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Spin qudit tomography and state reconstruction error
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We consider the task of performing quantum state tomography on a d-level spin qudit, using only measure-
ments of spin projection onto different quantization axes. After introducing a basis of operators closely related to
the spherical harmonics, which obey the rotational symmetries of spin qudits, we map our quantum tomography
task onto the classical problem of signal recovery on the sphere. We then provide algorithms with O(rd3) serial
runtime, parallelizable down to O(rd2) for: (i) computing a priori upper bounds on the expected error with which
spin projection measurements along r given axes can reconstruct an unknown qudit state, and (ii) estimating a
posteriori the statistical error in a reconstructed state. Our algorithms motivate a simple randomized tomography
protocol for which we find that using more measurement axes can yield substantial benefits that plateau after
r ≈ 3d .
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I. INTRODUCTION

Quantum state tomography, the task of reconstructing a
quantum state by collecting and processing measurement
data, is an essential primitive for quantum sensing, quantum
simulation, and quantum information processing. The cen-
tral importance of quantum state tomography has led to the
development of techniques based on least-squares inversion
[1], linear regression [2], maximum likelihood estimation
[3,4], Bayesian inference [5–7], compressed sensing [8,9],
and neural networks [10], among others. These techniques are
typically developed in a general, information-theoretic setting
and make minimal assumptions about the physical medium
of a quantum state. As a consequence, even well-established
techniques can be ill suited for physical platforms with unique
or limited capabilities.

Due to advancements in experimental capabilities to ad-
dress nuclear spin states (i.e., hyperfine levels) in ultracold
atomic systems [11–16] as well as developments in the control
of ultracold molecular systems [17–27], a particular setting of
growing interest is the spin qudit, or a multilevel quantum an-
gular momentum degree of freedom. Spin qudits can provide
advantages over their qubit counterparts for quantum sensing
[28,29], enable quantum simulations of SU(d) magnetism
[16,30–34], and offer unique capabilities for quantum com-
putation and error correction [35–37]. In all cases, quantum
state tomography is necessary to take full advantage of a spin
qudit.1

The problem of qudit tomography is not new with an exten-
sive literature on a variety of techniques [29,38–48]. However,
most existing protocols either rely on infinite-dimensional
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1Note that the measurement of collective observables for quantum

sensing or simulation can be recast as a single-spin tomography task.

representations of a quantum spin [29,41,49] or require the
capability to perform essentially arbitrary operations on a
qudit [42–48], generally resulting in tomographic protocols
that can be highly inefficient or unachievable in practice.
The protocols based on infinite-dimensional representations
of a quantum spin have the advantage of reconstructing its
state from measurements of spin projection onto different
spatial axes, which are generally accessible with any spin
qudit. Nonetheless, these protocols obfuscate the minimal re-
quirements for performing full state tomography, provide no
straightforward error bounds or guarantees of accuracy, and
(with the notable exception of Ref. [41]) generally extract only
a small fraction of the information contained in measurement
data.

In this paper, we consider the task of performing spin qubit
tomography using only measurements of spin projection onto
different spatial axes. This sort of task was first considered in
Ref. [38] as well as a few later works [39–41]. Specifically,
Ref. [38] provided an explicit protocol for reconstructing a
d-level spin qudit state from measurements of spin projection
along 2d − 1 axes, the minimum number necessary for full
tomography of an arbitrary (possibly mixed) qudit state. How-
ever, the protocol in Ref. [38] involves a choice of a single
(arbitrary) angle θ and provides no means for comparing
different choices of θ , which may result in wildly different
statistical errors (i.e., precision) in a reconstructed state. Other
works provide insightful discussions into the problem of spin
qudit tomography, but either: (i) require making assumptions
about the qudit state in question [41] (making the tomo-
graphic protocol only valid for a restricted set of possible
states), (ii) do not address the question of statistical error
[39], or (iii) provide a measure of statistical error that is
needlessly conservative and computationally demanding [40].
We address these shortcomings in this paper and identify
remaining avenues for refining spin qudit tomography proto-
cols.
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In Sec. II, we introduce a set of qudit operators that are
closely related to the spherical harmonics and which play a
central role in our paper. We then map the quantum problem of
spin qudit tomography onto the classical problem of signal re-
covery on the sphere in Sec. III, thereby providing an intuitive
perspective on spin qudit tomography. In Sec. IV we provide a
priori upper bounds and a posteriori estimates of the statistical
error in a qudit state reconstructed from measurements of
spin projection along a given set of r measurement axes. The
capability to determine upper bounds on reconstruction error
a priori motivates a simple randomized tomography protocol
that we outline in Sec. V, and for which we numerically find
that using more measurement axes yields substantial benefits
that plateau after r ≈ 3d . To facilitate the use of our protocols,
we make all of our codes publicly available in Ref. [50], which
also contains the best measurement axes we found for d � 30
and r = 3d .

II. POLARIZATION OPERATORS

We begin by introducing a set of qudit operators that are
closely related to the spherical harmonics (in a sense that
will be clarified below) and which play a central role in our
paper. Consider a d-state spin qudit with total spin s ≡ d−1

2 .
The defining property of a spin qudit, distinguishing it from
other qudits, is that it describes an angular momentum degree
of freedom, which has specific implications for how a spin
qudit should transform under the group SO(3) of rotations in
three-dimensional (3D) space. Due to the central importance
of these transformation rules for a spin qudit, we seek a basis
of operators that transform nicely under 3D rotations.2 One
such basis is that of the polarization operators [51,52], defined
by

T�m ≡
√

2� + 1

2s + 1

s∑
μ,ν=−s

〈sμ; �m|sν〉|ν〉〈μ|, (1)

where |μ〉 is an eigenstate of the axial spin projection operator
Sz |μ〉 = μ |μ〉; and 〈sμ; �m|sν〉 is a Clebsh-Gordan coeffi-
cient that enforces � ∈ {0, 1, . . . , d − 1} and m ∈ {−�,−� +
1, . . . , �}, such that there are d2 polarization operators in total.
For brevity, we will generally treat the value of d as constant
but arbitrary throughout this paper, and we will suppress any
explicit dependence of quantities or operators, such as T�m on
d . The polarization operators are orthonormal with respect to
the trace inner product and transform nicely under conjuga-
tion,

(T�m|T�′m′ ) = δ��′δmm′ , T †
�m = (−1)mT�,−m, (2)

where for any d × d matrix X = ∑
μ,ν Xμν |μ〉〈ν| we define

the d2-component vector |X ) ≡ ∑
μ,ν Xμν |μν〉 ; (X | is the

conjugate transpose of |X ), such that (X |Y ) = tr(X †Y ); and
δkk′ ≡ 1 if k = k′ and 0 otherwise. These properties of the
polarization operators allow us to expand any density operator

2Technically speaking, we seek a basis of operators that transform
as an irreducible representation of SO(3).

ρ in the polarization operator basis as

ρ =
d−1∑
�=0

�∑
m=−�

ρ�mT�m, ρ�m ≡ 〈T †
�m〉ρ, (3)

where 〈X 〉ρ ≡ tr(ρX ) = (ρ|X ) and ρ† = ρ implies that
ρ∗

�m = (−1)mρ�,−m. The polarization operators can be inter-
preted in terms of an absorption process whereby T�m |ψ〉 is
(up to normalization) the state obtained after a spin-s state |ψ〉
absorbs a particle with total spin � and spin projection m onto
a fixed quantization axis. Similar to the complex spherical
harmonics Y�m, we will refer to � as the degree and m as the
order of T�m.

