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Atomic force microscopy (AFM) is a technique widely used to image or apply forces to surface-

bound biomolecules in liquid. Traditional methods for imaging DNA and protein-DNA complexes in

liquid have drawbacks: DNA conformations with an anomalous persistence length, low SNR, and/or

ionic conditions detrimental to preserving native protein-DNA interactions. Here, we introduce a

minimally perturbative method for imaging surface-bound DNA that improves data quality and

quantity. In comparison to prior protocols, an eight-fold larger fraction (90%) of 680-nm-long

DNA molecules were quantifiable, and the technique is viable for imaging DNA of many lengths

and proteins in a variety of physiological buffers. In addition to improving AFM imaging, this

work also advances the reliability and accuracy of single-molecule force spectroscopy (SMFS) AFM

experiments. In particular, recent improvements in time resolution and data throughput of SMFS

experiments highlight the need for high-precision, automated characterization of force-induced intra-

and inter-molecular bond ruptures. We describe a new algorithm to automatically identify the

locations of molecular ruptures in SMFS data. In order to improve molecular energy landscape

characterization, we also applied the inverse Weierstrass transform to SMFS data and removed

the energy associated with the AFM force probe, yielding the molecular free-energy landscape.

Combined, these improvements in AFM methodology – minimally perturbative imaging of DNA-

protein complexes, automated detection of molecular rupture events, and energy deconvolution of

force probes – advance the quality and reproducibility of biophysical insights gained from AFM-

based experiments.
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Chapter 1

Introduction

1.1 Atomic force microscopy as a platform for biophysical measurements

The complexity of biological systems necessitates simplification in order to develop scientific

insight. Since biological processes often bridge multiple scales – from atoms and single molecules to

single cells and beyond – the combinatorial complexity of biological interaction confounds simple

explanation. Biophysics, or the physics of living systems, leverages the power of physics-based

models to develop useful simplifications of complex biological systems. Biophysical approximations

provide insight but require trade-offs between model accuracy and generalization. In particular,

physics-based models take a reductionist approach, ignoring difficult-to-model behavior and pro-

viding insight only for a particular subset of problems. In single molecule biophysics, the physical

properties of biological molecules are measured on a per-molecule basis. Due to experimental con-

straints, single molecule studies are often limited to simpler systems than studies which investigate

ensembles of molecules or living cells. In other words, in single-molecule biophysics, the trade-off

between reducing complexity and increasing model applicability often results in precisely studying

a molecule or set of molecules, but measuring the system in relative isolation, compared to a more

complex, native environment.

Despite the simplifications necessitated by single-molecule methods, well-established tech-

niques have yielded decades of impactful research. Fluorescence microscopy excites fluorophore-
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labeled molecules, measures emitted light by the fluorophore, and tracks the motion of labeled

single molecules[1, 2]. A more complicated technique called fluorescence resonance energy transfer

(FRET) microscopy leverages multiple different fluorophores and enables the measurement of inter-

or intra-molecular distances [3, 4]. In contrast to passive observation of emitted fluorescent light,

single molecule force spectroscopy (SMFS) measures the molecular response to applied force via

molecular tethering to a force probe [5–7]. Combinations of SMFS and light microscopy techniques

provide additional measurement power at the cost of added experimental complexity. Ultimately,

some experimental techniques are more appropriate for certain systems due to trade-offs in sample

preparation (e.g. necessity for labels) or measurement constraints (e.g. instrumental time response)

[5].

Atomic force microscopy (AFM, [8]) is a technique widely used to apply forces or image

surface-bound biomolecules. AFM-based imaging characterizes the properties of DNA and diverse

proteins bound to DNA, including RNA polymerase, restriction enzymes, and nucleosomes [9–24].

In addition to imaging, AFM-based single molecule force spectroscopy (AFM-SMFS) has emerged

as an important tool in determining the energetics underlying the folding and unfolding of individual

proteins [25–28], protein-ligand bond strength [29, 30], and other mechanically robust biological

systems [31–35]. This thesis leverages both AFM-SMFS and AFM-based imaging and is motivated

by a desire to improve the insights gained from applying energy landscape reconstruction techniques

to SMFS data (see Chapters 4 and 5) or physical models to topographs obtained by AFM imaging

(see Chapter 3).

A variety of techniques reconstruct energy landscapes or estimate energy landscape parame-

ters by leveraging AFM-SMFS. In Section 1.3, several energy landscape reconstruction techniques

are reviewed, and their practical use is demonstrated using simulated data. The equilibrium tech-

niques reviewed are the inverse Boltzmann technique [36] and the so-called ‘rate-map’ (unfolding

rate versus rupture force) approach [37]. Non-equilibrium techniques for energy landscape recon-

struction are demonstrated by the Jarzynski equality [38] and the rate map transformation [37].
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Figure 1.1: Illustration of AFM imaging operation. (A) A cartoon of a cantilever
poised above a surface, where the surface is color-coded according to its height above an arbitrary
zero point. A laser (green) reflects off of the cantilever onto a quadrant photodiode. Diagram is
simplified and not to scale. (B) As the cantilever moves across the surface, the relative change
in cantilever angle is recorded over time as height. (C) Controlling the x and y position of the
cantilever (blue line) assigns the height at each particular time (B) to a height (color-coded as in
A) at a particular (x,y) position.

A

Time
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t
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The rate map technique relies on the correct determination of event locations, motivating the

automated event detection algorithm of Chapter 4. In addition, the energy associated with the

measurement probe convolves with the biomolecular energy of interest and leads to a corrupted

energy landscape estimation. Chapter 5 demonstrates the first AFM-based validation of the inverse

Weierstrass probe deconvolution algorithm [39]. The goal of automated event detection or probe

deconvolution in AFM-SMFS are identical: to obtain biological insights from AFM-SMFS in an

unbiased and reliable manner.

In addition to enabling energy landscape reconstruction by SMFS, AFM is a powerful imag-

ing platform for measuring the mechanical properties of surface-bound molecules. AFM requires

surface-bound samples for reliable imaging, but adhering a molecule to a surface necessarily reduces

molecular degrees of freedom and may perturb native behaviors or structures from their expected

values. One well-known surface-induced perturbation of native structure is DNA’s distribution

of bending angles (e.g. Figure 1.4 B). In particular, air-based AFM imaging gives the expected

distribution of DNA bend angles [40], but liquid-based AFM imaging historically observes a wider

distribution of bending angles [23]. In other words, AFM imaging of DNA in liquid has historically

measured excessively bendy or flexible DNA, as compared to other bulk or single-molecule meth-

ods. Chapter 3 demonstrates that the spuriously high apparent flexiblity of DNA is due to the

details of the surface-DNA binding, and Chapter 3 provides a simple method for liquid imaging of

surface-bound DNA while obtaining the correct DNA bending angle distribution. In addition, the

imaging and deposition method is compatible with many protein systems and therefore provides a

high signal-to-noise method of imaging protein-DNA interactions in liquid.

1.2 Liquid imaging of biomolecules via atomic force microscopy

In AFM-based imaging, light is reflected off of a microscopic cantilever onto a detector (Figure

1.1 A). Nanoscopic movements of the cantilever are recorded as changes in the position of the
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Figure 1.2: Atomic resolution AFM images of the mica lattice are consistent with its
expected crystal structure. (A) AFM images of the mica lattice. From left to right, each
successive image is twice as large as the first, which is 5 nm by 5 nm. (B) Simplified diagram of the
mica lattice, with the two canonical lattice vectors denoted by a and b. (C) The Fourier transform
of the AFM images in the a direction (â) yields a strong signal near the expected lattice spacing
based on the crystal structure [41]. (D) As panel C, but for the b̂ direction.
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reflected light (Figure 1.1 B). Height topography, or assignment of a particular height over a two-

dimensional matrix of positions, is measured by controlling the position of the cantilever in the

xy-plane of the surface (Figure 1.1 C). For imaging discussed in this work (except Figure 1.2),

‘tapping mode’ imaging will be used, in which the cantilever is transiently in contact with the

surface [42]. Tapping mode is generally more gentle than contact mode imaging, in which the AFM

cantilever is in constant, high-force contact with a surface.

High signal-to-noise images of surface-bound biomolecules require low surface roughness and

a surface binding strong enough to withstand typical imaging forces. Muscovite mica and glass

are two common substrates for AFM imaging of biomolecules due to their relative flatness and

versatility in binding mechanisms. Glass can be etched to achieve nanoscopic smoothness (Figure

1.3) and functionalized with various groups, as described in Chapter 4. Mica is a common substrate

for AFM imaging due to the ease of cleaving mica along its 001 plane and obtaining an atomically

flat surface (Figure 1.2) [9, 10, 43–47]. In addition, cleaved mica has a slight negative charge

[41], which enhances adsorption of positively charged molecules, and the method of Chapter 3

describes how mica’s surface charge can be flipped and thereby enables adsorption of negatively

charged molecules. Reversing the surface charge polarity of mica typically relies on ion-exchanging

mica’s K+ ions with a divalent cation [47] or coating the mica in positively charged polymers [48].

Since many biomolecules of interest are negatively charged at physiological pH (e.g. DNA, many

proteins), the ability to switch the polarity of mica’s surface charge is critical for strongly binding

a diverse set of molecules to the surface and obtaining high-quality images.

The application of mechanical or polymeric models to AFM images yields biophysical insight.

For extended polymers made up of N approximately straight segments of length li, the contour

length, L0, is L0 =
∑N

i=1 li (Figure 1.4 A). Segment bending is quantified by measuring the change

in tangent vectors along the chain, θ(s), as a function of arc distance s =
∑

j lj , where ‘j’ runs

over the segments of interest (Figure 1.4 B). For a two-dimensional worm-like chain with segment

length l, the quantity l
σ2

θ
is known as the persistence length p, where σθ is the standard deviation of
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Figure 1.3: Surface roughness of glass depends on treatment. The surface roughness,
defined as the standard deviation in surface height, is plotted for (from left to right) untreated glass,
glass subjected to a potassium hydroxide (KOH) treatment, and KOH-treated glass immersed in
a solution of silane-PEG (poly-ethylene glycol) for the indicated time, as described in Chapter 4.
Images above the plot are representative of their respective conditions. The approximate roughness
of mica is plotted as a horizontal line (see Figures 1.2 and 3.17).
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θ(s) (Figure 1.4 B, inset) [40]. The persistence length can also be estimated by the average squared

end-to-end distance, < R2 >, as a function of the arc length s between the points (Figure 1.4 C)

[40].

Volumetric and areal measurements complement the polymeric measurements of L0, p, and

R2. The width of a polymer, w(s), may vary along the arc and provide evidence of morphology

changes in the sample (e.g. binding partners, polymer isoform changes, polymer movement) (Figure

1.4 D). The width along the contour is quantified by establishing a direction perpendicular to the

contour, s⊥. For s⊥ of length 2L⊥, given a position ps = [x, y] along the arc and angle θ(s), we

define s⊥(s) = ps + ds · [cos(π
2 + θ(s)), sin(π

2 + θ(s))] for ds which varies from -L⊥ to L⊥. In other

words, s⊥ at a particular point ps at an arc length of s is a line perpendicular to the arc tangent at ps

(Figure 1.4 E, colored lines). The height along this direction, h(s⊥), defines the cross section along

the contour (Figure 1.4 E, inset), and the maximum height also provides a useful measurement for

polymers with known diameters, such as DNA (Figure 1.4 F).

Figure 1.4 (following page): Quantification of polymeric and geometric properties
using AFM imaging. (A) (Top) Cartoon of a simulated 650-nm DNA molecule with a two-
dimensional persistence length, p, of 50 nm. (Bottom) Dotted blue line represents the segments
which sum to the contour length, L0. (B) (Top) The angle between two tangents separated by
contour (arc) length, s, is defined as θ(s). (Bottom, left) The distributions of bending angles
for values of s as indicated. (Bottom, right) Despite the changing variance of the bending angle
distribution, the ratio of the arc length s to the variance in the angle at a constant s remains
constant. (C) (Top) Illustrative definition of the end to end distance, R, between two points A
and B. (Bottom) The average value of R2 (blue circles) follows the expected distribution for a
two-dimensional worm-like chain (green line, see [40]). (D) A heatmap-style topograph, where
color is proportional to height, of a polymer with an apparent bulge (bright area). Green arrows
illustrate the dependence of the width of the polymer on arc length. (Inset) Width of the polymer
as a function of arc. (E) As (D), except three colored lines perpendicular to the contour, s⊥,
illustrate the variability in cross-section. (Inset) The height along each colored line demonstrates
that the cross-sectional area changes as a function of arc length. (F) Three-dimensional image of
the region near bulge, with magenta line overlayed at the maximum height along the contour, h(s),
as indicated by the pink arrow. (Inset) The height as a function of arc length quantifies the increase
in height of the bulge relative to the rest of the polymer.
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1.3 Single molecule force spectroscopy and energy landscape reconstruction

This section reviews techniques for energy landscape reconstruction used in this work. The

techniques described are not comprehensive of the entire field, since it ignores some data collection

methods (e.g. force-jump techniques [49]) and data analysis methods (e.g. the Crooks fluctuation

theorem [50, 51]).

Experimental limitations of SMFS data typically require projecting free energy landscapes

to a single dimension. Since most biomolecules have many atoms (and therefore many degrees

of freedom), a one-dimensional projection is an enormous simplification but often a useful one

[7, 53–55]. Figure 1.5 is an example of a one-dimensional free energy landscape as a function of

the molecular extension. Local minima in the energy landscape are sequentially numbered with a

state index ‘i‘, and arrows denote energy differences or distances to adjacent transition states. As

shown in the inset in Figure 1.5, the local free energy between a state and an adjacent barrier is

well-approximated by the ‘linear-cubic’ model [52]. The free energy difference and extension change

between a state i and the barrier to state j are denoted by ∆G‡
ij and ∆x‡

ij , respectively.

Estimations of ∆G‡
ij and ∆x‡

ij are enabled by identification of transitions between states i

and j in SMFS data. Applying a force F at an extension x tilts the free energy landscape by

−F × x, biasing the diffusion of the molecule along the landscape in a particular direction. In

other words, the application of force in an SMFS experiment biases the frequency of transitions

kij and the states i and j. Since forward and reverse transitions are both possible (i.e. i → j

and j → i), SMFS experiments which sweep over a broad range of forces (and therefore a range of

kij(F )) more accurately measure the distances and energy differences associated with the relevant

transitions. The sections that follow detail three techniques for SMFS data acquisition and analysis

which apply forces, tilt the landscape, and thereby either reconstruct an entire energy landscape

or estimate ∆G‡
ij and ∆x‡

ij .
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Figure 1.5: Illustrative definition of energy landscape parameters. A free energy
landscape is shown as a function of molecular extension (blue line), with parameters taken from
[37]. From state ‘i’ to state ‘j’, color-coded arrows denote the transition energy differences, ∆G‡

ij ,
and the transition distances, ∆x‡

ij . Note that states correspond to well minima. (Inset) A fit to
the final barrier (blue) demonstrates the general applicability of the linear-cubic model [52] for
approximating a local energy barrier.
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1.3.1 Equilibrium techniques for energy landscape analysis

A straightforward method of energy landscape estimation applies a constant force F at a

temperature T and measures the probability of a molecule to be found over a range of extensions,

P (x) (Figure 1.6 A). From elementary statistical mechanics, the energy, G(x), can be calculated

from Boltzmann statistics up to an arbitrary zero energy constant:

G(x) = −kBT · log P (x) (1.1)

where kB is the Boltzmann constant. In practice, the observed extension distribution is

widened by its convolution with the point-spread function of the measurement probe, S(x) (Figure

1.6 A). However, the observed extension can be deconvolved using the following relation [36]:

pi+1(x) = pi(x) + r0[1 − 2|pi(x) − 1
2

|][P (x) − S(x) × pi(x)] (1.2)

where r0 is a relaxation constant, the initial condition is the measured extension (i.e. p0(x) =

P (x)), and ‘×’ represents Fourier convolution. The point spread function can be approximated by

measuring the extension distributions of the system in the absence of any transitions and modeling

the distribution as a Gaussian function with the measured width. Once the point spread function

has been measured, iteratively removing it is straightforward (Figure 1.6 B), assuming convergence

of the landscape (Figure 1.6 C). Once the probability distribution has been deconvolved, the en-

ergy landscape is obtained via Equation 1.1, and the landscape can be converted to a free energy

landscape by tilting by F · x.

In addition to Boltzmann-based reconstruction of equilibrium data, constant-force SMFS data

also yield energy landscape barrier heights and distances (Figure 1.5) via unfolding and refolding

transition frequencies [37]. The following relationship fits the force-dependent transition rate kij(F )
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Figure 1.6: Demonstration of deconvolution of a force probe’s point spread function.
(A) Plot of the true (P (x), purple solid line) and convolved (P (x)⊗S(x), dotted blue line) extension
probability distributions. Point spread function, S(x), is given as the dashed orange line. (B)
Extension probability distributions from iterative deconvolution (i.e. Equation 1.2) of the convolved
probability distribution in panel A. Distributions from earlier iterations are colored darker than
distributions from later iterations, as indicated at each order of magnitude. (C) Extension-averaged
relative error of deconvolved distributions of panel B demonstrate that the deconvolved probability
distribution converges to the correct value. The error is calculated relative to the true extension
distribution from panel A (i.e., P (x)).
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from state ‘i’ to state ‘j’ to the distance between the minima of state ‘i’ and the transition barrier, x‡,

the zero-force transition rate k0, and the energy between the minima of state ‘i’ and the transition

barrier ∆G‡:

log(kij) = log(k0) + {1
ν

− 1)c(F ) + ∆G‡(1 − c(F )1/ν)}, (1.3)

where c(F ) = [1 + νκx‡

2∆G‡ ∓ νFx‡

∆G‡ (1 + (1 − ν)κ(x‡)2

2∆G‡ ), (1.4)

and ν is the barrier shape (either 1/2 or 2/3), κ is the spring constant of the force probe, and

∓ is minus for the forward (unfolding) direction and plus for the backwards (refolding) direction.

Note that when comparing rate maps from constant force and constant velocity techniques (see

Section 1.3.2, below), the force in the constant force measurements, F , should be corrected for the

difference of measurement potentials to F
′ as follows [37]:

F
′ =

F ± κx‡

2

1 + (1−ν)κ(x‡)2

2∆G‡

where the meanings are as before, except ± is a plus in the forward (unfolding) direction and

a minus in the backwards (refolding) direction. The rates are straightforward to obtain by counting

the number and duration of transitions in a force-versus-time trace (Figure 1.7 A–C). The first and

last event must always be ignored, since they provide only a lower bound on the dwell time (or

upper bound on the transition rate) for that particular transition. Once the rates are obtained as

a function of force (Figure 1.7 D), fitting with Equation 1.4 yields the off-rate, energy difference

between the state and the transition barrier, and distance to the barrier from the state (Figure 1.7

E).
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Figure 1.7: Model-based reconstruction of equilibrium single molecule force spec-
troscopy data. (A) Representative samples of 200 second, simulated traces of extension versus
time. Raw data (lighter colors) were generated at 100 kHz, and the darker data are filtered to 1
kHz using a second-order Savitsky-Golay. Data was simulated as described previously [39]. (B)
Probability density of unfiltered extensions from column A. (C) Probability density of filtered ex-
tensions from column A. (D) The distributions of unfolding and refolding times, tunfold and trefold,
for 200 second, simulated extension versus time traces. (E) The average rate of unfolding (kunfold,
red downward triangles) or refolding (krefold, green upward triangles) versus the average of the
folding and unfolding forces. Fit of Bell-Evans model to unfolding data (blue dotted line) does not
capture the curvature as well as the Zhang-Dudko model [37].
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1.3.2 Constant velocity techniques

Constant-velocity measurements provide an alternative method of energy landscape recon-

struction or energy landscape parameter estimation. In constant-velocity experiments, or ‘force

ramps’, the force probe bias (e.g. AFM cantilever stage position) is changed at a constant velocity.

The force-versus-time curves from force ramp experiments are transformed into transition rates

by noting that for any particular transition from state ‘i’ to state ‘j’ under constant force, the

number of molecules transitioning at a particular change in force Pij(F )|dF | must be equal to the

number of molecules transitioning over that time period Pij(t)dt. But the number of transitioning

molecules must be equal to the number of molecules in the state Ni(t) multiplied by the relevant

rate constant kij(F (t)):

Pij(F )|dF (t)| = Pij(t)dt = kij(F (t))Ni(t)dt → kij(F ((t))) = |dF (t)|
dt

Pij(F (t))
Ni(F (t))

(1.5)

This equation is easiest to understand using several examples at different loading rates. For

each loading rate (Figure 1.8 A), we record the number of molecules (or independent force-extension

curves) in a particular state ‘i‘ at a particular time t, yielding Ni(t) or equivalently Ni(F ), where

F is the average force in a particular state (Figure 1.8 B). This requires the accurate detection of

Figure 1.8 (following page): Model-based reconstruction of force ramp (constant
velocity) single molecule force spectroscopy data. (A) A selection of simulated force versus
stage position curves at the nominal loading rates indicated in the lower right. The average force
in the folded and unfolded states (< F (t)folded > and < F (t)unfolded >) obtained from the relevant
regions of all curves are shown as red and purple dotted lines, respectively. (B) The population
of curves in the folded state, Nfolded, as a function of rupture force, FR. (C) The loading rate
as a function of rupture force. (D) The number of transitions from the folded to unfolded state,
N(F →U), as a function of rupture force. Note that this is equal to ∆F ·PN→U in the theory parlance
[37], where ∆F is the bin size. (E) The unfolding rate as a function of rupture force. (F) The
concatenation of all unfolding rate data from panel E, where the colorbar gives the nominal loading
rate. (G) Fitting the data from panel (F) to the Bell-Evans model [56] and Zhang-Dudko model
[37] (blue solid line, black dotted line, respectively) to all of the data from panel (F) demonstrates
the improved fit of the Zhang-Dudko model.
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transition events for every force-versus-time curve at each loading rate tested, which is the subject

of Chapter 4. With the transition events in hand, the force-versus-time curves in a particular state

are combined to yield the average force and loading rate in that state at all times where there is

a rupture (Figure 1.8 A). The state-specific average loading rates and rupture forces as a function

of time facilitate calculating the loading rate ( |dF |
dt , Figure 1.8 C) and unnormalized distribution

of rupture forces (Pij(F (t)), Figure 1.8 D) as a function of time or rupture force FR. Importantly,

Pij(F (t)) is the number of transitions at that particular rupture force divided by the force bin

width. Therefore, the entire distribution will not generally sum or integrate to one. With Pij , |dF |
dt i

,

and Fi in hand, Equation 1.5 yields the rate map as a function of force (Figure 1.8 E–F) and fitting

equation 1.4 yields the relevant energy barrier parameters (Figure 1.8 G).

In addition to transforming non-equilibrium data using the rate map method detailed above,

there are well-established techniques for reconstructing the energy landscape as a function of molec-

ular extension. In particular, the basis for the inverse Weierstrass transform detailed in [39] and

leveraged in Chapter 5 is the Jarzynski equality [38]. This equality relates the free energy change

of a system (∆G0) to the measured work, W , as a function of an experimental control parameter

‘z’ (e.g. AFM stage position) as follows:

exp −β∆G0 =< exp −βW (z) >N ≈< W (z) > −β

2
σw(z), (1.6)

where the average is taken over all members of an ensemble (e.g. many force-extension

curves), and the equality only holds in the limit of an infinitely large ensemble. The approximation

holds in the limit of processes happening close to equilibrium. In addition, this equality assumes

an infinitely stiff force probe; when this condition does not hold, the weighted histogram [57] or

inverse Weierstrass transform [39] should be used to correct for the effect of the probe. Finally,

the landscapes obtained in this manner are still subject to the point spread function of the force

probe, and therefore should be deconvolved as described above (Figure 1.6). Table 1.1 lists common
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tradeoffs associated with the energy landscape techniques presented in this section.

1.3.3 Benefits and trade-offs of techniques
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Figure 1.9: Reconstruction of force ramp experiment using Jarzynski’s equality. (A)
Simulated force plotted as a function of constant-velocity stage position demonstrates transitions
between unfolded and folded states. (B) Heatmap of 50 force-extension curves simulated as in panel
A. (C) The mean work (left, purple axis) and standard deviation of the work (red lines, right axis)
at each z, where the average and standard deviation are taken over the ensemble. Note that the
mean and standard deviation of the work approximate the free energy for high-stiffness probes (see
Equation 1.6) (D) The energy, as calculated using the Jarzynski equality (blue, solid line) or its
approximation (red, dotted line).
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Table 1.1: Comparison of energy landscape techniques.

