the average item
scores for the 30 E-CLASS items all fall between —0.4
and 0.96. This wide range suggests that the E-CLASS is
capturing a significant amount of variation in students’
epistemologies and expectations about experimental
physics.

B. Reliability

The reliability of an assessment relates to the instru-
ment’s ability to measure the targeted construct(s) consis-
tently. In this section, we present measures of several
different aspects of the reliability of the E-CLASS includ-
ing: test-retest reliability, time-to-completion reliability,
partial-sample reliability, internal consistency, and testing
environment (i.e., in-class versus online) reliability.

1. Test-retest reliability

The test-retest reliability of an assessment looks at the
stability of students’ scores. In other words, if students were
to take the test twice with no intervention, they should, in
theory, get the same score. Straightforward measures of
test-retest reliability are difficult to achieve for a number of
logistical reasons, including maturation and retest effects.
One proxy that can be used to establish the test-retest
reliability of the E-CLASS is the stability of preinstruction
scores from semester to semester of the same course. As the
students in a particular course are drawn from the same
population each semester, we can reasonably expect that
the preinstruction scores for that course should remain
relatively stable over time.

During the five semesters of data collection, we collected
matched pre- and postinstruction data for two or more
semesters of 16 different courses at 11 institutions. Of
these, only five courses showed statistically significant
differences between the average preinstruction scores
between semesters. In all cases, these differences stemmed
from a single semester with anomalously high or low
scores, and the effect sizes ranged from small (two courses,
d = 0.2) to large (three courses, d > 0.5). However, while
we expect the preinstruction population of a course to be
relatively stable, it is also reasonable to expect that there
would be small, legitimate variations in this population
from cohort to cohort. The small number of statistically
significant variations detected in our pretest data is con-
sistent with this, thus supporting the test-retest reliability of
the E-CLASS.

Another proxy for the test-retest reliability of the
E-CLASS looks at whether students’ scores shift from
the beginning to the end of the semester when they are not
enrolled in a laboratory course. To investigate the stability
of students’ scores under the null condition, we adminis-
tered the E-CLASS pre- and postsurveys to one instance
of the middle-division classical mechanics course at
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FIG. 3. Average item scores using the 3-point scoring scale for each of the 30 E-CLASS items. Items are sorted in ascending order by

scores on the preinstruction E-CLASS. Statistically significant differences between the pre- and postinstruction averages are indicated
by a red star (Holm-Bonferroni corrected p < 0.05). See Supplemental Material for a list of individual prompts [14].

CU (N = 49). Given the standard course sequence at CU,
the majority of the students in this course are physics and
engineering physics majors and are not taking a physics
laboratory course at the same time. To identify any off-
sequence students, the postinstruction E-CLASS for this
course was modified to ask students to report which (if any)
laboratory courses they were taking that semester.

We collected 38 matched responses to the E-CLASS
from the classical mechanics course, ten of whom were
concurrently enrolled in a physics laboratory course. The
remaining students (N = 28) had an average preinstruction
score of 17.6 + 1.6 (¢ = 8.5) and a postinstruction score of
17.6 + 1.5 (6 = 7.8). The difference between these scores
is not statistically significant, suggesting that these stu-
dents’ epistemologies did not shift over the course of a
semester in which they were not enrolled in a laboratory
course. Alternatively, the ten students who were concur-
rently enrolled in a physics laboratory course showed a
slight decrease in their scores (22.2 points to 21.6 points)
over the semester. With only ten students, this decrease is
not statistically significant; however, the direction and
magnitude of the shift are consistent with that in the
overall population (Fig. 2). This finding also preliminarily
supports the test-retest reliability of the E-CLASS; how-
ever, additional data from other courses and institutions will
be necessary to robustly establish the stability of students’
E-CLASS scores under the null condition.

