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Matter waves, single-mode excitations of the matter-wave field, and the
atomtronic transistor oscillator
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A self-consistent theoretical treatment of a triple-well atomtronic transistor circuit reveals the mechanism of
gain, conditions of oscillation, and properties of the subsequent coherent matter waves emitted by the circuit.
A Bose-condensed reservoir of atoms in a large source well provides a chemical potential that drives circuit
dynamics. The theory is based on the ansatz that a condensate arises in the transistor gate well as a displaced
ground state, that is, one that undergoes dipole oscillation in the well. That gate atoms remain condensed and
oscillating is shown to be a consequence of the cooling induced by the emission of a matter wave into the vacuum.
Key circuit parameters such as the transistor transconductance and output current are derived by transitioning to a
classical equivalent circuit model. Voltage-like and current-like matter-wave circuit wave fields are introduced in
analogy with microwave circuits, as well as an impedance relationship between the two. This leads to a notion of
a classically coherent matter wave that is the dual of a coherent electromagnetic wave and which is distinct from
a de Broglie matter wave associated with cold atoms. Subjecting the emitted atom flux to an atomic potential
that will reduce the de Broglie wavelength, for example, will increase the classical matter-wave wavelength.
Quantization of the classical matter-wave fields leads to the dual of the photon that is identified not as an atom
but as something else, which is here dubbed a “matteron.”

DOI: 10.1103/PhysRevA.104.033311

I. INTRODUCTION

This work seeks to elucidate the principles of an atom-
based transistor oscillator “circuit” [1]. The circuit, which is
illustrated in Fig. 1, incorporates a triple-well transistor poten-
tial; namely an atomic potential consisting of a broad “source”
well, a narrow “gate” well, and a flat “drain” well [2–4]. The
source well sits at a bias potential VSS relative to the other
two wells and contains a Bose condensate. As a many-body
system operating in nonthermal equilibrium the microscopic
circuit physics is complicated, yet the qualitative behavior can
be captured by analogy with its electronic counterpart [5,6].
The objective of this work is to extract an equivalent circuit
out of the physics, from which the circuit’s behavior in a clas-
sical regime can be determined and pedagogically understood.
Indeed, the equivalent circuit is schematically nearly identical
to one that embodies an electronic transistor oscillator, such
as the Colpitts oscillator shown in Fig. 2 [7].

Despite the classical viewpoint, however, we will find that
the atom current into the drain should not be pictured as a
stream of atoms, say, with a flux that oscillates in time as
one might picture the electrons in an electronic oscillator.
Rather, the atomtronic oscillator emits a coherent matter wave
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into the drain in much the same manner that an electronic
oscillator emits a coherent electromagnetic wave when the
circuit is appropriately coupled to the vacuum utilizing an
antenna. The emitted matter wave is entirely distinct from
the customary de Broglie wave that characterizes massive
particles.

In driving toward an equivalent circuit it is our intent to
bring to light the quantum origin of transistor gain and to
capture the essential aspects needed to understand the driven
oscillator dynamics. The equivalent circuit utilizes atomtronic
duals of conventional electronic circuit parameters, such as the
transconductance of the transistor. The use of circuit concepts
and utilizing electronic duals allows one to leverage the prin-
ciples and heuristics that are well known in electronic circuits
in order to understand an otherwise complicated quantum
system.

The evolving literature of atomtronics thus far addresses
three distinct aspects of the atomic analog of electronics.
One involves atom analogs to superconducting devices and
circuits, such as Josephson junctions and SQUIDS [8–15]
(though it is perhaps notable that atomtronic circuitry does
not require cryogenics to operate). These atomtronic circuits
operate as closed, i.e., energy-conserving, systems and are
interesting from a fundamental viewpoint as well as for their
potential in sensing applications. A second involves atom-
tronic circuits and devices operating as a lumped element
system, meaning one in which the relevant wavelengths are
typically long compared with the size of the various circuit
elements, and/or are used to investigate mass transport, heat
transport, and related phenomena [16–23].
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FIG. 1. The matter-wave oscillator circuit consists of a triple-
well atomtronic transistor having a large bias VSS applied to its source
well. The circuit is powered by a “battery” consisting of an ensemble
of particles residing in the source well at a specified chemical poten-
tial μB and temperature TB. The oscillation frequency is determined
by the gate harmonic oscillation frequency; in addition to this fre-
quency, the gate is characterized by the number of fully trapped levels
N . Circuit feedback is set by the barrier height difference. The drain
well is at vacuum. The vertical direction depicts potential energy, and
the horizontal direction is spatial coordinate.