The polarization operators are spherical tensor operators,
whose degree is preserved under 3D rotations generated by the
spin operators Sx, Sy, and Sz. Moreover, the degree-� polariza-
tion operators T�m transform similarly to spin-� particles and
spherical harmonics Y�m under 3D rotations (see Appendix A).
Specifically, for any triplet of angles ω = (α, β, γ ), we can
define the rotation operator,

R(ω) ≡ e−iαSz e−iβSy e−iγ Sz , (4)

and expand rotated polarization operators as

Tω�m ≡ R(ω)T�mR(ω)† =
�∑

n=−�

D�
mn(ω̄)∗T�n, (5)

where ω̄ = (γ , β, α) is the reversal of ω, and

D�
mn(ω̄) ≡ 〈�m|R(ω̄)|�n〉 (6)

are (Wigner) rotation matrix elements. For reasons that will
become clear shortly, throughout this paper we will pri-
marily consider rotations of the sphere that take the north
pole to a point v = (α, β ) at azimuthal angle α and polar
angle β. For ease of notation, we therefore define R(v) ≡
R(α, β, 0), Tv�m ≡ T(α,β,0),�m, and D�

mn(v) ≡ D�
mn(0, β, α).

The polarization operators T�m share a connection to the
spherical harmonics Y�m that goes beyond the rules for their
transformation under 3D rotations. In fact, the phase-space
representation of T�m is proportional to Y�m. The phase-space
representation of a spin qudit operator X assigns to each point
v on the sphere the complex number,

X PS(v) ≡ 〈sv|X |sv〉, (7)

where |sv〉 ≡ R(v) |s〉 is the state of a spin qudit polarized
along v. This representation is faithful in the sense that X
is uniquely determined by the phase-space values X PS(v)
at all points v on the sphere. The transformation rules for
polarization operators in Eq. (5) together with the fact that
〈s|T�m|s〉 = 0 unless m = 0 suffice to show that

T PS
�m (v) = c�Y�m(v), (8)

where the scalar c� simply enforces (T�m|T�m) = 1 (see
Appendix A). The polarization operators T�m are, thus, a
quantum analog of the spherical harmonics Y�m and play an
important role in phase-space formalisms for spin qudits [53].

As a special case, the phase-space representation ρPS of a
spin qudit state ρ is commonly known as its Husimi distribu-
tion. Performing tomography on an unknown qudit state ρ is,
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therefore, equivalent to reconstructing the unknown distribu-
tion ρPS on the sphere. In principle, the representation ρPS of a
finite-dimensional qudit state ρ can be reconstructed from the
values of ρPS(v) = 〈sv|ρ|sv〉 at a finite number of points v. In
practice, the value 〈sv|ρ|sv〉 is determined by measuring spin
projection along v, which also provides measurement data
on all spin projections 〈μv|ρ|μv〉 with μ ∈ {s, s − 1, . . . ,−s}
and |μv〉 ≡ R(v) |μ〉; one would like to make use of this
additional data as well. We clarify the connection between
the quantum problem of reconstructing ρ from spin projection
measurements and the classical problem of reconstructing ρPS

from its values of ρPS(v) in the following section.

III. SPIN TOMOGRAPHY AS SIGNAL RECOVERY
ON THE SPHERE

Our goal is to reconstruct an arbitrary state ρ of a spin qudit
from measurements of spin projection onto different quanti-
zation axes. We are, thus, nominally restricted to measuring
projectors �vμ ≡ |μv〉〈μv|, where |μv〉 ≡ R(v) |μ〉 is a state
with spin projection μ onto the measurement axis v. For any
fixed axis v, the sets {�vμ} and {Tv�,0} (i.e., all Tv�m with
m = 0) are both complete bases for the space of operators
that are diagonal in the basis {|μv〉}. Measuring the projectors
{�vμ} is, therefore, equivalent to measuring the polarization
operators {Tv�,0}, and provides data on the expectation values
〈Tv�,0〉ρ .

In order to reconstruct an arbitrary density operator ρ from
the expectation values 〈Tv�,0〉ρ , we essentially need to find a
set of coefficients C�mk (v) that would allow us to recover any
matrix element ρ�m of ρ through

ρ∗
�m = 〈T�m〉ρ =

∑
v,k

C�mk (v)〈Tvk,0〉ρ. (9)

Expanding the rotated polarization operators Tvk,0 into a sum
of unrotated polarization operators T�n according to Eq. (5),
we find that the recovery condition in Eq. (9) is satisfied when

T�m =
∑
v,k,n

C�mk (v)Dk
0,n(v)∗Tkn. (10)

Orthogonality of the polarization operators then implies the
decomposition C�mk (v) = δ�kC�m(v), and, in turn,∑

v

C�m(v)D�
0,n(v)∗ = δmn (11)

for all �’s.
In fact, the problem of finding suitable axes V and coef-

ficients C�m(v) to satisfy Eq. (11) can be mapped onto the
well-studied problem of signal recovery on the sphere (see
Fig. 1) [54–57]. The signal recovery problem can be stated
as follows: given a square-integrable function f on the sphere
with the spherical harmonic expansion,

f (v) =
∑
�,m

f�mY�m(v), (12)

where f�m are complex coefficients, find a set of points V =
{v} and associated coefficients C̃�m(v) with which we can
reconstruct f , or equivalently its coefficients f�m, from knowl-

FIG. 1. Signal recovery on the sphere is the problem of recon-
structing an unknown function f (red distribution) from its values
f (v) at specific points v ∈ V (blue dots) on the sphere. For almost
all choices of V , reconstruction of f is possible if there are at least as
many points in V as there are degrees of freedom in f .

edge of the function’s value f (v) at all points v ∈ V ; that is

f�m =
∑

v

C̃�m(v) f (v) =
∑
v,k,n

C̃�m(v)Ykn(v) fkn. (13)

Reconstruction of functions with arbitrary coefficients f�m

implies that ∑
v

C̃�m(v)Ykn(v) = δ�kδmn, (14)

which is a stronger version of the condition that we found
for the spin qudit tomography problem in Eq. (11). We will
refer to Eq. (14) as the full recovery problem and Eq. (11) as
the reduced recovery problem. Due to the fact that D�

0,m(v) =√
4π

2�+1 Y�m(v), any solution to the full recovery problem au-

tomatically solves the reduced recovery problem by setting

C�m(v) =
√

2�+1
4π

C̃�m(v)∗. In principle, this mapping allows
us to import a host of existing signal recovery algorithms
[54–57] for the task of spin qudit tomography. In practice,
spin qudits typically have only a modest dimension d , which
allows for simpler and optimized tomography protocols that
are practical despite worse scaling with d (see Sec. V). A
natural avenue to develop better spin qudit tomography pro-
tocols would, therefore, be to build on the existing classical
signal recovery algorithms, tailoring them to solve the reduced
recovery problem in Eq. (11) rather than the full recovery
problem in Eq. (14). We leave these developments to future
work.

If the function f is band-limited at degree L, which is to
say that f�m = 0 for all � � L, then the full recovery problem
in Eq. (14) is provably solvable with a suitable choice of
|V | = L2 points on the sphere [58,59]. The existence of these
solutions to the full recovery problem, in turn, implies the
existence of d2 measurement axes that suffice to reconstruct
arbitrary states of d-level spin qudit, whose possible states
(or rather, phase-space representations) are band-limited at
degree d . Moreover, for any fixed degree �, finding solutions
to the reduced recovery problem in Eq. (11) is equivalent to
the recovery of a degree-� function f� = ∑

m f�mY�m, which
is provably possible with |V | = 2� + 1 samples [58]. In the
case of spin qudit tomography, the degree � takes a maximal
value of �max ≡ d − 1, so state recovery requires as many
measurement axes as there are polarization operators with
degree �max, namely, 2�max + 1 = 2d − 1.
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IV. STATE RECONSTRUCTION ERROR

For the practically minded, proving the existence of solu-
tions to a problem is less interesting than the exposition of a
particular solution. On a high level, a spin qudit tomography
protocol consists of: (i) selecting a set of measurement axes,
(ii) collecting measurement data on spin projection onto these
axes, and then (iii) processing the collected data to reconstruct
the state of the spin qudit. Whereas step (ii) can involve a host
of platform-dependent technical challenges, in the following
sections we discuss the steps to take before and after collect-
ing measurement data.