2. Time-to-completion reliability

It is also worth examining whether there is any corre-
lation between the amount of time each student spends
on the survey and their final score. In most cases, the
E-CLASS was administered as an out-of-class online
assignment, and start and stop times for each student
were automatically collected by our online system for all
semesters except one. The time elapsed is defined as the
amount of time between when the student first clicked on
the survey link to their final submission. Between these two
times, however, a student may, for example, step away from
the computer or close out the survey and start again at a
later time. For this reason, the time elapsed does not

necessarily represent the amount of time the student
actually spent completing the survey. The median time
elapsed was 8 min for the pretest and 12 min for the post-
test. The correlation between overall score and time elapsed
was |r| < 0.02 for both pre- and post-tests. This correlation
is neither statistically nor practically significant, suggesting
that there was no link between time to completion and
E-CLASS score for the matched data set.

3. Partial sample reliability

For any assessment with less than 100% response rate, it
is also important to keep in mind the potential for selection
effects when interpreting students scores. Because students
essentially self-select into those who respond and those
who do not, the sample of respondents may end up
overrepresenting certain subpopulations (e.g., high per-
formers) and underrepresenting others (e.g., low perform-
ers). To examine one aspect of the partial-sample reliability
of the E-CLASS, we compare the average overall score for
the matched data set with the average overall score of
students who took only either the pre- or postsurvey. We
found no statistically significant difference in average
preinstruction scores for the matched and unmatched data
sets. This same difference for the postinstruction scores was
statistically significant (p < 0.05) with the unmatched
students scoring slightly below the matched, but the effect
size was small (d = 0.2).

In addition to looking at the partial-sample reliability of
the matched data relative to the unmatched data, we can
also examine the population of respondents and nonres-
pondents relative to other measures of student performance.
In order to establish the convergent validity of the
E-CLASS (see Sec. IIIC3), we collected course grade
data for all students in CU’s four core laboratory courses
over two semesters during which we also administered the
E-CLASS. From these data, we can compare the average
course grade of students who completed both the pre- and
postinstruction E-CLASS (N = 875) with those who com-
pleted only one or neither (N =459). We found that
students in the matched data set had an average laboratory
course grade of 3.3 (on a 4-point scale) while the average
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for those who completed only one or neither was 2.7.
The difference in final grade between the matched and
unmatched students is statistically significant and repre-
sents a relatively large effect size (d = 0.7). This suggests
that low response rates likely result in an underrepresen-
tation of lower performing students.

This selection effect is unsurprising, but is an important
factor for instructors and researchers to keep in mind when
interpreting the results of the E-CLASS for courses with
lower response rates. The oversampling of the higher
performing students may suggest that results from courses
with low response rates should be interpreted as a best
case scenario snapshot of the overall student population’s
epistemologies.

4. Internal consistency

Another aspect of test reliability is the consistency of
students’ scores on arbitrary subsets of items. For a
unidimensional test, Cronbach’s alpha is a measure of this
type of internal consistency [32]. Cronbach’s alpha can be
loosely interpreted as the average correlation between all
possible split-half exams. For the purposes of low-stakes
testing of individuals, a minimum value of @ = 0.8 is
considered acceptable [21]. For the matched data set, we
found o = 0.76 for the presurvey and a = 0.83 for the
postsurvey. However, the interpretation of Cronbach’s
alpha generally assumes a unidimensional test targeting
a single construct, and multidimensionality within the
assessment will tend to drive alpha downward [32]. The
E-CLASS, alternatively, was not designed to be unidimen-
sional, but rather to target multiple, potentially overlapping,
aspects of students’ ideas; thus, Cronbach’s alpha repre-
sents a conservative estimate of the internal consistency
of the E-CLASS. The potential multidimensionality of the
E-CLASS will be discussed in more detail in Sec. I'V.