Technique Limitations Advantages
Rate map
(Non-equil.)
[37]

• Large N (NFEC ∼ 100,
Ntx per v ∼ 103)

• Large v range needed (∼10-
104 pN/s)

• Requires binning – no analytic
transformation to k(F )

• Samples k(F ) over large F
range

• Accounts for linker
• Generalizes to many states
• Necessarily yields kinetics

Rate map
(Equilibrium)
[37]

• Difficult to access k(F ) over
range of F

• Requires low drift over large
time scales

• Constant force measurements
are technically difficult

• Analytic solution to k(F )
• Necessarily yields kinetics

Jarzynski-based
reconstructions
[38, 39, 57]

• Requires high-stiffness probe
• Doesn’t yield kinetic or diffu-

sive information [39]

• Yields landscape over re-
gion, not just landscape pa-
rameters

• Better leverages data
from folding/unfolding
experiments



Chapter 2

Experimental imaging and force spectroscopy protocols

This chapter describes additional details for sample preparation, data acquisition, and data

analysis for imaging and single-molecule force spectroscopy (SMFS) by AFM. The information here

is intended as a supplemental resource for the details in Chapters 3 and 4.

2.1 Imaging via atomic force microscopy

Atomic force microscopy (AFM) images of nucleic or amino acids are usually obtained by

leveraging the atomic flatness and high charge of mica (see Section 1.2) and the capability of AFM

to operate in biological buffers. At physiological pH, many molecules of interest (e.g. DNA, RNA,

and proteins) have the same negative charge as mica [41]. The repulsive force between such neg-

atively charged molecules and the negatively charged mica substrate must be converted into an

attractive force to achieve stable imaging of well-bound molecules (see Chapter 3). As detailed

in Section 1.2, the three-dimensional topographs obtained via AFM reveal geometric information

(e.g. width, height, volume), polymeric information (bending angle distributions), and stoichio-

metric information (e.g. binding probabilities as a function of ligand concentration). Below, I

describe challenges and advice related to obtaining high-quality AFM images and force curves of

biomolecules.
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2.1.1 Sample handling and wetlab techniques

Successful AFM experiments require carefully manipulating and recording many parameters

(e.g. buffer condition, sample concentration, temperature). Often, dozens of individual choices

or parameters lead to a particular experimental protocol. Without sufficient foresight, individual

choices which previously seemed arbitrary or unimportant may prove critical to reliably obtaining

and interpreting high-quality data. When faced with a choice in the laboratory, answering the

following questions serves as a useful exercise to help guide decisions:

• How can this choice improve lab safety?

• How can this choice improve reproducibility?

• How can this choice reduce contamination or potential error?

For example, when faced with the question ‘should the temperature of an organic solvent used

during incubation of surfaces be kept at a known constant?’, the answer should be ‘yes’, since this

answer improves lab safety by preventing a potentially hazardous and unmonitored temperature

change, reduces experimental error due to temperature variation, and improves reproducibility by

ensuring a consistent temperature between subsequent experiments.

Usually, questions regarding safety, reproducibility, and error all have a consistent answer and

solution. If a choice ever conflicts (e.g. something is reproducible but dangerous), safety should

be placed in first priority. If considerations related to safety are at conflict with considerations of

error or contamination, a new solution should be designed to avoid this conflict. Below, I record

my ‘best practices’ for increasing the probability of successful experiments and decreasing the risk

of danger or experimental contamination.
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2.1.1.1 General lab hygiene

Pipettes are used for almost every aspect of work in the lab and therefore deserve special

attention. Since accurate volumes are critical for reproducing scientific results, pipettes should be

regularly (at least once per year) cleaned and calibrated. If they are contaminated by improper

use (e.g. accidentally pipetting a large volume of liquid into the internal shaft of the pipette), they

should be disassembled; thoroughly rinsed with water, ethanol, and water again; dried; and finally

reassembled.

All glass and plastic wear for rinsing or liquid incubation should be thoroughly conditioned

in their respective solvents. If a particular piece of glass or plastic will always be dry (e.g. a teflon

holder for drying slides by N2 gas), the container should first be rinsed in a compatible solvent,

typically water or isopropanol, and then dried with N2 gas. Prior to use, always check solvent

compatibility charts to reduce the risk of contamination. For example, toluene is known to dissolve

high density polyethylene, a common ingredient in many plastic containers [58].

Special care should be taken to reduce the risk of environmental contamination from the air

or devices used for manipulation. For a long incubation (e.g. the three hour functionalization of

Chapter 4 in toluene), reduce dust contamination of incubation chambers and solvent evaporation

by covering the chambers with an inert material (e.g. a glass lid for toluene incubation chambers).

In addition, prior to their use, tweezers and other surface- or cantilever- manipulation tools should

be cleaned with isopropanol, water, then thoroughly dried by wiping in a KimWipe or application

of N2 gas.

2.1.1.2 Protein

Sample degradation is an often-confounding but easily prevented source of systematic error

or experimental failure. Protein samples should generally be stored in an ultra-low (-80 ◦C) freezer,
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Figure 2.1: Deposition of DNA onto NiCl2-treated mica in a dithiothreitol (DTT)-
containing buffer. Image of size 2 µm by 2 µm shows DNA bound to a surface prepared as
described in Chapter 3, except 1 mM of dithiothreitol (DTT) was added to the usual deposition
buffer (10 mM MgCl2, 25 mM KCl, 10 mM HEPES, pH 7.5), before rinsing the surface in the same
DTT-containing buffer, and finally proceeding with the rinsing steps outline in Chapter 3. In other
words, an extra rinsing step is necessary to prevent DTT coming into contact with and thereby
quickly reducing NiCl2.
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to better preserve properly folded protein [59]. Unless otherwise specified, protein should always

be subdivided or aliquotted into smaller volumes at a working concentration, then each aliquot

should be individually flash-frozen (often with 10% volume percentage glycerol). When in doubt

for how to store a protein, consult prior literature and determine consensus storage parameters. As

needed, frozen protein aliquots should be flash-thawed to room temperature and then refrigerated

at 4 ◦C (i.e. on ice) to prevent thaw-induced misfolding [60]. For proteins with solvent-exposed

cysteine residues, keeping a disulfide-reducing agent present in the buffer is often necessary to

prevent oligomerization or misfolding of the protein via non-native disulfide bonds [61]. Note that

one common disulfide-reducing agent, dithiothreitol (DTT), also reduces Nickel [62] and therefore

is sub-optimal for use in the imaging buffers of Chapter 3. If DTT is required (instead of the Nickel-

compatible TCEP), NiCl2 should be replaced by MgCl2 in equimolar amounts in the relevant buffers.

Exposing mica pre-treated with NiCl2 (see Chapter 3) to DTT does not appear to affect image

quality, as long as all DTT is rinsed before any subsequent NiCl2 is introduced into solution (Figure

2.1).

2.1.1.3 DNA

Degradation of double-stranded DNA by nicking is slowed by storing DNA samples at -20

◦C [63]. To further reduce risk of enzymatic degradation of DNA, samples are often stored in

a solution of 10 mM Tris (hydroxymethyl) aminomethane hydrochloride (Tris-HCl) and 1 mM

Ethylenediaminetetraacetic acid (EDTA) at pH 8. EDTA is a chelator of divalent cations and

enhances the stability of DNA, since many DNA-degrading enzymes (DNases) require divalent

cations. Freezing, storage, and thawing occurs in the same manner as described above for proteins

[64]. Especially for DNA substrates longer then a micron (about 3000 bp), all sample manipulation

(e.g. pipetting) should be slow and gentle (less than 50 µL/s), to prevent nicking and preserve the

population of DNA present during storage. Wide-orifice pipettes may also be employed to reduce

the risk of shearing or nicking double-stranded DNA.
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2.1.2 Sample deposition

High-quality AFM images require flat surfaces with well-bound samples. To prepare an

imaging substrate, a mica disk should be secured with epoxy to a metal disk and stored in a dust-

proof container such as a plastic wafer inside of a ParaFilm-sealed pipette box. Dozens of these

metal-epoxied mica disks can be made at a single time, and the disks can be stored for months.

Prior to this epoxying step, anything touching the mica (e.g. the metal disk or plastic wafer) should

be air-dried after rinsing thoroughly with water, isopropanol, and water again in order to reduce

potential contamination. Before deposition of any sample, imaging surfaces should be rinsed with

water and dried with a KimWipe, to reduce dust contamination.

To promote equilibrated attachment, DNA and proteins with acidic isoelectric points (i.e.

negative charges at physiological pH) are deposited onto mica treated with NiCl2. Before deposition,

the DNA and protein (if present) must be mixed to the desired concentrations in the appropriate

buffer. For most imaging applications involving DNA, some divalent and monovalent salt will be

present. As shown in Chapter 3, DNA is typically well-bound with 10 mM MgCl2 and 25 mM KCl

during deposition, but salt concentrations more representative of cellular conditions (3 mM MgCl2

and 50 mM KCl) are also compatible with AFM imaging (Figure 3.11)

In addition to salt concentration, choosing the correct sample concentration is critical for a

successful experiment. Deposition concentrations must be chosen to promote a reasonable number

of molecules per image (and therefore reasonably high data throughput), but high concentrations

will overwhelm the surface and lead to excessive molecular crossings. As a general rule of thumb,

the average distance between the center of a molecule and its closest neighbor should be larger

than twice the radius of the minimum circle enclosing the molecule, Rmin, but the average distance

between neighbors should not be more than 20 Rmin. The concentration of DNA is set by the method

at about 1.25 ng/uL (or about 1 nM for 2000 bp DNA), and the amount of protein (if present) is

determined by the binding affinity of the protein for the DNA and the relative ‘background’ affinity
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of the protein for the substrate. Deposition protein concentrations in the range of 10-1000 nM are

typical.

Deposited DNA or protein-DNA complexes must be allowed to relax on the surface to disfavor

kinetically trapped states. The imaging protocol described in Chapter 3 necessitates a series of

gentle rinses to favor an equilibrated, 2D conformation of DNA (or protein) on the surface and

disfavor the so-called ’kinetically-trapped’ conformation in which a molecule is poorly bound to

the surface and large fractions of its contour are in solution. Gently rinse surface-bound samples

and never expose them to air, since a receding meniscus is capable of exerting large forces on a

surface-bound sample and disrupting binding (Figure 3.12). In the case of surface-bound DNA,

forces from partial de-wetting result in an increase in the fraction of kinetically trapped DNA and

therefore a decrease in the amount of useful data. Put another way, the rinsing should be laminar

and continuous, without any abrupt, macroscopic motion of the liquid droplet off of the surface.

If there is any evidence that a surface may have been partially de-wet, the efficient thing to do is

to prepare another sample, since sample preparation takes minutes and imaging a sample requires

hours or days of time investment. In other words, do not waste time (hours) slowly imaging a

surface which may be ruined, since preparing a new surface is relatively fast (minutes).

Surfaces with bound samples may be stored in liquid for use as a positive control at a later

date. Care must be taken to avoid de-wetting the surface by adhesion of the water droplet onto

any surface (e.g. the top of a plastic wafer) or drying the surface by evaporation. Evaporation can

be slowed considerably, but not stopped, by placing a surface in a closed, plastic wafer inside of a

pipette boxed filled 50-75% with liquid, sealing with ParaFilm, and placing in a 4 ◦C refrigerator.

Over many hours, angstrom-sized precipitates often stably bind to the mica lattice, which increases

the background noise (Figure 2.2).
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Figure 2.2: Nanoscopic precipitates adhere to mica surfaces after many hours of
imaging. (A) 500 nm by 500 nm images of 300 bp DNA taken with an SNL-10A at the
indicated times, where the times are relative to the leftmost image. (B) For each image in A, the
probability distribution of heights is shown. (Inset) Detailed plot for small heights shows that over
time the heights near 0.5 nm become more common, corresponding to the surface precipitates. Note
that the images were taken at different spots on the same surface.
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2.1.3 Data acquisition

The acquisition of publication-quality AFM images requires patience and constant attention

to experimental details. Figure 2.3 is a flowchart illustrating the essential steps for running an imag-

ing experiment, which we describe in detail below. Once a surface has been prepared as described

in Section 2.1.2, the cantilever and surface are loaded. The cantilevers I use most commonly for

imaging of DNA or DNA with bound protein are the Bruker SNL-10A and the Olympus BioLever

Mini. Each cantilever has different physical characteristics and associated tradeoffs, as detailed in

Table 2.1. In particular, the tip radius of the SNL-10A is generally smaller than the BioLever Mini

and therefore capable of producing sharper images, but the BioLever Mini is less prone to drift and

has a much larger range of achievable imaging amplitudes due to its much smaller size and lower

drag.

Table 2.1: Imaging cantilever comparison. Comparing the physical characteristics of the
cantilevers used in imaging studies in this work.

Cantilever Tip Ra-
dius

Cantilever
Length

Benefits Drawbacks

Bruker
SNL-10A

≈ 2 nm 120 µm • Better resolution • Easily dulled
• High sample pressure
• High drift

Olympus
BioLever
Mini

≈ 8 nm 7 µm • Less drift
• Less sample pressure

• Less reflective area
• Poorer resolution

Once a cantilever has been chosen, all parts of the AFM instrument which contact the sample

should be cleaned. In particular, since the AFM is not immune to contamination, the cantilever,

cantilever holder, and AFM stage must be cleaned. The cantilever holder should always be secured

in a housing prior to rinsing, to prevent spilling water onto the electronics. Before securing the

cantilever in the cantilever holder, the holder should be thoroughly rinsed with water, ethanol,

rinsed again in water, and dried. Unless the cantilever is functionalized, the mounted cantilever can
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then be rinsed with water, ethanol, rinsed again in water, dried by application of a KimWipe, then

transferred into the final, desired imaging buffer. In addition to reducing potential contaminates

such as oil from commonly used cantilever gel packs, thoroughly rinsing the cantilever and cantilever

holder helps wash away small (< 1 mm) shards of cantilever which are commonly created when

manipulating cantilevers. Without such rinsing, cantilever shards or contaminants will settle onto

the surface and potentially create experimental difficulties.

After mounting, rinsing, and transferring the cantilever into the desired imaging buffer, the

surface should be centered on the AFM stage, with between 150 and 300 µL of imaging buffer above

the surface, assuming a standard 15 mm-diameter metal substrate. Once the surface is mounted,

the stage should be raised to accommodate the cantilever and prevent crashing the cantilever into

the surface. After securely fixing the cantilever holder (and therefore the cantilever) onto the AFM,

the holder is slowly lowered, until the cantilever is fully immersed in the bubble of the imaging

surface.

Once the AFM-mounted cantilever is brought into contact with the sample liquid droplet,

positioning the cantilever and detection laser focus a few microns above the surface is a pre-requisite

for imaging. Any bubbles on the cantilever (observable as shadows in the live video panel) will

cause drift and interfere with accurate measurement. Bubbles are removed by wetting and de-

wetting the cantilever using the stage motors, or by reloading the cantilever. If the cantilever is

re-positioned, the rinsing protocol should be repeated. Once the cantilever lacks any observable

bubbles on the live video panel, the cantilever should be positioned about 50 µm above the surface,

and the detection laser position should be adjusted to maximize the measured signal (usually by

placing the laser in the center of the cantilever). The surface position can be found by sweeping

the focus down to the metal substrate (which is highly featured and specular), and then slowly

sweeping up until the liquid-mica interface is visible as diagonal lines at the corners of the live

video panel.
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Figure 2.3: Flowchart for AFM imaging operation. Operation starts at the text with
the diamond background, and text to the right of each edge indicates when that edge should be
followed. If there is no text, an edge should always be followed.

Load surface into AFM

Rinse, dry holder

Secure cantilever to holder
Rinse, load into AFM

Wet/dewet
Cantilever

Bubbles visible
in AFM video

Position cantilever above surface

No visible bubbles

Acquire thermal and tune
Set drive parameters

No visible bubbles

Unload cantilever

Bubbles visible
in AFM video

Set free amplitude ~ 10 nm
Set setpoint ~ 5 nm

Not at surface Set imaging parameters
Engage, slowly increase setopint

Already at surface

Approach surface Acquire new cantilever

No additional
drive available

Amplitude < 10 nm
at highest z

Acquire FEC
and determine InVOLS

Amplitude ~ 10 nm
at highest z and triggered

No contact with surface

Start new frame

Contact with surface

Cantilever contaminated

Cantilever broken

Adjust parameters

Image sucessfully aquired
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Figure 2.4: Imaging drive frequency should be chosen near the first thermal resonance
of the cantilever. (A) The power spectral density (PSD, black) of an SNL-10A in liquid exhibits
several resonances. (B) Detailed plot of PSD from panel A (grey, left axis) and deflection amplitude
(red, right axis) near the first thermal resonance. Since the cantilever in liquid and many mechanical
modes of the AFM are excited, the amplitude has a non-trivial dependence on the drive frequency.
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Once the cantilever is positioned above the surface, calibration is required to ensure physi-

cally meaningful measurements. A thermal power spectral density (PSD) should be obtained to

determine the first resonance frequency of the cantilever (Figure 2.4 A). After determining this

frequency, a ‘tune graph’ should be obtained, which is the dependence of the cantilever’s deflection

amplitude on the frequency applied to the piezo stage (Figure 2.4 B). The drive frequency, fdrive,

should usually be as close as possible to the first thermal resonance frequency of the cantilever

(e.g. green line in Figure 2.4 B). Since the transfer function of the cantilever in liquid is highly

non-Gaussian, there may be more than one peak in the ‘tune graph’ near the first thermal reso-

nance, and in this case multiple images should be taken at the peaks in the tune graph near the

first thermal resonance in order to determine the optimal frequency. In other words, if multiple

peaks in the tune graph are close to the first thermal resonance, fdrive should be chosen to obtain

the lowest instrumental background noise.

Armed with a drive frequency close to the first thermal resonance frequency of the cantilever,

the cantilever is moved much closer to the surface in preparation for imaging. The surface approach

should be AC mode (i.e. tapping mode), to prevent damaging the tip by excessive force from a

contact-mode approach. By setting the drive frequency close to the first thermal frequency (Figure

2.4), and choosing an approach free amplitude of several nanometers, the cantilever should be

responsive during the approach and reduce the risk of damaging the tip. As the tip drops towards

the surface, the free amplitude will drop as the cantilever experiences larger drag. As a rule of

thumb for surface detection, a free amplitude of 10 nm (e.g. roughly 300 mV for an SNL-10A)

when the cantilever is positioned several microns above the surface will drop to 5 nm (about 150

mV for an SNL-10A) when the cantilever has found the surface. Therefore, a free amplitude of 10

nm and a set point (indicating the surface position to the AFM) of 5 nm is a reasonable place to

start. In general, a 50% reduction in free amplitude over a few microns is a good indicator that a

surface has been found.

The surface height topographs obtained via AFM require calibration for physically meaningful
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measurements. Once the surface has been reached, the inverse optical lever arm sensitivity (invOLS)

should be measured by pressing into the surface a few tens of nanometers (typically several hundred

millivolts of deflection). Care should be taken to avoid pressing into the surface too hard (and

therefore damaging or blunting the tip) or too soft (and therefore corrupting the invOLS calibration,

which requires a hard-contact measurement). When the invOLS is combined with the thermal PSD

measurement, the spring constant of the cantilever can be calibrated [65].

After obtaining the first thermal resonance, drive frequency, and invOLS, a cantilever poised

a few microns above a surface can be considered ‘calibrated’ and ready for data acquisition for the

purposes of biomolecular imaging. Data acquisition improves over time, especially after the first

hour or two, due to settling of the system. Therefore, for high-quality images, the cantilever should

be left alone and allowed to ‘settle’ before image acquisition. Without this initial settling period,

images may appear noisy, and cantilever-induced motion of surface-bound molecules may be more

pronounced. Before allowing the cantilever to settle for a lengthy period, an image with a ‘large’

scan size (compared to the expected feature size) should be taken in order to verify the surface is

well-populated with the expected sample.

Table 2.2: Imaging suggestions for common systems of interest. Common parameter
suggestions for AFM. Note that the mica lattice is imaged in contact mode, so it only has a set
point.

Sample Scan Size
(nm)

Scan
speed
(Hz)

Set
point
(nm)

Free amplitude
(nm)

Integral
Gain
(au)

DNA (2000 bp) 2000 2 2 4 60
DNA (800 bp) 1000 2 2 4 60
Bacteriorhodopsin 10000 1 4 7 100
Mica lattice 10 15-30 1-2 N/A 40

After settling, the cantilever set point (the amplitude it will have above the surface once

imaging is engaged) should be set to roughly the feature height of interest (Table 2.2). To reduce

the risk of destroying a cantilever, the free amplitude should be adjusted to be equal to the set
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point prior to imaging. When imaging is started with the free amplitude equal to the set point,

the feedback loop controlling the stage position will not lower the stage. Therefore, the drive

voltage should be slowly increased, causing the feedback loop to lower the stage and the cantilever

to gently engage with the surface. Confidence that the surface has been reached is established

by the reproducible appearance of well-defined structures on the surface. Once the surface has

been found by slowly increasing the drive amplitude, a new frame should be started to avoid an

image partially corrupted by the gentle approach to the surface. This method slowly increases

drive voltage (i.e. decreases the tip-sample distance for a fixed set point) to avoid damaging the

cantilever or sample by abruptly colliding the cantilever with the surface and introducing forces on

the scale of nanonewtons.

Different imaging cantilevers and samples necessitate continuous adjustment of imaging pa-

rameters. Worse still, from an ease-of-use perspective, the properties of the same cantilever or

sample may change over time for a variety of reasons. Table 2.2 lists common parameters for an

initial image of a few different samples. I emphasize again that these parameters are strongly

cantilever-dependent, and typically have to be optimized on a per-cantilever, per-sample, and per-

image basis. Table 2.3 lists common tuning decisions for imaging.

2.1.4 Data analysis and processing

Tapping-mode AFM reliably measures the phase and height of a surface and its features,

assuming they are well-bound and do not appreciably move on the time scale of image acquisition

(Section 1.2). Since both the height and phase are relative metrics, data analysis must choose a

zero point. For sparsely populated surfaces, the median value of the height (or phase) provides a

reasonable initial estimation of the background height or surface location.

Thorough subtraction of the image background necessitates removing an approximately poly-

nomial instrumental artifact along each scanning line (Figure 2.5 A). For many images, particularly
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Figure 2.5: Background correction of AFM images. (A) AFM image of a 4000 bp-long
DNA molecule. (B) The same molecule, with a dotted line over an image row with instrument-
induced ‘shadowing’. (C) The height profile along the line shown in panel B, where the dark purple
heights are thresholded to less than two standard deviations of the entire image from the mean,
and the brown line is a third-order polynomial fit to the thresholded data. (D) The same image
as panel B, except each line has been fit as shown in panel C and the fitting polynomial has been
subtracted on a per-line basis.
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those with large scan sizes or fast scan speeds, the AFM superimposes an approximately parabolic

function on the height of each horizontal scan line. In other words, for a given row r, the measured

height hr,meas(p) as a function of pixel number p is approximately equal to hr,true(p)+(a+px+cp2),

where hr,true is the true height, and the coefficients {a, b, c} are related to the interference artifact

height superimposed by the AFM (Figure 2.5 B).

Once an image is properly zeroed and background corrected (Figure 2.5 C), physical param-

eters are extracted from the height as a function of position on the image (see Section 1.2 and

Figure 1.4). For polymeric structures (e.g. dsDNA, actin) which have most of their contour along

the surface, the contour along the polymer can be measured. This yields the contour length, bend

angle, and height of the molecule as a function of distance along the polymer (see Section 1.2).

Some algorithms exist for automatically tracing molecular contours [66], but they have difficulties

tracing flexible molecules with persistence lengths much less than contour lengths or molecules with

significant variation in height (e.g. a protein-DNA complex).

