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The Hopf insulator is a weak topological insulator characterized by an insulating bulk with conducting
edge states protected by an integer-valued linking number invariant. The state exists in three-dimensional
two-band models. We demonstrate that the Hopf insulator can be naturally realized in lattices of dipolar-
interacting spins, where spin exchange plays the role of particle hopping. The long-ranged, anisotropic
nature of the dipole-dipole interactions allows for the precise detail required in the momentum-space
structure, while different spin orientations ensure the necessary structure of the complex phases of the
hoppings. Our model features robust gapless edge states at both smooth edges, as well as sharp edges
obeying a certain crystalline symmetry, despite the breakdown of the two-band picture at the latter. In an
accompanying paper [T. Schuster et al., Phys. Rev. A 103, AW11986 (2021)] we provide a specific
experimental blueprint for implementing our proposal using ultracold polar molecules of 40K87Rb.
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Topological insulators (TIs) exhibit conducting surface
states protected by the existence of topological invariants
associated with their underlying spin-orbit-coupled band
structures [1–8]. The past decade has seen a tremendous
amount of progress in classifying and understanding the
physical properties of these states. In particular, the inter-
play between a system’s symmetries and dimensionality
leads to a rich landscape of topological insulators, captured
by the so-called “tenfold way” classification of free fermion
theories [9,10]. More recently, the structure of the table has
been refined with the inclusion of crystal symmetries,
giving topological crystalline insulators [11] and higher-
order topological insulators [12]. An ongoing task is to find
physical realizations of further entries in the table; in cases
where material implementations have not been found, the
same topological states have often instead been realized in
ultracold atomic gases trapped by optical lattices [13].
Despite the ubiquity of the tenfold way, there are still

topological states beyond its remit. One example is the
Hopf insulator (HI) [14–17]. Existing in three dimensions
in the absence of any time-reversal or particle-hole sym-
metries, the tenfold way predicts that no topological state
can exist, yet the Hopf insulator features an insulating bulk
and conducting edges protected by an integer-valued Z
topological invariant. The apparent contradiction is avoided
in two ways. First, HIs are weak TIs, meaning they only
exist in two-band models, and the addition of further

noninteracting bands can destroy the topology. Weak TIs
are not captured by the tenfold way. Second, the Z
topological invariant is not the usual Chern number, but
is instead a linking number familiar from knot theory and
deriving from a relation to the Hopf map [14,18]. Despite a
recent resurgence of interest in HIs [14–17,19–31], funda-
mental difficulties have led to only a few proposals for their
physical implementation [15].
There are three main barriers to implementing HIs in any

tight-binding model of (say) electrons hopping on a lattice.

FIG. 1. Three-dimensional two-band systems implement maps
from the Brillouin zone T3 to the Bloch sphere S2. The pre-image
of any point in S2 is a closed loop in T3. There exist topologically
nontrivial states, Hopf insulators, in which the pre-images of any
two points on S2 are linked in T3. HIs are characterized by a
nonzero Hopf invariant h equaling the linking number of the
loops; pictured schematically are three points on S2 and their pre-
images in T3 for both a HI with h ¼ 1 (left) and a trivial insulator
with h ¼ 0 (right).
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First, the necessity of having precisely two bands rules out
many material implementations. Second, as we will see, the
nature of the nonzero linking number invariant requires a
delicate structure in reciprocal space, meaning real-space
interactions must be specified to large distances. Third, a
strong spin-orbit coupling is required between the
two bands.
In this Letter, we demonstrate that these barriers may be

overcome by implementing HIs in lattices of dipolar
interacting spins. Electron “hopping” can be replaced by
transitions between rotational eigenstates, which are much
easier to create and control; the long range of the dipole-
dipole interaction then naturally realizes the long-distance
hoppings. The two bands can be created from two sub-
lattices, and different spin orientations can lead the hop-
pings to have a complex phase structure able to simulate a
strong spin-orbit coupling. Further, we demonstrate that the
key experimental signatures of HIs, gapless edge states, are
present at any smooth (adiabatic) termination of our model
and are robust to all smooth perturbations. This is in
support of previous theoretical arguments for topologically
protected gapless modes at smooth boundaries, where
translational invariance and, as a consequence, the two-
band picture are preserved. Nevertheless, we show that
gapless edge states may persist at judiciously chosen sharp
(nonadiabatic) edges, owing to a crystalline symmetry that
stabilizes the Hopf insulator to higher bands. This connects
recent work predicting this “crystalline-symmetric Hopf
insulator” with past numerical findings, which similarly
observed gapless modes at sharp edges.
Model.—The Hopf insulator can be understood by

considering the three-dimensional two-band system at
half-filling described by the Hamiltonian

