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Steady-state superradiant lasers are a promising candidate for next-generation ultracoherent

light sources. In this thesis, we propose a new type of superradiant laser based on a hot atomic

beam traversing an optical cavity. We show that the theoretical minimum linewidth and maximum

power are competitive with the best ultracoherent clock lasers. Also, our system operates naturally

in a continuous wave modality, which has been elusive for superradiant lasers so far. Unlike many

existing proposals for ultracoherent lasers, our design is simple and rugged. This makes it a potential

candidate for the first widely accessible ultracoherent laser, as well as the first to realize sought-after

applications of ultracoherent lasers in challenging environments.

Aside from metrological usefulness, the superradiant atom beam laser system is of fundamen-

tal interest in terms of various superradiant phase transitions. To this end, we theoretically analyze

the system for three different configurations: (i) For a thermal atomic beam interacting with a reso-

nant cavity mode, we derive a semiclassical model and determine the onset of superradiant emission

and its stability. We find two different superradiant phases; a steady-state superradiant phase and

a multi-component superradiant phase. In the latter case we observe sidebands in the frequency

spectrum that can be calculated using a stability analysis of the amplitude mode of the collective

dipole. We show that both superradiant phases are robust against free-space spontaneous emission

and T2 dephasing processes. (ii) For a collimated atomic beam interacting with an off-resonant

cavity mode, we derive an analytical formula for the cavity pulling coefficient. We find that the

pulling is small if the cavity linewidth is much larger than the collective linewidth of the atomic

beam. This regime is desired for building stable lasers because the emission frequency is robust

against cavity length fluctuations. Furthermore, we find polychromatic emission regimes, where the

spectrum has several frequency components while the light output is still superradiant. (iii) For



iii

a slanted collimated atomic beam passing through a cavity that is on resonance, we find that the

atoms undergo superradiant emission when the collective linewidth exceeds the transit-time broad-

ening. We find steady-state superradiance providing the tilt of the atomic beam is sufficiently

small. However, if the atoms travel more than half a wavelength along the cavity axis during one

transit time we predict a dynamical phase transition to a new bistable superradiant regime. In this

phase the atoms undergo collective spontaneous emission with a frequency that can be either blue

or red detuned from the free-space atomic resonance. We show that the linewidth of the emitted

light exhibits features of a critical scaling close to the phase boundaries.
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Chapter 1

Introduction

The study of collective effects in atomic and molecular ensembles with cavity-mediated in-

teractions is a very active research topic in quantum gas physics. Ongoing research focuses on the

simulation and exploration of many-body systems [8, 125, 53, 157, 108] and also their application

to metrology that takes advantage of the collective behavior [135, 90, 113, 50, 118].

An example of such a collective effect is superradiance, which describes the collective light

emission enhanced by the build-up of macroscopic coherence in the ensemble of atomic or molecular

dipoles. Originally, superradiance was predicted for free-space systems, that is, when the interparti-

cle distance is smaller than the optical wavelength [32, 52]. However, this condition can be overcome

by trapping the light in a confined volume, such as an optical cavity, and maintaining the condition

of strong coupling of the particles to a single lossy resonator mode. More explicitly, superradiance

in this case requires the cavity linewidth to be large compared to the collective linewidth of the

dipoles. This results in a situation in which the coherence is stored in the atomic dipoles while the

cavity mode is overdamped.

The superradiant laser [101, 12] takes advantage of this effect and relies on a stable coherent

collective dipole. This laser has the potential to produce light with an ultranarrow linewidth [101,

100] that reflects the extremely high quality factor of the electronic transition [115, 116]. In addition,

recent studies have analyzed such systems as manifestation of phase synchronization [166, 172, 161],

connected them to time crystals [49, 62, 156, 7, 18, 73, 75], and discussed them as candidates for

active optical clocks [25, 168].
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A number of previous superradiant laser proposals and current experiments suggest trapping

the atoms inside of the cavity [101, 12, 100, 99, 95, 80, 29, 170, 87, 136, 169] with potential

continuous incoherent repumping as its energy source. However, this is typically not easy to realize

due to the need for closed transitions and external fields to trap the atoms. Furthermore, these

additional complexities will usually lead to radiative heating of the atomic cloud and also to atom

loss.

Another approach to achieve superradiant lasing is to couple a beam of moving atomic dipoles

to a single resonator mode [153, 92, 70]. In this case the atoms can be precooled and prepared in

the excited state before entering the cavity. This spatially separates the quantum state prepara-

tion stage from the collective emission that occurs while atoms travel through the cavity volume.

Such designs are less prone to the adverse effects of radiative heating and atom loss due to the

finite lifetime of trapped atom systems. This may allow for an alternative pathway towards truly

continuous-wave superradiant lasing in the optical domain [92].

In this thesis, we study in detail the superradiant atomic beam laser model. The remaining of

the thesis is structured as follows. In Chap. 2, we derive the Jaynes-Cummings model for a moving

atom interacting with a single mode cavity. In Chap. 3, we derive the quantum master equation and

the corresponding Heisenberg-Langevin equations. We show their equivalence given a heat bath of

harmonic oscillators in vacuum. In Chap. 4, we lay out the theoretical foundation to study cavity

superradiant systems. We derive the Heisenberg-Langevin equations for the superradiant beam laser

system in the “bad cavity” limit. Moreover, we provide the detailed form of the corresponding c-

number Langevin equations, which are used to numerically simulate the superradiant atomic beam

laser system under various configurations in Chap. 5–8. In Chap. 5, we propose the superradiant

beam laser from an experimental point of view, focusing on its potential as a candidate to be the

first rugged ultracoherent laser. In Chaps. 6 we study the same model from a theoretical point of

view and analyze multiple superradiant phase transitions including a multicomponent superradiant

phase. In Chap. 7, we introduce a finite cavity detuning and discuss the various superradiant phases

as well as calculating the cavity pulling coefficient. In Chap. 8, we examine the regular and bistable
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superradiant phases given a slanted atomic beam of a single velocity. In Chap. 9, we conclude our

discussion and talk about future research direction.



Chapter 2

Background

In this chapter, we review the background of modern quantum optics. Starting from the

canonical quantization of electrodynamics, we first derive the quantized Hamiltonian of the coupled

system of moving particles and electromagnetic fields. We then focus on systems that are confined

in a certain quantization volume such as an optical cavity, which are normally called the cavity

quantum electrodynamics systems, or cavity QED systems. With the long-wavelength and rotating-

wave approximations, we derive the Jaynes-Cummings model of a two-level atom coupled to a single

cavity mode.

All of the analysis in this thesis is non-relativistic.

2.1 Canonical quantization of electrodynamics

Quantum optics studies the quantum nature of interactions between individual quanta of

electromagnetic fields, the “photons”, and ensembles of charged particles such as neutral atoms,

ions, and molecules. Such interactions are classically described by Maxwell’s equations and the

Lorentz force equation in electrodynamics. In this section, we start from these classical equations,

and then follow the route of Dirac’s canonical quantization [35, 34] to derive the quantized Hamil-

tonian of the coupled system of photons and charged particles. For a more detailed derivation and

discussions, we refer the readers to Ref. [27, 28].

It should be noted here that historically this quantization process is sometimes called “second

quantization”. While “first quantization” refers to the canonical quantization of classical particles
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into quantum wave functions, the term “second quantization” has been used to describe the canon-

ical quantization of classical electromagnetic fields into a sum of quantum harmonic oscillators.

From modern point of view, this is more of a misnomer. We are not quantizing electromagnetism

“twice” as the name “second” suggests, but only quantizing classical fields instead of classical par-

ticles. On the other hand, “second quantization” is now mostly used in the formalism of quantum

field theory. In that context, the term refers to the “second” quantization of a system of already

quantized particles from a Hilbert space with symmetric or antisymmetric tensor algebra into a

Fock space, where a vacuum state and occupation states are defined. 1 Although the results of the

quantization in electromagnetism and quantum field theory are similar—a Fock space, we will avoid

using the term “second quantization” in the remaining of this thesis and instead call it canonical

quantization.

2.1.1 Classical Lagrangian of electrodynamics

Classical Maxwell’s equations in vacuum have the form

∇ ·E(t, r) =
ρ(t, r)

ε0
, (2.1)

∇ ·B(t, r) = 0, (2.2)

∇×E(t, r) = −Ḃ(t, r), (2.3)

∇×B(t, r) = µ0J(t, r) + µ0ε0Ė(t, r), (2.4)

where E(t, r) and B(t, r) are the electric and magnetic field vectors, ρ(t, r) =
∑

j qjδ[r − rj(t)] is

the charge density for point charges qj , J(t, r) =
∑

j qj ṙj(t)δ[r−rj(t)] is the current density, and ε0

and µ0 are the electric and magnetic vacuum permittivities, satisfying ε0µ0c
2 = 1, with c the speed

of light. Here δ(r) is the Dirac delta function. We have used Newton’s notation ṙj(t) to denote the

total derivative
drj
dt

, and the notation Ḃ(t, r) to denote the partial derivative
∂B

∂t
, etc. It should

be clear whether this notation means total or partial derivative within a given context.

1As Edward Nelson said, “first quantization is a mystery, but second quantization is a functor.”
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In essence, Eq. (2.2) and Eq. (2.3) only characterize the self-coupling structure of the fields,

and are immediately satisfied if we introduce the electric potential φ(t, r) and vector potential

A(t, r) and define

E(t, r) = −∇φ(t, r)− Ȧ(t, r), (2.5)

B(t, r) =∇×A(t, r). (2.6)

On the other hand, Eq. (2.1) and Eq. (2.4) describe the change of the fields due to the interaction

with matter. These two equations, combined with the Newton-Lorentz equation

mj r̈j = qj [E(rj) + ṙj ×B(rj)] , (2.7)

which describes the dynamics of point charges with mass mj in the fields, give the classical picture

of the coupling between matter and fields.

We now present the classical “standard Lagrangian” [27] for the system of electromagnetic

fields and particles. With the definitions in Eqs. (2.5)–(2.6), we define

L =
∑
j

1

2
mj ṙ

2
j +

ε0

2

ˆ
d3r

(
E2 − c2B2

)
+
∑
j

qj [ṙj ·A(rj)− φ] . (2.8)

It is straightforward to check that the Euler-Lagrangian equations of the standard Lagrangian L

in Eq. (2.8) leads to Eq. (2.1), Eq. (2.4), and Eq. (2.7).

Now, in order to apply canonical quantization, we need to derive the Hamiltonian corre-

sponding to the Lagrangian. But before finding the canonical momentum and thereby proceeding,

it is extremely useful to examine and reduce the number of dynamical variables. Taking E and B

as functions of A and φ, there are eight field dynamical variables at each point in space in Eq. (2.8),

i.e.,
{

A(r), φ(r), Ȧ(r), φ̇(r)
}

. However, in the Maxwell-Lorentz equations, there are only six field

dynamical variables, i.e., {E(r),B(r)}. Therefore, there are two redundant variables in Eq. (2.8).

Noticing that φ̇ does not appear in Eq. (2.8), we are led to eliminate φ as well, since its canonical
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momentum is zero 2. Rewriting Eq. (2.8) as

L =
∑
j

1

2
mj ṙ

2
j +

ˆ
d3rLEM, (2.9)

where

LEM =
ε0

2

(
E2 − c2B2

)
+ J ·A− ρφ (2.10)

is the Lagrangian density of electromagnetic fields, we have

0 =
∂L

∂φ̇
=

d

dt

(
∂L

∂φ̇

)
=
∂L

∂φ

=
∂LEM

∂φ
−∇ ·

(
∂LEM

∂∇φ

)
= −ρ(r)− ε0∇2φ(t, r)− ε0∇ · Ȧ(t, r). (2.11)

Here we have used the Euler-Lagrangian equation for φ and the derivative of the functional. We

have also used the notation
∂

∂v
=

(
∂

∂vx
,
∂

∂vy
,
∂

∂vz

)T

for any vector v.

It is immediately obvious that we can solve for φ from Eq. (2.11) conveniently by going

into the corresponding Fourier space (or the reciprocal space as referred to by Cohen-Tannoudji in

Ref. [27]) of the real space, i.e.,

0 = −ρ̃(k) + ε0k
2φ̃(t,k)− ε0ik ·

∂Ã(t,k)

∂t
, (2.12)

and therefore

φ̃(t,k) =
1

k2

[
ρ̃(k)

ε0
+ ik · ∂Ã(t,k)

∂t

]
, (2.13)

with k = |k|. Here, we have used the following definition of the Fourier transform in three dimen-

sions 3

f̃(k) =
1

(2π)3/2

ˆ
d3rf(r)e−ik·r, (2.14)

f(r) =
1

(2π)3/2

ˆ
d3kf̃(k)eik·r, (2.15)

2Actually, it is not even possible to canonically quantize the system from the standard Lagrangian without

reducing φ, since its conjugate momentum is identically zero.
3See Appx. A for further discussions on conventions for Fourier transform.
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where f(r) can be any function defined on real space, and f̃(k) is then its counterpart in Fourier

space.

We can now derive the reduced Lagrangian density in Fourier space. To do this, we first

rewrite Eq. (2.9) as

L =
∑
j

1

2
mj ṙ

2
j +

ˆ
d3k

[
ε0

2

(∣∣∣Ẽ∣∣∣2 − c2
∣∣∣B̃∣∣∣2)+ J̃∗ · Ã− ρ̃∗φ̃

]
, (2.16)

where we have used Plancherel’s theorem. Notice that, in Fourier space, the degrees of freedom

have doubled in number because Ã, φ̃, J̃, and ρ̃ are now complex. However, since A(r) is real,

Ã(k) is a Hermitian function satisfying Ã(−k) = Ã∗(k). Likewise, φ̃, J̃, and ρ̃ also satisfy similar

Hermitian constraints. Therefore if we know the values of these functions in half of the Fourier

space, or the reciprocal half space, we know them in the whole Fourier space. This leads us to

rewrite the standard Lagrangian L again as

L =
∑
j

1

2
mj ṙ

2
j +

 
d3kL , (2.17)

where the notation

 
d3k means the integral over the reciprocal half space, and

L = ε0

(∣∣∣Ẽ∣∣∣2 − c2
∣∣∣B̃∣∣∣2)+ 2 Re

{
J̃∗ · Ã− ρ̃∗φ̃

}
. (2.18)

In Fourier space, Eqs. (2.5)–(2.6) become

Ẽ = −ikφ̃− ∂Ã

∂t
, (2.19)

B̃ = ik× Ã. (2.20)

Using Eq. (2.13) to eliminate φ̃ in Eq. (2.19) yields

Ẽ = −i k

ε0k2
ρ̃− ∂Ã⊥

∂t
. (2.21)

Here, we define the longitudinal component of the vector potential Ã as Ã‖ =
k · Ã
k2

k and the

transverse component as Ã⊥ = Ã− Ã‖.
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Now, substituting Eq. (2.13), Eq. (2.20), and Eq. (2.21) into Eq. (2.18), we have the reduced

Lagrangian density L in the reciprocal half space

L = − |ρ̃|
2

ε0k2
+ ε0

∣∣∣∣∣∂Ã⊥

∂t

∣∣∣∣∣
2

− c2k2
∣∣∣Ã⊥∣∣∣2

+ 2 Re
{

J̃∗ · Ã⊥
}

+ L
‖
, (2.22)

where

L
‖

= 2 Re
{

J̃∗ · Ã‖
}

+
2

k2
Im

{
ρ̃∗
∂Ã‖

∂t
· k
}

(2.23)

is the longitudinal Lagrangian density.

At this point, we have already expressed the reduced Lagrangian density in terms of the dy-

namical variables

{
Ã,

∂Ã

∂t

}
only. It is possible to directly find the Hamiltonian using the Legendre

transform and then to impose the canonical quantization rules. However, a careful examination

on the longitudinal Lagrangian density L
‖

is not only useful for simplification of the derivation,

but also helpful to understand the gauge invariance underlying both the classical and quantum

electrodynamics.

It is obvious from Eq. (2.22) that the longitudinal components of the fields appear only in L
‖
.

The Euler-Lagrangian equation for Ã‖ yields

∂ρ̃

∂t
= −iJ̃ · k (2.24)

which is nothing other than charge conservation. The fact that Eq. (2.24) is independent of Ã‖

means that Ã‖ is not a real dynamical variable and can take any value. This is manifest if we

substitute Eq. (2.24) back into L
‖

and thereby note that

L
‖

=
∂

∂t

2 Im
{
ρ̃∗Ã‖

}
k

, (2.25)

which gives

L =
∑
j

1

2
mj ṙ

2
j −

 
d3k
|ρ̃|2

ε0k2
+

 
d3k

ε0

∣∣∣∣∣∂Ã⊥

∂t

∣∣∣∣∣
2

− c2k2
∣∣∣Ã⊥∣∣∣2

+ 2 Re
{

J̃∗ · Ã⊥
}+

dF

dt
,

(2.26)



10

where

F = 2 Im

 
d3k

ρ̃∗Ã‖

k
(2.27)

determines the gauge choice, with Ã‖ =
Ã‖ · k
k

. Since
dF

dt
is a total derivative with respect to

time, and the longitudinal field Ã‖ only appears in F , we know that the dynamics of the system is

invariant with our free selection of the gauge function F . If we choose the Coulomb gauge, i.e.,

Ã‖ = 0, (2.28)

then F = 0, and we arrive at the standard Lagrangian

Lcoul =
∑
j

1

2
mj ṙ

2
j − Vcoul +

 
d3kL coul, (2.29)

where

Vcoul =

 
d3k
|ρ̃(k)|2

ε0k2
=

1

8πε0

¨
d3rd3r′

ρ(r)ρ(r′)

|r− r′|
(2.30)

is the non-retarded Coulomb energy (including the diverging self energy) and

L coul = ε0

∣∣∣∣∣∂Ã⊥

∂t

∣∣∣∣∣
2

− c2k2
∣∣∣Ã⊥∣∣∣2

+ 2 Re
{

J̃∗ · Ã⊥
}

(2.31)

is the Lagrangian density in Coulomb gauge.

It is also natural to express the standard Lagrangian in real space, where we have

Lcoul =
∑
j

1

2
mj ṙ

2
j − Vcoul +

ˆ
d3rLcoul, (2.32)

and

Lcoul =
ε0

2

(∣∣∣Ȧ∣∣∣2 − c2|∇×A|2
)

+ J ·A (2.33)

with the Coulomb gauge condition ∇ ·A = 0.

In the next section, we will continue to work in Fourier space and use Eq. (2.29) to find the

corresponding Hamiltonian for the fields. There are several benefits. First, it is intrinsically easy

to work in Fourier space since the space derivatives have been turned into multiplications using the
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substitution rule ∇→ ik. Second, the physical meaning of the longitudinal and transverse modes

of the fields is clearer in Fourier space, since they are defined with respect to the wavevector k.

Third, since there are no derivatives with respect to k, the Lagrangian density L is now strictly

local in k. As a result, contributions of various modes of the field appear explicitly, which makes

it easy to separate the nonrelativistic modes, i.e., long-wavelength modes, and make the dipole

approximation, as we will see later.

2.1.2 Hamiltonian and canonical quantization

From the standard Lagrangian in the Coulomb gauge introduced in Eqs. (2.29)–(2.33), we

can identify the canonical momenta as follows,

pj =
∂Lcoul

∂ṙj
= mj ṙj + qjA(rj), (2.34)

Π̃(k) =

 ∂Lcoul

∂
(
∂Ã⊥

∂t

)
∗ = ε0

∂Ã⊥(k)

∂t
. (2.35)

Here, the definition with the complex conjugate in Eq. (2.35) is to make sure of the self-consistency

such that Π̃(k) is the Fourier transform of the momentum Π(r) = ε0
∂A(r)

∂t
and is therefore

conjugate with the field A(r). Also, the definition of Π̃(k) can be easily generalized to the full

Fourier space by imposing Π̃∗(k) = Π̃(−k).

We can now use the Legendre transform to construct the Hamiltonian from the Lagrangian L

in Coulomb gauge, which yields

H =
∑
j

1

2mj
[pj − qjA(rj)]

2 + ε0

 
d3k


∣∣∣Π̃(k)

∣∣∣2
ε2

0

+ c2k2
∣∣∣Ã⊥(k)

∣∣∣2
+ Vcoul, (2.36)

and in real space

H =
∑
j

1

2mj
[pj − qjA(rj)]

2 +
ε0

2

ˆ
d3r

[
|Π(r)|2

ε2
0

+ c2
∣∣∣∇×A⊥(r)

∣∣∣2]+ Vcoul (2.37)

with A(r) satisfying the Coulomb condition ∇ ·A = 0.

As the last step of the canonical quantization, we promote the dynamical variables in the



12

Hamiltonian H into quantum operators (denoted by ·̂) that act on the Hilbert space, and introduce

their commutation relations.

For the particle position and momentum, we promote

{
(rj)α, (pk)β

}
→
{

(r̂j)α, (p̂k)β

}
(2.38)

with the commutation relations

[
(r̂j)α, (p̂k)β

]
= i~δjkδαβ, (2.39)

where j, k stand for particle indices, and α, β ∈ {x, y, z} stand for Cartesian components. The

operators (r̂j)α and (p̂k)β are Hermitian since both the particle position and momentum are physical

observables. The functions δjk and δαβ are Kronecker delta functions. All the other combinations

of the commutations are zero.

Since at each point k in the reciprocal half space there are two independent complex com-

ponents in the transverse field Ã⊥ (corresponding to the two polarizations), we promote the field

dynamical variables

{
Ã⊥ε (k), Π̃ε′(k

′)
}
→
{

ˆ̃Aε(k), ˆ̃Πε′(k
′)
}

(2.40)

with the commutation relations [27]

[
ˆ̃Aε(k), ˆ̃Π†ε′(k

′)
]

= i~δ(k− k′)δεε′ , (2.41)

where k and k′ are vectors in the reciprocal half space. All the other combinations of commutations

are zero. Here ε ∈ {1, 2} stands for the two transverse directions orthogonal to k, so we can write

ˆ̃Aε(k) = ε · ˆ̃A(k) with ε the corresponding unit vector. The newly promoted field operators and

their conjugates satisfy the Hermitian constraints ˆ̃Aε(−k) = ˆ̃A†ε(k), ˆ̃Πε(−k) = ˆ̃Π†ε(k). We have

dropped the ⊥ notation for field operators, but one should keep in mind that only the transverse

fields contribute. The field operators and their conjugates commute with the operators for particles

introduced in Eq. (2.38).
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With the introduction of the quantum operators and commutation relations, we can write

down the promoted quantum Hamiltonian from Eq. (2.36)

Ĥ =
∑
j

1

2mj

[
p̂j − qjÂ(r̂j)

]2
+ ε0

 
d3k

∑
ε

[
ˆ̃Π†ε(k) ˆ̃Πε(k)

ε2
0

+ ω2 ˆ̃A†ε(k) ˆ̃Aε(k)

]
+ V̂coul, (2.42)

where ω = c|k| is the angular frequency corresponding to the wave vector k, and V̂coul is the

quantum version of the Coulomb potential energy Eq. (2.30). Notice that the ordering of operators

is arbitrary here since only products of commuting operators exist in Eq. (2.42).

Formally, this concludes the canonical quantization description. However, similar to the

approach developed for simple harmonic oscillators, it is useful to express the generalized position

and momentum in terms of creation and annihilation operators [27]. In our case, we define

âε(k) =

√
ε0

2~ω

[
ω ˆ̃Aε(k) +

i

ε0

ˆ̃Πε(k)

]
, (2.43)

â†ε(k) =

√
ε0

2~ω

[
ω ˆ̃A†ε(k)− i

ε0

ˆ̃Π†ε(k)

]
, (2.44)

with the commutation relations [
âε(k), â†ε′(k

′)
]

= δεε′δ(k− k′). (2.45)

All the other commutators are zero. One can check that Eqs. (2.43)–(2.44) and Eq. (2.45) are

consistent with Eq. (2.41). Moreover, the commutation relations in Eq. (2.45) hold not only for k

and k′ in the reciprocal half space, but also in the whole Fourier space as results from Eq. (2.45)

and the Hermitian constraints. Therefore the new field operator âε(k) is truly independent in the

whole Fourier space. It is therefore more convenient to express the Hamiltonian using the operators

âε(k) and â†ε(k).

From Eq. (2.44) we have

â†ε(−k) =

√
ε0

2~ω

[
ω ˆ̃A†ε(−k)− i

ε0

ˆ̃Π†ε(−k)

]
=

√
ε0

2~ω

[
ω ˆ̃Aε(k)− i

ε0

ˆ̃Πε(k)

]
, (2.46)

which combined with Eq. (2.43) gives

ˆ̃Aε(k) =

√
~

2ωε0

[
âε(k) + â†ε(−k)

]
, (2.47)

ˆ̃Πε(k) = −i
√

~ωε0

2

[
âε(k)− â†ε(−k)

]
. (2.48)
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Substituting Eqs. (2.47)–(2.48) into the Hamiltonian in Eq. (2.42) and keeping track of the ordering

of operators, we have the final expression for the quantum electrodynamics Hamiltonian

Ĥ =
∑
j

1

2mj

[
p̂j − qjÂ(r̂j)

]2
+

ˆ
d3k

~ω
2

∑
ε

[
â†ε(k)âε(k) + âε(k)â†ε(k)

]
+ V̂coul (2.49)

=
∑
j

1

2mj

[
p̂j − qjÂ(r̂j)

]2
+

ˆ
d3k~ω

∑
ε

[
â†ε(k)âε(k) +

1

2
δ(0)

]
+ V̂coul, (2.50)

where we have chosen the normal ordering in Eq. (2.50). Both ω and
∑

ε depend on k.

2.1.3 Quantization volume

So far we have derived the canonically quantized Hamiltonian for electrodynamics in free

space. One may notice that the vacuum energy term in Eq. (2.50) contains an IR (infrared)

diverging δ(0) term. This is a well-known problem for directly quantizing electromagnetism in

infinite space, which can be seen by rewriting δ(0) ∝
ˆ

exp [−i(k− k) · r]d3r =

ˆ
d3r→∞. This

formal divergence is remedied in the following manner. In any realistic physical setup, we anticipate

a finite space volume, called a quantization volume. This finite region together with appropriate

boundary conditions provides a lower cutoff for the wave vector k or field frequency ωk.

We therefore will first consider a finite box quantization volume V = L3 in real space. To

model infinite space, one just needs to take the limit L → ∞. By imposing periodic boundary

conditions of the field variables in the volume V that is constrained by x, y, z ∈
[
−L

2
,
L

2

]
, we

define the Fourier conjugates of any function f(r) using the following definitions

f̃k =
1

V

ˆ
V
d3rf(r)e−ik·r, (2.51)

f(r) =
∑
k

f̃k e
ik·r, (2.52)

where k is given by kα =
2πnα
L

, nα ∈ Z for α ∈ {x, y, z}.

It is easy to see that we are merely replacing the Fourier transform introduced in Eqs. (2.14)–

(2.15) by a Fourier series. We have chosen the convention for the Fourier series in such a way that

the dimension of f̃k is the same as that of f(r), which differs by a three-dimensional volume from
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the dimension of f̃(k) as defined in Eq. (2.14). Thus within a finite volume V , all the results that

we have derived in the previous section follow, except that we need to replace

ˆ
d3k → V

∑
k

,

δ(k− k′)→ δkk′

V
, and f̃(k)→ f̃k, where f refers to all the variables to which we have applied the

Fourier transform.

The resulting Hamiltonian analogous to Eq. (2.42) is thus

Ĥ =
∑
j

1

2mj

[
p̂j − qjÂ(r̂j)

]2
+ ε0V

∑
k,ε

 ˆ̃Π†k,ε
ˆ̃Πk,ε

ε2
0

+ ω2
k

ˆ̃A†k,ε
ˆ̃Ak,ε

+ V̂coul, (2.53)

where ωk = c|k|. The commutation relations are

[
ˆ̃Ak,ε,

ˆ̃Πk′,ε′

]
=
i~
V
δkk′δεε′ . (2.54)

We prefer to remove the spatial dimensions when introducing the field operators âk,ε and â†k,ε

following Eqs. (2.43)–(2.44). Thus we choose the prefactors in such a way that

ˆ̃Ak,ε =

√
~

2ωkε0V

(
âk,ε + â†−k,ε

)
, (2.55)

ˆ̃Πk,ε = −i
√

~ωkε0

2V

(
âk,ε − â†−k,ε

)
. (2.56)

Here the field operators âk,ε and â†k,ε are dimensionless, with the bosonic commutation relations

[
âk,ε, âk′,ε′

]
=
[
â†k,ε, â

†
k′,ε′

]
= 0, (2.57)[

âk,ε, â
†
k′,ε′

]
= δεε′δkk′ . (2.58)

The resulting Hamiltonian is given by

Ĥ =
∑
j

1

2mj

[
p̂j − qjÂ(r̂j)

]2
+
∑
k,ε

~ωk

2

(
â†k,εâk,ε + âk,εâ

†
k,ε

)
+ V̂coul (2.59)

=
∑
j

1

2mj

[
p̂j − qjÂ(r̂j)

]2
+
∑
k,ε

~ωk

(
â†k,εâk,ε +

1

2

)
+ V̂coul. (2.60)

Comparing Eq. (2.50) and Eq. (2.60), we see that a theory with a finite quantization volume avoids

the IR divergence of energy.
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From now on, we will always consider the Hamiltonian in Eq. (2.60), and refer to âk,ε and â†k,ε

defined by Eqs. (2.57)–(2.58) as the field operators, or simply the fields. This definition is nice be-

cause the field operators are now equivalent to the annihilation and creation operators for simple

harmonic oscillators. Also the quantization volume V does not show up explicitly in the Hamilto-

nian.

Before we end our discussion of canonical quantization, we would like to comment on the

significance of the Hamiltonian operator in Eq. (2.60). Physically, Eq. (2.60) is equivalent to saying

that the quantum nature of the electromagnetic fields is nothing other than that arising from

quantum simple harmonic oscillators. Each independent oscillator corresponds to a transverse

mode of the field. The study of interactions between matter and light is thus transformed into

the study of interactions between particle states and field Fock states. The operator â†k,ε creates a

particle of energy ~ωk and polarization ε, called a “photon”, and âk,ε destroys one. In quantum field

theory, this idea is further generalized such that the particle states also become Fock states.

2.1.4 Mode functions

From Eqs. (2.51)–(2.52) and Eq. (2.55) we can write down the vector potential Â(r) in real

space

Â(r) =
∑
k,ε

ˆ̃Aε(k)eik·r ε =
∑
k,ε

√
~

2ωkε0V

[
âk,εe

ik·r + â†k,εe
−ik·r

]
ε. (2.61)

Here we can always switch from
∑

k,ε â
†
−k,εe

ik·r to
∑

k,ε â
†
k,εe

−ik·r because terms with wavevectors k

of opposite signs must coexist in the summation so that the fields can propagate forward and

backward.

In general, the quantization volume does not need to be a box. In fact, different geometries

with different boundary conditions will correspond to different Fourier expansions of Â(r). This

leads us to define the mode function of the fields within a finite volume.

Consider electromagnetic fields propagating inside a cavity of a certain shape and with cor-

responding boundary conditions. We assume no sources in the cavity, and choose the Coulomb
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gauge with φ = 0 (this is sometimes called the radiation gauge). In classical electromagnetism one

can derive the wave equation for A(r)

∇2A− 1

c2

∂2A

∂t2
= 0 (2.62)

by substituting Eqs. (2.5)–(2.6) into Eq. (2.3). Separation of spatial and temporal variables in A

leads to the solution

A(r, t) =

ˆ
dωA0(ω) e−iωt[u(r) + u∗(r)]. (2.63)

Here A0(ω) is the field amplitude for frequency ω, and u(r) is called the mode function that must

satisfy the homogeneous Helmholtz equation

∇2u(r) + k2u(r) = 0, (2.64)

where k = ω/c is the norm of the wavevector k. For different wavevectors k,k′ and different

polarizations ε, ε′ (two for each k in the Coulomb gauge as we have seen before), we can define the

orthonormal mode functions uk,ε(r) that satisfy the orthonormality condition

ˆ
V
d3r uk,ε(r) · u∗k′,ε′(r) = δεε′δkk′ . (2.65)

As an example, the solution to the Helmholtz equation for a box of volume V = L3 with periodic

boundary conditions is

uk,ε(r) =
1√
V
eik·rε (2.66)

Thus we can rewrite Eq. (2.61) as

Â(r) =
∑
k,ε

√
~

2ωkε0

[
âk,εuk,ε(r) + â†k,εu

∗
k,ε(r)

]
. (2.67)

If the geometry and boundary conditions of the quantization volume are different, as in the case

of some cavities where the fields travel among highly conducting walls, we will need to solve for

the eigensolutions of the mode functions, called eigenmodes. For typical cavity QED systems, we

assume the fields will always propagate with the eigenmodes of the cavity. From the perspective
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of the Fourier series, eigenmodes can be as simple as plane waves as we have seen for the periodic

box, or can be a superposition of standing waves (a set of Fourier terms) in the cavity 4. In the

latter case, however, the form of Eq. (2.67) remains the same, except that the summation over k

now means summing over the eigenmodes, and the field operators âk,ε and â†k,ε will correspond to

the specific modes.

In the next section, we use Eq. (2.67) to derive the Jaynes-Cummings model.

2.2 Jaynes-Cummings model

In this section, we make some approximations and assumptions to simplify the form of the

Hamiltonian derived in Eq. (2.60). Specifically, we derive the famous Jaynes-Cummings Hamilto-

nian [64, 77, 103, 147] that describes the coupling between a two-level atom and a single cavity

mode. As the simplest fully quantum model for the atom-field interaction, the Jaynes-Cumming

model serves as the foundation of our treatment of cavity QED systems for the quantum systems

studied in this thesis.

2.2.1 Long-wavelength approximation

As mentioned earlier, the field of quantum optics studies interactions between photons and

atoms (or molecules), which are composed of electrons and nuclei. Typically, the length scale of

bounded nuclei-electron systems is on the order of Bohr radii (' 10−10 m), which is much smaller

than the field wavelength λ in the optical (λ & 10−7 m) or microwave domain (λ & 10−3 m).

Therefore, it is reasonable to ignore the variations of the field over the spatial extension of an atom.

In other words, the long-wavelength approximation assumes that the electrons and the nucleus of the

same atom observe the same field. From another point of view, long wavelengths also correspond

to an upper bound on k, which restricts our theory to low-energy fields. For this reason we also

refer to long-wavelength modes as non-relativistic modes.

4For cylindrical or spherical geometries, it is more convenient to use cylindrical or spherical harmonics in place

of Fourier series.
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For simplicity, from now on we will study the interaction between a single neutral atom 5 and

quantized fields in a cavity. This means that in Eq. (2.60) the summation over particles
∑

j now

sums over the electrons and the nucleus of a single atom, and the term V̂coul describes the atomic

internal Coulomb potential. The field Â(r̂j) that interacts with the atom is found in Eq. (2.67),

where
∑

k,ε now sums over cavity eigenmodes. The long-wavelength approximation means that we

can expand the spatial dependence eik·r in the mode function uk,ε(r) as

eik·r = eik·Reik·(r−R) ≈ eik·R[1 + ik · (r−R) + · · · ], (2.68)

where R represents the position of the atom 6. To zeroth order, we then have eik·r → eik·R and

Â(r) = Â(R). As we will see later, this approximation leads to atomic dipole transitions. For

this reason, the long-wavelength approximation is often called the electric dipole approximation.

Keeping higher order terms of eik·r will correspond to multipole transitions that can have higher

order effects.

2.2.2 The p̂ · Â interaction and dipole representation

Before applying the long-wavelength approximation to our system, it is useful to first simplify

the terms involving Â(r). Expanding the first term of the Hamiltonian in Eq. (2.60) yields

Ĥ =
∑
j

p̂2
j

2mj
+ V̂coul + ĤI + ĤA + ĤR, (2.69)

where

ĤI = −
∑
j

qj
2mj

[
p̂j · Â(r̂j) + Â(r̂j) · p̂j

]
, (2.70)

ĤA =
∑
j

q2
j

2mj
Â2(r̂j), (2.71)

ĤR =
∑
k

~ωk

(
â†k,εâk,ε +

1

2

)
, (2.72)

5See Complement AIV of Ref. [27] for a discussion on charged systems like ions.
6See next subsection for a clear physical meaning of R.
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are identified as above, representing the atom-field interaction term, the Â2 term, and the free

radiation term of the Hamiltonian, respectively. We now examine these terms in greater detail.

In an arbitrary gauge, the operators p̂j and Â(r̂j) in the ĤI term do not generally commute.

However, they do commute in the specific choice of the Coulomb gauge ∇̂j · Â(r̂j) = 0, which is

what we choose. To see this, we use the chain rule in the position basis and get

p̂ · Â =
(
−i~∇̂

)
· Â =

(
−i~∇̂ · Â

)
+ Â ·

(
−i~∇̂

)
= Â · p̂. (2.73)

Therefore, the ĤI term becomes

ĤI = −
∑
j

qj
mj

p̂j · Â(r̂j) (2.74)

The ĤA term is usually small and can be ignored. The relative orders of magnitude can be

approximated as the following. Comparing ĤA and ĤI, we have

q2
j Â

2

qjp̂j · Â
≈
qj

∣∣∣Â∣∣∣
|p̂j |

(2.75)

which is small for low-energy fields such as visible light and microwaves. We can also compare ĤA

and ĤR, yielding

∑
j q

2
j

ˆ̃Aε(k)2/(2mj)

~ωk

[
â†k,εâk,ε + 1

2

] =

∑
j

q2
j

2mj
~

2ωkε0V

~ωk

(
â†ε + âε

)2

â†εâε + 1
2

.
(N+1)e2

2me
~

2ωkε0V

~ωk
∝ (N + 1)a3

0

V

(
Ry

~ωk

)2

(2.76)

where me is the electron mass, N is the total number of particles in the atom, a0 =
4π~2ε0

mee2
is the

Bohr radius, and Ry =
mee

4

8ε2
0h

2
≈ 13.6 eV is the Rydberg unit of energy [71]. Thus for fields with low

radiation intensity, the ĤA term can be safely ignored if the dimension of the quantization Volume

is much larger than the Bohr radius, which is true if we treat the quantization volume as the cavity

volume for example.

We mention here that we have derived the Hamiltonian by quantizing a classical theory.

Therefore the terms that have no classical counterparts, such as spin-field interactions, will not

show up in Eq. (2.60). For this reason, Eq. (2.60) is called a minimal-coupling Hamiltonian. One

may as well start directly from the Dirac equation or Pauli equation and get an extra term in the
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Hamiltonian that describes the interaction between the spin operators Ŝj and the fields, which has

the form

ĤS = −
∑
j

Gj
qj

2mj
Ŝj · B̂, (2.77)

where Gj is the g-factor of particle j. Comparing ĤS with ĤI, i.e.,

GjqjŜj · ˆ̃B(k)

qjp̂j · ˆ̃A(k)
≈

~
∣∣∣k̂∣∣∣
|p̂j |

, (2.78)

we see that ĤS can be ignored given low radiation intensities, similar to the argument to ignore ĤA.

This is in general a very good approximation for the systems that we study. For fields of higher

energy, one needs a complete quantum field theory.

With the discussions above, we now ignore the small terms ĤA and ĤS and make the zeroth

order long-wavelength approximation Â(r) = Â(R) in ĤI in Eq. (2.74), yielding

Ĥ =
∑
j

p̂2
j

2mj
+ V̂coul −

∑
j

qj
mj

p̂j · Â(R̂) +
∑
k

∑
ε

~ωk

[
â†k,εâk,ε +

1

2

]
. (2.79)

Notice that we have not given the position operator R̂ a clear physical meaning, nor have we

restricted the motion of the atom. It would be ideal if we could identify R̂ as the center of mass

of the atom, and separate the atomic energy into an external kinetic part Ĥext and an internal

part Ĥint. It turns out that this separation is possible for an atom. Let R̂ =

∑
jmj r̂j

M
and

P̂ =
∑
j

p̂j be the position and momentum of the center of mass, with M =
∑

jmj the total

atomic mass. We can then rewrite Eq. (2.79) as

Ĥ =
P̂2

2M
+
∑
j

P̂PP
2

j

2µj
+ V̂coul −

∑
j

e

µj
P̂PPj · Â(R̂) +

∑
k

~ωk

[
â†k,εâk,ε +

1

2

]

= Ĥext + Ĥint + ĤI + ĤR, (2.80)

where µj and P̂PPj are the reduced mass and momentum of the jth “relative” particle needed to

separate the motion of the center of mass, and e is the elementary charge. In Eq.(2.80) we have

introduced

Ĥext =
P̂2

2M
(2.81)
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as the kinetic energy of the atom, and

Ĥint =
∑
j

P̂PP
2

j

2µj
+ V̂coul (2.82)

as the internal energy of the atom. Here the Coulomb potential V̂coul, from Eq. (2.30), is a function

that only depends on the absolute values of the relative positions of the electrons and the nucleus.

Therefore V̂coul can also be expressed as a function of the positions
∣∣∣R̂RRj

∣∣∣ of the relative particles.

Since

[(
R̂j

)
α
,
(
P̂k

)
β

]
= i~δjkδαβ, for α, β ∈ {x, y, z}, the term Ĥint can be thought of as the

Hamiltonian of an isolated system composed of particles with mass µj in potential V̂coul. In these

coordinates, the interaction Hamiltonian ĤI can be rewritten as

ĤI = −
∑
j

e

µj
P̂PPj · Â(R̂). (2.83)

We refer the readers to Appx. B for a detailed derivation of Eq. (2.80) and the corresponding

analysis.

Equation (2.80) is obviously non-relativistic. To good approximation, we have separated the

Hamiltonian into four different parts: the atomic external (kinetic) energy, the atomic internal

energy, the atomic-field coupling energy, and the field free energy. If the atom is forced to be at

rest, for example trapped in the Lamb-Dicke regime [163], then P̂ ≡ 0, and the interaction will only

change the internal degrees of freedom of the atom. If the atom is free to move, then the motion of

the atom is coupled to the atom-field interactions, which means that optomechanical forces should

be considered. However, in the case that the atom’s kinetic energy is far larger than the recoil

energy of the field photons, we can assume that the atom’s kinetic energy is held constant. We will

see in Chap. 4 that these three situations correspond to different superradiant setups, and the last

one is exactly the approximation we make for the superradiant beam laser system.

The Hamiltonian Ĥint is often well known and extensively studied. Therefore, we can use its
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eigenbasis and rewrite Eq. (2.80) as

Ĥ = Ĥint −
∑
j

e

µj
P̂PPj · Â(R̂) + Ĥext + ĤR

= Ĥint −
∑
j

ie

~

[
Ĥint,R̂RRj

]
· Â(R̂) + Ĥext + ĤR

=
∑
n,n′

∣∣n〉〈n′∣∣
Enδnn′ − i(En − En′)

~
〈
n
∣∣∑

j

eR̂RRj

∣∣n′〉 · Â(R̂)

+ Ĥext + ĤR

=
∑
n,n′

∣∣n〉〈n′∣∣ [Enδnn′ − i(En − En′)
~

dnn′ · Â(R̂)

]
+ Ĥext + ĤR, (2.84)

where we have used

P̂PPj =
iµj
~

[
Ĥint,R̂RRj

]
(2.85)

and the eigenbasis |n〉 of Ĥint such that Ĥint |n〉 = En |n〉 with En the eigenstates of Ĥint. We have

also introduced the dipole matrix element

dnn′ =
〈
n
∣∣∑

j

eR̂RRj

∣∣n′〉 . (2.86)

Notice that because
[
Ĥint, P̂

]
= 0 where P̂ is the parity operator, |n〉 is also an eigenstate of P̂.

Thus the diagonal dipole matrix elements dnn are zero. The fact that the d ·Â term vanishes when

n = n′ also directly follows from Eq. (2.84) since En − En′ = 0 when n = n′.

2.2.3 Two-level, single-mode, and rotating-wave approximation

In Eq. (2.84) we have written Ĥint in terms of its eigenbasis. For further simplification,

we make the two-level approximation, which assumes that the Hilbert space Ĥint lives in is two-

dimensional, or equivalently, only two eigenstates of Ĥint are considered during the interaction

process with the fields. This simple model turns out to contain rich physics. Experimentally,

the two-level approximation is valid when the atom decays or gets repumped rapidly from other

levels back to the two energy levels we consider, or when the transitions to other levels are highly

suppressed.
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Within the two-level approximation, we can label the lower level as the ground state |g〉,

and the higher level as the excited state |e〉. We define the energy difference between these two

levels as ~ωa, where ωa is called the atomic transition frequency, or the rest-frame atomic transition

frequency, since we have separated the center-of-mass motion from Ĥint. In matrix representation,

these states have the form

|e〉 =

 1

0

 , |g〉 =

 0

1

 . (2.87)

Clearly,

|e〉 = σ̂+ |g〉 , |g〉 = σ̂− |e〉 , (2.88)

where

σ̂+ = |e〉 〈g| =

0 1

0 0

, σ̂− = |g〉 〈e| =

0 0

1 0

. (2.89)

We choose the energy reference point such that Eg = −~ωa
2

and Ee =
~ωa

2
, which allows us to

represent Ĥint as

Ĥint =
~ωa

2

1 0

0 −1

 =
~ωa

2
σ̂z, (2.90)

where

σ̂z = |e〉 〈e| − |g〉 〈g| =

1 0

0 −1

. (2.91)

We also give the other Pauli matrices

σ̂x = σ̂+ + σ̂− =

0 1

1 0

, σ̂y = i(σ̂− − σ̂+) =

0 −i

i 0

 (2.92)

here for future use. One can refer to Appx. C for useful properties of the Pauli matrices.

For most cavity QED problems, the simplest interaction is between two-level atoms and a

single cavity mode. From Eq. (2.67) we obtain the expression of A for a single cavity mode and
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polarization

Â(R̂) =

√
~

2ωcε0

[
âu(R̂) + â†u∗(R̂)

]
, (2.93)

where ωc is the frequency of the single-mode field (“c” stands for “cavity” since we will be studying

cavity QED systems). The radiation part of the Hamiltonian is thus

ĤR = ~ωcâ†â, (2.94)

where we remove the constant
1

2
~ωc term from the Hamiltonian.

With the two-level approximation and the single cavity mode chosen above, Eq. (2.84) be-

comes

Ĥ =
~ωa

2
σ̂z −

√
~

2ωcε0
iωa
(
σ̂+deg − σ̂−dge

)
·
[
âu(R̂) + â†u∗(R̂)

]
+ Ĥext + ĤR,

=
~ωa

2
σ̂z +

~
2

[
g(R̂)σ̂+â+ g∗(R̂)σ̂−â†

]
+

~
2

[
g′(R̂)σ̂+â† + g′∗(R̂)σ̂−â

]
+ Ĥext + ĤR, (2.95)

where we have defined for any position r

g(r) = −iωa
√

2

~ωcε0
deg · u(r), (2.96)

g′(r) = −iωa
√

2

~ωcε0
deg · u∗(r). (2.97)

It is often convenient to separate the spatial mode function from g(r) such that

g(r) = gη(r), (2.98)

where g is a constant and the spatial mode η(r) is normalized such that |η|max = 1. For example,

in the periodic box case, for the mode function Eq. (2.66) we have

g = −iωa
√

2

~ωcε0V
deg · ε, (2.99)

which is called the single-photon vacuum Rabi frequency. Here V is the quantization volume, and

ε is the unit polarization vector of the mode function u(r). Since at any given r, we can choose the

phase of the dipole matrix element such that g(r) is real, we will take g(r) to be real from now on.
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One may notice that the form of g in Eq. (2.99) that is derived in Coulomb gauge is different

from the usual form of the vacuum Rabi frequency derive in the electric dipole gauge (which

corresponds to a d̂ · Ê interaction), where

|g| =
√

2ωc
~ε0V

|deg · ε|, (2.100)

which is different from Eq. (2.99) by
ωc
ωa

. The reason is quite subtle and we refer the readers to

Refs. [141, 147, 158] for detailed discussions. The general idea is that measurable physical quantities

should always be gauge-invariant, as well as the energy conservation law. The difference is obviously

reconciled in the resonant situation ωa = ωc. When ωa 6= ωc, the dipole matrix elements represent

intermediate transitions in a larger multi-photon process. The physical results of the whole process

is always gauge-invariant. After all, the theory we have derived is a low-energy non-relativistic

approximation of the QED theory.

In Eq. (2.95), we can also ignore the non-resonant terms proportional to σ̂+â† and σ̂−â. This

is called the rotating-wave approximation or secular approximation [52]. To see this, we switch to

the interaction picture 7 defined by

Û = exp

[
− i
~

(
Ĥint + ĤR

)
t

]
(2.101)

where Ĥint and ĤR are given in Eq. (2.90) and (2.94). In this picture, using the Baker-Campbell-

Hausdorff formula [131] we see that the time dependence of non-resonant terms is

σ̂+â† ∼ ei(ωa+ωc)t, σ̂−â ∼ e−i(ωa+ωc)t, (2.102)

while the time dependence of resonant terms is

σ̂+â ∼ ei(ωa−ωc)t, σ̂−â ∼ e−i(ωa−ωc)t. (2.103)

Since we have already made the two-level approximation, we have assumed that the transition

to other levels than the chosen excited and ground states are highly suppressed, which implies

|ωa − ωc| � ωa + ωc or |∆| � ωa + ωc, where ∆ = ωc − ωa is the cavity detuning. For this reason,

7See Appx. D for further discussions on interaction pictures.
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the two-level and rotating-wave approximations should always be considered simultaneously. In the

optical domain, the high frequency ωa +ωc usually corresponds to femtosecond timescales that can

be coarsed-grained with our assumption. In our later treatment of the superradiant laser where the

detuning ∆ can vary, we still assume ∆� ωc so that the rotating-wave approximation is valid.