In addition to contour-dependent statistics, molecular volumes are approximated by fitting

models to the height near a feature of interest. For example, a two-dimensional elliptical Gaussian

function with six parameters (height, center in x, center in y, variance in x, variance in y, elliptical

angle) is a reasonable model for local fits to DNA or protein-DNA complexes which are well-adhered

to a surface. Since the radius of a cantilever influences observed widths of objects on a surface [67],

volumes obtained in this manner should be deconvolved [68] in order to estimate absolute volumes

or compare between different cantilevers with generally different tip radii. For samples with DNA,

one method of decovolution measures the cross-sectional area of the DNA and sets it equal to its

expected value (since the radius of DNA is about 1 nm).
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Table 2.3: Imaging troubleshooting . Advice and suggestions for imaging via AFM

Problem Possible cause Action to take
Features appear larger
or blurrier than ex-
pected

Cantilever not in good
contact with sample

Increase integral gain or drive
amplitude

Features appear thinner
than expected

Cantilever applying ex-
cessive pressure to sam-
ple

Decrease integral gain or drive
amplitude

Surface has unexpected,
small-scale periodic fea-
tures

Feedback loop is caus-
ing ringing

Decrease integral gain

Surface is sticky or sam-
ples attach to cantilever

Cantilever is engaged
too hard to the surface

Decrease drive amplitude or
raise set point

Image appears unex-
pectedly featureless

Drive frequency is excit-
ing cantilever noise

Choose a different tune peak
close to first thermal reso-
nance

High apparent move-
ment of sample

Cantilever applying ex-
cessive pressure on sam-
ple

Sweep set point and drive am-
plitude while keeping their ra-
tio approximately constant

Accumulating < 1 nm
tall by ≈ 10 nm wide
features

Impure water used in
buffers

Replace water filter or use bot-
tled water for rinsing

Evaporation of imaging
buffer

Check AFM holder seal; in-
crease vapor pressure.

Unexpected > 1 nm tall
by ≈ 10 nm wide fea-
tures

Mica cleaved poorly or
locally imperfect

Deposit new sample on new
mica surface

Sample appears discon-
tinuous

Tip is too sharp Allow sample to settle, use
duller tip

Extreme drift or inter-
ference

failure of epoxy between
metal and mica

re-make sample

Abrupt loss of surface
tracking

Non-specific adhesion of
molecule to cantilever

De-wet/Wet cantilever a few
times
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2.2 Force spectroscopy and landscape reconstruction via AFM

2.2.1 Sample storage and handling

The storage of DNA and protein samples for SMFS is as described in Section 2.1.1.3. In

brief, DNA samples should be stored at -20 ◦C and protein samples should be stored at -80 ◦C.

Liquid samples should always be flash frozen from room temperature, and frozen samples should

be quickly thawed on a room temperature block. After thawing, samples should generally be kept

at 4 ◦C prior to use. All experiments are performed at room temperature, which is a chilly 19 ◦C

for the room housing the AFMs.

2.2.2 Sample deposition

The technique for covalently attaching protein or DNA to a poly-ethylene glycol (PEG)

coated surface is described elsewhere [69] and in Chapter 4. Here, I provide additional advice for

improving data throughput and quality. Briefly, the covalent attachment strategy is:

• Glass is first cleaned and functionalized with a treatment in potassium hydroxide (KOH)

• Cleaned glass is activated by exposure to ultraviolet light

• Activated glass is incubated with a heterobifunctional PEG linker

∗ One end of the linker is a silane (for covalent attachment to the glass)

∗ One end of the linker is the binding partner for the intended sample (e.g. silane-PEG-

maleimide for a thiol-labeled protein)

• Solvent-rinsed, PEG-coated glass is incubated with the desired sample
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• Excess sample is rinsed away

The functionalization procedure for cantilevers is similar to the surface protocol listed above,

except sometimes the cantilevers use a different chemistry (e.g. maleimide for the cantilever, azide

for the surface).

The most commonly confounding phenotype of problems in a single-molecule force spec-

troscopy (SMFS) experiment is a lack of attachments. When this happens, there are three possible

causes: the sample, the cantilever, or the surface. Combinations of failures are also possible (e.g.

the surface and tip both fail). Below, I lay out strategies for discriminating between these sources

of failure.

Surface functionalization is tested by using a previously-validated cantilever on a new sur-

face, or by incubating test surfaces for an hour in a fluorescent dye labeled with the appropriate

chemistry. Figure 2.6 shows that incubating about 600 nM of DBCO-labeled AlexaFluor647 on a

surface functionalized with Silane-PEG-Azide gives a strong fluorescence signal relative to a nega-

tive control. Good negative controls are an unlabeled glass surface or (better still) a PEG-coated

surface with a ‘fluorophore-orthogonal’ labeling chemistry. For example, a silane-PEG-maleimide

surface would be an excellent negative control for a DBCO fluorophore, since there is no expected

site-specific binding between the maleimide and the DBCO.

Cantilever functionalization is validated by testing the cantilever on a previously working

surface. Typically, DNA surfaces are active for months after successful deposition, assuming they

are kept from drying. Hence, DNA positive controls provide a way of considerably reducing the

debugging search space, and maintaining DNA controls is critical for reducing time determining

the root cause of experimental failure (i.e. determining the culprit among the sample, surface, and

cantilever). A positive control is always a good use of time prior to the day’s ‘proper’ experiments,

whether the control validates a ‘new’ cantilever’s activity on last week’s surface or tests a ‘new’

surface using last week’s cantilever. Consistently taking time to verify the controls are working will
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Figure 2.6: Verifying surface functionalization via fluorescence imaging. Fluorescence
intensity (red circles, mean ± std. dev.) of silane-PEG-Azide surface as a function of concentration
of DBCO-PEG-AlexaFluor647, with representative images above their indicated concentrations.
Fluorophores were incubated for 1 hour in PBS on the surfaces before rinsing with PBS. Imaging
was carried out with a 652 nm emission filter and 631 nm excitation LED. Green line is a fit of the
data yielding a dissociation constant of 620 ± 20 nM (mean ± fitting error), assuming 10 µM was
close to the surface saturation point.
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save time, on average.

Bulk methods should be regularly employed to assay sample activity and general ‘health’.

In particular, since single-molecule experiments are slow, bulk controls should be performed, and

a positive result should be obtained before performing single-molecule experiments. For example,

an electrophoretic mobility shift assay (EMSA) can easily yield sizes of the largest populations

of nucleic or amino acids present in a sample. Unfortunately, EMSA results do not generally give

information about the structure of a sample. In other words, the sample may be the correct size but

be misfolded or (for enzymes) be inactive. However, including a binding partner in an EMSA may

give useful information on the activity or labeling efficiency of the sample. For example, an EMSA

of a sample with the appropriate control lanes can yield the fraction of biotin- or DBCO-labeled

sample as assayed by a shift when incubated with streptavidin or bovine serum albumin labeled

with azide, respectively. Activity assays are generally enzyme-specific, but verifying bulk activity

should be a pre-requisite for any single-molecule study.

2.2.3 Data acquisition

Functionalized cantilevers should always be gently moved into and out of the appropriate

buffer (i.e. never into or out of air or an non-physiological buffer). Other than ensuring the

surface and tip are never exposed to an inappropriate buffer, the process for loading surfaces

and calibrating cantilevers for force spectroscopy is the same as in Section 2.1.3. For example,

cantilevers functionalized with streptavidin are stored in plastic wafers with a small amount of

PBS, and before securing the cantilever to the cantilever holder, a small amount of PBS should

be placed on the region of the holder where the cantilever will be fixed. In general, cantilevers

and surfaces with functionalized biomolecules (as opposed to commercially available, ‘off-the-shelf’

imaging cantilevers) should never be exposed to pure water or organic solvents, to avoid damaging

the biomolecule of interest on the surface or cantilever.
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Figure 2.7: Flowchart for AFM SMFS operation. Conventions are as in Figure 2.3.
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Loading and calibrating a cantilever for a force-spectroscopy experiment is as described for

imaging methods in Section 2.1.3, but acquiring SMFS data has different steps (see Figure 2.7).

Once at the surface, molecules are found by searching a two-dimensional grid (e.g. 30 µm by 30

µm) with between 100 and 1000 points, and a force extension curve is acquired at each point on

the grid. Brief pauses or an event detection algorithm facilitate re-visiting a grid point which

shows an attachment signature (Figure 2.8 A). For BioLever Long cantilevers, drag forces become

appreciable (one pN or more) for approach velocities greater than several hundred nanometers per

second. Therefore, unless the assay of interest is qualitative (e.g. determining surface activity),

approach velocities using BioLever Longs should be limited to 500 nm/s or less (or a loading rate

of about 3 nN/s or less) to avoid introducing errors on the order of 1 pN or higher.

If a surface-bound molecule has appreciable extension at zero force (e.g. a polyprotein), the

nudger panel or a sweep of the x and y positions should be employed to find the attachment point

of the molecule and move the cantilever to that position [70]. A centered molecule which easily

refolds can be repeatedly un- and re-folded for minutes or hours. For the Cypher AFM, a simple

way to refold a centered molecule or to take equilibrium data (long dwells at forces near F1/2, see

[36]) is to program the desired stage positions into the function editor provided by the Asylum

software for the Cypher in the indenter panel.

2.2.4 Data analysis and processing

Analysis of force spectroscopy data necessitates several stages of processing, as shown in

Figure 2.8. In brief, each curve is filtered, zeroed, and aligned to one or more regions in the force

extension curve. These processed curves are used as an input to one or more energy landscape

analysis schemes, as described in Chapter 1.

The first step in processing SMFS data necessitates filtering force-extension curves (FECs)

in order to reduce data size and processing time. Typically, a second-order Savitsky-Golay filter



46

[71] is used, since it excels at preserving edges (Figure 2.8 A).

After filtering the data, the separation and force of the FEC must be zeroed. Zeroing the

data obtained from modified cantilevers is often complicated by an optical interference artifact

which corrupts the measured deflection voltage (and hence the measured force) [72]. Fortunately,

for relatively drift-free data, the artifact is a simple function of the stage position (Figure 2.8

B). Therefore, a smooth spline fit to the approach portion of the force-extension curve (hereafter

‘approach’) provides an excellent approximation to the optical interference which can then be sub-

tracted from the retract curve (Figure 2.8 C–D). After subtracting out any interference artifact

(and assuming minimal drift and drag force), the zero force is estimated as the mean force after the

final molecular detachment in the retract, and the zero separation is approximated by the value of

the separation at the first time when the force is equal to the zero force in the rupture curve.

Even after zeroing, overlaying multiple FECs necessitates alignment, since the curves exhibit

high apparent variation due to tip attachment location or heterogeneity in linker length. Aligning

to a well-characterized and obligate rupture event typically yields higher-quality results (Figure

2.8 E). If a particular transition is of interest, the closest obligate rupture event to that transition

should be used to improve the local alignment at that event. Rupture events can be detected using

the algorithm discussed in Chapter 4.

Figure 2.8 (following page): Processing AFM force-extension curves (FECs). (A)
A plot of the force applied during the approach (red) and retract (blue) portion of the cantilever
movement. Raw data is 50 kHz, smoothed data is 400 kHz. (Inset) A detailed plot of the low-force
interference artifact present in both the approach and retraction. (B) The raw force during the
approach curve (light red) is plotted alongside a fit of a spline to the force as a function of the stage
position. The spline is only fit above the surface as defined by the trigger force and loading rate.
Therefore, for small stage positions the spline is set to its boundary value. (C) The interference
artifact and zero force offset are greatly reduced by subtracting the approach spline of panel B from
the filtered data from panel A. (Inset) A detailed plot of the low-force behavior demonstrates the
subtraction was successful. (D) As panel C, but the data are now plotted at force-versus extension.
(E) A detailed plot of the region in panel D where a molecule is present. A freely-jointed chain
model (black dotted line) is fit to the region preceding the final rupture.
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Once the curves are aligned, energy landscapes are reconstructed using non-equilibrium meth-

ods like the Inverse Weierstrass Transform (Chapter 5), reconstructed using equilibrium methods

such as the Inverse Boltzmann (Section 1.3.1), or energy landscape parameters are calculated via

other methods (e.g. Equation 1.4).



Chapter 3

Imaging DNA Equilibrated onto Mica in Liquid using Biochemically Relevant
Deposition Conditions

Reprinted (adapted) with permission from:

Patrick R. Heenan and Thomas T. Perkins. Imaging DNA Equilibrated onto Mica in Liquid Using

Biochemically Relevant Deposition Conditions. ACS Nano, 13(4):4220–4229, April 2019.

Copyright (2019) American Chemical Society.

3.1 Abstract

For over 25 years, imaging of DNA by atomic force microscopy (AFM) has been intensely

pursued. Ideally, such images are then used to probe the physical properties of DNA and charac-

terize protein-DNA interactions. The atomic flatness of mica makes it the preferred substrate for

high signal-to-noise ratio (SNR) imaging, but the negative charge of mica and DNA hinders deposi-

tion. Traditional methods for imaging DNA and protein-DNA complexes in liquid have drawbacks:

DNA conformations with an anomalous persistence length (p), low SNR, and/or ionic deposition

conditions detrimental to preserving protein-DNA interactions. Here, we developed a process to

bind DNA to mica in a buffer containing both MgCl2 and KCl that resulted in high SNR images

of equilibrated DNA in liquid. Achieving an equilibrated 2D configuration (i.e., p = 50 nm) not
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only implied a minimally perturbative binding process, it also improved data quality and quan-

tity because the DNA’s configuration was more extended. In comparison to a purely NiCl2-based

protocol, we showed that an eight-fold larger fraction (90%) of 680-nm-long DNA molecules could

be quantified. High-resolution images of select equilibrated molecules revealed the right-handed

structure of DNA with a helical pitch of 3.5 nm. Deposition and imaging of DNA was achieved

over a wide range of monovalent and divalent ionic conditions, including a buffer containing 50

mM KCl and 3 mM MgCl2. Finally, we imaged two protein-DNA complexes using this protocol:

a restriction enzyme bound to DNA and a small three-nucleosome array. We expect such deposi-

tion of protein-DNA complexes at biochemically relevant ionic conditions will facilitate biophysical

insights derived from imaging diverse protein-DNA complexes.

3.2 Introduction

Atomic force microscopy (AFM) is widely used to image and thereby characterize the proper-

ties of DNA and diverse proteins bound to DNA, including RNA polymerase, restriction enzymes,

and nucleosomes [9–24]. Biophysical insights arise by acquiring images with a high signal-to-noise

ratio (SNR) and rely upon preserving the native properties of protein–nucleic-acid complexes that

can vary strongly with ionic conditions. Tapping-mode imaging in liquid rapidly emerged as the

imaging modality of choice as it minimizes the lateral forces that can damage or disrupt fragile

biological samples [42]. Unfortunately, a complementary and consensus method for preparing DNA

and protein-DNA samples has yet to emerge. For instance, current protocols for imaging DNA in

liquid capture DNA in compact, mechanically unequilibrated conformations that hinder analysis

and interpretation. An ideal protocol would be rapid, preserve the native properties of the DNA

and protein-DNA interaction in liquid, and yield high SNR images. Because of the lack of such

an accessible protocol, protein-DNA complexes are still often imaged in air after rinsing them in

ultrapure water [74–76], a distinctly non-physiological protocol.



51

Mica is the preferred substrate for high SNR images due to the simplicity of generating

clean, atomically flat substrates. For imaging in liquid, two main strategies have emerged to bind

negatively charged DNA to negatively charged mica: mica derivatized with a positively charged

silane [11] and Ni2+-treated mica [47, 77], where Ni2+ ions have been preferred over Mg2+ due

to stronger binding of the DNA to mica that facilitates imaging [47]. However, each technique

presents important drawbacks. For instance, condensation and/or clumping of DNA can occur on

silanized mica in the presence of divalent cations [78]. For Ni2+-treated mica, it has been difficult

to deposit and image DNA when monovalent cations are present [79–81]. Yet, numerous ensemble

protein-DNA assays contain both MgCl2 and a monovalent salt (e.g., KCl or NaCl). Hence, to

minimally perturb protein-DNA complexes, one should deposit them in a buffer containing both

MgCl2 and KCl and image in liquid, a difficult regime for AFM studies.

The benefits of silanized mica, including those prepared with silatranes [82], are that they bind

DNA under a relatively broad range of buffer conditions [23, 48]. Two drawbacks of silanized mica

are (i) the time needed to prepare silanized surfaces, and (ii) the reduced SNR of the images due to

higher surface roughness, a drawback that is partially mitigated when using a more time-intensive

sample preparation process [11, 23, 83]. A notable recent application of silanized mica in liquid [23]

was successfully deducing the correct persistence of DNA (p ≈ 50 nm) [84], indicating such images

can yield the native backbone stiffness of DNA. To do so, however, the authors needed to apply a 3D

worm-like chain (WLC) model to analyze select 2D conformations of DNA. This analysis indicates

the DNA was rapidly absorbed and thereby adopted a “kinetically trapped” polymer configuration

[17, 23, 48]. If a 2D WLC model is used to analyze the fraction of interpretable conformations,

then the derived p is ≈ 25 nm, well below the consensus value of p. As expected for such a low

apparent p, kinetically trapped DNA molecules have a more compact configuration and thereby an

increased number of multiple strand crossings that hinder analysis (Figure 3.1 A, red). In contrast,

if the deposition process achieves an “equilibrated” 2D WLC configuration, the conformations are

more extended (Figure 3.1 A, green) and thus a higher percentage of conformations that contain
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Figure 3.1: Configuration of DNA on mica depends on the details of the deposition
process. (A) A cartoon illustrating AFM imaging of DNA in two different configurations: an
extended, equilibrated one (green) and a compact, kinetically trapped one (red). Yield is defined
as the ratio of DNA configurations containing one or zero strand crossings divided by the number
of total molecules fully contained in a set of images. The persistence length (p), a measure of
polymer backbone stiffness, is determined by the angle between tangent vectors (θ) along the path
length s using a 2D WLC model. Credit: S. Burrows/JILA. (B) An AFM image of DNA in liquid
when deposited under biophysically relevant ionic conditions (10 mM MgCl2 + 25 mM KCl) and
subsequently imaged in 10 mM NiCl2 + 25 mM KCl after pre-treating the mica with 100 mM
NiCl2. The yield was high (90%) and analysis of the resulting DNA configurations yielded the
correct persistence length (≈ 50 nm). (C) An image of DNA deposited on mica at 10 mM NiCl2 +
25 mM KCl and imaged in the same buffer after gentle rinsing. (D) An image of DNA deposited
at 25 mM KCl on mica coated with APTES. All solutions were buffered with 10 mM HEPES
(pH 7.5). We note that these conditions were not optimized for the NiCl2 deposition buffer and
APTES-derivatized mica protocol used in panels, C–D respectively. All images are 2×2 µm2 and
are colored using the same vertical scaling. Acronym: APTES, (3-Aminopropyl)triethoxysilane.
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zero or one strand crossings. Quantitatively, a DNA molecule is defined as equilibrated if analysis

of its 2D conformation with a 2D WLC model yields the correct of value of p, a definition consistent

with prior DNA imaging studies [23, 40]. Such equilibration is distinct from other studies that have

observed real-time adsorption and desorption of local segments of DNA from bare mica in liquid

[85].

In Ni2+-treated mica, the interstitial K+ ions at the surface of the mica lattice are ion

exchanged with Ni2+, yielding a positively charged surface [79, 86]. The DNA is typically deposited

in the presence of ~1–20 mM NiCl2 [47, 86, 87]. The benefits of Ni2+-treated mica are that it yields a

higher SNR and requires less preparation time than silanized mica. There are, however, drawbacks:

[23] (i) the resulting DNA configurations are kinetically trapped, when imaging in liquid [40];

(ii) non-physiological ionic conditions (NiCl2 with little or no monovalent cations) are required

to achieve sufficiently tightly bound DNA that in turn yields interpretable images [23, 47, 79];

and (iii) extensive tuning of buffer conditions [47, 79, 88]. For completeness, as noted above,

a popular protocol deposits protein-DNA complexes onto Ni2+-treated mica followed by rinsing

with ultrapure water and then imaging in air [41, 87, 89]. While such a protocol has achieved

equilibrated DNA when imaging in air, [40] we avoided this class of protocols to preserve native

protein-DNA interactions. Moreover, a recent study shows partial conversion of DNA’s structure

from the traditional B-form to A-form when bound to Ni2+ treated mica in air [78]. Summarizing,

the consensus in the field is that stable DNA imaging on Ni2+-treated mica requires a narrow

window of ionic conditions (e.g., Ni2+ cations in the absence of monovalent cations) [23, 79, 83].

Here, our goal was to develop a simple and reproducible protocol for acquiring high SNR

images of equilibrated DNA in liquid when deposited at biochemically relevant ionic conditions (e.g.,

10 mMMgCl2 + 25 mMKCl). Our protocol was not based on a single modification to an established

deposition scheme, but instead on a set of changes including pre-incubating the mica with 100 mM

NiCl2, gentle rinsing, and never dewetting the sample. For increased robustness during imaging, we

subsequently exchanged an equimolar concentration of NiCl2 for MgCl2. Analysis of the resulting
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DNA configurations yielded the correct persistence length (≈ 50 nm) when using a 2D WLC model

and did so over a wide variety of monovalent salt concentrations. These equilibrated configurations

were more extended (Figure 3.1 B) than when 10 mM NiCl2 replaced the 10 mM MgCl2 in the

deposition buffer (Figure 3.1 C) or the DNA was deposited onto silanized mica (Figure 3.1 D).

Importantly, our protocol used only standard, commercially available reagents, took ~5 min, and

worked over a range of DNA substrate lengths (300–2,000 bp) and in a standard commercial AFM.

Unexpectedly, divalent cations in the imaging buffer were not required; we successfully imaged

DNA on mica pre-incubated with 100 mM NiCl2 when using an imaging buffer containing only

monovalent ions albeit at some loss in data throughput and a reduction in p (35 nm). Biophysical

applicability was demonstrated by imaging two protein-DNA complexes, a restriction enzyme bound

to DNA and a small nucleosome array.

3.3 Results and Discussion

We first present the final protocol, then discuss the process of achieving this protocol and

how it generalizes to an unexpectedly broad range of ionic conditions for deposition and imaging,

and finish by imaging a pair of protein-DNA complexes. In developing our protocol, we used two

primary metrics: yield and persistence length. Yield was defined as the ratio of DNA configurations

containing zero or one strand crossing divided by the number of total molecules fully contained

within a set of images; such configurations facilitate analysis and the effect of proteins on the

DNA conformation. Persistence length was determined from the 2D WLC model by analyzing the

average tangent angle as a function of arc length along the DNA for molecules displaying zero or

one crossing (Figure 3.7) [40, 90]. Achieving a persistence length of ≈ 50 nm—in agreement with

ensemble [84] and single-molecule force-spectroscopy [23, 91, 92] studies—would therefore reflect

DNA bound to the mica in an equilibrated state (see Methods).
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3.3.1 Rapid and biochemically relevant DNA deposition protocol

Our final protocol consisted of three main steps (Figure 3.2). In the first step, we placed a

20-µl drop of unbuffered 100 mM NiCl2 onto freshly cleaved mica for 1 min followed by rinsing

with ultrapure water and drying by touching the mica surface with filter paper. Importantly, this

step— before depositing any DNA or protein-DNA complexes—was the only time the surface was

dried and indeed the method of drying affected the final outcome (Figure 3.8). In the second step,

we deposited a 20-µl drop of dilute DNA in Deposition Buffer [10 mM MgCl2, 25 mM KCl, 10 mM

HEPES (pH7.5)] onto the mica for 2 s before gently rinsing with 9 ml of Deposition Buffer (see

Methods for details). Successful imaging of the DNA after such extensive rinsing demonstrated

that DNA stayed attached to the Ni2+-treated mica in the presence of 10 mM MgCl2. Finally, in

the third step, we rinsed the mica with Imaging Buffer [10 mM NiCl2, 25 mM KCl, 10 mM HEPES

(pH7.5)] where the NiCl2-containing buffer trapped the equilibrated state of the DNA bound to the

mica by increasing the DNA-mica interaction strength. This entire process starting from cleaving

the mica to loading the sample into the AFM typically took ~5 min.

3.3.2 Improved protocol relies upon a series of refinements

Our final protocol evolved via a series of modifications that collectively were critical to achiev-

ing high yield while minimizing the influence of the substrate on the nanomechanics of the DNA,

as evidenced by the deposited DNA adopting extended conformations with the correct persistence

length. For conciseness, a subset of the deposition conditions tested are shown in Figure 3.3 to

illustrate sequential improvement. Figure 3.3 A shows representative images of the DNA configu-

rations at select steps along this evolution accompanied by a summary of the deposition conditions

at each step. The change in the conditions between the steps is highlighted in blue. Figure 3.3

B–C reports the yield and average persistence length of analyzed molecules. We note that these

data (images, yield, and persistence length) were representative of our results at each step, not
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Figure 3.2: Rapid three-step protocol for preparing DNA for imaging on mica in liquid.
This protocol consisted of three main steps. First, freshly cleaved mica was incubated with NiCl2
at a ~10-fold higher concentration than traditionally used, rinsed with ultrapure water, and then
gently dried. Second, dilute DNA was deposited onto the Ni2+-treated mica at biochemically
relevant ionic conditions and then the mica was extensively rinsed with deposition buffer. In the
final step, the equilibrated configuration of the DNA was fixed for more robust imaging by increasing
the interaction between the DNA and the mica by using an imaging buffer that contained 10 mM
NiCl2. As discussed in the text, imaging in NiCl2 was not required.
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necessarily the best achieved. We did not optimize intermediate steps along the process but rather

looked for a set of conditions that led to a simple and robust deposition protocol at biochemically

relevant conditions. In total, over 2,500 molecules were analyzed in this work when including the

Supporting Information.