To this end, we begin by asking a question: what is
a “good” choice of measurement axes? Intuitively, a good
choice of axes should minimize the error with which one can
reconstruct an unknown quantum state from associated mea-
surement data. If we can quantify this intuition, then we can
optimize over different choices of measurement axes to find a
set that (approximately) minimizes the error in reconstructed
states.

A set of measurement axes V = {v} nominally induces a
set of projectors {�vμ} that will be measured in an experi-
ment. By a simple change of basis, measuring these projectors
is equivalent to measuring the polarization operators {Tv�,0}.
Flattening each d × d matrix Tv�,0 into the d2-component
column vector |Tv�,0), we construct the measurement matrix,

MV ≡
∑
v,�

|v�〉 (Tv�,0| . (15)

Here v and � label a row of MV , or, equivalently, label a stan-
dard (“one-hot”) basis vector |v�〉 of a (|V | × d )-dimensional
vector space, and (Tv�,0| is the conjugate transpose of |Tv�,0).
A necessary and sufficient condition for V to allow for full
state tomography is that the measured polarization operators
Tv�,0, or, equivalently, the rows of MV , span the entire (d2-
dimensional) space of operators on a d-level spin qudit. In
this case MV must be full rank with d2 nonzero singular
values. Indexing these singular values MV

k and the correspond-
ing (normalized) left singular vectors xV

k ≡ ∑
j xV

k j | j〉 by an
integer k ∈ {1, 2, . . . , d2}, we can construct the orthonormal
qudit operators,

QV
k ≡

∑
j

(
qV

k j

)∗
Tj, qV

k j ≡ xV
k j

MV
k

, (16)

where for shorthand we use a combined index j = (v, �) to
specify both a measurement axis v and a degree �, which
identify the polarization operator Tj ≡ Tv�,0. These operators
allow us to expand any state ρ of a d-level spin qudit in the
form

ρ =
d2∑

k=1

ρV
k QV

k , ρV
k ≡ 〈

QV
k

†〉
ρ
. (17)

Given empirical estimates T̃j of the expectation values 〈Tj〉ρ ,
an empirical estimate ρ̃V of ρ is then

ρ̃V ≡
∑

k

ρ̃V
k QV

k , (18)

where, using the fact that Tj = T †
j (because they are diagonal

polarization operators with degree m = 0),

ρ̃V
k ≡

∑
j

qV
k j T̃j ≈

∑
j

qV
k j〈Tj〉ρ = 〈

QV
k

†〉
ρ

= ρV
k . (19)

The measurement matrix MV allows us to make concrete
statements about the statistical error between the empirical
estimate ρ̃V and the true state ρ. Assume, for example, that
the estimates T̃j are equal to 〈Tj〉ρ up to uncorrelated noise
with variance no greater than ε2,

T̃j = 〈Tj〉ρ + ε j, 〈〈ε jε j′ 〉〉 � ε2δ j j′ . (20)

Here {ε j}’s are independent random variables, and we use
the double brackets 〈〈·〉〉 to denote statistical averaging over
experimental trials that estimate 〈Tj〉ρ . In this case, the mean
squared error with which ρ̃V

k approximates ρV
k is〈〈∣∣ρ̃V

k − ρV
k

∣∣2〉〉 = 〈〈(
ρ̃V

k − ρV
k

)∗(
ρ̃V

k − ρV
k

)〉〉
(21)

=
∑
j, j′

(
qV

k j

)∗
qV

k j′ 〈〈ε jε j′ 〉〉 (22)

�
∑

j

|qV
k j |2ε2 =

(
ε

MV
k

)2

. (23)

Using the fact that the operators QV
k are orthonormal, we

can, therefore, bound the mean squared (Euclidean) distance
between ρ̃V and ρ as

EV (ρ)2 ≡ 〈〈‖ρ̃V − ρ‖2
〉〉

� ε2S2
V , (24)

where ‖X‖2 ≡ (X |X ) = tr(X †X ) is the squared (Euclidean,
Frobenius, or Hilbert-Schmidt) norm of X , and the classical
error scale SV is defined by

S2
V ≡

∑
k

(
MV

k

)−2 = ∥∥M−1
V

∥∥2
, (25)

where M−1
V is the left inverse of MV , satisfying M−1

V MV = 1.
We refer to the error scale SV as classical because the bound
in Eq. (24) applies in the presence of classical sources of
measurement error. Note that the classical error scale SV

diverges if the measurement matrix MV is singular, which
indicates that measuring spin projections along all axes in V
does not provide sufficient information to reconstruct arbitrary
quantum states.

Computing the classical error scale SV and estimates ρ̃V
k ≈

ρV
k requires building the measurement matrix MV and comput-

ing its singular value decomposition. The complexity of this
task can be greatly reduced by the fact that the degree � of a
polarization operator T�m is preserved under rotations, which
implies that the unitary,

U ≡
d−1∑
�=0

�∑
m=−�

|T�m) 〈�m| , (26)

with vectors |T�m) in a column indexed by integers (�, m)
block diagonalizes the measurement matrix into d blocks
indexed by the degree �,

MV U =
d−1∑
�=0

|�〉〈�| ⊗ MV �, (27)
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FIG. 2. Serial runtime to compute SV , εV , or EV (ρ ) with |V | =
2d − 1 randomly chosen measurement axes and a randomly chosen
qudit state ρ. Each point is an average over 103 calculations or 5 min
of runtime, whichever comes first. These results do not count fixed
runtimes to precompute quantities that can be recycled for every new
choice of V and ρ. Dashed lines show fits to a runtime t = cdα for
the 20 largest values of d , finding α ≈ 3.8 ± 0.1.

where the |V | × (2� + 1)-sized blocks are

MV � ≡
∑
v,m

|v〉 (Tv�,0|T�m) 〈m| =
∑
v,m

D�
0,m(v)|v〉〈m|. (28)

Here D�
0,m(v) is a Wigner rotation matrix element, defined

in Eq. (6). As the singular values of MV are invariant under
unitary transformations, it follows that:

S2
V =

∑
�

S2
V �, S2

V � ≡ ∥∥M−1
V �

∥∥2
, (29)

where M−1
V � is the left inverse of MV �. Constructing the block

MV � and computing its singular value decomposition takes at
most O(|V |d2) time. If we assume that |V | ∼ d , then comput-
ing the classical error scale SV takes O(d4) serial or O(d3)
parallel runtime (see Fig. 2).

The assumption that observables can be estimated up to
uncorrelated noise with maximal variance ε2, summarized by
Eq. (20), is reasonable when the measurement error is dom-
inated by classical sources of experimental noise. However,
this assumption breaks down when measurement error is lim-
ited by fundamental quantum shot noise (i.e., finite sampling
error). We relax the assumption of Eq. (20) in Appendix B,
where we instead assume that ρ̃V is built from n independent
measurements of spin projection along every axis v ∈ V with
shot noise as the dominant source of error. In this case, the
constraints that tr(ρ) = 1 and 〈�vμ〉ρ � 0 allow us to bound
the mean-squared distance between ρ̃V and ρ as

EV (ρ)2 <
ε2

V

n
, ε2

V ≡
∑

�

�2
�S2

V �, (30)

where the quantum error scale εV is defined in terms of the
spectral range of T�,0,

�� ≡ maxμ t�μ − minμ t�μ
2

, t�μ ≡ 〈μ|T�,0|μ〉. (31)

If d is even or � is odd, then �� = maxμ t�μ. For comparison
with the classical error bound in Eq. (24), we note that ε2

V <

S2
V /2, so the previous bound still holds with the replacement

ε2 → 1/2n. The factors �2
� are quick to compute and can be

recycled for every new choice of axes V , so the complexity of
computing εV is the same as that of SV (see Fig. 2).