5. Testing environment reliability

In the majority of courses, students complete the
E-CLASS outside of class time; however, a subset of
instructors have students complete the assessment during
class time, usually in order to increase participation. Giving
the E-CLASS in class is most viable in courses that take
place in a computer lab in which there is one student per
computer. To investigate students’ scores in different
testing environments (i.e., in class versus out of class),
we administered the E-CLASS during class time to the
first-year lab course at CU in the fall of 2015 (N = 521).
We compared the average overall score from this course
with that from the same course in the five previous
semesters (N =1568). We found a small (Cohen’s
d=0.16) but statistically significant (Mann-Whitney U,
p = 0.003) increase in students’ preinstruction E-CLASS
scores from the full preinstruction data set for this course.
However, the difference between preinstruction averages
was not statistically significant for the subset of the

preinstruction data set for this course that had matched
postinstruction responses. This suggests that for this
population of students, taking the E-CLASS during class
time had, at most, a small positive impact on their
performance, though that increase did not persist in the
matched sample. While this finding preliminarily supports
the testing environment reliability of the E-CLASS,
additional data from other institutions and courses will
be necessary to clearly establish the impact of testing
environment on students’ scores.

C. Validity

The validity of an assessment relates to the instrument’s
ability to accurately measure the targeted construct(s).
In this section, we present measures of several different
aspects of the validity of the E-CLASS, including dis-
crimination (whole test and by item), concurrent validity,
and convergent validity.

1. Discrimination

To examine the ability of the E-CLASS overall to
discriminate between students, we used Ferguson’s delta
[20]. Roughly speaking, Ferguson’s delta looks at how well
scores are distributed over the full range of possible point
values, in this case, —30 to 30 points. Delta can range from
[0, 1], and anything above 0.9 indicates good discrimina-
tory power [30]. For both the pre- and postinstruction
E-CLASS, we found 6 > 0.98, well above the standard
threshold.

We also examined the discrimination of each individual
item by looking at students’ scores on individual items
relative to their performance on the E-CLASS as a whole.
Figure 4 shows item-test correlations for each of the
30 E-CLASS items. Here, we adopt the standard threshold
for an item-test correlation for dichotomously scored items,
r > 0.2 [30]. The majority of the E-CLASS items and the
average postinstruction item-test correlation (r = 0.33) fall
above this threshold. These results support the conclusion
that the E-CLASS demonstrates adequate whole-test and
item discrimination.

2. Concurrent validity

Concurrent validity examines the extent to which
E-CLASS scores are consistent with certain expected
results. For example, it is reasonable to expect that
students’ scores will vary between different levels of
courses. In particular, first-year courses are often service
courses catering primarily to engineering, biology, or
nonscience majors, rather than physics majors. Thus, the
learning goals of these courses may be less aligned with
some of the learning goals targeted by E-CLASS, which
were developed in collaboration with physics faculty to
capture their desired learning outcomes for physics students
in their upper-division lab courses [13]. Moreover, we
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FIG. 4. Item-test correlations using the 3-point scoring scale for each of the 30 E-CLASS items. Items are sorted in ascending order by

postinstruction r values. The standard threshold for an acceptable item-test correlation is noted as a horizontal line at r = 0.2.

See Supplemental Material for a list of individual prompts [14].

anticipated that students in the higher level courses would
have more expertlike responses, due to either selection
effects or the cumulative impact of instruction, or some
combination of both. To investigate this, we divided the
students into two subgroups composed of those in first-year
(FY) labs (N = 2433) and those in second-, third-, and
fourth-year labs (N = 1158), which we will refer to as the
beyond-first-year (BFY) labs. This division between FY
and BFY labs is consistent with the classification of courses
used in the community of laboratory instructors and
provides a relatively clear distinction between courses that
is applicable at both CU and other institutions.