The starting point for our modifications featured ionic conditions typical of Ni2+-treated mica

protocol (10 mM NiCl2 in the pre-treatment, deposition, and imaging buffers with a 2 mL rinse). As

expected, these conditions resulted in a high proportion of kinetically trapped molecules that led to

a low yield and persistence length (Figure 3.3 A, Step 1). By increasing the concentration of NiCl2

used to pre-treat the mica, we marginally increased the yield (Figure 3.3 A, Step 2). Perhaps more

importantly, we observed that the uniformity of the DNA on the surface dramatically increased

(Figure 3.9), presumably because the higher NiCl2 concentration overcame the previously described

patchiness of Ni2+ on mica when incubating at 15 mM NiCl2 [86]. [Note, uniformly charged Ni2+-

treated mica may be broadly useful in a variety of AFM applications. As a proof of principle, we

imaged the 2D lattice of bacteriorhodopsin (Figure 3.10)].

Next, we replaced the NiCl2 in the deposition and imaging buffers with MgCl2, which led to

a fraction of the DNA molecules exhibiting the correct persistence length (Figure 3.3 A, Step 3).

However, the fraction of molecules exhibiting that equilibrated confirmation was low due, in part,

to the weak DNA-mica interaction. In other words, these initial imaging experiments with only

MgCl2 in solution featured well-equilibrated DNA, but the DNA was too weakly bound for reliable

tapping-mode imaging. We note that this intermediate finding is consistent with previous studies

in air [40] and liquid [47], though our final protocol does allow us to deposit and image in buffer

containing MgCl2 and KCl but, notably, no NiCl2. In other words, NiCl2 in the final buffer is

not necessary but improves data quality by binding the DNA more strongly to the surface (Figure

3.11); successful imaging in NiCl2 is therefore less stringent in its requirement of gentle imaging

conditions (e.g., low-amplitude tapping, see Methods for details).
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Figure 3.3: Improved DNA deposition required a sequence of refinements. (A) A
set of tapping-mode images of DNA in liquid deposited under different deposition protocols as
summarized in each box. The change between each deposition process is highlighted with blue text,
and protocols associated with images are denoted with magenta boxes. (B–C) The percentage yield
of interpretable DNA molecules and their corresponding persistence length (p) is depicted below
each protocol. These values were computed from ~90 DNA molecules per condition with necessarily
more images acquired at deposition protocols with a poor yield. Error bars represent the standard
deviation for the yield and the fitting error for the persistence length. Persistence length was
deduced using a 2D worm-like chain model. Solid symbols are associated with the images shown
in panel A.



59

We next combined the merits of depositing in MgCl2 (to facilitate DNA equilibration) with

imaging in NiCl2 (for more robust imaging)(Figure 3.3 A, Step 4). A useful analogy may be

found in film photography, where an image is first developed before it is fixed or stabilized. In

this analogy, the surface-bound DNA is the image, MgCl2-based equilibration is the development

process, and the NiCl2-based imaging buffer is the fixing procedure. We continued to refine our

deposition process to enhance the yield of molecules showing only one or zero strand crossings by

reducing the deposition time and increasing the DNA deposition concentration (Figure 3.3 A, Step

5). Although the underlying mechanism for this improvement is unclear, it was experimentally

reproducible across multiple samples on multiple days. Finally, we found that extensive (9 mL),

but gentle, rinsing improved the equilibration of the DNA onto the mica (Figure 3.3 A, Steps 6–7;

see also Figure 3.2, Step 3). Introducing a small tilt during the extensive rinsing further improved

yield, presumably because it helped avoid accidental dewetting (Figure 3.12) and the resulting high

forces generated by a receding meniscus on a surface-bound DNA [i.e., molecular combing (F > 65

pN)] [93, 94].

3.3.3 High yield of equilibrated DNA on mica in liquid

By analyzing images acquired with our final protocol, we quantified the yield and the persis-

tence length. The yield was 90% when imaging 680-nm-long DNA molecules [N = 142], an 8-fold

improvement over depositing the DNA under identical DNA concentration and total ionic strength

but substituting 10 mM NiCl2 for the 10 mM MgCl2 and rinsing with 2 mL of buffer (N = 116).

Analysis of the DNA images yielded an average persistence length of 46.8 ± 0.6 nm (mean ± fitting

error; N = 126)]. (Figure 3.3 C ; Figure 3.7), demonstrating the analyzed molecules had adopted

a 2D equilibrated configuration on the mica. Indeed, of those molecules that contributed to the

90% yield, about 20% contained a looped configuration, consistent with expectations from a simple

simulation that did not account for excluded volume effects (Figure 3.13). As a cross check, we

deduced p from the distribution of end-to-end distances as a function of arc length, yielding p = 45



60

± 4 nm [mean ± fitting error (Figure 3.14)] in quantitative agreement with p derived from the tan-

gent vectors analysis. Finally, we note that the values for persistence and contour lengths obtained

from human-annotation (see Supporting Information) were consistent with the values obtain using

an automated analysis routine (Figure 3.15) [66].

3.3.4 High-precision measurements of DNA conformation

To quantify the SNR of the resulting images, we first measured the height of the DNA bound

to mica using a metric based on the maximum height of each pixel along the spline defined along

the full contour length of each molecule, rather than a single line or set of line scans per molecule

( Figure 3.16 A–B). The results yielded 2.0 ± 0.3 nm [mean ± Std. Dev.; Nmolecules = 100 (Figure

3.16 C)] in quantitative agreement with the DNA’s width (2.0 nm) [95]. Such agreement reflects

the gentle imaging conditions, akin to earlier results that measured a height of 1.9 ± 0.2 nm when

using peak-force tapping set to 40 pN [81], with the advantage that the tapping-mode imaging

used here leads to higher image acquisition rates. To quantify the noise, we measured the average

surface roughness of bare mica, Ni2+-treated mica, and APTES-coated mica (Figure 3.17), yielding

1.14 ± 0.07 Å, 1.95 ± 0.06 Å and 4.3 ± 0.2 Å (mean ± Std. Dev.), respectively. Hence, we have

measured the correct height for DNA and at a SNR of 10, a high SNR compared to traditional

AFM imaging of DNA [81].

To illustrate the quality of the resulting images, we show a gallery of representative DNA

configurations (Figure 3.4 A). The average persistence length for the six molecules shown is 50.8

± 0.9 nm (mean ± SEM), similar to the persistence length determined for all molecules analyzed

using the deposition protocol depicted in Figure 3.2. High-resolution scans of select segments of

individual molecules revealed the right-handed helical structure of DNA (Figure 3.4 B). The helical

pitch of DNA has been previously resolved in liquid [81, 96] with clearer images recently achieved

when using frequency-modulated AFM [97, 98]. Here, using tapping-mode imaging, we quantified
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Figure 3.4: Images of individual DNA molecules highlight the resulting high signal-
to-noise ratio. (A) A set of representative raw tapping-mode images of DNA in liquid selected
from a larger scan area (2×2 µm2) with traditional flattening. (B) An exemplary image of the
double helix of DNA acquired using a tip featuring a sharper tip radius (rnom ≈ 2 nm) and smaller
pixel size (0.5 Å) than those used in the remainder of the paper (see Methods). This image was
fit with a third order, two-dimensional spline to subtract the background, then smoothed with a
Gaussian with a width of two pixels (1 Å).
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the helical pitch of equilibrated DNA to be 3.51 ± 0.04 nm (mean ± SEM) (Figure 3.18) based on

15 images from 4 different molecules and 3 different cantilevers. Our result agrees with ensemble

enzyme digestion studies that report a helical pitch of 3.6 nm [99]. This high-resolution study was

facilitated by using a cantilever featuring a sharper tip radius [rnom ≈ 2 nm (Bruker SNL-10A)]

than used in the rest of the paper [rnom ≈ 8 nm (Olympus BioLever Mini)] and by having the

fast-scan axis parallel to the DNA axis. Approximately, one out of every three of these sharper

cantilevers resolved the helical pitch of select DNA segments.

Quantification of the DNA’s contour length agreed within 1% of the expected length (Figure

3.19), when using the standard rise per base pair for B-form DNA (0.34 nm/bp). [Note, as a counter

example, DNA imaged in air on mica had a 20% reduction in contour length after depositing in

MgCl2 consistent with the DNA adopting a partial A-form structure, as confirmed by spectroscopic

studies.] [78] Successful application of our protocol was not restricted to relatively long DNA, but

also worked well for 300-bp long DNA (Figure 3.20). Summarizing, we measured the correct physical

properties of DNA (persistence length, rise per base pair, width, and helical pitch) when imaging

in liquid.

3.3.5 Depositing and imaging DNA under biochemically relevant ionic conditions

Our deposition protocol performed well across a wide range of monovalent and divalent

combinations. For example, as the concentration of KCl in the deposition buffer was varied from

0 to 75 mM at fixed MgCl2 concentration (10 mM), the yield and the persistence length remained

essentially unchanged (Figure 3.5 A–B), indicating the DNA continued to adopt an equilibrated

conformation. A global fit to the dependence of p as a function of monovalent ionic strength [100]

yielded 49.6 ± 0.4 nm (mean ± fitting error) (Figure 3.21), again consistent with an equilibrated

2D conformation. Equally important, the quality of the resulting images remained high (Figure 3.5

C). At the highest KCl concentration tested (225 mM), the yield remained high but the persistence
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Figure 3.5: Equilibrated DNA deposited across a broad range of monovalent ionic
conditions. (A–B) The percentage yield of interpretable DNA molecules and their corre-
sponding persistence length (p) plotted as a function of monovalent ionic concentration at fixed
MgCl2 (10 mM). Closed symbols are associated with images shown in panel C. For comparison,
yield and persistence length acquired under typical published conditions [10 mM NiCl2 or APTES-
functionalized mica] are shown. The NiCl2 + KCl and APTES + KCl data points were determined
from DNA deposited as in Figure 3.1 C and Figure 3.1 D, respectively. Error bars represent the
standard deviation. (C) Sets of three representative images plotted vertically acquired at 0, 2.8, 8.3,
25 and 75 mM KCl. Nanoscale precipitates became prevalent ≥75 mM KCl but the configuration
of individual DNA molecules could still be traced and hence persistence length determined.
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length decreased to ~35 nm (Figure 3.5 A–B). At the higher KCl concentrations (≥ 75 mM), there

were also some small surface artifacts (several nm wide by 1 nm tall), presumably salt crystals.

Unexpectedly, we could deposit and image in 3 mM MgCl2 and 50 mM KCl (Figure 3.11),

ionic conditions typical of many protein-DNA assays. As expected the persistence length remained

approximately unchanged (~ 55 nm), but there was a reduction in yield to ~60% and successful

imaging required gentle imaging conditions. We could also reduce or eliminate the divalent salt

in the deposition and imaging buffers (MgCl2 and NiCl2, respectively) after pre-treating the mica

with 100 mM NiCl2. In the absence of any divalent cations, the yield was reduced from ~90%

to ~50% and p decreased to ~35 nm, but the configuration of individual molecules remained well

resolved (Figure 3.22). Overall, the robustness of our protocol to variations in KCl and divalent

ion concentrations show that our methodology produced high-quality images of DNA deposited on

Ni2+-treated mica over a wide range of monovalent and divalent salt concentrations, a regime that

was previously thought inaccessible. That said, it remains critical to deposit with MgCl2 [or CaCl2

(see below)] in lieu of NiCl2 to equilibrate the DNA on the mica. Replacing MgCl2 with NiCl2 in

our deposition buffer while keeping the rest of the final protocol the same led to kinetically trapped

molecular configurations (p ≈ 25 nm) (Figure 3.23), recapitulating earlier results [40].

3.3.6 Imaging protein-DNA complexes in liquid

To demonstrate the broader applicability of our protocol, we next imaged two protein-DNA

complexes: a restriction enzyme bound to DNA and a three-nucleosome array (Figure 3.6). Re-

striction enzymes, which cleave DNA at specific sequences, have been repeatedly studied by AFM

[16, 18, 19, 101, 102]. BspMI is a type IIs restriction enzyme that binds to the sequence 5’-

ACCTGC-3’ and cleaves down stream of this recognition site. Cleavage occurs efficiently when

BspMI binds to and bridges two recognition sites[103]. Like many restriction enzymes, BspMI can

bind its recognition site without cleaving if Mg2+ is replaced by Ca2+. Hence, to image BspMI
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Figure 3.6: High signal-to-noise ratio images of protein-nucleic acid complexes de-
posited at biochemically relevant conditions. (A–B) Images of the type IIs restriction
enzyme BspMI bound to a 650-nm-long DNA via the single recognition site located at the cen-
ter of the DNA. CaCl2 was substituted for MgCl2 in the deposition buffer to suppress cleavage.
(C) An image showing two separate DNA molecules bridged via a BspMI complex bound to two
recognition sites. Such bridging is a key step to efficient cleavage by BspMI [101]. (D) An image
of three nucleosomes on a 621-bp-long DNA substrate containing three high affinity binding sites
for nucleosomes (i.e., the 601 Widom sequence) deposited using our standard protocol containing
MgCl2 (Figure 3.2).
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bound to uncleaved DNA, we developed a 650-nm-long DNA with a single recognition site at its

center and replaced MgCl2 with CaCl2 in our deposition buffer (see Methods for details). With

these modifications, we acquired high-SNR images of BspMI bound to DNA in liquid (Figure 3.6

A–B). As expected, BspMI bound to the center of individual DNA molecules. In addition, we

observed DNA dimers formed by BspMI complexes bridging two separate DNA molecules (Figure

3.6 C). This behavior is well established in ensemble studies [103]. More recently, AFM studies

in air showed BspMI complexes bridging two separate binding sites after rinsing with ultrapure

water [74]. Here, we can now visualize DNA bridging by BspMI imaged in liquid and do so with

significantly higher SNR than the prior results in air. In addition, this result validates Ca2+ as an

alternative divalent cation, as it also produced equilibrated DNA (p ≈ 52 nm). Finally, building

upon earlier AFM studies characterizing un-crosslinked nucleosomes in liquid [104, 105], we imaged

nucleosomes bound to three high-affinity binding sites embedded in a 621-bp long DNA (Figure

3.6 D) [106]. Hence, the robustness and flexibility of our method permitted high-SNR imaging in

liquid of a variety protein-nucleic acid complexes.

3.4 Conclusions

In summary, we deposited and imaged DNA in an equilibrated conformation on mica in liquid,

implying a gentle deposition process. Equilibrated conformations were more extended and therefore

easier to analyze when determining the DNA’s configuration and the effect of proteins on that

configuration. Importantly, we used a deposition buffer that contained both MgCl2 and KCl, ionic

conditions conducive to preserving native protein-DNA interactions. This success was not based

on a single modification to an established protocol, but a set of changes including pre-incubating

the mica with 100 mM NiCl2, drying with a filter paper, gentle rinsing, and never dewetting the

sample. Imaging using such Ni2+-treated mica yielded images with high SNR. To demonstrate the

utility of this protocol, we imaged two protein-DNA complexes: a restriction enzyme bound to

DNA and a nucleosome array. Looking forward, we speculate that the unexpectedly wide range of
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ionic conditions that yielded such images enables tuning the binding strength of the DNA to the

surface, akin to earlier studies [88], but in buffers containing both MgCl2 and KCl. Such tuning, in

turn, should facilitate studying the dynamics of protein-DNA complexes by AFM, in general, and

by high-speed AFM, in particular, [88, 107] at higher SNR coupled with conditions that preserve

native protein-DNA interactions. Finally, our success in imaging protein-DNA complexes should

immediately translate to the AFM studies of DNA origami and their applications.

3.5 Methods

3.5.1 DNA samples

We purchased 300 and 2,000 base pairs (bp) DNA constructs that were HPLC purified (Fisher

SM1621, SM1701). These DNAs were diluted to 50 ng/µL in TE Buffer [10 mM Tris-HCl (pH 8.0),

1 mM EDTA] and 20-µL aliquots were flash frozen and stored at -20 °C. Individual aliquots were

thawed to room temperature and then stored at 4 °C for at most one week. For the BspMI assay,

we developed a DNA construct from λ bacteriophage (NEB N3011S) by amplifying from position

9,887 to 11,785. This PCR-amplified 1,899 bp (≈ 650 nm) segment was chosen to position the

BspMI recognition sequence (5’-ACCTGC-3’) at the center of the resulting PCR product. After

the DNA was purified via an agarose gel, the agarose was removed (Bio-Rad 7326165), the DNA

was concentrated (Millipore UFC501024), and purified a final time (Qiaquick 28106) before elution

into TE Buffer. The final DNA was diluted down to 180 nM in TE Buffer, aliquoted, and flash

frozen.

3.5.2 DNA deposition protocol

We deposited the DNA as outlined in the text and illustrated in Figure 3.2. More specifically,

we diluted the aliquoted DNA to 20 nM (for 2,000-bp DNA) or 80 nM (for 300-bp DNA) in our Base

http://www.emdmillipore.com/US/en/product/Amicon-Ultra-0.5-Centrifugal-Filter-Unit,MM_NF-UFC501024
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Buffer [10 mM HEPES (pH 7.5), 25 mM KCl] using KOH to adjust the pH. A higher concentration

of smaller DNA was used to increase the number of molecules per image. We then cleaved 10-mm

diameter mica (Ted Pella, 50) affixed to a metal puck (Ted Pella, 16218). We next placed a 20-µl

drop of unbuffered 100 mM NiCl2 (Sigma 654507) onto the freshly cleaved mica for 1 min followed

by rinsing with 50 mL of ultra-pure water (18.2 MΩ, Barnstead GenPure Pro). The mica was then

quickly dried by touching filter paper (Whatman 1002-042) to the center of the water droplet on

the mica, and completely drying the surface. This step was the only time where the surface was

allowed to partially or completely dewet. Immediately after drying, we deposited 20 µL of DNA in

Deposition Buffer [10 mM HEPES (pH 7.5), 10 mM MgCl2 + 25 mM KCl] where the concentration

of the DNA was 1 nM for the 2,000-bp construct or 4 nM for the 300-bp construct. After 2 s, we

gently rinsed the surface with ~1 mL of Deposition Buffer, tilted the surface to about 10°, and

then gently rinsed with an additional 8 mL of Deposition Buffer. Care was taken during rinsing to

avoid exposing any part of the surface to air or forces from a water droplet overcoming meniscus

forces and/or rapidly flowing off of the side of the mica, which could perturb the sample and may

cause salt to precipitate out of solution onto the surface. Finally, the surface was gently rinsed

with 2 mL of Imaging Buffer [10 mM HEPES (pH 7.5), 10 mM NiCl2 + 25 mM KCl]. Note, during

deposition and rinsing, solutions were kept at room temperature (19 °C for the room containing

our AFM). At all other times, the reagents were kept at 4 °C. Buffers were re-made each day from

concentrated, 0.2-µm filtered stocks. For completeness, we note that we unexpectedly found that

NiCl2 solution made from seven-month-old NiCl2 powder yielded poor results in comparison to a

freshly purchased stock of NiCl2 or a seven-month-old 1 M stock solution NiCl2 (Figure 3.24).

The ‘NiCl2 + KCl’ protocol shown in Figure 3.1 and Figure 3.3 was prepared as above,

except using a 10 mM NiCl2 pre-treatment, and Imaging Buffer during deposition, rinsing, and

imaging. Moreover, we only rinsed with 2 mL of Imaging Buffer, and omitted additional tilting and

rinsing to better match more traditional NiCl2 deposition conditions. The sample was dried using

a filter paper as described above. To study DNA deposition on APTES-modified mica, we used
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our standard protocol, except substituting 0.1% APTES dissolved in water for 100 mM NiCl2, and

rinsing and imaging in the absence of divalent salt (i.e., Base Buffer), as is typical with APTES-

coated mica [83]. Before DNA deposition, the APTES-treated sample was also dried using a filter

paper.

3.5.3 Depositing protein-DNA complexes

Importantly, we did not need to alter our deposition protocol for imaging protein-DNA com-

plexes. The tri-nucleosome array was a gift of Anne Gooding and Tom Cech and based on published

work from the Cech lab [106]. For depositing the tri-nucleosomes, we diluted them in Deposition

Buffer to the same concentration used with the 300-bp DNA. The rest of the process, including

deposition time, remained unchanged.

For the restriction-enzyme assay, we incubated 650-nm-long DNA at 20 nM with 40-fold

diluted BspMI (New England BioLabs, R0502s, 50 units/mL incubation concentration) and 10

mM HEPES (pH 7.5), 10 mM CaCl2 + 25 mM KCl as the buffer. After letting the enzyme and

DNA incubate for 30 min at 30 °C, the deposition proceeded as described above, except with the

MgCl2 replaced by CaCl2. Replacement of MgCl2 with CaCl2 allowed for site-specific binding but

without cleavage (Figure 3.6 A–C). When the same process was repeated in our standard Deposition

Buffer, the DNA was cleaved due to the expected activity of BSP-MI in the presence of MgCl2

(data not shown).

3.5.4 AFM imaging

We imaged all samples on a commercial AFM (Cypher ES, Asylum Research) featuring a

temperature-controlled, closed-fluidic sample holder. Sample temperature was held at 19 °C. All

images, except high-resolution images of the double helix, were obtained using an Olympus BioLever
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Mini (rnom = 8 nm; ktyp = 90 pN/nm) with a 25-kHz resonance in liquid. For imaging the double

helix, we used a Bruker SNL-10A (rnom ≈ 2 nm; ktyp = 350 pN/nm), which had a 16-kHz resonance

in liquid.

Prior to imaging, we let the sample and cantilever settle for at least 30 min. All images were

obtained in tapping mode with a typical set point amplitude of about 2 nm and a free amplitude

of 150% of the set point. We chose the drive frequency as the closest peak of the drive transfer

function to the thermal resonance when measured ~ 1 µm above the surface. All data presented

in this paper used 2×2 µm2 images with 512 pixels acquired at a 2-Hz scanning rate, except those

of the double helix (Figure 3.4 B and Figure 3.18), images with protein-DNA complexes (Figure

3.6), and bacteriorhodopsin (Figure 3.10). The images of the double helix were taken with the

same parameters, except the following changes: set point amplitude (~ 0.5–1 nm), free amplitude

(~ 0.7–1.5 nm), and image size (20–100 nm). The images of bacteriorhodopsin or protein bound to

DNA used similar imaging parameters to the double helix, except the image size varied as follows: ~

25 nm for bacteriorhodopsin, ~ 200 nm for the trinucleosomes, and ~ 600 nm for BspMI. The double

helix images were taken with the fast-scan axis along the axis of the DNA to improve resolution by

reducing low-frequency noise between line scans and tip-convolution artifacts.

3.5.5 Surface roughness of bare and treated mica

To quantify the difference in surface roughness between Ni2+-treated mica and our APTES-

coated mica, we created mica surfaces without adsorbed DNA and thereby measured the noise

floor of our AFM measurement system in liquid as a function of surface treatment. The NiCl2

and APTES test surfaces were prepared as described above, except omitting DNA in any of the

buffers. As a control, we used unmodified mica that was rinsed and imaged in Base Buffer. All

measurements that quantified the noise were obtained in the appropriate imaging buffers with the

same individual cantilever on the same day. Other imaging parameters were consistent with the
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DNA experiments as discussed above, and we analyzed 3 images at each condition. As shown in

Figure 3.17, bare mica showed the lowest surface roughness as measured by the standard deviation

of the height [0.74 ± 0.03 Å (mean ± Std. Dev.)], with a measurable increase due to Ni2+-treatment

(1.18 ± 0.03 Å). As expected, the noise floor on APTES-coated mica was significantly higher (2.5

± 0.1 Å).