In the end, with all the approximations made, we derive the Jaynes-Cummings model for a

moving two-level atom interacting with a single cavity mode

Ĥ =
P̂2

2M
+

~ωa
2
σ̂z + ~ωcâ†â+

~g
2
η(R̂)

(
σ̂+â+ σ̂−â†

)
. (2.104)



Chapter 3

Open Quantum Systems

So far we have been considering purely coherent processes, meaning that in the Schrödinger

picture (SP) the time evolution of the system density operator ρ̂ follows the von Neumann equation

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
, (3.1)

or in the Heisenberg picture (HP) the time evolution of the observable Ô (and other operators

except for the density operator) follows the Heisenberg equation 1

dÔ
dt

= − 1

i~

[
Ĥ, Ô

]
. (3.2)

Systems that follow such coherent time evolutions are called closed systems. However, sometimes

we are more interested in sub-systems (with few degrees of freedom) that are embedded in a larger

environment (with many degrees of freedom). Under such circumstances, although the combined

system of the sub-systems and the environment (or the reservoir, the heat bath, etc.) is still closed,

the dynamics of the sub-systems themselves after tracing out the environment is not coherent. We

call these sub-systems open quantum systems. As we will see, the incoherence implies extra terms

in Eq. (3.1) leading to the master equation, and in Eq. (3.2) leading to the Heisenberg-Langevin

equations. For clarity, from now on we will always use the term “system” to refer to the sub-system

that we are interested in.

In this chapter, we first derive the master equation for the most general physical setup.

Specifically, we follow two different approaches: one from a classic quantum optics point of view [28,

1Here we assume that Ô is not explicitly dependent on time.
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43, 42, 103, 147, 158, 19, 96] and the other from a more modern quantum information point

of view [120, 96]. For the same interaction Hamiltonian, we also derive the Heisenberg-Langevin

equations, which can also be strictly formulated as the quantum stochastic differential equations [42,

43]. We show the equivalence between the master equation description and the Heisenberg-Langevin

description given a heat bath composed of harmonic oscillators. In the end, we give a prescription

for the forms of the master equation and the Heisenberg-Langevin equations for general cavity QED

systems under the effect of various noise sources.

3.1 Master equation

3.1.1 Quantum optics approach

Consider a physical process that is described by the Hamiltonian

Ĥ = ĤS + ĤE + V̂ , (3.3)

where ĤS, ĤE, and V̂ are the Hamiltonians of the system, the environment, and the interaction

between them, respectively. In the SP, the total density matrix of the system and the environment ρ̂

satisfies the von Neumann equation (3.1). Our goal is to derive the time evolution of the reduced

density matrix of the system ρ̂S = TrE[ρ̂].

For convenience, we now transform from the SP into the interaction picture (IP) defined by

Ĥ0 = ĤS + ĤE and Û = exp

[
− i
~
Ĥ0t

]
, 2 yielding

dρ̂I

dt
=

1

i~

[
V̂ I, ρ̂I

]
, (3.4)

where ρ̂I = Û †ρ̂Û and V̂ I = Û †V̂ Û are the total density matrix and the interaction Hamiltonian

in the IP, respectively. 3 Using the cyclic property of the partial trace, we get

ρ̂S = TrE[ρ̂] = TrE

[
Û ρ̂IÛ †

]
= TrE

[
ÛSρ̂

IÛ †S

]
= ÛSTrE

[
ρ̂I
]
Û †S ≡ ÛSρ̂

I
SÛ
†
S, (3.5)

2We assume that Ĥ0 is time-independent.
3When the system itself is composed of sub-systems and their couplings, we can also define the IP without those

couplings, thus leaving coherent coupling terms on the right hand side of Eq. (3.4) which are carried over through

the whole calculation until being merged into ĤS in Eq. (3.20).
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where ÛS = exp

[
− i
~
ĤSt

]
is the unitary defined by ĤS, and ρ̂I

S = TrE

[
ρ̂I
]

is the reduced system

density matrix in the IP. We thus turn our problem into finding the time evolution of ρ̂I
S.

Formally integrating Eq. (3.4) from 0 to t for two iterations, we get

ρ̂I(t) = ρ̂I(0) +
1

i~

ˆ t

0
dt′
[
V̂ I(t′), ρ̂I(0)

]
+

1

(i~)2

ˆ t

0
dt′

ˆ t′

0
dt′′
[
V̂ I(t′),

[
V̂ I(t′′), ρ̂I(t′′)

]]
, (3.6)

which can be differentiated with respect to t to get

d

dt
ρ̂I(t) =

1

i~

[
V̂ I(t), ρ̂I(0)

]
+

1

(i~)2

ˆ t

0
dt′
[
V̂ I(t),

[
V̂ I(t′), ρ̂I(t′)

]]
. (3.7)

Tracing over the environment yields

d

dt
ρ̂I

S(t) =
1

i~
TrE

[
V̂ I(t), ρ̂I(0)

]
+

1

(i~)2

ˆ t

0
dt′TrE

[
V̂ I(t),

[
V̂ I(t′), ρ̂I(t′)

]]
. (3.8)

To simplify the right hand side, we make the following approximations:

(1) Decoupled initial conditions.

We assume that the system and the environment are decoupled at time t = 0, which means

ρ̂I(0) = ρ̂(0) = ρ̂S(0)⊗ ρ̂E(0). (3.9)

(2) Weak-coupling approximation (Born approximation).

We assume that the environment is so large that its density matrix (and statistical prop-

erties) is unchanged by interacting with the system, i.e.,

ρ̂E(t) ≈ ρ̂E(0) ≡ ρ̂E, (3.10)

which implies the factorization of ρ̂I(t) such that 4

ρ̂I(t) ≈ ρ̂I
S(t)⊗ ρ̂E. (3.11)

4This is a strong approximation. A weaker version for interaction terms of form V̂ I =
∑
X̂SŶE would be the

requirement TrE

[
ŶE(t),

[
ŶE(t′), ρ̂I(t′)

]]
≈ ρ̂I

S(t′) ⊗ TrE

[
ŶE(t),

[
ŶE(t′), ρ̂E

]]
. Physically this means that the bath

correlations are not changed by the interaction.
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With the two approximations above, we have from Eq. (3.8)

d

dt
ρ̂I

S(t) ≈ 1

i~
TrE

[
V̂ I(t), ρ̂S(0)⊗ ρ̂E

]
+

1

(i~)2

ˆ t

0
dt′TrE

[
V̂ I(t),

[
V̂ I(t′), ρ̂I

S(t′)⊗ ρ̂E

]]
≈ 1

(i~)2

ˆ t

0
dt′TrE

[
V̂ I(t),

[
V̂ I(t′), ρ̂I

S(t′)⊗ ρ̂E

]]
, (3.12)

where we have assumed TrE

[
V̂ Iρ̂E

]
= 0. The last approximation implies that V̂ I has

no diagonal terms in the eigenbasis representation of ĤE, which is either true, or can be

satisfied by redefining ĤS and ĤE to include the diagonal terms [42, 96].

(3) Markov approximation.

In order to simplify the right hand side, we make the “Markov approximation”, which

assumes that the correlation time of the bath is much shorter than the time scale of the

evolution of ρ̂I
S(t), or equivalently, that the environment has short memory. If that is

the case, then the trace over the environment will lead to Dirac delta functions in time,

resulting in the approximation ρ̂I
S(t′) ≈ ρ̂I

S(t) inside the correlations of the environment

operators on the right hand side. The name “Markov approximation” comes from its

classical analogy, since it yields a first-order differential equation from which it is sufficient

to determine ρ̂I
S(t+ dt) given ρ̂I

S(t). As C. Gardiner and P. Zoller comment [42],

“· · · The Markov property is a highly desirable property from a mathematical
point of view, because a whole structure of measurement theory can be built
around it in a compact and self-contained way. The elegance of this structure
leads to the formulation in the abstract of the concept of the quantum Markov
process as a branch of mathematics. Nevertheless, it is important to remember
that it is an assumption, based on the existence of short correlation times in the
heat bath, and the use of perturbation theory.”

(C. Gardiner & P. Zoller — Quantum Noise, 3rd edition)

With the Markov approximation, we end up with

d

dt
ρ̂I

S = − 1

~2

ˆ t

0
dt′TrE

[
V̂ I(t),

[
V̂ I(t′), ρ̂I

S(t)⊗ ρ̂E

]]
,

= − 1

~2

ˆ ∞
0

dsTrE

[
V̂ I(t),

[
V̂ I(t− s), ρ̂I

S(t)⊗ ρ̂E

]]
, (3.13)



32

where we have set the lower integral limit to −∞ since t is much larger than the correlation

timescale, and changed the variable t′ → t− s.

Equation (3.13) is called the Redfield master equation for open quantum systems [122]. It

is as far as we can get without an explicit form of the interaction Hamiltonian. To simplify this

form of the master equation and to relate it to the Heisenberg-Langevin equations, let us consider

a general form of the interaction Hamiltonian V̂ by assuming it to be a sum of direct products of

system and environment operators, i.e.,

V̂ = ~
∑
j

Ωj

(
ÔS

)
j
⊗ Êj , (3.14)

where Ωj is the coupling strength of dimension frequency, and
(
ÔS

)
j

and Êj are some dimensionless

system and environment operators that take part in the coupling.

Equation (3.14) is general in terms of the system and environment operators
(
ÔS

)
j

and Êj .

In fact, we can go even further by expanding
(
ÔS

)
j

in the basis composed of the eigenoperators

of ĤS. Consider the superoperator HS

[
ÔS

]
≡
[
ĤS, ÔS

]
that maps any system operator ÔS to the

commutator between ĤS and ÔS. Since the eigenvectors 5 of HS form a complete basis, we can

express ÔS as

ÔS =
∑
m

cmŜm + dmŜ
†
m, (3.15)

where cm and dm are some coefficients, and the eigenvectors Ŝm by definition fulfill

HS

[
Ŝm

]
=
[
ĤS, Ŝm

]
= −~ωmŜm, (3.16)

HS

[
Ŝ†m

]
=
[
ĤS, Ŝ

†
m

]
= ~ωmŜ†m. (3.17)

Therefore, in Eq. (3.14), we can expand
(
ÔS

)
j

in terms of
(
Ŝm

)
j

and
(
Ŝ†m
)
j
. After combining

the summations over j and m to a single summation over k, and absorbing cm and dm into Ωk, we

5The eigenvectors of the superoperator HS and the eigenoperators of ĤS both refer to the operators Ŝm and Ŝ†m

introduced in Eqs. (3.16)–(3.17). See Refs. [42, 96].
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obtain

V̂ = ~
∑
k

(
ΩkŜk ⊗ Ê†k + Ω∗kŜ

†
k ⊗ Êk

)
, (3.18)

where we have used the fact that V̂ is Hermitian. Notice that here the index k sums over all the

possible couplings j and all the eigenfrequencies ωm for each j.

We now give several examples to help understand this construction. Suppose the system is

a two-level atom. Then by Eq. (2.90), ĤS =
1

2
~ωaσ̂z. For ÔS = σ̂±, we see that σ̂± are already

both eigenvectors of HS since
[
ĤS, σ̂

±
]

= ±~ωaσ̂±. Therefore Eq. (3.18) follows. If the system is

a single cavity mode, then by Eq. (2.94), ĤS = ~ωc
(
â†â+

1

2

)
. For ÔS = â or â†, these operators

also satisfy
[
ĤS, â

]
= −~ωcâ and

[
ĤS, â

†
]

= ~ωcâ†. The generalization to more complex systems

with multiple eigenfrequencies is straightforward.

With the interaction Hamiltonian given in Eq. (3.18), in the IP, we then have

V̂ I(t) = ~
∑
k

Ωk

(
e
i
~ ĤStŜke

− i~ ĤSt
)
⊗ ÊI,†

k (t) + h.c.

= ~
∑
k

Ωk e
−iωktŜk ⊗ ÊI,†

k (t) + Ω∗k e
iωktŜ†k ⊗ Ê

I
k(t), (3.19)

where we have used the Baker-Campbell-Hausdorff formula. Equation (3.19) provides a very general

yet explicit form of the interaction Hamiltonian. By expanding the commutators in the Redfield

master equation (3.13) and substituting in Eq. (3.19), we obtain multiple terms that depend on the

system operators and time correlations of the environment operators. Due to the long algebra, we

refer the readers to Appx. E for a detailed calculation of these terms. As a result, we obtain the

Lindblad master equation in the SP, i.e.,

d

dt
ρ̂S =

1

i~

[
ĤS +

∑
k

~
(
εkŜkŜ

†
k + δkŜ

†
kŜk

)
, ρ̂S

]
+
∑
k

ΓkL
[
Ŝk

]
ρ̂S +

∑
k

GkL
[
Ŝ†k

]
ρ̂S, (3.20)

where

Gk = |Ωk|2
ˆ ∞
−∞

ds e−iωks
〈
ÊI,†
k (s)Êk

〉
, (3.21)

Γk = |Ωk|2
ˆ ∞
−∞

ds e−iωks
〈
ÊkÊ

I,†
k (s)

〉
, (3.22)
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are the power spectra of the coupling for the normal and anti-normal orderings of the environment

operators. The terms proportional to εk and δk correspond to small shifts in system energy levels

that are called the Stark and Lamb shifts and are usually neglected. 6 We have defined the

Lindbladian superoperator as

L
[
Ŝ
]
ρ̂ =

1

2

(
2Ŝρ̂Ŝ† − Ŝ†Ŝρ̂− ρ̂Ŝ†Ŝ

)
(3.23)

for the system operator Ŝ and density matrix ρ̂.

It is easy to tell that, by writing down the correlations of the environment operators as

in Eqs. (3.21)–(3.22), we have assumed a stationary heat bath, which means that the correla-

tions
〈
ÊI,†
k (t+ s)ÊI

k(t)
〉

are not functions of t. Moreover, if we consider a heat bath at vacuum and

identify operators Ê and Ê† as the bosonic annihilation and creation operators, which is a good

approximation for many cavity QED experiments located in vacuum, then Gk = 0, and the only

extra terms left are the Γk terms that describe the dissipation of the open quantum system caused

by vacuum fluctuations. With these assumptions, we have the final form of the Lindblad master

equation

d

dt
ρ̂S(t) =

1

i~

[
ĤS, ρ̂S(t)

]
+
∑
k

ΓkL
[
Ŝk

]
ρ̂S(t), (3.24)

The operator Ŝk is called the quantum jump operator since it describes an incoherent “jump” of the

quantum state caused by coupling to the environment. The summation over k can be understood

as the summation over k different decoherent sources each generated by the quantum jump Ŝk.

Here, the independence of these decoherent sources is a result of the weak coupling approximation,

which suggests that since the environment is not affected by the coupling to the system, we can

treat the total effect of all the decoherence terms as a superposition of them.

3.1.2 Quantum information approach

In the previous section we have derived the master equation (3.24) from a quantum optics

point of view. We mentioned that a measurement theory can be constructed from the Markov

6See Appx. E for further discussions on the coefficients εk and δk.
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approximation. In this section, we follow that path and derive the master equation following

J. Preskill’s notes [120]. Due to limited space, we will not start from the basic definitions in

quantum information theory such as quantum channels and Kraus operators. One is recommended

to read Refs. [120, 42, 112, 96] for deeper understanding.

As we have discussed above, it is not obvious that there should be a first-order differential

equation that describes the decoherence in an open quantum system. Such descriptions are only

possible with the Markov approximation, where the system density matrix ρ̂S(t+ dt) is completely

determined by ρ̂S(t). Therefore, in terms of quantum information theory, our question naturally

becomes how to find the most general way to map density matrices to density matrices. Consider

the following relation between ρ̂S(t+ dt) and ρ̂S(t)

ρ̂S(t+ dt) = Edt[ρ̂S(t)] =
[
1̂ + L dt

]
ρ̂S(t), (3.25)

where 1̂ is the identity matrix, Edt is a quantum channel, or a trace-preserving completely positive

map, and L is the Liouvillian operator that gives

d

dt
ρ̂S = L [ρ̂S]. (3.26)

Our goal is to find the Liouvillian.

Expanding Edt into its operator-sum representation, we obtain

Edt[ρ̂S(t)] =
∑
k

M̂kρ̂S(t)M̂ †k (3.27)

for k ∈ {0, 1, 2, · · · }, where M̂k is the kth Kraus operator.

For closed systems, Eq. (3.27) is just

ρ̂S(t+ dt) = Edt[ρ̂S(t)] = ρ̂S(t) +
1

i~

[
ĤS, ρ̂S(t)

]
dt , (3.28)

which is equivalent to the von Neumann equation (3.1). In other words, up to first order in dt,
M̂0 = 1̂ +

1

i~
ĤSdt

M̂k = 0, k > 0

. (3.29)
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For open systems, without loss of generality, we can write
M̂0 = 1̂ +

(
1

i~
ĤS + K̂

)
dt

M̂k =
√

ΓkŜk
√
dt, k > 0

, (3.30)

where K̂ is Hermitian, Γk is the decay rate of the kth decoherent source, and Ŝk is the kth jump

operator. Both Ŝk and K̂ are zeroth order in dt. Up to the first order in dt, we obtain from the

completeness of Kraus operators

1̂ =
∑
k=0

M̂ †kM̂k = 1̂ + dt

(
2K̂ +

∑
k>0

ΓkŜ
†
kŜk

)
, (3.31)

and thus

K̂ = −1

2

∑
k>0

ΓkŜ
†
kŜk. (3.32)

Substituting back into Eq. (3.26), we have

d

dt
ρ̂S = L [ρ̂S] =

1

i~

[
ĤS, ρ̂S

]
+
∑
k

ΓkL
[
Ŝk

]
ρ̂S (3.33)

Therefore, the Liouvillian of a Lindblad master equation is the generator of a quantum channel

that maps the system density operator back to itself. Notice that although Eq. (3.33) has the same

form as Eq. (3.24), it actually has a broader interpretation since we have not specified the physical

meanings of Γk and Ŝk. In other words, Eq. (3.33) contains the Gk terms in Eq. (3.20) if we

let Γk → Gk and Ŝk → Ŝ†k. Thus although the derivation of the master equation from measurement

theory reveals the mathematical origin of the structure of the Lindbladian superoperator, we still

need a physical derivation to interpret it.

3.2 Heisenberg-Langevin equations

The quantum master equation describes the time evolution of the system density operator ρ̂S

in the SP. Equivalently, one would expect a set of differential equations for the time evolution of

observables and other operators in the HP. Indeed, there exist such equations, which are called
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the Heisenberg-Langevin equations, or if formulated strictly, the quantum stochastic differential

equations [42]. In this section, we formally derive the Heisenberg-Langevin equations in a general

physical setup where we model the environment as harmonic oscillators.

In the HP, consider the same Hamiltonian as in Eq. (3.3),

Ĥ = ĤS + ĤE + V̂ .

We still do not specify the form of the system Hamiltonian ĤS. However, we assume that the heat

bath is now composed of harmonic oscillators, i.e.,

ĤE = ~
∑
k

ˆ ∞
−∞

dω ωÊ†k(ω)Êk(ω), (3.34)

where Êk(ω) and Ê†k(ω) are bosonic annihilation and creation operators that satisfy

[
Êk(ω), Ê†k′(ω

′)
]

= δkk′δ(ω − ω′). (3.35)

With this heat bath model, we write the interaction Hamiltonian V̂ as

V̂ = ~
∑
k

ˆ ∞
−∞

dω
[
Ωk(ω)ŜkÊ

†
k(ω) + Ω∗k(ω)Ŝ†kÊk(ω)

]
, (3.36)

where Ŝk and Ŝ†k are eigenoperators of ĤS. 7 Compared to Eq. (3.18), we have removed the ⊗ sign

since in the HP all the operators (system or environment) act on the combined Hilbert space of the

system and environment. The dimensions of the coupling strength Ωk(ω) and Êk have changed since

we assume a continuous spectra for the environment. The commutation relation (3.35) implies that

different eigenoperators of ĤS interact with different environment operators independently, which

is a result of the weak coupling approximation.

There are several comments to be made on the form of ĤE and V̂ . In general, although

it seems that we have a stronger condition here than in the derivation of the master equation

(since we have a specific form of the heat bath), we will see later that this condition is not as

strong as it appears because often the Lindblad master equation implicitly assumes a heat bath

7See Sec. 3.1 for a clear definition.
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composed of harmonic oscillators, or at least with the statistical properties of harmonic oscillators.

We will also see that if we specify the environment as harmonic oscillators in vacuum (thermal or

white), which is approximately true for the systems we consider later, the master equation and

Heisenberg-Langevin equations can be derived from each other.

Essentially, an interaction Hamiltonian V̂ as Eq. (3.36) implies the rotating-wave approx-

imation, since we have ignored the ŜkÊk(ω) and Ŝ†kÊ
†
k(ω) terms. As argued in Sec. 2.2.3, this

approximation is valid as long as |ωk − ω| � ωk + ω, where ωk is the frequency of the system op-

erator Ŝk as defined in Eq. (3.16). Since we have assumed a continuous spectra for the heat bath,

the rotating-wave approximation also means that only the resonant terms with ωk ≈ ω contribute,

therefore allowing us to extend the lower limit of the integral in Eq. (3.36) and Eq. (3.34) from 0

to −∞. This extension is crucial to define the quantum white noise and formulate a Markovian

description of the time evolution of system operators.

We now derive the Heisenberg-Langevin equations using Eq. (3.36). In the HP, the time

evolution of any system operator ÔS other than the density operator follows the Heisenberg equa-

tion (3.2). Our goal is to express this Heisenberg equation of ÔS using system operators and

some quantum stochastic operators that carry the statistical properties of the environment. Using

Eqs. (3.34) and (3.36) in the Heisenberg equation (3.2), we obtain

d

dt
ÔS = − 1

i~

[
ĤS, ÔS

]
− 1

i~

[
V̂ , ÔS

]
= − 1

i~

[
ĤS, ÔS

]
+ i
∑
k

ˆ ∞
−∞

dω
{

Ωk(ω)Ê†k(ω)
[
Ŝk, ÔS

]
+ Ω∗k(ω)

[
Ŝ†k, ÔS

]
Êk(ω)

}
(3.37)

and

d

dt
Êk(ω) = − 1

i~

[
ĤE, Êk(ω)

]
− 1

i~

[
V̂ , Êk(ω)

]
= −iωÊk(ω)− iΩk(ω)Ŝk. (3.38)

Solving Eq. (3.38) exactly, we have

Êk(ω, t) = Êk(ω, 0) e−iωt − iΩk(ω)

ˆ t

0
dt′ e−iω(t−t′)Ŝk(t

′), (3.39)

where Êk(ω, 0) is the initial value of Êk(ω, t) at t = 0. Substituting Eq. (3.39) into Eq. (3.37), we
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obtain

d

dt
ÔS = − 1

i~

[
ĤS, ÔS

]
+
∑
k

{[
Ŝ†k, ÔS

]
X̂k − X̂†k

[
Ŝk, ÔS

]}
+
∑
k

{[
Ŝ†k, ÔS

]
Ŷk − Ŷ †k

[
Ŝk, ÔS

]}
,

(3.40)

where we have defined

X̂k =

ˆ t

0
dt′ Ŝk(t

′)

ˆ ∞
−∞

dω |Ωk(ω)|2 e−iω(t−t′), (3.41)

Ŷk = i

ˆ ∞
−∞

dω e−iωt Ω∗k(ω)Êk(ω, 0), (3.42)

which satisfy

X̂k + Ŷk = i

ˆ ∞
−∞

dωΩ∗k(ω)Êk(ω, t). (3.43)

Notice that although Êk(ω, t) commutes with any system operator, operators X̂k and Ŷk in general

do not commute with system operators.

So far, we have implicitly made the rotating-wave approximation when choosing the forms

of ĤE and V̂ . After that our derivations have been exact. We now make the Markov approximation,

which states that the heat bath has a short memory so that the system operator ÔS(t+ dt) is only

determined by ÔS(t). This is done by keeping the stationary values of the integral in Eq. (3.41)

and assuming

|Ωk(ω)|2 =
Γk
2π
, (3.44)

which yields

X̂k ≈
ˆ t

0
dt′ Ŝk(t

′)
Γk
2π

ˆ ∞
−∞

dω e−iω(t−t′),

=

ˆ t

0
dt′ Ŝk(t

′)Γkδ(t− t′),

=
Γk
2
Ŝk(t), (3.45)

where the 1
2 factor in the last line comes from the integral of δ(t − t′) over t′ ∈ [0, t]. Indeed,

the approximation made in Eq. (3.44) eliminates all the Ŝk(t
′) terms for t′ < t, and is sometimes
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also called the first Markov approximation [42]. Physically Eq. (3.44) means that the coupling

rate |Ωk(ω)|2 is independent of the frequency ω, which is a somewhat strong but still a good

approximation over the frequency domain of interest near the resonant frequency of the system ωk.

This is a consequence of the rotating-wave approximation again. One can also compare Eq. (3.44)

with Eq. (3.22) to see that Eq. (3.44) is indeed a stronger version of Markov approximation since

it assumes a delta-correlated heat bath in time that corresponds to a short memory.

We now consider the operator Ŷk
8, which can be modeled by quantum white noise. Strictly

speaking, to do so one needs to define the quantum Wiener process and then construct a theory

on Ito and Stratonovich quantum stochastic differential equations [42, 43]. However, for simplicity,

here we directly examine the commutation and statistical properties of Ŷk and make approximations

as needed.

From Eqs. (3.35), (3.42), and (3.44), we obtain the commutation relation as

[
Ŷk(t), Ŷ

†
k′(t
′)
]

=

ˆ ∞
−∞

ˆ ∞
−∞

dω dω′ e−iωt eiω
′t′ Ω∗k(ω)Ωk′(ω

′)
[
Êk(ω, 0), Ê†k′(ω

′, 0)
]

=

ˆ ∞
−∞

ˆ ∞
−∞

dω dω′ e−iωt eiω
′t′ Ω∗k(ω)Ωk′(ω

′)δkk′δ(ω − ω′)

= δkk′
Γk
2π

ˆ ∞
−∞

dω e−iω(t−t′)

= Γkδkk′δ(t− t′). (3.46)

We next calculate the statistical moments of operators Ŷk and Ŷ †k . To do this, we need to first

specify the initial conditions of the heat bath. Here we make the same decoupled initial condition

approximation as in Eq. (3.9) by assuming that the system and environment are completely de-

coupled at t = 0. In the calculations below, we only take the ensemble average with respect to

the environment. Due to the decoupled density matrices, this is actually a stronger condition than

averaging over the system plus the environment. The first moment is

〈
Ŷk(t)

〉
E

= i

ˆ ∞
−∞

dω e−iωt Ω∗k(ω) TrE

[
ρ̂E(0)Êk(ω, 0)

]
= 0, (3.47)

8Operator Ŷk is usually referred to as the input field in the literature [42].
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where we assume the ensemble average of the random initial value Êk(ω, 0) to be zero. The second

order correlations between Ŷk and Ŷ †k are〈
Ŷ †k′(t

′)Ŷk(t)
〉

E
=

ˆ ∞
−∞

ˆ ∞
−∞

dω′ dω eiω
′t′ e−iωt Ωk′(ω

′)Ω∗k(ω)
〈
Ê†k′(ω

′, 0)Êk(ω, 0)
〉

E

=

ˆ ∞
−∞

ˆ ∞
−∞

dω′ dω eiω
′t′ e−iωt Ωk′(ω

′)Ω∗k(ω)N̄k(ω)δkk′δ(ω − ω′)

= δkk′
Γk
2π

ˆ ∞
−∞

dω e−iω(t−t′)N̄k(ω)

= ΓkN̄kδkk′δ(t− t′), (3.48)〈
Ŷk(t)Ŷ

†
k′(t
′)
〉

E
= Γk

(
N̄k + 1

)
δkk′δ(t− t′), (3.49)

where we have assumed a constant density of reservoir quanta N̄k(ω) ≡ N̄k that corresponds

to an ideal quantum white noise source. If N̄k(ω) follows a thermal distribution, i.e., N̄k(ω) =[
exp

(
~ω
kBTk

)
− 1

]−1

, where kB is the Boltzmann constant and Tk is the temperature, Eqs. (3.48)–

(3.49) will still be a good approximation although the delta-correlation is weaker. However, in

order to interpret N̄k(ω) as a source of noise we do need it to have a broad bandwidth. If N̄k(ω) is

a delta function, for instance, then it no longer represents a noise but a coherent drive.

Suppose we take the vacuum condition of the heat bath by letting N̄k = 0 (white) or T = 0

(thermal). Then the only noise left is due to the vacuum fluctuations. Under the vacuum condition,

with Eqs. (3.47)–(3.49), we define the vacuum quantum white noise operator

ξk(t) =
Ŷk(t)√

Γk
(3.50)

such that 9

〈
ξ̂k(t)

〉
E

= 0, (3.51)〈
ξ̂†k′(t

′)ξ̂k(t)
〉

E
= 0, (3.52)〈

ξ̂k(t)ξ̂
†
k′(t
′)
〉

E
= δkk′δ(t− t′), (3.53)[

ξ̂k(t), ξ̂
†
k′(t
′)
]

= δkk′δ(t− t′). (3.54)

9The fact that we can define the quantum white noise with its first and second order moments means that we

implicitly assume a Gaussian noise model.
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Substituting Eq. (3.45) and (3.50) into Eq. (3.40), we obtain the Heisenberg-Langevin equation for

any system operator ÔS

d

dt
ÔS = − 1

i~

[
ĤS, ÔS

]
+
∑
k

D̂k +
∑
k

F̂k, (3.55)

where D̂k is called the drift operator that has the form

D̂k =
Γk
2

([
Ŝ†k, ÔS

]
Ŝk + Ŝ†k

[
ÔS, Ŝk

])
= ΓkL̄

[
Ŝk

]
ÔS, (3.56)

where we have defined the superoperator L̄
[
Ŝ
]
Ô as

L̄
[
Ŝ
]
Ô =

1

2

(
2Ŝ†ÔŜ − Ŝ†ŜÔ − ÔŜ†Ŝ

)
(3.57)

for system operators Ŝ and Ô. Notice the difference between the superoperator L̄ and L defined in

Eq. (3.23).

The operator F̂k is called the noise or diffusion operator, which can be written as

F̂k =
√

Γk

([
Ŝ†k, ÔS

]
ξ̂k + ξ̂†k

[
ÔS, Ŝk

])
(3.58)

with the correlation 10

〈
F̂k(t)F̂k′(t

′)
〉

= Γk

〈[
Ŝ†k, ÔS

][
ÔS, Ŝk

]〉
δkk′δ(t− t′). (3.59)

Equation (3.59) shows that there is no correlation between different noise sources. Thus for an

open quantum system that is subject to several decoherence sources, we can treat each one of them

separately and then add the resulting drift and noise operators together. We can also define the

noise correlation between two different system operators Ôµ and Ôν , which yields

〈
F̂µk(t)F̂νk′(t

′)
〉

= (2Mk)µνδkk′δ(t− t
′), (3.60)

where

(2Mk)µν ≡ Γk

〈[
Ŝ†k, Ôµ

][
Ôν , Ŝk

]〉
(3.61)

10The strict proof of this correlation is non-trivial and is not presented here.
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is called the diffusion matrix between operators Ôµ and Ôν caused by the kth noise or decoherent

source, which gets its name from the classical Langevin theory.

We identify Ŝk as the jump operator of the kth noise source as introduced in Eq. (3.24), and Γk

as the corresponding decay rate. Again, both the master equation and Heisenberg-Langevin equa-

tion approaches are valid only under the decoupled initial condition, rotating-wave, weak-coupling,

and Markov approximations. With these approximations, each channel of decoherence corresponds

to an independent noise contribution that does not affect any of the other noisy sources.

3.3 Equivalence between master equation and Heisenberg-Langevin equa-

tions

We have argued that with the harmonic oscillator model of the heat bath, the master equation

description and the Heisenberg-Langevin equation description of the same open quantum system

are equivalent. In this section, we prove this claim. For simplicity, we assume the heat bath to be

vacuum, which corresponds to a zero temperature for thermal modes, or zero energy quanta for

white noise. Also we only consider one noise channel. Then the master equation (3.24) and the

Heisenberg-Langevin equation (3.55) become 11

d

dt
ρ̂(t) =

1

i~

[
Ĥ, ρ̂(t)

]
+

Γ

2

[
2Ŝρ̂(t)Ŝ† − Ŝ†Ŝρ̂(t)− ρ̂(t)Ŝ†Ŝ

]
, (3.62)

d

dt
Ô(t) = − 1

i~

[
Ĥ(t), Ô(t)

]
+

Γ

2

[
2Ŝ†(t)Ô(t)Ŝ(t)− Ŝ†(t)Ŝ(t)Ô(t)− Ô(t)Ŝ†(t)Ŝ(t)

]
+
√

Γ

{[
Ŝ†(t), Ô(t)

]
ξ̂(t) + ξ̂†(t)

[
Ô(t), Ŝ(t)

]}
, (3.63)

where we use the time dependence to label the picture, and have dropped the S notation since all

the operators except for ξ and ξ† are now system operators. The generalization to multiple noise

sources and non-vacuum is straightforward.

11Keep in mind that the master equation is in the SP and the Heisenberg-Langevin equation is in the HP.
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3.3.1 Master equation to Langevin equations

Suppose we are given the master equation (3.62). For any operator Ô, we now use the master

equation to find the drift D̂ and diffusion F̂ of its corresponding Heisenberg-Langevin equation

d

dt
Ô(t) = − 1

i~

[
Ĥ(t), Ô(t)

]
+ D̂(t) + F̂ (t) (3.64)

with
〈
F̂ (t)

〉
= 0. Here we directly write out the coherent part of the Heisenberg-Langevin equation

which originates from the Heisenberg equation (3.2).

The expectation value of Ô is picture-independent, i.e.,

〈
Ô
〉

= Tr
[
ρ̂(t)Ô ⊗ ρ̂E

]
= Tr

[
ρ̂Ô(t)

]
=
〈
Ô(t)

〉
, (3.65)

where we have traced out the environment due to the weak-coupling approximation 12. Taking the

time derivative, we then have

d

dt

〈
Ô
〉

= Tr

[
dρ̂(t)

dt
Ô
]

= Tr

[
ρ̂
dÔ(t)

dt

]
=

〈
dÔ(t)

dt

〉
. (3.66)

We focus on the relation

Tr

[
dρ̂(t)

dt
Ô
]

=

〈
dÔ(t)

dt

〉
. (3.67)

Using Eq. (3.62), the left hand side (LHS) of Eq. (3.67) becomes

LHS =
1

i~
Tr

{[
Ĥ, ρ̂(t)

]
Ô
}

+
Γ

2
Tr

{[
2Ŝρ̂(t)Ŝ† − Ŝ†Ŝρ̂(t)− ρ̂(t)Ŝ†Ŝ

]
Ô
}

= − 1

i~

〈[
Ĥ(t), Ô(t)

]〉
+

Γ

2

〈
2Ŝ†(t)Ô(t)Ŝ(t)− Ŝ†(t)Ŝ(t)Ô(t)− Ô(t)Ŝ†(t)Ŝ(t)

〉
, (3.68)

where we have used the cyclic property of the trace and changed pictures. This leads to the

important property

Tr

{
ÔL
[
Ŝ
]
ρ̂(t)

}
= Tr

{
ρ̂L̄
[
Ŝ(t)

]
Ô(t)

}
. (3.69)

12Here actually we can define ρ̂(t) = TrE

[
Û†(t)ρ̂S ⊗ ρ̂EÛ(t)

]
without using any approximation, where Û(t) is the

unitary that transforms from the SP to the HP.
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The right hand side (RHS) of Eq. (3.67) from Eq. (3.64) is

RHS = − 1

i~

〈[
Ĥ(t), Ô(t)

]〉
+
〈
D̂(t)

〉
. (3.70)

Comparing the left and right hand sides, we identify

〈
D̂(t)

〉
=

Γ

2

〈
2Ŝ†(t)Ô(t)Ŝ(t)− Ŝ†(t)Ŝ(t)Ô(t)− Ô(t)Ŝ†(t)Ŝ(t)

〉
. (3.71)

Since Eq. (3.71) is true for any operator Ô, we can remove the expectation value operator and get

D̂(t) =
Γ

2

[
2Ŝ†(t)Ô(t)Ŝ(t)− Ŝ†(t)Ŝ(t)Ô(t)− Ô(t)Ŝ†(t)Ŝ(t)

]
, (3.72)

which agrees with Eq. (3.63).

It remains to show that we can get the correct noise terms F̂ and F̂ † from the master

equation (3.62), where F̂ † is defined from the Hermitian conjugate of Eq. (3.64). Since we implicitly

assume Gaussian noise, and the first moments (expectation values) of the noise operators F̂ and

F̂ † are zero, it is sufficient to derive the second order moments. Using the Einstein relation 13

〈
F̂µ(t)F̂ν(t)

〉
=

〈
d

dt

[
Ôµ(t)Ôν(t)

]〉
+

1

i~

〈[
Ĥ(t), Ôµ(t)Ôν(t)

]〉
−
〈
D̂µ(t)Ôν(t)

〉
−
〈
Ôµ(t)D̂ν(t)

〉
(3.73)

for operators Ôµ(t), Ôν(t) ∈
{
Ô(t), Ô†(t)

}
together with Eq.(3.67), (3.69), and (3.72), we obtain

〈
F̂µ(t)F̂ν(t)

〉
=
〈
L̄
[
Ŝ(t)

][
Ôµ(t)Ôν(t)

]〉
−
〈
D̂µ(t)Ôν(t)

〉
−
〈
Ôµ(t)D̂ν(t)

〉
= Tr

[
ÔµÔνL

[
Ŝ
]
ρ̂(t)

]
−
〈
D̂µÔν

〉
−
〈
ÔµD̂ν

〉
= Γ

〈[
Ŝ†, Ôµ

][
Ôν , Ŝ

]〉
,

= Γ
〈[
Ŝ†(t), Ôµ(t)

][
Ôν(t), Ŝ(t)

]〉
, (3.74)

which agrees with Eq. (3.61). Therefore we have successfully derived the Heisenberg-Langevin

equations from the master equation. The fact that we get the correct diffusion matrix means that

the master equation treatment and the Heisenberg-Langevin treatment agree to at least the second

13See Appx. F for the derivation of the Einstein relation.



46

order moments of the quantum noise. Given the quantum white noise model which is fundamentally

a Gaussian theory, it might even be sufficient to say that the master equation can give rise to the

exact noise terms given in Eq. (3.58) since we only care about the second order moments, although

a strict mathematical proof is needed. In fact, if we specify the heat bath as the same harmonic

oscillator model in the derivation of the master equation as in the Heisenberg-Langevin case, and

make the same approximations on the density of quanta (thermal, white, etc.), then the equivalence

between the two descriptions will be exact.

3.3.2 Langevin equations to master equation

Suppose we are given the Langevin equation (3.63) which applies to any system operator Ô.

From Eq. (3.66), we focus on the relation

Tr

[
dρ̂(t)

dt
Ô
]

= Tr

[
ρ̂
dÔ(t)

dt

]
. (3.75)

Using the property (3.69), we then have

Tr

[
dρ̂(t)

dt
Ô
]

= − 1

i~
Tr

{
ρ̂
[
Ĥ(t), Ô(t)

]}
+ Γ Tr

{
ρ̂L̄
[
Ŝ(t)

]
Ô(t)

}
=

1

i~
Tr

{[
Ĥ, ρ̂(t)

]
Ô
}

+ Γ Tr

{
L
[
Ŝ
]
ρ̂(t)Ô

}
. (3.76)

Since Eq. (3.76) applies to any system operator Ô, we can remove the Tr
[
· · · Ô

]
operator and derive

the master equation (3.62).

It is clear that the derivation from the Heisenberg-Langevin equations to the master equation

is shorter than the other way around since there are no noise terms to derive. The reason is that, as

we have seen from the Einstein relations (3.73), the diffusion matrix and the drift terms governed

by the superoperator L̄ (which is transformed to the Lindbladian superoperator L in the master

equation) are self-consistent, which can be taken as the manifestation of the quantum fluctuation-

dissipation theorem. With the form of the Lindbladian superoperator L, the noise terms are

implicitly determined. The derivation is shorter also because we have chosen a heat bath composed

of harmonic oscillators in the Heisenberg-Langevin case. Therefore it is no surprising that the

Heisenberg-Langevin equations are immediately sufficient to derive the master equation.
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3.4 Prescription for decoherence

In the previous sections, we have derived the quantum master equation and Heisenberg-

Langevin equations from a very general perspective. In this section, we give some concrete examples

of different decoherent processes that are common for cavity QED systems, including free-space

spontaneous (T1) emission and T2 dephasing of a two-level atom, as well as cavity decay through

the mirrors. The resulting terms in the corresponding master equation and Heisenberg-Langevin

equations can be used as the prescription for these decoherent processes when we introduce the

many body superradiant cavity QED systems.

We consider a Jaynes-Cummings system composed a single two-level atom interacting with

a single cavity mode. Then the system Hamiltonian is given by Eq. (2.104). For simplicity, we

suppose the atom is trapped at the antinode of the cavity mode so that its external energy is a

constant and can be removed from the Hamiltonian. The resulting system Hamiltonian is

ĤS =
~ωa

2
σ̂z + ~ωcâ†â+

~g
2

(
σ̂+â+ â†σ̂−

)
. (3.77)

As a reminder, in Eq. (3.77), ωa is the atomic transition frequency, ωc is the cavity frequency, and g

is the single-photon vacuum Rabi frequency. We now discuss the effect of different decoherent

sources.

3.4.1 Free-space spontaneous emission

As the name suggests, free-space spontaneous emission is an effect of the atom that couples

to the free-space modes other than the cavity modes. If the free space modes are in vacuum, then

due to vacuum fluctuations, the atom will spontaneously decay from the excited state |e〉 to the

ground state |g〉 [162]. This process can be described using the theory of open quantum systems as

we have previously developed in this chapter.

(1) Jump operator.

The jump operator for free-space spontaneous emission is σ̂−. Notice that this is true only
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if we ignore the atomic motion so that photon recoil does not cause external momentum

recoil [109].

As argued in footnote 3 of Sec. 3.1.1, for a system Hamiltonian with coherent coupling

terms like
(
σ̂+â+ â†σ̂−

)
as occurs in Eq. (3.77), in the derivation of the master equation

we assign as the free Hamiltonian

Ĥ0 =
~ωa

2
σ̂z + ~ωcâ†â+ ĤE. (3.78)

Then we see σ̂− is an eigenoperator of Ĥ0 since

[
Ĥ0, σ̂

−
]

=

[
~ωa

2
σ̂z, σ̂−

]
= −~ωaσ̂−. (3.79)

The jump operator σ̂− corresponds to the incoherent coupling between the atom and vac-

uum modes in vicinity of the eigenfrequency ωa.

(2) Lindblad master equation.

The incoherent coupling caused by σ̂− is described by the term γ1L[σ̂−]ρ̂, where γ1 is

specified as the free-space spontaneous emission rate. Historically the spontaneous emission

process is also called T1 decay, where T1 ∝ 1/γ1.

(3) Heisenberg-Langevin equations.

For any operator Ô, the drift term is given by D̂ = γ1L̄[σ̂−]Ô, and the noise term is

given by F̂ =
√
γ1

([
σ̂+, Ô

]
ξ̂ + ξ̂†

[
Ô, σ̂−

])
where ξ̂ and ξ̂† are quantum white noise terms

satisfying
〈
ξ̂(t)ξ̂†(t′)

〉
= δ(t− t′).

3.4.2 T2 dephasing

The T2 dephasing process describes the damping of the diagonal terms of the atomic density

matrix. Physically such dephasing is caused by the general coupling between atomic internal states

and the free-space modes. For a many body system this often represents a homogeneous dephasing

process.
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(1) Jump operator.

The jump operator for T2 dephasing is σ̂z. This is most easily understood from the point

of view of the dephasing channel language in quantum information [120]. Notice that it

is easy to see that
[
Ĥ0, σ̂

z
]

= 0, meaning the dephasing is indistinguishable from the free

evolution.

(2) Lindblad master equation.

The incoherent coupling caused by σ̂z is described by the term
γ2

4
L[σ̂z]ρ̂, where γ2 =

2

T2
is

the rescaled T2 dephasing rate. This definition is consistent with standard literature [165].

(3) Heisenberg-Langevin equations.

For any operator Ô, the drift term is given by D̂ =
γ2

4
L̄[σ̂z]Ô, and the noise term is given by

F̂ =

√
γ2

2

([
σ̂z, Ô

]
ξ̂ + ξ̂†

[
Ô, σ̂z

])
where ξ̂ and ξ̂† are quantum white noise terms satisfying〈

ξ̂(t)ξ̂†(t′)
〉

= δ(t− t′).

3.4.3 Cavity decay

Cavity decay is important in cavity QED systems since it generates the measurable output

fields. In terms of an open quantum system such as Eq. (3.77), cavity decay describes the incoherent

coupling between the cavity mode and the vacuum heat bath. Most cavity QED systems we study

are “high-Q” systems, where Q stands for the quality factor of the cavity that is defined as Q = ωc/κ

with κ the cavity decay rate. For current experiments on atom-photon interactions in the optical

domain, the Q-factor can be as high as 108, corresponding to κ ' 1 MHz [104, 71].

(1) Jump operator.

The jump operator for cavity decay is â, which represents losing one photon from the cavity

to the environment. It is straightforward to see that
[
Ĥ0, â

]
= −~ωcâ.

(2) Lindblad master equation.

The incoherent coupling caused by â is described by the term κL[â]ρ̂.
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(3) Heisenberg-Langevin equations.

For any operator Ô, the drift term is given by D̂ = κL̄[â]Ô, and the noise term is given

by F̂ = κ

([
â†, Ô

]
ξ̂ + ξ̂†

[
Ô, â

])
where ξ̂ and ξ̂† are quantum white noise terms satisfying〈

ξ̂(t)ξ̂†(t′)
〉

= δ(t− t′).

3.5 Summary

Before we end our discussion of open quantum systems, we comment on the advantages

of using Heisenberg-Langevin equations rather than the master equation. First, the Heisenberg

point of view allows us to easily compare the dynamics of quantum variables and their classical

counterparts, if any. Second, the observables are themselves operators. Therefore, it is more

intuitive to directly study the dynamics of the observables and their associated statistics in the

HP rather than in the SP. Last, many of the semiclassical approaches, especially the c-number

Langevin equations and the mean-field theory we use in this thesis, are directly applicable to the

Heisenberg-Langevin equations. In fact, due to numerical considerations, the Heisenberg-Langevin

equations are actually the only choice we have when we simulate an atomic beam traveling in and

out of the cavity. We will introduce these c-number methods in the next chapter.



Chapter 4

Theory of Superradiant Atomic Beam Laser

In the previous chapters we have derived the Jaynes-Cummings model of a moving two-

level atom interacting with a single cavity mode. We have also shown the equivalence between

the quantum master equation and Heisenberg-Langevin equations for open quantum systems and

presented a prescription for various decoherent sources. In this chapter, we combine these building

blocks together to investigate a very general cavity QED system, the Tavis-Cummings model, in

presence of several forms of dissipation including cavity decay, atomic spontaneous emission, and

T2 dephasing. Specifically, in the so-called “bad cavity” limit, the intracavity atomic dipoles can

spontaneously synchronize, resulting in a macroscopic atomic dipole that collectively emits through

the cavity. We call such phenomena cavity superradiance, and such devices superradiant lasers.

4.1 From Dicke superradiance to steady-state cavity superradiance

Superradiance in the context of quantum optics was first discussed by Dicke in 1954 (see

Fig. 4.1) [32]. When the length scale L of an ensemble of N excited two-level atoms in free space

is smaller than the corresponding wavelength λ of the atomic transition, instead of spontaneously

emitting individually, the atoms will collectively emit in a fashion that can be N times faster, N

times stronger, and in a well-defined direction that depends on the geometry of the ensemble. This

effect is called Dicke superradiance, or collective spontaneous emission [17, 4, 52].

The mechanism of Dicke superradiance can be understood by considering the Dicke model [32,

140, 151, 51, 30]. As an extension of Dicke’s original work, the Dicke model describes the interaction
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Figure 4.1: Source: Ref. [52]. Comparison between the general characteristics of ordinary fluo-
rescence and superradiance experiments. (a) Ordinary spontaneous emission is essentially isotopic
with an exponentially decaying intensity (time constant τsp). (b) Superradiance is anisotropic with
an emission occurring in a short burst of duration ∼ τsp/N .

of N two-level systems (atoms in our case) and a single mode of the field. The atoms are assumed to

be indistinguishable, which allows for the use of Dicke states [52, 45, 164, 65]. For free-space Dicke

superradiance, this condition corresponds to the Dicke limit L � λ. In the thermodynamic limit

N →∞, and in absence of dissipation, it has been shown that the system will spontaneously break

the Z2 (parity) symmetry and transit into a superradiant phase when the atom-field coupling

reaches a critical value (see Fig. 4.2) [57, 159, 128]. At the superradiant phase transition, the

individual oscillators (atomic dipoles) constructively interfere (phase lock, synchronize, etc.), and

this cooperative behavior can be seen as the formation of a macroscopic collective dipole. The

spontaneous emission of this collective dipole then causes all the O(N) superradiant effects as

considered in Dicke superradiance. Microscopically, dipole-dipole correlations are established and

propagated as a result of the collective Lamb shift [81, 148, 6, 41, 52, 139] via vacuum fluctuations.