ĤðkÞ ¼
X3

i¼1

niðkÞσ̂i ð1Þ

with Pauli matrices σ̂i. The bulk of the system is assumed
gapped, requiring jnðkÞj > 0. Equation (1) defines a map
from the three-torus T3—the Brillouin zone in which the
wave vectors k reside—to the Bloch sphere S2 describing
the possible states of the two-band system. The pre-image
of any point on S2 is then a closed loop in T3. Restricting
attention to the case in which the system has zero Chern
number across any two-dimensional slice through the three-
torus, the linking number of any two of these loops
(necessarily an integer) is equal to the Hopf invariant of
the map [18]:

h ¼ −
1

4π

Z

BZ
d3k

X

ijk

ϵijkAi∂jAk ð2Þ

with ϵijk the Levi-Civita symbol, ∂i ¼ ∂=∂ki, and AiðkÞ ¼
−ihukj∂ijuki the Berry connection for eigenstate juki.
Changing h requires the gap to close. The h ¼ 0 state, in
which all loops are unlinked, is a trivial insulator, and so for

niðkÞ such that h > 0 the system is in a topologically
nontrivial state: the Hopf insulator [6,14]. This Z topo-
logical invariant is fundamentally distinct from the Chern
number appearing in the tenfold way. The situation is
shown schematically in Fig. 1. The HI is a weak TI,
meaning that mixing with further noninteracting bands can
destroy the topology.
Recently [17], it was realized that if the system obeys a

certain crystalline symmetry,

J −1ĤðkÞJ ¼ −ĤðkÞ�; ð3Þ
where JJ � ¼ −1, the HI is promoted to a strong TI
characterized by a Z2 invariant (an example of a topologi-
cal crystalline insulator, TCI) [17]. In two-band models at
half-filling this symmetry is always present, with any half-
filled two-band Hamiltonian obeying Eq. (3) with J ¼ σ̂y.
In systems with more than two bands it can be viewed as
the composition of inversion and particle-hole symmetries.
Our implementation of the Hopf insulator is based on the

following Hamiltonian:

Ĥeff ¼
1

2

X

v;r≠0

X

αβ

tαβr â†vþr;αâv;β þ H:c:

þ
X

v

X

α

μαâ†v;αâv;α ð4Þ

FIG. 2. The proposed experimental setup consists of dipolar
molecules confined in a three-dimensional optical lattice, with
two sublattices A and B separated in the z direction. A
combination of applied electric and magnetic fields and the
intensities of the lattice beams themselves set the molecules’
rotational axes along the z direction, and are tuned so that
jJ ¼ 1; m ¼ 0i excitations (depicted as z-oriented molecules) on
the A sublattice can “hop” to jJ ¼ 1; m ¼ 1i excitations (depicted
as molecules spinning in the xy plane) on the B sublattice via the
dipolar interaction, while conserving energy. Adding space and
time dependence to these parameters leads to Floquet modula-
tions μαvðtÞ of the on-site energies, allowing further control over
the hopping magnitudes.
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where a†v;α creates a hard-core boson at lattice site v and
sublattice α ∈ fA;Bg. We adopt a bosonic rather than
fermionic description, permitted by the single-particle
nature of the HI, as we will model the hopping of electrons
between sites with the exchange of angular momentum
eigenstates. The sum over positions r indicates the presence
of long-range hoppings necessary to realize the delicate k-
space structure needed for all loop pre-images to link. The
model has two sublattices, which will form the two bands.
Both intra- and inter-sublattice hoppings are present, tαβr , as
well as a sublattice-dependent chemical potential μα.
Dipolar Hopf insulator.—We propose an implementation

of the Hamiltonian of Eq. (4), which can naturally be
realized in three-dimensional lattices of dipolar interacting
spins. Our proposal can be realized in a number of
experimental platforms, ranging from highly magnetic
neutral atoms such erbium and dysprosium [32–35] to
strongly coupled solid-state spin defects [36–38] to
Rydberg-dressed atom tweezer arrays [39–41]. Here, we
focus on ultracold polar molecules trapped in a three-
dimensional optical lattice (Fig. 2), where tunable strong
dipolar interactions have already been experimentally
demonstrated [42,43]. Recent progress has led to the