3.5.6 Imaging bacteriorhodopsin

To see if Ni2+-treated mica might be useful in other AFM applications, we imaged bacte-

riorhodopsin embedded in its native lipid bilayer, the prototypical protein for AFM studies of

membrane proteins [108]. In initial experiments using standard bacteriorhodopsin imaging condi-

tions (10 mM TrisHCl (pH 7.8), 150 mM KCl) [109], we resolved voids in the trimer lattice. Note,

this proof-of-principle experiment was not optimized for image quality (Figure 3.10). Rather, we

just wanted to demonstrate that the benefits of Ni2+-treated mica were not limited to protein-DNA

complexes.

3.5.7 Image analysis

We analyzed all AFM images of DNA using a semi-automated algorithm to determine the

yield and persistence length. First, all DNA molecules fully contained within a single 2×2 µm2 im-

age were manually classified as either an interpretable individual DNA configuration that contained

zero or one strand crossings (Figure 3.1, green), uninterpretable configurations that contained 2

or more strand crossings (Figure 3.1, red) or multiple overlapping individual DNA molecules. We

classified molecules with two or more loops as kinetically trapped due to their low apparent persis-

tence length. Surface artifacts (e.g. a salt crystal) that could be reliably identified as not a DNA

molecule were ignored. The yield, Y, was defined as:
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Y = 100 * N interpretable/(N interpretable + Nuninterpretable + Noverlapping) Eqn. 1

where a yield of 0 indicates completely uninterpretable data, and a yield of 100 indicates

completely interpretable data.

We quantified the angle θ between two tangent vectors separated by arc length s to measure

the persistence length (p) of a molecule via AFM imaging (Figure 3.1 A). The tangent vector was

determined by fitting a third-order, least-squared polynomial spline through user-defined points

spaced about every 10 nm along interpretable DNA molecules, excluding the looped sections of

interpretable molecules that contained a loop (20%). The persistence length at a given condition

was then obtained by a least-squares fit of the following equation for all interpretable molecules at

that condition:

ln(<cos(θ(s))>) = -s/2p Eqn. 2.

The helical pitch was quantified by marking the position where the periodic structure of one

DNA strand repeated. The position where a repeat crossed the axis of the DNA was manually

bounded by two points, and the region in between these human-annotated points was fit with a

parabola. The maximum of the parabola was considered the location of the repeat, where the fit

was localized to a line of length 10 Å or less along the DNA axis. In other words, the human-

annotated helical pitch location was refined by determining the local maximum in the DNA height

from a parabolic fit. From two adjacent helical pitch locations on the same DNA strand, major

pitch values were recorded as the total change in contour length. Both strands were measured

separately in our estimation of the helical pitch.

3.5.8 Automated annotation

To verify that the human-annotated DNA contours were unbiased, we adapted a previously

published method [66] for automated contour tracing. Briefly, the start and end of the each DNA
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were manually annotated. A second point near the start of the DNA molecule was needed to

define an initial tangent. After determining an initial tangent vector, the algorithm then iteratively

update its estimation of the tangent vector until it reaches the opposite end of the DNA. The

algorithm did not converge in roughly 20% of cases (i.e. took over 1000 steps of length 2 nm on

a 680 nm piece of DNA), due to the presence of loops in DNA causing recursion. The analysis

for the automatically generated contours was the same as described for the manually annotated

data, except the computationally generated contour was used directly (i.e., there was no spline

interpolation for the automatically traced data).
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Figure 3.7: Determining persistence length from AFM images. (A) AFM images of
DNA deposited under biophysically relevant ionic conditions per our protocol as outlined in Figure
3.2. (B) A human-annotated spline denoting the DNA configurations shown in panel A. The path
length along the configuration is s and θ is the angle between the tangent vectors separated by s.
(C–D) Plots of angular correlation as a function of s. When plotted as –ln <cos(θ)> vs s, the data
yields a linear relationship. A fit to the equation ln(<cos(θ(s))>) = -s/2p yields the persistence
length (p). A single trajectory is shown in panel C while the average value of 130 molecules is
shown in panel D. The solid green line represents the mean value and the green shading denotes
the standard error of the mean across all 130 molecules (though the error is so small as to look like
a line). Fit shown as a dashed line.
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Figure 3.8: Drying method after NiCl2 treatment influences data quality. For the
two conditions tested, the yield (purple) and the persistence length p (green) are plotted using the
left and right vertical axis, respectively. The surfaces were prepared using (left) our final protocol,
including drying by a filter paper, and (right) the final protocol, except drying by a gentle stream
of N2 gas for one minute. Note, that in both conditions tested, the drying occurs before DNA
deposition.
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Figure 3.9: Higher concentration of NiCl2 during pre-treatment improves subsequent
imaging. (A–B) The percentage yield of interpretable DNA molecules and their corresponding
persistence length (p) plotted as a function of the concentration of the NiCl2 used in the pre-
incubation step. The deposition condition, rinsing, and imaging conditions were per the standard
final protocol, which is 10 mM MgCl2 + 25 mM KCl for deposition and rinsing, and 10 mM NiCl2
+ 25 mM KCl for imaging as detailed in Figure 3.2. Approximately 140 molecules were analyzed
per condition tested. (C) Sets of three representative images plotted vertically when 1, 10, 33, and
100 mM NiCl2 was used for the pretreatment.
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Figure 3.10: Proof-of-principle image resolves a void in the 2D-trimer lattice of bacte-
riorhodopsin. This image was taken using Ni2+-treated mica, illustrating that such Ni2+-treated
mica can be used for other biophysical systems. We note this image was not optimized by typical
techniques used high-resolution imaging of bacteriorhodopsin, such as selecting for a particularly
sharp tip (1 in 20).
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Figure 3.11: Depositing and imaging DNA at biologically relevant ionic conditions.
Comparison of our standard protocol that deposits in 10 MgCl2 + 25 mM KCl and images in
NiCl2 + 25 mM KCl to depositing and imaging in 3 mM MgCl2 + 50 mM KCl, ionic conditions
typically of many protein-nucleic acids. Quantification of 40 molecules showed that persistence
length (p) remained high, indicating an equilibrated conformation on the DNA (as expected for a
buffer containing MgCl2). The yield was reduced due, in part, to the technical difficulties associated
with imaging DNA weakly bound to the mica. That said, the yield was still relatively high (58%),
which is excellent given the historical difficulties of imaging DNA on Ni2+-treated mica in the
presence of MgCl2, [47] let alone MgCl2 + KCl. Imaging under these conditions required lower
set points during tapping mode imaging. In addition, since the DNA was less well bound, the risk
of tip fouling and motion of the DNA is increased relative to our standard protocol (potentially
a feature for high-speed AFM studies). Note, the successful demonstration of imaging in MgCl2
+ KCl by tapping mode leveraged the other incremental improvements of the deposition protocol
illustrated in Figure 3.3 (e.g., pre-treating with 100 mM NiCl2, drying with filter paper, gentle but
extensive rinsing).
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Figure 3.12: Partial dewetting of the sample decreases data quality. The “Solvated”
surfaces were prepared using the standard protocol whereas partial dewetting of the sample occurred
in the “Dewet” sample. More explicitly, results shown in the right column were disrupted by a
meniscus force generated by adding too much liquid to the mica surface. In contrast, the data
shown in the left column was rinsed using a gentle fluid flow through the sequential addition and
removal of liquid using a micropipette. For both the left and right datasets, the total volume of
liquid exchanged remained constant at about 10 mL, as detailed in Figure 3.2. The yield (purple)
and the persistence length p (green) are plotted using the left and right vertical axis, respectively.
Representative images for each condition are shown below.
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Figure 3.13: Concurrence between the number of experimentally observed looped
configurations and a simulation of a 2D WLC equilibrated on a surface. (A) A gallery
of simulated configurations where configurations containing no loop are colored green while those
containing a loop are colored purple. (B) Histogram of the fraction of looped DNA molecules based
upon 100 simulations of 100 configurations. The simulated fraction of looped structures was 22 ± 4
% (mean ± std. dev.) agrees with the measured value 20% derived from 142 individual molecules.
We note that in the presence of excluded volume effects, we would expect the fraction of looped
DNA in the simulation to be lower.
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Figure 3.14: End-to-end distance of DNA is consistent with 2D WLC equilibrated on
a surface. (A) Cartoon of an example DNA image showing the end-to-end distance (Rend-to-end,
purple arrow) as a function of arc length along the molecule (s, green line). (B) Mean Rend-to-end as
a function of s for all 101 unlooped molecules at the standard salt conditions [10 mM divalent salt,
25 mM KCl]. Green dotted line and shaded area give mean and standard error of the mean at each
L, and the purple line is a least-squared fit weighted by the error at each L yielding a persistence
length of 45 ± 4 nm (mean ± standard deviation).
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Figure 3.15: Contour and persistence lengths obtained from human and computation-
ally annotated data are consistent. (A) An example DNA molecule shows a high signal to
noise. (B) The same image as panel (A), with a manually annotated spline overlayed as a green
line. (C) The same image as panel (A), with an automatically annotated contour overlayed. The
automatic annotation is detailed in the methods section. (D and E) Comparing the automated and
manual determinations of persistence lengths and contour length yields good agreement between
human- and machine- annotated data. The values obtained by the automated contour tracing for
p and L0 were 44.9 ± 0.4 nm and 680 ± 70 nm (mean ± std. dev.), respectively. The values
obtained by the human-annotated data as 44.6. ± 0.6 nm and 683 ± 13 nm (mean ± std. dev.),
respectively.
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Figure 3.16: Measured height of the DNA. (A) Images of the DNA taken under our typical
conditions (see AFM imaging). Line scans (green) and traces (purple) are overlaid. (B) The height
from the line scan (green) and trace along the DNA (purple) from panel A are plotted versus the
distance along the line scan and the path along the DNA backbone, respectively. Notably, the data
concurs with the expected width of the DNA helix (2.0 nm). (C) Histograms of the height along
the contour length skeletonized DNA configurations derived from the raw images. Note, the top
0.5% of heights, representing rare line noise or surface defects, were ignored.



84

Figure 3.17: Characterizing the surface roughness of mica in liquid for different mica
treatment protocols. The top plot lists the standard deviation (σ) of the height for untreated
mica, mica treated with the protocol described in this work, and mica treated with APTES 0.1% as
described in Materials and Methods. Note, no DNA was deposited on these surfaces. Below each
measurement of σ are representative images and the distribution from which the σ was deduced.
Error bars in the top panel are standard deviations of σ from 3 separate images, each with about
250 thousand points.
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Figure 3.18: High-resolution imaging reveals the right-handed helical structure of
DNA. (A). Successive images of the same DNA molecule. These images were fit with a third
order, two-dimensional spline to subtract the background, then smoothed with a Gaussian with a
width of two pixels (1 pixel = 0.5 Å). (B) Histogram of the helical pitch measured from 15 images
of 4 molecules using 3 different tips, where N is 89 and represents the number of individual helical
turns measured. A Gaussian fit to the measured distribution yields 3.51 ± 0.40 nm (mean ± std.
dev.). The uncertainty in the mean helical pitch is 0.04 nm as defined by the standard error in the
mean.

Figure 3.19: Measured contour length agrees within 1% of the expected contour length
for B-form DNA. (A) Raw DNA image with a diagram illustrating the contour length L0 used
to measure distance along the configuration. We note the actual contour length is calculated by
manually tracing the entire DNA molecule, as illustrated in Figure 3.7 B is 680 nm based upon the
number of base pairs times the rise per base pair for B-form DNA (2,000 bp × 0.34 nm/bp). (B)
Histogram of from 130 molecules. A fit to the measured distribution (black line) yields 683 ± 13
nm showing that was within 1% of 680 mn.
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Figure 3.20: Images of short (300-bp) DNA deposited using our protocol. A slightly
higher deposition concentration (4 nM) was used given the reduced likelihood of 100-nm DNA
forming internal loops or overlapping with adjacent molecules.

Figure 3.21: Dependence of persistence length on ionic strength is consistent with
2D equilibrated DNA. The total persistence length (p, red markers give mean ± standard
deviation) from Figure 3.5 is plotted versus ionic strength (I). A blue dotted line represents the
following dependence of the total persistence length in nanometers on ionic strength in molar
units: p = pnon-electrostatic + 0.0324/I. The non-electrostatic component of the persistence length
(pnon-electrostatic) is consistent with an 2D equilibrated conformation (~50 nm). The point with the
largest ionic strength (black marker) is omitted, since the high salt inhibits binding of DNA to
the surface and artificially lowers the persistence length. Note the dependence of p on the ionic
strength I is calculated using [100], assuming that 10 mM MgCl2 has an effective ionic strength of
30 mM.
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Figure 3.22: Efficient deposition and imaging is possible with little or no divalent
cations in solution. (A–B) The percentage yield of interpretable DNA molecules and their
corresponding persistence length (p) plotted as a function of divalent ionic concentration at fixed
KCl (25 mM). Error bars represent the standard deviation for the yield and the fitting error for the
persistence length, as in Figure 3.3. On average, 120 molecules were analyzed per condition. (C)
Sets of three representative images plotted vertically acquired at 0, 1.25, 2.5, 5 and 10 mM divalent
cations. We note both concentrations of MgCl2 and NiCl2 in the deposition and imaging buffers
were varied at the same time to keep a consistent divalent ionic strength at each condition tested.
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Figure 3.23: Replacing NiCl2 for MgCl2 during deposition leads to kinetically trapped
configurations even when using our final protocol that includes extensive but gentle
rinsing. (A) A set of tapping-mode images of DNA in liquid deposited under different deposition
protocols as summarized in each box. The change between each deposition process is highlighted
with blue text and protocols associated with images are denoted with magenta boxes. (B–C)
The percentage yield of interpretable DNA molecules and their corresponding persistence length
(p) is depicted below each protocol. These values were computed from ~95 DNA molecules per
condition. Error bars represent the standard deviation for the yield and the fitting error for the
persistence length (p). Persistence length was deduced using a 2D WLC model. Overall, DNA
deposited in NiCl2 showed more compact structures leading to reduced yield and a lower p for
those conformations that were interpretable. These results are consistent with the long-standing
conclusion that these conditions would lead to kinetically trapped configurations. Note that our
series of improvements in the deposition process significantly improved the yield and interpretability
of the images when comparing the left most and right most image in panel A.
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Figure 3.24: Age of NiCl2 powder appeared to influence data quality. Age of NiCl2
powder appeared to influence data quality. The yield (purple) and the persistence length p (green)
are plotted using the left and right vertical axis when using NiCl2 of different ages and stored under
different conditions. (left) Images acquired using stock NiCl2 solution made from freshly purchased
NiCl2 powder immediately after first opening. (middle) Images acquires using stock 1 M NiCl2
solution stored at 4 °C for 7 months, and (right) Images acquires using stock NiCl2 solution made
after storing NiCl2 powder for 7 months. Hence, if poor results are observed with NiCl2 powder that
is not recently purchased, we suggest purchasing fresh NiCl2 powder and immediately suspending
it in a concentrated stock solution that is stored at 4 °C.



Chapter 4

FEATHER: Automated Analysis of Force Spectroscopy Unbinding/Unfolding
Data via a Bayesian Algorithm

This chapter and its supporting information were adapted from [110]:

Patrick R. Heenan and Thomas T. Perkins. FEATHER: Automated Analysis of Force Spectroscopy

Unbinding and Unfolding Data via a Bayesian Algorithm. Biophysical Journal, 115(5):757–

762, September 2018.

4.1 Abstract

Single-molecule force spectroscopy (SMFS) provides a powerful tool to explore the dynamics

and energetics of individual proteins, protein-ligand interactions, and nucleic-acid structures. In

the canonical assay, a force probe is retracted at constant velocity to induce a mechanical un-

folding/unbinding event. Next, two energy landscape parameters, the zero-force dissociation rate

constant (ko) and the distance to the transition state (∆x‡), are deduced by analyzing the most

probable rupture force as a function of the loading rate, the rate of change in force. Analyz-

ing the shape of the rupture force distribution reveals additional biophysical information, such as

the height of the energy barrier (∆G‡). Accurately quantifying such distributions requires high-

precision characterization of the unfolding events and significantly larger datasets. Yet, identifying

events in SMFS data is often done in a manual or semi-automated manner and is obscured by
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the presence of noise. Here, we introduce a new algorithm, FEATHER (Force Extension Analysis

using a Testable Hypothesis for Event Recognition), to automatically identify the locations of un-

folding/unbinding events in SMFS records and thereby deduce the corresponding rupture force and

loading rate. FEATHER requires no knowledge of the system under study, does not bias data inter-

pretation towards the dominant behavior of the data, and has two easy-to-interpret, user-defined

parameters. Moreover, it is a linear algorithm, so it scales well for large datasets. When analyzing

a dataset from a polyprotein containing both mechanically labile and robust domains, FEATHER

featured a 30-fold improvement in event location precision, an 8-fold improvement in a measure

of the accuracy of the loading rate and rupture force distributions, and a 3-fold reduction of false

positives in comparison to two representative reference algorithms. We anticipate FEATHER be-

ing leveraged in more complex analysis schemes, such as segmentation of complex force-extension

curves for fitting to worm-like-chain models, and extended in future work to datasets containing

both unfolding and refolding transitions.

4.2 Introduction

Over the last ~25 years, single-molecule force spectroscopy (SFMS) has emerged as a powerful

tool to quantify diverse biological systems, including the strength of protein-ligand bonds [29, 30]

and the unfolding and refolding of individual protein domains [25, 26]. In one widely used assay,

an atomic force microscopy (AFM) cantilever or an optically trapped bead is attached to the

biological system under study and retracted at constant velocity (Figure 4.1 A). Force is deduced

as the displacement of the force probe away from its equilibrium position. Abrupt drops in force at

the rupture force (FR) arise from unfolding/unbinding events ( Figure 4.1 B). Because these events

are thermally activated, there is not a unique rupture force but rather a distribution (Figure 4.1 C).

The Bell-Evans model rapidly emerged as a way to characterize a 1D projection of the underlying

free-energy landscape along the stretching axis [30, 111, 112]. In this analysis, a fit to the most

probable rupture force (F MP
R ) as a function of loading rate yields two parameters, the zero-force
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dissociation rate constant (ko) and the distance to the transition state (∆x‡) (Figure 4.1 D). More

advanced models that analyze the shape of the FR distribution provide additional information

on the free-energy landscape, such as the height of the energy barrier (∆G‡) [52] but require

higher precision event detection and larger numbers of events. Yet, event detection is obscured

due to the presence of Brownian motion and instrumental noise and is often done manually or in a

semi-automated manner, including in recent work from our lab [69]. Thus, accurately quantifying

hundreds to thousands of rupture events in an automated, reliable, and reproducible way is critical

for gaining insight into the diverse biomolecular systems studied by SMFS.

To address this need, multiple groups have developed algorithms to detect rupture events

in AFM data and other SMFS modalities. For example, such techniques have applied worm-like-

chain models to compute contour lengths at each extension [113, 114], used thresholding based

on signal or noise characteristics [115, 116], and classified traces based on transformations of the

data into frequency or derivative spaces by spatially localized Fourier series or wavelets [117–119].

These methods provide increased automation, but their use is limited by their lack of generalization.

Ongoing efforts and interest in automated analysis continues [e.g., recent work integrated several

steps in SMFS analysis of unfolding data into a single package [120]]. Contour-length alignment

algorithms bias results towards dominant features and necessarily require a model. Thresholding

or transformation algorithms typically require many parameters. For example, previous techniques

have 6 [118, 119] and even up to 14 or 17 parameters [120, 121]. Large numbers of parameters help

tune an algorithm to a particular dataset, but they also increase the search space for parameter

optimization and may be difficult to apply to datasets containing unfolding events occurring over

a broad range of forces.

Here, we present a new algorithm for detecting unfolding/unbinding events and apply it

to SMFS datasets representative of a variety of typical experimental conditions. The algorithm,

named FEATHER (Force Extension Analysis using a Testable Hypothesis for Event Recognition),

requires no special knowledge of a specific system’s polymer properties, detects both rare and dom-
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Figure 4.1: An overview of force spectroscopy analysis. (A) A cartoon illustrating an
AFM cantilever unfolding a polyprotein containing four mechanically robust domains (NuG2, red)
and one mechanically labile one (α3D, blue). (Inset). A sketch of a 1D free-energy landscape
and associated parameters: ko, the zero-force dissociation rate constant; ∆x‡, the distance to the
transition state; and ∆G‡, the height of the energy barrier. (B–D) Typical analysis scheme for a
polyprotein unfolding assay illustrated with a computationally generated dataset based on a model
by Dudko and colleagues ([52]). (B) A force-vs.-time curve for the unfolding of the polyprotein
with segments colored coded based on the domain prior to unfolding. (C) A distribution of rupture
forces (FR) for the α3D domain fit to the Dudko model. (D) Most probably rupture force (F MP

R )
versus log of the loading rate (∂F/∂t) fit with a line per the Bell-Evans model ([30, 111, 112]). (E)
An experimental force-vs.-time curve of the polyprotein shown in panel A, with unfolding events
marked by green arrows. Colored coded data was smoothed to 500 Hz with higher-bandwidth data
(50 kHz) plotted in grey. (F) A high-time resolution plot of a single rupture event used to define
metrics for comparing automated algorithms: a true event is manually defined by an expert user as
detailed in the Supporting Material; dt→p is the distance from a true event to the closest predicted
event; and dp→t is the distance from an algorithmically predicted event to the closest true event.
Predicted events are illustrative, not actual.
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inant data behavior, and outperforms recently published algorithms over a wide range of pulling

velocities and two common systems of interest (polyproteins and DNA) and a computationally

generated dataset. FEATHER is a Bayesian algorithm because it calculates the probability of each

point in the retraction curve given a model automatically calculated from the event-free approach

curve. Because FEATHER’s improved performance requires just two easy-to-interpret parame-

ters, a smoothing factor and a significance threshold, we anticipate FEATHER being leveraged to

improve the throughput, quality, and reproducibility in SMFS analysis schemes.

4.3 Materials and Methods

FEATHER is written in Python 2.7, with interfaces written for MATLAB and Igor Pro.

The source code, working examples, and accompanying documentation is freely available (https:

//doi.org/10.5281/zenodo.1306884). Importantly for analyzing large datasets, FEATHER’s

execution time scaled linearly with the number of data points and offered an order of magnitude

improvement in runtime relative to the faster of the two algorithms used for comparison (Figure 4.4).

The basis for the statistical analysis used by FEATHER and performance metrics are presented

in the Supporting Material. All timing and tuning results were obtained using a desktop PC

with 32 GB of RAM, an AMD Ryzen 5 1500X Quad-Core CPU, and a 500 GB hard drive. To

test FEATHER, we used two datasets: (i) 152 force-extension curves of a previously described

polyprotein that contains one mechanically labile target protein (α3D) with a measured change

in contour length (∆L0) of 23 nm upon rupture (8) positioned between four mechanically robust

marker domains of NuG2 [∆L0 = 18 nm per NuG2 monomer [122]] (Figure 4.1 A and Table

4.2), and (ii) 600 force-extension curves of DNA deposited at purposely high surface coverage to

promote multiple tip-DNA attachments and therefore multiple rupture events per force-extension

curve (Figure 4.5 and Tables 4.3–4.4). As described in detail in the Supporting Material, both

datasets contained curves acquired over a range of retraction velocities (v). Finally, FEATHER’s

performance was tested using a simulated dataset containing purposely challenging-to-analyze force-

https://doi.org/10.5281/zenodo.1306884
https://doi.org/10.5281/zenodo.1306884
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extension curves, as described in the Supporting Material.

4.4 Results and Discussion

4.4.1 Description of FEATHER

In SMFS, unfolding events occur when the force applied to a molecule exhibits an abrupt

drop in a force-vs.-time curve as the molecular configuration passes over an energy barrier (Figure

4.1 E, green arrows). To determine the location of such events, FEATHER first fits a smoothing

spline to the raw data (Figure 4.2 A) with nodes in the spline spaced at a user-defined fractional

spacing (τ) of the full record length, so the temporal averaging time (5–50 ms) depends on v given

a fixed data acquisition rate, as is typical in such assays. While the model defined by the spline has

a continuous first derivative, unfolding events exhibit a discontinuity in the first derivative. Thus,

unfolding events could be located by computing where the data were inconsistent with the model.

To efficiently detect short-lived events, we recommend users choose the largest τ that preserves

such events in the smoothed data (Figure 4.6).