The simplest experimental realization of the Dicke model is through cavity superradiance,

i.e., superradiance in cavity QED systems, where the Dicke limit L � λ ' 10−7 m for optical

wavelengths can be relaxed by using mode-selective high-Q cavities. With these high-performance

cavities, the single-mode approximation is valid, and atoms at distances far larger than λ from each
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Figure 4.2: Source: Ref. [128] (notations and captions have been adapted). The superradiant phase
transition for the Dicke model with a single mode. Here, g describes the atom-photon coupling.
The order parameter for the phase transition is 〈â〉 /

√
N , where 〈â〉 is the mean field amplitude

and N is the atom number. When the coupling parameter g is bigger than the critical coupling gc,
the order parameter 〈â〉 /

√
N becomes non-zero with two opposite phases which correspond to the

symmetry breaking equilibria of the free energy F .

other can communicate coherently through the cavity field. In cavity setups, pulsed superradiant

lasers have been built, and Dicke-type superradiant peaks have been observed [115, 116, 5, 113,

87, 136]. However, the observation of continuous superradiant emission is challenging because of

the weak coupling and a no-go theorem [111] that prohibits a superradiant phase in conventional

equilibrium cavity QED. Remarkably these obstacles can be overcome by introducing external

pumping, which results in non-equilibrium superradiant phase transitions [33, 8]. Such transitions

can also happen with other kinds of dissipation, as shown in Chaps. 5–8 of this thesis. Meanwhile,

the steady-state output of cavity superradiance resulting form continuous pumping also makes

continuous-wave (CW) superradiance possible.

In the remainder of the thesis, we will focus on steady-state cavity superradiance. Specifically,

we discuss the design of a novel ultra-linewidth CW laser called the steady-state superradiant

laser [101, 12, 92].
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4.2 Steady-state superradiance laser

The original proposal for a steady-state superradiant laser [101, 100, 99] considers a system

composed of N two-level atoms interacting with a single mode of a high-Q cavity. The atoms are

trapped at the antinodes of the standing wave in the Lamb-Dicke regime [163], which means that

we can ignore the external motion of the atoms. The coherent interaction between the atoms and

the cavity is given by the Tavis-Cummings model [151, 152], i.e.,

Ĥ =
~ωa

2

N∑
j=1

σ̂zj + ~ωcâ†â+
~g
2

N∑
j=1

(
σ̂+
j â+ â†σ̂−j

)
, (4.1)

which is a many body generalization of the Jaynes-Cummings model introduced in Eq. (3.77).

Here, ωa is the atomic transition frequency, ωc is the cavity frequency, and g is the single-photon

vacuum Rabi frequency. The operators σ̂zj and σ̂±j are the atomic pseudospin operators for atom j,

while operators â and â† are the cavity fields.

The decoherence of the system comes from four different sources, namely the cavity decay,

the free-space spontaneous emission, the T2 dephasing, and the incoherent repumping. The cor-

responding decoherent terms in the master equation or the Heisenberg-Langevin equations for the

first three sources can be directly written down following the prescription given in Sec. 3.4. The

incoherent repumping can be understood as an effective spontaneous absorption process that in-

corporates pumping atoms from the ground state |g〉 to an auxiliary state that rapidly decays

to the excited state |e〉. Therefore, analogous to spontaneous emission, the repumping process is

well approximated by assuming a jump operator σ̂+
j for each individual atom j. Physically, this

incoherent repump serves as the energy source of the CW behavior of the superradiant laser.

We can now write down the master equation for the steady-state superradiant laser

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
+ κL[â]ρ̂+

N∑
j=1

(
γ1L

[
σ̂−j

]
ρ̂+

γ2

4
L
[
σ̂zj
]
ρ̂+ wL

[
σ̂+
j

]
ρ̂
)
, (4.2)

where κ is the cavity decay rate or cavity linewidth, γ1 is the free-space spontaneous rate, γ2 is

the T2 dephasing rate, and w is the effective repumping rate. The parameter regime considered

here is the superradiant or “bad cavity” regime, which assumes that κ�
√
Ng, γ1, γ2, where

√
Ng
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is the collective coupling rate. In this regime, given enough intracavity atoms N , the system can

go through a superradiant phase transition when the repumping rate matches the collective decay

rate, while both dominating over the other decay rates, i.e., γ1, γ2 � w ∼ NΓc � κ. Here we have

introduced the cavity-assisted single-atom decay rate Γc =
g2

κ
= Cγ1 (for zero detuning), with C

the dimensionless cavity cooperativity parameter.

Figure 4.3: Source: Ref. [101] (notations and captions have been adapted). (Left) Power as a
function of pump rate w and atom number N . The rapid buildup of power above threshold w can
be seen as well as the decrease of emitted power for too strong a pump. The dashed line shows the
boundary of the region of collective emission. (Right) Linewidth vs w and N . The white dashed
lines indicate (from left to right) the spontaneous decay rate, the inhomogeneous relaxation rate
1/T2, and the maximum pump rate wmax.

The above system has been studied extensively [101, 100, 100, 99, 12, 166, 165, 164, 66, 67, 65].

Due to the similarity to the superradiant beam laser system, we leave the detailed derivation of

the superradiant master equation and the superradiant Heisenberg-Langevin equations to the next

section, and only qualitatively describe the results in the original proposal. The motivation was to

generate an ultranarrow linewidth laser with enough output power that can be directly applicable for

metrological use. With an ensemble of 87Sr atoms of N ' 106, when the repumping rate w is tuned

such that the system is in the superradiant phase, the output light is calculated to simultaneously

reach a power of P ∼ 10−6 W and a linewidth of ∆ν ∼ 1 mHz, as shown in Fig. 4.3 [101].
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4.3 Superradiant atomic beam laser

The steady-state superradiant laser has been a promising candidate for the next generation

ultracoherent laser since the idea was proposed. However, because of the technical difficulties of

trapping a huge number of ultracold atoms and the atom loss due to radiative heating caused by

repumping, it has proved challenging to realize a truly CW superradiant laser in the optical domain

following the original trapped atom model. For this reason, we were motivated to consider a different

model of the steady-state superradiant laser, the superradiant beam laser model [92, 70, 69, 68].

4.3.1 Model

As the name suggests, instead of trapping atoms inside the cavity, the superradiant beam

laser model considers an atomic beam transiting the cavity (see Figs. 5.1, 6.1, 7.1, and 8.1 for

various schematics of the superradiant beam laser model). Instead of being repumped inside the

cavity, the atoms are prepared in the excited state |e〉 before entering the cavity. Compared to the

original proposal, this model has several advantages. First, the atoms do not have to be frozen

in the optical trapping fields, which allows for much higher intracavity atom number N . Second,

we manually separate the pumping process from the lasing process, thus fundamentally avoiding

adverse effects caused by the incoherent repumping, including heating and atom loss. In some

sense, the experimental challenge has shifted from trapping a large number of ultracold atoms to

maintaining a high atomic beam flux as well as controlling the beam temperature and associated

velocity spread, as we will see in the next few chapters.

We now theoretically analyze the superradiant beam laser model. Consider the Tavis-

Cummings model similar to Eq. (4.1) but this time with atomic motion 1.

Ĥ =
∑
j

p̂2
j

2m
+

~ωa
2

∑
j

σ̂zj + ~ωcâ†â+
~g
2

∑
j

η(x̂j)
(
σ̂+
j â+ â†σ̂−j

)
. (4.3)

1Notice that compared to the Jaynes-Cumming model in Eq. (2.104), we now use the lower case {x̂j , p̂j} to refer

to the position and momentum of the center of mass of atom j, whereas in Sec. 2.2.2 and Appx. B this notation refers

to those of the jth internal particle of a single atom.
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Here, the summation
∑

j goes over all the atoms in the atomic beam. We assume all the atoms are

identical with atomic mass m. The operator p̂j is the center-of-mass momentum of atom j inside

the atomic beam as introduced in Sec. 2.2.2 and Appx. B, and η(x̂j) is the cavity mode function

defined in Eq. (2.98) at the position x̂j of atom j. We impose η(x̂j) = 0 if atom j is out of the

cavity. In this sense, we can define the mean intracavity atom number N as

N = Φτ (4.4)

where Φ is the number of atoms passing per unit time (flux times cross section), and τ is the single

atom transit time. It thus becomes obvious that by relaxing the Lamb-Dicke regime and moving

the repumping process out of the cavity, we are trading off the simplicity in external motion for

the simplicity in repumping. In the longitudinal direction (perpendicular to the cavity axis), atoms

enter and leave the cavity at a regular rate of 1/τ , which can be thought of as an effective rate of

pumping from some final states as atoms leave the cavity to the excited state |e〉. This implies that

the parameter 1/τ plays a similar role to w in the control of the superradiant phase transition. In

the transverse direction (parallel to the cavity axis), as atoms move across different values of the

cavity mode function η(x̂), it remains a question as to whether atoms can spontaneously synchronize

when they see different phases of the fields from each other. Most importantly, it remains to show

that there exists a suitable experimental parameter regime to build this CW superradiant laser.

Before answering the above questions, let us first fill our toolbox by deriving the Heisenberg-

Langevin equations and the master equation for the cavity superradiant systems.

4.3.2 Heisenberg-Langevin equations

Using the Hamiltonian (4.3), from Eq. (3.55) and the prescription given in Sec. (3.4), we

obtain the Heisenberg-Langevin equations for the the fields â, the atomic pseudospins σ̂zj and σ̂−j ,
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and the atomic position x̂j and momentum p̂j , i.e.,

dâ

dt
= −

(κ
2

+ iωc

)
â− ig

2
Ĵ− −

√
κξ̂κ, (4.5)

dσ̂−j
dt

= −iωaσ̂−j +
ig

2
ηj σ̂

z
j â−

1

2
(γ1 + γ2)σ̂−j +

√
γ1σ̂

z
j ξ̂j,γ1 −

√
γ2

(
σ̂−j ξ̂j,γ2 − ξ̂

†
j,γ2

σ̂−j

)
, (4.6)

dσ̂zj
dt

= igηj

(
â†σ̂−j − σ̂

+
j â
)
− γ1

(
σ̂zj + 1

)
− 2
√
γ1

(
σ̂+
j ξ̂j,γ1 + ξ̂†j,γ1

σ̂−j

)
, (4.7)

dx̂j
dt

=
p̂j
m
, (4.8)

dp̂j
dt

= −~g
2
∇̂ηj

(
σ̂+
j â+ â†σ̂−j

)
. (4.9)

Here ∇̂ =

(
∂

∂x̂
,
∂

∂ŷ
,
∂

∂ẑ

)T

is the gradient operator. Operators ξ̂κ, ξ̂j,γ1 , and ξ̂j,γ2 and their Hermi-

tian conjugates are the quantum white noise operators for the corresponding noise sources. We have

also used the shorthand notation ηj = η(x̂j), ∇̂ηj = ∇̂η(x̂)|x̂=x̂j , and introduced the collective

dipole operators that are given by

Ĵ± =
∑
j

ηj σ̂
±
j . (4.10)

From Eq. (4.10) we immediately see the difference between the superradiant beam laser model

and the trapped atom model. The indistinguishability condition of the atoms in the latter case

is broken as a result of the spatial (entry position) and temporal (entry time) dependence of the

atom-cavity coupling gηj . Therefore, although we can still define the collective dipole Ĵ±, due

to the coefficients ηj , the condition for which atoms will synchronize (if they can) is unstudied.

Of course in the original Dicke model, the indistinguishability is also an approximation which is

valid as long as the atoms are confined within a wavelength λ. Therefore, we would expect the

superradiant phase transition to happen for the superradiant beam laser model if the transverse

motion of the atoms are confined within a length scale ∼ λ during the transit time τ . Once the

atoms are phase locked and in steady state, the collective dipole formed in the cavity will remain

macroscopic although individual atoms are entering and leaving. In this way, the system can have

a coherence time much longer than the single-atom transit time τ , resulting in an ultranarrow

linewidth. This is the basic principle of the superradiant beam laser.
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We can move into the frame rotating with the atomic frequency ωa to simplify the form

of Eqs. (4.5)–(4.9). 2 Mathematically this corresponds to making the replacements â → â e−iωat,

σ̂−j → σ̂−j e
−iωat, ξ̂κ → ξ̂κ e

−iωat, and ξ̂j,γ1 → ξ̂j,γ1 e
−iωat so that the fast rotating phase factor eiωat

is hidden from our Heisenberg-Langevin equations. In the atomic rotating frame, Eqs. (4.5)–(4.7)

become

dâ

dt
= −

(κ
2

+ i∆
)
â− ig

2
Ĵ− −

√
κξ̂κ, (4.11)

dσ̂−j
dt

=
ig

2
ηj σ̂

z
j â−

1

2
(γ1 + γ2) σ̂−j +

√
γ1σ̂

z
j ξ̂j,γ1 −

√
γ2

(
σ̂−j ξ̂j,γ2 − ξ̂

†
j,γ2

σ̂−j

)
, (4.12)

dσ̂zj
dt

= igηj

(
â†σ̂−j − σ̂

+
j â
)
− γ1

(
σ̂zj + 1

)
− 2
√
γ1

(
σ̂+
j ξ̂j,γ1 + ξ̂†j,γ1

σ̂−j

)
, (4.13)

where ∆ = ωc − ωa is the cavity detuning from the atomic frequency. The associated diffusion

matrix, according to Eq. (3.61), has the form

2Mtotal =



a a† ··· j,− j,+ j, z ···

a 0 κ

a† 0 0

··· · · ·

j,− 0 γ1 + γ2

2

(
1−

〈
σ̂zj

〉)
2γ1

〈
σ̂−j

〉
j,+

γ2

2

(
1 +

〈
σ̂zj

〉)
0 0

j, z 0 2γ1

〈
σ̂+
j

〉
2γ1

(
1 +

〈
σ̂zj

〉)
··· · · ·



,

(4.14)

where (2Mtotal)µνδ(t − t′) =
〈
F̂µ(t)F̂ν(t′)

〉
with µ, ν ∈

{
â, â†, · · · , σ̂−j , σ̂

+
j , σ̂

z
j , · · ·

}
are indices for

all the operators in question. From Eq. (4.14) it is obvious that in our description so far all the

noise sources are independent, in the sense that the κ noise only affects the fields, that the γ1 and

γ2 noise terms only affect individual atoms, and that there are no cross diffusion terms (no off-

diagonal blocks) between different atoms. This will not be the case after we adiabatically eliminate

the cavity fields in the next section.

2See Appx. D for a discussion on rotating frames in the HP for open quantum systems.
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For completeness, we follow Chap. 3 and write down the equivalent master equation that

corresponds to Eq. (4.5)–(4.9), i.e.,

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
+ κL[â]ρ̂+

∑
j

(
γ1L

[
σ̂−j

]
ρ̂+

γ2

4
L
[
σ̂zj
]
ρ̂
)
, (4.15)

where Ĥ is the Hamiltonian (4.3).

4.3.3 Adiabatic elimination

As introduced in Sec. 4.2, for cavity superradiant systems we work in the “bad cavity” regime

where we require κ �
√
Ng, γ1, γ2,

1

τ
. Here, compared to the conditions in Sec. 4.2, we have also

added the constraint that the cavity decay rate κ is much larger than the single-atom Fourier

limit
1

τ
, which is usually referred to as the single-atom transit time broadening.

Working in the “bad cavity” regime allows us to adiabatically eliminate the fast field variables

â and â† and derive a coarse-grained model. To see this, we examine Eq. (4.11), which can be solved

exactly to obtain

â(t) = e−(κ
2

+i∆)tâ(0)− ig

2

ˆ t

0
du e−(κ

2
+i∆)uĴ−(t− u)−

√
κ

ˆ t

0
du e−(κ

2
+i∆)uξ̂κ(t− u). (4.16)

The “bad cavity” condition assumes that the cavity decay frequency κ is much larger than the

dynamical frequency of the collective atomic dipole

∣∣∣∣∣dĴ±dt
∣∣∣∣∣. If the timescale of interest is of the

same order as that of the collective dipole, then we have the coarse-graining condition t � κ−1.

The first term on the right hand side of Equation (4.16) becomes ∼ e−
1
2
κt → 0. The second term

can be Taylor expanded as

− ig

2

ˆ t

0
du e−(κ

2
+i∆)uĴ−(t− u)

≈− ig

2

ˆ t

0
du e−(κ

2
+i∆)u

[
Ĵ−(t)− dĴ−(t)

dt
u+

1

2!

d2Ĵ−(t)

dt2
u2 + · · ·

]

≈− ig/2

κ/2 + i∆

Ĵ−(t)−
dĴ−(t)
dt

κ/2 + i∆
+O

[
(κt)−2

]
≈− ig/2

κ/2 + i∆
Ĵ−(t), (4.17)
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which implies that the field variable â can be well-approximated by the collective dipole Ĵ− (up

to some factor). The third term can be dealt with using a similar approach to that in Eq. (4.17),

yielding

F̂eff(t) ≡ −
√
κ

ˆ t

0
du e−(κ

2
+i∆)uξ̂κ(t− u) ≈ −

√
κ

κ/2 + i∆
ξ̂κ(t). (4.18)

Here we have defined the effective coarse-grained quantum noise F̂eff , which can be justified by

checking the correlation [164]

〈
F̂eff(t)F̂ †eff(t′)

〉
=

〈[√
κ

ˆ t

0
du e−(κ

2
+i∆)uξ̂κ(t− u)

][√
κ

ˆ t′

0
du′ e−(κ

2
−i∆)u′ ξ̂†κ(t′ − u′)

]〉

= κ

ˆ t

0
ds

ˆ t′

0
ds′ e−(κ

2
+i∆)(t−s)e−(κ

2
−i∆)(t′−s′)

〈
ξ̂κ(s)ξ̂†κ(s′)

〉
= e−

κ
2

(t+t′)−i∆(t−t′)κ

ˆ t

0
ds

ˆ t′

0
ds′ e

κ
2

(s+s′)+i∆(s−s′)δ(s− s′)

≈ e−
κ
2
|t−t′|−i∆(t−t′)

≈ κ

κ2/4 + ∆2
δ(t− t′) (4.19)

where we have used the substitutions s = t− u, s′ = t′− u′, and assumed κ|t− t′| � 1. Physically,

this implies that the quantum white noise ξ̂κ can be coarse-grained to model another quantum

white noise on a much larger timescale. Therefore, in the bad cavity limit, the field â that satisfies

Eq. (4.11) can be well approximated by the adiabatically eliminated solution

â(t) ≈ −(Γ∆ + iΓc)

g
Ĵ− − (Γc − iΓ∆)

g

2√
Γ0
ξ̂eff , (4.20)

where we have defined

Γc ≡
g2κ/4

κ2/4 + ∆2
, Γ∆ ≡

g2∆/2

κ2/4 + ∆2
, Γ0 ≡

g2

κ
, (4.21)

and the quantum white noise ξ̂eff that satisfies
〈
ξ̂eff(t)ξ̂†eff(t′)

〉
= δ(t − t′),

〈
ξ̂eff(t)ξ̂eff(t′)

〉
=〈

ξ̂†eff(t)ξ̂†eff(t′)
〉

=
〈
ξ̂†eff(t)ξ̂eff(t′)

〉
= 0.

Equation (4.20) locks the fast-varying field variable â to the collective dipole Ĵ−. On the

timescale of the atomic dipole, the field does not have memory of its initial value, tracking the
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collective dipole but augmented by a Markovian type quantum white noise. In this limit, Γc, Γ∆,

and Γ0 become useful parameters to describe the system dynamics. When ∆ = 0, we have Γ∆ = 0

and Γc = Γ0 =
g2

κ
, which is consistent with our definition of Γc in Sec. 4.2.

4.3.4 Superradiant equations

Equation (4.20) can be used to eliminate the field variable â from Eqs. (4.9) and (4.12)–(4.13),

resulting in the superradiant Heisenberg-Langevin equations for atom j

dσ̂−j
dt

=
1

2
(Γc − iΓ∆)ηj σ̂

z
j Ĵ
− − 1

2
(γ1 + γ2) σ̂−j

− (Γ∆ + iΓc)
ηj√
Γ0
σ̂zj ξ̂eff +

√
γ1σ̂

z
j ξ̂j,γ1 −

√
γ2

(
σ̂−j ξ̂j,γ2 − ξ̂

†
j,γ2

σ̂−j

)
, (4.22)

dσ̂zj
dt

=− (Γc + iΓ∆)ηj Ĵ
+σ̂−j − (Γc − iΓ∆)ηj σ̂

+
j Ĵ
− − γ1

(
σ̂zj + 1

)
+ (Γ∆ − iΓc)

2ηj√
Γ0
ξ̂†eff σ̂

−
j + (Γ∆ + iΓc)

2ηj√
Γ0
σ̂+
j ξ̂eff − 2

√
γ1

(
σ̂+
j ξ̂j,γ1 + ξ̂†j,γ1

σ̂−j

)
, (4.23)

dp̂j
dt

=(Γ∆ − iΓc)
~∇̂ηj

2
Ĵ+σ̂−j + (Γ∆ + iΓc)

~∇̂ηj
2

σ̂+
j Ĵ
−

+ (Γc + iΓ∆)
~∇̂ηj√

Γ0
ξ̂†eff σ̂

−
j + (Γc − iΓ∆)

~∇̂ηj√
Γ0

σ̂+
j ξ̂eff . (4.24)

The diffusion matrix for atom j is

2Mµν
jj =



j, ν=− + z

j, µ=− 0 1 2
〈
σ̂−j

〉
+ 0 0 0

z 0 2
〈
σ̂+
j

〉
2
(

1 +
〈
σ̂zj

〉)


(
Γ1η

2
j + γ1

)
+



j, ν=− + z

j, µ=− 0 1−
〈
σ̂zj

〉
0

+ 1 +
〈
σ̂zj

〉
0 0

z 0 0 0


γ2

2
,

(4.25)
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and for j 6= k is

2Mµν
jk =



k, ν=− + z

j, µ=− 0
〈
σ̂zj σ̂

z
k

〉
−2
〈
σ̂zj σ̂

−
k

〉
+ 0 0 0

z 0 −2
〈
σ̂+
j σ̂

z
k

〉
4
〈
σ̂+
j σ̂
−
k

〉


Γ1ηjηk, (4.26)

where we have defined 2Mµν
jk δ(t − t

′) =
〈
F̂µj (t)F̂ νk (t′)

〉
, with µ, ν ∈ {+,−, z} denoting different

dipole components, and j, k labeling different atoms. We have also introduced the parameter

Γ1 =
Γ2
c + Γ2

∆

Γ0
. (4.27)

We make several comments regarding Eqs. (4.25)–(4.26). First, we have not included the dif-

fusion terms associated with the momentum, since we will always make the ballistic approximation

in our later treatment by assuming p̂j as a constant during the transit time τ . This approxima-

tion is valid as long as the temperature of the atomic beam is high enough that the single-photon

recoil is much less than 〈p̂j〉. With the ballistic motion assumption, Eq. (4.24) is approximated

by
dp̂j
dt

= 0, and the corresponding diffusion elements are zero. Second, it is clear that Eq. (4.25)

describes single-atom diffusion, while Eq. (4.26) describes the dipole-dipole interaction, which can

be significant for large N . After adiabatic elimination, what used to be the field noise now causes

all the dipoles to diffuse through the Γ1 terms. The cavity-mediated effects manifest as the dipole-

dipole diffusion matrices in the “bad cavity” limit. Third, the fact that only Γ1 appears in the

diffusion matrices implies that the relative phase between Γc and Γ∆ does not matter in terms of

diffusion. Rather it is their modulus square which is proportional to Γ1 that gives the second order

moments, i.e., the diffusion matrices.

For completeness, we include the equivalent superradiant master equation that is given by [52,

71, 164]

dρ̂

dt
=

1

i~

[
−~Γ∆

2
Ĵ+Ĵ−, ρ̂

]
+ ΓcL

[
Ĵ−
]
ρ̂+

∑
j

(
γ1L

[
σ̂−j

]
ρ̂+

γ2

4
L
[
σ̂zj
]
ρ̂
)
, (4.28)

where the first term is the collective Lamb shift given a heat bath in vacuum.
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4.4 Semiclassical c-number equations

The Heisenberg-Langevin equations (4.22)–(4.23) are stochastic differential equation for oper-

ators that are formidable to solve. However, with a semiclassical c-number treatment [141, 155, 133],

we can numerically solve the c-number differential equations with consistency up to the second or-

der moments of the operators. In this section we derive these so-called c-number quantum Langevin

equations.

4.4.0.1 Hermitian operators

For numerical convenience, it is helpful to first rewrite Eqs. (4.22)–(4.23) in terms of solely

Hermitian operators, which allows a pathway to approximate operators by real numbers in the

c-number description. Using the transformation matrices

R =

 1 1

−i i

 , R−1 =


1
2

i
2

1
2 − i

2

 (4.29)

we obtain the relation between σ̂± and the Hermitian Pauli operators σ̂x and σ̂y, i.e., σ̂x

σ̂y

 = R

 σ̂+

σ̂−

 ,

 σ̂+

σ̂−

 = R−1

 σ̂x

σ̂y

 . (4.30)
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Then Eqs. (4.22)–(4.23) become 3

dσ̂xj
dt

=
Γc
2
ηj

∑
k 6=j

ηkσ̂
x
k σ̂

z
j − ηj σ̂xj

− Γ∆

2
ηj

∑
k 6=j

ηkσ̂
y
k σ̂

z
j − ηj σ̂

y
j

− 1

2
(γ1 + γ2) σ̂xj

− ηj√
Γ0

[
iΓc

(
σ̂zj ξ̂eff − ξ̂†eff σ̂

z
j

)
+ Γ∆

(
σ̂zj ξ̂eff + ξ̂†eff σ̂

z
j

)]
+
√
γ1

(
σ̂zj ξ̂j,γ1 + ξ̂†j,γ1

σ̂zj

)
+ i
√
γ2

(
σ̂yj ξ̂j,γ2 − ξ̂

†
j,γ2

σ̂yj

)
, (4.31)

dσ̂yj
dt

=
Γc
2
ηj

∑
k 6=j

ηkσ̂
y
k σ̂

z
j − ηj σ̂

y
j

+
Γ∆

2
ηj

∑
k 6=j

ηkσ̂
x
k σ̂

z
j − ηj σ̂xj

− 1

2
(γ1 + γ2) σ̂yj

+
ηj√
Γ0

[
Γc

(
σ̂zj ξ̂eff + ξ̂†eff σ̂

z
j

)
− iΓ∆

(
σ̂zj ξ̂eff − ξ̂†eff σ̂

z
j

)]
+ i
√
γ1

(
σ̂zj ξ̂j,γ1 − ξ̂

†
j,γ1

σ̂zj

)
− i√γ2

(
σ̂xj ξ̂j,γ2 − ξ̂

†
j,γ2

σ̂xj

)
, (4.32)

dσ̂zj
dt

=−
(
Γcη

2
j + γ1

) (
σ̂zj + 1

)
− Γc

2
ηj
∑
k 6=j

ηk

(
σ̂xk σ̂

x
j + σ̂yk σ̂

y
j

)
+

Γ∆

2
ηj
∑
k 6=j

ηk

(
σ̂yk σ̂

x
j − σ̂xk σ̂

y
j

)

+
ηj√
Γ0

{
iΓc

[(
σ̂xj + iσ̂yj

)
ξ̂eff − ξ̂†eff

(
σ̂xj − iσ̂

y
j

)]
+ Γ∆

[(
σ̂xj + iσ̂yj

)
ξ̂eff + ξ̂†eff

(
σ̂xj − iσ̂

y
j

)]}

−√γ1

[(
σ̂xj + iσ̂yj

)
ξ̂j,γ1 + ξ̂†j,γ1

(
σ̂xj − iσ̂

y
j

)]
. (4.33)

The corresponding diffusion matrices are

2Mµν
jj =



j, ν=x y z

j, µ=x 1 −i
〈
σ̂xj
〉
− i
〈
σ̂yj
〉

y i 1 i
〈
σ̂xj
〉

+
〈
σ̂yj
〉

z
〈
σ̂xj
〉

+ i
〈
σ̂yj
〉
−i
〈
σ̂xj
〉

+
〈
σ̂yj
〉

2
(
1 +

〈
σ̂zj
〉)


(
Γ1η

2
j + γ1

)
+



j, ν=x y z

j, µ=x 1 i
〈
σ̂zj
〉

0

y −i
〈
σ̂zj
〉

1 0

z 0 0 0

γ2,

(4.34)

3A useful set of relations is
(
σ̂+
k σ̂
−
j + σ̂+

j σ̂
−
k

)
= 1

2

(
σ̂xk σ̂

x
j + σ̂yk σ̂

y
j

)
and

(
σ̂+
k σ̂
−
j − σ̂

+
j σ̂
−
k

)
= i

2

(
σ̂xj σ̂

y
k − σ̂

x
k σ̂

y
j

)
.
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and for j 6= k

2Mµν
jk =



k, ν=x y z

j, µ=x
〈
σ̂zj σ̂

z
k

〉
−i
〈
σ̂zj σ̂

z
k

〉
−
〈
σ̂zj σ̂

x
k

〉
+ i
〈
σ̂zj σ̂

y
k

〉
y i

〈
σ̂zj σ̂

z
k

〉 〈
σ̂zj σ̂

z
k

〉
−
〈
σ̂zj σ̂

y
k

〉
− i
〈
σ̂zj σ̂

x
k

〉
z −

〈
σ̂xj σ̂

z
k

〉
− i
〈
σ̂yj σ̂

z
k

〉
−
〈
σ̂yj σ̂

z
k

〉
+ i
〈
σ̂xj σ̂

z
k

〉 (〈
σ̂xj σ̂

x
k

〉
+
〈
σ̂yj σ̂

y
k

〉)
+ i
(〈
σ̂yj σ̂

x
k

〉
−
〈
σ̂xj σ̂

y
k

〉)

Γ1ηjηk.

(4.35)

The diffusion matrices are most useful for the c-number treatment. Here we give the noise terms

in Eqs. (4.31)–(4.33) as an reference to Eqs. (4.34)–(4.35).

4.4.1 Rules for c-number equations

So far everything is quantum. In order to numerically simulate the dynamics of the many

body pseudospin variables, we make a second-order c-number approximation. Specifically, we

introduce the following rules:

(1) Non-noise terms.

These include the detuning terms and the drift terms in the Heisenberg-Langevin equations.

We establish the mapping

Ŝj 7→ Sj , (4.36)

(ŜjŜk)ordering 7→ SjSk, (4.37)

where Ŝj is a system operator and Sj is its c-number counterpart. The notation

(ŜjŜk)ordering stands for a chosen ordering of the quantum operators Ŝj and Ŝk, which

we will choose as the symmetric ordering

(
ŜjŜk

)
sym

=
1

2

(
ŜjŜk + ŜkŜk

)
. (4.38)

Notice that the form of ŜjŜk should not be reducible, as in, σ̂xj σ̂
y
j should be reduced to iσ̂zj

before making the c-number approximation.



67

(2) Boundary and initial conditions.

We require for initial conditions (t = 0) or boundary conditions (when the atomic beam

enters the cavity)

〈Sj〉e =
〈
Ŝj

〉
, (4.39)

〈SjSk〉e =

〈(
ŜjŜk

)
sym

〉
, (4.40)

where 〈·〉e is the ensemble average (over simulation trajectories) [133]. As an example, for

the superradiant beam laser, atomic dipoles enter the cavity in the excited state |e〉. Thus

all the up to second order moments of the pseudospin operators are given by

〈
σ̂zj
〉

= 1, (4.41)〈
σ̂xj
〉

=
〈
σ̂yj

〉
= 0, (4.42)〈(

σ̂zj
)2〉

=
〈(
σ̂xj
)2〉

=

〈(
σ̂yj

)2
〉

= 1, (4.43)〈(
σ̂µj σ̂

ν
j

)
sym

〉
= 0, µ, ν ∈ {x, y, z}, µ 6= ν. (4.44)

In order for the c-number moments to match, for each simulation trajectory we let szj = 1

and randomly choose sxj and syj from ±1 with equal probability. One can check that this

choice will satisfy Eqs. (4.39)–(4.40) with moments given by Eqs. (4.41)–(4.44).

(3) Noise terms.

The first two conditions are sufficient to formulate a c-number theory if the system is closed.

In that case, with the initial conditions determined and the differential equations rewritten

in c-numbers, each trajectory is deterministic. However, for an open quantum system, it

remains for us to choose a rule for the c-number noise terms.

The c-number theory is fundamentally a Gaussian theory, meaning that we cannot match

moments of operators higher than second order. However, as mentioned in Chap. 3, the

quantum white noise also implicitly assumes a Gaussian noise model. Therefore, it is

sufficient to establish a mapping from the operator diffusion matrices to the c-number
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diffusion matrices (the mean of the noise is zero). Such a mapping is straightforward. Let

Fj be the c-number counterpart of the noise operator F̂j . Then the c-number diffusion

matrices can be defined as

2mjkδ(t− t′) =
〈
Fj(t)Fk(t

′)
〉

e
, (4.45)

We then establish the mapping

(2Mij)sym 7→ 2mij (4.46)

where we have chosen the symmetric ordering

(2Mij)sym =
1

2
(2Mij + 2Mji) . (4.47)

In the next section, we use the rules introduced in this section to derive the c-number

quantum Langevin equations for the superradiant beam laser model.

4.4.2 c-number Langevin equations

4.4.2.1 Non-noise terms

Following Rule (1) in the previous section, the non-noise parts of the c-number equations for

Eqs. (4.31)–(4.33), labeled by Dµ
j , µ ∈ {x, y, z}, are given by

Dx
j =

Γc
2
ηj
[
J xszj − ηjsxj (szj + 1)

]
− Γ∆

2
ηj

[
J yszj − ηjs

y
j (s

z
j + 1)

]
− 1

2
(γ1 + γ2) sxj , (4.48)

Dy
j =

Γc
2
ηj

[
J yszj − ηjs

y
j (s

z
j + 1)

]
+

Γ∆

2
ηj
[
J xszj − ηjsxj (szj + 1)

]
− 1

2
(γ1 + γ2) syj , (4.49)

Dz
j = −

(
Γcη

2
j + γ1

)
(szj + 1)− Γc

2
ηj

{
J xsxj + J ysyj − ηj

[(
sxj
)2

+
(
syj

)2
]}

+
Γ∆

2
ηj

(
J ysxj − J xs

y
j

)
,

(4.50)

where we have introduced the c-number collective dipole components

J x =
∑
j

ηjs
x
j , J y =

∑
j

ηjs
y
j . (4.51)
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This c-number replacement is actually trivial because all the non-noise terms in Eqs. (4.31)–(4.33)

are already in symmetric ordering. In the large N limit, if the collective dipole is formed, we can

ignore single-atom terms and get

Dx
j =

Γc
2
ηjJ xszj −

Γ∆

2
ηjJ yszj −

1

2
(γ1 + γ2) sxj , (4.52)

Dy
j =

Γc
2
ηjJ yszj +

Γ∆

2
ηjJ xszj −

1

2
(γ1 + γ2) syj , (4.53)

Dz
j = −γ1(szj + 1)− Γc

2
ηj

(
J xsxj + J ysyj

)
+

Γ∆

2
ηj

(
J ysxj − J xs

y
j

)
. (4.54)

4.4.2.2 Diffusion matrices

The boundary conditions for the superradiant beam laser have already been discussed as an

example following Rule (2) in the last section. The c-number diffusion matrix 2mµν
jk , by Rule (3),

is the c-number mapping of
(

2Mµν
jk

)
sym

from Eqs. (4.34)–(4.35), where

(
2Mµν

jk

)
sym

=
1

2

(
2Mµν

jk + 2Mνµ
kj

)

=



j, ν=x y z

j, µ=x 1 0
〈
σ̂xj

〉
y 0 1

〈
σ̂yj

〉
z

〈
σ̂xj

〉 〈
σ̂yj

〉
2
(

1 +
〈
σ̂zj

〉)


(
Γ1η

2
j + γ1

)
+



j, ν=x y z

j, µ=x 1 0 0

y 0 1 0

z 0 0 0


γ2,

(4.55)

and for j 6= k

(
2M̂µν

jk

)
sym

=



k, ν=x y z

j, µ=x

〈
σ̂zj σ̂

z
k

〉
0 −

〈
σ̂zj σ̂

x
k

〉
y 0

〈
σ̂zj σ̂

z
k

〉
−
〈
σ̂zj σ̂

y
k

〉
z −

〈
σ̂xj σ̂

z
k

〉
−
〈
σ̂yj σ̂

z
k

〉 〈
σ̂xj σ̂

x
k

〉
+
〈
σ̂yj σ̂

y
k

〉


× Γ1ηjηk. (4.56)
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In other words, taking the symmetric ordering ensures that all the imaginary terms cancel [155].

The c-number diffusion matrices are therefore

2mµν
jj =



j, ν=x y z

j, µ=x 1 0
〈
sxj

〉
e

y 0 1
〈
syj

〉
e

z

〈
sxj

〉
e

〈
syj

〉
e

2
(

1 +
〈
szj

〉
e

)


(
Γ1η

2
j + γ1

)
+



j, ν=x y z

j, µ=x 1 0 0

y 0 1 0

z 0 0 0


γ2,

(4.57)

and for j 6= k

2mµν
jk =



k, ν=x y z

j, µ=x

〈
szjs

z
k

〉
e

0 −
〈
szjs

x
k

〉
e

y 0
〈
szjs

z
k

〉
e

−
〈
szjs

y
k

〉
e

z −
〈
szjs

x
k

〉
e
−
〈
szjs

y
k

〉
e

〈
sxj s

x
k

〉
e

+
〈
syj s

y
k

〉
e


Γ1ηjηk. (4.58)

4.4.2.3 Noise terms

Given the c-number diffusion matrices in Eqs. (4.57)–(4.58), we now provide the methods to

construct the corresponding c-number noise terms to satisfy the diffusion matrices. Notice that the

methods will not be unique because we only require the sufficient conditions.

(1) Γ1 terms.

For large N , we can ignore the single-atom diffusion matrix for Γ1 in Eq. (4.57). This

corresponds to the superradiant condition when the dipole-dipole terms dominate. The

remaining diffusion matrix for the Γ1 decay without the ensemble average, labeled by 2m′,

has the form

2m′jk,Γ1
=


szjs

z
k 0 −szjsxk

0 szjs
z
k −szjs

y
k

−szjsxk −szjs
y
k sxj s

x
k + syj s

y
k

Γ1ηjηk, (4.59)
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which can be decomposed into

2m′jk,Γ1
= Bj,Γ1 (Bk,Γ1)T , (4.60)

where

Ba,Γ1 =


sza 0

0 sza

−sxa −sya


√

Γ1ηa, a ∈ {j, k}. (4.61)

Therefore, we can choose two independent c-number white noise sources ξ1,Γ1 and ξ2,Γ1 ,

which satisfy

〈ξj,Γ1(t)ξk,Γ1(t′) = δjkδ(t− t′), j, k ∈ {1, 2} (4.62)

and define the noise vectors

Fj,Γ1 =


F xj,Γ1

F yj,Γ1

F zj,Γ1

 = Bj,Γ1

ξ1,Γ1

ξ2,Γ1

 =


szj 0

0 szj

−sxj −syj


ξ1,Γ1

ξ2,Γ1

√Γ1ηj . (4.63)

Then we have one choice of the c-number noise terms for the Γ1 decay

F xj,Γ1
= ηj

√
Γ1s

z
jξ1,Γ1 = ηj

√
Γ2
c + Γ2

∆

Γ0
szjξ1,Γ1 , (4.64)

F yj,Γ1
= ηj

√
Γ1s

z
jξ2,Γ1 = ηj

√
Γ2
c + Γ2

∆

Γ0
szjξ2,Γ1 , (4.65)

F zj,Γ1
= −ηj

√
Γ1

(
sxj ξ1,Γ1 + syj ξ2,Γ1

)
= −ηj

√
Γ2
c + Γ2

∆

Γ0

(
sxj ξ1,Γ1 + syj ξ2,Γ1

)
. (4.66)

We can also choose

F xj,Γ1
= − ηj√

Γ0
szj (Γcξ

p + Γ∆ξ
q) , (4.67)

F yj,Γ1
=

ηj√
Γ0
szj (Γcξ

q − Γ∆ξ
p) , (4.68)

F zj,Γ1
=

ηj√
Γ0

[
Γc

(
sxj ξ

p − syj ξ
q
)

+ Γ∆

(
sxj ξ

q + syj ξ
p
)]
, (4.69)
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where ξq and ξp are only different from ξ1,Γ1 and ξ2,Γ1 by a rotation.

We can check that

〈
Fj,Γ1F

T
k,Γ1

〉
=
〈
2m′jk,Γ1

〉
= 2mjk,Γ1 . (4.70)

Indeed, the noise terms Fj,Γ1 give the correct c-number diffusion matrices.

(2) γ1 terms.

Similar to our methods for Γ1 terms, from Eq. (4.57), we get

2m′j,γ1
=


1 0 sxj

0 1 syj

sxj syj 2
(

1 + szj

)


γ1. (4.71)

With Cholesky decomposition, we obtain

2m′j,γ1
= Bj,γ1 (Bj,γ1)T , (4.72)

where

Bj,γ1 =


1 0 0

0 1 0

sxj syj

√
2
(

1 + szj

)
−
(
sxj

)2
−
(
syj

)2


√
γ1. (4.73)

Therefore we need to choose for each particle three independent white noise sources

ξµj,γ1
, µ ∈ {x, y, z}, which satisfy 4

〈ξµj,γ1
(t)ξνk,γ1

(t′)〉 = δjkδµνδ(t− t′), (4.74)

with µ, ν ∈ {x, y, z}. Then the c-number noises are chosen to be

Fj,γ1 = Bj,γ1


ξxj,γ1

ξyj,γ1

ξzj,γ1

 . (4.75)

4The noises must be independent for different particle to make sure there are no diffusion terms between them.
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Notice that there might be numerical issues when 2
(

1 + szj

)
−
(
sxj

)2
−
(
syj

)2
< 0. In that

case, we might need to it to be 0 or its absolute value in simulations.

(3) γ2 terms.

By Eq. (4.57), the diffusion matrix corresponding to γ2 decay is

2m′j,γ2
=


1 0 0

0 1 0

0 0 0

 γ2. (4.76)

The decomposition is

2m′j,γ2
= Bj,γ2 (Bj,γ2)T , (4.77)

where

Bj,γ2 =


1 0 0

0 1 0

0 0 0


√
γ2. (4.78)

Therefore we need to choose for each particle two independent white noise sources ξµj,γ2
, µ ∈

{x, y, z}, which satisfy

〈ξµj,γ2
(t)ξνk,γ2

(t′)〉 = δjkδµνδ(t− t′), (4.79)

with µ, ν ∈ {x, y}. Then the c-number noise terms can be chosen as

Fj,γ2 = Bj,γ2


ξxj,γ2

ξyj,γ2

0

 =


ξxj,γ2

ξyj,γ2

0


√
γ2. (4.80)

We see that only two independent noise sources need to be introduced for each atom due

to the reduced rank of the matrix Bj,γ2 .
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As a result, the final c-number quantum Langevin equations for the superradiant beam laser

model in the large N limit are

dsxj
dt

=
Γc
2
ηjJ xszj −

Γ∆

2
ηjJ yszj −

1

2
(γ1 + γ2) sxj + F xj,Γ1

+ F xj,γ1
+ F xj,γ2

(4.81)

dsyj
dt

=
Γc
2
ηjJ yszj +

Γ∆

2
ηjJ xszj −

1

2
(γ1 + γ2) syj + F yj,Γ1

+ F yj,γ1
+ F yj,γ2

(4.82)

dszj
dt

= −γ1(szj + 1)− Γc
2
ηj

(
J xsxj + J ysyj

)
+

Γ∆

2
ηj

(
J ysxj − J xs

y
j

)
+ F zj,Γ1

+ F zj,γ1
+ F zj,γ2

.

(4.83)

where Fj,Γ1 ,Fj,γ1 , and Fj,γ2 are given in Eqs. (4.63), (4.75), and (4.80).

In the remaining of this thesis, we will use the c-number theory developed in this chapter

to study various configurations of the superradiant atomic beam laser system. We will also study

various superradiant phase transitions resulting from different types of dissipation.



Chapter 5

Rugged mHz-Linewidth Superradiant Laser Driven by a Hot Atomic Beam 1

5.1 Introduction

Ultracoherent light sources are the foundation of highly accurate atomic clocks [98, 20],

measurements of the time variation of fundamental constants [60, 46], novel tests of relativity [132,

78], and dark matter searches [160]. Traditionally, these sources have been generated with cavity

stabilization, which involves locking lasers to highly stable optical cavities [55]. Despite their

incredible performance [126], these systems are complex, challenging to improve upon, and perform

poorly outside of controlled lab environments. However if cavity-stabilized lasers could be made

rugged, they could be used for improved global positioning[91], deep space navigation [38], and new

geophysical technology [13].

Superradiant lasers [25, 101, 12, 95, 129, 115, 116, 87, 59, 136] are promising candidates

for next-generation ultracoherent lasers [117]. However, a continuous wave superradiant laser has

not yet been demonstrated because of atomic heating in existing designs, which rely on ultracold

atoms [115]. Also, the use of ultracold atoms makes these systems complicated and ill suited to

applications in the field.

Here we propose a new kind of superradiant laser built from a hot atomic beam traversing an

optical cavity. We show that its theoretical minimum linewidth and maximum output power are

competitive with the best ultracoherent lasers. Because of atomic phase synchronization, the phase

1The bulk of this work has been published in Physical Review Letters [92]. Copyright 2020 American Physical

Society.
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Figure 5.1: The superradiant beam laser. The atomic beam is generated from an effusive source, like
a commercial effusion cell. After emerging from the source (upper right), the atoms are prepared
by pumping lasers (blue arrows) in a metastable state prior to entering the cavity (lower left).
Inset: The minimal atomic structure needed for the superradiant beam laser to operate. In this
three-level scheme, atoms are rapidly prepared in a metastable state |e〉 by pumping (blue) on a
broad transition. Lasing (red) occurs on the long-lived |g〉 ↔ |e〉 transition. Real atomic systems
may require more complex pumping schemes.
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of the output light is robust against decoherence arising from atomic motion, such as Doppler and

transit time broadening. Furthermore, our system is naturally continuous wave, and it is inherently

insensitive to effects that limit the best cavity-stabilized lasers [55, 126], such as environmental noise

and drift. The simplicity and ruggedness of the design make this system promising for applications

in challenging real-world environments [149, 78] and for packaging into commercial systems.

5.2 Formalism

Our system consists of a dense atomic beam traveling through an optical cavity. We consider

the case of all atoms having a uniform velocity in the x direction (Fig. 5.1). In this chapter, we

discuss the examples of 40Ca and 88Sr, but our results apply equally well to many other alkaline-

earth-like species. The mean intracavity atom number is N ≡ Φτ in steady state, where Φ is

the number of atoms transiting the cavity mode per unit time, and τ is the transit time. The

atoms in the beam are described by dipoles that are pumped into a metastable state (Fig. 5.1)

before entering the cavity. The dipole transition frequency ωa is taken to be near resonant with the

frequency ωc of a single cavity mode, where coupling of the dipoles and cavity is described by the

Tavis-Cummings Hamiltonian Ĥ(t) = (~g/2)
∑

j η[xj(t)](σ̂
+
j â+ â†σ̂−j ). Here, the summation runs

over all atoms in the beam, η[xj(t)] is a cavity mode function evaluated at position xj(t) of atom j

at time t, and g is the vacuum Rabi frequency at a cavity antinode. Furthermore, the atomic dipole

raising and lowering operators are σ̂+
j =

(
σ̂−j

)†
= |e〉j 〈g|j , where |g〉 and |e〉 are the atomic ground

and excited states, respectively, and the photon annihilation and creation operators of the cavity

field mode are â and â†. Besides this Hamiltonian that couples the atoms and cavity, our model

includes photon loss through a cavity mirror with rate κ.

We consider the bad cavity regime, which occurs when κ is much larger than the transit time

broadening 1/τ , the collective coupling
√
Ng, and the Doppler width δD = k∆vz. Here k = 2π/λ,

λ is the optical wavelength, and ∆vz is the single-atom velocity width along the cavity axis. In this

regime, the light field is rigidly anchored to the collective atomic dipole, so that the cavity degrees

of freedom can be adiabatically eliminated as â ≈ −igĴ−/κ. The operator Ĵ− =
∑

j η(xj)σ̂
−
j is
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the collective dipole, which is the sum of the individual atomic dipoles interacting with the cavity

mode. New atomic dipoles entering the cavity synchronize with the existing collective dipole due

to the atom-cavity interaction [166]. Since there is a large number of atoms in the cavity mode, the

true operator equations are well approximated by stochastic differential equations for their complex

amplitude equivalents (as introduced in Chap. 4);

dsxj
dt

=
Γc
2
ηj
[
J xszj − ηjsxj (szj + 1)

]
−
√

Γcηjs
z
jξ
p, (5.1)

dsyj
dt

=
Γc
2
ηj

[
J yszj − ηjs

y
j (s

z
j + 1)

]
+
√

Γcηjs
z
jξ
q, (5.2)

dszj
dt

= −Γc
2
ηj

{
J xsxj + J ysyj − ηj

[(
sxj
)2

+
(
syj

)2
]}

− Γcη
2
j (s

z
j + 1) +

√
Γcηj

(
sxj ξ

p − syj ξ
q
)
. (5.3)

Here sxj , syj , and szj are the c-number pseudospin variables that correspond to σ̂xj = σ̂−j + σ̂+
j , σ̂yj =

i(σ̂−j − σ̂
+
j ), and σ̂zj = σ̂+

j σ̂
−
j − σ̂

−
j σ̂

+
j . Similarly, J x and J y represent the operators Ĵx = Ĵ− + Ĵ+

and Ĵy = i(Ĵ−− Ĵ+). We have defined Γc = Cγ, where C = g2/(κγ) is the cavity cooperativity and

γ is the free-space spontaneous emission rate. We use the shorthand ηj = η[xj(t)] and model the

cavity mode by η(x) = [Θ(x + w) − Θ(x − w)] cos(kz), where Θ(x) is the Heaviside step function

and w is the cavity beam waist. Spontaneous emission into free space is neglected in Eqs. (5.1)–

(5.3) because the collective lifetime is much shorter than the spontaneous lifetime [101, 100, 166]. 2

Along the cavity axis, the atoms are randomly assigned a velocity drawn from a Maxwell-Boltzmann

distribution at a given temperature. Cavity shot noise is denoted by the stochastic noise variables

ξq and ξp, which have zero mean and are delta correlated as 〈ξa(t)ξb(t′)〉 = δabδ(t− t′), a, b ∈ {q, p}.