development of numerous molecular species for such setups
[44–52]. To demonstrate that this proposal is accessible in
near-term experiments, we provide a detailed, quantitative
blueprint for its implementation in the specific case of
40K87Rb [42,45,53–56] in an accompanying paper [57].
The basic geometry of the setup we envision is a three-

dimensional optical lattice generated using four pairs of
counterpropagating beams: two pairs forming the xy lattice
and two pairs forming the A and B sublattices in the z
direction (Fig. 2). We assume the molecules completely fill
the lattice, and each molecule is well localized to its site by
a deep confining potential. Rather than having molecules
physically hop between lattice sites, we instead utilize the
molecules’ rotational degrees of freedom to simulate hard-
core bosonic excitations. At lowest order, these rotational
states are governed by the Hamiltonian Ĥrot ¼ ΔĴ2, where
Ĵ is the total angular momentum operator with eigenstates
jJ;mJi. The energies of these eigenstates are lifted by
intrinsic hyperfine interactions, as well as tunable extrinsic
effects resulting from applied electric and magnetic fields
and incident laser light. These extrinsic effects set the
molecules’ quantization axes and enable a direct modula-
tion of the rotational energy levels, and hence the two
sublattices.
Focusing on the four lowest-energy rotational

eigenstates, we define two distinct hard-core bosonic
degrees of freedom. On the A sublattice we utilize
fj0Ai ¼ j0; 0iA; j1Ai ¼ j1; 0iAg, while on the B sublattice
we utilize fj0Bi ¼ j0; 0iB; j1Bi ¼ j1; 1iBg, as illustrated in
Fig. 2. These hard-core bosons interact with one another via
a dipolar interaction, which gives rise to the effective
hoppings:

tAAr ¼ −CAA 3cos
2ðθÞ − 1

R3
;

tBBr ¼ CBB 3cos
2ðθÞ − 1

R3
;

tABr ¼ ðtBA−r Þ� ¼ −CAB cosðθÞ sinðθÞ
R3

eiϕ; ð5Þ

where fR; θ;ϕg defines the separation of molecules in
spherical polar coordinates, and CAA, CBB, and CAB are
positive constants. Details are provided in the companion
paper [57]. This particular choice of rotational states
ensures that the inter-sub-lattice hopping tABr is induced
solely by the ΔmJ ¼ −1 term, which immediately gives
rise to a hopping phase ∝ eiϕ [58]. This choice, motivated
by the model of Ref. [6], locks the intra-sub-lattice
components of the Hamiltonian nx;yðkÞ to the momenta
kx, ky. As illustrated in the accompanying paper [57], this
locking naturally achieves the Hopf requirement that all
Bloch sphere pre-images link.
We further enhance the relative strength of next-nearest-

neighbor hopping with a simple Floquet engineering

FIG. 3. (a) Hopf invariant h (left axis) and band gap Eg (right
axis) as a function of the staggered chemical potential
μ ¼ ðμA − μBÞ=2, found by discretizing the Floquet engineered
dipolar Hamiltonian using 70 × 70 × 70 k points, periodic
boundary conditions, and setting the nearest-neighbor inter-
sub-lattice hopping in the xy plane to unity. The remaining plots
show the energy spectrum with (100) edge terminations. Black
states indicate the bulk, red/blue indicate states localized to the
left/right edge respectively, and dashed lines the bulk band gap.
(b) Adiabatic edge termination over 20 sites. The conducting
edge states are protected by the h ¼ 1 topological invariant.
(c) Sharp edge termination respecting the J crystalline symmetry
[Eq. (3)]. The edge states are now protected by the symmetry.
(d) Introducing terms that break the J symmetry gaps the edge
states.
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strategy. The basic principle is that, by periodically
modulating the on-site chemical potentials μαvðtÞ inhomo-
geneously at frequencies, ℏΩ, significantly higher than the
energy of the dipolar interaction, the time-averaged behav-
ior emulates that of a different time-independent
Hamiltonian. In this effective Hamiltonian, sites that
oscillate out of phase with one other will have the hopping
between them suppressed, while hoppings between sites
oscillating in phase remain unaffected. Although the
Floquet modulation μαvðtÞ necessarily varies with the lattice
site v, we choose it such that effective hoppings remain
translationally invariant. Specifically, we take the Floquet
modulation to be a checkerboard pattern in the xy plane,
such that next-nearest-neighbor hoppings (even rx þ ry, in
phase) are enhanced relative to nearest-neighbour hoppings
(odd rx þ ry, out of phase).
Additionally, although the slow decay of the 1=R3

dipole-dipole interaction is helpful in establishing the
next-nearest-neighbor interactions in the xy plane that
are necessary to realize the HI, our numerical studies
indicate that the same interactions cause unnecessary
long-range couplings in the z direction. To address this,
we utilize an additional, second patterning of the previous
Floquet engineering strategy, which truncates the dipolar
interaction to effectively nearest neighbor in the z direction
[59]. This patterning is guaranteed to operate independently
of the previous Floquet engineering patterning if their
modulation frequencies are well separated in scale; we
verify this quantitatively in the accompanying paper [57].
By this process we are able to identify parameters in