To compute the statistical significance of an unfolding event at time t, we constructed a no-

event hypothesis based on the noise characteristics of the data relative to a reference curve lacking

any events. For AFM data, the approach curve taken with the same individual cantilever served

as an excellent reference. Briefly, the process of computing the significance (P) of an event started

by subtracting the smoothing spline from the high-bandwidth data to yield a force residual with a

zero-centered mean and variance about that mean (which contained mostly the thermal noise of the

system within a fractional size of the record defined by τ). The magnitude of this residual variance

as a function of time is compared to the approach curve that contained no unfolding/refolding

events. Alternatively stated, we determined how the variance of the force variance changes in time

since this metric was found to be insensitive to local variation in curvature of the data but highly
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Figure 4.2: FEATHER’s analysis scheme. (A) A high-bandwidth force-vs.-time record of
polyprotein unfolding (grey) with FEATHER’s spline fit overlayed in blue, where τ = 15 ms. (B)
The probability (P) of a non-event was obtained by applying Chebyshev’s inequality to the record
in panel A. Unfolding events occur when this probability is near 0. (C) The probability from panel
B transformed to de-emphasize regions near the surface and regions with positive force derivatives.
(D) The probability from panel C was further modified to suppress regions where the force change
was negligible, as determined from a reference curve with no-events (e.g., the approach). (E–
H) Force-vs.-time curves and magnified regions highlight event determination, indicated by green
arrows using a significance threshold of Pthresh = 0.001.
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sensitive to unfolding events (Figure 4.7 F). Deviation from this mean magnitude of residual noise

was transformed into a probability using Chebyshev’s inequality (Equation 4.1), which importantly

does not assume any form of the noise distribution [123]. We note that FEATHER requires that

the noise distribution of the force residuals have zero mean and median, but otherwise does not

impose constraints on the distribution.

Empirically, we observed the statistical significance of an event was enhanced by combining

the no-event probability for the force in combination with the integral force, force derivative, and

force differential, all conceptually based on the same implementation of Chebyshev’s inequality

as shown in Equation 4.2. For instance, the probability from Figure 4.2 B was transformed to

de-emphasize stretching of the construct where the force derivative is positive or negligible, and

surface adhesion was ignored by including only events that started after the tip was retracted

off of the surface (Figure 4.2 C). We next suppressed events associated with small force changes

consistent with the force noise in the reference (or approach) curve (Figure 4.2 D) as described in

the Supporting Material (Figure 4.7; see pseudocode listed in Table 4.5). Events were identified

from the probability shown in Figure 4.2 D based on a user-defined threshold (e.g., Pevent =

0.001) (Figure 4.2 E). Importantly, FEATHER correctly identified rupture events even though the

rupture force varied by an order of magnitude within the same record (Figure 4.2 F–H). Moreover,

this high-fidelity event detection was insensitive to a ~10-fold variation in τ and the thresholding

parameter (Pevent), in contrast to other event detection algorithms (see Supporting Material and

Figures 4.6–4.8).

4.4.2 Evaluating FEATHER’s performance

We evaluated the performance of FEATHER to accurately and precisely analyze the un-

folding of our polyprotein, which exhibited both low- and high-force ruptures. Specifically, we

compared how well FEATHER did relatively to manually annotated data from an expert user and
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two automated analysis routines, the recently published OpenFovea [116] and the wavelet-scheme

‘find_peaks_cwt’ method from Scientific Python [124]. These algorithms were chosen to provide a

representative sample of the viable techniques used in AFM data analysis, since they respectively

utilized thresholding and wavelet transformations, two broad classes of event-detection techniques.

In addition, neither of these reference algorithms requires specialized knowledge of the polymer

under study, such as the worm-like chain model commonly used in contour length alignment al-

gorithms. Three primary metrics were used: the relative location error, the loading rate, and the

rupture force (Figure 4.3). We note that each algorithm outputs a list of predicted event locations;

the loading rate and rupture force were then calculated in the same way for each algorithm, given

the predicted events (see Supporting Material).

Overall, FEATHER did an excellent job, essentially matching the performance of human-

annotated data. In comparison to the best performance of either reference algorithm, FEATHER’s

prediction yielded rupture force and loading rate distributions which were 8-fold closer to the human-

annotated data and 30-fold better in an event location metric (∆Z95), as defined below. The top

panel of Figure 4.3 A shows the distribution in the relative location error of the “true events,”

defined by an expert user, relative to predicted events (dt→p; green shading) closely matched

the distance distribution from predicted events to true events (dp→t; blue line) (see Figure 4.1 F

for definitions of dt→p and dp→t and the Supporting Material for details of manual annotation).

The peak of this distribution at low relative error shows precision in determining event location.

The overlap between the two distributions shows that number of true events closely matched the

number of predicted events. However, such overlap was not present when the data were analyzed

with OpenFovea, which showed a high number of false positives as indicated by the gap between

the distributions of dp→t (black line) and dt→p (green shading). We speculate that OpenFovea’s

performance may be limited in this application by a dataset that contains both low- and high-

force unfolding events, despite efforts to optimize OpenFovea’s parameters for this dataset (see

Supporting Material & Figure 4.8). The wavelet-based scheme, which was also had its parameters
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optimized for this dataset, showed better performance on this metric than OpenFovea but still had a

30-fold higher relative location error and a 3-fold higher false positive rate than FEATHER (Figure

4.9). Relative to the better performing wavelet scheme, FEATHER improved event localization

precision ~30 fold based on ∆Z95 (Table 4.1), where ∆Z95 is defined as the location of the 95th

percentile of the combined distribution for dp→t and dt→p (see Table 4.6 and Figure 4.3 A, dashed

line). As defined, ∆Z95 represents a good metric for the upper bound of the error in determining

event location.

As accurate determination of rupture force and loading rate is critical to deriving biological

insight from force spectroscopy data [30, 52, 111], we next compared all three algorithms to human-

annotated results for these two metrics (Figure 4.3 B,C). As shown in the top panel of each column,

FEATHER (blue line) essentially matched the human-annotated distributions (green shading) while

OpenFovea showed a surplus of low-force unfolding events (black line) arising from its high false

positive rate. Again, the wavelet scheme showed intermediate performance (red line). Despite

these distributions being oddly shaped due to the presence of both low-force (α3D) and high-force

(NuG2) ruptures over a range of v, we quantitatively compared the degree of overlap between the

human-annotated and algorithmic results using Bhattacharya coefficient’s complement (BCC, see

Table 4.6) [125]. By this metric, FEATHER outperforms the wavelet scheme by a factor of 8 (Table

4.1). We note that in additional tests on a DNA dataset purposely containing multiple tethers that

led to multiple, closely spaced unfolding events at low forces (10–30 pN)(e.g., Figure 4.5 E–F), we

saw even larger performance improvements of FEATHER by these metrics (Figures 4.10–4.11). In

addition, FEATHER successfully analyzed hundreds of simulated ruptures over a wide range of

contour length changes, loading rates, and rupture forces (Figure 4.12, Table 4.7). Taken together,

FEATHER’s performance on experimental polyprotein data, an experimental DNA dataset, and a

complex simulated dataset underscored the consistent strength of FEATHER’s predictive power.
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Figure 4.3: Evaluating FEATHER’s performance. (A) Histograms of fractional errors be-
tween human-annotated and algorithmically predicted event locations for the polyprotein dataset
when using FEATHER, OpenFovea ([116]), and the wavelet-based scheme from Scientific Python
([124]), where ∆Z is the combined fractional distance between the identified and predicted events
divided by the full range of the record, and the dotted line denotes the location of ∆Z95, where
∆Z95 is defined as the location of the 95th percentile of the combined distribution for the frac-
tional error dp→t and dt→p. As diagrammed in Figure 4.1 F, dt→p is the distance from a human-
annotated “true” event to the closest predicted event; and dp→t is the distance from an algorithmi-
cally predicted event to the closest true event. (B) Histograms comparing the loading rates from
manual-event annotation (green) to algorithmically predicted ones for FEATHER (blue), Open-
Fovea (black), and Scientific Python (red), respectively. Note, the green shaded distribution in all
3 panels represents the same dataset but appears slightly different due to variations in bin size. (C)
Histogram of rupture force for human-annotated and algorithmically determined events using the
same color scheme.



101

4.5 Conclusion

The canonical single-molecule force spectroscopy assay retracts a force probe at constant

velocity to yield records containing unfolding and unbinding events. Here, we introduce FEATHER,

which automatically determines event locations for such records and thereby determines the rupture

force and loading rate. FEATHER requires only two simple-to-understand parameters to accurately

and algorithmically recapitulate human-annotated data. Its fast execution and linear runtime with

the number of data points allows for automated analysis of large datasets that, in turn, will allow

for more sophisticated analysis that yield additional biophysical information, such as ∆G‡ [52].

When analyzing a complex dataset containing both low- and high-force rupture events, FEATHER

provided more than an order of magnitude improvement in event localization error (∆Z95) relative

to other representative algorithms (Table 4.1) and did not bias the data towards high-force events.

We note that the datasets used here were acquired with a relatively long, soft cantilever. Recent

efforts in improving the precision and time resolution of AFM cantilevers will immediately aid

FEATHER’s ability to detect smaller and more closely spaced unfolding intermediates [126, 127].

By predicting where events occur without relying upon any a priori domain-specific model of

the event, FEATHER provides a powerful tool within a longer SMFS analysis pipeline [116, 120].

For instance, it can be used to segment complex force spectra to then determine the change in

contour length between ruptures, a value which in turn can be used to screen large datasets for

the unfolding of particular structures. Finally, we anticipate that FEATHER’s underlying event

detection algorithm can be extended to search for both unfolding and refolding events, increasing

its utility to a broader array of force spectroscopy assays.

4.6 Open data statement

All of the analyzed force-extension curves, along with their annotation, are available from

the Dryad Digital Repository (doi:10.5061/dryad.1615c2p).
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Table 4.1: Performance metrics for each algorithm The Bhattacharya coefficient’s com-
plement (BCC) compares the degree of overlap between the human-annotated and algorithmically
predicted 2D distribution of rupture force versus loading rate (e.g., Figure 4.10 B, Table 4.6). ∆Z95
is the metric for the upper bound of the fractional error in determining event location. The symbol
(↓) indicates a lower value is better.

Name BCC (↓) ∆Z95 (↓)
FEATHER 0.0037 0.0065
OpenFovea 0.203 0.42

Scientific Python 0.030 0.19

4.9 Supporting Information

4.9.1 Algorithm Description

4.9.1.1 High-level description

FEATHER detects unbinding and unfolding events in single-molecule force spectroscopy

(SMFS) records characterized by a sudden drop in force (F). FEATHER is based on a probabilistic

model of a signal lacking any events, called the no-event model. FEATHER leverages informa-

tion contained in a reference record containing no ruptures events, typically the approach curve
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in atomic force microscopy (AFM) studies (Figure 4.7). The algorithm has the following 5 basic

steps:

1. Estimate the no-event parameters from an approach curve (see Figure 4.7).

2. Fit the no-event model to a retraction curve.

3. Calculate the upper bound on the probability of each retract point using the
Chebyshev’s inequality [123] given the model.

4. Iteratively update the probability using additional characteristics of the data to
remove false-positive events.

5. Report contiguous regions with probabilities lower than a user-specific threshold
as events.

4.9.1.2 The no-event hypothesis

In SMFS, events occur when the force applied to a molecule exhibits a discontinuity as the

molecular conformation passes over an energy barrier. FEATHER assumes that events take place

on time scales much faster than the response time of the probe. If this is not true, the data are

assumed smoothed until this condition is reached. The algorithm models the data assuming no

event is occurring at a given time t and calculates the probability based on that assumption at each

t. Contiguous regions of time with probabilities below a user-given threshold are grouped into a

single event. Hereafter, the definition of an event and these assumptions will be referred to as the

no-event hypothesis.

Importantly, FEATHER’s model for experimental noise is independent of noise distribution,

except for assuming a distribution with zero mean and median. By making such few assumptions

about the data, FEATHER avoids the need for polymer-physics based models, such as the worm-like

chain model [128], or other specialized knowledge of the system under study.
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FEATHER applies this probabilistic model to the retraction portion of the force-extension

curve. As the reference curve for no events, the algorithm uses an approach curve taken with the

same individual cantilever to determine characteristics of the noise. FEATHER initially fits and

subtracts a smoothing spline from the approach curve, yielding a reference mean and force variance

of the residual’s standard deviation within a window of 2τ, where τ is a user-specified fraction of the

curve length. Applying this procedure to the retraction record yields a residual mean and standard

deviation at each point in time. This residual is transformed into a probability using Chebyshev’s

inequality [123] and the reference mean and variance from the approach curve. This probability at

each point in the retraction curve is iteratively updated to remove the effect of adhesion and other

false positives, detailed below. As shown in Figure 4.2, the result is a probability at each time

point which drops from one towards zero near events. A threshold probability is set by the user or

optimized by a tuning routine (see Figure 4.7).

We define a single event as a contiguous region of time with probabilities below the threshold.

The rupture force and loading rate are determined for each such region, as described in the “Data

Acquisition and Annotation” section, below.

4.9.1.3 Calculating the no-event parameters:

FEATHER identifies events by focusing on short time scale events while not triggering on

simple Brownian motion of the probe or variation in the compliance of the system. To suppress low-

frequency fluctuations, we first fit the high-frequency data to a spline. The spline, denoted as St,

was calculated by a least-squares fitting of a second-order basis spline [129] to the high-bandwidth

force-vs.-time curve, Ft. The spline was second-order to ensure a continuous first derivative, a

requirement of our no-event hypothesis. The spline knots were spaced uniformly at intervals of the

user-specified τ . Figure 4.7 is a representative demonstration of the spline fitting. Determining St

immediately yielded the force residual rt = Ft - St. We note that rt has essentially a zero mean and
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median as required for FEATHER, but rt was not necessarily Gaussian distributed. This flexibility

to handle non-Gaussian distributed fluctuations motivated the use of Chebyshev’s inequality [123].

Unfortunately, analysis based on the force residual rt did not provide a conclusive signal for

the presence of an event (see Figure 4.7). In order to improve event detection, we determined how

variance of rt changes in time since this metric was found to be highly sensitive to unfolding events

but insensitive to local variation in the curvature of the data. To do so, we computed σr, which is

defined as the standard deviation of rt centered at t with a window of [—2τ ,2τ ]. As illustrated in

Figure 4.7, using σr instead of rt provided a much stronger signal of an event.

To be able to calculate the probability of an event in the retraction curve, we next calculated

two additional metrics based on σr of the approach curve. Specifically, we calculated the median

value and the standard deviation in σr, denoted as µσ and σσ, respectively. The median was used

instead of the mean to remove the influence of possible false positive events in the approach that

skew the mean but not the median. The removal of these pseudo-events was necessary to ensure

accurate estimators for µσ and σσ, which were then used to calculate the probability of an event

at time t using Chebyshev’s inequality as follows:

P (σr) ≤ ( σσ

σr − µσ
)2 (4.1)

where this σr is from the retraction curve being analyzed. Although Equation 4.1 provides

only an upper limit on the probability of no event, the integration of multiple aspects of the data—

see Equation 4.2 below—leads to clear detection of events with high specificity (Figure 4.7 G).

In our application of FEATHER to AFM data, we used the approach curve immediately

preceding the analyzed retraction curve. Both curves shared a common set of noise characteris-

tics because they were taken at the same velocity. In principle, one could use a single common

“reference” curve for a multitude of retraction records given that the reference curve had the noise
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characteristics of the retraction curves. For instance, one could acquire a handful of approach curves

at the retraction velocity for an individual cantilever and use those curves as the reference. In test

cases, the velocity of the approach did not have to equal the velocity of the retraction but such

applications should be tested on an individual basis, particularly if the ratio between the velocities

is >5.

The quality of FEATHER’s results were improved by multiplying the no-event probability,

as defined in Equation 4.1, by the no-event probability of the integral force, force derivative, and

force differential. The calculation of each of these probabilities was exactly the same as described

above, with the variables changed appropriately. Specifically, the relevant operation (integration,

differentiation, or force difference) was applied to the approach, estimates for the operation-specific

µσ and σσ, were obtained, yielding the operation-specific probability. The local force derivative of

the basis spline for the force was calculated in the standard, analytical manner, [129] and the local

differential at each point was calculated centered about that point with a window size of τ/2. More

details for the calculation of each of these terms are given in the pseudocode listed in Table 4.5. In

particular, the final probability is given in terms of these operation-specific probabilities as:

Pnoevent = PF × Fintegral × PdF × PdF/dt (4.2)

where PF is defined as Equation 4.1. Each term in the probability calculation improved

the performance of Pno event. For example, incorporating PdF made it less likely that cantilever

oscillations after a rupture would trigger a spurious event. The force differential was used in

addition to the force first derivative in order to incorporate higher-order derivative information. In

addition, Pno event is set to one if any of the individual distributions (P integral, P dF, or P dF /dt) are

equal to one. This codifies the requirement that an unbinding or unfolding event is statistically

distinguishable from the dynamics observed during an approach curve. In addition, AFM data has

a region at the start of each retraction curve in which the cantilever is in contact with the surface.
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To prevent this so-called ‘touchoff’ region from triggering spurious events, FEATHER ignores any

event starting at the beginning of the retraction curve. Further, minor details are listed in the

pseudocode of Table 4.5.

4.9.1.4 Algorithm runtime

All timing and tuning results were obtained using a desktop with 32 GB of RAM, an AMD

Ryzen 5 1500X Quad-Core CPU, and a 500 GB hard drive. Figure 4.4 compares the runtime

of FEATHER and the reference algorithms. The runtime of FEATHER, denoted T(N) in the

computer science literature, is linear with number of points but with an offset. As a result, a 1,000-

fold increase in the number of data points in a curve leads to a 20-fold increase in runtime over the

range tested (Figure 4.4). FEATHER has a roughly tenfold better runtime performance on larger

datasets than the OpenFOVEA or Scientific Python algorithms, in addition to outperforming them

in application-specific metrics (see Figure 4.3).

4.9.1.5 Algorithm tuning

All three algorithms were tuned using 5-fold cross validation. Cross validation is a common

technique for quantifying performance of an algorithm [130]. In our case, the data were split with

80% of the data as a training set for parameter optimization and 20% of the data as a validation set

for measuring algorithm performance. Cross validation was performed five times at fifteen different

values over the useful range of each algorithms tuning parameter (Figure 4.8). The parameter

value that minimized the Bhattacharya coefficient’s complement for an algorithm was considered

the algorithm’s best parameter. Data shown in Figures 4.10–4.11 consist of the concatenation of

the five validation folds for each algorithm’s best parameter.

Since tuning the reference algorithms (Open Fovea and Scientific Python) on the full DNA
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dataset would have required many cpu-months (compared to about one cpu-day for FEATHER,

see Figure 4.4), a smaller subset of the DNA data was used for comparing the algorithms. In

particular, the subset of the DNA data with the smallest number of points per curve—200 curves

with v = 1,000 nm/s, Npoints ~ 105 (see Table 4.3)—was used for results comparing FEATHER to

the baselines for Figure 4.10. FEATHER was also tuned separately on the larger, more complex

DNA dataset, with similar results to those reported in the rest of the paper (Figure 4.11). This

demonstrates that FEATHER generalizes well to a wide range of data sets sizes and experimental

parameters. We note that on the DNA data set, FEATHER showed even greater performance gains

than for the polyprotein data set.

4.9.2 Sample Preparation

Site-specific coupling improves the rate and quality of the resulting single-molecule force

spectroscopy (SMFS) data. We used a recently developed site-specific coupling chemistry for both

the polyprotein and DNA studies [69]. Here, we briefly review this procedure for surface- and

cantilever-functionalization.

4.9.2.1 Azide-Functionalized Surfaces

Glass coverslips [12-mm diameter (Ted Pella, 26023)] were cleaned by sonicating for 5 min in

acetone, 5 min in 95% ethanol, and finally immersed for 3 min in a solution of potassium hydroxide

[80 g of KOH (Fisher, P250-500) dissolved in 170 mL of 95% ethanol and 80 mL of ultrapure water

(18.2 MΩ)]. We next serially washed the coverslips in two 1-L beakers of ultrapure water. The

cleaned coverslips were dried with 99.8% pure dry nitrogen gas and stored at room temperature in
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a dust-proof container.

Prior to azide-functionalization of the coverslips, we first exposed them to 30 min of UV-ozone

(Novascan, PSDP Digital UV Ozone System). We next loaded the coverslips into a custom-made

Teflon-holder and immersed them in 0.15 mg/mL of silane-PEG-azide (Silane-PEG-Azide Nanocs

PG2-AZSL-600) dissolved in warm (60 °C) toluene (Sigma 179418-4L) for 3 h. To achieve uniform

surface coverage, this solution was stirred at 600 RPM. After this incubation, we serially rinsed

the coverslips in 250-mL beakers of toluene, isopropanol, and ultrapure water. The resulting azide-

functionalized surfaces were dried with nitrogen gas and stored in a dust-proof container at 4 °C.

4.9.2.2 Streptavidin-Coated Cantilevers

We used a similar protocol to coat the cantilevers with streptavidin. We first removed the

gold and underlying chromium layer off of long, soft cantilevers [L = 100 µm; k = 7 pN/nm

(nominal) (Olympus)], which achieves sub-pN force stability over 100 s [131]. To remove the gold,

we immersed the cantilever for 30 s in 10 mL of gold etchant (Transene TFA) followed a rinse

in 250 mL of ultrapure water. The chrome was removed by immersing the cantilever in 10 mL of

chromium etchant (Transene 1020) followed by a rinse in 250 mL of ultrapure water. The cantilevers

were then serially rinsed for 30 s in 50 mL of deionized water, isopropanol, toluene, isopropanol,

and ultrapure water. After drying with a Kimwipe, we then exposed the cantilevers to UV-ozone

for 30 min. Akin to the coverslips, we then maleimide-functionalized the coverslips by immersing

them for 3 h in a 0.15 mg/mL solution silane-PEG-maleimide (Nanocs PG2-MLSL-600) dissolved

in warm toluene. The resulting functionalized cantilevers were serially rinsed in 250 mL of toluene,

isopropanol, and ultrapure water. The cantilevers were immediately dried by touching the base of

the cantilever to a Kimwipe. To coat the cantilevers with streptavidin, we next immersed them for

3 h at room temperature in a 0.2 mg/mL solution of thiol-derivatized streptavidin (Protein Mods,

SAVT) dissolved in PBS buffer [10 mM phosphate buffer (pH 6.75), 140 mM NaCl, 3 mM KCl]
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with 1 mM TCEP (Tris(2-carboxyethyl)phosphine, Thermo Scientific 77720)] in small wafer holders

(Entegris, H22-100/101-0615). Subsequently, we transferred the cantilevers into these holders to 4

°C for an overnight incubation. After this incubation, we removed the free streptavidin by serially

rinsing the cantilevers in two 10-mL beakers of PBS at pH 7.4 and then immersed them in a 20-mL

petri dish filled with PBS for 10 min. The resulting streptavidin-coated cantilevers were stored in

50 µl of PBS at pH 7.4 and 4 °C in the wafer holders until loading into the atomic force microscope

(AFM). Streptavidin-coated cantilevers were typically stable for 1–2 weeks of storage at 4 °C.

4.9.2.3 Polyprotein Labelling

As previously described [69], the polyprotein used was created by inserting the 73 amino acid

protein α3D [132] into a plasmid with four copies of the 57 amino acid protein NuG2 [133]. The

plasmid is available via the Addgene nonprofit plasmid repository (Plamid ID 80163).

The protocol for labeling the polyprotein was recently published [69]. Briefly, after overex-

pression in E. Coli strain BL-21 (DE3), the protein was purified on a Ni-NTA (Qiagen) column

equilibrated with TBS buffer [25 mM Tris (pH 8.0), 150 mM NaCl, 5 mM beta mercapoethanol

(βME)]. To convert the cysteine in the aldehyde tags (LCTPSR) to formylglycine (an amino acid

containing an aldehyde), purified formylglycine-generating enzyme (FGE) was added to purified

polyprotein containing the aldehyde tag in 25 mM triethanolamine (pH 9.0), 50 mM NaCl, 1 mM

βME in a 1:10 FGE:polyprotein molar ratio. The mixture was incubated overnight at 18 °C

with shaking, resulting in ~95% conversion from cysteine to formylglycine. After aldehyde con-

version, the sample was buffer exchanged into 50 mM sodium phosphate (pH 6.0), 150 mM NaCl,

1 mM TCEP (Tris(2-carboxyethyl)phosphine) and incubated for 3 days at 37 °C with 10x mo-

lar concentration of Hydrazino-Pictet Spengler (HIPS) reagents to functionalize the protein with

dibenzocyclooctyne (DBCO) and biotin. Details of HIPS reagent synthesis were also previously

published [69]. As both ends of the polyprotein contained the same aldehyde, at best 50% of the
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protein would contain both biotin and DBCO. Despite this limitation, only proteins which were

differentially labeled with both DBCO and biotin at each end were efficiently stretched between

azide-functionalized surfaces and streptavidin-coated AFM tips.