As indicated above, our case deals with an open quantum
system in nonthermal equilibrium and our interest is in the
matter-wave properties of the circuit. Energies of interest cor-
respond to free-space matter-wave wavelengths on the order
of 1 μm and less. Thus as an analog of electronics our context
is most closely that of microwave circuitry in which wave-
lengths are smaller than or on the order of the length scales
associated with the components. Microwave circuit design
makes extensive use of wave impedance concepts (highlighted
by the prevalent use of Smith charts). Impedance concepts
are applicable and extremely informative in understanding
atomtronic transistor circuits as well. In this, what we can

FIG. 2. The textbook single-transistor electronic Colpitts oscil-
lator has much in common with the matter-wave oscillator, keeping
in mind that electric current is opposite to the direction of the
flow of electrons, although elements in the matter-wave version are
distributed rather than bulk as suggested by a schematic. In partic-
ular the LC “tank” circuit is schematic of the resonant frequency
of the atomtronic transistor gate well, while the gate bias voltage
established by the resistor voltage divider R1 and R2 is schematic of
the bias applied to the source well for the atomtronic circuit. The
dual to the feedback provided from the tank circuit to the FET gate
corresponds to the difference in barrier heights of the atomtronic
transistor

refer to as the microwave regime, atomtronic circuits are of
interest for their practical potential in quantum signal pro-
cessing, quantum sensing, and other information processing
contexts.

II. OVERVIEW

The thrust of our theoretical development begins with a
treatment of the gate well as a closed system having a har-
monic particle potential. Such a closed system in thermal
equilibrium at sufficiently low temperature consists of a Bose-
condensed gas in the ground state. With the coupling of the
gate to the source and drain wells through barrier tunneling,
one is driven to consider the dynamics of a system in nonther-
mal equilibrium.

This work’s pivotal ansatz is that the dynamics of the
system is such that a condensate forms not in the ground
state of the gate well, but in a displaced ground state, i.e.,
a coherent state of the gate harmonic oscillator. This ansatz
cannot be justified in isolation, but rather is justified through
a self-consistent solution to circuit dynamics.

The transition from a closed to an open quantum system
treats the gate as coupled via tunneling to a reservoir of par-
ticles at fixed temperature and chemical potential comprising
a “battery” associated with the source well on the one side
[24,25], and to the vacuum on the other side. The battery
drives the circuit dynamics. A many-body approach is used
to analyze the interaction energy between the harmonic os-
cillator modes of the gate with those that couple the gate to
the two other wells. Subsequently, though, we move to the
classical limit in order to most easily capture the open-systems
character of both the battery and the vacuum. We utilize the
insight offered by an equivalent circuit model to impose self-
consistency of a stationary solution for the circuit dynamics.
Transistor gain is seen to arise from a phase-dependent dy-
namical particle potential. We establish that coupling to the
oscillating condensate (or dipole) gives rise to the emission of
a coherent matter wave into the drain well. Self-consistency
provides circuit currents and potentials, as well as the charac-
teristics of the emitted matter wave.

Taking the presence of the gate coherent state as an ansatz,
it should be said that we do not here establish how the coherent
state arises in the first place, nor are we in a position to carry
out a formal stability analysis of the solution. For example,
in conjunction with the gate coherent state ansatz is an under-
lying assumption that the (many-body) state of the gate can
be written as a direct product, allowing us to replace particle
operators with c-numbers and facilitating the transition to a
classical circuit model. In doing so we neglect aspects such
as the self-interaction terms among gate particles, hypothe-
sizing that though they may have quantitative impact, they
do not impact the qualitative behavior and properties of the
system. Whether or not such interactions lead to significant
breakdown of the direct product assumption is a question that
goes beyond the scope of this work. In exchange for its sim-
plifying assumptions, however, the self-consistent approach
provides clear predictive outcomes that are eminently verifi-
able through experiments, such as the properties of emitted
matter waves, thermal effects in the circuit, and oscillation
thresholds.
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Before delving into the heart of the theory, the next section
reviews key lessons from a semiclassical kinetic treatment of
the transistor that hint at the quantum behavior. Following
that, an analysis of the oscillator begins by defining a model
for the atomtronic transistor circuit.