Eq. (4) that realize the Hopf insulating phase, h ¼ 1, with
band gaps as large as Eg ≳ 0.26tnn (in units of the nearest-
neighbor hopping), as well as gapless transitions between
the Hopf and trivial insulating phases [57]. Utilizing the
ΔmJ ¼ þ1 component of the dipolar interaction (as
opposed to the ΔmJ ¼ −1 component) leads instead to
the phase h ¼ −1; higher linking numbers are in principle
possible, but require an even more delicate structure in
k space.
In Fig. 3 we show the band structure found by exact

diagonalization of the dipolar Hamiltonian [Eqs. (4) and
(5)] after applying our Floquet engineering strategy [57].
We assume periodic boundary conditions in the y and z
directions (crystal momenta ky and kz are therefore good
quantum numbers) but a finite length in the x direction. We
also truncate the hopping range to jrj ≤ 8 sites for
numerical feasibility; increasing the truncation range does
not qualitatively affect the results. Figure 3(b) shows the
result of a smooth adiabatic termination over 20 lattice
sites. The bulk (black) is gapped, but the edges (red and
blue) host conducting states, which we found to be stable
for any sizeable bulk gap. This is the Hopf insulator: the
adiabatic termination approximately preserves translational
invariance, leading to the survival of the two-band picture.

Since the Hopf invariant is trivial outside the system and
unity inside, gapless edge states result at the interface.
Figure 3(c) shows the result of an abrupt termination of

the edge. Lacking adiabaticity, the band picture is expected
to break down; since the HI exists only for two-band
models, we would then not expect topologically protected
edge states. Remarkably, however, edge states are again
present. In fact, a serendipitous choice of an edge-termi-
nation plane (100) has lead to the bulk J symmetry
surviving at the edge, and these edge states are a mani-
festation of the resulting strong Z2 invariant (which does
not require a two-band model). To see this “accidental”
symmetry, note that open boundary conditions are equiv-
alent to an infinite potential barrier Ĥedge ¼ ρσ̂zδx, ρ → ∞
at the system’s edge, where σ̂z acts on the sublattice degrees
of freedom. In momentum space, this corresponds to real
couplings between different kx, Ĥk;k0

edge ¼ ρσ̂zδky;k0yδkz;k0z ,
which is easily seen to obey Eq. (3). Nearly any perturba-
tion to naive open boundary conditions–for instance a small
potential γσ̂zδx−1 on the site nearest the edge—breaks the J
symmetry and gaps the edge states [Fig. 3(d)]. We predict
that this same mechanism is responsible for stabilizing the
edge states at sharp boundaries observed in previous
numerical studies of the HI [14,19]. All of these edge
mode structures can be probed experimentally via molecu-
lar gas microscopy [60,61] by exciting individual edge
spins and observing the extent to which the excitation
remains localized on the edge [57].
Before concluding, we detail the separation of scales

required for Eqs. (4) and (5) to govern the low-energy
dynamics of the polar molecular system. First, we work in
the natural experimental regime where the dipolar inter-
action strength is significantly smaller than the energy
splittings between the rotational states within the J ¼ 1
manifold. The external fields should be tuned such that the
splitting between the j0Ai and j1Ai states is resonant with
the j0Bi and j1Bi states, and far detuned from all other
rotational transitions. Conservation of energy then dictates
that the dipolar interaction can only induce transitions
within our prescribed hard-core bosonic doublets. Details
on how this level scheme can be precisely realized in the
specific case of polar molecular quantum simulation based
upon 40K87Rb can be found in the accompanying paper
[57]. Here, we note only that the orientation of the spins is
fixed via applied fields oriented in the z direction, and that
the degeneracy between the j1; 0i and j1; 1i states, as well
as the sublattice symmetry between the A and B planes, is
broken by using different intensities of light to form each
sublattice. Our scheme naturally leads to a separation of
energy scales t ≪ δ ≪ Δ, where t is the dipolar interaction
strength (∼100 Hz), δ is the splitting within the J ¼ 1
manifold (∼5 kHz), and Δ is the splitting between the
J ¼ 0 and J ¼ 1 sectors (∼2 GHz).
There has recently been a burst of theoretical interest in