The average pre- and postinstruction E-CLASS scores
for the FY and BFY courses are given in Table VI. The
difference between the E-CLASS scores of the FY and
BFY courses is statistically significant (p <« 0.05) for
both the pre- and postsurveys. Thus, students in the
BFY courses both begin and end the semester with more
expertlike views than students in the FY course. In
addition to expecting students in the BFY courses to
score higher on the E-CLASS, we might also anticipate
that physics majors will score higher than nonphysics
majors even within the FY courses. Here, we include
engineering physics majors in our population of physics
majors. Average pre- and postinstruction E-CLASS
scores for FY physics and nonphysics majors are given
in Table VII and show that FY physics majors both begin
and end with significantly more expertlike views than
nonmajors. Both of these findings are consistent with

TABLE VI. Average overall scores for FY and BFY courses.
Differences between FY and BFY averages are statistically
significant (Mann-Whitney U, p < 0.05).

expectations and support the concurrent validity of the
E-CLASS.

3. Convergent validity

Convergent validity looks at whether scores on an
assessment correlate with other, related student outcomes
[33]. For conceptual assessments, convergent validity is
typically established relative to students’ final course
grades. However, for E&E assessments like the
E-CLASS, it is reasonable to ask if we expect the same
level of correlation with course performance [4,34], par-
ticularly given that promoting expertlike attitudes and
beliefs is rarely an explicit goal of physics courses. Of
the available E&E assessments, only the VASS (Views
about Science Survey) has published results reporting a
modest but significant correlation (r ~ 0.3) between VASS
score and final course grades in high school and college
physics courses [19]. For the purposes of convergent
validity, we will focus exclusively on students’ postin-
struction E-CLASS scores as these are the most likely to be
consistent with final course grades. Grade data were
collected from two semesters of the four core laboratory
courses at CU, and students were assigned a standard grade
point value for each letter grade (i.e., A = 4.0, A— = 3.7,
B+ = 3.3, B = 3.0, etc.). Aggregating across all students
in all courses (N = 873), we found an overall correlation
coefficient of r = 0.04 between final course grade and
postinstruction E-CLASS score. This correlation is neither
practically nor statistically significant (p = 0.2).

TABLE VII. Average overall scores for first-year physics and
nonphysics majors. Differences between the majors are all
statistically significant (Mann-Whitney U, p < 0.05).

Average  Standard Effect
(points) error  Significance size
FY Pre 15.8 0.1 p<k005 02
(N =2433) Post 144 0.2
BFY Pre 17.7 0.2 p=03 0.04
(N =1158) Post 17.5 0.2

Average Standard Effect
(points) error size
Physics Pre 19.4 04 0.1
(N =215) Post 18.6 0.5
Nonphysics Pre 15.5 0.1 0.2
(N = 2218) Post 14.0 0.2
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However, consistent with the previous section, which
showed higher overall scores in BFY courses, it is also
reasonable to expect that this correlation might vary
between courses. To investigate this potential variability
across courses, we divided the students into two subgroups
composed of those in the FY lab (N = 717) and those in the
second-, third-, and fourth-year (BFY) labs (N = 156).
For students in the FY lab, the correlation between overall
E-CLASS score and final grade is small and not statistically
significant (r = 0.004, p = 0.9). However, for the BFY
labs, this correlation increased to » = 0.17 and is sta-
tistically significant (p = 0.03). This correlation, while still
weak, is similar in magnitude to the correlations reported
between CLASS or Maryland Physics Expectations
(MPEX) survey scores and conceptual learning gains as
measured by conceptual assessments such as the Force
Concept Inventory [35-37]. We are not arguing that the
relationship between E-CLASS scores and final grades is a
causal one; however, these results do suggest that the link
between course performance and epistemological stance is
stronger in more advanced lab courses than in the first-
year lab.

Overall, these findings suggest that, even for BFY
courses, E-CLASS scores are not good predictors of a
student’s course grade (or vice versa). One interpretation of
this is that students’ epistemological knowledge and beliefs
are not being effectively captured by their final course
score. This finding is also consistent with results from the
CLASS that have demonstrated neutral or even negative
shifts in CLASS scores from courses with significant
conceptual learning gains [38].