Each atom enters the cavity with szj = 1, and projection noise is included by choosing random (and

independent) values +1 or −1 for sxj and syj [133].



79

0 3 6 9 12
δD τ

0

10

20

30

40

Φ
τ

2
Γ
c

a)

0

10

20

30

40

>50

∆
ω
τ

0 3 6 9 12
δDτ

0

250

500

750

1000

∆
ω
/Γ

c

b)

Simulation

Mean field

0 1 2
δDτ

0

1

2

3

4

∆
ω
/Γ

c

0 20 40 60 80 100
Φτ 2Γc

100

101

102

103

104

∆
ω
/Γ

c

c) δDτ = 0.2π

δDτ = π

δDτ = 2π

Figure 5.2: (a) Mean-field calculations of the linewidth in units of the transit time broadening 1/τ ,
as a function of the Doppler width δDτ and Φτ2Γc. Here Φτ2Γc is the number of collective lifetimes
that elapse during the transit time τ . The black dashed line is the phase transition threshold
for steady-state superradiance, above which mean-field calculations predict a zero linewidth. (b)
The linewidth in units of Γc as a function of the Doppler width for Φτ2Γc = 20. The markers
are simulation results using Eqs. (5.1)–(5.3) with Φ = 1000/τ and Γc = 0.02/τ . For every data
point, we calculated 100 trajectories each with a simulation time of T = 2000τ . This numerical
simulation is compared with the mean-field theory, which is analytic. Inset: Below the phase
transition, simulations show an ultranarrow linewidth of order Γc, which is 50 times smaller than
transit time broadening for these simulation parameters. (c) Simulation results of the linewidth in
units of Γc as a function of Φτ2Γc. For every data point, we calculated 100 trajectories each with
a simulation time of T = 200τ and Φ = 500/τ .
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5.3 Results

Typically, resonance widths in hot gases of atoms are dominated by Doppler and transit time

broadening. Although our system is based on a hot gas, these broadening mechanisms vanish when

the collective linewidth NΓc is much greater than δD and 1/τ . The collective linewidth NΓc is the

rate for an atom to spontaneously emit into the cavity in the presence of other atoms. The principal

features of this model can be obtained by dropping the noise terms in Eqs. (5.1)–(5.3), corresponding

to a mean-field solution that is simple enough to be solved analytically and allows us to classify

different phases of emission. The form of the solution for the laser linewidth ∆ω is determined by

two independent parameters, the first being δD and the second being Φτ2Γc = τ/(NΓc)
−1, which

is the number of collective lifetimes that elapse during τ . In general, we observe a phase transition

from broad linewidth emission to superradiant emission with an ultranarrow linewidth [Fig. 5.2(a)].

Specifically, for large δDτ , the transition threshold is governed by the Doppler width, whereas for

small δDτ , transit time broadening determines the regime of superradiant emission. The latter is

evident because there is no superradiant emission for Φτ2Γc < 8 even in the absence of Doppler

broadening (δDτ � 1). This is because unsynchronized atoms are introduced to the cavity so

rapidly that the collective dipole does not establish.

The mean-field analysis predicts an unphysical zero linewidth in the superradiant regime be-

cause it neglects quantum noise. In reality, vacuum fluctuations entering the cavity and quantum

fluctuations in the atomic dipole components cause phase diffusion, resulting in a nonvanishing

linewidth. To determine this linewidth we simulate Eqs. (5.1)–(5.3) with noise terms included

for Φτ2Γc = 20. The mean-field theory and c-number simulations agree outside the superradiant

regime, whereas inside the superradiant regime only the c-number simulations predict a nonvan-

ishing linewidth. Here the minimum achievable linewidth is Γc [Fig. 5.2(b) inset], which is much

smaller than 1/τ , implying that our system is robust against single-atom transit time broadening.

2The conditions for neglecting free space spontaneous emission are that NΓc � γ and γτ � 1. We simulated this

system with free space spontaneous emission and confirmed that our model (which neglects this effect) reproduces

the correct minimum ∆ω, maximum P , and minimum ℘.
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Figure 5.3: The output power of the superradiant beam laser. The markers are c-number simulation
results. For every data point, we calculated 100 trajectories each with a simulation time of T = 200τ
and Φ = 500/τ . For δDτ = 0.2π, both the mean-field and simulation results peak at Φτ2Γc ≈ 20
with P = 0.7~ωΦ.
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In other words, the collective atomic dipole stores the optical phase for much longer than the time

any individual atom spends in the cavity.

To see how the minimum linewidth in the superradiant phase varies with δD, we run simula-

tions with three Doppler widths [Fig. 5.2(c)]. For δDτ = π, the linewidth can be brought down to

several Γc, and for δDτ = 0.2π, the linewidth is Γc. These numbers elucidate that narrow-linewidth

superradiant emission occurs when the atoms are flying through the cavity so quickly that they

move less than λ/2 along the cavity axis during τ .

To understand the scale of these quantities, we evaluate numerical values for the 3P1 → 1S0,

γ = 2π× 400 Hz transition in 40Ca. We take the velocity in the x direction to be that of Ca atoms

from an effusion cell operating at ∼ 800 ◦C. We also consider the case where Φ ∼ 1014 atoms/s

and the atomic beam is laser cooled in the transverse direction to ∆vz ' 0.41 m/s, corresponding

to the δDτ = π curve in Fig. 5.2(c). Considering a simple cavity with straightforward dimensions

(a finesse of 20, a cavity length of 3 cm, and beam waist w = 300µm), we calculated a minimum

linewidth of order 10 mHz, competitive with the best stable lasers to date [105]. A similar analysis

based on the 88 Sr intercombination transition yields a minimum linewidth of order 100 mHz. The

detailed design parameters can be found in Sec. 5.4. Therefore, ultracoherent light can be extracted

from a hot atomic beam with a significant Doppler width, which implies that ultracold atoms may

not be required to achieve narrow linewidth superradiant laser emission.

We now turn our attention to the laser output power P . While individual atoms would

rarely emit into the cavity mode during their passage, the emission rate is greatly enhanced by

collective effects. This enhanced rate leads to a N2 power scaling [101, 100], 3 which is a principal

feature of superradiant emission. Determining P from both the mean-field and c-number simulation

approaches, we find good agreement between the two when δDτ is comparable to (or below) 0.2π

(Fig. 5.3). For Doppler widths in this regime and for Φτ2Γc = 2π2 ≈ 20, P achieves its maximum

value of 0.7~ωΦ, where ω is the center frequency of the output field. Physically this corresponds to

each atom emitting an average of 0.7 photons into the cavity mode. Furthermore, we find that the

3This N2 enhancement is analyzed in detail in Chap. 6.
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Figure 5.4: Simulation results of the second-order time correlation function g(2)(0) compared to the
mean-field prediction. For each data point, we calculated 100 trajectories each with a simulation
time of T = 200 with Φ = 500, τ = 1, and δDτ = 0.2π.
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emitted light is second-order coherent by calculating g(2)(0) ≈ 1 (see Fig. 5.4). Together, Fig. 5.2(c)

and Fig. 5.3 show that the maximum power and a linewidth of order Γc can be simultaneously

achieved when Φτ2Γc ≈ 20 and δDτ . 0.2π.

For the 40Ca example mentioned above, we find that P ≈ 0.1 mW at a linewidth of 40 mHz.

For 88Sr, P = 2.5µW at a linewidth of 150 mHz. Significantly, these powers should be sufficient

for use with standard laser technology. In contrast the previously considered cold atom version

of the superradiant laser has orders of magnitude weaker power, restricting its use to specialized

equipment [101]. The power P is greater in the superradiant beam laser because it has the potential

for a much larger intracavity atom number than cold atom systems, where particle numbers have

been limited by intrinsic inefficiencies in ultracold gas preparation techniques.

In addition to its relatively large output power and insensitivity to Doppler and transit time

broadening, this design is robust against environmental noise. This noise causes cavity length

fluctuations, which manifest as cavity resonance frequency noise that dominates the linewidths of

cavity-stabilized narrow-linewidth lasers [97]. For these lasers, the frequency noise on the laser

output field is equal to the environmental noise in the cavity resonance frequency. However, in

a superradiant laser, phase information is stored primarily in the atomic medium, which makes

the phase rigid against cavity resonance fluctuations; therefore, these fluctuations are written onto

the laser output frequency with a strong suppression factor. This factor is the cavity pulling

coefficient [12], defined as ℘ = (ω − ωa)/(ωc − ωa), which is the fractional change in the laser

frequency when the cavity resonance fluctuates with respect to the atomic transition. Using mean-

field theory, we analytically find that ℘ ∝ 1/(κτ), which is the ratio of the cavity photon lifetime

to the atom transit time. A value of κτ = 1000 can be achieved with standard optics, resulting in

℘ ≈ 0.004 for Φτ2Γc = 20 (see Fig. 5.5).

This small ℘ makes our design robust against environmental noise sources that limit

linewidths of cavity-stabilized lasers. The most common examples are vibration noise [40], thermal

Brownian noise [97], and slow drift in the cavity length. The response of cavity resonance frequency

to vibration noise is characterized by the acceleration sensitivity K. For the superradiant beam
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Figure 5.5: The cavity pulling coefficient ℘ at δDτ = 0.2π. A small cavity pulling makes the
laser frequency insensitive to environmental noise, such as vibrations. The markers are c-number
simulation results with κ = 1000/τ and ωc − ωa = 100/τ . For every data point, we calculated
100 trajectories each with a simulation time of T = 100τ . As N increases, the simulation results
approach the mean-field calculation.
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laser, the laser output frequency has an effective acceleration sensitivity ℘K. If our design uses a

simple V-block cavity with no regard for the vibration isolation found in cutting-edge stable lasers,

it would have an acceleration sensitivity of ℘K ∼ 10−13/(m/s2). Meanwhile, the acceleration sen-

sitivity of the best cavity-stabilized laser to date is of the same order, i.e., K ∼ 10−13/(m/s2) [126].

Thermal Brownian noise causes cavity resonance fluctuations that scale as 1/L, where L is

the cavity length. To suppress this effect, stabilization cavities have been made as long as half a

meter [61]. For the superradiant beam laser, the amplitude of thermal noise behaves according to

the effective cavity length L/℘. This means that the output frequency of a beam laser based on a

compact L = 3 cm cavity has the thermal noise of a 7.5 m cavity. Furthermore, slow thermal drift

is a practical challenge for cavity-stabilized lasers. The superradiant beam laser has an effective

coefficient of thermal expansion (CTE) of ℘α, where α is the CTE of the bare cavity. This means

that a beam laser based on Invar (an inexpensive and easy-to-machine material) with modest

temperature control would have a drift rate similar to that of an ultrastable cavity based on highly

temperature-stabilized ultralow expansion glass.

5.4 Sample design constraints

In this section, we give two examples of sample experimental parameters that are consistent

with the production of ultranarrow linewidth laser light within our presented theoretical framework.

We have chosen as our examples the 2π × 400 Hz transition line of 40Ca and the 2π × 7.5 kHz

transition line of 88Sr, respectively. In order to emphasize the potential simplicity, we consider here

the most direct implementation, i.e., a hot atomic beam, a single mode cavity, and a simplified model

of the atom delivery system where transverse collimation or transverse laser cooling is implemented

but no longitudinal cooling is assumed. On the other hand, we recognize that in a real device,

transverse cooling, velocity selective techniques, or alternative beam delivery approaches, might be

employed in order to more easily satisfy the Doppler constraint and enhance the effective atomic

beam flux through cavity mode. In the case of a more sophisticated design choice, the parameters

may be considerably more favorable than the numbers we give here for a simple configuration.
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However, the constraints Φτ2Γc > 8 and δDτ = k∆vzτ < π must always be satisfied in order to

realize CW superradiant emission with linewidth in the ultranarrow regime, which is a principal

point of our proposal.

5.4.1 First example: 2π × 400 Hz line of 40Ca

Transition Rate γ 2π × (400 Hz)

Effective Beam Rate Φ 6.1× 1014/s

Transit Time τ = 2w
vL

0.81 µs

Intracavity Atom Number N = Φτ 4.9× 108

Transverse Velocity Threshold ∆v = λ
2τ 41 cm/s

Minimum Linewidth Γc = γC 2π × (8 mHz)

Peak Power Pmax ≈ 0.7Φ~ω 0.1 mW

Cavity Pulling ℘ 0.004

Table 5.1: Sample model parameters for the superradiant beam laser utilizing the 2π × 400 Hz
transition line of 40Ca.

For the Ca case (see Table 5.1), we consider a hot oven operating at temperature 842 °C,

which gives an out-of-oven beam rate Φ0 ∼ 1019 /s. As the atomic beam propagates from the oven

to the cavity, we assume that no longitudinal cooling is used, so the mean longitudinal velocity is

well approximated by the mean Maxwellian velocity as vL = 765.9 m/s. In the transverse direction,

laser cooling or velocity selection is needed to restrict the transverse Doppler width to below

δD = 2π × 0.6 MHz (∆vz = 0.41 m/s), in order to operate below the critical Doppler threshold

discussed in the main text. Prior to the atomic beam entering the cavity, the atoms must be

optically pumped into the excited electronic state. We estimate that for this situation, the effective

beam rate entering the cavity should be of order Φ = 6.1 × 1014/s. We choose cavity parameters

by considering a lossy cavity of length L = 3.3 cm, beam waist w = 0.31 mm, and finesse F = 22.8,

which corresponds to a cavity decay κ = 2π × (197 MHz) and cavity cooperativity C = 2 × 10−5.

Given these parameters, our calculation predicts an output field of power 0.1 mW and linewidth of

the order 10 mHz. Meanwhile, κτ ≈ 1000 gives a cavity pulling ℘ as small as 0.004 as shown in

Fig. 4 of the main text.
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5.4.2 Second example: 2π × 7.5 kHz line of 88Sr

Transition Rate γ 2π × (7.5 kHz)

Effective Beam Rate Φ 1.2× 1013/s

Transit Time τ 1.3 µs

Intracavity Atom Number N 1.6× 107

Transverse Velocity Threshold ∆v 26 cm/s

Minimum Linewidth Γc 2π × (150 mHz)

Peak Power Pmax 2.5µW

Cavity Pulling ℘ 0.004

Table 5.2: Sample model parameters for the superradiant beam laser utilizing the 2π × 7.5 kHz
transition line of 88Sr.

For the Sr case (see Table 5.2), we consider a similar experimental design to the case for

Ca. The oven operating at 650 °C gives a Φ0 ∼ 1018 /s and vL = 469.8 m/s. The required

Doppler threshold is δD = 2π × 0.4 MHz (∆vz = 0.26 m/s), and the required effective beam rate is

Φ = 1.2× 1013/s. Considering a cavity of length L = 6.0 cm, beam waist w = 0.31 mm, and finesse

F = 20.8, which corresponds to κ = 2π × (121 MHz) and cavity cooperativity C = 2 × 10−5, we

calculate an output field of power 2.5µW and linewidth of the order 150 mHz. Since κτ ≈ 1000,

we predict a cavity pulling coefficient of ℘ ≈ 0.004.

5.5 Conclusion

Superradiant lasers based on cold atoms have achieved impressive results, but parasitic heat-

ing from atomic repumping has so far limited these systems to pulsed operation [115]. The beam

laser design avoids the heating problem since pumping is performed outside the cavity (Fig. 5.1).

Therefore, the beam laser configuration may be a more promising approach for realizing a CW

superradiant laser. Furthermore, our design could conceivably be made simpler and less fragile

than cold-atom or cavity-stabilized systems. For this reason, the superradiant beam laser may

be well suited to operate in accelerating frames, making this design potentially useful for space

technology, inertial sensors, geodesy, field-based magnetometry, and astrophysical measurements.

We hope that our design will make ultracoherent lasers, which are currently limited to a handful
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of specialized labs, ubiquitous in quantum science.



Chapter 6

Superradiant Emission of a Thermal Atomic Beam into an Optical Cavity 1

6.1 Introduction

In this chapter we study in detail the effect of Doppler broadening on collective emission when

atoms traverse the optical resonator. We consider this to be the dominant broadening mechanism for

metastable atomic dipoles and thermal atomic beams. We derive a general theoretical framework to

study the collective emission of the atomic beam that includes a description of the atomic state when

the atoms move through the cavity. This is then used to analyze the stability of the non-superradiant

(NSR) and superradiant atomic configurations. For the latter, we predict a stable phase of the

emitted light whereby phase diffusion is suppressed because of the formation of a large and robust

collective dipole. Analyzing a realistic physical example, we show that superradiant emission is

possible when the collective linewidth exceeds both the transit-time and Doppler broadening. In this

regime we show that superradiant emission can appear in two forms; (i) steady-state superradiance

(SSR), where the collective dipole is stable and phase diffusion dominates the dynamics of the

collective dipole, and (ii) multi-component superradiance (MCSR), where the amplitude of the

collective dipole oscillates in time. In the MCSR phase, we observe long-lived coherent oscillations

in which the Doppler broadening itself is responsible for establishing the dynamical phase.

This chapter is organized as follows. In Sec. 6.2 we introduce the model and derive the

theoretical description that we will use throughout the chapter. This description is analyzed in

Sec. 6.3 using a mean-field treatment. We derive the stability of the mean-field results and use

1The bulk of this work has been published in Physical Review A [69]. Copyright 2021 American Physical Society.
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Figure 6.1: Schematic of the system (a) and the atom-cavity coupling (b). We consider a beam
of two-level atoms in the excited state |e〉 traversing an optical cavity of loss rate κ with a given
velocity distribution. The x and z axes are chosen perpendicular and parallel to the cavity axis. The
atomic beam is much broader than the optical wavelength λ so that the atoms experience different
phases of the cavity mode (blue and red denote different signs of the cavity mode function). The
excited state |e〉 of the atomic dipoles (b) couples to the ground state |g〉 via photon emission into
the cavity with coupling gη(x). The function η(x) is the mode function of the cavity.
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them in Sec. 6.4 to give analytical expressions for the linewidth of the emitted light. In Sec. 6.5 we

present the analysis of the dipole dynamics of a thermal beam traversing the cavity and compare

simulation and analytical results. We conclude our discussion in Sec. 6.6.

6.2 Derivation of the model

In this section we introduce the physical setup of the system and derive a theoretical descrip-

tion for it.

6.2.1 System and master equation

We consider a beam of metastable atomic dipoles with mass m that travel through an optical

cavity. Within the cavity the atoms couple to a single resonator mode. We choose x and z axes

perpendicular and parallel to the cavity axis respectively [see Fig. 6.1(a)]. We describe the evolution

of the atomic dipoles and the cavity field using a master equation for the density matrix ρ̂, including

internal and external degrees of freedom of the atoms and the cavity variables. The time evolution

of ρ̂ is given by

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
+ κL[â]ρ̂, (6.1)

where L[Ô]ρ̂ =
(

2Ôρ̂Ô† − Ô†Ôρ̂− ρ̂Ô†Ô
)
/2 is the Lindblad superoperator.

The first term in Eq. (6.1) describes the coherent evolution and is governed by the Hamiltonian

Ĥ =
∑
j

[
p̂2
j

2m
+

~g
2
η(x̂j)

(
â†σ̂−j + σ̂+

j â
)]

, (6.2)

which is presented in the frame rotating with the atomic transition frequency ωa. We have assumed

the resonance condition of zero detuning between the cavity frequency ωc and ωa, i.e., ∆ ≡ ωc−ωa =

0. The summation runs over all atoms in the beam. Inside the summation, the first term describes

the atomic kinetic energy, and the second term describes the coherent coupling of atom j to the

single resonator mode. Here, x̂j = (x̂j , ŷj , ẑj)
T and p̂j = (p̂x,j , p̂y,j , p̂z,j)

T are the position and

momentum operators that satisfy the commutation relations [α̂j , p̂β,k] = i~δjkδαβ, with α, β ∈
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{x, y, z}. The function gη(x̂) describes the coupling between the cavity and atoms [Fig. 6.1(b)],

where g is the vacuum Rabi frequency at the field antinodes and η(x) is the spatial mode profile.

The operators â and â† are the photonic annihilation and creation operators that fulfill the usual

bosonic commutation relation [â, â†] = 1, while σ̂+
j = |e〉j〈g|j and σ̂−j = |g〉j〈e|j are the atomic

pseudospin raising and lowering operators, where |e〉j , |g〉j are the electronic excited and ground

state of atom j, respectively.

The second term in Eq. (6.1) describes the leakage of cavity photons into the electromagnetic

field modes external to the cavity. The rate κ is the cavity decay rate and determines the linewidth

of the cavity field mode when the atoms are not present. In the main part of this chapter we will

consider the cavity decay channel as the only source of decoherence, while we discuss additional

noise sources in Sec. 6.5.5.

6.2.2 Elimination of the cavity field

We describe our system in the superradiant regime where κ exceeds all other atomic relaxation

frequencies [17, 100, 92]. In this regime we can adiabatically eliminate the fast cavity variables,

which leads to an effective master equation for the atomic degrees of freedom described by the

reduced density matrix

ρ̂atom = Trcav(ρ̂), (6.3)

where Trcav( . . . ) denotes the partial trace over the cavity degrees of freedom. The resulting master

equation for ρ̂atom reads

dρ̂atom

dt
=

1

i~

∑
j

p̂2
j

2m
, ρ̂atom

+ ΓcL[Ĵ−]ρ̂atom, (6.4)

where the incoherent part is governed by the single-atom linewidth

Γc ≡
g2

κ
. (6.5)
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We have also introduced the generalized collective dipoles

Ĵ± =
∑
j

η(x̂j)σ̂
±
j . (6.6)

For the remainder of the chapter we focus on the dynamics of the atomic degrees of freedom.

A useful description is given by the Heisenberg-Langevin equations that are equivalent to the master

equation formalism, i.e., 2

dσ̂−j
dt

=
Γc
2
η(x̂j)σ̂

z
j Ĵ
− + Ŝ−j , (6.7)

dσ̂zj
dt

=− Γcη(x̂j)
(
Ĵ+σ̂−j + σ̂+

j Ĵ
−
)

+ Ŝzj , (6.8)

dx̂j
dt

=
p̂j
m
, (6.9)

dp̂j
dt

=
i~Γc

2
(σ̂+
j Ĵ
− − Ĵ+σ̂−j )∇xη(x)|x=x̂j

+ N̂j , (6.10)

where the noise terms are given by Ŝ−j = η(x̂j)σ̂
z
j F̂−, Ŝzj = −2η(x̂j)(F̂+σ̂−j + σ̂+

j F̂−) for internal

degrees of freedom and by N̂j = i~∇xη(x)|x=x̂j
(σ̂+
j F̂− − F̂+σ̂−j ) for the external force acting on

atom j. The terms F̂± are effective noise terms on the coarse-grained timescale on which this

system of equations evolve and satisfy the correlations 〈F̂−(t)F̂−(t′)〉q = 0 = 〈F̂+(t)F̂−(t′)〉q and

〈F̂−(t)F̂+(t′)〉q = Γcδ(t − t′), F̂+ = (F̂−)†. The expectation value 〈 . 〉q is over the cavity degrees

of freedom and the free-space photonic modes external to the cavity.

6.2.3 Parameter regime and c-number approximations

Our theoretical description is used to analyze the dynamics of the atoms that travel ballisti-

cally through the cavity. This requires neglecting optomechanical forces in Eq. (6.10) by assuming

dp̂j
dt

= 0 (6.11)

for all atoms. We now discuss the validity of this approximation. Optomechanical forces are

described in Eq. (6.10). In order to justify the approximation of a ballistic motion, we estimate the

mean force Fmean ∼ ~NΓc∇xη(x) from Eq. (6.10) and the mean momentum change Fmeanτ , where

2See Chap. 4 for a detailed derivation.
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τ ≡ 2w/〈vx〉 is the transit time. Here w is the cavity waist and 〈vx〉 = 〈px〉/m is the mean atomic

velocity in the x direction. The mean momentum change has to be compared with the momentum

widths of the initial atomic momentum distribution in the corresponding Cartesian coordinates.

Along the z axis, assuming a standing wave potential with wavenumber k = 2π/λ, optomechanical

forces are negligible if ~kNΓcτ � ∆pz, where ∆pz is the momentum width in z direction. For

NΓcτ & 1 this requires a momentum width that is much larger than the a single photon recoil

~k. Vertical to the cavity axis, the mean force can be roughly approximated by ~w−1NΓc. The

condition reads as then ~w−1NΓcτ � ∆py and ~w−1NΓcτ � 〈px〉. Therefore, we conclude that

optomechanical forces are negligible as long as the temperature of the incoming atoms is sufficiently

high. Moreover, we will mostly work in the regime where atoms collectively emit into the cavity

mode. This is possible if the transit time τ of an individual atom is of the same order of magnitude

as the characteristic timescale of superradiant emission 1/(NΓc), where N is the mean intracavity

atom number.

In order to simulate the Heisenberg-Langevin equations in Eqs. (6.7)–(6.10), we make a

semiclassical approximation where we exchange the quantum operators by c-numbers and use noise

terms that simulate quantum noise as introduced in Chap. 4 [133, 92, 70]. This semiclassical

description can be derived by first writing down the Heisenberg-Langevin equations for the dipole

components σ̂xj = σ̂−j +σ̂+
j , σ̂yj = i(σ̂−j −σ̂

+
j ), σ̂z and then exchanging them with their corresponding

c-number equivalents sxj , syj , and szj . The same approach is repeated with the external operators

x̂j and p̂j that are replaced by their corresponding classical counterparts xj and pj . With this

procedure we obtain the following c-number stochastic differential equations

dsxj
dt

=
Γc
2
η(xj)s

z
jJ

x + Sxj , (6.12)

dsyj
dt

=
Γc
2
η(xj)s

z
jJ

y + Syj , (6.13)

dszj
dt

=− Γc
2
η(xj)

(
Jxsxj + Jysyj

)
+ Szj , (6.14)

dxj
dt

=
pj
m
, (6.15)
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where

Jα =
∑
j

η(xj)s
α
j , α ∈ {x, y}. (6.16)

are the c-number collective dipole components. We have neglected single-atom terms in Eqs. (6.12)–

(6.15) that scale with Γc compared to the collective terms that scale with NΓc. The noise terms are

defined by Sαj = η(xj)s
z
jFα, α ∈ {x, y} and Szj = −η(xj)(s

x
jFx + syjFy). The independent random

noise terms Fx and Fy fulfill 〈Fx(t)Fx(t′)〉 = Γcδ(t − t′) = 〈Fy(t)Fy(t′)〉. These equations have

been derived using the symmetric orderings of the operators and replacing these by their classical

c-number counterparts [92].

Beside the noise that is induced by Fx and Fy we also need to include another noise source

that arises from introducing new atoms into the cavity. We assume throughout this chapter that

the atoms enter in the excited state |e〉. In that case an atom indexed by j enters the cavity with

szj = 1. Since the atom is in |e〉, the quantum uncertainty in sxj and syj is maximal. This is modeled

by randomly and independently initializing sxj = ±1 and syj = ±1 [133]. With this methodology we

fulfill up to second order the correct initial spin-moments for the entering atoms, i.e., 〈sαj 〉 = 〈σ̂αj 〉,

〈sαj sαk 〉 = 〈σ̂αj σ̂αk 〉 = δjk, α ∈ {x, y}, and 〈sxj s
y
k〉 = 〈{σ̂xj σ̂

y
k}sym〉 = 0, where δjk is Kronecker-delta

and {σ̂xj σ̂
y
k}sym ≡

(
σ̂xj σ̂

y
k + σ̂yk σ̂

x
j

)
/2 is the symmetric ordering of operators σ̂xj and σ̂yk .

In the next subsection we will apply Eqs. (6.12)–(6.15) with the noise terms introduced above

to derive a phase-space density description of the atomic dipoles.

6.2.4 Phase-space density description

The phase-space density description of our model is derived by defining the classical phase-

space density and the spin densities of the atomic beam as

f(x,p, t) =
∑
j

δ(x− xj)δ(p− pj), (6.17)

sα(x,p, t) =
∑
j

sαj δ(x− xj)δ(p− pj), (6.18)
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where sαj is the single-atom spin component with α ∈ {x, y, z}. The collective dipole components

defined in Eq. (6.16) are given by

Jα =

ˆ
dx

ˆ
dp η(x)sα(x,p, t), α ∈ {x, y}, (6.19)

and Eqs. (6.12)–(6.15) can be rewritten with density variables as

∂f

∂t
+

p

m
·∇xf =0, (6.20)

∂sx

∂t
+

p

m
·∇xs

x =
Γc
2
η(x)szJx + Sx, (6.21)

∂sy

∂t
+

p

m
·∇xs

y =
Γc
2
η(x)szJy + Sy, (6.22)

∂sz

∂t
+

p

m
·∇xs

z =− Γc
2
η(x) (Jxsx + Jysy) + Sz. (6.23)

Here, Eq. (6.20) describes the free flight of the atomic beam. The noise terms are given by Sα =

η(x)Fαsz, with α ∈ {x, y, z}, and Sz = −η(x) (Fxsx + Fysy). We emphasize that these noise

terms are still local in time but long range in space.

The initial conditions for the atoms entering the cavity can be formulated as noisy spatial

boundary conditions for the stochastic partial differential equations (6.20)–(6.23). In order to

formulate these boundary conditions, we define x = −x0 as the position on the x axis where the

atoms enter the cavity. Notice that the exact choice of x0 depends on the choice of the mode

function η(x) and can in principle be x0 =∞. We assign

f(−x0, y, z,p, t) =f0(y, z,p, t), (6.24)

sx(−x0, y, z,p, t) =W x(y, z,p, t), (6.25)

sy(−x0, y, z,p, t) =W y(y, z,p, t), (6.26)

sz(−x0, y, z,p, t) =f0(y, z,p, t) (6.27)

as the initial conditions for the system at every instant of time t. Here, we have used

f0(y, z,p, t) =
∑
j

δ(x0 − xj)δ(p− pj), (6.28)
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and ascribed x0 = (−x0, y, z)
T to be the entrance surface. Since the atoms enter the cavity in

|e〉, the boundary conditions for f and sz are the same. The initial noise terms in the sx and sy

components can be described by

Wα(y, z,p, t) =
∑
j

sαj δ(x0 − xj)δ(p− pj), α ∈ {x, y}. (6.29)

These noise terms have the second moments

〈Wα(W β)′〉 =
m

px
δαβδ(t− t′)δ(y − y′)δ(z − z′)× δ(p− p′)f0(y, z,p, t), (6.30)

where we have simplified notation as Wα = Wα(y, z,p, t) and (W β)′ = W β(y′, z′,p′, t′). Notice

that such noise processes are both spatially and temporally local.

Throughout this chapter we will assume that the distribution of the atoms is spatially homo-

geneous. This requires that the diameter of the atomic beam is much larger than λ [see Fig. 6.1(a)]

and the cavity waist w. This assumption allows for the formulation of an averaged atomic density

ρ(p) using the ensemble average 〈 . 〉ens of the boundary condition f0(y, z,p, t), i.e.,

ρ(p) ≡ 〈f0(y, z,p, t)〉ens, (6.31)

which is independent of space and time. As a result, after a time t that is much larger than τ , we

achieve a stationary state for f that satisfies 〈f〉ens = ρ(p) and describes a spatially homogeneous

atomic density in the cavity mode volume. However, this does not imply that the spin densities sa

are spatially homogeneous, which can already be seen in a mean-field description.

6.3 Mean-field analysis

In order to describe the mean-field dynamics of the spin densities, we discard for the moment

any noise terms introduced by Wα and Fα, α ∈ {x, y}. The resulting partial differential equations

from Eqs. (6.21)–(6.23) read as

∂sx

∂t
+

p

m
·∇xs

x =
Γc
2
η(x)Jxsz, (6.32)

∂sy

∂t
+

p

m
·∇xs

y =
Γc
2
η(x)Jysz, (6.33)

∂sz

∂t
+

p

m
·∇xs

z =− Γc
2
η(x) (Jxsx + Jysy) . (6.34)
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In the following two subsections we will distinguish between the case when there is no superradiance

Jx = Jy = 0 and when there is superradiance (Jx, Jy) 6= (0, 0).

6.3.1 Non-superradiant phase (NSR)

The system is in the non-superradiant phase (NSR) when there is no collective dipole, i.e.,

Jx = Jy = 0. In this phase, the mean-field stationary state is given by

sx =0, (6.35)

sy =0, (6.36)

sz =ρ(p). (6.37)

Here, we only report the density inside of the cavity for t� τ .

Although Eqs. (6.35)–(6.37) always represent a stationary solution of the mean-field equa-

tions, they are not necessarily stable. Any noise, for instance introduced by Wα and Fα, could

potentially destabilize the stationary state.

In order to determine the stability of the NSR phase, we calculate the evolution of small

fluctuations in spin densities by letting sx = δsx and sy = δsy and sz = ρ(p) + δsz. We do not

need to specify the source of these small terms explicitly, but note that such fluctuations will be

introduced by the noise processes when extending the theory to the full description of the dipole

densities.

The equations for δsx, δsy, and δsz are given by

∂δsx

∂t
+

p

m
·∇xδs

x ≈Γc
2
η(x)δJxρ(p), (6.38)

∂δsy

∂t
+

p

m
·∇xδs

y ≈Γc
2
η(x)δJyρ(p), (6.39)

∂δsz

∂t
+

p

m
·∇xδs

z ≈0, (6.40)

where we have neglected terms that are second order in the fluctuations. Since Eqs. (6.38) and (6.39)

are equivalent, we solve without loss of generality only the equation for δsx.
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Applying the Laplace transform

L[g](ν) =

ˆ ∞
0

dt e−νtg(t), (6.41)

on Eq. (6.38), we obtain

[ν − L0]L[δsx] = δsx(x,p, 0) +
Γc
2
η(x)ρ(p)L[δJx], (6.42)

where we have used the definition

L0g(x) = − p

m
·∇xg(x). (6.43)

Next we multiply Eq. (6.42) first by the inverse of [ν − L0] and then by η(x). After an integration

over space and momentum, we obtain a linear equation for L[δJx]. This linear equation can be

solved to find the result

L[δJx] =

´
dx

´
dp η(x) [ν − L0]−1 δsx(x,p, 0)

1− Γc
2

´
dx

´
dp η(x) [ν − L0]−1 η(x)ρ(p)

. (6.44)

The denominator is the dispersion function D(ν) and takes the form

D(ν) =1− Γc
2

ˆ ∞
0

dt e−νt
ˆ
dx

ˆ
dp η(x)eL0tη(x)ρ(p).

Now using the action of the propagator

eL0tf(x) = f
(
x− p

m
t
)
, (6.45)

and after performing a change of variables x 7→ x + pt/m, we obtain

D(ν) =1− Γc
2

ˆ ∞
0

dt e−νt
ˆ
dx

ˆ
dp η

(
x +

p

m
t
)
ηρ, (6.46)

which is dispersion relation for the NSR phase.

The zeros of the dispersion relation D(ν) determine the exponents in the time evolution of

δJx. Assuming that these exponents are negative, the largest exponent (with smallest absolute

value) determines the characteristic timescale for a perturbation to relax the spin states again to

zero. On the other hand if there exists a zero of the dispersion relation with positive real part,

then the NSR phase is unstable. In this case the real part can be seen as the superradiant emission

rate.
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6.3.2 Steady-state superradiant phase (SSR)

We will now investigate the mean-field properties of the superradiant phase with a stationary

collective dipole. We will refer to the phase as steady-state superradiant (SSR) providing the system

reaches a stationary state that fulfills (Jx, Jy) 6= (0, 0). Strictly speaking, this is only true in the

absence of noise. In the presence of noise, (Jx, Jy) 6= (0, 0) is almost always true. In that case

steady-state superradiance can be well-characterized by the length of the vector (Jx, Jy) increasing

in proportion to the intracavity atom number N , i.e., ‖(Jx, Jy)‖ ∝ N .

6.3.2.1 Analytical solution to the SSR phase

Equations. (6.21)–(6.23) and their mean-field versions Eqs. (6.32)–(6.34) have a U(1) sym-

metry. This symmetry is given by a rotation with an arbitrary ϕ ∈ R,sx
sy

 =

cosϕ − sinϕ

sinϕ cosϕ


s̃x
s̃y

 (6.47)

that transforms Eqs. (6.21) and (6.22) to

∂s̃x

∂t
+

p

m
·∇xs̃

x =
Γc
2
η(x)J̃xsz + S̃x (6.48)

∂s̃y

∂t
+

p

m
·∇xs̃

y =
Γc
2
η(x)J̃ysz + S̃y (6.49)

with corresponding noisy initial conditions W̃ x and W̃ y. Here, all objects labeled by ˜( . ) are

transformed according to the linear operation in Eq. (6.47). Therefore this SSR phase can be seen

as a symmetry-broken phase [30]. We can always rotate the system to a frame where the stationary

collective dipole (Jx, Jy) points in x direction (see Fig. 6.2). We denote the new x axis by ‖ and

the perpendicular direction by ⊥. The resulting equations in the new frame are

∂s‖

∂t
+

p

m
·∇xs

‖ =
Γc
2
η(x)J‖sz + S‖, (6.50)

∂s⊥

∂t
+

p

m
·∇xs

⊥ =
Γc
2
η(x)J⊥sz + S⊥, (6.51)

∂sz

∂t
+

p

m
·∇xs

z =− Γc
2
η(x)

(
J‖s‖ + J⊥s⊥

)
+ Sz, (6.52)
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Figure 6.2: Schematic of the stationary collective dipole in the Jx-Jy plane. Its mean length is given

by J
‖
0 as defined in Eq. (6.55). The dynamics of its length fluctuations, δJ‖, we interpret as a Higgs

mode, and the dynamics of its phase fluctuations, δJ⊥, as a Goldstone mode (see Sec. 6.3.2.2).
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with corresponding input noise W ‖ and W⊥. Since the collective dipole points in the ‖ direction,

the perpendicular direction ⊥ is solely noisy with zero mean, implying that J⊥ ≈ 0. This leads to

the stationary solution for the dipole density s⊥ ≈ 0.

Neglecting all noise sources, we can derive the stationary mean-field densities. The mean-

field dipole in the perpendicular direction is just s⊥0 = 0. The mean-field densities s
‖
0 and sz0 are

determined by

p

m
·∇xs

‖
0 =

Γc
2
η(x)J

‖
0 s
z
0, (6.53)

p

m
·∇xs

z
0 =− Γc

2
η(x)J

‖
0 s
‖
0, (6.54)

where

J
‖
0 =

ˆ
dx

ˆ
dp η(x)s

‖
0 (6.55)

is the stationary length of the collective dipole. Equations (6.53)–(6.54) can be collected into a

single equation

p

m
·∇x

[
(s
‖
0)2 + (sz0)2

]
=0

and therefore solved as

sz0 = ρ(p) cos[K(x,p)], (6.56)

s
‖
0 = ρ(p) sin[K(x,p)], (6.57)

where the argument K(x,p) is determined by

p

m
·∇xK(x,p) =

Γc
2
η(x)J

‖
0 . (6.58)

We will now derive the stability of the SSR phase.

6.3.2.2 Stability of the SSR phase

Similar to our methods in Sec. 6.3.1, we derive the dynamics of small perturbations around

the stationary mean-field results by writing the spin densities as s‖ = s
‖
0 + δs‖, sz = sz0 + δsz, and
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s⊥ = δs⊥. The dynamics of the small fluctuations is governed by the following set of linearized

equations

∂δs‖

∂t
+

p

m
·∇xδs

‖ =
Γc
2
η(x)δJ‖sz0 +

Γc
2
η(x)J

‖
0 δs

z, (6.59)

∂δs⊥

∂t
+

p

m
·∇xδs

⊥ =
Γc
2
η(x)δJ⊥s

z
0, (6.60)

∂δsz

∂t
+

p

m
·∇xδs

z =− Γc
2
η(x)

(
δJ‖s

‖
0 + J

‖
0 δs
‖
)
. (6.61)

Notice that using Eq. (6.60) the dynamics of δs⊥ is completely decoupled from the dynamics of δs‖

and δsz. We will rely on this fact to treat the dynamics of these equations separately. Specifically,

we interpret the dynamics of δJ‖ and δJ⊥ as the Higgs and the Goldstone mode respectively (see

Fig. 6.2), as we will now elaborate on by examining key aspects of the form of the solutions.

(1) Higgs mode.

The time evolution of δs‖ together with the coupling to δsz describes the relaxation dynam-

ics of the amplitude of the collective dipole. This can be interpreted as a Higgs mode [58, 39].

In order to derive the dispersion relation for the Higgs mode, we first define δs+ = δs‖+iδsz

and δs− = δs‖ − iδsz. We can then use Eqs. (6.59) and (6.61) to derive two decoupled

equations

∂δs+

∂t
+

p

m
·∇xδs

+ =− iΓc
2
ηJ
‖
0 δs

+ +
Γc
2
ρ(p)ηδJ‖e−iK ,

∂δs−

∂t
+

p

m
·∇xδs

− =i
Γc
2
ηJ
‖
0 δs
− +

Γc
2
ρ(p)ηδJ‖eiK ,

where we have used the notations K = K(x,p), ρ = ρ(p), and η = η(x). These equations

can be solved using the Laplace transform given by Eq. (6.41) and we find

[ν − L1]L[δs+] =δs+(x,p, 0) +
Γc
2
ρL[δJ‖]ηe−iK , (6.62)

[ν − L2]L[δs−] =δs−(x,p, 0) +
Γc
2
ρL[δJ‖]ηeiK , (6.63)
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where we have defined δJ‖ =

ˆ
dx

ˆ
dp δs‖ and used

L1g(x) = − p

m
·∇xg(x)− iΓc

2
η(x)J

‖
0g(x), (6.64)

L2g(x) = − p

m
·∇xg(x) + i

Γc
2
η(x)J

‖
0g(x). (6.65)

We can now solve Eqs. (6.62) and (6.63) formally for L[δs+] and L[δs−]. Using L[δs‖] =

(L[δs+] + L[δs−])/2, multiplying this expression by η(x), and integrating over the whole

phase space, we end up with an expression for L[δJ‖]. Solving that equation for L[δJ‖]

leads to the final expression given by

L[δJ‖] =
A‖(ν)

D‖(ν)
, (6.66)

with

A‖(ν) =
1

2

ˆ
dx

ˆ
dp η(x) [ν − L1]−1 δs+(x,p, 0) +

1

2

ˆ
dx

ˆ
dp η(x) [ν − L2]−1 δs−(x,p, 0),

(6.67)

D‖(ν) =1− Γc
4

ˆ
dx

ˆ
dp η(x) [ν − L1]−1 ηe−iKρ− Γc

4

ˆ
dx

ˆ
dp η(x) [ν − L2]−1 ηeiKρ.

(6.68)

Using the actual form of the propagators

eL1tg(x) =e−i
Γc
2

´ t
0 η(x−

p
m
τ)J‖0 dτg

(
x− p

m
t
)

= ei[K(x− p
m
t,p)−K(x,p)]g

(
x− p

m
t
)
,

eL2tg(x) =ei
Γc
2

´ t
0 η(x−

p
m
τ)J‖0 dτg

(
x− p

m
t
)

= ei[K(x,p)−K(x− p
m
t,p)]g

(
x− p

m
t
)
,

and Eq. (6.56), we obtain the Higgs mode dispersion relation

D‖(ν) =1− Γc
2

ˆ ∞
0

dt e−νt
ˆ
dx

ˆ
dp η

(
x− p

m
t
)
ηsz0. (6.69)

We emphasize that in the limit of no superradiance, i.e., sz0 = ρ, we obtain the same

dispersion relation as we have derived in Eq. (6.46).

If the SSR phase is stable, we need all the zeros of the dispersion relation D‖(ν) to have

negative real parts. These zeros describe the relaxation dynamics of perturbations in the

collective dipole’s longitudinal direction.
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(2) Goldstone mode.

The dynamics of δs⊥ is decoupled from the Higgs mode and describes the evolution of

fluctuations perpendicular to it. This is related to the dynamics of the phase of the collective

dipole (see Fig. 6.2). Because of this observation we refer to this mode as the Goldstone

mode [47, 48].

The stability of the Goldstone mode can be calculated by solving Eq. (6.60). Laplace

transformation leads to

[ν − L0]L[δs⊥] =δs⊥(x,p, 0) +
Γc
2
L[δJ⊥]η(x)sz0(x,p), (6.70)

where we have used the definition of Eq. (6.43). Using the same steps as in Sec. 6.3.1, we

find

L[δJ⊥] =
A⊥(ν)

D⊥(ν)
, (6.71)

with

A⊥(ν) =

ˆ
dx

ˆ
dp η(x) [ν − L0]−1 δs⊥(x,p, 0), (6.72)

D⊥(ν) =1− Γc
2

ˆ
dx

ˆ
dp η(x) [ν − L0]−1 ηsz0. (6.73)

Using Eq. (6.45) we find the result

D⊥(ν) =1− Γc
2

ˆ ∞
0

dt e−νt
ˆ
dx

ˆ
dp η

(
x +

p

m
t
)
ηsz0. (6.74)

This dispersion relation, just like the dispersion relation for the Higgs mode, simplifies to

Eq. (6.46) in the limit J
‖
0 → 0. Let us emphasize that the dispersion relations for the Higgs

and the Goldstone look very similar but are only equivalent in the NSR phase. In fact

in the superradiant phase one main difference between the Higgs and Goldstone modes is

that the latter is always undamped. This can be seen using Eq. (6.53) such that we can

transform the dispersion relation (6.74) to

D⊥(ν) =1−

ˆ ∞
0

dt e−νt
ˆ
dx

ˆ
dp η

(
x +

p

m
t
) p

m
·∇xs

‖
0

J
‖
0

.
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For this and the following equations we use the notation s
‖
0 = s

‖
0(x,p). Applying the Gauß

theorem and explicitly using the fact that the atoms enter in |e〉 and that the mode function

vanishes at infinity, we get

D⊥(ν) =1 +

ˆ ∞
0

dte−νt
ˆ
dx

ˆ
dp

d

dt
η
(
x +

p

m
t
)
s
‖
0

J
‖
0

.

After another partial integration we obtain the Goldstone mode dispersion relation

D⊥(ν) =ν

ˆ ∞
0

e−νtdt

ˆ
dx

ˆ
dp η

(
x +

p

m
t
)
s
‖
0

J
‖
0

. (6.75)

where we have used Eq. (6.55).

In order for the SSR phase to be stable we require that every zero of Eq. (6.75) cannot

have a positive real part. However, we find that the Goldstone dispersion relation always

has a zero ν = 0 in the SSR phase. This shows that there is no damping of the phase

as a consequence of the underlying U(1) symmetry. Every noise will lead to a slight and

slow change in J⊥. This dynamics is slow compared to the exponents given by the Higgs

dispersion relation that determine the relaxation time to the stable length of the collective

dipole. However, the slow change in J⊥ leads to phase diffusion and this determines the

linewidth of the emitted light in the SSR phase [82] as we will explain in the next section.

6.4 Analytical estimates for the linewidth

In the ‘bad cavity’ regime, where the cavity linewidth exceeds all other frequencies in the

system, the coherence is stored in the collective dipole rather than in the cavity field. Therefore

the first-order coherence function, g1(t), for the cavity field is determined by the dipole-dipole

correlations

lim
t0→∞

〈â†(t+ t0)â(t0)〉 ∝ lim
t0→∞

〈Ĵ+(t+ t0)Ĵ−(t0)〉. (6.76)



108

In our semiclassical description we exchange the quantum operators for their classical noisy coun-

terparts and correspondingly define the g1 function as

g1(t) = lim
t0→∞

〈J∗(t+ t0)J(t0)〉, (6.77)

where we have used J∗ = (Jx + iJy)/2 and J = (Jx − iJy)/2.

6.4.1 Linewidth in the NSR phase

We first study the behavior of the g1 function in the NSR phase. Here, both dipole compo-

nents Jx and Jy can be analyzed independently since they are dominated by noise. In this regime

we can calculate the g1 function as

g1(t) ≈ lim
t0→∞

〈Jx(t+ t0)Jx(t0)〉+ 〈Jy(t+ t0)Jy(t0)〉
4

. (6.78)

Since the noise terms are isotropic, the correlation function for Jx and Jy are the same. Without

loss of generality we will focus on the Jx correlation function. For this we define the gx1 function as

gx1 (t) = lim
t0→∞

〈Jx(t+ t0)Jx(t0)〉. (6.79)

We now calculate the time dependence of the gx1 (t) function.

In order to do this we integrate Eq. (6.21) where we assume sz = ρ(p) and drop second order

terms in the noise contribution. This integration is done using the characteristics method. Defining

sx(t) = sx[xi + p(t− ti)/m, t], with xi = (−xi, yi, zi) the position where the atom enters the cavity

and ti the initial time, we obtain

sx(t) =sx(ti) +

ˆ t

ti

dt′ η
[
x(t′)

] [Γc
2
Jx(t′) + Fx(t′)

]
ρ,

where x(t′) = xi + p(t′ − ti)/m. We can now use t− ti = m(x+ xi)/px to express sx(ti) =

W x(yi, zi,p, ti) where yi = y − py(x + xi)/px, zi = z − pz(x + xi)/px, and ti = t −m(x + xi)/px.