4.9.2.4 DNA Sample Preparation

For the DNA pulling assays, we used 650-nm long DNA labeled at one end with four biotins

and the other end with dibenzocyclooctyl (DBCO), a copper-free click chemistry reagent that

reacts with azide moieties. To introduce these labels, we used PCR and a forward and reverse

primers (IDT) labeled at their 5’ ends (Table 4.3). The template DNA was the M13mp18 plasmid

(New England BioLabs N4018S). After PCR, we purified the DNA to remove the primers using a

QiaQuick PCR purification kit (Qiagen 28106) followed by gel electrophoresis. The desired band

was excised with a razor blade and the DNA extracted using a Freeze ‘N Squeeze DNA Gel spin

column (Bio-Rad). We then concentrated the DNA using a 0.5-mL microconcentrator (Amicon

10K centrifugal filter) and removed residual agarose using a second Qiaquick PCR purification.

The DNA was eluted using TE [10 mM Tris-HCl (pH 8.0), 1 mM EDTA] and stored at 4 °C.

We prepared DNA samples for the AFM by depositing 100 µL of the 8 nM labeled DNA onto

azide-functionalized coverslips and let the DNA incubate at 4 °C overnight in a wafer holder. The

coverslips were then rinsed with 7 mL of TE at pH 8.0 and 7 mL of PBS at pH 7.4 and 1 mM

EDTA and stored at 4 °C.

4.9.3 Data Acquisition and Annotation

4.9.3.1 AFM Experiments

The force spectroscopy data was acquired on a Cypher ES AFM (Asylum Research). The sam-

ples were in liquid [PBS (pH 7.4)] and held at a constant temperature (25 °C) using a temperature-
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controlled, closed-fluidic liquid chamber. The stiffness of each cantilever was calibrated using the

standard thermal method [134], as implemented on our commercial AFM. Sensitivity of the detector

(V/nm) was determined by pushing the tip into the sample and fitting the resulting force-extension

curve. After calibration, the sample was repeatedly probed at various locations and retraction

velocities (v) using a standard constant-velocity data-acquisition scheme. For example, within one

cycle, we lowered the tip towards the surface at constant velocity until a user-defined force was

achieved, typically 100 pN. The tip was held in contact at constant F for ~1–2 s and then retracted

at constant velocity while the cantilever deflection was digitized at 50 kHz. The experimental data

sets used for this study consisted of 152 force-extension curves of the polyprotein construct acquired

at four retraction velocities (200, 400, 1,800, and 3,800 nm/s) and 600 DNA force-extension curves

in total acquired in equal number at three retraction velocities (100, 500, and 1,000 nm/s).

4.9.3.2 Polyprotein and DNA manual annotation

The start and end of each event in a curve were obtained through manual annotation as

follows. We first smoothed the data with a 2nd-order Savistky-Golay filter, where the filter length

was set to 0.1% of the retraction curve length. The start and end of each event was manually

identified in each smoothed force-extension curve. The loading rate was determined by a linear fit

to the previous N points of force-vs.-time trace, where N was set to 2% of the curve length, The

rupture force was determined as the last time the high-bandwidth data crossed the line defined

by the linear fit. We note that this algorithm for determining loading rate and rupture force was

also applied to the computationally defined events by all three algorithms (FEATHER, OpenFovea,

Scientific Python). On average, each manual annotation of a curve took 1–2 min. More statistical

information on the polyprotein data, including curve lengths and number of events per curve, is

given in Table 4.2. The equivalent table for the DNA dataset is given in Table 4.4.
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4.9.4 Simulation

Simulations were performed in order to test for a wider range of parameters (e.g. contour

length changes), pathological examples such as high-force ruptures followed by lower-force ‘shielded’

ruptures, and to complement the manually annotated experimental data with an unambiguous

‘ground truth’. Simulated data were generated and analyzed using an algorithm inspired by the

recent work of Hummer and Szabo [39]. For a single simulated curve, the simulation consisted of

the following distinct states:

1. State 1: Probe equilibration.

2. States 2-7: Pulling, including 6 different rupture events.

3. State 8: Probe retraction after final event.

In total, 100 simulated curves were used, with 6 events per curve. The probe position z was

increased at a constant velocity v starting from 150 nm and moving to a curve-dependent final

position, as described below. The molecular extension qn+1 and force Fn+1k (zn+1 −qn+1) was

determined from the previous extension, qn, by the following relation:

qn+1 = qn − Dqδt( ∂V

∂qn
)i + gn

√
2Dqδt (4.3)

where the parameters definitions and values for Equation 4.3 are given in Table 4.9. The

initial extension before equilibration, q0, was assumed to be 150 nm.

A wide range of contour length changes, loading rates, and pathologically complex force-

extension curves were created by varying the worm-like chain force, FWLC,i(qn). Our simulations

modelled the worm-like chain force as a modified Marko-Siggia worm-like chain (WLC) [135] deter-

mined by the particular state i. The last state after the final rupture (i.e., state 8) has FWLC,i = 0,
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since no molecule is attached in that state. All other states share the following parameters: a

persistence length p of 0.3 nm, a Boltzmann energy kBT of 4.1 pN nm, and a stretching modulus

of 100 pN. In order to achieve a wide range of rupture forces, loading rates, and changes in contour

lengths, the contour length, L0,i, and the total distance spent in a state before rupture, ∆zi, were

varied uniformly at random within the ranges in Table 4.8. The simulated data were analyzed

in the same manner as the experimental data, with unambiguously identified events marked at

transitions between adjacent, non-equilibration states. The last 10% of each simulated curve was

used as an effective “approach” input to FEATHER, since no events were present after the final

rupture. For the simulated data, FEATHER used a fractional τ of 0.001 (~10 ms) and a threshold

of 10-5.

FEATHER’s performance on the simulated data exceeds its performance on experimental

data. As shown in Figure 4.12 and Table 4.7, all performance metrics on simulated data are

improved compared to the results presented in the rest of the paper (e.g. Figure 4.3, Table 4.1).

4.9.5 Figures

Figure 4.4: Runtime of each algorithm. (A) The runtime, denoted T(N), per curve versus
number of points N in the analyzed record for each algorithm. (B) For each algorithm, the number
of points analyzed per second was determine by fitting a line to the data in panel A.
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Figure 4.5: Representative examples of 650-nm DNA force-extension curves with one
event (A–C), two events (D), and three events (E). Plotting conventions are as in Figure
4.1 and the scale from panel A is used in all 5 panels.

Figure 4.6: Effect of smoothing on BCC. (Left) Force-extension curves at three smoothing
τ, formatted as in Fig 1. Note the low-force rupture in the middle panel is real. All curves are
simulated data, as described in the Supporting Material. (Right) The BCC for all simulated data
as a function of τ.
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Figure 4.7: Overview of the FEATHER algorithm. (A, B) The approach and retract
forces-vs-time at 25 kHz fit with a spline with knots spaced every 500 ms (τ), for a particularly
low v (100 nm/s) and extended retraction distance (1.2 µm). (C,D) The force-residuals-vs-time
of the approach and retract records after subtracting the spline from the high-bandwidth data.
The subtraction yields a force residual r(t) with a zero-centered mean and variance about that
mean (which contained mostly the thermal noise of the system within a window of 2τ). (E,F)
The variance (σr) of the force residual as a function of time where σr is the standard deviation
of the high-bandwidth data within a time window 2τ. The mean value of this variance (µσ) and
the standard deviation (σσ) of it are also plotted. The cyan shaded region in each plot is derived
from panel E. (G) The probability of no event at each time has a sharp minima near the expected
event location based on the application of Chebyshev’s inequality [123]. Changes in color of the
retraction curved indicates an event, based on human-annotated data.
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Figure 4.8: The sensitivity of the Bhattacharya coefficient’s complement (BCC) The
sensitivity of the Bhattacharya coefficient’s complement (BCC), a measure of how well the algorith-
mically predicted events match human-annotated data, as a function of algorithm specific parame-
ters for the three compared algorithms FEATHER (A), OpenFovea (B), and Scientific Python (C).
Lower BCC is better. The BCC was computed from the polyprotein data set and the resulting
distributions shown in Figure 4.3 B–C .
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Figure 4.9: Additional metrics for comparing algorithm performance between
FEATHER, OpenFovea, and Scientific Python. The metrics are precision (A), recall
(B), and the false positive ratio (C). Precision is defined as the number of correctly predicted
events (TP) in a data set divided by the total number of predicted events, TP/(TP+FP), where
FP is the number of false positives. Recall is defined (TP/(TP+FN)) where FN is the number of
missed events or false negatives. For both these metrics, better performance is indicated as closer
to 1. The false positive ratio is defined as (FP/P) where FP is the number of false positives in
a data set and P is the number of true events as defined by human annotation. Perfect recall
would also yield a value of 1 because there were no missed events. In contrast the metric FP/P
is better when closest to 0. It is important to note that these simple metrics ignore how close
a predicted event is to a true event. Hence, while the wavelet transform has a similar Precision
and Recall to FEATHER, FEATHER does much better for more experimentally relevant metrics
(see Figure 4.3). The most common cause of false positives for FEATHER is false triggering on
instrumental artifacts after tip detachment at high pulling velocities (Figure 4.13). FEATHER
most often returns a false negative when attempting to detect a short-lived, transiently-occupied
state. Applications of recently developed cantilevers [126] with improved temporal resolution and
higher force precision as well as optimizing τ for different v should mitigate these issues. (D) A
confusion matrix for FEATHER, where the rows are the human-annotated assignment of events
and non-events, and the columns are predicted by FEATHER. (E–F) Formatted as panel (D), but
applied to OpenFovea and Scientific Python, respectively.
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Figure 4.10: FEATHER outperforms the reference algorithms in analyzing a 650-nm
DNA dataset acquired at a high-retraction velocity (1,000 nm/s). (A) Histograms of
relative errors between human-annotated and FEATHER’s algorithmically predicted event where
∆Z is the fractional distance between the identified events divided by the full range of the record,
dt→p is the distance from a true event to the closest predicted event, and dp→t is the distance from
an algorithmically predicted event to the closest true event. (B) FEATHER’s 2D distribution of
true and predicted rupture forces and loading rates. (C,D) The histograms of rupture forces and
loading rates from the data in panel B. (E) FEATHER’s performance metrics using Bhattacharya
coefficient’s complement (BCC), which measure the overlap between 2 distributions and ∆Z95,
location of the 95th percentile of the combined distribution for dp→t and dt→p. Ideally, both
metrics should 0. (F–J) OpenFovea’s and (K–O) Scientific Pythons’s performance using the same
analysis as in panels A–E. In the scatter plots (B,G, L), the density of green true points obscures
overlap with the predicted points.
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Figure 4.11: FEATHER generalizes well to force spectroscopy of 650-nm DNA data
set containing multiple attachments over three different retraction velocities (100,
500, and 1,000 nm/s). The subplots in this Figure are formatted as in Figure 4.10 but with
FEATHER applied to the full data set, spanning an order of magnitude in velocities and two orders
of magnitude in loading rates.

Figure 4.12: FEATHER generalizes well to a wide range of simulated data. (A) An
example force-extension curve, generated as described in the Supporting Material. The color-coded
regions denote a high-force rupture (blue), several ruptures with small changes in contour lengths
(red), and a final lower-force rupture (green). (B) A histogram of contour lengths from all regions
in all simulated force-extension curves. (C). As panel B, but for contour length changes between
adjacent regions. (D–F) Formatted as Figure 4.3 in the main text, but showing FEATHER’s
performance on the simulated data.
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Figure 4.13: Typical failure mode for FEATHER. (A) A force-versus-time trace, formatted
as Figure 4.1, where FEATHER’s predictions are consistent with the human-annotated data. (B)
A trace, formatted as in panel A, where two spurious events are detected in the last half of the data.
Note that the data in panel B is at a 5-fold higher velocity (1.8 µm/s) than panel A (0.4 µm/s),
introducing additional noise and less averaging of Brownian motion since the fractional number of
spline points per record is fixed, not the degree of smoothing per unit time.
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4.9.6 Tables

Table 4.2: Statistical information on the polyprotein data set. For each loading rate
v in the data set, this table lists the number of curves N curves; mean number of points in a curve,
Npoints; the number of curves with ‘x’ events Ne=x for x=[1,2,3]; and the number of curves with
greater than 3 events, N e>3 .

v (nm/s) Ncurves Npoints (103) Ne=3 Ne=4 Ne=5 Ne=6 Ne>6
3800 25 62 1 5 6 12 1
1800 54 77 2 8 9 31 4
400 71 113 0 9 28 27 7
200 2 200 0 1 0 1 0
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Table 4.3: Primers sequences The forward and reverse primers amplify a 647-nm piece of
DNA, from positions 1607 to 3520 on the M13mp18 plasmid, as discussed in the text. Unmodified
DNA bases are lowercase. The uppercase letters ‘T’,’B’, and ‘D’ respectively represent biotinylated
Thymidine residues, a terminal Biotin separated from the sequence by triethyleneglycol spacer, and
a terminal dibenzocyclooctyl (DBCO) separated from the sequence by triethyleneglycol spacer.

Name Sequence
Forward primer Dagttgttcctttctattctcactccgc
Reverse primer BtcaataaTcggctgtctTtccttatcaTtc

Table 4.4: Statistical information on the 650-nm DNA data set. Conventions are as in
Table 4.2.

v (nm/s) Ncurves Npoints (103) Ne=1 Ne=2 Ne=3 Ne>3
1000 200 117 173 26 1 0
500 200 200 130 49 9 12
100 200 671 155 35 6 4
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Table 4.5: Pseudocode for FEATHER Psuedocode for FEATHER. Comments given by #.

def predict_events (approach, retraction,threshold, τ):
g* = second-order spline fit to retraction using τ for knots
ga = second order spline fit to approach using τ for knots
dt = spacing between adjacent time points
r = retraction – g*

ra = approach – ga
s[i] = standard deviation of r[i- 2τ :i+ 2τ ]
sa[i] = standard deviation of ra[i- 2τ :i+ 2τ ]
# Determine the no-event probability
ϵ = median of sa
σ = standard deviation of sa
k = (s- ϵ)/ σ
probability = minimum(1,k-2)
# Determine the integral probability
integrateds[i] = integrate (s-ϵ) from [i- 2τ ] to [i+ 2τ ]
set integrateds where positive to σ
kinteg = (integrateds/ σ)
probability = probability * minimum of (1, kinteg-2 )
# Determine the derivative probability
gderiv = derivative of ga
ϵd = median of derivative of ga
σd = standard deviation of derivative of ga
g*deriv = derivative of g* with respect to time
kderiv = (g*deriv - ϵd)/ σd
probability = probability * minimum of (1,kderiv-2)
# Determine differential probability
gdf = change of ga with respect to time in steps of τ/2
g*

df = change of g* with respect to time in steps of τ/2
σdf = standard deviation of gdf
ϵd = median of gdf
kdf = (g*

df - ϵdf)/ σdf
probability = probability * minimum of (1, kdf-2)
# find the initial guess for events
events = indices where probability <= threshold
combine event indices within τ/4 of each other
# update the events to remove adhesions
zapproach,surface = last point where approach force > 0
zretraction, surface = where retract zretraction crosses approach zapproach,surface
zretraction, surface = maximum of (zretraction, surface, first time kderiv=1)
remove events containing zretraction, surface
re-zero retract force to median of all points after last event
update all fits to the retraction and probabilities to where zretraction ≥ zretraction, surface
# update the events to remove stretching and low-force noise
remove with positive derivatives and re-zero force as above
remove where g*- g*

df ≤ (ϵdf+σdf) or where g*+(g*deriv·τ/4·dt) < σdf
re-zero force as above
remove where the average F with a window size of 2τ is less than σ + ϵ+ σdf
remove where the average F difference with a step size of 2τ is greater than -(σ +σdf)
remove events within τ/4 of the boundaries
return events
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Table 4.6: Variable and performance metric definitions. BCC stands for Bhattacharya
coefficient’s complement. Throughout, ’k‘ refers to the index of a force-extension curve, and ‘i’ and
‘j’ refer to either true or predicted. For example, dt→p,4 represents the distances from the true to
the predicted events in force-extension curve four.

Name Notation or definition Range Optimum
K Number of curves — —
Nk Number of points in force-extension curve k — —
di→p Distribution of pointwise distances in ’k‘

from ‘i’ ruptures to the closest ’j’ rupture or
Nk if none, where i and j are true (t) or predicted (p) — —

∆Zx the ’x’-th % of concatenated 1
Nk

dt→p,k and 1
dp→t,k

k — —
νi histogram of ‘i’ loading rates over all k — —
Fi histogram of ‘i’ rupture forces over all k — —
d(ν,F),i joint histogram of νi and Fi divided by K — —
relative error ∆Z95 [0,1] 0
rupture BCC 1 - < d

1
2
(ν,F ),t|d

1
2
(ν,F ),p [0,1] 0

Table 4.7: Table Title The Bhattacharya coefficient’s complement (BCC) and ∆Z95 for
FEATHER, as applied to the simulated data. FEATHER’s performance on simulated data is
more than an order of magnitude improved over the experimental results shown in Table 4.1. The
symbol (↓) indicates a lower value is better.

Name BCC (↓) ∆Z95 (↓)
FEATHER 0.00014 0.000012

Table 4.8: Parameters for simulated force-extension curves. This table lists the parame-
ters used for simulating FWLC,i(qn). A sample from the uniform distribution between numbers x0
and xf is denoted as Unif (x0, xf), L0,i is the contour length in state i, FR is the mean rupture force,
and ∆zi is the total pulling distance spent in state i. Note that ∆zi is proportional to time and to
the number of simulated points spent in a state, since the velocity, v, and sampling rate, ∆t, are
constant.

State i L0,i ∆zi FR (pN)
1 220 nm – 20 Unif[1,2] 2000 points (60 ms) NA
2 L0,i-1 50 * Unif (1,3) 138
3-6 L0,i-1 + 20 Unif[1,3] 98
7 L0,i-1 + 20 Unif[10,100] 25
8 N/A, FWLC=0 250 Unif[1,2] NA
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Table 4.9: Definition and values of physical parameters used in Equation 4.3. Definition
and values of physical parameters used in Equation 4.3.

Parameter Description Value used
Dq Probe diffusion coefficient 250 nm2/ms
∆t Time step 30 µs
gn Noise source Random numbers from a unit Gaussian dist.
i Simulation state index 0 (equilibration) to 8 (after final detachment).
k Probe stiffness 0.5 pN/nm
R Loading rate 25 pN/s
v Probe velocity R/k = 50 nm/s, except state 0 (v=0)
∂V
∂qn i

State-dependent force k (qn – zn) + FWLC,i(qn), where FWLC,i is
determined as described in the text



Chapter 5

Improved free-energy landscape reconstruction of bacteriorhodopsin highlights
local variations in unfolding energy

Reprinted from

Patrick R. Heenan, Hao Yu, Matthew G. W. Siewny, and Thomas T. Perkins. Improved free-energy

landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy. The

Journal of Chemical Physics, 148(12):123313, December 2017.

with the permission of AIP Publishing.

5.1 Abstract

Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid

bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as

a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Con-

currently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium

free energies (∆G0) from non-equilibrium single-molecule force spectroscopy (SMFS) records. The

combination of these two advances in single-molecule studies deduced the free-energy of the model

membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy land-

scape at a higher resolution, we applied two recent developments. First, as an input to the recon-
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struction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold

higher force precision than traditional AFM studies of membrane proteins. Next, by using an in-

verse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with

the force probe and determined the molecular free-energy landscape of the molecule under study,

bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid

(aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller

spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a par-

ticular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high

value. Hence, while average unfolding ∆G0 per aa is a useful metric, the derived high-resolution

landscape details significant local variation from the mean. More generally, we demonstrated that,

as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy

landscapes from AFM data.

5.2 Introduction

Membrane proteins perform critical biological functions, such as light harvesting, signaling,

and transport. To carry out these and other diverse functions, they fold into equilibrium structures

within a lipid bilayer [137]. Yet, predicting the structure and stability of membrane proteins

significantly lags behind the success for globular proteins [137]. For instance, models still struggle

to predict the tilt and overall packing of transmembrane (TM) α-helices. Hence, there is an ongoing

need to better quantify the molecular forces that drive and stabilize the folding of membrane

proteins. As with globular proteins [53], the energy landscape provides the fundamental framework

for understanding membrane-protein folding and structure stabilization [138].

Single-molecule force spectroscopy (SMFS) has emerged as an important tool in determining

the energetics underlying the folding and unfolding of individual proteins [25–28]. For membrane

proteins, atomic force microscopy (AFM) is the modality of choice [140], since individual proteins
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Figure 5.1: High-resolution studies of bacteriorhodopsin (BR) (A) A cartoon illustrating
BR being unfolded from its C-terminal end using a modified, ultrashort cantilever. Each helix is
denoted by a letter. Color coding highlights the unfolding topology as helix pairs or the terminal
A helix are extracted. (B) A canonical force-extension curve while stretching at v = 300 nm/s
shows the major intermediates corresponding to pulling on the top of the E, C and A helix. The
initial portion of the force-extension curves was not analyzed due to the confounding effects of non-
specific surface adhesion (grey box). The colored bars correspond to the colored helical regions from
panel a. (C) Force-vs-time record of the highlighted black box in panel b shows near-equilibrium
unfolding and refolding at the top of helix A over a 13-amino-acid (aa) segment. (D) Multiple
force-extension curves of BR show numerous detected unfolding intermediates. Curves were well
modeled by worm-like chain model within a particular state (dashed lines). (E) Force-vs-time
record shows repeated unfolding and refolding of a 3-aa segment during an equilibrium assay (v
= 0 nm/s) near the top of helix E. For clarity, 5-MHz data (light purple) was smoothed to 25
kHz (dark purple). (F) A reconstructed 1D free-energy landscape based on ~100-ms records of
equilibrium data with 1-µs resolution tilted to F1/2, the force at which the two states are equally
likely to be occupied. Reconstruction was based on pfold [139]. Error bars represent the standard
error of the mean. Dashed line represent the location of transition state determined from a Bell
analysis of state lifetime, with the grey box denoting the standard deviation in that localization.
The data for Figure 5.1 B–F are from [72].
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can be mechanically extracted from their native bilayer [141]. In the canonical assay, the tip of a

cantilever is pressed into bacteriorhodopsin (BR) embedded in its native lipid bilayer to promote

nonspecific attachment [141]. The tip is then retracted at constant velocity while force is deduced

from the bending of the cantilever, revealing a series of unfolding peaks in the force-extension curve

(Figure 5.1 A–B). The dominant peaks correspond to pulling on the top of TM helix pairs or a

terminal helix, notably the ED and CB helix pairs as well as the A helix. Importantly, these AFM-

based studies provide insight into the energetics of membrane proteins in lipid bilayers, rather than

in detergent. Moreover, AFM studies provide a reproducible reference state, the fully unfolded

protein. In contrast, the “unfolded” protein in ensemble unfolding assays retains α-helical content

and therefore provides a poor reference state [137].

Complementing experimental advances that led to SMFS studies of individual proteins and

nucleic-acid structures, theoretical advances enabled the determination of equilibrium free-energy

values (∆G0) from analysis of non-equilibrium force-extension curves [57]. Such analysis provides

important information beyond the distances to transition states (∆x‡) and the zero-force dissocia-

tion rate constant (koff) determined using Bell-Evans analysis of dynamic force spectroscopy data

[30, 111]. In particular, as demonstrated in pioneering studies of structured RNA using optical

tweezers [51, 142], a 1D free-energy landscape can be obtained by extending the Jarzynski equality

[143] via the weighted histogram method developed by Hummer and Szabo [57]. Salient to this

present work, Hummer and Szabo’s original paper applied the weighted histogram method to de-

duce the free-energy landscape for the ED helix pair bacteriorhodopsin, yielding an average of ∆G0

of 1.1 per amino acid (aa) estimated from eight force-extension curves. Using significantly more

traces (N ≈ 600), Preiner et al. extended this analysis over five helices (E–A) reported an average

∆G0 of 1.3 ± 0.2 kcal/mol/aa (mean ± SD) [144].