Although straightforward to compute, the bound in
Eq. (30) is not tight as it is acquired by bounding the statistical
error εv� in the empirical estimate T̃v�,0 of 〈Tv�,0〉ρ by 〈〈ε2

v�〉〉 �
�2

� . The individual bounds on 〈〈ε2
v�〉〉 for each axis v and degree

� are tight, but these bounds cannot all be achieved simulta-
neously. There is, therefore, still room for improvement on
the bound in Eq. (30) by maximizing EV over the set of all
physical qudit states ρ. We discuss this maximization problem
in Appendix C but leave its full solution to future work. We
also note that the reconstruction error bound in Eq. (30) obeys
the “standard quantum limit” of ∼1/n scaling in the number
of measurements. In principle, this scaling can be improved to
∼1/n2 by preparing and measuring entangled copies of many
qudits [60].

The error scales SV and εV provide pessimistic upper
bounds on statistical error, which can be calculated without
prior knowledge of the true qudit state ρ. The actual error
in the reconstruction ρ̃V of a particular state ρ may be con-
siderably smaller and may depend on ρ itself. Written out
in full, the mean-squared distance between ρ̃V and ρ is (see
Appendix B)

EV (ρ)2 =
∑
v,w,�

〈v|(M−1
V �

)†
M−1

V � |w〉〈〈εv�εw�〉〉. (32)

The covariances 〈〈εv�εw�〉〉 are generally determined by the
sources of measurement error in any given experiment but will
typically satisfy 〈〈εv�εw�〉〉 = δvw〈〈ε2

v�〉〉 because measurements
along v are independent of measurements along w. If the mea-
surement error is limited by shot noise, then (see Appendix C)

EV (ρ)2 SNL= 1

n

∑
�

[〈χV �|ρ�〉 − 〈ρ�|NV �|ρ�〉], (33)

where
SNL= indicates equality in the “shot-noise-limited”

regime; |ρ�〉 ≡ ∑
m ρ�m |m〉 is a vector of the polarization

operator components ρ�m of ρ, defined in Eq. (3); and the
matrix NV � and vector |χV �〉 are defined below. Although the
true shot-noise-limited error in ρ̃V cannot be known exactly
without knowing ρ, this error can be estimated a posteriori
by EV (ρ) ≈ EV (ρ̃V ). After constructing an estimate ρ̃V of ρ,
the complexity of computing the error EV (ρ̃V ) from Eq. (33)
is the same as that of computing SV or εV (see Fig. 2).

We now define NV � and |χV �〉 for the sake of completion,
but note that these definitions can be skipped without conse-
quence for the remaining discussions in this paper. The matrix
NV � is

NV � ≡ M†
V �diag

[(
M−1

V �

)†
M−1

V �

]
MV �, (34)

where diag[X ] sets the off-diagonal parts of X to zero. The
vector |χV �〉 ≡ ∑

m χV
�m |m〉 is defined by

χV
LM ≡

∑
�

(NV �|DM |g̃L�) , (35)

g̃L� ≡
∑
m,m′

(TL,m+m′ |T †
�mT�m′ ) |m〉〈m′|, (36)

DM ≡
∑
m,m′

δM,m′−m|mm′〉〈mm′|. (37)
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Here g̃L� is essentially a matrix of structure constants for
the polarization operator algebra (see Appendix D), and DM

simply picks off the Mth diagonal of the matrix it acts on.

V. TOMOGRAPHY PROTOCOL

The ability to certify a statistical error bound on the empir-
ical estimate ρ̃V of an unknown quantum state ρ motivates the
following protocol for spin qudit tomography:

(1) Select a random set of measurement axes V by uni-
formly sampling points on the sphere,3 and use any standard
minimization algorithm to optimize the 2|V | parameters in V
(two angles for each point v ∈ V ) by minimizing the quan-
tum error scale εV in Eq. (30). If |V | is too large for such
optimization, you can simply generate many sets of random
measurement axes and then choose the set with the smallest
quantum error scale εV . Note that computing the error scale
εV requires for each � ∈ {0, 1, . . . , d − 1}, constructing the
measurement matrix MV � in Eq. (28) and computing its sin-
gular value decomposition. Save all measurement matrix data
associated with the final measurement axes V for later use.

(2) For each axis v ∈ V , make n measurements of spin
projection, and set �̃vμ ≈ 〈�vμ〉ρ to the fraction of times in
which the measurement outcome was μ.

(3) Use the estimates �̃vμ of 〈�vμ〉ρ to compute estimates
of 〈Tv�,0〉ρ ,

T̃v�,0 ≡
∑

μ

〈μ|T�,0|μ〉�̃vμ, (38)

where the matrix elements of T�,0 are provided in Eq. (1).
(4) Denoting the nonzero singular values of MV � by

MV
�k and the corresponding left singular vectors by xV

�k =∑
v xV

�kv |v〉, compute the operators and coefficients,

Q�k ≡ 1

MV
�k

∑
v

(
xV
�kv

)∗
Tv�,0, (39)

ρ̃V
�k ≡ 1

MV
�k

∑
v

xV
�kv T̃v�,0, (40)

and combine them into the estimate,

ρ̃V =
∑
�,k

ρ̃V
�kQ�k ≈ ρ. (41)

The expected reconstruction error in ρ̃V , or its root-
mean-square distance from ρ, is provided by Eq. (32). If
measurement error is shot-noise-limited, then the error in ρ̃V

is approximately EV (ρ) ≈ EV (ρ̃V ) and can be computed from
Eq. (33). If ρ̃V has negative eigenvalues, its distance from
ρ can be reduced with maximum-likelihood corrections [4],
which will additionally guarantee that ρ̃V satisfies all require-
ments for being a physical state.

The tomography protocol outlined above leaves open the
question of how many measurement axes to use. Although
2d − 1 measurement axes may be sufficient to perform full

3To sample a point (α, β ) from the uniform distribution on the
sphere (with azimuthal angle α and polar angle β), you can sample
a point (a, b) ∈ [0, 1] × [0, 1] from the uniform distribution on the
unit square and then set α = 2πa and β = arccos(1 − 2b).

0 2 4
p/d

0.00

0.25

0.50

0.75

1.00

β̃
(p

)/
β̃
(0

)

d = 10
d = 20

d = 40
d = 80

FIG. 3. Empirical measurement-adjusted error scales β̃(p) with
p excess measurement axes, determined by minimizing over 103

choices of measurement axes V or 5 min. of runtime (for each
p), whichever comes first. Marker and color indicate the qudit di-
mension d . The rapid initial drop in β̃(p) implies that using more
measurement axes can substantially lower the upper bound on the
reconstruction error provided in Eq. (30) and that these benefits
plateau after p ≈ d . Horizontal reference lines mark the smallest
measurement-adjusted error scales minθ βθ/β̃(0) achievable with the
method in Ref. [38], which is parametrized by an arbitrarily chosen
angle θ .

state tomography, this is not necessarily the best choice of
|V |. Increasing the number of measurement axes generally
decreases the quantum error scale εV but comes at the cost
of having to estimate more observables. At a fixed total num-
ber of measurements, increasing |V | reduces the number of
measurements n devoted to each axis v ∈ V . This trade-off
begs the question: How should one choose the number of
measurement axes |V |?