After a change of variables t′ 7→ t− t′ we get

sx(t) =sx(ti) +

ˆ ∞
0

dt′ η
[
x(t− t′)

] [Γc
2
Jx(t− t′) + Fx(t− t′)

]
ρ,
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where we extend the integral to infinity because we assume that η(x) = 0 for x < −xi. Furthermore

x(t− t′) = x− pt′/m is independent of t. Multiplying sx(t) by η(x) and integrating over the phase

space leads to a linear equation for Jx. This can be solved using the Laplace transformation and

we get

L[Jx] =
L[JWx ] + 21−D(ν)

Γc
L [Fx]

D(ν)
, (6.80)

where D(ν) is the dispersion relation in Eq. (6.46), and

JWx(t) =

ˆ
dx

ˆ
dp η (x)W x (yi, zi,p, ti) . (6.81)

Notice that yi and zi depend on x and p. The time ti depends on x, p, and t. Since we are in

the NSR regime we expect all zeros of D(ν) to be negative. We denote now by ν0 the zero with

the largest real part. We assume in the following that this is a zero of first order. In the long time

limit we can conclude that, defining the inverse of the residue of 1/D(ν) as

C0 = lim
ν→ν0

D(ν)

ν − ν0
, (6.82)

the dipole is given by

Jx(t) ≈ Jxin(t) + Jxc (t), (6.83)

where

Jxin(t) =

ˆ t

0
dt′ eν0(t−t′)

ˆ
dx

ˆ
dp η (x)W x

(
yi, zi,p, t

′
i

)
C0

, (6.84)

Jxc (t) =

ˆ t

0
dt′ eν0(t−t′) 2

Γc
Fx(t′)

C0
, (6.85)

originate from the noise introduced by the incoming atoms and by the cavity noise, respectively.

Here, t′i = t′ −m(x+ xi)/px.

Since the cavity noise and the input noise are independent, the gx1 function is now completely

determined by

gx1 (t) = 〈Jx(t+ t0)Jx(t0)〉 ≈ gx1,in(t) + gx1,c(t), (6.86)
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where

gx1,in(t) =〈Jxin(t+ t0)Jxin(t0)〉, (6.87)

gx1,c(t) =〈Jxc (t+ t0)Jxc (t0)〉. (6.88)

It is straightforward to calculate the cavity noise that takes the form

gx1,c(t) =
2eν0t

ν0ΓcC2
0

. (6.89)

For the calculations of the contribution of the incoming atoms we use the noise correlations that

are defined in Eq. (7.28). The input noise term takes the form

gx1,in(t) =

´ t+t0
0 dt′

´ t0
0 dt′′ eν0(t+2t0−t′−t′′)χ(t′ − t′′)

C2
0

, (6.90)

where

χ(t′ − t′′) =

ˆ
dx

ˆ
dp ρ(p)η

[
x +

p

m
(t′ − t′′)

]
η (x) . (6.91)

While the actual form of this integral is dependent on the distribution and the mode function η,

we can still analyze it in the limit where the time is much larger than the transit time τ . For a

time t′ � τ we obtain η
(
x + p

m t
′) η (x) ≈ 0. Therefore it is reasonable to define

tchar =

ˆ ∞
−∞

dt′ χ(t′), (6.92)

and approximate

χ(t′ − t′′) ≈ tcharδ(t
′ − t′′). (6.93)

Here tchar is the characteristic timescale for the decay of χ. Using Eq. (6.93) we can calculate

gx1,in(t) ≈ tchare
ν0t

2ν0C2
0

. (6.94)

We emphasize that the actual form of gx1,in(t) for small t . τ depends on the density ρ(p) and

the mode function η(x). However, the results in Eqs. (6.89) and (6.94) show that the long time

behavior (t � τ) of the g1 function can be described by an exponential with decay ν0. In the
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NSR phase, we require that all zeros of Eq. (6.46) are negative. Therefore the g1 function shows

an exponential decay on a typical timescale −1/Re(ν0). On the other hand if we approach the

transition to the SSR phase we expect that Re(ν0) becomes vanishingly small. This results in a

increasing coherence time when approaching the threshold to SSR.

However, also in the SSR phase, we do not find an actual diverging coherence time. In this

phase we have to use a different method to find an estimate for the linewidth as we will now

show.

6.4.2 Linewidth in the SSR phase

The dynamics of g1 and its analysis are very different in the SSR phase. The main difference

is that the collective dipole is macroscopic and not dominated by noise. As we have shown in the

previous section, we can still decouple two different modes of this dipole, one along the direction of

the collective dipole (Higgs mode) and another perpendicular to this direction (Goldstone mode).

It is reasonable to write the g1 function in Eq. (6.77) as

g1(t) = lim
t0→∞

〈J‖(t+ t0)J‖(t0)ei[ϕ(t+t0)−ϕ(t0)]〉
4

, (6.95)

where we define the collective dipole to be J(t) = J‖(t)e−iϕ(t)/2.

Since the length of the dipole is assumed to be stable, we can always write J‖(t) = J
‖
0 +δJ‖(t),

where the first term is the stationary length of the collective dipole and δJ‖(t) describes noisy

fluctuations around this length (see Fig. 6.2). Assuming now that all zeros of the Higgs dispersion

relation in Eq. (6.69) have negative real part, we can conclude that these fluctuations decay rapidly.

Therefore, we can simplify the g1 function as

g1(t) ≈ lim
t0→∞

(J
‖
0 )2

4
〈ei[ϕ(t+t0)−ϕ(t0)]〉. (6.96)

In this picture the dynamics of the g1 function is determined by the dynamics of its phase. The

dynamics of the phase can be approximated by

dϕ(t)

dt
≈

dJ⊥

dt

J
‖
0

. (6.97)
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With this result it is sufficient to determine the time evolution of J⊥. To do this, we use Eq. (6.51)

to calculate s⊥(t). Multiplying it by η(x) and integrating over the whole phase space, we obtain

J⊥. The resulting equation can be solved using a Laplace transformation where we eventually get

L[J⊥] ≈
L[JW⊥ ] + 21−D⊥(ν)

Γc
L
[
F⊥
]

D⊥(ν)
. (6.98)

This result is completely equivalent to Eq. (6.80) except we use now the dispersion relation of the

Goldstone mode in Eq. (6.75). The noise equivalent to Eq. (6.81) is given by

JW⊥(t) =

ˆ
dx

ˆ
dp η (x)W⊥ (yi, zi,p, ti) . (6.99)

The main difference between Eqs. (6.80) and (6.98) is the different zeros of the dispersion relations

in Eqs. (6.46) and (6.74). While the zero of Eq. (6.46) always results in an exponential behavior,

the dominant zero of Eq. (6.74) is ν0 = 0. This implies that the dynamics of J⊥ and the resulting

phase ϕ = J⊥/J
‖
0 are diffusive.

For simplicity let us again assume that ν0 = 0 is a first order zero of Eq. (6.74). In that case

we can define a non-vanishing

C⊥ = lim
ν→0

D⊥(ν)

ν
=

ˆ ∞
0

dt

ˆ
dx

ˆ
dp η

(
x +

p

m
t
)
s
‖
0

J
‖
0

, (6.100)

and use it to obtain

J⊥(t) ≈ J⊥in(t) + J⊥c (t), (6.101)

where

J⊥in(t) =

ˆ t

0
dt′

ˆ
dx

ˆ
dp η (x)W⊥

(
yi, zi,p, t

′
i

)
C⊥

, (6.102)

J⊥c (t) =

ˆ t

0
dt′

2

Γc
F⊥(t′)

C⊥
, (6.103)

are the input and cavity noise terms, respectively.

We can now give a simple expression for the g1 function

g1(t) ≈ lim
t0→∞

(J
‖
0 )2

4
e−
〈∆ϕ(t,t0)2〉

2 , (6.104)
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where ∆ϕ(t, t0) = ϕ(t + t0) − ϕ(t0). Let us without loss of generality choose t0 = 0 and write

∆ϕ(t, 0) = ∆ϕ(t). Since input noise and cavity noise are independent, we obtain

〈∆ϕ(t)2〉 = 〈∆ϕin(t)2〉+ 〈∆ϕc(t)
2〉, (6.105)

with ∆ϕin(t) = J⊥in/J
‖
0 and ∆ϕc(t) = J⊥c /J

‖
0 .

The term corresponding to the cavity noise is given by

〈∆ϕc(t)
2〉 =

4

ΓcC2
⊥(J

‖
0 )2

t, (6.106)

showing the usual increase of the variance with t of a diffusion process.

For the noise term that arises from incoming atoms, we use Eq. (7.28) to obtain

〈∆ϕin(t)2〉 =

ˆ t

0
dt′

ˆ t

0
dt′′χ(t′ − t′′)

C2
⊥(J

‖
0 )2

, (6.107)

where we have used the definition in Eq. (6.91). While this process has a non-trivial time dependence

for t . τ we can write in the large time limit t� τ the following expression

〈∆ϕin(t)2〉 ≈ tchar

C2
⊥(J

‖
0 )2

t, (6.108)

with the characteristic timescale tchar defined in Eq. (6.92). In the t� τ limit we obtain

g1(t) ∝ e−
Γ
2
t, (6.109)

with a linewidth

Γ =
4

ΓcC2
⊥(J

‖
0 )2

+
tchar

C2
⊥(J

‖
0 )2

. (6.110)

Here, tchar is the characteristic time that has the form

tchar =

ˆ ∞
−∞

dt

ˆ
dx

ˆ
dp ρ(p)η

(
x +

p

m
t
)
η (x) (6.111)

and the quantity C⊥ is defined as

C⊥ =

ˆ ∞
0

dt

ˆ
dx

ˆ
dp η

(
x +

p

m
t
)
s
‖
0

J
‖
0

. (6.112)
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6.4.3 Discussion and limitations

Here we give an example of the order of magnitude, in particular, regarding the number N

of dipoles that effectively interact with the cavity mode. We discuss the behavior of the presented

quantities when we increase N . Notice that we scale Γc ∝ N−1 so that NΓc is considered to be of

order 1. This implies a linear scaling of the maximum output power of the field

κ〈â†â〉 ≈ Γc〈Ĵ+Ĵ−〉 ∝ N. (6.113)

This choice of scaling allows the dispersion relations given in Eqs. (6.46), (6.69), and (6.75)

to be independent of N . Therefore the linewidth in the NSR phase, given by 2ν0, is of order 1

which is the scaling of the collective linewidth. In the SSR phase, however, we have J
‖
0 ∝ N and

therefore (J
‖
0 )2 ∝ N2 implying a coherent collective dipole. In this regime the linewidth, given in

Eq. (6.110), is of order Γ ∝ 1/N where we have used that tchar ∝ N and C⊥ ∝ 1. This highlights

the fact that a macroscopic, coherent collective dipole ∝ N is needed for a narrow linewidth that

is a factor N smaller than that in the NSR phase.

We remark that the calculation of the g1 function in the NSR phase needs the zero ν0 of D(ν)

to be sufficiently isolated such that the contribution of exponents with faster decay rate only plays

a minor role. In general it is possible that ν0 is complex in that case. Since the dispersion relation

is real, there is always a second root ν∗0 that would need to be included in our calculation. However,

this will not affect the decay of the g1 function for very large values of t that is only determined by

the real part of ν0.

In the SSR phase, our calculation is only valid if every zero of the dispersion relation of the

Higgs mode in Eq. (6.69) is negative. In this case the decay of the Higgs mode is a factor N faster

than the dephasing process determined by Γ. However, if a zero of Eq. (6.69) has zero real part, our

calculation becomes invalid and predicts an instability of the system. In this situation, the system

will be either not superradiant or in a dynamical multi-component superradiant (MCSR) phase,

as we will see later in Sec. 6.5. Such an instability will also occur if there is a solution ν0 with

positive real part to D⊥(ν0) = 0, where D⊥(ν0) is the Goldstone dispersion relation in Eq. (6.75)
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(see Ref. [70]).

6.5 A thermal beam traversing the cavity

We will now analyze an explicit model in detail. To be specific, we use a cavity mode function

that is given by

η(x) = [Θ(x+ w)−Θ(x− w)] cos(kz), (6.114)

where Θ(x) is the Heaviside step function, w is the cavity mode waist, and k is the wavenumber.

We consider an atomic beam traversing this cavity mode with a constant single velocity vx = px/m

and a homogeneous spatial atomic density. The transit time is then τ = 2w/vx. In the z direction,

we assume a Maxwell distribution of velocities. We can thus express ρ(p) as

ρ = ρ(pz) =
N

2wλ

√
βz

2mπ
e−βz

p2z
2m , (6.115)

where N is the intracavity atom number and βz characterizes the momentum width in the z

direction.

6.5.1 NSR phase

In the NSR phase all atoms remain in the excited state while they traverse the cavity. The

stability of this phase is determined by the dispersion relation in Eq. (6.46). For the specific case

of Eqs. (6.114) and (6.115), we can solve the integrals in Eq. (6.46) analytically and obtain

D(ν) =1 +
NΓcτ

4
F (ν), (6.116)

with

F (ν) =
1− e−

δ2Dτ
2+2ντ

2

δ2
Dτ

2
−
√

π

2δ2
Dτ

2
e
ν2

2δ2
D

(
1 +

ντ

δ2
Dτ

2

)erf

ν + δ2
Dτ√

2δ2
D

− erf

 ν√
2δ2
D

 .
Here, we have defined the Doppler width as

δD =
k∆pz
m

=
k√
mβz

, (6.117)
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Figure 6.3: The zero ν0 of D(ν) from Eq. (6.116) with the largest real part as a function of the
Doppler width δD and of the collective linewidth NΓc, all in units of 1/τ . In the region where
ν0 > 0 (shown as white region) the state of the atomic beam is unstable and the beam of excited
dipoles will undergo superradiant emission. The solid black line indicates the transition where
ν0 = 0 [Eq. (6.118)].
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and erf(. . .) denotes the error function. The zero ν0 of Eq. (6.116) with the maximum real part is

shown in Fig. 6.3 as a function of NΓcτ and δDτ . For our parameter range solutions are restricted

to the domain ν0 ∈ R. The shaded area where ν0 < 0 describes the region where the NSR phase is

stable. Here, fluctuations decay with the exponent ν0. In the white region where ν0 ≥ 0 we expect

that fluctuations will be amplified and therefore the atoms will undergo superradiant emission. The

condition ν0 = 0 describes the phase boundary between the superradiant emission and the NSR

phase. This phase boundary can be calculated by solving D(0) = 0 which results in the equation

NΓcτ

8
=

δ2
Dτ

2

√
2πδDτ erf

[
δDτ√

2

]
+ 2e−

δ2
D
τ2

2 − 2

. (6.118)

We first consider the limit where Doppler broadening is very small, i.e., δDτ � 1. In this case the

atoms remain almost in the same position in the standing wave while traversing the cavity. For

this choice the right-hand side of Eq. (6.118) simplifies and we obtain

NΓcτ

8
= 1. (6.119)

This shows that even in the absence of Doppler broadening, the collective linewidth NΓc has

to overcome transit-time broadening 1/τ , i.e., NΓc > 8/τ , so that the atomic beam can induce

superradiant emission above threshold.

In the large Doppler broadening limit δDτ � 1, the atoms move many wavelengths during

the transit time τ . In that case, the right-hand side of Eq. (6.118) can again be simplified, giving

NΓc
8

=
δD√
2π
. (6.120)

This result is a second condition for superradiance; the collective linewidth has to overcome Doppler

broadening, i.e., NΓc > 8δD/
√

2π. Remarkably, this condition is completely independent of τ .

Both conditionsNΓc > 8/τ andNΓc > 8δD/
√

2π are visible in Fig. 6.3 in the small (δDτ � 1)

and large (δDτ � 1) Doppler broadening limits, respectively.

We will now present results for the g1 function in the NSR phase as defined in Eq. (6.77) for

t0 � τ . The analytical estimates of g1(t) have already been discussed in Sec. 6.4.1. Numerically,
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we find that the g1 function has a non-vanishing imaginary part. However, this imaginary part

becomes vanishingly small after averaging over many trajectories. In Fig. 6.4, we plot the absolute

value of the g1 function in (a) for δDτ = 0.1, NΓcτ = 4 and in (b) for δDτ = 10, NΓcτ = 20. Well

inside the NSR phase, these parameters are chosen to represent the case (a) where transit-time

broadening dominates Doppler broadening with δDτ = 0.1, and (b) where Doppler broadening

dominates transit-time broadening with δDτ = 10. For both cases we observe a long-time behavior

that is essentially exponential. To show this we have performed a numerical fit to the tail of the

g1 function assuming an exponential ∝ exp(ct) and have calculated for (a) cτ ≈ −1.9, and for (b)

cτ ≈ −6.5. Those two values are in very good agreement with the calculated values of ν0 that

are for (a) ν0τ = −1.8, and for (b) ν0τ = −6.2 (see Sec. 6.4.1). However, the short time behavior

for both parameter choices is not exponential. In Fig. 6.4(a) we observe initially an almost linear

decay of the g1 function that abruptly ends at the transit time t = τ . The g1 function in Fig. 6.4(b)

shows a Gaussian behavior for short times. The timescale where this Gaussian behavior is visible

in much shorter t < 0.1τ in agreement with the timescale expected from the larger Doppler width

t ∼ 1/(δD) = 0.1τ . The two-stage behavior of the g1 function has the signature of being dominated

by single-particle effects for short times and by collective effects, as determined by ν0, for long

times.

In the next subsection we will discuss the superradiant regime.

6.5.2 SSR phase

For the analysis of the SSR phase we solve the partial differential equation Eq. (6.58). The

solution is given by

K(x− w, z, pz) =
ΓcJ

‖
0m

2kpz

[
sin (kz)− sin

(
kz − kpz

mvx
x

)]
. (6.121)

This solution has the correct boundary condition K(−w, z, pz) = 0 implying that all atomic dipoles

are in the excited state when entering the cavity. Substituting Eq. (6.121) in Eq. (6.57) and then
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Figure 6.4: The absolute value of the g1 function [Eq. (6.77)] normalized by |g1(0)| as a function
of time t in units of τ for (a) δDτ = 0.1, NΓcτ = 4 and (b) δDτ = 10, NΓcτ = 20. The g1 function
is calculated by numerically integrating Eqs. (6.20)–(6.23) using Eqs. (6.114)–(6.115) over a total
time tsim = 200τ with N = 2000 atoms, and averaging over 100 trajectories. For the calculation of
g1 we have chosen t0 = 10τ . The red dashed line is an exponential fit ∝ exp(ct) of the tail with
an exponent cτ ≈ −1.9 (a) and cτ ≈ −6.5 (b), respectively. The values of ν0 (see Fig. 6.3) for the
same parameters are ν0τ = −1.8 (a), and ν0τ = −6.2 (b).
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calculating J
‖
0 defined in Eq. (6.55), we obtain

J
‖
0 = N

ˆ ∞
−∞

du
e
− u2

2δ2
D√

2πδ2
D

1− J0

[
ΓcJ
‖
0 τ

2

sin(uτ2 )
uτ
2

]
ΓcJ
‖
0 τ

2

, (6.122)

where Jn is the Bessel function of the first kind of order n. This is a non-linear equation for J
‖
0

that can be simplified by defining the average dipole j
‖
0 = J

‖
0/N that can be calculated by

j
‖
0 =

ˆ ∞
−∞

du
e
− u2

2δ2
D√

2πδ2
D

1− J0

[
NΓcτj

‖
0

2

sin(uτ2 )
uτ
2

]
NΓcτj

‖
0

2

. (6.123)

This shows the value of j
‖
0 is completely determined by the value of NΓcτ and δDτ . For j

‖
0 6= 0 we

obtain a superradiant scaling [100] (
J
‖
0

)2
= N2

(
j
‖
0

)2
∝ N2. (6.124)

The stability of this collective dipole is determined by the zero ν0 with the largest real part

of the Higgs and Goldstone mode dispersion relations [Eqs. (6.69) and (6.75)]. However, for the

considered parameter regime we only find an instability in the Higgs mode and not in the Goldstone

mode. Because of this, we focus on the Higgs mode dispersion relation in Fig. 6.5. In order to

calculate the zeros of the Higgs dispersion, we substitute Eq. (6.123) in Eq. (6.121) to solve for

K(x,p), and then use Eq. (6.56) to calculate the zeros of the dispersion function Eq. (6.69). We

numerically solve the equation and report the real and imaginary parts of the solution in Figs. 6.5(a)

and 6.5(b), respectively. We find a parameter regime where Re(ν0) < 0 and this marks the regime

where the SSR phase is stable. However, we observe also an unstable area that is defined by

Re(ν0) > 0. This area is indicated by a gray color in Fig. 6.5 and is bounded by a dashed line that

has been determined numerically. In this parameter range we expect neither the NSR nor the SSR

phase to be stable. Therefore, we find a dynamical and superradiant behavior of the system that is

most clearly visible in the spectrum that has several peaks. Because of this we refer to this phase

as multi-component superradiant (MCSR).

In the SSR phase, where Re(ν0) < 0, we always find a non-vanishing imaginary part Im(ν0)

indicating that any fluctuation in the collective dipole length will decay as a damped oscillation.
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Figure 6.5: The real part Re(ν0) (a) and the absolute value of the imaginary part | Im(ν0)| (b) in
units of 1/τ of the zero ν0 with the largest real part of the Higgs dispersion relation [Eq. (6.69)] as a
function of the Doppler width δD and the collective linewidth NΓc in units of 1/τ . The parameter
region where the Higgs mode is unstable, Re(ν0) > 0, is marked as gray area and bounded by a
dashed black line. We call this phase multi-component superradiant (MCSR). The solid black line,
given by Eq. (6.118), marks the transition from SSR to the NSR phase (see also Fig. 6.3). Subplots

(c) and (d) show the value of the collective dipole j
‖
0 [Eq. (6.123)] and the linewidth Γ [Eq. (6.110)]

in units of Γc, respectively. They are shown as a function of the same parameters as subplots (a)
and (b) for the parameter regime where the Higgs mode is stable. For all calculations we have used
Eq. (6.114) and Eq. (6.115).



122

For the whole parameter region of the SSR phase we have also calculated the Goldstone dispersion

relation and have not found any additional instabilities.

Figure 6.5(c) shows the normalized collective dipole j
‖
0 calculated using Eq. (6.123). We

see that the maximum dipole in the SSR regime is close to NΓcτ = 20 and for δDτ � 1. Using

the previous results we can also calculate the linewidth Γ using Eq. (6.110). We expect that this

analytical result is valid as long as the collective dipole is stable. The results are apparent in

Fig. 6.5(d). Here, we report a narrow linewidth, Γ < 40Γc, only for sufficiently small values of

δDτ . 5.

To analyze and compare our analytical results we have simulated Eqs. (6.20)–(6.23) across

the different transitions between the SSR, MCSR, and NSR phases.

6.5.3 Transition from SSR to NSR

We first analyze our simulations for the transition from SSR to the NSR phase for various

values of δDτ and fixed NΓcτ = 20. In Fig. 6.6 we show the results of our numerical integration

where different markers indicate different intracavity atom numbers [see inset of Fig. 6.6(a)].

In Fig. 6.6(a) we show the collective dipole correlation 〈J∗J〉 = 〈(Jx)2 + (Jy)2〉/4 (propor-

tional to the intensity of the output field) where the red dashed vertical line marks the threshold

between the SSR and NSR phases. The analytical prediction is visible as a black solid line and

agrees very well with the simulated results. In general we observe that the analytical result is in

better agreement for larger intracavity atom number N .

In Figs. 6.6(b) and 6.6(c) we show the linewidth Γ that is extracted by fitting the g1 function

in Eq. (6.77) with exp(−Γt/2). In subplot (b) the linewidth Γ is shown in units of the collective

linewidth NΓc while in subplot (c) we show the linewidth in units of the single-atom linewidth Γc.

We observe convergence of the simulation data for different N in the NSR phase in subplot (b).

On the other hand we observe convergence of the simulation data in the SSR phase in subplot (c).

This finding suggests that the linewidth Γ scales with NΓc in the NSR phase while it scales with

Γc in the SSR phase.
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Figure 6.6: (a) The normalized collective dipole correlation 〈J∗J〉/N2, (b) the linewidth Γ in units
of the collective linewidth NΓc, and (c) the linewidth in units of the single-atom linewidth Γc as
a function of the Doppler width δD in units of 1/τ . The different markers correspond to different
intracavity atom number N as described in the inset of subplot (a). The linewidth is calculated by
fitting the g1 function using t0 = 10τ to an exponential ∝ exp(−Γt/2) over a time interval of length

tf = 20τ . The solid line in subplot (a) is the value of (j
‖
0)2/4 calculated from Eq. (6.123). The

linewidths in (b) visible as solid line are −2ν0, where ν0 is the zero with the largest real part of the
dispersion relation in Eq. (6.116). In (c) the solid line gives the solution of Eq. (6.110) calculated

using Eq. (6.121) for given values of j
‖
0 . The red dashed vertical lines mark the transition from

SSR to the NSR phase. We have chosen NΓcτ = 20 with a simulation time of tsim = 200τ and a
total number of trajectories 200000/N for corresponding N .
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To further compare our numerical results with analytical predictions we have also calculated

the exponent ν0 that is the zero of the dispersion relation in Eq. (6.116) and plotted it as the

black solid line in subplot (b). Numerical and analytical results are in very good agreement in the

NSR phase. This description breaks down at the transition where the exponent ν0 vanishes. After

that in the SSR phase we expect that the linewidth of the collectively emitted light is dominated

by phase diffusion. In order to show this we have calculated the linewidth in Eq. (6.110) using

Eqs. (6.121) and (6.123). This linewidth is plotted as the black line in subplot (c). We find good

agreement of the theoretical prediction and the numerical result.

For the derivation of the linewidth in the SSR phase we have assumed a stable length of the

collective dipole. This is guaranteed by choosing NΓcτ = 20, where there is no instability in the

superradiant regime [see Fig. 6.5(a)]. In the next subsection we will explicitly study the crossover

from the SSR to the MCSR phase, where the Higgs mode becomes unstable.

6.5.4 Transition from SSR to MCSR

We choose NΓcτ = 50 and perform simulations for different values of δDτ across the transition

between the SSR and MCSR phases [see Fig. 6.5(a)]. In Fig. 6.7(a) we show 〈J∗J〉 = 〈(Jx)2 +

(Jy)2〉/4 for different values of N [see inset of Fig. 6.7(a)]. The red dashed vertical lines mark

the thresholds from SSR to the MCSR phase, and from the MCSR to the SSR phase. The first

threshold is close to δDτ ≈ 3 while the second threshold appears at δDτ ≈ 12. For comparison we

have also calculated the predicted mean-field value using Eq. (6.123) that is visible as the black

solid line. We find very good agreement in the superradiant phase for small values of δDτ . At the

threshold we see an increase of 〈J∗J〉 in the numerical results that shows a clear deviation from

the black line.

The instability at the transition from SSR to the MCSR phase has been derived from the

Higgs dispersion relation that describes the relaxation dynamics of the amplitude of the collective

dipole. Therefore we expect to see this instability also in the fluctuations of the collective dipole
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Figure 6.7: The collective dipole correlation 〈J∗J〉/N2 (a) and the value of g2(0)− 1 [Eq. (6.125)]
(b) as a function of δD in units of 1/τ . The different symbols indicate different intracavity atom

numbers N [see inset of subplot (a)]. The solid line in subplot (a) is the value of (j
‖
0)2/4 calculated

from Eq. (6.123). Subplot (c) shows the intensity spectrum |S2(ω)| defined in Eq. (6.126) as a
function of ω and δD in units of 1/τ . The value of |S2(ω)| is normalized for every δD by the
maximum |Smax

2 | ≡ maxω|S2(ω)| and calculated for N = 4000. The red vertical dashed lines
indicate the threshold from SSR to MCSR and from the MCSR to the SSR phases [see Fig.6.5(a)].
The red horizontal solid lines in subplot (c) are the values of ± Im(ν0) corresponding to the zero
ν0 of Eq. (6.69) with the largest real part. For the calculation of g2 we have used t0 = 10τ and
for the calculation of S2(ω) and integration time of tf = 20τ . All simulations were performed
with NΓcτ = 50 and with a simulation time of tsim = 200τ . For every N we have averaged over
200000/N trajectories.
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length. For this we calculate the g2 function which is defined as

g2(t) =
〈J∗(t+ t0)J(t+ t0)J∗(t0)J(t0)〉

〈J∗J〉2
, (6.125)

where t0 � τ is a sufficiently long time. We plot g2(0) − 1 in Fig. 6.7(b) for the same values of

δDτ . We find g2(0) = 1 well inside the SSR regime (δDτ < 3); therefore we expect second-order

coherent light. Beyond the transition (δDτ & 3) we find a sudden increase of g2(0) highlighting

the transition point. This increase cannot be explained by chaotic light because it even exceeds

the value of g2(0) = 2. Remarkably, the second threshold δDτ ≈ 12 is not visible in subplot (b)

while we would expect a transition to the SSR phase there with g2(0) ≈ 1. We understand that

this finding is due to finite size effects that are pronounced in this regime because of a small value

of 〈J∗J〉/N2 . 2 × 10−3. This is comparable with finite size effects that we consider to scale like

1/N .

Because the exponent ν0 also has an imaginary part [Fig. 6.5(b)], we also expect an oscillatory

behavior in the unstable phase. In order to analyze this we have calculated the intensity spectrum

S2(ω) =

ˆ tf

0
dt eiωt [g2(t)− 1] , (6.126)

where tf is the integration time. We plot |S2(ω)| in Fig. 6.7(c) as a function of ω in units of 1/τ .

The vertical red dashed lines mark the thresholds and the red horizontal solid lines are the values

of ± Im(ν0) visible in Fig. 6.5(b). We find very good agreement of the values of ± Im(ν0) with the

peaks of |S2(ω)| until δDτ . 12.

The transition between the SSR and the MCSR phase is also visible in Fig. 6.7(c). The

function |S2(ω)| shows very broad peaks in the SSR phase suggesting that the amplitude oscillations

are strongly damped. This is not true in the MCSR phase where the peaks are narrower suggesting

long-lived amplitude oscillations.

We will study this dynamical feature using the spectrum

S1(ω) =

ˆ tf

0
dt eiωtg1(t), (6.127)
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which we have calculated for the same parameters (see Fig. 6.8). Figure 6.8(d) shows the absolute

value of the spectrum |S1(ω)| as a function of ω and δD in units of 1/τ . The horizontal dashed red

line marks the threshold from SSR to MCSR around δDτ ≈ 3. The red circles indicate the value

of ± Im(ν0) at the threshold. In general we find three different appearances in the spectrum:

(i) For sufficiently small values of δDτ we find one narrow peak at ω = 0 indicating coherent and

steady-state superradiant emission with the atomic transition frequency. As an example

we present a cut of the spectrum in this SSR phase in Fig. 6.8(a) where we also compare

the spectrum for different values of N . We remark that in Fig. 6.8(a) the central peak is

Fourier limited because of the finite integration time tf .

(ii) Beyond the transition we find beside the central peak at ω = 0 also sidebands. These

sidebands appear at the predicted value of ± Im(ν0). This is also visible in Fig. 6.8(b)

where we have also plotted ± Im(ν0) as red vertical solid lines for the given parameters.

The sidebands become better resolved with increasing N .

(iii) Well inside the unstable regime, we find a third behavior where the central peak at ω = 0

vanishes and we observe sidepeaks at odd multiples of ± Im(ν0)/2. This is best visible in

Fig. 6.8(c) where we also show ± Im(ν0)/2 as vertical red solid lines corresponding to the

given parameters. Here we also find that the peaks become better resolved for increasing

N . The fact that we find a decreasing width of the sidebands for increasing N , as visible

in Fig. 6.8(b–c), suggests that they are due to collective emission.

Remarkably, while the transition from (i)–(ii) is already visible in the length of the collective

dipole and the intensity spectrum, the transition (ii)–(iii) is only visible in the coherences that are

described by g1. In g1 the peaks occur at ± Im(ν0)/2 while the peaks in g2 are still at ± Im(ν0).

The reason for this is that during an intensity oscillation period T = 2π/ Im(ν0) the collective

dipole gains the opposite sign (J → −J). This phase-shift in the collective dipole results in the

same intensity (J∗J → J∗J) but doubles the period in J to 2T . This highlights that the collective

dipole is switching between two Z2 symmetric states in (iii).
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Figure 6.8: The spectrum |S1(ω)| [Eq. (6.127)] plotted for δDτ = 3 (a), δDτ = 4.5 (b), δDτ = 6
(c) as a function of ω in units of 1/τ . The different lines correspond to different intracavity atom
numbers N as shown in the inset of subplot (a). The spectrum is normalized for every δD by the
maximum |Smax

1 | ≡ maxω|S1(ω)|. The red vertical lines in (b) correspond to ± Im(ν0) where ν0

is the zero of Eq. (6.69) with the largest real part. The red vertical lines in (c) correspond to
± Im(ν0)/2. Subplot (d) shows the spectrum |S1(ω)| as a function of δD and ω in units of τ for
N = 4000. The red dashed horizontal line marks the threshold from the SSR to MCSR regime.
The circles on this line are the values of ± Im(ν0) for the given parameters. All simulations were
performed with NΓcτ = 50, with a simulation time of tsim = 200τ and averaged over 200000/N
trajectories. The spectra are calculated using t0 = 10τ and tf = 20τ .
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To provide further details on this transition we use now a fixed value for the Doppler width

δDτ = 6 and change the collective linewidth NΓcτ = 30–60. For these parameters Fig. 6.5(a)

predicts a transition from SSR to the MCSR phase. The corresponding results for |S1(ω)| and

|S2(ω)| are visible in Figs. 6.9(a) and 6.9(b), respectively. The values of ± Im(ν0) are visible as

red lines in Fig. 6.9(b) and are in good agreement with the sidebands of |S2(ω)|. We find that

the sidebands become narrower when entering the MCSR phase, indicating long-lived intensity

oscillations. In the spectrum |S1(ω)| in Fig. 6.9(a) we have marked the theoretically predicted

threshold from SSR to MCSR as red dashed horizontal line. The circles on this line show the

values of ± Im(ν0) that agree with the emerging sidebands in |S1(ω)|. These sidebands become

more and more pronounced, emerging from a broad distribution at approximately NΓcτ ≈ 42.

Beyond this point we find no central peak but a period doubling that we compare to ± Im(ν0)/2

visible as the red lines in Fig. 6.9(a). We find very good agreement between the sidebands of |S1(ω)|

and ± Im(ν0)/2 for NΓcτ & 42.

In Fig. 6.9(c) we show

Ω2 ≡ (NΓc)
2〈J∗J〉, (6.128)

which can be seen as the square of an effective Rabi frequency driving the individual dipoles.

The quantity is reported in units of 1/τ2 for different intracavity atom numbers [see legend of

Fig. 6.9(c)]. The black solid line is the theoretical prediction obtained from Eq. (6.123) and is only

in good agreement in the SSR phase. The transition between the SSR and the MCSR phases are

shown as the vertical red dashed line. We find that the effective Rabi frequency is always larger

than the theoretically predicted value.

6.5.5 Spontaneous emission and T2 dephasing

In this section, we discuss the effect of additional noise terms on the observed superradiant

phases. So far in our description we have neglected free-space spontaneous emission with rate γ1

as well as T2 dephasing. This can be justified if γ1τ � 1 and τ/T2 � 1. In this limit, both effects
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Figure 6.9: The spectrum |S1(ω)| [Eq. (6.127)] (a) and the intensity spectrum |S2(ω)| [Eq. (6.126)]
(b) as a function of NΓc and ω in units of 1/τ . Both spectra are normalized for every δD by the
maximum |Smax

n | ≡ maxω|Sn(ω)| with n ∈ {1, 2}. The red dashed horizontal line in (a) marks the
threshold between the SSR and the MCSR phase and the circles are the values of ± Im(ν0). Here,
ν0 is the zero of Eq. (6.69) with the largest real part. The red solid vertical lines are given by
± Im(ν0)/2. In subplot (b) the red lines show the values of ± Im(ν0). For all results in subplots
(a) and (b) we have used N = 4000, t0 = 10τ , tf = 20τ , and averaged over 50 trajectories. Subplot
(c) shows the squared effective Rabi frequency [Eq. (6.128)] in units of 1/τ2 as a function of the
collective linewidth NΓc in units of 1/τ . The data are shown for various values of N (see inset).
The black solid line shows the result obtained from Eq. (6.123) and the red vertical dashed line
shows the transition from SSR to MCSR. All simulations are performed for δDτ = 6.
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are negligible during the transit time of an atom, and the corresponding noise is dominated by

input noise and cavity shot noise. In order to observe superradiance we require NΓcτ > 1, which

results in NΓc � γ1 given γ1τ � 1. This means that we assume a large collective cooperativity

NC = Ng2/(κγ1)� 1.

We will now show how we can add the effects of spontaneous emission and dephasing to our

model. 3 For this we now generalize the master equation in Eq. (6.1) to

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
+ κL[â]ρ̂+

∑
j

{
γ1L[σ̂−j ] +

γ2

4
L[σ̂zj ]

}
ρ̂, (6.129)

where γ2 = 2/T2 is the rescaled T2 dephasing rate [101]. Using this master equation, we can

eliminate the cavity field and derive the full c-number Heisenberg-Langevin equations. These c-

number stochastic differential equations for the dipole components are given by

dsxj
dt

=
Γc
2
η(xj)s

z
jJ

x − γ1 + γ2

2
sxj + Fxj , (6.130)

dsyj
dt

=
Γc
2
η(xj)s

z
jJ

y − γ1 + γ2

2
syj + Fyj , (6.131)

dszj
dt

=− Γc
2
η(xj)

(
Jxsxj + Jysyj

)
− γ1(szj + 1) + Fzj , (6.132)

where we have used noise terms Fαj = Sαj + Fαj,γ1
+ Fαj,γ2

for α ∈ {x, y, z}. While the noise

terms Sαj have been given in Eqs. (6.12)–(6.15), we now introduce two additional independent

noise sources Fαj,γ1
and Fαj,γ2

, which originate from spontaneous emission and T2 dephasing, respec-

tively. These noise terms fulfill 〈Fαj,γ1
(t)Fβk,γ1

(t′)〉 = 2 (mj,γ1)αβ δjkδ(t− t
′) and 〈Fαj,γ2

(t)Fβk,γ2
(t′)〉 =

2 (mj,γ2)αβ δjkδ(t− t
′), with the diffusion matrices given by

mj,γ1 =



β=x y z

α=x 1 0 sxj

y 0 1 syj

z sxj syj 2(1 + szj )


γ1

2
(6.133)

3See Chap. 4 for a detailed discussion on how to include these effects.
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Figure 6.10: The normalized collective dipole correlation 〈J∗J〉/N2 (a) and the linewidth Γ in units
of the single-atom linewidth Γc (b) as a function of transit-time broadening τ−1 in units of NΓc. The
black circles are simulation results using Eqs. (6.130)–(6.132). We have fixed δD/(NΓc) = π×10−2,
γ1/(NΓc) = 10−2, γ2/(NΓc) = 5×10−3, and the intracavity atom number N = 2000. The linewidth
is calculated by fitting the g1 function using t0 = 10τ to an exponential ∝ exp(−Γt/2) over a varying
tf . All the simulations were performed with tsim = 100τ and averaged over 100 trajectories. The
gray plus symbols are simulation results using the same parameters except for γ1 = 0 = γ2. The

gray dashed lines are analytical solutions, giving in (a) the value of (j
‖
0)2/4 using Eq. (6.123),

and in (b) the linewidth Eq. (6.110) calculated using Eq. (6.121) with corresponding values of j
‖
0 ,

respectively.
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and

mj,γ2 =



β=x y z

α=x 1 0 0

y 0 1 0

z 0 0 0


γ2

2
. (6.134)

We simulate Eqs. (6.130)–(6.132) for the numerical results we present below.

We first investigate how these noise sources affect the SSR phase and in particular the in-

tensity and the linewidth of the produced light. In particular we focus on the regime where the

collective linewidth is much larger than the Doppler width δD/(NΓc) = π× 10−2, the spontaneous

emission rate γ1/(NΓc) = 10−2, and the dephasing γ2/(NΓc) = 5 × 10−3. We fix the intracavity

atom number N = 2000 and vary the ratio between τ−1 and NΓc. In Fig. 6.10(a) we show the

results of 〈J∗J〉/N2 for these parameters as black circles. For comparison we have performed simu-

lations with γ1 = 0 = γ2 visible as gray pluses and also plotted the analytical result corresponding

to the solution of Eq. (6.123) as gray dashed line. While we find almost perfect agreement be-

tween the analytical result and the simulation with γ1 = 0 = γ2, the numerical results including

spontaneous emission are always smaller. This can be expected because spontaneous emission and

dephasing will both result in a decrease of coherence in the atomic dipoles and therefore result in

a reduced light intensity. In addition, free-space spontaneous emission also leads to a loss of exci-

tations into electromagnetic modes external to the cavity mode. Nevertheless, we find very good

agreement for the threshold of superradiance that for the considered parameter regime is close to

τ−1/(NΓc) = 1/8. We also find a similar functional behavior of 〈J∗J〉/N2 for the simulations with

and without spontaneous emission and dephasing.

Figure 6.10(b) shows the linewidth Γ calculated by fitting the g1 function given by Eq. (6.77)

with exp(−Γt/2) obtained from simulations including (black circles) and without spontaneous emis-

sion and dephasing (gray pluses). We also compare our results to the analytical estimate from

Eq. (6.110) visible as gray dashed line. We find very good agreement between the simulations with-

out spontaneous emission and dephasing and the analytical result as long as τ−1/(NΓc) > 10−2.
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Figure 6.11: Simulation results of the real part of g1(t) normalized by Re [g1(0)] for δDτ = 4.5 (a)
and δDτ = 6.0 (b). For the black solid lines we have used NΓcτ = 50, γ1 = 0.05τ−1 with N = 4000
and tsim = 200. The g1 function is calculated using t0 = 10τ and averaged over 50 trajectories.
For the gray dashed lines we have used the same parameters except for γ1 = 0. These dashed lines
are the real parts of the g1 functions that are used to calculate the spectra shown in Figs. 6.8(b)
and 6.8(c).
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Below this point we find a rather small coherent collective dipole component and cannot expect

that the phase diffusion argument that has been used to derive the analytical result will still be

valid. The simulations including spontaneous emission show a very similar functional dependence

but are almost always slightly above the simulation results without spontaneous emission. Still, we

find a minimum linewidth of the order of Γc that is orders of magnitude smaller than γ1 and γ2.

This highlights the fact that the linewidth of the generated light is typically not limited by any

single-particle dephasing mechanism.

We will now study the stability of the MCSR phase. For this we choose the same parameters

where we have observed the two different emission regimes in Figs. 6.8(b) and 6.8(c), i.e., NΓcτ =

50, δDτ = 4.5 and δDτ = 6.0, respectively. We now add a small spontaneous emission rate

γ1τ = 0.05 to our previous simulations. We plot the real part of the g1 function Re(g1) in Fig. 6.11

for δDτ = 4.5 (a) and δDτ = 6.0 (b). The simulations without spontaneous emission are visible as

gray dashed lines and the simulations with spontaneous emission as black solid lines.

In Fig. 6.11(a) we find a positive Re(g1) with oscillations for both simulation types that are

in good agreement. As a consequence, we also find a similar spectrum as shown in Fig. 6.8(b).

Remarkably, our simulation results suggest that the oscillations have a slightly longer lifetime for

non-vanishing γ1.

Figure 6.11(b) shows very good agreement between the two simulations with and without

spontaneous emission. We find Re(g1) oscillating around zero, therefore giving rise to a similar

spectrum as in Fig. 6.8(c). Our findings show that the change of the sign in Re(g1) that occurs with

half the frequency of the intensity oscillations is robust against small additional noise sources.

6.6 Conclusions

In this chapter we have studied the onset and stability of collective emission of an atomic beam

that traverses an optical cavity. We have developed a semiclassical theoretical framework to study

the dynamics of the atomic dipoles in the presence of Doppler broadening. We have analyzed this

model using a mean-field description and determined the stability of the non-superradiant (NSR)
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and steady-state superradiant (SSR) phases. These results were used to analyze the stationary

light emission of the corresponding phases and predict a linewidth of the emitted light. After

that we investigated a model using numerical simulations and presented analytical techniques that

provide supporting analysis. We explored a SSR phase and a dynamical superradiant phase with

a multi-component superradiant (MCSR) light output. With our derived theory we were able

to quantitatively predict the threshold of the MCSR phase and the occurrence of sidebands in

the spectra. In addition, we found that these results are robust against free-space spontaneous

emission and T2 dephasing processes if they are small compared to transit-time broadening and

Doppler broadening.

We highlight that the MCSR phase is observed in presence of relatively large Doppler broad-

ening. This is potentially easier to realize in actual experimental setups working with thermal

atomic beams. Nevertheless, for the observation of the MCSR phase one still requires a collective

linewidth that overcomes all broadening mechanism including Doppler broadening.

We have focused on the interplay between collective emission and thermal broadening in

the parameter regime where thermal effects dominate dephasing processes such as free-space spon-

taneous emission. However, we expect that these effects become important for cold or even ul-

tracold atomic beams when the Doppler broadening becomes comparable to the linewidth of the

atomic dipoles. In this parameter regime one could potentially study subradiance in the regime

where the transit time becomes comparable to the atomic lifetime [153, 143]. Additionally, one

could explore the regime where the collective linewidth becomes comparable to the recoil fre-

quency [16, 15, 14, 145, 66, 67] and the semiclassical theory used in this chapter becomes invalid.

Such parameter regimes could be achievable regarding the recent progress on producing high phase-

space density atomic beams [24].



Chapter 7

Collective Emission of an Atomic Beam into an Off-Resonant Cavity Mode 1

7.1 Introduction

Atomic ensembles in optical cavities provide a versatile platform to study collective effects

that arise from strong light-matter interactions. These systems have been employed to study spatial

pattern formation including self-organization [37, 8, 125], synchronization [3, 56, 166, 172, 161], and

also spin ordering or texturing [106, 79, 84]. They are intrinsically open quantum systems because

photons can enter and leave through the cavity mirrors while external driving usually balances

cavity losses and allows the stabilization of coherent out-of-equilibrium states.

The success of these systems also relies on the good controllability of cavity-mediated inter-

actions in atomic systems. These can be tuned by adjusting the parameters of the driving lasers

but also by varying the detunings between the atomic transitions and cavity mode frequencies. For

instance, if an ensemble of metastable dipoles couple to a resonant cavity the dynamics will mostly

be dominated by dissipation in form of spontaneous as well as superradiant or subradiant emission

[32, 52, 154, 116]. In contrast, for the case of large detuning, the dynamics remains coherent on

long timescales, and these setups can be used for quantum simulations of collective physics [108]

and even for spin squeezing [89, 90, 118].

However, fluctuations in the cavity detuning are also a major source of noise. One of the

main obstacles that limit the precision of the state-of-the-art cavity-assisted atomic clocks is the

quantum noise caused by cavity detuning from mirror fluctuations. Recently, it has been found that

1The bulk of this work has been published in Physical Review A [68]. Copyright 2021 American Physical Society.
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the noise caused by such fluctuations can be minimized by having systems working in a so-called

“bad cavity” parameter regime [101, 12, 115, 59]. In this regime, the phase information of the

output field is stored in the atomic ensemble rather than the cavity. Such systems, including active

atomic clocks [25] and superradiant lasers [12, 115, 87, 136, 150, 29], are becoming candidates for

future standards of quantum metrology.

Despite the fundamental interest in these kind of systems, only a few works investigate the

effect of continuously introducing and removing atoms. Recently, the use of an atomic beam to study

superradiant lasing and dynamical phases have been discussed [153, 92, 70, 69]. These atomic-beam

cavity configurations represent interesting situations where neither photons nor individual atoms

remain in the cavity on long timescales, but nevertheless cooperative effects can beat single-atom

constraints.

In this chapter we investigate the collective emission of an atomic beam into an off-resonant

cavity. The finite detuning between the cavity and atomic transitions results in a collective Lamb

shift [52]. We investigate the special case where the atoms enter in their electronic excited state

and discuss how the collectively emitted light depends on the detuning. We study cavity pulling

effects in this setup, which describes the shift of the emission frequency in the direction of the

cavity resonance, and investigate the dynamical superradiant phases that emerge.

This chapter is structured as follows. In Sec. 7.2 we introduce the theoretical framework

to describe the coupled dynamics between the atomic beam and the cavity mode. We derive

stationary solutions of this description in Sec. 7.3 where we also derive an analytical expression for

the cavity pulling coefficient. Section 7.4 treats the stability of the stationary atomic configuration

and studies the onset of superradiance and the destabilization of the superradiant phase. In Sec. 7.5

we investigate a specific model and derive expressions for the stationary phases, and we compare

our results to numerical simulations of this system. After that we conclude our results in Sec. 7.6

while the Appendix provides further details to some calculations contained in Sec. 7.4.
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Figure 7.1: (a) Atoms enter the cavity in the excited state |e〉 and can emit photons into a single
cavity mode. Photons leak out through the cavity output mirror with rate κ. (b) Each atom is
represented as an optical dipole of transition frequency ωa coupled to the cavity mode of frequency
ωc. The coupling gη(x) depends on the position x of the atom, where g is the vacuum Rabi frequency
or Jaynes-Cummings coupling coefficient and η(x) is the mode function. The cavity-atom detuning
frequency is given by ∆ = ωc − ωa.
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7.2 Theoretical model

In this section we introduce the theoretical description of the dynamics of the atomic beam

coupled to an off-resonant cavity.