III. CONCLUSIONS FROM KINETIC THEORY

Three results from an earlier kinetic treatment foreshadow
the quantum behavior as well [3,4]. The model teaches us that
the behavior of the device is critically governed by a feedback
parameter υ = (VGD − VGS)/(kBTB), where VGD, VGS are the
barrier heights, kB is Boltzmann’s constant, and TB is the tem-
perature of the particles in the source well. Current will flow
from the source to the drain provided that the barriers are suf-
ficiently low and/or sufficiently narrow. An unintuitive result
from the kinetic treatment is that atoms in the gate are colder,
Tg < TB, and acquire a higher chemical potential, μg > μs,
than those in the source given feedback above a particular
threshold value. It is not a coincidence that a reverse potential
drop also plays an essential role in electronic transistor oper-
ation. Indeed, for a range of values of the critical parameter
the reverse potential increases with current, corresponding to
a negative resistance, which is a signature of device gain. We
note that the spontaneous formation of a Bose condensate in
the gate underlies the theory’s prediction of a reverse bias for
the atomtronic transistor.

Other than the appearance of the Bose condensate in the
gate, the kinetic theory cannot provide deeper insight into the
nature of gain, and in particular possible quantum aspects
of the current flow. This work presents a variation of our
earlier triple-well device in which a large bias VSS is added
to the source well and the source atoms are made to be very
cold. There are two energy scales that determine our meaning
of “very cold”: one is the range of energies δE over which
atom transport across a single barrier is nonclassical, that is,
wavelike. Given an ensemble of atoms with thermal energy
kBT � δE on one side of a barrier, the flux of atoms to the
other side will be dominated by the nonclassical component.
The other is the characteristic energy level spacing �EG of the
gate. When powered by atoms having very low temperature,
i.e., such that �EG > kBT , we can expect the behavior of the
atomtronic transistor to be dominated by quantum effects.

IV. TRANSISTOR MODEL

Our treatment of the oscillator circuit considers the source
well as providing access to a supply of bosonic particles
(atoms) characterized by temperature TB and chemical poten-
tial μB. The supply is presumed to be sufficiently large as to
not be depleted so that TB and μB can be taken as fixed over
time scales of interest. The energy of these particles sits on top
of a bias potential VSS . The drain well is simply the vacuum,
extending infinitely on to the right in Fig. 1. Our treatment
of the transistor considers the gate well as parabolic, having
a set of single-particle modes {|i〉, i = 0, 1, . . . , N} confined
to the gate region, i.e., tunneling to the source or drain is
taken to be negligible. To simplify our treatment we consider
only an additional two modes that have significant proba-
bility for being found in the source well, |N + 1〉 ≡ |SG〉

and |N + 2〉 ≡ |SD〉. Furthermore, given that the gate-drain
barrier is higher than the gate-source barrier, i.e., the feedback
parameter υ is positive, we consider that only the upper state,
|SD〉, of the two has significant coupling to the drain well. Let
us refer to |SG〉 and |SD〉 as the transistor modes.

We utilize a many-body treatment in these next four sec-
tions specifically to capture the interaction energy between the
gate and transistor modes. Since the gate well is parabolic, its
energy levels have a uniform spacing �EG = h̄ω0, where we
refer to ω0 as the gate frequency. From here on we assume
that that the source particles are very cold, kBTB/h̄ω0 < 1. The
drain is characterized by a continuum of modes, {|ω〉}.

Transistor dynamics is governed by a Hamiltonian which
we separate into that describing the transistor, gate, and drain
modes and their interactions:

Ĥ = ĤT + ĤG + ĤD + ĤDT + ĤGI. (1)

Associated with the discrete gate modes are a set of particle
creation and annihilation operators:

b̂i, b̂†
i {i = 0, 1, 2, . . . , N}, (2)

while we associate creation operators b̂†
SG and b̂†

SD with the
transistor modes, along with corresponding annihilation op-
erators. The creation and annihilation operators obey the
standard commutation relations:

[b̂i, b̂i] = [b̂†
i , b̂†

i ] = 0,

[b̂i, b̂†
j] = δi j,

(3)

where δi j is the Kronecker delta. In terms of the particle
operators the gate and transistor Hamiltonians are

ĤG = h̄ω0

N∑
j=0

(
j + 1

2

)
b̂†

j b̂ j (4)

and

ĤT = h̄ω0

[(
N + 3

2

)
b̂†

SGb̂SG +
(

N + 5

2

)
b̂†

SDb̂SD

]
. (5)

ĤDT characterizes tunneling of the upper transistor mode into
the continuum of the drain. The final contribution to the
Hamiltonian arises from the interactions among the particles
within the gate:

ĤGI = η

2

N+2∑
i jkl=0

Ui jkl b̂
†
i b̂†

j b̂k b̂l , (6)

where the overlap coupling factor is

Ui jkl =
∫

ψ∗
i (x)ψ∗

j (x)ψk (x)ψl (x) dx, (7)

η is the coupling strength:

η = 4π

A

h̄2as

m
, (8)

as is the scattering length, m is the particle mass, and A is
an effective cross-sectional area associated with the otherwise
one-dimensional modes of the system.