The reconstruction error bound in Eq. (30) nominally pro-
vides a straightforward answer: at a fixed total number of
measurements N = n|V |, the number of measurement axes
should be chosen to minimize the (squared) reconstruction
error EV (ρ)2 < ε2

V /n ∝ ε2
V |V |. We, therefore, consider the

measurement-adjusted error scale β(p) defined by

β(p)2 ≡ min
V

{
ε2

V |V |: |V | = 2d − 1 + p
}
, (42)

where p is the number of “extra” measurement axes exceed-
ing 2d − 1. Although we cannot minimize over all suitable
choices of measurement axes V to compute β(p), we can
compute an empirical upper bound β̃(p) � β(p) by minimiz-
ing over a large number of randomly chosen V . Figure 3
shows the results of such empirical minimization where we
find that β̃(p) drops substantially with p before plateauing at
p ≈ d , after which there are only minor benefits to using more
measurement axes. In the interest of reducing experimental
complexity as well as the runtime of our randomized tomog-
raphy protocol, which grow linearly in |V |, we, therefore,
conclude that this protocol should be performed with |V | ≈
3d measurement axes. We provide the best measurement axes
that we found for a randomized tomography protocol with
d � 30 and |V | = 3d in Ref. [50].

For reference, Fig. 3 also shows the smallest measurement-
adjusted error scales βθ achievable with the method of
Ref. [38], which is comparable to those achieved with our
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randomized protocol at |V | ≈ 3d . The method of Ref. [38]
requires choosing an angle θ , namely, the polar angle of all
measurement axes, and provides no prescription for making
this choice. We, therefore, find the optimal choice of θ by
minimizing the error scale βθ over all θ (see Appendix E)
and show min βθ/β̃(0) in Fig. 3. Empirically, we find that
the optimal angle for the method of Ref. [38] is θopt ≈ π

2 (1 −
1

1.34d ) (see Appendix E), which approaches π/2 as d → ∞.
However, the error scale βπ/2 = ∞, reflecting the fact that
full state tomography is impossible with measurement axes
lying in a single plane. The method of Ref. [38], therefore,
requires extremely careful fine-tuning of measurement axis
orientations for large spin dimensions. For this reason, we
expect our randomized tomography protocol to be more robust
to errors in axis orientation. We leave a detailed analysis of
robustness to errors in axis orientation and the effect of these
errors on state reconstruction to future work.

As a final point, we note that any information about an
unknown qudit state ρ, obtained from prior knowledge or pre-
liminary measurement data, can be used to construct tailored
or adaptive measurement protocols [5,7,61,62] that are more
efficient in terms of the number of measurements required to
estimate ρ to a fixed precision. We leave the development of
tailored and adaptive measurement protocols to future work
as well.
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APPENDIX A: ROTATING POLARIZATION OPERATORS

Denoting the state of a spin-s particle with spin projection
μ onto a quantization axis by |sμ〉, we define

Sz ≡
s∑

μ=−s

μ|sμ〉〈sμ|,
(A1)

S± ≡
s∑

μ=−s

√
s(s + 1) − μ(μ ± 1)|s, μ ± 1〉〈sμ|,

as well as

Sx ≡ 1

2
(S+ + S−), Sy ≡ − i

2
(S+ − S−), S ≡ (Sx, Sy, Sz).

(A2)

The spin vector S generates rotations of a spin-s system in 3D
space. Specifically, the operator e−iθS·n̂ rotates a spin-s system
by an angle θ about the unit vector n̂.

Observing that Sz = T1,0 and S± ∝ T1,±1, we can use the
operator product expansion of the polarization operators (see
Appendix D), the properties of Clebsch-Gordan coefficients,
the properties of Wigner 6- j symbols and a computer algebra

system to simplify the commutators,

[Sz, T�m] = m T�m,
(A3)

[S±, T�m] =
√

�(� + 1) − m(m ± 1) T�,m±1,

which implies that T�m is a spherical tensor operator, whose
degree degree � is preserved under rotations generated by
S. Moreover, by comparing Eqs. (A1) and (A3) we see that
the polarization operators T�m transform identically to spin-�
particles under the (adjoint) action of the spin operators Sz and
S±. For any triplet of angles ω = (α, β, γ ), we can, therefore,
define the rotation operator,

R(ω) ≡ e−iαSz e−iβSy e−iγ Sz , (A4)

and expand rotated polarization operators as

Tω�m ≡ R(ω)T�mR(ω)† =
�∑

n=−�

D�
mn(ω̄)∗T�n, (A5)

where ω̄ = (γ , β, α) is the reversal of ω, and

D�
mn(ω̄) ≡ 〈�m|R(ω̄)|�n〉 = (T�n|R(ω) ⊗ R(ω)∗|T�m)∗

= (T�m|R(−ω̄) ⊗ R(−ω̄)∗|T�n) (A6)

are matrix elements of the rotation operator R(ω) for spin-�
particles.

For any angle doublet v = (α, β ), we define R(v) ≡
R(α, β, 0) and D�

mn(v) = D�
mn(0, β, α) for shorthand. The

transformation rules in Eq. (A5) imply that we can expand
the phase-space representation of T�m as

T PS
�m (v) ≡ 〈sv|T�m|sv〉 = 〈s|R(v)†T�mR(v)|s〉

= D�
0,m(v)〈s|T�,0|s〉, (A7)

where

〈s|T�,0|s〉 =
√

2� + 1

2s + 1
〈ss; �, 0|ss〉

=
√

2� + 1

2s + � + 1

(
(2s)!

(2s + �)!

)(
(2s)!

(2s − �)!

)
, (A8)

and the properties of the rotation matrix elements D�
mn imply

that

D�
0,m(v) =

√
4π

2� + 1
Y�m(v), (A9)

so

T PS
�m (v) =

√
4π

2s + � + 1

(
(2s)!

(2s + �)!

)(
(2s)!

(2s − �)!

)
Y�m(v).

(A10)

In this way, the polarization operators are a quantum analog
of the spherical harmonics.

APPENDIX B: AN IMPROVED RECONSTRUCTION
ERROR BOUND

In Sec. IV of the main text, we provided a reconstruc-
tion error bound using the assumption of Eq. (20), namely,
that expectation values derived from spin projection mea-
surements can be estimated up to uncorrelated errors with
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maximal variance ε2. This assumption is reasonable if the
measurement error is dominated by experimental sources of
noise, and it yields a simple derivation of the reconstruction
bound in Eq. (24). Nonetheless, there are two problems with
the assumption of Eq. (20): (i) there is no a priori guarantee
for the value of ε, which must be inferred from experimental
outcomes, and (ii) the assumption that all measurement errors
are uncorrelated is unjustified (and generally false). Here, we
relax the assumption of Eq. (20) and derive an explicit error
bound in terms of the qudit dimension d and the number of
spin projection measurements made along every measurement
axis.

To this end, we fix a particular set of measurement axes V
and consider performing n measurements of spin projection
along every axis v ∈ V for a total of N = |V |n measurements.
Such a procedure is equivalent to making N local measure-
ments of the N-fold product state ρ⊗N . For convenience, we
index the tensor factors of ρ⊗N by the integers (i, j) with
i ∈ {1, 2, . . . , |V |} specifying a measurement axis vi ∈ V and
j ∈ {1, 2, . . . , n} specifying the copy of ρ prepared for the jth
measurement spin projection along a particular axis. We then
define the projectors �iμ ≡ |μvi〉〈μvi | onto single-qudit states
|μvi〉 with definite spin projection μ along axis vi ∈ V and
define �

j
iμ to be an N-qudit operator with �iμ on the (i, j)-

th tensor factor and the identity elsewhere. We denote the
experimental outcome of measuring �iμ in the (i, j)-th copy
of ρ by �̃

j
iμ ∈ {0, 1}. In other words, �̃

j
iμ is the “single-shot

estimate” of �iμ, with �̃
j
iμ = 1 if outcome μ was observed

on the (i, j)-th experimental trial, and �̃
j
iμ = 0 otherwise. An

empirical estimate of the expectation value 〈�iμ〉ρ is provided
by the fraction of times that outcome μ was observed when
measuring spin projection along axis vi, that is