7.2.1 Master equation formalism

We consider a beam of two-level atomic dipoles in their excited state |e〉 with transition

frequency ωa and mass m traversing an optical cavity. These atoms can emit photons into a single

cavity mode of frequency ωc (see Fig. 7.1).

The density matrix ρ̂ describing the atomic and cavity degrees of freedom is governed by a

Born-Markov master equation

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
− κ

2
(â†âρ̂+ ρ̂â†â− 2âρ̂â†). (7.1)

Here, the Hamiltonian

Ĥ = ~∆â†â+
∑
j

[
p̂2
j

2m
+

~g
2
η(x̂j)

(
â†σ̂−j + σ̂+

j â
)]

(7.2)

describes the coherent dynamics of the coupled atom-cavity system in a frame rotating with ωa. The

first term determines the energy of cavity photons where ∆ = ωc − ωa is the detuning between the

cavity and the atomic frequency. Operators â and â† are the photonic annihilation and creation

operators that fulfill the commutation relation [â, â†] = 1. The second term in Eq. (7.2) is the

kinetic energy of atom j where j runs over all atoms in the atomic beam. The last term in

Eq. (7.2) describes the Jaynes-Cummings coupling between an atom and the cavity, where g is

the vacuum Rabi frequency at a field maximum and η(x̂) is the cavity mode function evaluated at

position x̂.

The atomic position operator x̂j = (x̂j , ŷj , ẑj)
T is conjugate to the momentum operator

p̂j = (p̂x,j , p̂y,j , p̂z,j)
T with the usual canonical commutation relations [µ̂j , p̂ν,k] = i~δjkδµν , µ, ν ∈

{x, y, z}. The operators σ̂+
j = |e〉j〈g|j and σ̂−j = |g〉j〈e|j are the atomic raising and lowering

operators, where |e〉j , |g〉j denote electronic excited and ground states.
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Dissipation in this system is described by the Lindblad term in the master equation Eq. (7.1).

This describes the leakage of cavity photons into the free-space electromagnetic field with rate κ,

typically referred to as the cavity linewidth.

7.2.2 Heisenberg-Langevin equations

The master equation formalism introduced in Sec. 7.2.1 is equivalent to the Heisenberg-

Langevin equations that are given by

dâ

dt
=−

(
i∆ +

κ

2

)
â− ig

2
Ĵ− + F̂−, (7.3)

dσ̂−j
dt

=
ig

2
η(x̂j)σ̂

z
j â, (7.4)

dσ̂zj
dt

=igη(x̂j)
(
â†σ̂−j − σ̂

+
j â
)
, (7.5)

dx̂j
dt

=
p̂j
m
, (7.6)

dp̂j
dt

=− g~
2

(â†σ̂−j + σ̂+
j â)∇xη(x)|x=x̂j

. (7.7)

Here we have represented the gradient as ∇x ≡ (∂/∂x, ∂/∂y, ∂/∂z)T, and included the cavity shot

noise F̂− that fulfills expectation values 〈F̂−(t)〉 = 0, 〈F̂−(t′)F̂−(t)〉 = 0 = 〈F̂+(t′)F̂−(t)〉, and

〈F̂−(t′)F̂+(t)〉 = κδ(t − t′), with F̂+ = (F̂−)†. The operators σ̂zj = σ̂+
j σ̂
−
j − σ̂

−
j σ̂

+
j describe the

population inversion. The operator Ĵ− is the collective dipole and is defined as

Ĵ− =
∑
j

η(x̂j)σ̂
−
j . (7.8)

We are interested in the situation where dipoles in the atomic beam transverse the cavity

mode with a large velocity. Assuming a mean velocity vx perpendicular to the cavity axis [see

Fig.7.1(a)], we can estimate the transit time as τ = 2w/vx where w is the beam waist of the

cavity mode. Throughout this chapter we will neglect optomechanical forces that are described

by Eq. (7.7) and consider only ballistic motion. This is valid in the parameter regime where the

atomic momentum distribution has a width ∆pµ =
√
〈p̂2
µ〉 − 〈p̂µ〉2 that exceeds the mean force Fa

times the transit time τ in every spatial direction µ ∈ {x, y, z}. In this regime we may assume that

the momentum of each atom is constant.
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7.2.3 Semiclassical description

We will now make a semiclassical approximation where we substitute the operators by c-

number variables and add noise terms that give the correct second moments. Similar approaches

have been used in Refs. [92, 70, 69, 133]. Specifically, we replace the position operators x̂j by the

classical variables xj . We derive the time evolution of the Hermitian cavity operators âx = â+ â†,

ây = i(â− â†) and atomic dipole operators σ̂xj = σ̂−j + σ̂+
j , σ̂yj = i(σ̂−j − σ̂

+
j ), σ̂zj , and then substitute

them by their classical counterparts; αx, αy for the cavity and sxj , syj , and szj for the dipoles. The

c-number noise terms are chosen such that the second moments of two classical variables A, B

relate in the form 〈AB〉 = 〈ÂB̂ + B̂Â〉/2 to the second moment of their corresponding operators

Â and B̂; i.e., we choose symmetric ordering of the operators. The resulting c-number stochastic

differential equations read

dαx

dt
=− κ

2
αx −∆αy − g

2
Jy + Fx, (7.9)

dαy

dt
=∆αx − κ

2
αy +

g

2
Jx + Fy, (7.10)

dsxj
dt

=
g

2
η(xj)s

z
jα

y, (7.11)

dsyj
dt

=− g

2
η(xj)s

z
jα

x, (7.12)

dszj
dt

=
g

2
η(xj)(α

xsyj − α
ysxj ). (7.13)

dxj
dt

=
pj
m
, (7.14)

Here, Fx and Fy are independent noise terms defined by 〈Fx〉 = 〈Fy〉 = 〈Fx(t)Fy(t′)〉 = 0 and

〈Fx(t)Fx(t′)〉 = 〈Fy(t)Fy(t′)〉 = κδ(t− t′). In Eqs. (7.9)–(7.10), Jx and Jy are the classical x and

y components of the collective dipole given by Jx =
∑

j η(xj)s
x
j and Jy =

∑
j η(xj)s

y
j . Eq. (7.14)

describes the ballistic trajectory.

Noise is not only introduced by the cavity degrees of freedom, but also by the boundary

conditions. We will investigate the dynamics of atoms that enter the cavity in the excited state

|e〉. Therefore if an atom indexed by j enters the cavity, we initialize szj = 1 and choose the x

and y components of the dipoles randomly and independently from sxj = ±1 and syj = ±1. This
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accounts for the correct second moments of all dipole components (see Refs. [92, 70, 69]). With

these boundary constraints, Eqs. (7.9)–(7.14) can be directly implemented in numerical simulations.

In the next section, we will introduce a density method to analytically solve these equations.

7.2.4 Density description

We will now use Eqs. (7.11)–(7.14) to derive a collective description of the atomic beam. For

this we define the densities

f(x,p, t) =
∑
j

δ(x− xj)δ(p− pj), (7.15)

sµ(x,p, t) =
∑
j

sµj δ(x− xj)δ(p− pj), (7.16)

where the sµj are pseudospin components with µ ∈ {x, y, z}. Using these definitions together with

Eqs. (7.11)–(7.14) we obtain

∂f

∂t
+

p

m
·∇xf =0, (7.17)

∂sx

∂t
+

p

m
·∇xs

x =
g

2
η(x)szαy, (7.18)

∂sy

∂t
+

p

m
·∇xs

y =− g

2
η(x)szαx, (7.19)

∂sz

∂t
+

p

m
·∇xs

z =
g

2
η(x) (αxsy − αysx) . (7.20)

The collective dipole in Eqs. (7.9)–(7.10) can be also expressed as an integral over dipole densities

Jµ =

ˆ
dx

ˆ
dp η(x)sµ(x,p, t), (7.21)

with µ ∈ {x, y}.

Equations (7.17)–(7.20) are closed with the time evolution of the field variables in Eq. (7.9)–

(7.10). It remains to include the atomic noise terms in this density formalism. To do this, we

formulate the initial conditions for the atoms entering the cavity as boundary conditions for the

partial differential equations (7.17)–(7.20). Assuming that the atoms enter the cavity in the plane
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x = −x0 [see Fig. 7.1(a)], we can ascribe as initial conditions;

f(−x0, y, z,p, t) =f0(y, z,p, t), (7.22)

sx(−x0, y, z,p, t) =W x(y, z,p, t), (7.23)

sy(−x0, y, z,p, t) =W y(y, z,p, t), (7.24)

sz(−x0, y, z,p, t) =f0(y, z,p, t). (7.25)

The boundary condition for the density is given by

f0(y, z,p, t) =
∑
j

δ(x0 − xj)δ(p− pj), (7.26)

where x0 = (−x0, y, z)
T is the position where the atoms enter. We can therefore express the initial

condition for the dipoles as

Wµ(y, z,p, t) =
∑
j

sµj δ(x0 − xj)δ(p− pj), (7.27)

with µ ∈ {x, y}, and for the second moment as

〈Wµ(W ν)′〉 =
m

px
δµνδ(t− t′)δ(y − y′)δ(z − z′)δ(p− p′)f0(y, z,p, t), (7.28)

where we have used the notation Wµ = Wµ(y, z,p, t) and (W ν)′ = W ν(y′, z′,p′, t′).

Throughout this chapter we will assume that the atomic density after one transit time τ is

spatially homogeneous in the cavity. This results in the property

〈f(x,p, t� τ)〉 = ρ(p), (7.29)

where ρ(p) is a continuous spatially homogeneous density of the atoms that is time independent.

This, however, does not imply that the dipole densities sµ, µ ∈ {x, y, z}, are spatially independent,

as we will expand on in the next section.

7.3 Stationary states of the system

We will now investigate the asymptotic stationary solution reached after a sufficiently long

time, t � τ , of the coupled equations for the field, Eqs. (7.9)–(7.10), and dipole densities,
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Eqs. (7.18)–(7.20). To obtain these results we will use the previously mentioned assumption of

a spatially homogeneous atomic density. In addition, we will discard all noise terms, which implies

a mean-field approximation.

7.3.1 The non-superradiant solution

We begin with the simplest solution that describes the situation when the atoms cross the

cavity without generating a coherent light field. This is a trivial stationary state of the system

given by

αx0 =0, (7.30)

αy0 =0, (7.31)

sx0 =0, (7.32)

sy0 =0, (7.33)

sz0 =ρ(p). (7.34)

In this case, the atoms simply remain in the excited state |e〉 while traveling through the cavity

region.

7.3.2 The superradiant solution

We now derive the more interesting superradiant solution. In order to reduce the equations,

we rotate to a complex field α = (αx − iαy)/2 and complex dipole density s = (sx − isy)/2. Using

these definitions in Eqs. (7.9)–(7.10) and Eqs. (7.18)–(7.19), we derive the following mean-field

equations

dα

dt
=−

(
i∆ +

κ

2

)
α− ig

2

ˆ
dx

ˆ
dp η(x)s, (7.35)

∂s

∂t
=− p

m
·∇xs+

ig

2
η(x)szα, (7.36)

∂sz

∂t
=− p

m
·∇xs

z + igη(x) (α∗s− s∗α) , (7.37)

where we have used the collective dipole defined in Eq. (7.21).
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Figure 7.2: Sketch of the Bloch sphere where the dipole density can be mapped on a point of the
sphere (here visible as the blue arrow) with radius ρ(p) depending solely on the momentum p. The
angles K and φ depend on position x, momentum p, and time t.
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Equations (7.36)–(7.37) imply a conserved length of the dipole density(
∂

∂t
+

p

m
·∇x

)[
4|s|2 + (sz)2

]
= 0, (7.38)

which can be seen by realizing 4|s|2 +(sz)2 = (sx)2 +(sy)2 +(sz)2. Therefore it is useful to represent

the stationary dipole components in spherical coordinates

s0 =
ρ(p)

2
e−iφ sin(K),

sz0 =ρ(p) cos(K), (7.39)

where the dipole length is determined by the boundary conditions of the atomic beam density ρ(p)

as in Eq. (7.17), and φ, K are spherical angles dependent on position, momentum, and time. In

that case, for every fixed value of x, p, t, we can assign a Bloch vector to the density of the atomic

dipoles (see Fig. 7.2). The boundary condition for K is determined by the fact that the atoms

enter in the excited state and thus K(x0,p, t) = 0.

To find the superradiant solution, we assume that the atomic beam undergoes collective

emission with a single frequency ω. In that case we can express the phase φ as

φ(x,p, t) = ωt+ ψ(x,p), (7.40)

where the first term on the right hand side describes the monochromatic oscillation of the density

with frequency ω, and the second term ψ is a time-independent phase in phase space. The angle

K(x,p) is not explicitly time dependent in this case.

This assumption allows us to solve the cavity field analytically from Eq. (7.35) and obtain

α0 ≈ −i
Γc
g

cos(χ)e−iχJ0, (7.41)

where we have defined

Γc =
g2

κ
, (7.42)

tan(χ) =
∆− ω
κ/2

, (7.43)
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and

J0 =

ˆ
dx

ˆ
dp η(x)s0. (7.44)

We mention that α0, s0, and J0 are all proportional to exp(−iωt), which constitutes their only time

dependence. Our result for the field goes beyond the typical adiabatic elimination of the cavity

fields since it includes retardation effects that are apparent in χ and that explicitly depend on the

frequency ω. Using Eqs. (7.39) and Eq. (7.41) in Eq. (7.36), we can derive the following equations

for the angles

p

m
·∇xψ =− ω − Γ(x)

2
cot(K)C(ψ), (7.45)

p

m
·∇xK =

Γ(x)

2

ˆ
dx′ S(ψ), (7.46)

with

C(ψ) =

ˆ
dx′

ˆ
dp′ η′ρ′ sin

(
ψ − ψ′ − χ

)
sin
(
K ′
)
,

S(ψ) =

ˆ
dp′ η′ρ′ cos

(
ψ − ψ′ − χ

)
sin
(
K ′
)
,

and where we have used

Γ(x) = Γcη(x) cos(χ). (7.47)

As a simplification, we have employed the notation A′ = A(x′,p′) where A can be η, ρ, ψ, and K.

Equations (7.45)–(7.46) have a U(1) symmetry since they are invariant under a rotation ψ 7→ ψ+ϕ,

where ϕ is an arbitrary phase that is independent on position, momentum, and time. We will now

explicitly break this U(1) symmetry by choosing the phase offset such that

J
‖
0 =

ˆ
dx′

ˆ
dp′ η′ρ′ cos

(
ψ′
)

sin
(
K ′
)
, (7.48)

0 =

ˆ
dx′

ˆ
dp′ η′ρ′ sin

(
ψ′
)

sin
(
K ′
)
. (7.49)

Notice that J
‖
0 is not time dependent; the value of J

‖
0 is the stationary length of the collective

dipole and has the relation J
‖
0 = 2|J0|.
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With this choice of J
‖
0 , we can simplify Eq. (7.45) and Eq. (7.46) to

p

m
·∇xψ =− ω − Γ(x)J

‖
0

2
cot(K) sin (ψ − χ) , (7.50)

p

m
·∇xK =

Γ(x)J
‖
0

2
cos (ψ − χ) . (7.51)

Since all atoms enter the cavity in the excited state we have the boundary condition K(x0,p) = 0.

If we now impose that the gradient of the angle ∇xψ cannot diverge at x = x0, we obtain the

boundary condition for the angle ψ(x0,p) = χ.

Although we will give a simple example in Sec. 7.5 where we can explicitly solve Eqs. (7.50)–

(7.51), we are not aware of a general solution. However, in the limit where χ � 1, we can apply

perturbation theory as we will show now.

7.3.3 Perturbative solution for χ� 1: Cavity pulling

We consider now the case where χ � 1 and also ψ � 1. The latter is a consequence of the

boundary condition ψ(x0,p) = χ together with the approximation sin (ψ − χ) ≈ ψ−χ that implies

that ψ according to Eq. (7.50) is only slowly varying. In this parameter regime we can approximate

χ by

χ ≈ ∆− ω
κ/2

(7.52)

from Eq. (7.43) and simplify Eq. (7.50) and Eq. (7.51) to get

p

m
·∇xψ =− ω − ΓcJ

‖
0

2
η cot(K) (ψ − χ) , (7.53)

p

m
·∇xK =

ΓcJ
‖
0

2
η. (7.54)

The second equation is now completely decoupled and independent of ω. Using the substitution

ψ =
Ψ

sin(K)
+ χ, (7.55)

we can derive

p

m
·∇xΨ = −ω sin(K) (7.56)
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with the boundary condition Ψ(x0,p) = 0. This can be integrated to obtain

Ψ(x,p) = −ω
ˆ ∞

0
dt sin

[
K
(
x− p

m
t,p
)]
, (7.57)

where we have extended the upper limit of the integral to infinity assuming that K(x, y, z,p) = 0

for x < −x0.

Using Eqs. (7.55) and (7.57) in Eqs. (7.48) and (7.49), we obtain

0 =

ˆ
dx′

ˆ
dp′ η′ρ′Ψ′ + χJ

‖
0 . (7.58)

Combining Eqs. (7.52), (7.57), and (7.58), we can now solve for the frequency

ω =
∆

κC⊥
2 + 1

(7.59)

where we have defined

C⊥ =

ˆ ∞
0

dt

ˆ
dx

ˆ
dp η

(
x +

p

m
t
)
ρ sin(K)

J
‖
0

(7.60)

as a timescale.

The result given in Eq. (7.59) can be rewritten to calculate the cavity pulling coefficient

℘ =
ω

∆
=

1
κC⊥

2 + 1
(7.61)

that describes the emission frequency of the atomic beam relative to the detuning between the

cavity resonance and the atomic resonance. While the exact form of C⊥ depends on the actual

model, there is still a very general physical observation that we can make. If the timescale C⊥

is small enough such that κC⊥ � 1, we get a pulling coefficient ℘ . 1. In this case, light will

essentially be emitted with the cavity frequency and not with the atomic frequency for ∆� κ. On

the other hand, if κC⊥ � 1, we have a cavity pulling coefficient ℘ � 1 and therefore the emitted

light is almost resonant with the atomic transition frequency. This has been shown to be the case

for superradiant lasers [12, 92] that work in the regime where κ is much larger than any atomic

linewidth, in particular κ� NΓc. For situations where a stable emission frequency is desired that
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is independent of cavity length noise, we would like ℘ to be as small as possible. For the remainder

of this article we will now focus exactly on this regime and first determine the stability of the atomic

beam configuration.

7.4 Stability in the bad cavity regime

In the limit where κ determines the shortest timescale, we can eliminate α from Eqs. (7.18)–

(7.20) according to Eq. (7.41) and also neglect the the explicit ω dependence of χ, i.e.,

tan(χ) =
∆

κ/2
. (7.62)

We then obtain the following stochastic differential equations for the dipole densities

∂sx

∂t
+

p

m
·∇xs

x =
Γ(x)

2
[cos(χ)Jx − sin(χ)Jy] sz + Sx, (7.63)

∂sy

∂t
+

p

m
·∇xs

y =
Γ(x)

2
[sin(χ)Jx + cos(χ)Jy] sz + Sy, (7.64)

∂sz

∂t
+

p

m
·∇xs

z =− Γ(x)

2
cos(χ) (sxJx + syJy)− Γ(x)

2
sin(χ) (syJx − sxJy) + Sz, (7.65)

where we have used the definition given in Eq. (7.47).

Equations (7.63)–(7.65) also include stochastic noise terms Sx = η(x)N xsz, Sy = η(x)N ysz,

and Sz = −η(x) (N xsx +N ysy), where the noise terms N x and N y can be assumed to be δ-

correlated on the typical evolution timescale of the atomic degrees of freedom. This implies

〈N x(t)N y(t′)〉 = 0 and 〈N x(t)N x(t′)〉 = 〈N y(t)N y(t′)〉 = Γc cos2(χ)δ(t− t′).

These noise terms are important for the dynamics since they introduce small fluctuations

into the dipole components that can destabilize the state. In order to predict this destabilization,

we investigate the stability of the stationary phases that we have introduced in Sec. 7.3.

7.4.1 Stability of the non-superradiant configuration

For the non-superradiant configuration, we study small fluctuations δsx and δsy around the

solution given in Eqs. (7.30)–(7.34). For this kind of analysis we can drop the noise terms. We find
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the linearized equations

∂δsx

∂t
+

p

m
·∇xδs

x =
Γ(x)

2
[cos(χ)δJx − sin(χ)δJy] ρ, (7.66)

∂δsy

∂t
+

p

m
·∇xδs

y =
Γ(x)

2
[sin(χ)δJx + cos(χ)δJy] ρ. (7.67)

Since we neglect terms that are second-order in the fluctuations, these equations become decoupled

from fluctuations δsz around sz = ρ . We have also introduced δJµ =

ˆ
dx

ˆ
dp ηδsµ with

µ = x, y.

Equations (7.66) and (7.67) can be reduced to uncoupled equations for δs = (δsx − iδsy)/2

and its complex conjugate. Without loss of generality, we focus on the solution of δs and derive

∂δs

∂t
+

p

m
·∇xδs =

Γ(x)

2
e−iχδJρ, (7.68)

where δJ = (δJx − iδJy)/2. Applying the Laplace transformation

L[g](ν) =

ˆ ∞
0

dt e−νtg(t) (7.69)

to Eq. (7.68), we obtain

[ν − L0]L[δs] = δs(x,p, 0) +
Γ(x)

2
e−iχρ(p)L[δJ ], (7.70)

where we have defined the operator

L0g(x) = − p

m
·∇xg(x). (7.71)

Multiplying Eq. (7.70) by the inverse of operator [ν − L0] and η(x), and then integrating over space

and momentum, we obtain

L[δJ ] =

ˆ
dx

ˆ
dp η(x) [ν − L0]−1 δsx(x,p, 0)

D(ν)
, (7.72)

where the denominator is given by the dispersion relation

D(ν) =1−
ˆ ∞

0
dt e−νt−iχ

ˆ
dx

ˆ
dp η

(
x +

p

m
t
) Γ(x)

2
ρ. (7.73)



153

The asymptotic time evolution of δJ is determined by the zeros of the dispersion relation

D(ν). In fact the zero, ν0, that has the largest real component is the principal one that controls

the dynamics. As long as we satisfy Re(ν0) < 0, the non-superradiant configuration is stable. The

imaginary part Im(ν0) then determines the frequency of the light emission.

In the case where Re(ν0) > 0, a qualitatively distinct solution is anticipated in which we

expect an exponential build-up of fluctuations that results in superradiant emission, implying the

formation of a macroscopic collective dipole. In the remainder of this section, we will determine

the stability of this stationary superradiant phase.

7.4.2 Stability of the superradiant configuration

We analyze the dynamics of small fluctuations around the configuration that is determined

by Eqs. (7.39), (7.53), and (7.54). To do so it is convenient to move into a frame rotating with

frequency ω, and define

s̃ = eiωts (7.74)

and s̃x = s̃+ s̃∗, s̃y = i(s̃− s̃∗), as well as J̃µ =

ˆ
dx

ˆ
dp η(x)s̃µ for µ ∈ {x, y}, accordingly. This

frame is chosen such that the steady state s̃0 = eiωts0 is time-independent, i.e.,

ds̃0

dt
=

(
iωs0 +

ds0

dt

)
eiωt = 0. (7.75)

We now consider small fluctuations δs̃ = (δs̃x, δs̃y, δs̃z)T around the stationary solutions that we

can parametrize by

s̃x0 =ρ cos(ψ) sin(K), (7.76)

s̃y0 =ρ sin(ψ) sin(K), (7.77)

s̃z0 =ρ cos(K). (7.78)
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In this rotating frame, we also keep the convention introduced in Eqs. (7.48) and (7.49)

J
‖
0 =

ˆ
dx

ˆ
dp ηs̃x0 , (7.79)

0 =

ˆ
dx

ˆ
dp ηs̃y0, (7.80)

meaning that the collective dipole is chosen to be always pointing in the x direction. Using

Eqs. (7.63)–(7.64) in the frame rotating with ω, the dynamics of δs̃ is then governed by

∂δs̃

dt
= Lδs̃ + S0δJ̃, (7.81)

where

L = L01̂3 +L1. (7.82)

Here, we have defined

L1 =


0 ω Γ(x)

2 cos(χ)J
‖
0

−ω 0 Γ(x)
2 sin(χ)J

‖
0

−Γ(x)
2 cos(χ)J

‖
0 −Γ(x)

2 sin(χ)J
‖
0 0

 (7.83)

and

S0 =
Γ(x)

2


cos(χ)s̃z0 − sin(χ)s̃z0

sin(χ)s̃z0 cos(χ)s̃z0

− cos(χ)s̃x0 − sin(χ)s̃y0 sin(χ)s̃x0 − cos(χ)s̃y0

 (7.84)

with δJ̃ = (δJ̃x, δJ̃y)T. The operator L0 has been given in Eq. (7.71), and 1̂3 is the 3× 3 identity

matrix.

The Laplace transformation of Eq. (7.81) leads to

νL[δs̃] = δs̃(x,p, 0) +LL[δs̃] + S0L[δJ̃]. (7.85)

Now, we first solve for L[δs̃]. Than we project on the first two components by multiplying with

the matrix 1̂2,3 ∈ C2×3 with ones on the diagonal and zeros elsewhere. This results in two coupled

equations for L[δs̃x] and L[δs̃y].
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After multiplying with η(x) and integrating over the whole phase space, we arrive at

L[δJ̃] =

ˆ
dx

ˆ
dpη(x)1̂2,3(ν1̂3 −L)−1δs̃(x,p, 0)

+

ˆ
dx

ˆ
dpη(x)1̂2,3(ν1̂3 −L)−1S0L[δJ̃], (7.86)

which can be used to solve for L[δJ̃], resulting in

L[δJ̃] = D(ν)−1

ˆ
dx

ˆ
dpη1̂2,3(ν1̂3 −L)−1δs̃(x,p, 0). (7.87)

where we have defined

D(ν) =12 −
ˆ
dx

ˆ
dpη(x)1̂2,3(ν1̂3 −L)−1S0

=12 −
ˆ ∞

0
e−νt

ˆ
dx

ˆ
dpη(x)1̂2,3e

LtS0. (7.88)

The dynamics of δJ̃ are now determined by the value of ν for which D(ν) is not invertible. We find

then that the time evolution is described by

δJ̃ ∝ eν0t,

where ν0 is the zero of the dispersion relation

DSR(ν) = det [D(ν)] (7.89)

with the largest real component.

This dispersion relation can be used to determine the nature of the instability of the super-

radiant configuration. Specifically, for a particular example that we study later in Sec. 7.6, we will

show that the amplification of fluctuations occurring for Re(ν0) > 0 can lead to a transition to a

multicomponent superradiant emission regime.

After providing all the theory that is required to analyze the beam-cavity system, we will

analyze in the next section a specific model where we apply all the results of Sec. 7.3 and 7.4.



156

7.5 An atomic beam with a single velocity traversing an off-resonant optical

cavity

We will now investigate a system consisting of an atomic beam composed of atoms with an

identical velocity v = (vx, 0, 0)T travelling across one antinode of the cavity mode (see Fig. 7.1).

We assume that the cavity mode can be modeled by

η(x) = Θ(x+ w)−Θ(x− w), (7.90)

which simplifies the cavity profile to a box with length 2w, where w is the waist of the cavity mode.

The transit time τ is thus fixed to be τ = 2w/vx. For t > τ , the corresponding homogeneous

density of atoms is given by

ρ =
N

2w
. (7.91)

7.5.1 Non-superradiant phase

We will first determine the stability of the non-superradiant configuration given by

Eqs. (7.30)–(7.34). Using Eq. (7.90) and Eq. (7.91), we can explicitly calculate the dispersion

relation D(ν) given in Eq. (7.73) that takes the form

D(ν) =1− NΓcτ

2
cos(χ)e−iχ

1

ντ

(
1− 1− e−ντ

ντ

)
. (7.92)

We then numerically find the solution ν0 of D(ν0) = 0 with the largest real component. In Fig. 7.3,

we show the real component Re(ν0) in subplot (a) and the imaginary component Re(ν0) in subplot

(b) as a function of NΓcτ and of ∆/(κ/2), respectively. In Fig. 7.3(a), we observe Re(ν0) < 0 for

sufficiently small NΓcτ or large enough ∆/(κ/2). The solid black line marks the phase transition

threshold below which the non-superradiant configuration is stable, and above which we expect

superradiant emission. Specifically, for ∆/(κ/2) = 0 this threshold is given by NΓcτ = 4, which

means that superradiant emission is only possible if the collective linewidth NΓc is essentially
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Figure 7.3: (a) The real component Re(ν0) and (b) the imaginary component Im(ν0) of the zero
ν0 with the largest real component of D(ν) in Eq. (7.92). They are plotted as a function of the
detuning ∆ in units of κ/2 and the collective linewidth NΓc in units of 1/τ . The black solid line
is determined by Re(ν0) = 0 above which we expect superradiant emission.
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larger than the transit time broadening 1/τ . In Fig. 7.3(b), we plot the imaginary component

Im(ν0) which is the frequency of the atomic emission relative to the atomic resonance frequency

ωa. Therefore it is clear that Im(ν0) = 0 for ∆ = 0, implying that the atomic frequency, the cavity

frequency, and the emission frequency are all equal. When ∆ 6= 0, the emission frequency depends

not only on ∆/(κ/2) but also on NΓcτ .

7.5.2 Superradiant phase

We will now study the superradiant configuration as shown in Fig. 7.3 above the phase

transition threshold. For this we need to solve Eqs. (7.50) and (7.51) given Eqs. (7.90) and (7.91).

Using the substitution

sin(ψ − χ) =
Ψ

sin(K)
(7.93)

we derive the differential equation

−ω sin(K)vx
∂K

∂x
=

Γc cos(χ)J
‖
0

2
ηvx

∂Ψ

∂x
. (7.94)

This equation implies

Ψ = [1− cos(K)]f (7.95)

with

f = − 2ω

Γc cos(χ)J
‖
0

, (7.96)

where we have used the fact that η is unity for −w ≤ x ≤ w by Eq. (7.90). Combining this result

with Eq. (7.93) and then solving Eq. (7.51) we obtain

sin

[
K(x)

2

]
=

sin

[√
1+f2Γc cos(χ)J

‖
0 (x+w)

4vx

]
√

1 + f2
. (7.97)

We have now found the solutions for K and ψ and will use them to determine the frequency

ω and the collective dipole J
‖
0 . Using the results for ψ and K in Eqs. (7.48) and (7.49), after some
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Figure 7.4: Bloch vectors parametrized according to Eqs. (7.76)–(7.78) where we have combined

Eqs. (7.98) and (7.99) to calculate ω and J
‖
0 and then Eqs. (7.93), (7.95), and (7.97) to calculate

K(x) and ψ(x). The black solid lines are the traces of the Bloch vectors for −w ≤ x ≤ w. We
have used NΓcτ = 10 and four different values of ∆/(κ/2) [see titles of subplots (a)–(d)] for the
numerical values used.

algebra we find

ξ =NΓcτ
sin2

(
ξ
2

)
ξ

, (7.98)

−ξ tan(χ) =
NΓcτ

2

f√
1 + f2

[
1− sin(ξ)

ξ

]
, (7.99)

with

ξ =

√
1 + f2Γc cos(χ)J

‖
0 τ

2
. (7.100)

Given a value of ∆/(κ/2) and NΓcτ , we can now numerically determine ξ and f and then calculate

J
‖
0 and ω. These values can then be used to derive K(x) and ψ(x).

In Fig. 7.4 we show the result for four different values of ∆/(κ/2) with a fixed NΓcτ = 10

where we derive K(x) and ψ(x) and then use Eqs. (7.76)–(7.78) to illustrate the dynamics of the

dipoles on the Bloch sphere (see Fig. 7.2 with φ = ψ) for −w ≤ x ≤ w. We have normalized the

Bloch vector to length unity.

Since the atoms enter in the excited state |e〉, the Bloch vector is pointing along the z direction

initially for x = −w. For all cases the collective dipole J
‖
0 , which is here determined by the integral

of all the Bloch vectors along the trajectory for −w ≤ x ≤ w, points in the x direction by choice



160

[see Eqs. (7.49) and (7.79)]. In Fig. 7.4(a) where ∆ = 0, the Bloch vector remains in a plane that

is spanned by the z axis and the collective dipole. This is different for nonvanishing ∆ values [see

Figs. 7.4(b)– 7.4(d)] where the Bloch vectors leave this plane. We observe that the total curve

becomes shorter for increasing ∆ values and the length of the collective dipole also decreases for

these parameters.

In order to study this effect, in Fig. 7.5(a) we show the normalized collective dipole j
‖
0 = J

‖
0/N

for different values of NΓcτ and ∆/(κ/2). We observe the same transition threshold between

the superradiant and non-superradiant phases as shown by the black solid line in Fig. 7.3. This

transition is continuous but not differentiable. Above the threshold, we find a non-vanishing value

for the collective dipole. In Fig. 7.5(b) we show the value of the frequency ω that has been calculated

for the same parameter regime as j
‖
0 in Fig. 7.5(a). We see that ω vanishes for ∆ = 0 which implies

that the atomic frequency ωa, the cavity frequency ωc, and ω are equal. For a given value of NΓcτ

the frequency ω increases linearly with ∆/(κ/2). This shows that the cavity pulling coefficient

℘ = ω/∆ in the superradiant regime is independent of ∆ even for large values of ∆/(κ/2).

We have also derived the stability of the superradiant configuration using the dispersion

relation in Eq. (7.89). We have found zeros ν0 with positive real part for the parameter region

that is shown as a gray area in Fig. 7.5 bounded by a black dashed line. This is the parameter

space where we expect a different dynamical phase because the stationary superradiant and the

non-superradiant solutions are unstable.

We will now compare our analytical finding with numerical simulations.

7.5.3 Numerical study

We numerically integrate Eqs. (7.63)–(7.65) using the mode function in Eq. (7.90) and the

homogeneous density in Eq. (7.91).
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Figure 7.5: The normalized collective dipole j
‖
0 = J

‖
0/N (a) and the frequency ω in units of 1/τ (a)

as a function of ∆/(κ/2) and the collective linewidth NΓc in units of 1/τ . The results are calculated
using Eq. (7.98) and Eq. (7.99). The black dashed line is the boundary of the gray area where the
superradiant configuration transitions to a multicomponent superradiant regime. This has been

determined using the solution of j
‖
0 and ω to find zeros of the dispersion relation in Eq. (7.89).
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7.5.3.1 Superradiant to non-superradiant regime

We first investigate the crossover regime from the superradiant to the non-superradiant phase

for a fixed NΓcτ = 20 and various values of ∆/(κ/2) and N . Figure 7.6(a) shows the cavity output

power in units of N/τ . This quantity can be interpreted as the number of photons that are emitted

per atom during the transit time τ . It is calculated from

κ〈â†â〉
N/τ

=Γc cos2(χ)τ
〈J∗J〉
N

, (7.101)

where we have used Eq. (7.41) and J = (Jx − iJy)/2 is taken from the numerical integration. On

the other hand we can take our analytical results where we expect 〈J∗J〉 = N2j
‖
0/4 to predict the

cavity output power. In Fig. 7.6(a), we show the numerical results of the output power as dotted

lines with different markers which indicate different atom numbers (see inset). The analytical

results calculated from j
‖
0 is shown as the solid black line. We find very good agreement of the

numerical and analytical results for all parameters. In general we observe that at the transition

from the superradiant to the non-superradiant phase (dashed vertical red line), finite size effects

smooth out the non-analyticity, which is expected from the analytical results.

To study the coherence properties we also investigate the second-order Glauber g2 function

defined as

g2(0) =
〈J∗JJ∗J〉
〈J∗J〉2

, (7.102)

which is shown in Fig. 7.6(b). Well inside the superradiant phase we observe g2(0) ≈ 1, which

indicates second-order coherent light. This result is as expected because in this regime and for

large intracavity atom number N , the collective dipole is coherent and therefore noise only plays

a minor role. As a consequence we can use 〈J∗J〉 ≈ (Nj
‖
0/2)2 and 〈J∗JJ∗J〉 ≈ 〈J∗J〉2. The value

of g2(0) increases at the threshold and reaches g2(0) ≈ 2 well inside the non-superradiant regime.

This result indicates thermal light.

In order to have access to the emission frequency of the cavity field we have also calculated
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Figure 7.6: (a) The cavity output power κ〈â†â〉 in units of N/τ [see Eq. (7.101)] and (b) the
value of g2(0) − 1 [see Eq. (7.102)] as functions of ∆/(κ/2) for various values of N [see inset of
subplot (a)]. (c) The spectrum |S(ν)| [see Eq. (7.103)] normalized for every value of ∆/(κ/2) by
the maximum Smax = maxν |S(ν)| as a function of ν in units of 1/τ and of ∆/(κ/2) obtained
by numerically integrating Eqs. (7.63)–(7.65) for N = 4000. For all simulations we have used

NΓcτ = 20. The black solid line in subplot (a) is calculated from the solution j
‖
0 obtained from

Eqs. (7.98) and (7.99). The vertical red dashed lines mark the analytical threshold between the
superradiant and non-superradiant emission regimes. For (c) we have used t0 = 10τ and tcut = 20τ .
The red solid line in (c) in the superradiant regime is the frequency ω calculated using Eqs. (7.98)
and (7.99). The red solid line in (c) in the non-superradiant regime is Im(ν0) where ν0 is the zero of
Eq. (7.73) with the largest real part. All simulations have been performed for a total time T = 200τ
and averaged over 100000/N different initializations.
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the spectrum

S(ν) =

ˆ tcut

0
dt e−iνt〈J∗(t+ t0)J(t0)〉, (7.103)

where t0 � τ is a time after which we expect the system to reach a stationary state and tcut is a

numerical integration time. This spectrum is shown in Fig. 7.6(c) as a function of the frequency

ν in units of 1/τ and for different values of ∆/(κ/2). We have normalized this spectrum for every

value of ∆/(κ/2) such that |S(ν)| ≤ 1. In the superradiant phase we observe a narrow peak of the

spectrum. Specifically, the peak is centered at ω = 0 for ∆ = 0. For increasing values of ∆/(κ/2)

from zero, we find a linear increase of the emission frequency described by this peak. The red solid

line in the superradiant regime indicates the analytical solution of ω that has been presented in

Fig. 7.5(b) and is in very good agreement with the numerical results. The linear behavior of the

emission frequency is determined by the pulling coefficient, ω = ℘∆, where we find ℘κτ ≈ 2.8.

In the non-superradiant regime we observe a much broader spectrum and also a different

behavior of the emission frequency. The red solid line in the non-superradiant regime describes the

solution Im(ν0) shown in Fig. 7.3(b). We find good agreement between this solution and the peak

of the spectrum in the non-superradiant phase.

7.5.3.2 Stationary to multicomponent superradiant regime

We will now investigate the transition from the stationary superradiant phase to a multi-

component superradiant phase (gray region in Fig. 7.5), first along NΓcτ = 50 for different values

of ∆/(κ/2). As we will show below, in this multicomponent superradiant phase we observe poly-

chromatic superradiant emission where the spectrum shows several frequency components. We first

study the output power κτ〈â†â〉/N in Fig. 7.7(a), where different markers indicate different values

of N (see inset). The analytical results derived from j
‖
0 in Eqs. (7.98) and (7.99) are shown as

the black solid line. The vertical dashed red lines indicate the transition from the stationary to

the multicomponent superradiant region (∆ . 1) and from the multicomponent to the stationary

region (∆ . 2.5). Inside the stationary superradiant phase, we find good agreement between the
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Figure 7.7: (a) The cavity output power κ〈â†â〉 in units of N/τ [see Eq. (7.101)] and (b) the value of
g2(0)− 1 [see Eq. (7.102)] as functions of ∆/(κ/2) for various values of N [see inset of subplot (a)].
(c) The spectrum |S(ν)| [see Eq. (7.103)] normalized for every value of ∆/(κ/2) by the maximum
Smax = maxν |S(ν)| as a function of ν in units of 1/τ and of ∆/(κ/2) obtained by numerically
integrating Eqs. (7.63)–(7.65) for N = 4000. For all simulations we have used NΓcτ = 50. The

black solid line in subplot (a) is calculated from the solution j
‖
0 obtained from Eq. (7.98) and

Eq. (7.99). The vertical red dashed lines border the multicomponent regime. For subplot (c) we
have taken the values t0 = 10τ and tcut = 20τ . The red solid line in (c) in the superradiant regime
is the frequency ω calculated using Eq. (7.98) and Eq. (7.99). The red circles in (c) at the phase
thresholds are the values of ω ± Im(ν1), where ν1 is the zero of Eq. (7.89) with the largest real
part. All simulations have been performed for a total time T = 200τ and averaged over 100000/N
different initializations.
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numerical and the analytical results. In the multicomponent regime, however, we observe that

the output power spikes, indicating that every atom emits more photons than expected from the

analytical theory (black solid line).

We also show the g2(0) for the same parameters in Fig. 7.7(b). We find that g2(0) ≈ 1 in

the stationary superradiant regime. The slight increase for ∆/(κ/2) > 5 is due to the fact that we

approach the transition to the non-superradiant regime. This can also be seen because the output

power in that parameter regime approaches zero in Fig. 7.7(a).

In the multicomponent regime that is bordered by the two red vertical dashed lines, the g2(0)

function spikes. The fact that we find values g2(0) > 2 indicates photon bunching in this parameter

regime that cannot be explained by thermal light.

The features of the emitted light are best illustrated in Fig. 7.7(c) where we plot the spectrum

|S(ν)| as a function of ν in units of 1/τ . In the stationary superradiant regime we find a narrow

single peak. The position of this peak agrees very well with the frequency ω that has been calculated

in Fig. 7.5(b). The emission frequency follows the description ω = ℘∆ and we find ℘κτ ≈ 1.6.

For parameters within the region that is bordered by the two vertical red dashed lines,

however, we find several narrow peaks which means that the light emission is polychromatic. The

origin of the sidebands can be explained by the zero ν1 of the dispersion relation Eq. (7.89) with

Re(ν1) > 0, signalizing an unstable superradiant configuration. The imaginary component Im(ν1)

is expected to be the frequency of the sidebands relative to the central frequency ω. We show

ω ± Im(ν1) at the phase thresholds as red circles. They are in good agreement with the emerging

sidebands. We emphasize that our linearized description used to calculate ν1 does not work beyond

the phase thresholds to the multicomponent regime, where we need to include the full dynamical

description of the atomic dipoles.

We have also studied the same transition for a fixed value of ∆/(κ/2) = 1.5 when we vary

NΓcτ > 20. For these parameters, we expect the phase threshold to be around NΓcτ ≈ 40, shown

as the vertical red dashed line in Fig. 7.8. In Fig. 7.8(a) we show the output power for different

values of N using different markers (see inset). The black solid line is the analytical result calculated
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Figure 7.8: The same quantities as shown in Fig. 7.7 but for a fixed value of ∆/(κ/2) = 1.5 and as
a function of NΓcτ . The vertical red dashed line marks the transition from the stationary to the
polychromatic superradiant regime and the red circles in (c) at the phase threshold are the values
of ω ± Im(ν1). The remaining parameters are the same as in Fig. 7.7.
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from j
‖
0 . In the stationary superradiant regime the analytical and the numerical results are in good

agreement. Beyond the threshold we observe an increasing value of the numerically calculated

output power while the analytical result keeps decreasing.

In Fig. 7.8(b) we find that the light field is second order coherent [i.e., g2(0) ≈ 1] inside the

stationary superradiant phase. When we enter the multicomponent regime we observe an increasing

value of g2(0). The maximum value of g2(0) for the given parameters is close to g2(0) ≈ 3.

The spectrum |S(ν)| is visible in Fig. 7.8(c) as a function of ν in units of 1/τ . We find

one narrow peak of the spectrum in the stationary superradiant regime. The corresponding emis-

sion frequency is in good agreement with the analytical value (red solid line) of ω calculated in

Fig. 7.5(b). At the transition we find two emerging sidebands. These sidebands have been compared

with ω ± Im(ν1) (red circles), where ν1 is the zero of Eq. (7.89) with the largest real component.

They are in good agreement with the numerical results. Beyond the transition point we observe an

increasing number of sidebands.

7.5.4 Cavity pulling

At the end of this section we derive the cavity pulling coefficient ℘ that describes the change

of the emission frequency ω when the atomic transition and the cavity mode are not resonant. For

this we use Eq. (7.61) and solve the integral in Eq. (7.60) using the mode function in Eq. (7.90) and

the atomic density in Eq. (7.91). Since the cavity pulling coefficient is the result for small detuning

∆/(κ/2)� 1, we can use Eq. (7.99) and find f ∝ ∆/(κ/2) and neglect the second order in f2 ≈ 0.

Consequently, we find ξ = ΓcJ
‖
0 τ/2 and can use Eq. (7.98) to calculate J

‖
0 . The value of ξ can then

be used to calculate the timescale

C⊥ =
NΓcτ

2

2

1− sin(ξ)
ξ

ξ2
. (7.104)

The value of ℘ is shown in Fig. 7.9(a) as a function of NΓc and κ both in units of 1/τ . The

latter is given in a logarithmic scale to show different orders of magnitude for κτ . For κτ � 1,

the lifetime of photons is much shorter than the transit time of the atoms. In this case we expect
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Figure 7.9: (a) The cavity pulling coefficient ℘ defined in Eq. (7.61) as a function of the cavity
linewidth κ and the collective decay NΓc, both in units 1/τ . For the calculation of ℘ we have
solved Eq. (7.60) using the solution of Eq. (7.98) for f = 0. (b) The cavity pulling coefficient ℘
normalized by 1/(κτ) as a function of NΓc in units 1/τ . For the derivation we have calculated
℘ = ω/∆ that is independent of ∆ in the limit κτ � 1 where the cavity field can be eliminated.
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many photons in the cavity and the resulting pulling coefficient is ℘ . 1, showing that emission

appear almost in resonance with the cavity degrees of freedom. For κτ � 1, photons leave the

cavity earlier than the atoms traverse the cavity. In this regime the atoms store the coherence and

the frequency of the collectively emitted light is almost in resonance with the atomic transition,

℘ ≈ 0.

The results obtained in the regime κτ � 1 can be directly compared with our simulations.

In Figs. 7.6(c) and 7.7(c), we have seen that the frequency ω is linear in ∆ even if ∆/(κ/2) ≈ 1.

This is equivalent to the fact that ℘ is independent on ∆ in the limit κτ � 1. In Fig. 7.9(b), we

show ℘ normalized by 1/(κτ). This pulling coefficient is slightly different from the one that has

been reported in Ref. [92]. The reason for this discrepancy is the absence of Doppler-broadening

and the cosine term in the cavity mode function in the model studied here. In fact the results

in Ref. [92] seem to be displaced by approximately a factor of 1/2 that is due to an average over

cosine-squared, and this results in a weaker effective coupling. In addition, we remark that this

pulling coefficient is only valid in the stationary superradiant regime, and cannot be used for the

multicomponent regime where we observe several peaks in the emission spectrum.

7.6 Conclusion

In this chapter we have introduced a theoretical description for the dynamics of an atomic

beam that traverses a single mode optical cavity. The atoms are described by optical dipoles with

transition frequency that is detuned from the cavity frequency. We have derived the stationary

phases of the atomic beam including the non-superradiant and superradiant configurations. The

latter was used to calculate the cavity pulling coefficient in both the “bad” (large κ) and “good”

(small κ) cavity regimes. After deriving an analytical theory for the stationary phases, we have

determined the stability of the atomic dipole densities. By applying our theory to a specific model

we have predicted three phases of the atomic beam. Our findings are in good agreement with

numerical results where we highlight the phase transitions by examining the output power, the g2

function, and also the emission spectrum. In the end we discuss cavity pulling for this specific
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model.

The model analyzed in Sec. 7.5 represents an idealized model since it does not capture ad-

ditional relevant effects of an actual experiment such as the Doppler broadening, inhomogeneous

coupling, and homogeneous broadening. However, we have shown that even such a minimal model

has non-trivial solutions with monochromatic light emission and even highly dynamical phases with

polychromatic light emission. Therefore we rather see this work as a stepping stone towards under-

standing the physics of more specific setups. Our idealized model highlights that multicomponent

superradiant emission can originate from collective homogeneous frequency shifts. This work ex-

tends previous scenarios that have been studied where the dynamical phase emerges because of

optomechanical effects [66, 67] and inhomogeneous frequency shifts [136, 150, 69]. Although ex-

tensions may be necessary, the general theoretical methodology developed here will provide a good

foundation for understanding any potential experimental systems.

In the future, it would be interesting to understand the interplay and relation to dynamical

phases that have been studied in similar atomic beam setups [70, 69]. Moreover, while our analysis

has been focusing on the light that is produced by the collective emission of the atomic beam, we

have not yet investigated the atomic state in great detail. This might be especially interesting in

the multicomponent superradiant regime because the dynamical character of the light field must

result in a dynamical spin density. We expect that this is interesting for the study of dynamical

phases and dissipative time crystals [49, 62, 156, 75].