Hopf insulators and their possible extensions, including
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non-Hermitian generalizations [29], the survival of top-
ology under quantum quenches [30], crystal symmetries
[17,26], and generalizations to periodically driven Floquet
systems [27,28]. These ideas motivate the possibility of
experimentally realizing the Hopf insulator phase, which
would allow one to test the above predictions, and, more
tantalizingly, could probe regimes of Hopf insulating
physics that are much harder for theory to handle. For
instance, it remains an open question as to whether any
interacting extension of the Hopf insulator exists. The
protocol outlined here and detailed further in the accom-
panying paper [57] makes use of the high tunability and
intricate real- and momentum-space structures afforded by
recent advances in the manipulation of interacting dipolar
molecules [62,63]. Looking forward, the same approach
suggests many promising avenues for realizing other exotic
states presently residing at the forefront of theory [64–69].

We gratefully acknowledge the insights of and discus-
sions with Dong-Ling Deng, Luming Duan, Vincent Liu,
Kang-Kuen Ni, and Ashvin Vishwanath. This work was
supported by the AFOSR MURI program (FA9550-21-1-
0069), the DARPA DRINQS program (Grant
No. D18AC00033), NIST, the David and Lucile Packard
foundation, the W.M. Keck foundation, and the Alfred
P. Sloan foundation. T. S. acknowledges support from
the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE 1752814.
F. F. acknowledges support from a Lindemann Trust
Fellowship of the English Speaking Union, and the
Astor Junior Research Fellowship of New College,
Oxford. Work at Temple University is supported by
ARO Grant No. W911NF-17-1-0563, AFOSR Grant
No. FA9550-21-1-0153, and NSF Grant No. 1908634.

[1] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[2] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[3] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[4] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,

L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318,
766 (2007).

[5] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,
106803 (2007).

[6] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R)
(2007).

[7] R. Roy, Phys. Rev. B 79, 195322 (2009).
[8] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C.

Zhang, Nat. Phys. 5, 438 (2009).
[9] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[10] A. Kitaev, in AIP Conference Proceedings (American

Institute of Physics, Melville, 2009), Vol. 1134, pp. 22–30.
[11] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

[12] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S.
Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4,
eaat0346 (2018).

[13] N. Goldman, J. C. Budich, and P. Zoller, Nat. Phys. 12, 639
(2016).

[14] J. E. Moore, Y. Ran, and X.-G. Wen, Phys. Rev. Lett. 101,
186805 (2008).

[15] D.-L. Deng, S.-T. Wang, K. Sun, and L.-M. Duan, Chin.
Phys. Lett. 35, 013701 (2017).

[16] R. Kennedy, Phys. Rev. B 94, 035137 (2016).
[17] C. Liu, F. Vafa, and C. Xu, Phys. Rev. B 95, 161116(R)

(2017).
[18] H. Hopf, Math. Ann. 104, 637 (1931).
[19] D.-L. Deng, S.-T. Wang, C. Shen, and L.-M. Duan, Phys.

Rev. B 88, 201105(R) (2013).
[20] D.-L. Deng, S.-T. Wang, and L.-M. Duan, Phys. Rev. B 89,

075126 (2014).
[21] R. Kennedy and C. Guggenheim, Phys. Rev. B 91, 245148

(2015).
[22] P. J. Ackerman and I. I. Smalyukh, Nat. Mater. 16, 426

(2017).
[23] C. Wang, P. Zhang, X. Chen, J. Yu, and H. Zhai, Phys. Rev.

Lett. 118, 185701 (2017).
[24] M. Tarnowski, F. N. Ünal, N. Fläschner, B. S. Rem, A.

Eckardt, K. Sengstock, and C.Weitenberg, arXiv:1709.01046.
[25] Z. Yan, R. Bi, H. Shen, L. Lu, S.-C. Zhang, and Z. Wang,

Phys. Rev. B 96, 041103(R) (2017).
[26] A. Alexandradinata, A. Nelson, and A. A. Soluyanov, Phys.

Rev. B 103, 045107 (2021).
[27] T. Schuster, S. Gazit, J. E. Moore, and N. Y. Yao, Phys. Rev.