�̃iμ ≡ 1

n

n∑
j=1

�̃
j
iμ ≈ 1

n

n∑
j=1

tr
(
ρ⊗N�

j
iμ

) = tr(ρ�iμ). (B1)

For reasons that will be clarified shortly, it will be useful to
think of �̃iμ as an empirical estimate of 〈�̄iμ〉ρ⊗N , where

�̄iμ ≡ 1

n

n∑
j=1

�
j
iμ (B2)

is the average of �iμ applied to all copies of ρ for which
spin projection is measured along the axis vi. Equation (B1)
implies that

�̃iμ ≈ 〈�̄iμ〉
ρ⊗N = 〈�iμ〉

ρ
. (B3)

1. Errors in the spin-projection basis

Finite sampling error (i.e., shot noise) generally induces
statistical error εO into the empirical estimate Õ of an observ-
able O,

εO ≡ Õ − 〈O〉, (B4)

where the single brackets 〈·〉 denote an expectation value
with respect to the measured quantum state. On average, this

statistical error will be zero, which is to say that

〈〈εO〉〉 = 〈〈Õ − 〈O〉〉〉 = 〈O − 〈O〉〉 = 0, (B5)

where the double brackets 〈〈·〉〉 denote statistical averaging
over experimental trials that estimate 〈O〉. However, the co-
variance between statistical errors εO and εQ on the empirical
estimates Õ and Q̃ of observables O and Q is

〈〈εOεQ〉〉 = 〈〈(Õ − 〈O〉)(Q̃ − 〈Q〉)〉〉 = 〈(O − 〈O〉)(Q − 〈Q〉)〉
= 〈OQ〉 − 〈O〉〈Q〉. (B6)

In the context of spin qudit tomography, we can, therefore,
define the statistical error,

εiμ ≡ �̃iμ − 〈�iμ〉
ρ

= �̃iμ − 〈�̄iμ〉
ρ⊗N , (B7)

in the empirical estimate of 〈�iμ〉ρ and use Eq. (B2) to expand

〈〈εiμεi′μ′ 〉〉 = 〈�̄iμ�̄i′μ′ 〉
ρ⊗N − 〈�̄iμ〉

ρ⊗N 〈�̄i′μ′ 〉
ρ⊗N

= 1

n2

n∑
j, j′=1

[〈
�

j
iμ�

j′
i′μ′

〉
ρ⊗N − 〈

�
j
iμ

〉
ρ⊗N

〈
�

j′
i′μ′

〉
ρ⊗N

]
.

(B8)

If (i, j) �= (i′, j′), then �
j
iμ and �

j′
i′μ′ address different tensor

factors of the product state ρ⊗N , so the expectation value of
their product factorizes due to the fact that tr[(A ⊗ B)(A′ ⊗
B′)] = tr(AA′)tr(BB′). This factorization can also be seen as
a consequence of the fact that if (i, j) �= (i′, j′), then �

j
iμ

and �
j′
i′μ′ are “spatially separated” on ρ⊗N , which means that

their expectation values cannot have quantum correlations.
The terms in Eq. (B8) with (i, j) �= (i′, j′), therefore, vanish,
so

〈〈εiμεi′μ′ 〉〉 = δii′
1

n2

n∑
j=1

[〈
�

j
iμ�

j
iμ′

〉
ρ⊗N − 〈

�
j
iμ

〉
ρ⊗N

〈
�

j
iμ′

〉
ρ⊗N

]

(B9)

= δii′
1

n
[〈�iμ�iμ′ 〉

ρ
− 〈�iμ〉

ρ
〈�iμ′ 〉

ρ
] (B10)

= δii′
1

n
covρ (�iμ,�iμ′ ), (B11)

where covρ (X,Y ) ≡ 〈XY 〉ρ − 〈X 〉ρ〈Y 〉ρ .

2. Errors in the polarization operator basis

Rather than the statistical errors εiμ ≡ �̃iμ − 〈�iμ〉ρ in
the estimates �̃iμ of the projectors �iμ, we now consider the
statistical errors εi� ≡ T̃i� − 〈Ti�〉ρ in the estimates T̃i� of the
polarization operators Ti� ≡ Tvi�,0. We can expand the polar-
ization operators Ti� as a sum over projectors �iμ as

Ti� =
∑

μ

t�μ�iμ, t�μ ≡ 〈μ|T�,0|μ〉

=
√

2� + 1

d
〈sμ; �, 0|sμ〉, (B12)
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and likewise T̃i� ≡ ∑
μ t�μ�̃iμ. The covariance between errors

in the polarization operator basis is then

〈〈εi�εi′�′ 〉〉 =
∑
μ,μ′

t�μt�′μ′ 〈〈εiμεi′μ′ 〉〉

= δii′
1

n

∑
μ,μ′

t�μt�′μ′covρ (�iμ,�iμ′ )

= δii′
1

n
covρ (Ti�, Ti�′ ), (B13)

where we used the fact that the covariance covρ (X,Y ) is linear
in both X and Y . Due to the appearance of δii′ above and the or-
thogonality of polarization operators Ti� and Ti′�′ with degrees
� �= �′, it turns out that only the variances 〈〈ε2

i�〉〉 will ultimately
contribute to the reconstruction error (see Appendix B 3). We,
therefore, seek to find an upper bound on 〈〈ε2

i�〉〉.
To this end, we define the probability pi

μ ≡ 〈�iμ〉ρ , collect
these probabilities into the classical probability distribution
pi = ∑

μ pi
μ |μ〉, and define the vector t� ≡ ∑

μ t�μ |μ〉. We
then observe that

〈〈
ε2

i�

〉〉 = 1

n
σ 2

pi (t�), σ 2
p (X ) ≡

∑
μ

pμX 2
μ −

(∑
μ

pμXμ

)2

,

(B14)

where σ 2
p (X ) is the weighted variance of X . This variance is

maximal when p has equal weight on the largest and smallest
values of X , which implies that

σ 2
p (t�) � �2

� ,

�� ≡ maxμ t�μ − minμ t�μ
2

, so
〈〈
ε2

i�

〉〉
� 1

n
�2

� . (B15)

Note that this bound on 〈〈ε2
i�〉〉 is tight as equality is achieved

by the state,

ρ�
i = 1

2 (�iμmax + �iμmin ), (B16)

where μmax (μmin) is the index that maximizes (minimizes)
t�μ.

To find an analytical bound on 〈〈ε2
i�〉〉 that is easier to inter-

pret, we can use normalization of the polarization operators
(Ti�|Ti�) = ∑

μ t2
�μ = 1 and the fact that all probabilities pμ �

1 to bound

σ 2
p (t�) �

∑
μ

pμt2
�μ �

∑
μ

t2
�μ = 1, so

〈〈
ε2

i�

〉〉
<

1

n
. (B17)

We can get a tighter bound by considering the fact that t2
�μ =

t2
�,−μ due to the symmetries of the Clebsch-Gordan coeffi-

cients. It follows that if μmax �= 0 then

σ 2
p (t�) �

∑
μ

pμt2
�μ � t2

�μmax
= 1

2

(
t2
�μmax

+ t2
�,−μmax

)
μmax �=0

� 1

2

∑
μ

t2
�μ = 1

2
. (B18)

If μmax = 0, then similarly,

t2
�μmax

+ 2t2
�μmin

= t2
�μmax

+ t2
�μmin

+ t2
�,−μmin

μmax=0
�

∑
μ

t2
�μ = 1,

so |t�μmin |
μmax=0

�

√
1 − t2

�μmax

2
, (B19)

which lets us bound

�� = 1

2
(t�μmax − t�μmin )

� 1

2
(t�μmax + |t�μmin |)

μmax=0
� 1

2
t�μmax + 1

2

√
1 − t2

�μmax

2

≡ λ(t�μmax ). (B20)

It is straightforward to show that λ(x) is maximally λ� ≡
maxx λ(x) = √

3/8, so

�2
�

μmax=0
� (λ�)2 = 3

8
<

1

2
. (B21)