Chapter 8

Regular and Bistable Steady-State Superradiant Phases of an Atomic Beam

Traversing an Optical Cavity 1

8.1 Introduction

Coupling quantum particles to bosonic modes enables the building of versatile platforms to

study driven-dissipative dynamics in various physical setups. Prominent examples include trapped

ions [21], color centers in diamonds [5], semiconductor systems [127], and atoms in optical cav-

ities [108]. The bosonic modes typically serve as common and intrinsically lossy channels that

enable strong interactions. In particular atomic ensembles in optical cavities have been used to

investigate many-body effects that are of elementary and fundamental interest, such as exotic

quantum phases [110, 85, 86, 8, 53, 83, 94, 93, 79, 84, 36] and collective dissipative dynamics

[37, 10, 125, 138, 137, 165, 72], but are often accompanied by potential technological applica-

tions [101, 134, 12, 119, 90, 142, 144].

An example of such technology is the steady-state superradiant laser [101, 12]. This laser

works in the regime where the lifetime of cavity photons is orders of magnitude shorter than the

lifetime of the coherent dipoles. In this regime, coherences are stored in the atoms and are robust

against environmental noise [101, 12, 100, 99, 11, 115, 116]. Besides this technological feature, this

setup has also been connected to time crystals [156, 62, 49, 74, 171], synchronization [107, 3, 166,

172, 161], and dynamical phase transitions [7, 114, 66, 108, 67]. The rich dynamics of this system is

based on effective interactions between the atoms and requires that the atoms remain in the cavity

1The bulk of this work has been published in Physical Review A [70]. Copyright 2021 American Physical Society.
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Figure 8.1: (a) Atoms are preexcited and pass through a lossy optical cavity. (b) Two-level atoms
resonantly exchange photons with the cavity mode with a spatially dependent coupling gη(x).
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over long time scales.

In this chapter, we will investigate superradiant phases that establish and persist on timescales

that are much longer than the lifetime of any individual photon or atom in the cavity. In order to

show this, we consider an atomic beam that traverses an optical cavity (see Fig. 8.1a). A similar

system has been studied in [92] for purposes of realistic quantum metrology applications such as

active optical clocks [25] and ultra-narrow linewidth lasing in the field [78, 149]. The superradiant

phases that arise from such systems highlight the ability of many-body states to store coherence

on timescales exceeding the lifetime of their constituents.

The chapter is structured as follows. In Sec. 8.2 we introduce a semiclassical treatment to

describe the dynamics of the atomic beam. In Sec. 8.3 we determine the parameter regime where

the atomic beam will undergo superradiant emission. In Sec. 8.4 we analyze the two occurring

superradiant phases and study in detail the crossover between the two phases. We conclude with

a discussion of the results and their implications in Sec. 8.5. The Appendix provides additional

details of the calculations presented in the main text.

8.2 Model

We study the dynamics of a collimated atomic beam that passes through an optical cavity. In

our model, the atomic beam is composed of atoms that have the same identical velocity v = (vx, vz),

where vx (vz) is the longitudinal (transverse) component perpendicular (parallel) to the cavity axis

(see Fig. 8.1a). Each atom possesses internal degrees of freedom that are described as a two-level

system representing an optical dipole with transition frequency ωa between its excited |e〉 and

ground state |g〉. We assume throughout this chapter that the atoms are preexcited in |e〉 before

they enter the cavity. Once in the cavity, every atom interacts during its transit time τ with a

single cavity mode with linewidth κ and frequency ωc that is on resonance, i.e., ωc = ωa. The

atom-cavity coupling is characterized by a vacuum Rabi frequency g at the maximum of the cavity

mode function η(x) (see Fig. 8.1b).
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8.2.1 Parameter regime and quantum mechanical description

We investigate the regime where the lifetime of cavity photons is much shorter than the atom

transit time, i.e., κ−1 � τ , and the Rabi splitting due to the coherent atom-cavity exchange is

unresolvable, i.e.,
√
Ng � κ, where N is the mean intracavity atom number. In this regime, the

field mode mediates an all-to-all interaction between the atoms, and exposes the dipoles to quantum

noise that physically arises from the vacuum leaking through the cavity output. Consequently, we

can adiabatically eliminate the field variables and describe the dynamics of the atomic degrees of

freedom using the following Heisenberg-Langevin equations

dσ̂−j
dt

=
Γc
2
η(xj)σ̂

z
j Ĵ
− + Ŝ−j , (8.1)

dσ̂zj
dt

=− Γcη(xj)
(
Ĵ+σ̂−j + σ̂+

j Ĵ
−
)

+ Ŝzj , (8.2)

dxj
dt

=vj . (8.3)

These equations are presented in the reference frame rotating with frequency ωa. Here j labels

the individual atoms and σ̂−j = |g〉j〈e|j , σ̂+
j =

(
σ̂−j

)†
are the annihilation and creation operators

of an electronic excitation and σ̂zj = |e〉j〈e|j − |g〉j〈g|j for atom j. The internal degrees together

with the position xj = (xj , zj) describe the instantaneous state of each atom. Furthermore we have

introduced the single-atom emission rate Γc = g2/κ into the cavity mode and collective operators

for the atomic dipoles

Ĵ± =
∑
j

η(xj)σ̂
±
j . (8.4)

The summation runs over all atoms in the beam. The effect of the shot noise that is present in this

system is apparent in the terms given by Ŝ−j = η(x̂j)σ̂
z
j F̂− and Ŝzj = −2η(x̂j)(F̂+σ̂−j + σ̂+

j F̂−). The

term F̂− is effectively delta-correlated on the slow timescale associated with the dynamics of the

atomic degrees of freedom. This property is represented by the set of correlations that can be written

as 〈F̂−(t)F̂−(t′)〉c = 0 = 〈F̂+(t)F̂−(t′)〉c and 〈F̂−(t)F̂+(t′)〉c = Γcδ(t − t′), F̂+ = (F̂−)†. The

expectation value 〈 . . . 〉c is taken over the cavity degrees of freedom and the vacuum electromagnetic

modes external to the cavity. In our treatment we have neglected spontaneous emission and other
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dephasing mechanisms, since we assume that τ is much shorter than any single-atom decoherence

time. Furthermore we assume that the atomic motion is ballistic, which is an approximation that

is valid when optomechanical forces can be ignored. This requires that Fτ/m � v, where we can

estimate the optomechanical force F ≈ ~NΓc∇xη(x) that is acting on an individual atom during

its transit. Here, m is the mass of the atom and ∇x = (∂x, ∂z) is the gradient operator.

8.2.2 Semiclassical description of the atomic degrees of freedom

We are interested in the N � 1 limit where many atoms couple to the cavity mode at the

same time. Because of the exponentially large Hilbert space dimension an exact solution of the

quantum mechanical Heisenberg-Langevin equations is intractable. Therefore we make a semiclassi-

cal approximation where we replace the quantum operators by c-numbers and add fluctuating noise

terms that account for the true quantum noise. This can be done by writing down the Heisenberg-

Langevin equations for the Hermitian dipole components σ̂xj = σ̂−j + σ̂+
j , σ̂yj = i(σ̂−j − σ̂

+
j ), and σ̂zj ,

and replacing them by their corresponding c-number variables sxj , syj , and szj . This results in the

following stochastic differential equations that completely characterize our model 2

dsxj
dt

=
Γc
2
η(xj)s

z
jJx + Sxj , (8.5)

dsyj
dt

=
Γc
2
η(xj)s

z
jJy + Syj , (8.6)

dszj
dt

=− Γc
2
η(xj)

(
Jxs

x
j + Jys

y
j

)
+ Szj , (8.7)

dxj
dt

=vj . (8.8)

The expressions

Ja =
∑
j

η(xj)s
a
j , (8.9)

with a ∈ {x, y} define the x and y components of the collective dipole. In this semiclas-

sical description, the cavity vacuum noise is represented by the terms Saj = η(xj)s
z
jFa and

2We have neglected single-particle terms that scale with Γc under the assumption that Γcτ � 1. Furthermore,

our approach requires that N � 1. In this regime the emission is mostly collective.
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Szj = −η(xj)(s
x
jFx + syjFy), where Fx and Fy have zero mean and are defined by the correlation

matrix elements 〈Fa(t)Fb(t′)〉 = Γcδabδ(t− t′) with a, b ∈ {x, y} and δij the Kronecker delta. In

our approach, these noise terms have been derived using the symmetric ordering of the operators,

where we identify the symmetric ordered moment 〈σ̂ai σ̂bj + σ̂bj σ̂
a
i 〉/2 as the second moment 〈sai sbj〉

of the classical c-number variables. Besides the fluctuations arising from the cavity vacuum noise

(i.e., Fx and Fy), there are additional noise source terms that arise from the effective pumping

that is introduced by atoms sporadically entering and leaving the cavity mode. For atom j that

enters in |e〉 with szj = 1, the uncertainty in sxj and syj needs to be maximal (see Ref. [133]). This is

modeled by randomly and independently initializing sxj = ±1 and syj = ±1. With this we fulfill the

boundary conditions for the preexcited dipoles as they enter the cavity, i.e., 〈σ̂xj σ̂xi 〉 = 〈sxj sxi 〉 = δij ,

〈σ̂yj σ̂
y
i 〉 = 〈syj s

y
i 〉 = δij , and 〈σ̂xj σ̂

y
i + σ̂yi σ̂

x
j 〉/2 = 〈sxj s

y
i 〉 = 0.

While the microscopic description of Eqs. (8.5)–(8.8) is used for the numerical analysis of

the setup, we can also derive a macroscopic description that allows for (semi)analytical results. To

obtain this macroscopic description of the atomic beam we examine the dynamics of the densities

sa(x, t) =
∑

j s
a
j δ(x− xj) with a ∈ {x, y, z}. Using Eqs. (8.5)–(8.8) we obtain Klimontovich-like

stochastic equations [22] for the densities

∂sx
∂t

+ v ·∇xsx =
Γc
2
η(x)Jxsz + Sx , (8.10)

∂sy
∂t

+ v ·∇xsy =
Γc
2
η(x)Jysz + Sy , (8.11)

∂sz
∂t

+ v ·∇xsz =− Γc
2
η(x) (Jxsx + Jysy) + Sz . (8.12)

The left-hand sides of Eqs. (8.10)–(8.12) describe the free flight of the atoms. The first term on the

right-hand side of each equation characterizes the collective decay mediated by the cavity field. In

this density notation the x and y components for the collective dipole defined in Eq. (8.9) can be

expressed as

Ja =

ˆ
dx η(x)sa(x, t), (8.13)

where we have used

ˆ
dx f(x) =

ˆ ∞
−∞

dx

ˆ ∞
−∞

dz f(x, z) and a ∈ {x, y}. The Sa terms in
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Eqs. (8.10)–(8.12) are stochastic variables that are described by Sa(x, t) = η(x)Fasz and Sz(x, t) =

−η(x) (Fxsx + Fysy).

While the derivation so far is quite general, our analytical and numerical analyses focus on a

simplified cavity mode function with a rectangular profile that is given explicitly by the form

η(x) = cos(kcz) [Θ(x+ w)−Θ(x− w)] . (8.14)

Here, Θ(x) is the Heaviside step function, w is a width parameter that effectively corresponds to

the cavity beam waist, and kc = 2π/λ is the wavenumber with λ the optical wavelength. The

transit time is directly related to the cavity beam waist and the velocity vertical to the cavity axis,

i.e., τ = 2w/vx. The prescribed condition that new atoms are introduced in state |e〉 leads to a

boundary condition sz(x = −w, z, t) = N/(2wλ). This is derived assuming that the diameter of the

atomic beam is much larger than the wavelength λ. In this case we can use λ-periodic boundary

conditions in the z direction and restrict the z values to the interval [0, λ). In order to describe the

quantum fluctuations of the introduced dipoles it is necessary to establish the correct magnitudes

of the second moments [133]. This results in initializing the sx and sy components with the aid of

a simulated noise process that is defined by the following properties: sa(x = −w, z, t) = Wa(z, t),

with 〈Wa(z, t)〉 = 0 and 〈Wa(z, t)Wb(z
′, t′)〉 = N/(2wλ)δabδ(z − z′)δ(t− t′)/vx, a, b ∈ {x, y}.

In the following section we will use this density description to study the onset of superradi-

ance.

8.3 Onset of superradiance

We first solve Eqs. (8.10)–(8.12) within the scope of a mean-field approximation. That is,

we assume sa ≈ 〈sa〉, a ∈ {x, y, z}, and calculate the expectation values of the individual dipole

components. For clarity, here the expectation value 〈 . . . 〉 denotes an average over different initial-

izations and noises. By replacing the fluctuating variables sa and Ja by their expectation values,
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we obtain the mean-field description

∂〈sx〉
∂t

+ v ·∇x〈sx〉 =
Γc
2
η(x)〈Jx〉〈sz〉, (8.15)

∂〈sy〉
∂t

+ v ·∇x〈sy〉 =
Γc
2
η(x)〈Jy〉〈sz〉, (8.16)

∂〈sz〉
∂t

+ v ·∇x〈sz〉 =− Γc
2
η(x) [〈Jx〉〈sx〉+ 〈Jy〉〈sy〉] . (8.17)

Without any noise, the system will always remain in a non-superradiant configuration

〈sx〉 = 0 = 〈sy〉, and consequently 〈Jx〉 = 0 = 〈Jy〉. In this case the atoms essentially do not in-

teract with the cavity and there is no emission of photons. Therefore, during the transit the atoms

remain in their electronic excited state, i.e.,

〈sz〉 =
N

2wλ
. (8.18)

However, this mean-field solution is in general not stable with respect to perturbations by the

physical noise sources. Fluctuations of the dipoles and cavity shot noise would initiate a transient

avalanche emission process and lead to collective emission by the dipoles into the cavity mode. In

order to find the threshold for this effect we calculate the stability of the non-superradiant solution

with respect to a small fluctuation δsa = sa − 〈sa〉, a ∈ {x, y}. The equations for δsa read

∂δsa
∂t

+ v ·∇xδsa =
NΓc
4wλ

η(x)δJa. (8.19)

Here, we have defined δJa =
´
dx η(x)δsa and neglected second order terms in the fluctuations.

Define the operator

L0f(x) = −v · ∇xf(x), (8.20)

with a function f(x) = f(x, z). With this definition, we use the Laplace transformation L[f ](ν) =ˆ ∞
0

e−νtf(t)dt on Eq. (8.29) and obtain

[ν − L0]L[δsa]− δsa(x, 0) =
NΓc
4wλ

η(x)L[δJa]. (8.21)

We solve this for L[δsa] where we obtain

L[δsa] = [ν − L0]−1 δsa(x, 0) +
NΓc
4wλ

L[δJa] [ν − L0]−1 η, (8.22)
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where we have relied on the fact that L[δJa] does not depend on x. We can now multiply this

equation by η and integrate over x to obtain

L[δJa] = J1 + J2, (8.23)

with

J1 =

ˆ
dx η(x) [ν − L0]−1 δsa(x, 0), (8.24)

J2 =

ˆ
dx η(x)

NΓc
4wλ

L[δJa] [ν − L0]−1 η. (8.25)

We solve the equation for L[δJa] and the final result reads

L[δJa] =
J1

1− NΓc
4wλ

´
dx η(x) [ν − L0]−1 η(x)

. (8.26)

Using now the relations

[ν − L0]−1 =

ˆ ∞
0

dt e−νteL0t, (8.27)

eL0tf(x) =f(x− vt), (8.28)

and after a substitution x 7→ x + vt we obtain

L[δJa] =

ˆ
dx

ˆ ∞
0

dt e−νtη(x + vt)δsa(x, 0)

1− NΓc
4wλ

ˆ
dx

ˆ ∞
0

dt e−νtη(x + vt)η(x)

, (8.29)

where δsa(x, 0) is the fluctuating initial condition and we have used the notationˆ
dx f(x) =

ˆ w

−w
dx

ˆ λ

0
dzf(x, z) for any function f(x) = f(x, z). The inverse transform back

into the time domain would provide the solution for δJa. However, what we are interested in

here is the stability of this solution, that is, whether δJa is exponentially damped or exponentially

grows. This behavior can be studied directly using the dispersion relation, i.e., the denominator of

Eq. (8.29), whose roots determine the exponents in the time domain. The dispersion relation reads

D(ν) =1− NΓc
4wλ

ˆ
dx

ˆ ∞
0

dt e−νtη(x + vt)η(x). (8.30)
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Figure 8.2: The resulting phase diagram describing the light emission for different values of the
Doppler shift, kcvz, and the collective linewidth, NΓc, both in units of the inverse transit time, 1/τ .
For small values of NΓcτ we find no superradiant emission. For sufficiently large values of NΓcτ ,
regimes of either regular steady-state superradiance (SSR) or bistable SSR are observed depending
on the magnitude of kcvzτ .
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The long-time behavior of δJa ∝ eν0t is determined by the root ν0 of D(ν) with the largest real

part. If ν0 has a negative real part the non-superradiant state is stable and ν0 determines the

decay rate of fluctuations. On the other hand, if ν0 has a positive real part the fluctuations will

exponentially grow and thereby seed a superradiant emission from the ensemble.

The boundary between the regime of no superradiant emission and that of superradiant

emission is visible in Fig. 8.2 as a solid black line. This black line has been calculated by finding

the roots ν0 of Eq. (8.30) with Re(ν0) = 0. As visible in Fig. 8.2, superradiant emission emerges

when the transit time broadening 1/τ is small compared to the collective linewidth NΓc. The

exact threshold between no superradiant emission and superradiant emission depends on how many

wavelengths an atom traverses during its transit. This quantity is shown as the x axis in Fig. 8.2

that represents kcvzτ = 2π× (vzτ)/λ. However, superradiance can be observed for every vz as long

as NΓcτ > 20.

While in this section, we have been primarily concerned with the difference between super-

radiant and no superradiant emission, we also show in Fig. 8.2 two different superradiant phases.

In the next section we will explain how we distinguish between these two superradiant phases

and provide a detailed analysis for parameters that cross the transition boundary that separates

them.

8.4 Superradiant phases

We now focus entirely on the superradiant emission regime. In particular, we are interested

in understanding the effect of vz along the cavity axis that leads to a transverse Doppler shift in

the frequency of emitted photons. For a single atom, the emission of photons into the direction of

motion shifts the frequency to the blue of the atomic resonance frequency ωa, while emission in the

opposite direction shifts the frequency to the red. In the following subsection we will demonstrate

that this simple single-atom picture is inadequate to describe the collective system.
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8.4.1 Regular SSR and bistable SSR

In order to study the regimes of coherent emission, we integrate the stochastic differential

equations (8.5)–(8.8) numerically for various parameters. In general, we observe that for small

velocities vz the atomic beam undergoes superradiant emission that is still resonant with the bare

atomic resonance frequency. This finding highlights the many-body character of the superradiant

atomic beam since one might expect a Doppler-shifted frequency for the single-atom case. In order

to demonstrate this behavior, we show the spectrum (see Fig. 8.3a)

S(ω) ∝
∣∣∣∣ˆ T

0
dt eiωt〈J∗(t+ t0)J(t0)〉

∣∣∣∣ , (8.31)

where t0 � τ is a sufficiently large time after which the system has evolved to a stationary state,

and J(t) = [Jx(t)− iJy(t)]/2. The time T is the integration time after t0 (see caption of Fig. 8.3).

For kcvzτ = 2π×0.3, i.e., when each atom traverses 0.3 wavelengths along the cavity axis during the

transit time, the spectrum shows a narrow Lorentzian peak at ω = 0 corresponding to continuous

superradiant emission with central frequency ωa. We label this phase as SSR, due to the similarities

with regular steady-state superradiance (Fig. 8.2).

While this behavior remains stable at first as vz is increased, once a critical velocity is

reached we observe a threshold beyond which a qualitatively different behavior emerges. As an

example, we show S(ω) for kcvzτ = 2π×0.8 in Fig. 8.3b, corresponding to each atom traversing 0.8

wavelengths along the cavity axis. In this case, the spectrum exhibits two narrow Lorentzian peaks

that are symmetrically shifted from the resonance frequency of the atoms. While the form of the

spectrum suggests simultaneous emission with both frequencies, we find that the atomic beam will

randomly undergo superradiant emission with either the red or the blue detuned frequency. The

random choice is seeded by the first emission with probability of 0.5 for each of the two possibilities.

Subsequently collective spontaneous emission events will amplify the light field with that frequency.

To further demonstrate this behavior, we illustrate in the left (right) inset of Fig. 8.3b the

emission spectrum corresponding to trajectories that emit with red (blue) detuned frequencies.

Since we have a finite number of initializations we may observe a slight imbalance of red-detuned
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Figure 8.3: The spectrum S(ω), defined in Eq. (8.31), as a function of the frequency ω in units of 1/τ
in the SSR phase for kcvzτ = 2π× 0.3 (a) and in the bistable SSR phase kcvzτ = 2π× 0.8 (b). For
the simulation we used NΓcτ = 30, N = 800, and a total integration time of t0 +T = tsim = 2000τ .
The spectra are calculated using 500 independent initializations and after a time t0 = 10τ (after
which the system is well described as being in steady state). The two insets in subplot (b) show
the averaged spectrum of the trajectories that correspond to a negative frequency ωτ ≈ −4.46
(238 trajectories) and positive frequency ωτ ≈ 4.46 (262 trajectories).
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frequencies with respect to blue-detuned frequencies in each trial batch. This imbalance can be seen

as different heights in the spectrum shown in Fig. 8.3b. In the insets we see only one peak supporting

our claim that superradiant emission appears for the shown parameters only on one sideband.

Because of the bistable nature of the superradiant peaks, this is reminiscent of optical bistability

of intensity solutions [1], and consequently we refer to this phase as bistable SSR (Fig. 8.2).

This bistable behavior is best visible in the dynamics of the phase

∆ϕ(t) = arg

(ˆ t1

t0

dt′0
〈J∗(t+ t′0)J(t′0)〉

t1 − t0

)
, (8.32)

where arg( . . . ) denotes the argument and t0 and t1 are the initial and final times of an averaging

window. We show the dynamics of the phase ∆ϕ in Fig. 8.4 with 500 initializations and for the

same parameters as in Fig. 8.3b, NΓcτ = 30 and kcvzτ = 2π × 0.8. Most of the 500 trajectories

remain on straight lines with a constant slope. This slope corresponds to the two frequencies that

are visible in Fig. 8.3b. However, some of the trajectories jump between the two slopes, signifying

clearly the bistable nature of the frequency solutions.

In order to understand further properties of the two superradiant phases and to provide insight

that is evident from an analytic treatment, we now develop a mean-field theoretic description.

8.4.2 Intensity and emission frequency

Both superradiant phases can be classified by a non-vanishing collective dipole with a constant

length. However, in one phase the collective dipole oscillates with a non-vanishing frequency ω

(bistable SSR) while in the other regime the phase of the collective dipole remains almost constant

(regular SSR).

In order to analyze this behavior we solve the mean-field equations

∂〈s〉
∂t

+ v ·∇x〈s〉 =
Γc
2
η(x)〈sz〉〈J〉, (8.33)

∂〈sz〉
∂t

+ v ·∇x〈sz〉 =− Γcη(x) [〈J∗〉〈s〉+ 〈s∗〉〈J〉] , (8.34)

that are presented in the form above for the complex dipole s = (sx − isy)/2 with J =

ˆ
dx s.
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Figure 8.4: The phase difference ∆ϕ(t), defined in Eq. (8.32), as a function of time in units of τ for
N = 800. The time window is defined by t0 = 10τ and t1 = 1700τ , and the total simulation time
is tsim = 2000τ . For the simulations we used 500 trajectories and the parameters kcvzτ = 2π × 0.8
and NΓcτ = 30.
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From Eqs. (8.33)–(8.34) one can verify that(
∂

∂t
+ v ·∇x

)[
〈sz〉2 + 4|〈s〉|2

]
= 0. (8.35)

This equation highlights that in our model the length of the Bloch vector is conserved. This is a

consequence of the form of Eqs. (8.33)–(8.34) that describe collective emission as Rabi oscillations

with a self-consistent Rabi frequency ∝ 〈J〉. As a result we can use spherical coordinates to

describe the dipole densities. Together with the boundary conditions, we therefore parametrize the

pseudospin variables by the following geometrical quantities

〈s〉 =
N

4wλ
e−iφ(x,t) sin [K(x, t)] , (8.36)

〈sz〉 =
N

2wλ
cos [K(x, t)] , (8.37)

with space and time dependent angles φ(x, t) and K(x, t).

While this description is always valid we will now focus on the stationary properties of the

atomic beam that are realized after a sufficiently long time t. In both regular SSR and bistable

SSR, we anticipate a behavior for φ(x, t) according to

φ(x, t) = ωt+ ψ(x), (8.38)

where ω is the frequency of the emitted light and ψ is a position dependent but time independent

phase. Assuming K is not explicitly time dependent, we obtain the following coupled differential

equations for ψ and K

ω + v ·∇xψ =− Γcη(x)|〈J〉| sin(ψ) cot (K) , (8.39)

v ·∇xK =Γcη(x)|〈J〉| cos(ψ). (8.40)

These equations can be solved together with the two equations emerging from the real and imaginary

parts of

ˆ
dx 〈s〉eiωt = |〈J〉|. The solution of all four equations result in a value for the length of the

collective dipole |〈J〉|, the emission frequency ω, and the functions K(x) and ψ(x). We have derived

these equations, without loss of generality, under the assumption that 〈J(t = 0)〉 = 〈Jx(t = 0)〉/2

points in the x direction at t = 0. This is equivalent to the assumption 〈J〉 = |〈J〉|e−iωt.
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The complexity in solving Eqs. (8.39)–(8.40) is tremendously simplified in the case where

ω = 0 (regular SSR phase) because we directly obtain the result ψ = 0. In this case Eq. (8.39) can

be directly solved using ψ = 0 and this results in the partial differential equation

v · ∇xK = Γcη(x)|〈J〉|. (8.41)

The solution of this equation is straight forward and reads

K(x− w, z) =
ΓcJ‖,st sin

(
vz
2vx

kcx
)

cos
(
kc

[
z − vz

2vx
x
])

kcvz
, (8.42)

where we have used

J‖,st =2|〈J〉|

=

ˆ
dx η(x)

N

2wλ
sin(K(x))

=N

1− J0

(
ΓcJ‖,stτ

2

sin( kcvzτ2 )
kcvzτ

2

)
ΓcJ‖,stτ

2

. (8.43)

Solving this implicit equation for J‖,st and using the result in Eq. (8.42) allows us to describe the

dipole density in the regular SSR phase. However, for the general case we have to solve the coupled

partial differential equations.

We show the mean-field results for ω and |〈J〉| across the regular SSR to bistable SSR

transition and compare them with the results of a numerical integration of Eqs. (8.5)–(8.8). The

results are calculated for NΓcτ = 20 visible in Fig. 8.5a–b, close to the non-superradiant regime,

and for NΓcτ = 30 shown in Fig. 8.5c–d, well inside of the superradiant regime. In Fig. 8.5, we

illustrate 〈J∗J〉/N2 and the emission frequency ω as a function of kcvzτ . The mean-field theory

predicts a non-analytical behavior of both 〈J∗J〉/N2 and ω at a threshold value of kcvzτ = π. It

shows a kink-like local minimum for 〈J∗J〉/N2 and a bifurcation of ω at the threshold that is in

agreement with the simulations. In general we find that the non-analyticities are smoothed out by

noise and finite size effects. The rather large discrepancies between the mean-field results and the

simulations in Fig. 8.5a are likely due to these effects that are more pronounced close to a tri-critical
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Figure 8.5: The collective dipole 〈J∗J〉/N2, subplots (a–c), and the frequency of the light ω
in units of 1/τ , subplots (b–d), as functions of kcvzτ . Subplots (a–b), and (c–d) show results for
NΓcτ = 20 and NΓcτ = 30, respectively. The circles and stars correspond to numerical simulations
of Eqs. (8.5)–(8.8), and the solid lines represent analytical solutions for N →∞. The vertical gray
dashed lines show the transition from regular SSR to bistable SSR. The numerical values of ω
from the simulations in subplots (b) and (d) have been calculated by fitting g1(t) (Eq. (8.64)) to
cos(ωt+ φ0)e−Γt/2 and t0 = 10τ . Here, ω, Γ and φ0 are fitting parameters. The simulations are
performed with N = 800, an integration time of tsim = 100τ , and 400 initializations.
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point where regular SSR, bistable SSR, and the non-superradiant emission phases meet (tri-critical

point is at NΓcτ = 2π2 and kcvzτ = π). For the large kcvzτ limit we obtain the asymptotic result

ω ≈ kcvz. The behavior of ω close to the transition is reminiscent of a second order phase transition

that is here observed in a highly dissipative setting where neither individual atoms nor individual

photons remain in the cavity on a timescale longer than τ . We remark that in both superradiant

phases we have broken a U(1) symmetry resulting in a well defined value for the phase of J and

corresponding physically to the generation of near-monochromatic light. In the bistable SSR phase

we also have a broken time-translation symmetry, which is evident in Eq. (8.38) for ω 6= 0.

As we have pointed out in the previous subsection the system can jump between the two

bistable frequencies ±ω. We now analyze the statistical properties of this effect in more detail

using the result of the numerical integration of Eqs. (8.39)–(8.40).

8.4.3 Mode hopping probability

In order to quantitatively analyze the statistical properties of the mode hopping, we calculate

the probability for the occurrence of a jump from the negative to the positive frequency. In order

to do this, we begin by evaluating ∆ϕ(t) according to Eq. (8.32). Then, we divide the time

interval [0, tmax] of every trajectory of ∆ϕ(t) into M equal interval time bins [(m−1)∆t,m∆t] with

m = 1, . . . ,M and ∆t = tmax/M . Within each time bin we calculate an average frequency

ω(m) =
1

∆t

ˆ m∆t

(m−1)∆t
dt′

d∆ϕ(t′)

dt′
. (8.44)

From the average frequencies, we can now accumulate statistics on the number of frequency jumps

that occur by evaluating whether ω(m)ω(m+ 1) < 0 for m = 1, . . . ,M − 1. By counting the total

number of jumps from all trajectories, Njump, and dividing by the maximum number of jumps

possible, Ntotal = (M − 1)× T , where T is the number of trajectories, we get

Pjump =
Njump

Ntotal
(8.45)

for the probability of a mode hop.
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Figure 8.6: The jump probability Pjump, defined in Eq. (8.45), for different values of kcvzτ for
NΓcτ = 20 (a) and NΓcτ = 30 (b). For the simulations we used tsim = 100τ , N = 800, and
T = 400 and started the analysis after t0 = 10τ , after which, to good approximation, the system
had reached the stationary state. The value of ∆ϕ(t) for each trajectory is calculated according to
Eq. (8.32) without the time average for t1 → t0. According to the definitions given in the text prior
to Eq. (8.45), we have used tmax = 90τ that we split into M = 20 bins. The gray dashed vertical
line shows the threshold between the regular SSR and the bistable SSR phases, i.e., kcvzτ = π.
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The jump probability is shown in Fig. 8.6a–b for various values of kcvzτ across the phase

transition from regular SSR to bistable SSR and for NΓcτ = 20 (Fig. 8.6a) and NΓcτ = 30

(Fig. 8.6b), respectively. The simulations are the same as those shown in Fig. 8.5. We see that

Pjump is close to Pjump ≈ 0.5 for both values of NΓcτ well inside the regular SSR phase. This can

be explained by the fact that ∆ϕ diffuses. In this case, after every time bin, the total phase gains

with probability 0.5 a positive or negative increment. Beyond the transition point, kcvzτ = π, we

observe a decrease of this jump probability in both cases. For NΓcτ = 30 (Fig. 8.6b), we observe

that the jump probability drops to a value very close to Pjump ≈ 0. This emphasizes that the switch

between a negative and a positive frequency becomes very improbable. While we also see a decrease

of the jump probability for NΓcτ = 20 (Fig. 8.6a), after the transition point, a jump is still much

more likely than for NΓcτ = 30. Moreover, we observe that the jump probability shows a local

minimum very close to the local maximum of the amplitude of the collective dipole (see Fig. 8.5a).

Therefore we propose that the reason for this effect is the more pronounced contribution of noise

with respect to the mean value of the collective dipole. For the same reason we expect that the

jump probability will decrease in the bistable SSR phase for larger atom number N since the ratio

of noise to the mean value of the collective dipole is further reduced.

While deep in the regular SSR phase we have observed a diffusive behavior of the phase ∆ϕ,

we have also seen a ballistic behavior inside of the bistable SSR phase (see Eq. (8.38) and Fig. 8.5d).

This dynamical phase transition is highlighted in the linewidth of the collectively emitted light as

we show now.

8.4.4 The linewidth

Well inside the regular SSR phase we may assume that the system has a macroscopic collective

dipole with some arbitrary phase ϕ in the x-y plane. In that case we can rotate into a frame

such that J‖ ∼ N and J⊥ ∼
√
N , where ‖ and ⊥ denote the new x and y axes. The direction

corresponding to J‖ is the direction of the collective dipole while the perpendicular direction J⊥

is solely dominated by fluctuations. The dynamics of the dipole component in the perpendicular
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direction can be derived from Eqs. (8.10)–(8.12) as

∂s⊥
∂t

+ v ·∇xs⊥ ≈
Γc
2
η(x)J⊥sz,st + S⊥, (8.46)

where we have dropped second order terms in the fluctuations and noise and are therefore able to

substitute the mean-field solution for sz that reads

sz,st =
N

2wλ
cos(K(x)). (8.47)

Here, K is the solution of Eq. (8.40) for ω = 0 = ψ in the SSR phase. Equation (8.46)

includes cavity noise described by the quantity S⊥(x, t) = η(x)F⊥sz with 〈F⊥(t)〉 = 0 and

〈F⊥(t)F⊥(t′)〉 = Γcδ(t− t′). Besides the cavity noise, it also includes the noisy boundary condition

that arises from the introduction of new atoms s⊥(x = −w, z, t) = W⊥(z, t), with 〈W⊥(z, t)〉 = 0

and 〈W⊥(z, t)W⊥(z′, t′)〉 = N/(2wλ)δ(z − z′)δ(t− t′)/vx.

We can integrate Eq. (8.46) to obtain an analytical result for J⊥, which can be used to

calculate the linewidth. Furthermore we can use this analytical result to calculate the threshold

between the regular SSR and bistable SSR phases.

Using the Laplace transform on Eq. (8.46) we obtain

[ν − L0]L[s⊥]− s⊥(x, 0) =
Γc
2
ηsz,stL[J⊥] + L[S⊥]. (8.48)

Here we have used the fact that sz,st is time independent, and included the definition in Eq. (8.20).

The initial condition s⊥(x, 0) arises from the noisy boundary condition that represents atoms

entering the cavity. It is given by

s⊥(x, 0) = W⊥(z − vzt0(x),−t0(x)), (8.49)

where t0(x) = (w + x)/vx. Solving now Eq. (8.48) for L[s⊥] we find

L[s⊥] = [ν − L0]−1

[
s⊥(x, 0) +

Γc
2
ηsz,stL[J⊥] + L[S⊥]

]
. (8.50)

Multiplying by η(x) and integrating over the space variable x, we find an equation for L[J⊥]. We

solve this equation for L[J⊥] and find the result

L[J⊥] =
L[JW⊥ ] + 21−D⊥(ν)

Γc
L [S⊥]

D⊥(ν)
, (8.51)
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where

JW⊥(t) =

ˆ
dx η (x + vt)W⊥ (z − vzt0(x),−t0(x)) (8.52)

arises from the initial projection noise. In this derivation, we have used Eqs. (8.27)–(8.28) and the

change of variables given by x 7→ x + vt.

The function D⊥(ν) is the dispersion relation of the Goldstone mode of the collective dipole,

which reads

D⊥(ν) =1− NΓc
4wλ

ˆ
dx

ˆ ∞
0

dt e−νtη(x + vt)η cos(K). (8.53)

In the regular SSR phase, we can use Eq. (8.41) to rewrite D⊥(ν) as

D⊥(ν) =1−

ˆ ∞
0

dt e−νt
ˆ
dx η (x + vt) v · ∇xs‖,st

J‖,st
,

where

s‖,st =
N

2wλ
sin [K(x)], (8.54)

and J‖,st =

ˆ
dx η(x)s‖,st has been calculated in Eq. (8.43).

Applying Gauß’s theorem and using the fact that the atoms enter in the excited state and

that the mode function vanishes at infinity, we get

D⊥(ν) =1 +

ˆ ∞
0

dt e−νt
ˆ
dx

d

dt
η (x + vt) s‖,st

J‖,st
.

After another partial integration, we obtain the final form

D⊥(ν) =ν

ˆ ∞
0

e−νt dt

ˆ
dx η (x + vt) s‖,st(x)

J‖,st
. (8.55)

The zeros of Eq. (8.55) can be used to describe the dynamics of J⊥. In what follows we will

assume that ν0 = 0 is the solution with the largest real part. With this we can argue that the pole

at ν = 0 in Eq. (8.51) dictates the long-time behavior of J⊥. To describe this long-time behavior

we can use the approximation

L[J⊥] ≈
L[JW⊥ ] + 2

Γc
L [S⊥]

C0ν
, (8.56)
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where

C0 = lim
ν→0

D⊥(ν)

ν
=

ˆ ∞
0

dt

ˆ
dx η (x + vt) s‖,st(x)

J‖,st
. (8.57)

By inverting the Laplace transform we find now

J⊥ ≈

ˆ t

0
dt′
[
A1(t′) +A2(t′)

]
C0

, (8.58)

with

A1(t′) =

ˆ
dx η

(
x + vt′

)
W⊥ (z − vzt0(x),−t0(x)) , (8.59)

A2(t′) =
2S⊥(t′)

Γc
. (8.60)

Equation (8.58) describes diffusive dynamics perpendicular to the direction of the collective

dipole with length J‖,st that results in phase diffusion. Integrating

dϕ

dt
≈ 1

J‖,st

dJ⊥
dt

, (8.61)

we obtain

∆ϕ(t) = ϕ(t)− ϕ(0) ≈
´ t

0 dt
′ [A1(t′) +A2(t′)]

C0J‖,st
. (8.62)

Arguing that the origin of a finite linewidth in the regular SSR phase is phase diffusion, we can

calculate the linewidth using

Γ = lim
t→∞

〈
∆ϕ(t)2

〉
t

. (8.63)

To show that our description of Eq. (8.63) is valid we have integrated numerically Eqs. (8.5)–

(8.8), calculated the real part of the normalized g1 function

g1(t) =
Re (〈J∗(t+ t0)J(t0)〉)

〈|J(t0)|2〉
, (8.64)

and fitted cos(ωt+ φ0)e−Γt/2 where ω, Γ, and φ0 are fitting parameters. In this fit ω is the emission

frequency reported in Fig. 8.5 and Γ is the linewidth, visible as circles and stars in Fig. 8.7 for
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Figure 8.7: The linewidth Γ in units 1/(Nτ) as functions of kcvzτ for NΓcτ = 20 (a) and NΓcτ = 30
(b). The circles and stars correspond to numerical simulations, and the solid lines represent the
result of Eq. (8.63) for N → ∞. The vertical gray dashed lines show the transition from reg-
ular SSR to bistable SSR. The values of Γ have been calculated by fitting g1 (Eq. (8.64)) with
cos(ωt+ φ0)e−Γt/2 and t0 = 10τ . The simulations are performed with N = 800, 400 trajectories,
and an integration time of tsim = 100τ .
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NΓcτ = 20 (a) and NΓcτ = 30 (b). The solid lines in Fig. 8.7 are the calculated linewidth from

Eq. (8.63). These curves are in good agreement with the simulations well inside of the regular SSR

phase, but predict a diverging linewidth at the critical point.

The origin of this divergence in the analytical result is the break-down of the phase diffusion

argument. The diffusive behavior of the phase is a direct result of Eq. (8.56) where we have assumed

that ν0 = 0 is a zero of first order of D⊥(ν). However, it breaks down if C0 = 0, which indicates

that ν0 = 0 is a zero of D⊥(ν) of higher order than first. This can be used to identify the threshold

between the regular SSR and bistable SSR phases. We can solve the integrals in Eq. (8.57) and

find

C0J‖,st =

ˆ ∞
0

dt

ˆ
dx η (x + vt) s‖,st = cos

(
kcvzτ

2

)
R, (8.65)

with

R = 2N

ˆ 1

0
du

sin
(
kcvzτ [1−u]

2

)
J1

(
ΓcJ‖,st sin( kcvzτu2 )

kcvz

)
kcvz

, (8.66)

where Jn denotes the Bessel function of order n. For this expression we have used the analytical

result of K given by Eq. (8.42). For kcvzτ = π, we obtain cos(π/2) = 0, hence C0 = 0, and

the phase diffusion argument breaks down. Therefore kcvzτ = π is the threshold between regular

SSR and bistable SSR. This phase boundary is shown in Fig. 8.2, 8.5, 8.6, and 8.7 as the vertical

dashed lines. At this critical point, we expect that also the numerical result of the linewidth when

expressed in units of 1/(Nτ) diverges in the large N limit.

In order to support this claim, we plot Γ in units of 1/τ for different values of N in a log-log

plot to illustrate the scaling of Γ with the number of atoms, Γτ ∝ Nα (Fig. 8.8). We show the

scaling well inside the regular SSR phase for kcvzτ = π/2 (green crosses), well inside the bistable

SSR phase for kcvzτ = 3π/2 (red stars), and at the theoretically predicted threshold kcvzτ = π

(blue circles). The values of the exponent α governing the scaling relation Γτ ∝ Nα in the three

regimes are extracted using a linear fit and are reported in the caption of Fig. 8.8. For parameters

well inside of the regular SSR or bistable SSR phases we obtain an exponent α ≈ −1. This implies
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Figure 8.8: The linewidth Γ in units of 1/τ as a function of the intracavity atom number N for
NΓcτ = 30. The blue circles, green crosses, and red stars correspond to different values of kcvzτ
(see legend) at the threshold, in the SSR phase, and in the bistable SSR phase. The blue dashed,
green dashed-dotted, and red dotted lines are linear fits according to Γτ ∝ Nα with α = −0.30,
α = −1.03, and α = −1.06, respectively. For every N we average over 4.8×105/N trajectories with
a simulation time tsim = 100τ . Every point is calculated using the fit as described in the caption
of Fig. 8.7.
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that for given values of kcvzτ and NΓcτ , Γ in units of 1/(Nτ) is a constant ∝ Γc. This claim is

consistent with our theoretical description and also shows that the collective dipole remains stable

on timescales that exceed the transit time τ by orders of magnitude.

At the critical point kcvzτ = π the phase diffusion argument anticipates a diverging linewidth.

Our numerical simulations here show that there exists a critical scaling with an exponent α ≈ −0.3.

Therefore even at the critical point, Γ beats the Fourier limit set by 1/τ . In units of 1/(Nτ)

the linewidth scales as N1+α ≈ N0.7 → ∞, supporting our theoretical prediction of a diverging

linewidth using the phase diffusion model. This divergence is reminiscent of the quantum critical

region [130] that occurs at finite temperature in an equilibrium quantum phase transition where

scaling laws provide the potential for extreme sensitivity to model parameters.

Our analytical theory can also give some insight to the relaxation dynamics at the threshold,

where we find that ν = 0 is a zero of order two of D⊥(ν). Using this we can approximate

L[J⊥] ≈
L[JW⊥ ] + 2

Γc
L [S⊥]

C1ν2
,

where

C1 = lim
ν→0

D⊥(ν)

ν2
. (8.67)

This can be used to establish

J⊥ ≈

ˆ t

0
dt′

ˆ t′

0
dt′′
[
A1(t′′) +A2(t′′)

]
C1

, (8.68)

where we have used Eqs. (8.59)–(8.60). Dividing this equation by J‖,st leads to the following

equation for the phase

∆ϕ(t) ≈

ˆ t

0
dt′

ˆ t′

0
dt′′
[
A1(t′′) +A2(t′′)

]
C1J‖,st

. (8.69)

With this we find that

〈∆ϕ(t)2〉 ∝ t3

N
, (8.70)
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in comparison to t/N inside of the SSR phase. The superdiffusive behavior at the threshold would

result in a relaxation timescale ∼ N1/3. This result is comparable with the timescale ∼ N0.3 that

is given by the inverse of the linewidth at the threshold.

8.5 Discussion and conclusion

A bifurcation in the emission spectrum and a critical scaling of the linewidth has also been

reported for a synchronization transition of two atomic ensembles coupled to a lossy cavity [166,

161]. Although the observed features may appear to be remarkably similar, we want to emphasize

that the dynamical phase transition discussed here is quite different. In our model, the emission in

the regular SSR and bistable SSR phases always appear with a monochromatic but possibly bistable

frequency. On the other hand, the unsynchronized phase in Refs. [166, 161] shows a beating of two

frequencies that results from simultaneous output. Moreover, the synchronization transition in

Refs. [166, 161] appears if the collective linewidth becomes comparable to the frequency splitting of

the two ensembles. Here, however, the transition between regular SSR and bistable SSR occurs if

the atoms travel exactly half a wavelength during τ , i.e. kcvzτ = π, independent of NΓc. Therefore

the transition from regular SSR to bistable SSR results from the dipole accumulating a phase when

it travels through the cavity mode function.

We emphasize that the regular SSR and bistable SSR phases rely on the continuous driving

and dissipation of quantum matter, here realized by a beam of preexcited atoms. We provide the

tools to analyze such systems and believe that this work will be useful as one of the first stepping

stones towards future investigations of collective effects in atomic beams. For the experimental

realization of such systems one requires a continuous and dense beam of atoms with a narrow

transition that couples to a single cavity mode. The transition between the superradiant phases

occurs when NΓcτ > 20 that is achievable by state-of-the-art cavity setups [115, 116, 87, 50, 136]

combined with high phase-space density atomic beams [24].

Future work could investigate the regular SSR and bistable SSR phases in presence of more

than just a single velocity. This includes more sophisticated models where for instance the velocity
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distribution is broadened. Moreover, we expect that the system is very sensitive to perturbations at

the boundary between the regular SSR and bistable SSR phases. Therefore it will be interesting to

investigate the potential of this system, in particular in vicinity of the critical region, for metrological

applications.



Chapter 9

Summary and Outlook

In this thesis we have developed the theory of a CW superradiant atomic beam laser in

the “bad caity” regime. Our model is intended to be a simple and clear treatment that correctly

reproduces the system’s essential features. For various configurations of the model, our framework

allows for an analytically tractable mean-field theory, which has been used to study the stable and

unstable superradiant phase transitions. A c-number based semiclassical Langevin theory has been

used to numerically simulate the time evolution of the system.

To realize a superradiant beam laser, one must choose the beam flux, effusive atom source,

and cavity parameters to ensure Φτ2Γc > 8 and δDτ < π. For very narrow linewidths, it may be

necessary to reduce δD by transverse laser cooling the atomic beam. Furthermore, to realize a given

linewidth, cavity pulling must be kept small enough to prevent excessive broadening from environ-

mental noise. If cavity pulling remains minuscule, the linewidth can be narrowed by decreasing the

cavity finesse and increasing Φ; however, the trade-off is that in the limit of extremely small cavity

finesse, the laser power vanishes as atoms radiate appreciably into other modes.

Potential future research work includes solving for the output linewidth using exact quantum

simulations, investigating optomechanical effects when the collective linewidth is comparable to the

recoil frequency [16, 15, 14, 145, 66, 67], and further understanding the dynamical superradiant

phases as an analogy to the dissipative time crystals [49, 62, 156, 75]. Our theoretical work in this

thesis has provided a comprehensive analysis of the first milestone to realizing a CW superradiant

laser with an atomic beam. This system promises to be employed as a potential candidate for
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future frequency standards with active optical clocks [25].
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collective atomic spin. Physical Review Letters, 104(7):073602, 2010. PRL.

[90] R. J. Lewis-Swan, M. A. Norcia, J. R. K. Cline, J. K. Thompson, and A. M. Rey. Robust spin
squeezing via photon-mediated interactions on an optical clock transition. Physical Review
Letters, 121(7):070403, 2018. PRL.

[91] M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schie-
mangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker,
K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth.
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Appendix A

Fourier Series and Fourier Transform

A.1 Fourier series

Consider a function f :

[
−L

2
,
L

2

]
→ C. We define its Fourier series and find its Fourier

coefficients f̃k by

f(x) =
∑
k

f̃ke
ikx, (A.1a)

f̃k =
1

L

ˆ L
2

−L
2

dx f(x)e−ikx, (A.1b)

for k =
2π

L
n, n ∈ Z.

Theorem A.1.1 (Parseval’s theorem):

1

L

ˆ L
2

−L
2

|f(x)|2 dx =
∑
k

∣∣∣f̃k∣∣∣2. (A.2)

Remark A.1.1: Periodic boundary conditions. Consider a function f1 : R → C with periodic

boundary conditions f1(x + mL) = f(x) for x ∈
[
−L

2
,
L

2

]
and m ∈ Z. Then f and f1 have the

same Fourier series and coefficients.

Remark A.1.2: Hermitian functions. If f(x) is real, then f̃k is Hermitian, i.e., f̃−k = f̃∗k .

Remark A.1.3: Rescaling of f̃k. The Fourier coefficients f̃k defined in Eq. (A.1) can be rescaled by
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introducing h ∈ C such that

f(x) = h
∑
k

f̃ke
ikx, (A.3a)

f̃k =
1

hL

ˆ L
2

−L
2

dx f(x)e−ikx. (A.3b)

Notice that this will change the prefactors in Parseval’s theorem such that

1

L

ˆ L
2

−L
2

|f(x)|2 dx = |h|2
∑
k

∣∣∣f̃k∣∣∣2. (A.4)

We stick to our definitions of Fourier series as in Eq. (A.1) throughout the thesis unless further

specified.

Remark A.1.4: Distributions. Tempered distributions defined on Schwartz space can have Fourier

series. The Dirac delta function is an example.