033311-3



DANA Z. ANDERSON PHYSICAL REVIEW A 104, 033311 (2021)

V. TRANSISTOR STATES

The semiclassical treatment of the transistor highlights
the importance of the feedback parameter on the system
dynamics—namely, it determines the threshold for condensate
formation in the gate. In the quantum case the analo-
gous parameter is the temperature-normalized level spacing
h̄ω0/kBTB. In particular we shall see that coupling of the
transistor modes induced by an oscillating condensate leads
to gate cooling. Indeed, the presence of tunneling is ultimately
responsible for oscillation of the gate condensate. In addition
to tunneling, the transistor modes also provide the mechanism
for coupling of atoms in the source with the gate. For the
sake of numerical estimates, it is convenient to suppose that
in the region of the gate the wave functions are just those har-
monic oscillator wave functions corresponding to an isolated
harmonic potential. To this end, and in absence of tunneling
we can write

|SG〉 → sin(θ1)|S1〉 + cos(θ1)|N + 1〉, (9)

|SD〉 → sin(θ2)|S2〉 + cos(θ2)|N + 2〉, (10)

in which |N + 1〉 and |N + 2〉 are the (N + 1) and (N + 2)
modes of the gate harmonic oscillator while |S1〉 and |S2〉 are
orthogonal modes that primarily occupy the source well. Since
the source and gate are separated by a barrier through which
particles must tunnel, in reality each of the above source
modes are split into two—a symmetric and an antisymmet-
ric pair. However, we suppose that the tunneling energy is
small and can be neglected for our purposes. It is furthermore
convenient for pedagogy, without sacrifice of the qualitative
behavior, to suppose that the mixing angles are equal, θ1 =
θ2 ≡ θ :

|SG〉 = sin(θ )|S1〉 + cos(θ )|N + 1〉, (11)

|SD〉 = sin(θ )|S2〉 + cos(θ )|N + 2〉. (12)

The presence of an interaction suggests that it will be useful
to work in a normal mode basis for the transistor modes (see
Fig. 3). We introduce symmetric and antisymmetric creation
operators:

b̂†
± = 1√

2
(b̂†

SD ± b̂†
SG), (13)

and similarly for the annihilation operators. We designate
eigenstates of these operators as

b̂+|+〉 = √
M+|+〉, (14)

b̂−|−〉 = −√
M−|−〉. (15)

Tunneling of the upper transistor mode to the drain can be
accommodated in terms of a transmission coefficient coupling
the transistor mode to a mode of the drain. We write the
amplitude transmission coefficient as sin(κ ) so that

|SG〉 = cos(κ )[sin(θ )|S2〉 + cos(θ )|N + 2〉] + sin(κ )|D〉.

(16)

FIG. 3. In the absence of coupling particles travel from the
source well to the drain via resonant tunneling of atoms having
energy corresponding to the upper transistor level. For the sake of
illustration, incoming particles are depicted as arriving at the gate in
free space. Particles can also enter the gate via resonant tunneling
for particles that carry energy corresponding to that of the lower
transistor level. In each case the band of energies associated with
gate particles is small, as is governed by the tunneling widths. All
particles are reflected from the gate regardless of their energy except
for the small portion of atoms that manage to transmit through to
the drain from the upper level. (a) The reflection and transmission
properties of the gate can be determined either in the original tran-
sistor mode basis or (b) in the normal-mode basis. The latter is
subsequently more convenient when analyzing the effects of mode
coupling. In the normal mode basis one considers modes “arriving”
at the gate having mean energy and sidebands at ±h̄ω0/2. Such
modes can be associated with either symmetric (+) or antisymmetric
(−) combinations of the transistor modes.