Altogether, we, thus, find that in all cases,

σ 2
p (t�) � 1

2
, so

〈〈
ε2

i�

〉〉
� 1

2n
. (B22)

3. Revisiting the reconstruction error bound

We now revisit the derivation of reconstruction error in
Sec. IV to make use of the bounds on variances 〈〈ε2

i�〉〉. To
recap, for a set of measurement axes V = {v} and degrees
� ∈ {0, 1, . . . , d − 1} we construct the measurement matrix,

MV ≡
∑
v,�

|v�〉 (Tv�,0| , (B23)

which can be block diagonalized as

MV U =
∑

�

|�〉〈�| ⊗ MV �, U ≡
∑
�,m

|T�m) 〈�m| ,

MV � =
∑
m,v

D�
m,0(v)|v〉〈m|, (B24)

where D�
mn(v) ≡ 〈�m|R(v)|�n〉 is a (Wigner) rotation matrix

element for a spin-� particle. The block-diagonal structure of
MV allows us to index its singular values MV

�m and correspond-
ing (normalized) left singular vectors xV

�m = ∑
i xV

�mi |vi〉 by
the indices (�, m) where the integer |m| � �. These singular
vectors and values define the orthonormal operators,

QV
�m ≡

∑
i

(
qV

�mi

)∗
Ti�, qV

�mi ≡ xV
�mi

MV
�m

, (B25)

where i ∈ {1, 2, . . . , |V |} indexes an axis vi ∈ V with Ti� ≡
Tvi�. The state ρ can be expanded in the basis of these opera-
tors as

ρ =
∑
�,m

〈
QV

�m
†〉

ρ
QV

�m, (B26)
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and the estimates T̃i� of 〈Ti�〉ρ can be used to construct the
following estimate ρ̃V of ρ:

ρ̃V ≡
∑
�,m

[∑
i

qV
�miT̃i�

]
QV

�m ≈
∑
�,m

[∑
i

qV
�mi〈Ti�〉ρ

]
QV

�m

=
∑
�,m

〈
QV

�m

〉
ρ
QV

�m = ρ. (B27)

Recalling that εi� ≡ T̃i� − 〈Ti�〉ρ , we can use orthonormality
of all QV

�m’s to expand the mean-squared distance between ρ̃V

and ρ as

EV (ρ)2 ≡ 〈〈‖ρ̃V − ρ‖2〉〉 =
∑

�,m,i,i′

(
qV

�mi

)∗
qV

�mi′ 〈〈εi�εi′�〉〉

=
∑
�,m,i

|qV
�mi|2

〈〈
ε2

i�

〉〉
<

1

n

∑
�

�2
�S2

V �, (B28)

where we used the fact that 〈〈ε2
i�〉〉 � �2

�/n, and

∑
m,i

|qV
�mi|2 =

∑
m

(
MV

�m

)−2 = ∥∥M−1
V �

∥∥ = S2
V �. (B29)

Here M−1
V � is the left inverse of MV �. The fact that 〈〈ε2

i�〉〉 <

1/2n also implies that

EV (ρ)2 <
1

2n

∑
�

S2
V � = S2

V

2n
. (B30)

Note that the bound in Eq. (B28) is not tight as the individual
bounds on the variances 〈〈ε2

i�〉〉 cannot all be achieved simulta-
neously. There is, therefore, still room for improvement on the
bound in Eq. (30) by maximizing EV over the set of physically
achievable qudit states ρ.

APPENDIX C: EXACT RECONSTRUCTION ERROR

Here we find exact expressions for reconstruction error,
which can be used to estimate the error in a given reconstruc-
tion ρ̃V of an unknown state ρ after performing tomography.
To this end, we start with Eq. (B28) from Appendix B 3 to
write

EV (ρ)2 =
∑

�,m,i,i′

(
qV

�mi

)∗
qV

�mi′ 〈〈εi�εi′�〉〉

= 1

n

∑
�,i

|q̃�i|2covρ (Ti�, Ti�),

|q̃�i|2 =
∑

m

|q�mi|2, (C1)

where q̃�i = ∑
m(q�mi )∗ |m〉 and we used the fact that

〈〈εi�εi′�〉〉 = δii′covρ (Ti�, Ti�)/n. Identifying the singular value
decomposition MV � = UV ��V �W

†
V �, we then we observe that

q̃�i = �−1
V �U †

V � |vi〉, which allows us to simplify

|q̃�i|2 = 〈vi|UV ��
−2
V �U †

V �|vi〉 = 〈vi|
(
M−1

V �

)†
M−1

V � |vi〉. (C2)

Using the fact that all Ti� = T †
i�’s, we can also expand

covρ (Ti�, Ti�) = covρ (T †
i� , Ti�)

=
∑
m,m′

D�
0,m(vi )D

�
0,m′ (vi )

∗covρ (T †
�m, T�m′ ),

(C3)

which implies that

EV (ρ)2 = 1

n

∑
�,i,m,m′

D�
0,m′ (vi )

∗|q̃�i|2D�
0,m(vi )covρ (T †

�m, T�m′ ).

(C4)

Altogether, this reconstruction error can be expressed more
compactly by defining the covariance matrix,

C�[ρ] ≡
∑
m,m′

covρ (T †
�m, T�m′ )|m〉〈m′|, (C5)

and the noise matrix,

NV � ≡ M†
V �diag

[(
M−1

V �

)†
M−1

V �

]
MV �, (C6)

where diag[X ] sets all off-diagonal entries of X to zero, in
terms of which,

EV (ρ)2 = 1

n

∑
�

(NV �|C�[ρ]) , (C7)

where (X |Y ) = tr(X †Y ) is a trace inner product.
The result in Eq. (C7) essentially expresses reconstruction

error as a weighted sum of the covariances covρ (T�m, T�m′ )
where the weights are given by the corresponding matrix ele-
ments of the noise matrix NV �. This expression is perhaps the
most physically meaningful form of the reconstruction error
EV (ρ) that we will consider in this paper, but in practice it
turns out that Eq. (C7) is inconvenient and inefficient to eval-
uate for any given state ρ. To find a more practical expression
of reconstruction error, we use the fact that

〈T †
�m〉ρ = (ρ|T †

�m) = tr(ρT †
�m) = tr(T †

�mρ) = (T�m|ρ), (C8)

to expand the covariance matrix as

C�[ρ] =
∑
m,m′

|m〉〈m′|[(ρ|T †
�mT�m′ ) − (ρ|T †

�m)(ρ|T�m′ )] (C9)

=
∑
m,m′

|m〉〈m′|[(T †
�m′T�m|ρ ) − (T�m|ρ)(T †

�m′ |ρ)] (C10)

=
∑
m,m′

|m〉〈m′|I[(T�m′T�m|ρ) − (T�m|ρ)(T�m′ |ρ)],

(C11)

where we define the inversion operator I ≡∑
m(−1)m|−m〉〈m|. We then expand the product T�m′T�m

as

(T�m′T�m|ρ) =
∑

L

gL
�m′m(TL,m′+m|ρ),

gL
�m′m ≡ (TL,m′+m|T�m′T�m) = f L,m′+m

�m′;�m , (C12)

where the (real) factors f L,m′+m
�m′;�m are provided in Appendix

D. Substituting the covariance matrix back into Eq. (C7) and
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replacing (T�m|ρ) → ρ�m, we get

EV (ρ)2 = 1

n

[∑
�,m

(
χV

�m

)∗
ρ�m −

∑
�,m,m′

〈m′|INV �|m〉ρ�mρ�m′

]
,

(C13)

where

χV
LM ≡

∑
�,m,m′

δM,m′+m〈m′|INV �|m〉∗gL
�m′m (C14)

=
∑

�,m,m′
δM,−m′+m〈m|NV �|m′〉(−1)m′

gL
�,−m′,m (C15)

=
∑

�

(NV �|DM |IgL�) (C16)

can be written in terms of the matrices,

gL� ≡
∑
m,m′

gL
�m′m|m′〉〈m|, DM ≡

∑
m,m′

δM,−m′+m|m′m〉〈m′m|.