A.2 Fourier transform

Consider a function f : R→ C. We define its Fourier transform and inverse Fourier transform

as

f(x) =
1√
2π

ˆ ∞
−∞

dk f̃(k)eikx, (A.5a)

f̃(k) =
1√
2π

ˆ ∞
−∞

dx f(x)e−ikx. (A.5b)

Fourier transform is the limit of Fourier series for L → ∞. Here we have chosen the symmetric

prefactors for simplification.

Theorem A.2.1 (Plancherel’s theorem):

ˆ ∞
−∞

dx |f(x)|2 =

ˆ ∞
−∞

dk
∣∣∣f̃(k)

∣∣∣2. (A.6)

Theorem A.2.2 (Convolution theorem): The convolution of f(x) and g(x) is the inverse Fourier

transform of the product of f̃(k) and g̃(k), i.e.,

ˆ ∞
−∞

dx′ f(x′)g(x− x′) =

ˆ ∞
−∞

dk f̃(k)g̃(k)eikx, (A.7)
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or equivalently,

f̃(k)g̃(k) =
1

2π

ˆ ∞
−∞

dx e−ikx
ˆ ∞
−∞

dx′ f(x′)g(x− x′). (A.8)

Theorem A.2.3 (Wiener-Khinchin theorem): The autocorrelation function of f(x) is the inverse

Fourier transform of its corresponding power spectrum
∣∣∣f̃(k)

∣∣∣2, i.e.,

ˆ ∞
−∞

dx′ f∗(x′)f(x+ x′) =

ˆ ∞
−∞

dk
∣∣∣f̃(k)

∣∣∣2eikx, (A.9)

or equivalently,

∣∣∣f̃(k)
∣∣∣2 =

1

2π

ˆ ∞
−∞

dx e−ikx
ˆ ∞
−∞

dx′ f∗(x′)f(x+ x′). (A.10)

Notice the similarity between the convolution theorem and the Wiener-Khinchin theorem.

Remark A.2.1: Hermitian functions. If f(x) is real, then f̃(k) is Hermitian, i.e., f̃(−k) = f̃∗(k).

Remark A.2.2: Rescaling of f̃(k). The Fourier transform f̃(k) defined in Eq. (A.5) can be rescaled

by introducing h ∈ C such that

f(x) =
h√
2π

ˆ ∞
−∞

dk f̃(k)eikx, (A.11a)

f̃(k) =
1

h
√

2π

ˆ ∞
−∞

dx f(x)e−ikx. (A.11b)

Notice that this will change the prefactors for Plancherel’s theorem, the convolution theorem, and

the Wiener-Khinchin theorem. We stick to our definitions of Fourier transform as in Eq. (A.5)

throughout the thesis unless further specified.

A.3 Kronecker and Dirac delta functions

(1) Let x ∈
[
−L

2
,
L

2

]
and k =

2πn

L
, n ∈ Z. Then we have

δkk′ =
1

L

ˆ L
2

−L
2

dx e±i(k−k
′)x, (A.12)

δ(x− x′) =
1

L

∑
k

e±ik(x−x′). (A.13)
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(2) Let x, k ∈ R. Then we have

δ(k − k′) =
1

2π

ˆ ∞
−∞

dx e±i(k−k
′)x, (A.14)

δ(x− x′) =
1

2π

ˆ ∞
−∞

dk e±ik(x−x′). (A.15)

Properties (1) and (2) can be used to prove the theorems introduced in this section.

(3) The Fourier transform of a Heaviside step function Θ(x) is the distribution 1

Θ̃(k) =

ˆ ∞
−∞

dx e−ikxΘ(x) = PV
1

ik
+ πδ(k). (A.16)

Thus we obtain

ˆ ∞
0

dx e−ikx = Θ̃(k) = PV
1

ik
+ πδ(k), (A.17)

which is commonly used in physics.

1This equation is exact. To match our choice of the Fourier transform in Eq. (A.5) with symmetric prefactors,

one needs to multiply
1√
2π

to both sides.



Appendix B

Separation of Center-of-Mass Motion with External Fields

We consider the separation of the center-of-mass motion of an atom with an external field in

non-relativistic quantum mechanics.

B.1 Two-body system

Consider a classical system composed of two charged particles. For convenience, we label

them by {m1, r1,p1} and {m2, r2,p2}, where mj , rj , and pj represent the mass, position, and

momentum of particle j, respectively. Moreover, we let particle 1 carry charge +e, and let particle 2

carry charge −e (one can imagine this system as a classical model of a neutral Hydrogen atom).

For a Hamiltonian that has the form

H =
p2

1

2m1
+

p2
2

2m2
+ V (|r1 − r2|)− e

(
p1

m1
− p2

m2

)
·A, (B.1)

where A is a constant field variable, our task it to separate the center-of-mass motion from H as

an external kinetic energy term.

From classical kinetic theory [102], one can check that with the following definitions

M1 = m1 +m2

R1 =
m1r1 +m2r2

M1

P1 = p1 + p2

,



µ1 =
m1m2

M1

RRR1 = r1 − r2

PPP1 =
m2p1 −m1p2

M1

, (B.2)
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where {µ1,RRR1,PPP1} refers to the first “relative” particle, the properties below hold

p2
1

2m1
+

p2
2

2m2
=

P2
1

2M1
+

PPP2
1

2µ1
, (B.3)

V (|r1 − r2|) = V (|RRR1|). (B.4)

Here µ1 is called the reduced mass, and RRR1 and PPP1 are the position and momentum vectors of the

relative particle. Moreover, we also observe

PPP1

µ1
=

p1

m1
− p2

m2
. (B.5)

Therefore, the two-body Hamiltonian can be rewritten as

H =
P2

1

2M1
+

[
PPP2

1

2µ1
+ V (|RRR1|)

]
− eP

PP1

µ1
·A, (B.6)

where we have separated the Hamiltonian into three parts—the external center-of-mass motion,

the internal energy of an particle of mass µ1 moving in potential V , and the atom-field interaction.

If we now canonically quantize the theory above with the commutation relations

[
(r̂j)α, (p̂k)β

]
= i~δjkδαβ, (B.7)

for j, k ∈ {1, 2} and α, β ∈ {x, y, z}, we can check that the new dynamical variables defined in

Eq. (B.2) satisfy [(
R̂1

)
α
,
(
P̂1

)
β

]
=

[(
R̂1

)
α
,
(
P̂1

)
β

]
= i~δαβ, (B.8)

for α, β ∈ {x, y, z}. Notice that no approximation needs to be made for the separation of variables

for the two-body system considered above.

B.2 Three-body system

We now consider a classical system composed of three charged particles. We let particle 1

carry charge +2e, and particles 2 and 3 carry charge −e (one can imagine this system as a classical

model of a neutral Helium atom).
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The Hamiltonian is now

H =

3∑
j=1

p2
j

2mj
+

3∑
l>j

3∑
j=1

V (|rj − rl|)− e

2
p1

m1
−

3∑
j=2

pj
mj

 ·A, (B.9)

We first apply the exactly same approach used for the two-body system in last section on particles

{m1, r1,p1} and {m2, r2,p2}. This replaces them by particles {M1,R1,P1} and {µ1,RRR1,PPP1}. We

then apply the two-body approach once more on particles {M1,R1,P1} and {m3, r3,p3}. The new

particles are labeled as {M2,R2,P2} and {µ2,RRR2,PPP2}. By definition we have

M2 = M1 +m3 =
3∑

k=1

mk

R2 =
M1R1 +m3r3

M2
=

3∑
j=1

mjrj

M2

P2 = P1 + p3 =

3∑
j=1

pj

,



µ2 =
M1m3

M1 +m3
=

(m1 +m2)m3

m1 +m2 +m3

RRR2 = R1 − r3 =
m1(r1 − r3) +m2(r2 − r3)

m1 +m2

PPP2 =
m3P1 −M1p3

M1 +m3
=
m3(p1 + p2)− (m1 +m2)p3

m1 +m2 +m3

.

(B.10)

One can easily check that the properties

3∑
j=1

p2
j

2mj
=

P2
2

2M2
+

2∑
k=1

PPP2
k

2µk
, (B.11)

3∑
l>j

3∑
j=1

V (|rj − rl|) =

2∑
k=1

V (|RRRk|) (B.12)

hold. Eq. (B.12) just means that since from Eq. (B.10) the positions RRRk can be written as a linear

combination of the relative positions rj− rk and vice versa (not linearly independent since the sum

of relative positions is 0), we can rewrite the potential energy in terms of RRRk.

For the atom-field interaction term, we have

PPP2

µ2
=

P1

M1
− p3

m3
=

p1 + p2

m1 +m2
− p3

m3
. (B.13)

Thus

PPP1

µ1
+

PPP2

µ2
=

p1

m1
− p2

m2
+

p1 + p2

m1 +m2
− p3

m3
. (B.14)
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Recall that we have assigned +2e charge to particle 1. In an atom this means that we actually

regard particle 1 as the nucleus, which has a mass m1 that is far larger than the mass of any other

particles, or more specifically, the electrons. With this in mind, we expand Eq. (B.14) on the small

parameter ξ = m2/m1 and get

PPP1

µ1
+

PPP2

µ2
=

p1

m1
− p2

m2
+

p1 + p2

m1(1 + ξ)
− p3

m3

≈ p1

m1
− p2

m2
+

p1 + p2

m1
(1− ξ)− p3

m3

≈ p1

m1
(2− ξ)− p2

m2
(1− ξ)− p3

m3

≈ 2
p1

m1
− p2

m2
− p3

m3
. (B.15)

Therefore for the three-body system, with the condition ξ � 1 we have

H =
P2

2

2M2
+

[
2∑

k=1

PPP2
k

2µk
+

2∑
k=1

V (|RRRk|)

]
− e

2∑
k=1

PPPk

µk
·A. (B.16)

After canonical quantization, the following commutation relations hold[(
R̂2

)
α
,
(
P̂2

)
β

]
= i~δαβ,

[(
R̂j

)
α
,
(
P̂k

)
β

]
= i~δjkδαβ, (B.17)

for j, k ∈ {1, 2} and α, β ∈ {x, y, z}.

B.3 (N + 1)-body system

We now generalize the discussion on three-body systems to an (N + 1)-body system. This

corresponds to an atom of atomic number N . We let particle 1 carry charge +Ne being the nucleus,

and the other N particles carry charge −e being the electrons.

The Hamiltonian is

H =
N+1∑
j=1

p2
j

2mj
+ V − e

N p1

m1
−
N+1∑
j=2

pj
mj

 ·A, (B.18)

where V refers to the potential that depends on the relative positions of the particles. Our task is

to separate the total energy of the (N + 1) particles into an external part that is the center-of-mass
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kinetic energy, and an internal part that describes the kinetic and potential energy of the N relative

particles. To do this, we define the following sequences of variables

{(Mk,Rk,Pk)}, {(µk,RRRk,PPPk)}, (B.19)

with k ∈ {1, 2, · · · , N}. Here, (Mk,Rk,Pk) represents the center of mass of the first (k+1) particles,

and (µk,RRRk,PPPk) represents the kth relative particle. Specifically, we define (M,R,P) to be the

center of mass of the atom. Immediately we have MN = M , RN = R, and PN = P.

We find the expressions of the sequential variables as follows:

(1) Choose the initial conditions as

M0 = m1, R0 = r1, P0 = p1. (B.20)

(2) For k ∈ {1, · · · , N}, we have

Mk = Mk−1 +mk+1 =

k+1∑
j=1

mj

Rk =
Mk−1Rk−1 +mk+1rk+1

Mk
=

k+1∑
j=1

mjrj

k+1∑
j=1

mj

Pk = Pk−1 + pk+1 =
k+1∑
j=1

pj

,



µk =
Mk−1mk+1

Mk

RRRk = Rk−1 − rk+1

PPPk =
mk+1Pk−1 −Mk−1pk+1

Mk

.

(B.21)

One can check that the following properties hold

N+1∑
j=1

p2
j

2mj
=

P2

2M
+

N∑
k=1

PPP2
k

2µk
, (B.22)

V =

N∑
k=1

V (|RRRj |). (B.23)

For the atom-field interaction term, we first discuss the small parameter ξ as introduced in

the last section. Let ξj = mj/m1 for j = 2, 3, · · · , N+1. Since all the particles except for particle 1
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are electrons, we actually have ξj = ξ = me/mp ≈ 1/2000 for j ≥ 2. In the following discussion

we start by using ξj to label different particles and then use ξj = ξ to simplify the expression.

Specifically, we claim that in the limit Nξ � 1,

N∑
k=1

PPPk

µk
≈ N p1

m1
−
N+1∑
j=2

pj
mj

. (B.24)

The proof is as follows. From Eq. (B.21),

N∑
k=1

PPPk

µk
=

N∑
k=1

(
Pk−1

Mk−1
− pk+1

mk+1

)

=
N∑
k=1


k∑
j=1

pj

k∑
j=1

mj

− pk+1

mk+1



≈
N∑
k=1


k∑
j=1

pj

m1
(1−

k∑
j=2

ξj)−
pk+1

mk+1


≈ p1

m1

N+1∑
j=2

[1− (N + 1− j)ξj ]−
N+1∑
j=2

pj
mj

[1− (N + 1− j)ξj ] (B.25)

If we now substitute ξj = ξ for j ≥ 2, we obtain

N∑
k=1

PPPk

µk
= N

p1

m1

[
1− N − 1

2
ξ

]
−
N+1∑
j=2

pj
mj

[1− (N + 1− j)ξ]. (B.26)

Thus for Nξ � 1, we have

N∑
k=1

PPPk

µk
= N

p1

m1
−
N+1∑
j=2

pj
mj

. (B.27)

The condition Nξ � 1 is always true if Ne is the charge of the atomic nucleus. Therefore to good

approximation, the Hamiltonian can be rewritten as

H =
P2

2M
+

N∑
k=1

PPP2
k

2µk
+

N∑
k=1

V (|RRRk|)− e
N∑
k=1

PPPk

µk
·A. (B.28)

After canonical quantization, the following commutation relations hold[
R̂α, P̂β

]
= i~δαβ,

[(
R̂j

)
α
,
(
P̂k

)
β

]
= i~δjkδαβ, (B.29)

for j, k ∈ {1, 2, · · · , N} and α, β ∈ {x, y, z}.
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Appendix C

Pauli Matrix Relations

We define

σ+ =

0 1

0 0

 , σ− =

0 0

1 0

 , σz =

1 0

0 −1

 . (C.1)

Then the following matrix relations can be used for convenience;
σ+σ− + σ−σ+ = 1

σ+σ− − σ−σ+ = σz

, (C.2)


σz = 2σ+σ− − 1

σz = 1− 2σ−σ+

,


σ+σ− = (σ+σ−)n =

1

2
(1 + σz)

σ−σ+ = (σ−σ+)n =
1

2
(1− σz)

, n ∈ Z+, (C.3)


σzσ+ = σ+

σ+σz = −σ+

,


σzσ− = −σ−

σ−σz = σ−

, (C.4)


σ−σ+σ− = σ−

σ+σ−σ+ = σ+

,


σ+σzσ− = −σ+σ−

σ−σzσ+ = σ−σ+

, (C.5)


σzσ+σ− = σ+σ−

σzσ−σ+ = −σ−σ+

,


σ+σ−σz = σ+σ−

σ−σ+σz = −σ−σ+

. (C.6)



Appendix D

Rotating Frames and Interaction Pictures

D.1 Closed systems

We develop a general theory on rotating frames and interaction pictures for closed quantum

systems.

D.1.1 Rotating frames

Given a certain closed quantum system, suppose there exist Hermitian operators Ĥ1 and Ĥ2
1

such that the time evolution of the system density matrix ρ̂ and any other operator Ô can be

expressed by the following equations 2

dρ̂

dt
=

1

i~

[
Ĥ1, ρ̂

]
, (D.1a)

dÔ
dt

= − 1

i~

[
Ĥ2, Ô

]
. (D.1b)

Then we can define a rotating frame with any unitary operator Û such that

ρ̂R = Û †ρ̂Û , (D.2a)

ÔR = Û †ÔÛ , (D.2b)

are the density matrix and operator in the new frame, respectively.

1Operators Ĥ1 and Ĥ2 can be time-dependent.
2Here, as we will see later, the two equations are none other than the von Neumann equation and Heisenberg

equation in an arbitrary rotating frame. For simplicity, we do not consider the cases where Ô is explicitly dependent

on time.
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The dynamics of ρ̂R and ÔR can be calculated as

dρ̂R

dt
=
dÛ †

dt
ρ̂Û + Û †

dρ̂

dt
Û + Û †ρ̂

dÛ

dt

=
1

i~

[
Û †Ĥ1Û , ρ̂

R
]

+
dÛ †

dt
Û ρ̂R − ρ̂RdÛ

†

dt
Û

=
1

i~

[
Û †Ĥ1Û + i~

dÛ †

dt
Û , ρ̂R

]
, (D.3)

and

dÔR

dt
=
dÛ †

dt
ÔÛ + Û †

dÔ
dt
Û + Û †ÔdÛ

dt

= − 1

i~

[
Û †Ĥ2Û , ÔR

]
+
dÛ †

dt
ÛÔR − ÔRdÛ

†

dt
Û

= − 1

i~

[
Û †Ĥ2Û − i~

dÛ †

dt
Û , ÔR

]
, (D.4)

where we have used
d
(
Û †Û

)
dt

=
dÛ †

dt
Û + Û †

dÛ

dt
= 0. (D.5)

Define

ĤR
1 = Û †Ĥ1Û + i~

dÛ †

dt
Û , (D.6a)

ĤR
2 = Û †Ĥ2Û − i~

dÛ †

dt
Û . (D.6b)

Then we recover Eqs. (D.1a)–(D.1b) in the rotating frame, i.e.,

dρ̂R

dt
=

1

i~

[
ĤR

1 , ρ̂
R
]
, (D.7a)

dÔR

dt
= − 1

i~

[
ĤR

2 , ÔR
]
. (D.7b)

Also notice that

ĤR
1 + ĤR

2 = Û †
(
Ĥ1 + Ĥ2

)
Û . (D.8)



228

D.1.2 Interaction pictures

In this section, we apply the formalism developed in Sec.D.1.1 to different scenarios.

Scenario D.1.1: From the Schrödinger picture (SP) to the Heisenberg picture (HP).

Suppose we are in the SP with a Hamiltonian ĤS(t). Then Eqs. (D.1a)–(D.1b) are true

if Ĥ1 = ĤS(t), Ĥ2 = 0, yielding

dρ̂S

dt
=

1

i~

[
ĤS(t), ρ̂S

]
, (D.9a)

dÔS

dt
= 0, (D.9b)

Equation (D.9a) is the von Neumann equation, while Eq. (D.9b) means that operators are stationary

in the SP.

Let

Û = Û(t, t0) = T exp

[
− i
~

ˆ t

t0

ĤS(t′)dt′
]
, (D.10)

where t0 is some initial time, and T is the time-ordering operator. Then by Eqs. (D.6a)–(D.6b),

ĤR
1 (t) = Û †(t, t0)ĤS(t)Û(t, t0) + i~

dÛ †

dt
Û = 0, (D.11a)

ĤR
2 (t) = −i~dÛ

†

dt
Û = Û †(t, t0)ĤS(t)Û(t, t0). (D.11b)

Therefore, in this rotating frame,

dρ̂R

dt
= 0, (D.12a)

dÔR

dt
= − 1

i~

[
ĤR

2 (t), ÔR
]
, (D.12b)

and we call the physical picture defined by this rotating frame the Heisenberg picture (HP). Equa-

tion (D.12b) is the Heisenberg equation assuming ÔS is not explicitly dependent on time.

Scenario D.1.2: From SP to an interaction picture (IP).

Suppose in the SP the Hamiltonian can be written as

ĤS(t) = ĤS
0 + V̂ S(t), (D.13)
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where ĤS
0 is time-independent and usually describes some known dynamics, and V̂ S is the interac-

tion Hamiltonian that can be time-dependent. Let

Û = exp

[
− i
~
ĤS

0 t

]
(D.14)

and thus

i~
dÛ †

dt
Û = −Û †ĤS

0 Û . (D.15)

Then by Eqs. (D.6a)–(D.6b),

ĤR
1 = Û †ĤSÛ − Û †ĤS

0 Û = Û †V̂ SÛ , (D.16a)

ĤR
2 = Û †ĤS

0 Û . (D.16b)

Therefore, from Eq. (D.7a), the dynamics of the density matrix ρ̂R is driven by the interaction

Hamiltonian ĤR
1 , i.e.,

dρ̂R

dt
=

1

i~

[
ĤR

1 , ρ̂
R
]

=
1

i~

[
Û †V̂ SÛ , ρ̂R

]
, (D.17)

while the dynamics of the operators is uninteresting. We call this physical picture the interaction

picture (IP) defined from SP.

Scenario D.1.3: From HP to IP.

In quantum optics, especially for open quantum systems, it is sometimes more convenient to

directly study the dynamics of the operators instead of density matrices. Therefore, it is useful

to define a rotating frame where the operators evolve with the interesting part of the Hamiltonian

(the interaction). We can do this by defining a rotating frame from the HP.

Suppose that we are now in the HP defined in Scenario D.1.1. This is equivalent to saying

that Ĥ1 = 0, Ĥ2 = ĤH(t) in Eqs. (D.1a)–(D.1b), where ĤH(t) = ĤR
2 (t) found in Eq. (D.11b).

Suppose the Hamiltonian in HP can be written as

ĤH(t) = ĤH
0 (t) + V̂ H(t), (D.18)

where V̂ H(t) is the interaction. Notice here ĤH
0 (t) is a function of time. Let

Û = exp

[
i

~
ĤH

0 (t)t

]
. (D.19)
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Then by Sneddon’s formula [146, 121]

i~
dÛ †

dt
Û = i~

ˆ 1

0
du e−u

i
~ Ĥ

H
0 t

[
− d

dt

(
i

~
ĤH

0 t

)]
e(u−1) i~ Ĥ

H
0 t e

i
~ Ĥ

H
0 t

=

ˆ 1

0
du e−u

i
~ Ĥ

H
0 t

[
t
dĤH

0

dt
+ ĤH

0

]
eu

i
~ Ĥ

H
0 t

= t

ˆ 1

0
du e−u

i
~ Ĥ

H
0 t
dĤH

0

dt
eu

i
~ Ĥ

H
0 t + ĤH

0

= Û †ĤH
0 (t)Û + Ĉ(t), (D.20)

where

Ĉ(t) = t

ˆ 1

0
du e−u

i
~ Ĥ

H
0 t
dĤH

0

dt
eu

i
~ Ĥ

H
0 t. (D.21)

Then by Eqs. (D.6a)–(D.6b),

ĤR
1 = Û †ĤH

0 Û + Ĉ(t), (D.22a)

ĤR
2 = Û †ĤHÛ − Û †ĤH

0 Û − Ĉ(t) = Û †V̂ HÛ − Ĉ(t). (D.22b)

Therefore, from Eq. (D.7b), the dynamics of the operators is driven by the interaction Hamilto-

nian ĤR
2 , i.e.,

dÔR

dt
= − 1

i~

[
ĤR

2 , ÔR
]

= − 1

i~

[
Û †V̂ HÛ , ÔR

]
− 1

i~

[
Ĉ, ÔR

]
, (D.23)

while the dynamics of the density matrix is uninteresting. We call this physical picture the inter-

action picture (IP) defined from the HP.

Here we give some special cases for Ĉ(t):

(1) If
dĤH

0

dt
= 0, then Ĉ(t) = 0.

(2) If

[
ĤH

0 ,
dĤH

0

dt

]
= 0, then Ĉ(t) = t

dĤH
0

dt
.

(3) If

[
ĤH

0 ,
dĤH

0

dt

]
= ~Ω

dĤH
0

dt
, then Ĉ(t) =

i

Ω

(
e−iΩt − 1

)dĤH
0

dt
.
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As an example, consider the following Hamiltonian in the HP

Ĥ(t) = ~ωâ†(t)â(t) + ~g
[
â†(t) + â(t)

]
, (D.24)

where â and â† are the bosonic annihilation and creation operators that satisfy
[
â, â†

]
= 1. Let

Ĥ0(t) = ~ωâ†(t)â(t) and V̂ (t) = ~g
[
â†(t) + â(t)

]
. Then in the HP we have

d

dt
â(t) = − 1

i~

[
Ĥ(t), â(t)

]
= −iωâ(t)− ig, (D.25a)

d

dt
â†(t) = − 1

i~

[
Ĥ(t), â†(t)

]
= iωâ†(t) + ig. (D.25b)

Thus

d

dt
Ĥ0(t) = ~ω

d

dt

[
â†(t)â(t)

]
= i~ωg

[
â(t)− â†(t)

]
. (D.26)

Then

Ĉ(t) = t

ˆ 1

0
du i~ωg e−iuωâ

†ât
[
â− â†

]
eiuωâ

†ât

= t

ˆ 1

0
du i~ωg

[
eiuωtâ− e−iuωtâ†

]
= ~g

(
1− eiωt

)
â(t) + ~g

(
1− e−iωt

)
â†(t). (D.27)

If we now switch into the IP, then we have

âI(t) = Û † ˆa(t)Û = eiωtâ(t), (D.28)

Û †V̂ H(t)Û = ~g
[(
âI
)†

(t) + âI(t)
]
, (D.29)

Ĉ(t) = ~g
(
e−iωt − 1

)
âI(t) + ~g

(
eiωt − 1

)(
âI
)†

(t). (D.30)

By Eq. (D.23) we have

d

dt
âI = − 1

i~
~g
[(
âI
)†
, âI
]
− 1

i~
~g
(
eiωt − 1

)[(
âI
)†
, âI
]

= −ig − ig
(
eiωt − 1

)
= −igeiωt. (D.31)
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On the other hand, we can directly get from Eqs. (D.25a) and (D.28) that

d

dt
âI = iω eiωtâ+ eiωt

d

dt
â

= iω eiωtâ+ eiωt(−iωâ− ig)

= −igeiωt. (D.32)

Therefore our descriptions are consistent.

In the literature, people sometimes refer to Eq. (D.28) as the definition of a rotating frame or

an interaction picture when working in the HP. Such transformations, when correctly chosen, will

simplify the dynamics of operators as in the case from Eq. (D.25a) to Eq. (D.32). However, such

definitions can also be confusing since normally we only talk about an IP when starting from the

SP. Here, we see that the IP defined from a HP is much more complicated than that from the SP

when Ĉ 6= 0, which originates from the fact that Ĥ0(t) is a function of time in the HP, although

the construction of rotating frames in Appx. D.1.1 is straightforward and clear. In general, we can

define a rotating frame or IP constructed from any picture by choosing the correct unitary. The

point is to simplify our calculations by absorbing the global rotating phase into the new variables.

D.2 Open systems

We apply our results on the rotating frames and interaction pictures to open quantum sys-

tems.

D.2.1 Master equation

In the derivation of quantum master equation in Sec. 3.1, we have moved into the IP from

the SP. However, that rotating frame, or IP, is a construction for the closed system combined of the

open system we study and the environment. Here, we consider directly moving into the IP from

the SP give a master equation without worrying about the environment.

Suppose we are in the SP defined for the “bigger” system that consists of our open system

and the environment. After defining the system density matrix ρ̂ as the total density matrix with
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the environment traced out and making all the approximations in Sec. 3.1, we have the master

equation (3.24), which we copy here as

d

dt
ρ̂ =

1

i~

[
Ĥ, ρ̂

]
+
∑
k

ΓkL
[
Ŝk

]
ρ̂, (D.33)

where we have dropped the S notation since all operators are system operators. Suppose the

Hamiltonian Ĥ can be separated as

Ĥ = Ĥ0 + V̂ , (D.34)

where Ĥ0 is time-independent, and V̂ usually describes some coherent coupling that can be time-

dependent. Let

Û = exp

[
− i
~
Ĥ0t

]
(D.35)

and define

ρ̂I = Û †ρ̂Û , (D.36a)

ÔI = Û †ÔÛ , (D.36b)

for any system operator Ô. Following similar calculations as Eq. (D.3), we obtain

dρ̂I

dt
=
dÛ †

dt
ρ̂Û + Û †

dρ̂

dt
Û + Û †ρ̂

dÛ

dt

=
1

i~

[
Û †ĤÛ + i~

dÛ †

dt
Û , ρ̂I

]
+
∑
k

ΓkL
[
ŜI
k

]
ρ̂I

=
1

i~

[
Û †ĤÛ − Û †Ĥ0Û , ρ̂

I
]

+
∑
k

ΓkL
[
ŜI
k

]
ρ̂I

=
1

i~

[
V̂ I, ρ̂I

]
+
∑
k

ΓkL
[
ŜI
k

]
ρ̂I, (D.37)

where V̂ I = Û †V̂ Û . Compared to Eq. (D.17), we see that the frame or picture change is straight-

forward for a master equation. One just needs to include the Lindbladian superoperator term with

operators in the new picture aside from the transformation for closed systems.

As an example, consider the system given in Eq. (3.77)

Ĥ =
~ωa

2
σ̂z + ~ωcâ†â+

~g
2

(
σ̂+â+ â†σ̂−

)
, (D.38)
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with a master equation for cavity decay

d

dt
ρ̂ =

1

i~

[
Ĥ, ρ̂

]
+ κL[â]ρ̂. (D.39)

We can define the IP in three ways:

(1) Ĥ0 =
~ωa

2
σ̂z + ~ωcâ†â. Then we have âI = Û †âÛ = e−iωctâ and (σ̂−)

I
= Û †σ̂−Û =

e−iωatσ̂−. The master equation is

d

dt
ρ̂I =

1

i~

[
V̂ I, ρ̂I

]
+ κL

[
âI
]
ρ̂I, (D.40)

where

V̂ I =
~g
2

[(
σ̂+
)I
âI +

(
â†
)I(

σ̂−
)I]

=
~g
2

(
σ̂+â e−i∆t + â†σ̂− ei∆t

)
(D.41)

with ∆ = ωc − ωa. Thus we see that with this choice of Ĥ0, the detuning ∆ is hidden in

the relative phase between atomic pseudospins and the fields.

(2) Ĥ0 =
~ωa

2
σ̂z + ~ωaâ†â. In this case, operators â and σ̂− are eigenoperators of Ĥ0 with

the same frequency −ωa. Then we have âI = e−iωatâ and (σ̂−)
I

= e−iωatσ̂−. The master

equation is

d

dt
ρ̂I =

1

i~

[
V̂ I, ρ̂I

]
+ κL

[
âI
]
ρ̂I, (D.42)

where

V̂ I = ~∆
(
â†
)I

(â)I +
~g
2

[(
σ̂+
)I
âI +

(
â†
)I(

σ̂−
)I]

= ~∆â†â+
~g
2

(
σ̂+â+ â†σ̂−

)
. (D.43)

Thus with this choice of Ĥ0, the detuning ∆ is explicitly shown in the Hamiltonian. People

sometimes refer to the rotating frame with this choice of Ĥ0 as the frame of the atomic

frequency ωa.

(3) Ĥ0 =
~ωc
2
σ̂z + ~ωcâ†â. The results are similar to the previous example. People refer to

this frame as the rotating frame of the cavity frequency ωc.
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D.2.2 Heisenberg-Langevin equation

Following the similar reasoning as the previous section, one can show that for a Heisenberg-

Langevin equation that has the form

d

dt
Ô = − 1

i~

[
Ĥ, Ô

]
+
∑
k

ΓkL̄
[
Ŝk

]
Ô +

∑
k

√
Γk

([
Ŝ†k, Ô

]
ξ̂k + ξ̂†k

[
Ô, Ŝk

])
, (D.44)

with 
Ĥ(t) = Ĥ0(t) + V̂ (t)

Û(t) = exp

[
i

~
Ĥ0(t)t

] ,


ÔI = Û †ÔÛ

ξ̂I = Û †ξ̂Û

, (D.45)

we have

d

dt
ÔI = − 1

i~

[
V̂ I, ÔI

]
+
∑
k

ΓkL̄
[
ŜI
k

]
ÔI +

∑
k

√
Γk

{[(
Ŝ†k

)I
, ÔI

]
ξ̂I
k +

(
ξ̂†k

)I[
ÔI, ŜI

k

]}
− Ĉ(t)

(D.46)

where

V̂ I = Û †V̂ Û , (D.47)

Ĉ(t) = t

ˆ 1

0
du e−u

i
~ Ĥ0tdĤ0

dt
eu

i
~ Ĥ0t. (D.48)

The formalism above is not always useful, especially when Ĉ is non-zero. In reality, if the

change of frame is straightforward, mostly in the form of Eq. (D.28), then we can define the rotating

frame directly without worrying about the Ĉ operator.

Consider the same system (D.38) as in the last section in the HP. The Heisenberg-Langevin

equations for â, σ̂−, and σ̂z are

d

dt
â = −iωcâ−

κ

2
â− ig

2
σ̂− −

√
κξ̂, (D.49)

d

dt
σ̂− = −iωaσ̂− +

ig

2
σ̂zâ, (D.50)

d

dt
σ̂z = ig

(
â†σ̂− − σ̂+â

)
. (D.51)
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We now define a rotating frame in the atomic frequency ωa by letting

âI = eiωatâ, (D.52)(
σ̂−
)I

= eiωatσ̂−, (D.53)

ξ̂I = eiωatξ̂, (D.54)

Then the Heisenberg-Langevin equations become

d

dt
âI = −i∆âI − κ

2
âI − ig

2

(
σ̂−
)I −√κξ̂I, (D.55)

d

dt

(
σ̂−
)I

=
ig

2
σ̂zâI, (D.56)

d

dt
σ̂z = ig

[(
â†
)I(

σ̂−
)I − (σ̂+

)I
âI

]
. (D.57)

Notice that the definitions of âI and (σ̂−)
I

are the same if we choose Ĥ0 =
~ωa

2
σ̂z + ~ωaâ†â in

Eq. (D.45). Therefore Eqs. (D.55)–(D.57) should be consistent with the result we get from our

formalism but much easier. Likewise one can define a rotating frame in the cavity frequency ωc.

Again the point of changing into a rotating frame is to get rid of the fast rotating global phase

eiωat or eiωct and simplify the equations as much as possible.



Appendix E

Derivation of Lindblad Master Equation

The Redfield master equation (3.13) given in Sec. 3.1 has the form

d

dt
ρ̂I

S(t) = − 1

~2

ˆ ∞
0

dsTrE

[
V̂ I(t),

[
V̂ I(t− s), ρ̂I

S(t)⊗ ρ̂E

]]
. (E.1)

Expanding Eq. (E.1) yields

d

dt
ρ̂I

S(t) = − 1

~2

ˆ ∞
0

ds

{
TrE

[
V̂ I(t)V̂ I(t− s)ρ̂I

S(t)ρ̂E

]
−TrE

[
V̂ I(t− s)ρ̂I

S(t)ρ̂EV̂
I(t)

]
+TrE

[
ρ̂I

S(t)ρ̂EV̂
I(t− s)V̂ I(t)

]
−TrE

[
V̂ I(t)ρ̂I

S(t)ρ̂EV̂
I(t− s)

]}
. (E.2)

From Eq. (3.18), we have the form of interaction Hamiltonian V̂ I(t) as

V̂ I(t) = ~
∑
k

Ωk e
−iωktŜk ⊗ ÊI,†

k (t) + Ω∗k e
iωktŜ†k ⊗ Ê

I
k(t). (E.3)

We now substitute Eq. (E.3) into Eq. (E.2) and calculate the four terms in Eq. (E.2) one by one.
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We obtain

1st term = − 1

~2

ˆ ∞
0

dsTrE

[
V̂ I(t)V̂ I(t− s)ρ̂I

S(t)ρ̂E

]
= −

∑
k, l

TrE

ˆ ∞
0

ds
[
Ωk e

−iωktŜkÊ
I,†
k (t) + Ω∗k e

iωktŜ†kÊ
I
k(t)

]
×
[
Ωl e

−iωl(t−s)ŜlÊ
I,†
l (t− s) + Ω∗l e

iωl(t−s)Ŝ†l Ê
I
l (t− s)

]
ρ̂I

S(t)ρ̂E

≈ −
∑
k, l

ΩkΩ
∗
l e

i(ωl−ωk)tŜkŜ
†
l ρ̂

I
S(t)

ˆ ∞
0

ds e−iωlsTrE

[
ÊI,†
k (t)ÊI

l (t− s)ρ̂E

]
−
∑
k, l

Ω∗kΩl e
i(ωk−ωl)tŜ†kŜlρ̂

I
S(t)

ˆ ∞
0

ds eiωlsTrE

[
ÊI
k(t)Ê

I,†
l (t− s)ρ̂E

]
, (E.4)

where we have ignored ÊÊ and Ê†Ê† correlation terms. These correlation terms are usually

assumed to be zero if we consider a heat bath at thermal state. 1

At this point, we assume the heat bath is stationary, which means that the correlation of

environment operators is only a function of s, and not a function of t anymore, i.e.,

TrE

[
ÊI,†
k (t)ÊI

l (t− s)ρ̂E

]
= TrE

[
ÊI,†
k (s)ÊI

l (0)ρ̂E

]
=
〈
ÊI,†
k (s)Êl

〉
, (E.5)

etc., where we have used Êl ≡ Êl(0) = ÊI
l (0) to represent operators at t = 0. Therefore we can

ignore rapid oscillations when ωk 6= ωl and only keep the stationary solutions with k = l. Thus the

first term becomes

1st term = −
∑
k

ŜkŜ
†
kρ̂

I
S(t)|Ωk|2

ˆ ∞
0

ds e−iωks
〈
ÊI,†
k (s)Êk

〉
−
∑
k

Ŝ†kŜkρ̂
I
S(t)|Ωk|2

ˆ ∞
0

ds eiωks
〈
ÊI
k(s)Ê

†
k

〉
. (E.6)

If we define

|Ωk|2
ˆ ∞

0
ds e−iωks

〈
ÊI,†
k (s)Êk

〉
=

1

2
Gk + iεk, (E.7a)

|Ωk|2
ˆ ∞

0
ds eiωks

〈
ÊI
k(s)Ê

†
k

〉
=

1

2
Γk + iδk, (E.7b)

1They are nonzero if the bath is squeezed. See Ref. [42].
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where the real parts are

Gk = |Ωk|2
ˆ ∞
−∞

ds e−iωks
〈
ÊI,†
k (s)Êk

〉
, (E.8a)

Γk = |Ωk|2
ˆ ∞
−∞

ds e−iωks
〈
ÊI
k(s)Ê

†
k

〉
, (E.8b)

then we have the final form of the first term as

1st term = −
∑
k

[(
1

2
Gk + iεk

)
ŜkŜ

†
kρ̂

I
S +

(
1

2
Γk + iδk

)
Ŝ†kŜkρ̂

I
S

]
. (E.9)

From Eqs. (E.8a)–(E.8b) it is obvious that the real parts Gk and Γk are the power spectra of

the coupling corresponding to the normal ordering and anti-normal ordering of the environment

operators, respectively. The physical meanings of the imaginary parts εk and δk are more subtle.

Below we give an example to help understand them.

Equations. (E.7a)–(E.7b) do not assume any specific form of the heat bath. Suppose we now

consider a heat bath with Hamiltonian ĤE composed of harmonic oscillators of multiple frequen-

cies, such as the one considered in Eq. (3.34). Moreover, assume that the operators Êk are all

eigenoperators of ĤE such that
[
ĤE, Êk

]
= −ω′kÊk and

[
ĤE, Ê

†
k

]
= ω′kÊ

†
k.

2 Then in the IP, we

have ÊI
k(s) = e−iω

′
ktÊk. Immediately, we obtain from Eqs. (E.7a)–(E.7b)

1

2
Gk + iεk = |Ωk|2

ˆ ∞
0

ds e−iωks
〈
ÊI,†
k (s)Êk

〉
= |Ωk|2

〈
Ê†kÊk

〉 ˆ ∞
0

ds e−i(ωk−ω
′
k)s,

= |Ωk|2N̄k

[
πδ(ωk − ω′k)− iPV

1

ωk − ω′k

]
(E.10a)

1

2
Γk + iδk = |Ωk|2

ˆ ∞
0

ds eiωks
〈
ÊI
k(s)Ê

†
k

〉
= |Ωk|2

〈
ÊkÊ

†
k

〉 ˆ ∞
0

ds e−i(ω
′
k−ωk)s

= |Ωk|2
(
N̄k + 1

)[
πδ(ωk − ω′k) + iPV

1

ωk − ω′k

]
, (E.10b)

2If operators Êk are not eigenoperators of ĤE, all we need to do is decomposing Êk into its complete eigenbasis

and then rearranging the summation over k in Eq. (3.18) to include the extra summation.
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and therefore
Gk = |Ωk|2N̄k2πδ(ωk − ω′k)

εk = −PV
|Ωk|2N̄k

ωk − ω′k

,


Γk = |Ωk|2

(
N̄k + 1

)
2πδ(ωk − ω′k)

δk = PV
|Ωk|2

(
N̄k + 1

)
ωk − ω′k

. (E.11)

Here we have used N̄k =
〈
Ê†kÊk

〉
which is the occupation number of the heat bath with eigenfre-

quency ω′k. The symbol PV represents the Cauchy principal value. 3 In vacuum, we would expect

N̄k → 0, resulting in Gk → 0 and εk → 0. However, due to the bosonic commutation relation, we

see that Γk 6= 0, leading to the dissipation due to vacuum fluctuation, and δk 6= 0, leading to the

vacuum Lamb shift. When N̄k 6= 0, the extra terms proportional to N̄k give the Stark shift. Due

to taking the principal values, both εk and δk terms are small and usually ignored.

Equation (E.9) gives the general form of the first term in Eq. (E.2). Likewise, we obtain

2nd term =
1

~2

ˆ ∞
0

dsTrE

[
V̂ I(t− s)ρ̂I

S(t)ρ̂EV̂
I(t)

]
=
∑
k, l

TrE

ˆ ∞
0

ds
[
Ωl e

−iωl(t−s)ŜlÊ
I,†
l (t− s) + Ω∗l e

iωl(t−s)Ŝ†l Ê
I
l (t− s)

]
ρ̂I

S(t)ρ̂E

×
[
Ωk e

−iωktŜkÊ
I,†
k (t) + Ω∗k e

iωktŜ†kÊ
I
k(t)

]
≈
∑
k

Ŝkρ̂
I
SŜ
†
k|Ωk|2

ˆ ∞
0

ds eiωks
〈
ÊI
k(s)Ê

I,†
k

〉
+
∑
k

Ŝ†kρ̂
I
SŜk|Ωk|2

ˆ ∞
0

ds e−iωks
〈
ÊI,†
k (s)ÊI

k

〉
=
∑
k

[(
1

2
Γk + iδk

)
Ŝkρ̂

I
SŜ
†
k +

(
1

2
Gk + iεk

)
Ŝ†kρ̂

I
SŜk

]
. (E.12)

3rd term = − 1

~2

ˆ ∞
0

dsTrE

[
ρ̂I

S(t)ρ̂EV̂
I(t− s)V̂ I(t)

]
= −

∑
k, l

TrE

ˆ ∞
0

ds ρ̂I
S(t)ρ̂E

[
Ωl e

−iωl(t−s)ŜlÊ
I,†
l (t− s) + Ω∗l e

iωl(t−s)Ŝ†l Ê
I
l (t− s)

]
×
[
Ωk e

−iωktŜkÊ
I,†
k (t) + Ω∗k e

iωktŜ†kÊ
I
k(t)

]
≈ −

∑
k

ρ̂I
SŜkŜ

†
k|Ωk|2

ˆ ∞
0

ds eiωks
〈
Ê†kÊ

I
k(s)

〉
−
∑
k

ρ̂I
SŜ
†
kŜk|Ωk|2

ˆ ∞
0

ds e−iωks
〈
ÊkÊ

I,†
k (s)

〉
= −

∑
k

[(
1

2
Gk − iεk

)
ρ̂I

SŜkŜ
†
k +

(
1

2
Γk − iδk

)
ρ̂I

SŜ
†
kŜk

]
. (E.13)

3See Appx. A.3.
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4th term =
1

~2

ˆ ∞
0

dsTrE

[
V̂ I(t)ρ̂I

Sρ̂EV̂
I(t− s)

]
=
∑
k, l

TrE

ˆ ∞
0

ds
[
Ωk e

−iωktŜkÊ
I,†
k (t) + Ω∗k e

iωktŜ†kÊ
I
k(t)

]
ρ̂I

Sρ̂E

×
[
Ωl e

−iωl(t−s)ŜlÊ
I,†
l (t− s) + Ω∗l e

iωl(t−s)Ŝ†l Ê
I
l (t− s)

]
≈
∑
k

Ŝkρ̂
I
SŜ
†
k|Ωk|2

ˆ ∞
0

ds e−iωks
〈
ÊkÊ

I,†
k (s)

〉
+
∑
k

Ŝ†kρ̂
I
SŜk|Ωk|2

ˆ ∞
0

ds eiωks
〈
Ê†kÊ

I
k(s)

〉
=
∑
k

[(
1

2
Γk − iδk

)
Ŝkρ̂

I
SŜ
†
k +

(
1

2
Gk − iεk

)
Ŝ†kρ̂

I
SŜk

]
. (E.14)

Therefore Eq. (E.2) becomes

d

dt
ρ̂I

S =−
∑
k

[(
1

2
Gk + iεk

)
ŜkŜ

†
kρ̂

I
S +

(
1

2
Γk + iδk

)
Ŝ†kŜkρ̂

I
S

]
+
∑
k

[(
1

2
Γk + iδk

)
Ŝkρ̂

I
SŜ
†
k +

(
1

2
Gk + iεk

)
Ŝ†kρ̂

I
SŜk

]
−
∑
k

[(
1

2
Gk − iεk

)
ρ̂I

SŜkŜ
†
k +

(
1

2
Γk − iδk

)
ρ̂I

SŜ
†
kŜk

]
+
∑
k

[(
1

2
Γk − iδk

)
Ŝkρ̂

I
SŜ
†
k +

(
1

2
Gk − iεk

)
Ŝ†kρ̂

I
SŜk

]
=

∑
k

Gk
2

(
2Ŝ†kρ̂

I
SŜk − ŜkŜ

†
kρ̂

I
S − ρ̂I

SŜkŜ
†
k

)
+
∑
k

Γk
2

(
2Ŝkρ̂

I
SŜ
†
k − Ŝ

†
kŜkρ̂

I
S − ρ̂I

SŜ
†
kŜk

)
− i
∑
k

[
εkŜkŜ

†
k + δkŜ

†
kŜk, ρ̂

I
S

]
=

∑
k

ΓkL
[
Ŝk

]
ρ̂I

S +
∑
k

GkL
[
Ŝ†k

]
ρ̂I

S − i
∑
k

[
εkŜkŜ

†
k + δkŜ

†
kŜk, ρ̂

I
S

]
, (E.15)

where we have defined the Lindbladian superoperator

L
[
Ô
]
ρ̂ =

1

2

(
2Ôρ̂Ô† − Ô†Ôρ̂− ρ̂Ô†Ô

)
(E.16)

for arbitrary operator Ô and density matrix ρ̂. The εk and δk terms give the Stark and Lamb shifts

due to the interaction with the heat bath.



Appendix F

Einstein Relation

Consider the Heisenberg-Langevin equations of two operators Ôµ and Ôν as defined in

Eq. (3.55),

d

dt
Ôµ = − 1

i~

[
Ĥ, Ôµ

]
+ D̂µ(t) + F̂µ(t), (F.1)

d

dt
Ôν = − 1

i~

[
Ĥ, Ôν

]
+ D̂ν(t) + F̂ν(t). (F.2)

where we have assumed only one noise source. The diffusion matrix defined in Eq. (3.61) satisfies

2Mµνδ(t− t′) =
〈
F̂µ(t)F̂ν(t′)

〉
. (F.3)

By writing Ôµ(t) as

Ôµ(t) = Ôµ(t−∆t) +

ˆ t

t−∆t
dt′

dÔµ(t′)

dt′
, (F.4)

we obtain

〈
Ôµ(t)F̂ν(t)

〉
=
〈
Ôµ(t−∆t)F̂ν(t)

〉
+

ˆ t

t−∆t
dt′

〈
dÔµ(t′)

dt′
F̂ν(t)

〉

=

ˆ t

t−∆t
dt′
〈
F̂µ(t)F̂ν(t′)

〉
=

ˆ t

t−∆t
dt′ 2Mµνδ(t

′ − t)

=
1

2

ˆ ∞
−∞

dt′ 2Mµνδ(t
′ − t)

= Mµν(t), (F.5)
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which is a result of causality and the Markov approximation. Similarly,

〈
F̂µ(t)Ôν(t)

〉
= Mµν(t), (F.6)

Using Eqs. (F.5) and (F.6), from Eqs. (F.1) and (F.1) we obtain〈
d

dt

(
ÔµÔν

)〉
=

〈
dÔµ
dt
Ôν

〉
+

〈
Ôµ

dÔν
dt

〉

= − 1

i~

〈[
Ĥ, Ôµ

]
Ôν
〉

+
〈
D̂µÔν

〉
+
〈
F̂µÔν

〉
− 1

i~

〈
Ôµ
[
Ĥ, Ôν

]〉
+
〈
ÔµD̂ν

〉
+
〈
ÔµF̂ν

〉
= − 1

i~

〈[
Ĥ, ÔµÔν

]〉
+
〈
D̂µÔν

〉
+
〈
ÔµD̂ν

〉
+ 2Mµν . (F.7)

As a result, we have derived the Einstein relation

2Mµν(t) =

〈
d

dt

(
ÔµÔν

)〉
+

1

i~

〈[
Ĥ, ÔµÔν

]〉
−
〈
D̂µÔν

〉
−
〈
ÔµD̂ν

〉
. (F.8)

The Einstein relation (F.8) relates the diffusion matrix to the corresponding drift terms, thus

comprising a quantum fluctuation-dissipation theorem [103].
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