IV. PRINCIPAL COMPONENT ANALYSIS

In addition to looking at students’ scores overall and by
item, existing E&E surveys often examine students’ aggre-
gate scores on smaller groups of items. These item groupings
are typically either based on an a priori categorization
created by the survey developer [4] or empirically derived
using a statistical data reduction technique [3]. As previously
discussed, the E-CLASS was not developed to match any
particular a priori categorization of questions; however, it is
still possible that different questions on the E-CLASS target
the same latent variable. In order to determine if this is the
case, we utilize principal component analysis.

PCA is a type of exploratory factor analysis that attempts
to reduce the number of variables in a data set by examining
interitem correlations in order to identify groups of items
that appear to vary together [22,25]. We first performed a
PCA on students’ responses to the postinstruction
E-CLASS from the matched data set. The initial explor-
atory PCA produced 30 components (a.k.a. factors) along
with associated eigenvalues. To determine how many of
these components to extract, we adopted the Guttman-
Kaiser criterion [39], which states that all components with
eigenvalues greater than 1 should be kept. This criteria

resulted in seven components that together explained 45%
of the overall variance in the survey. However, it is
generally accepted that, to sufficiently represent the overall
data set, the retained components should account for at
least 70% of the variance. Meeting this threshold for the
E-CLASS data would require retaining 16 of the 30
components. This factor of 2 decrease does not represent
a useful reduction in the number of variables in the data set.
To determine if the factors identified in the postinstruc-
tion data were robust, we performed the same PCA on
student responses to the preinstruction E-CLASS. We
found that there was little overlap between the items that
made up specific factors in the presurvey data compared to
those from the postsurvey. This result, along with the fact
that the results of the PCA accounted for less than half the
overall variance, suggests that the E-CLASS does not
exhibit a clear factorization. This lack of strong factors
is not surprising given that PCA is used to identify cases in
which there are multiple items targeting a single latent
variable. The E-CLASS, on the other hand, was designed to
target a relatively large number of distinct, though poten-
tially overlapping, learning goals. The PCA suggests that,
consistent with this design, the E-CLASS does not appear
to contain groups of items targeting a single latent variable.
Given this result, we strongly recommend that instructors
do not focus only on their students’ overall E-CLASS
score, as it does not represent students’ performance around
a single well-defined construct. Rather, instructors should
examine their students’ responses to the questions indi-
vidually with a particular focus on those questions that are
most aligned with their learning goals for that course.

V. SUMMARY AND FUTURE WORK

We previously created an attitudinal survey—known as
the E-CLASS—targeting students’ epistemologies and
expectations about the nature of experimental physics.
Prior work established the content validity of this assess-
ment through expert review and student interviews. To
build on this initial validation, we collected student
responses to the E-CLASS from roughly 80 courses
spanning approximately 45 institutions. Analysis of these
data supports the statistical validity and reliability of the
E-CLASS as measured by multiple test statistics, including
item and whole-test discrimination, internal consistency,
partial-sample reliability, test-retest reliability, and concur-
rent validity. A principal component analysis of these data
also showed that the E-CLASS does not exhibit robust
factors that can be used to accurately and reliably describe
students’ responses using a smaller number of statistically
consistent groups of questions.

Future work will include analysis of our growing
national data set of student responses to the E-CLASS
to answer broader research questions regarding students’
ideas about the nature of experimental physics. For
example, this data set includes some longitudinal data that
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could begin to provide insight into how students’ epis-
temologies change over the course of their undergraduate
career. Additionally, the course information survey, com-
pleted by all instructors prior to using the E-CLASS,
collects information on both pedagogy and learning goals
(e.g., learning physics content versus developing lab skills).
These data can be used to determine if certain pedagogical
strategies or learning goals promote more expertlike
epistemologies and expectations. Future research will also
include investigating if and how instructors use their

students’ E-CLASS results to inform their instruction or
course transformation efforts.
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