A higher-resolution description of the free-energy landscape enables a more quantitative com-

parison between the location and lifetimes of short-lived unfolding intermediates and the underlying

energy landscape. Recent advances in applying modified ultrashort cantilevers optimized for 1-µs
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resolution SMFS [145, 146] enabled the measurement of bacteriorhodopsin with a 100-fold higher

time resolution and 10-fold higher force precision that, in turn, revealed rapid near-equilibrium fold-

ing (Figure 5.1 C) and a multitude of previously unresolved, transiently occupied intermediates

(Figure 5.1 D) [72]. These cantilevers also enabled the first equilibrium study of membrane pro-

tein folding, where a particular three-amino-acid transition near the top of the E helix repeatedly

unfolded and refolded (Figure 5.1 E). Reconstruction of the free-energy landscape underlying this

transition (Figure 5.1 F) revealed an unexpectedly large ∆G0 per aa (2.7 kcal/mol) at F = 0 pN.

Here, we merged these experimental advances in acquiring high-resolution force-extension curves

with theoretical advances in reconstructing the landscape from non-equilibrium records. In partic-

ular, we used the inverse Weierstrass transform (IWT) applied in conjunction with the Jarzynski

free-energy integral to avoid convolving the compliance of the AFM cantilever into the resulting

free-energy landscape [39]. Importantly, the IWT works best for studies using a stiffer force probe

[39] —making it particularly suitable for AFM-based assays (k ≈ 6–100 pN/nm)—due to their

higher probe stiffness relative to earlier application in an optical-trapping-based assay (k = 0.4

pN/nm) [147]. The resulting landscape yielded an average unfolding free energy per amino acid

(aa) of 1.0 ± 0.1 kcal/mol (mean ± SEM), in close agreement with past single-molecule studies

[57, 144, 148]. Moreover, on a smaller spatial scale, this landscape also agreed with the recent

equilibrium measurement that showed an unexpectedly high ∆G0 per aa near the top of the E

helix. Hence, while average unfolding ∆G0 per aa is a useful metric, the resulting high-resolution

landscape confirmed significant local variations from the mean.

5.3 Free-energy landscape reconstruction

As background, the Jarzynski equality is remarkable because it relates the work done during

many repetitions of a non-equilibrium process to the equilibrium free-energy difference as a function

of an experimental parameter. For our work, the experimental parameter was the position of the

cantilever base relative to the surface, or ‘z’ [38]. More precisely, the Jarzynski equality is a
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thermodynamic relationship between the Helmholtz free energy of a system A(z) and the measured

work W (z):

e−βA(z) = ⟨eβW (z)⟩N (5.1)

where z is the zero-force equilibrium position of the force probe, β is the inverse of the thermal

energy kBT, and the average is taken over N independent stretching trajectories, each starting and

ending at the same choice of z [39, 143, 149]. The Jarzynski equality is exact only in the limit as

N→∞, but is approximately true for finite N . In practice, SMFS experiments apply the Jarzynski

equality by repeatedly folding or unfolding a single molecule of interest using a force probe. In this

case, the work is the integral of the force as a function of the cantilever position z. For example,

in the constant velocity experiments used in our AFM assay, z(t)=vt+zi, and the integral for each

stretching experiment starts at the same well-defined zi associated with the aligned curves (see

below). Tip-sample separation, which is also the molecular extension (x) in an AFM assay, is not

uniquely defined at all values of z. The molecule may be in different folding states and therefore

different molecular extensions, referred to henceforth as q as is common in landscape-reconstruction

literature [39]. The Jarzynski equality requires that all molecules included in the calculation start

(zi) and finish (zf) in an equilibrium state.

Hummer and Szabo’s original extension of the Jarzynski equality for SMFS studies determines

the landscape as a function of molecular extension (q), instead of SMFS probe position (z), and

also removes the energetic contribution of the force probe via a weighted histogram method [57]. In

subsequent work, they applied an IWT to simplify this calculation and make more efficient use of a

limited set of force-extension curves by assuming a stiff, harmonic pulling apparatus[39, 147]. Put

differently, the curvature (i.e., the second spatial derivative) of the true underlying energy landscape

should not exceed the stiffness of the force probe. Indeed, the consequence of not fulfilling this

assumption was theoretically anticipated [39] and experimentally demonstrated for a RNA pseudo-
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knot studied using an optical trap [147]. In that case, the derived landscape was filtered by the soft

probe leading to a lower barrier height (akin to applying a spatial filter that smooths out sharp

features). Hence, energy landscape reconstruction by the IWT is well suited to AFM-based assays

due to the higher stiffness of AFM cantilevers in comparison to optical traps [39, 147].

As input for IWT reconstruction of BR, we used a set of 106 force-extension curves of BR

extracted from its native lipid bilayer (purple membrane for BR) acquired using focused-ion-beam

modified BioLever Fast cantilevers (AC10DS, Olympus). The details of this data acquisition and

the force-extension curves have been previously published [72]. Briefly, modified cantilevers (k ≈

10–40 pN/nm) were pressed into the purple membrane at ~1 nN for 1 s and retracted from the

surface at a constant velocity (v) of 300 nm/s. Data were recorded at 5 MHz on a commercial AFM

(Cypher ES, Asylum Research) and then smoothed with a second-order, 500-point Savitsky-Golay

filter for all subsequent analysis. As is standard for SMFS-studies of BR [140], the curves were

laterally aligned to superimpose the major obligate intermediate associated with pulling on the top

of the E helix. These aligned traces (Figure 5.2 A) then served as input to calculate the free-energy

landscape via the IWT. The unfolding of the GF helix pair was not analyzed due to the confounding

effects of non-specific tip-sample adhesion.

The IWT reconstructs the free-energy landscape, approximately removing the contribution

of the force probe, by calculating statistics on an ensemble of N force-extension curves. For a

particular curve n with measured force Fn(z), the work used by the IWT is defined as

Wn(z) =
∫ z

zi

Fn(z′)dz
′ (5.2)

where z runs from zi to zf at a given velocity v for all N force-extension curves. The Jarzyn-

ski equality determines the Helmholtz free energy A(z), which includes energy from the probe.

The IWT approximately removes the contribution of the probe by calculating the so-called work-
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weighted ensemble statistics. The work-weighted force and force squared, denoted with double

brackets, are defined at each z as:

<< F (z) >>= ⟨eβWn(z)Fn(z)⟩N

e−βA(z) and << F 2(z) >>= ⟨eβWn(z)F 2
n(z)⟩N

e−βA(z) (5.3)

where <X>N denotes an average of X over the ensemble of force-extension curves at a fixed z.

These work-weighted values are related to the first and second spatial derivatives of the Helmholtz

free energy as follows:

Ȧ(z) =<< F (z) >> and 1 − Ä(z)
k

= β

k
(<< F 2(z) >> − << F (z) >>2) (5.4)

The IWT-based reconstruction uses the first and second derivatives to reconstruct the free-

energy landscape as a function of molecular extension [39]:

G(q = z − Ȧ(z)
k

) ≈ A(z) − Ȧ(z)2

2k
+ 1

2β
ln(1 − Ä(z)

k
) (5.5)

Importantly, G(q) is approximately the free energy of the molecule, instead of the free energy

of the molecule and the probe. To avoid errors associated with numerical derivatives of noisy data,

we calculated the energy derivatives, Ȧ(z) and Ä(z), directly from the primary work-weighted force

and force squared (see Figure 5.4) which, in turn, allowed G(q) to be determined. To avoid errors

in combining data sets acquired using different cantilever stiffnesses (k), we chose zi = 18 nm + (20

pN/k), which corresponded to approximately F = 20 pN at an extension of 18 nm when pulling

on the top of the ED helix pair. Each set of data, containing a minimum of 20 force-extension

curves, corresponded to one cantilever and was reconstructed separately. After the transform was

completed, the resulting free-energy landscapes were functions of molecular extension q (instead of

z) and were averaged based on the number of traces associated with each cantilever data set. As
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Figure 5.2: Process for free-energy landscape reconstruction of BR using an inverse
Weierstrass transform (IWT). (A) A heat map of all force-extension curves used in this work.
Data within ~18 nm of the surface are excluded due to surface adhesion. (B) Different components
for calculating the molecular free energy ∆G0 as a function of the molecular extension when using
the IWT. The three components used in computing ∆G0 as defined in Equation 5.5: A, (aqua,
dot-dash) and terms involving its first and second derivative (pink, solid line and brown, dashed
line; respectively). To promote comparison to panels a and c, the plotted lateral axis is q, molecule
extension. (C) The ∆G0 free energy as a function of molecular extension. Shaded region reports
the standard deviation as deduced from a bootstrap analysis.
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in previous work, [144] we found that we needed a minimum of 20 traces per cantilever to limit

reconstruction error to reasonable levels.

Uncertainties in the landscape and its first derivative were determined by a bootstrap

analysis[150]. In brief, 250 synthetic data sets were generated from the original set of 106 curves

using random resampling with replacement. Only synthetic data sets with 1− Ä(z)
k > 0, as required

by the IWT, were counted towards the total of 250. From the resulting ensemble of 250 landscapes,

the standard deviation in simulated mean values was calculated after smoothing with a third order,

piecewise polynomial to 0.4 nm. This smoothing choice was chosen to approximately minimize the

product of error in Ġ(q) and in the least-squared fitting of G(q) across the bootstrapping rounds

(see Figure 5.5). Future work with more traces from individual cantilevers and from cantilevers

with a narrower range in k will decrease the uncertainties in landscape reconstruction.

We illustrate the process of calculating the IWT for BR from Equation 5.5 in Figure 5.2. The

starting data consists of 106 aligned force-extension curves. As shown in Figure 5.2 A, the resulting

heat map represents the ensemble of measurements needed to apply Jarzynski’s inequality and the

inverse Weierstrass transform. To highlight the contributions of the three components in Equation

5.5 in determining G(q), we color coded a plot of A(z) and the IWT corrections (Figure 5.2 B).

The corrections were obtained as described above, using work-weighted histogram statistics[39, 149].

The resulting G(q) was deduced from the sum of these three components and represents the free

energy of the ED, CB, and A helical pairs of bacteriorhodopsin (Figure 5.2 C). Shaded regions

represent the standard deviation deduced from the aforementioned bootstrap analysis.

5.4 Results and discussion

The local unfolding free energy of BR depended on the individual structural element being

unfolded. Our resulting high-resolution free-energy landscape of BR’s final five helices showed

significant variation in slope as a function of extension and therefore unfolding energy per amino
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acid (Figure 5.2 C). To highlight this variation, we computed the free-energy landscape and ∆G0

per nm as a function extension for the individual major structural components (ED, CB, and

A helices) (Figure 5.3 A–C). The mean ∆G0 per aa is 1.0 ± 0.1 kcal/mol (mean ± SD) when

calculated from the unfolding of the ED, CB, and A helices [156 ±15 kcal/mol (mean ± SD) over

160 amino acids of helices, traditionally taken as the top of the E-helix in AFM-based assays [151]].

This average value is slightly larger than bulk denaturation studies that report ~0.5 kcal/mol/aa

[152] and similar to past single-molecule results of 1.1–1.3 kcal/mol per aa [57, 144, 148].

For completeness, we note that most rigorous to-date experimental determination of the total

∆G0 for the E–A helices is 227 ± 38 kcal/mol (mean ± SD) and is therefore significantly higher

than our value of 156 ±15 kcal/mol, a result not precisely reflected in the reported 1.3 kcal/mol

per aa [144]. The origin of this difference is that this prior work used 171 amino acids in their

analysis, which includes an extra 11 amino acids associated with the loop between the top of E and

F helices and the first turn of the F-helix. If we reanalyze this earlier result with the same number

of amino acids as used in this present work, their value now becomes 1.4 ± 0.2 kcal/mol per aa.

Our average unfolding energy per amino acid therefore lies below this prior experimental result.

Possible origins of this difference could be the improved precision of our force-extension curves

and/or some reduction in the total ∆G0 values due to the IWT poorly resolving stiff portions of

the landscapes compared to the weighted histogram method (see below) [147]. Finally, a recent

coarse-grained molecular dynamics simulation predicts a free energy of transfer from bulk water

to lipid of -130 kcal/mol for the 160-aa sequence in our work, or about 0.8 kcal/mol per aa for

unfolding BR from its lipid bilayer (see Section S1) [153].

Our work also documented that ∆G0 per nm varied more than 15-fold, from 11 kcal/mol

at the top of the ED helix pair to 0.6 kcal/mol at the bottom of the same helix pair. While

it has long been known that hydrophobicity of the amino-acid sequence within the lipid bilayer

and inter- and intra-helix interactions contribute to this variation [154], recent work also shows

variations in the strength of hydrogen bonds within TM helices [155]. To convert this local, single-
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molecule force spectroscopy derived metric to the more commonly reported ∆G0 per aa, we note

that there are ~3 amino acid residues per nm of contour length for an unstructured peptide based on

crystallography (0.36 nm/aa) [156]. Given the elevated forces experienced during unfolding portions

of the records, we approximated extension with contour length and therefore approximated a local

value for ∆G0 per aa as 1/3 of ∆G0 per nm after taking the spatial derivative of the reconstructed

free-energy landscape (e.g., Figure 5.2 C). As described in the methods section, the landscapes and

its derivatives were calculated for each set of data derived from a cantilever of fixed stiffness, after

smoothing with a piecewise polynomial to 0.4 nm. At the top of the ED helix pair, we observed

the highest local ∆G0 per aa followed by the top of the CB and A helices.

One immediate trend from this data was a higher ∆G0 per aa when BR was more fully

folded. Thus, looking forward, an assay that probes the initial unfolding of a membrane protein

where most, if not all of intra- and inter-helix bonds are still intact, offers the best opportunity to

precisely quantify ∆G0 per aa under native-like conditions. Unfortunately, while a few studies have

quantified the initial unfolding of the GF helix [151, 157], precise quantification remains hindered

by non-specific adhesion between the tip and the surface [140, 141, 144]. Another trend in our data

was that ∆G0 per aa for unwinding the first portion of a TM helix pair was higher than when

unfolding the second helix. Put more simply, once the first helix in a TM helix pair was extracted,

the second helix took significantly less energy to extract.

Interestingly, we also achieved agreement between the unfolding free energies obtained by

equilibrium and dynamic assays. As discussed in the introduction, we had previously deduced an

unexpectedly high ∆G0 per aa [2.7 ± 0.1 kcal/mol (mean ± SEM)] for a particular transition near

the top of the ED helix pair after reconstruction of the free-energy landscape from equilibrium data

(Figure 5.1 F) [72]. The present IWT analysis of dynamic data yielded an average ∆G0 per aa

near the top of the ED helix, 2.9 ± 0.5 kcal/mol (mean ± SD), in agreement with the previous

equilibrium result for a specific three amino-acid transition [72].
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We emphasize that the ∆G0 per aa measured here does not correspond to breaking a par-

ticular hydrogen-bond or fully solvating an amino acid out of a lipid bilayer, but results from a

convolution of angstrom-scale motion of each amino acid along the stretching axis. We also note

that the reported values include the contribution of the extended, unfolded protein. In other words,

since the ED helix was folded at the start of the analysis, the entropic contribution to stretching

unfolded polypeptides to high force is part of the resulting ∆G0. Future experimental advances

and/or applying more sophisticated analysis can minimize or theoretically separate out the energy

associated with stretching these compliant unfolded peptides [7]. However, the situation for BR

is distinctly different from standard optical-trapping assays which use much longer, 300–600-nm

double-stranded nucleic acids handles to accommodate the geometry of optical-trapping studies

[36, 158, 159].

Figure 5.3: Local unfolding free energies as a function of extension vary broadly
between and within BR’s major structural elements (the ED, CB and A helices, re-
spectively). (A) Local unfolding free energy per nm (left axis) and reconstructed energy
landscape (right axis) for the ED helix pair. The local unfolding free-energy is the spatial first
derivative of the reconstructed landscape. The standard deviations in the deduced values are the
shaded region around the measured value as deduced by a bootstrap analysis. (B,C) Same analysis
for the BC helix pair and the A helix, respectively.

Somewhat unexpectedly, we observed a local landscape stiffness—the second derivative of the

reconstructed landscape—greater than any particular cantilever stiffness used. Yet, Hummer and

Szabo’s implementation of the IWT assumed a stiff probe, which should limit the reconstructed

landscape from having a stiffness that exceeds the force probe [39]. More quantitatively, the greatest
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landscape curvature for BR was 8 kcal/(mol nm2) or 55 pN/nm, larger than the stiffest cantilever

used (40 pN/nm). We attribute this small discrepancy to errors in polynomial fitting and numerical

differentiation. On the scientific front, it is therefore likely that our reconstructed landscape repre-

sents a lower bound on the local value of ∆G0 per nm, akin to early studies of RNA pseudoknots

studied with optical traps[147]. Hence, as shown in that optical-trapping work, [147] the weighted

histogram method is better for reconstructing landscapes containing such “stiff” features. For the

vast majority of BR’s landscape, the stiff-spring approximation of the IWT was fulfilled and yielded

a more accurate landscape reconstruction (Figure 5.6). In addition, the almost-negligible correction

to the landscape from the Ä term outside of the ED Helix (Figure 5.2 B, brown) confirmed that

higher-order corrections were unlikely to affect the landscape of the CB and A helices. In fact, the

corrections of the IWT to the Jarzynski equality were small except near the top of the E helix, which

interestingly is also the same location where equilibrium flickering was previously reported (Figure

5.1 E). Looking forward, using a stiffer cantilever is the obvious means to fulfill the stiff probe

assumption. Yet, stiffer ultrashort cantilevers are not overdamped (quality factor Q > 0.5) [145],

violating an assumption underlying traditional force spectroscopy theories [52, 111, 160]. Hence,

there is also ongoing need to optimize modified ultrashort cantilevers for higher k but low Q.

5.5 Conclusion

As anticipated [39, 147], the IWT provides an efficient and accessible means to reconstruct

free-energy landscapes when using AFM, even for complicated landscapes such as BR. The energy

landscape reconstruction presented here highlights significant variation along the unfolding free-

energy landscape. The overall trend is similar to early work [144] but with improvements associated

with reconstruction of the landscape from much higher resolution force-extension curves [72, 145]

and using the IWT [39] that efficiently removes the energy contribution associated with the bending

of the cantilever. As a result, we achieved a more accurate and higher-resolution reconstruction.

The resulting landscape yielded an average ∆G0 per aa of 1.0 ± 0.1 kcal/mol, in much better
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agreement with past single-molecule studies than our one prior determination of ∆G0 per aa (2.7

kcal/mol) derived from an equilibrium assay probing a particular three aa transition near the top of

the ED helix pair. Importantly, on a smaller spatial scale, this high-resolution landscape also agreed

with that prior equilibrium measurement of the three-aa transition (∆G0 = 2.9 ± 0.5 kcal/mol/aa).

Indeed, the highest-measured curvature of the free-energy landscape (~55 pN/nm) was limited by

cantilever stiffness (~10–40 pN/nm), and hence represents a lower bound of local determination

of ∆G0 per aa due to the underlying assumption of a stiff probe in applying the IWT [39, 147].

Future developments that enable efficient unfolding and refolding over reversible transitions would

enable comparing energy landscapes deduced from state-based models [37] with those used here,

providing another method for investigating and verifying local free-energy landscape reconstruction

of membrane proteins.
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Figure 5.4: Work-weighted statistics are necessary for accurate landscape reconstruc-
tion. (a) For an example landscape, the Helmholtz free energy, A, is plotted versus molecular
extension (q). A representative region is highlighted in red and detailed in an inset. A(q) has
been smoothed with a second-order, 500-point Savitsky-Golay filter. (b) The change in Helmholtz
energy, dA(q), is plotted versus extension. This derivative was obtained by the finite difference
method (black) and via the work-weighted force (pink). The finite difference method yields curves
with significantly higher noise. The high noise can be attributed to the fact that A(q) and q are
noisy outputs of the IWT. (c) The “Helmholtz force”, Ȧ(q), obtained by work-weighted statistics,
yields the expected shape and order of magnitude of a force-extension curve. Note the extension
starts with pulling on at the top of the E helix as opposed to experimental records that start at
the top of the G helix (e.g., Figure 5.1 B).
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Figure 5.5: Filtering choice balances fitting and derivative error with spatial resolution.
This figure plots error versus filtering size. Error is defined as the product of the fitting error and
derivative error. For a fixed filtering size, the fitting error is the mean over bootstrapping iterations
of the summed least-squared residuals of a spline fit to G(q), and the derivative error is the variance
in Ġ(q) over bootstrapping iterations. The error changes very little (<5%) between 0.3 nm and
1 nm. The choice of 0.4 nm, highlighted in red, was chosen as a compromise between landscape
resolution and error minimization.
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Figure 5.6: The mean landscape curvature (or stiffness) plotted versus extension rel-
ative to the start of the ED helix. Each helical region is color-coded, with a labeled bar
underneath. The landscape stiffness is almost always less than the cantilever stiffness. A typical
cantilever stiffness of 25 pN/nm is plotted as a dotted magenta line. The ED helix is the only helix
with a significant region exceeding the cantilever stiffness.
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5.7.2 Methodology for comparison with coarse-grained MD simulation

The amino acid sequence of BR which was unfolded for this work is (listed from C to N

terminus): [72]

AKSTFGFFLVYLIYLMAATSIAWWVFRYSYVKTLAGVLGTGIMIGDAGVLALI

TGQDADVLLALDLLLLPTTFLWDAYRAWYIPNQEGGFPVMTLGYGLLMSLYMTF

AIAPVLTTIAYFKKADPDSVGMGKVLFYLTGLGMLATGLALWIWEPRGTIQAQ

We used the following table 5.1 (adapted from Yamada et al [153]) to determine the free

energy of transfer from water to lipid. For the purposes of comparison, the unfolding energy of bR

out of lipid into buffer was assumed to be equal and opposite to the energy of transfer of bR from

water to lipid:
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Table 5.1: Amino acid transfer energies Free energy of transfer from water to lipid used by
Yamada et al [153] in coarse-grained MD simulations.

Amino Acid Energy of Transfer (kJ/mol)
Ala -3.5
Arg 21
Asn 9.6
Asp 23.9
Cys -2.7
Gln 6.2
Glu 19.3
Gly -1.3
His 2.2
Ile -11.7
Leu -11.7
Lys 11.8
Met -6.8
Phe -14.3
Pro -7
Ser 5.8
Thr 4.5
Trp -13.4
Tyr -9.7
Val -8.8

N Terminus 9.8



Chapter 6

Conclusions and future directions

AFM-based single molecule imaging and force spectroscopy techniques are powerful tools for

investigating biological systems at physiologically relevant buffer conditions. Although applications

of the present work improve the biological relevance of data acquired by AFM-based imaging and

SMFS, new possibilities enabled by the present work will lead to further progress, as detailed below.

Chapter 5 details how energy landscape reconstructions obtained from SMFS data measure

the variations in free energy associated with dissociating specific portions of membrane proteins.

The adoption of site-specific chemistry increases the throughput and quality of data and enables

reproducible unfolding and refolding of near-native biomolecular structure. Such unfolding and

refolding data provide more insight into the energy landscape of the system under interest (see

Chapter 1. Therefore, experiments which leverage site-specific chemistry will be much better posi-

tioned for unfolding and refolding studies. In addition, performing unfolding-refolding experiments

with site-specific chemistry as a function of perturbation (e.g. protein mutation, buffer conditions,

cantilever attachment point), will provide more insight into the molecular structures or energy

landscapes.

Chapter 4 demonstrates how to accurately and automatically extract unfolding event loca-

tions (and therefore the loading rate and rupture force) from SMFS data. As mentioned above,

experiments which unfold and refold a system improve biophysical insight. Therefore, extending
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the method detailed in Chapter 4 from only detecting unfolding events to also detecting refolding

events would greatly improve its utility as an SMFS analysis technique.

Chapter 3 describes a technique for imaging surface-bound DNA, resulting in DNA bound

strong enough for imaging and maintaining a structure consistent with equilibrated, B-form DNA.

As of publication of this method, all other AFM techniques performed in liquid featured kinetically

trapped DNA and therefore DNA with an artificially low apparent two-dimensional persistence

length (i.e. artificially high flexibility). By extension, and perhaps more interestingly, any AFM

imaging method of protein-bound DNA strongly perturbed the system of interest. Therefore, future

work should identify previously studied systems of interest (e.g. DNA-protein complexes exclusively

studied in air or kinetically trapped in liquid) and determine if the prior results hold with surface-

equilibrated samples. In addition, DNA-protein systems which have never been studied via AFM

but which are expected to have a mechanical difference along the DNA contour (e.g. bending,

morphological change, oligomerization) are also good applications of the experimental method

outlined in Chapter 3.
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