Lett. 123, 266803 (2019).
[28] Y. He and C.-C. Chien, Phys. Rev. B 99, 075120 (2019).
[29] Y. He and C.-C. Chien, Phys. Rev. B 102, 035101 (2020).
[30] H. Hu, C. Yang, and E. Zhao, Phys. Rev. B 101, 155131

(2020).
[31] F. N. Ünal, A. Eckardt, and R.-J. Slager, Phys. Rev.

Research 1, 022003(R) (2019).
[32] M. Lu, S. H. Youn, and B. L. Lev, Phys. Rev. Lett. 104,

063001 (2010).
[33] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R.

Grimm, and F. Ferlaino, Phys. Rev. Lett. 108, 210401
(2012).

[34] I. Ferrier-Barbut, M. Wenzel, F. Böttcher, T. Langen, M.
Isoard, S. Stringari, and T. Pfau, Phys. Rev. Lett. 120,
160402 (2018).

[35] A. Trautmann, P. Ilzhöfer, G. Durastante, C. Politi, M.
Sohmen, M. J. Mark, and F. Ferlaino, Phys. Rev. Lett. 121,
213601 (2018).

[36] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R.
Landig, H. Sumiya, S. Onoda, J. Isoya, F. Jelezko et al.,
Phys. Rev. Lett. 121, 023601 (2018).

[37] J. Cai, A. Retzker, F. Jelezko, and M. B. Plenio, Nat. Phys.
9, 168 (2013).

[38] M. Barkeshli, N. Y. Yao, and C. R. Laumann, Phys. Rev.
Lett. 115, 026802 (2015).

[39] J. Zeiher, J.-y. Choi, A. Rubio-Abadal, T. Pohl, R. van Bijnen,
I. Bloch, and C. Gross, Phys. Rev. X 7, 041063 (2017).

[40] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner
et al., Nature (London) 551, 579 (2017).

PHYSICAL REVIEW LETTERS 127, 015301 (2021)

015301-5

https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.79.195322
https://doi.org/10.1038/nphys1270
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1103/PhysRevLett.101.186805
https://doi.org/10.1103/PhysRevLett.101.186805
https://doi.org/10.1088/0256-307X/35/1/013701
https://doi.org/10.1088/0256-307X/35/1/013701
https://doi.org/10.1103/PhysRevB.94.035137
https://doi.org/10.1103/PhysRevB.95.161116
https://doi.org/10.1103/PhysRevB.95.161116
https://doi.org/10.1007/BF01457962
https://doi.org/10.1103/PhysRevB.88.201105
https://doi.org/10.1103/PhysRevB.88.201105
https://doi.org/10.1103/PhysRevB.89.075126
https://doi.org/10.1103/PhysRevB.89.075126
https://doi.org/10.1103/PhysRevB.91.245148
https://doi.org/10.1103/PhysRevB.91.245148
https://doi.org/10.1038/nmat4826
https://doi.org/10.1038/nmat4826
https://doi.org/10.1103/PhysRevLett.118.185701
https://doi.org/10.1103/PhysRevLett.118.185701
https://arXiv.org/abs/1709.01046
https://doi.org/10.1103/PhysRevB.96.041103
https://doi.org/10.1103/PhysRevB.103.045107
https://doi.org/10.1103/PhysRevB.103.045107
https://doi.org/10.1103/PhysRevLett.123.266803
https://doi.org/10.1103/PhysRevLett.123.266803
https://doi.org/10.1103/PhysRevB.99.075120
https://doi.org/10.1103/PhysRevB.102.035101
https://doi.org/10.1103/PhysRevB.101.155131
https://doi.org/10.1103/PhysRevB.101.155131
https://doi.org/10.1103/PhysRevResearch.1.022003
https://doi.org/10.1103/PhysRevResearch.1.022003
https://doi.org/10.1103/PhysRevLett.104.063001
https://doi.org/10.1103/PhysRevLett.104.063001
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1103/PhysRevLett.120.160402
https://doi.org/10.1103/PhysRevLett.120.160402
https://doi.org/10.1103/PhysRevLett.121.213601
https://doi.org/10.1103/PhysRevLett.121.213601
https://doi.org/10.1103/PhysRevLett.121.023601
https://doi.org/10.1038/nphys2519
https://doi.org/10.1038/nphys2519
https://doi.org/10.1103/PhysRevLett.115.026802
https://doi.org/10.1103/PhysRevLett.115.026802
https://doi.org/10.1103/PhysRevX.7.041063
https://doi.org/10.1038/nature24622
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