(C17)

Here DM simply picks off the Mth diagonal of the matrix it
acts on such that (NV �|DM |IgL�) is an inner product of the
Mth diagonal of IgL� with the (−M )-th diagonal of NV �.
Defining the (2� + 1)-component vectors,

|ρ�〉 ≡
∑

m

ρ�m|m〉, |χV �〉 ≡
∑
�,m

χV
�m|m〉, (C18)

we can write the expansion in Eq. (C13) in the vectorized form

EV (ρ)2 = 1

n

∑
�

[〈χV �|ρ�〉 − 〈ρ�|NV �|ρ�〉]. (C19)

Comments on a tight reconstruction error bound

In principle, maximizing the reconstruction error in
Eq. (C19) over all qudit states ρ would provide a tight upper
bound on the reconstruction error for any set of axes V . To
simplify this task somewhat, we first maximize Eq. (C19)
over all ρ’s with tr(ρ) = 1: this maximum occurs at a state
σ �

V whose components are given by

|σ �
V �〉

� �=0≡ 1

2
N−1

V � |χV �〉, |σ �
V,0〉 ≡ 1√

d
|0〉. (C20)

The corresponding maximum of EV is given by

EV (σ �
V )2 = 1

n

∑
�>0

[
1

4
〈χV �|N−1

V � |χV �〉 − 1

d
tr(NV �)

]
, (C21)

where the tr(NV �) terms above come from simplifying the
� = 0 terms of Eq. (C19) with ρ → σ �

V . Although EV (σ �
V )

is a strict upper bound on EV (ρ) over all ρ with tr(ρ) = 1,
this bound turns out to be useless in practice because σ �

V will
generally be a nonphysical state with negative eigenvalues. To
find tight bound on EV (ρ) over the space of physical qudit
states ρ, we also need to constrain ρ to have no negative
eigenvalues. Equipped with σ �

V and EV (σ �
V ), we can expand

EV (ρ)2 = EV (σ �
V )2 − 1

n
‖ρ − σ �

V ‖2
V ,

(C22)
‖X‖2

V ≡
∑

�

〈X�|NV �|X�〉,

where X� ≡ ∑
m (T�m|X ) |m〉 is a vector of the degree-� com-

ponents of X in the polarization operator basis, and ‖X‖V
is a noise-weighted norm of X . Maximizing EV over all qu-
dit states ρ, thus, amounts to finding the closest physical
qudit state ρ to σ �

V with distance measured by the metric

100

101

102

103

ε θ
/d

d = 2 d = 3 d = 4

0.00 0.25 0.50 0.75 1.00
θ

π/2

100

101

102

103

ε θ
/d

d = 10

0.00 0.25 0.50 0.75 1.00
θ

π/2

d = 20

0.00 0.25 0.50 0.75 1.00
θ

π/2

d = 40

FIG. 4. Quantum error scale εθ as a function of the polar angle θ in the tomography method of Ref. [38] for a few qudit dimensions d .
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data
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FIG. 5. Optimum angle θopt as a function of qudit dimension d
for the tomography method of Ref. [38] and a fit to θopt = π

2 (1 − 1
xd )

finding x ≈ 1.34.

DV (X,Y ) ≡ ‖X − Y ‖V . We leave this minimization problem
to future work and note that solving it will likely require
making use of the positivity conditions derived in Ref. [51].
A loose lower bound on ‖ρ − σ �

V ‖V can be found by mini-
mization under the constraint ‖ρ‖ � 1, which may provide a
tighter upper bound on EV (ρ) than that in Eq. (30) of the main
text.

APPENDIX D: POLARIZATION OPERATOR
PRODUCT EXPANSION

The polarization operators on the d-dimensional Hilbert

space of a spin-s system (with s ≡ d−1
2 ) are defined by

T�m ≡
√

2� + 1

2s + 1

s∑
μ,ν=−s

〈sμ; �m|sν〉|ν〉〈μ|, (D1)

where 〈sμ; �m|sν〉 is a Clebsh-Gordan coefficient that en-
forces � ∈ {0, 1, . . . , 2s} and m ∈ {−�,−� + 1, . . . , �}. We
wish to compute the coefficients of the operator product
expansion,

T�1m1 T�2m2 =
∑
L,M

f LM
�1m1;�2m2

TLM,

(D2)
f LM
�1m1;�2m2

≡ (TLM |T�1m1 T�2m2 ) ,

which allow us to simplify the commutators in Eq. (A3) of Ap-
pendix A. Using the symmetry properties of Clebsch-Gordan
coefficients, namely,

〈�1m1; �2m2|LM〉

= (−1)�2+m2

√
2L + 1

2�1 + 1
〈L,−M; �2m2|�1,−m1〉 (D3)

〈�1m1; �2m2|LM〉 = (−1)�1+�2−L〈�1,−m1; �2,−m2|L,−M〉,
(D4)

we can find that the polarization operators transform under
conjugation as

T †
�m =

√
2� + 1

2s + 1

∑
μ,ν

(−1)m〈sν; �,−m|sμ〉|μ〉〈ν|

= (−1)mT�,−m, (D5)

which implies that

f LM
�1m1;�2m2

= (−1)M

√
(2L + 1)(2�1 + 1)(2�2 + 1)

(2s + 1)(2s + 1)(2s + 1)

∑
μ,ν,ρ

〈sν; L,−M|sμ〉〈sρ; �1m1|sν〉〈sμ; �2m2|sρ〉. (D6)

Replacing Clebsch-Gordan coefficients by Wigner 3- j symbols with the identity,

〈�1m1; �2m2|LM〉 = (−1)2�2 (−1)L−M
√

2L + 1

(
L �2 �1

−M m2 m1

)
, (D7)

we can use the fact that 2�2 is always even (because �2 is always an integer) to expand

f LM
�1m1;�2m2

= (−1)M
√

(2L + 1)(2�1 + 1)(2�2 + 1)

×
∑
μ,ν,ρ

(−1)3s−μ−ν−ρ

(
s L s

−μ −M ν

)(
s �1 s

−ν m1 ρ

)(
s �2 s

−ρ m2 μ

)
. (D8)

This sum can be simplified by the introduction of Wigner 6- j symbols, giving us

f LM
�1m1;�2m2

= (−1)2s+M
√

(2L + 1)(2�1 + 1)(2�2 + 1)

(
L �1 �2

M −m1 −m2

){
L �1 �2

s s s

}
(D9)

= (−1)2s+L
√

(2�1 + 1)(2�2 + 1)〈�1m1; �2m2|LM〉
{
�1 �2 L
s s s

}
. (D10)

APPENDIX E: OPTIMIZING THE METHOD OF NEWTON
AND YOUNG

Reference [38] constructs an explicit protocol for spin
qudit tomography, which involves measuring spin projection
along 2d − 1 axes equally spaced at a polar angle θ . However,

this method does not provide any prescription for choosing θ .
Here, we show the importance of making a good choice of θ

and empirically find the optimal value of θopt that minimizes
the corresponding quantum error scale εθ , which controls state
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reconstruction error. To this end, Fig. 4 shows the quantum
error scale εθ as a function of the polar angle θ in the to-
mography method of Ref. [38] for a few qudit dimensions d .
Although a good choice of θ yields an error scale εθ ≈ d (for

the dimensions shown), this error scale can increase by orders
of magnitude for poor choices of θ . In turn, Fig. 5 shows
the optimal angle θopt as a function of the qudit dimension
d together with a fit to θopt = π

2 (1 − 1
xd ) finding x ≈ 1.34.
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