The transmission is linked to a decay constant �T though a
“trial” rate γ :

�T = γ sin2(κ ). (17)

Typically we are interested in small transmissions, so

�T � γ κ2. (18)

While the decay constant arises from the conventional ap-
proach to open quantum systems (see, for example, [26]), both
�T and γ are difficult to calculate for a complex potential,
whereas the transmission coefficient is at least experimentally
straightforward to adjust without substantially affecting γ

simply by changing the gate-drain barrier height or thickness.
The introduction of tunneling implies that the transistor nor-
mal modes are no longer orthogonal:

〈−|+〉 = −1

2
κ2, (19)

in which the inner product is taken over a space that ex-
cludes the vacuum. In other words, the normal modes are
orthogonal in the absence of transmission, and are coupled
when transmission to the vacuum is present. Said still another
way, coupling to the vacuum introduces spontaneous emission
between the normal modes, as suggested by rewriting the
transistor Hamiltonian:

ĤT = (N + 2)(b̂†
+b̂+ + b̂†

−b̂−)h̄ω0

+ (b̂†
+b̂− + b̂†

−b̂+)
1

2
h̄ω0 (20)
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and noting the energy:

〈ET〉 = (N + 2)(M+ + M−)h̄ω0

− 1

2
κ2(

√
M−(M+ + 1) +

√
M+(M− + 1))

1

2
h̄ω0.

(21)

We identify the second term in each of the above two expres-
sions with spontaneous emission between the normal modes.
Spontaneous emission is a mechanism through which noise is
introduced to the oscillator emission.

VI. THE MANY-BODY HARMONIC OSCILLATOR

Our operational ansatz is that the gate wave function
forms as a displaced ground state of the harmonic potential.
Mathematically this corresponds to coherent excitation and
physically to dipole oscillation of the condensate. We here
clarify this ansatz by extending the usual simple harmonic
oscillator treatment to a many-body framework. The state that
forms in the gate cannot in fact be a true displaced ground state
because the number of gate levels is finite. Nevertheless this
initial assumption leads to a reasonable self-consistent result
for the circuit properties, and so we begin with a discussion of
an ideal harmonic potential.

The physics of ultracold gases confined to harmonic po-
tentials is a well-studied topic (see, for example, [27]). One is
accustomed to Bose condensation taking place in the many-
body ground state associated with the single-particle ground
state of the potential. In many-body physics the term “co-
herent states” is typically meant to refer to eigenstates of
the annihilation operators b̂ j , of which Eqs. (14) and (15)
are examples. These eigenstates do not have definite particle
numbers. In this section we work with a fixed particle number
Mg. We argue that the whole of these Mg particles form a
coherent state; to distinguish this from the conventional use
of the term, we will refer to the Mg-particle case as a “massive
coherent state” and refer to the more conventional eigenstate
of the particle annihilation operator as a “many-body coherent
state.” To further avert likely confusion we will continue to
refer to the many-body particle operators labeled with a “b” as
creation and annihilation operators, and refer to the harmonic
oscillator level-changing operators as raising and lowering
operators, or collectively as ladder operators, labeled with an
“a.” Thus we can write the definition of a many-body coherent
state |β〉 as

b̂ j |β〉 = β|β〉. (22)

We focus specifically on the massive coherent state for the
remainder of this section.

One is familiar with the actions of the ladder operator
on Fock states |n〉 of the simple (single-particle) harmonic
oscillator:

â|n〉 = √
n|n − 1〉, (24)

â†|n〉 = √
n + 1|n + 1〉. (24)

The wave functions corresponding to the Fock states are given
by Hermite Gaussians:

ψn(x) = 1√
2nn!

(mω0

π h̄

)1/4
e− mω0

2h̄ x2
Hn

(√
mω0

h̄
x

)
, (25)

in which Hn(x) is the nth-order Hermite polynomial, ω0 is
the resonant frequency of the harmonic oscillator, and m is
the particle mass. The ladder operators obey the commutation
relation:

[â, â†] = 1, (26)

and Hamiltonian of the simple harmonic oscillator is

ĤSHO =
(

â†â + 1

2

)
h̄ω0. (27)

The canonical coherent state is defined as an eigenstate of the
lowering operator:

â|α〉 = α|α〉. (28)

Such a state can be generated from the ground state using a
displacement operator:

D̂(α)|0〉 = |α〉, (29)

in which

D̂(α) ≡ exp(αâ† − α∗â). (30)

A coherent state can be expressed as a superposition of Fock
states:

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉. (31)

The expectation value of the energy can be obtained from the
Hamiltonian (27):

〈E〉 =
(

|α|2 + 1

2

)
h̄ω0. (32)

Our ansatz utilizes coherent states as the single-particle ba-
sis in which to build a many-body state. We use the following
notation to designate a massive coherent state:

|α〉 → |α; Mg〉, (33)

that is, a many-body displaced ground state that is occupied
by Mg particles. The expectation value of the energy of this
state is given directly from the single-particle case:

〈Eα〉 = Mg

(
|α|2 + 1

2

)
h̄ω0. (34)

An alternative approach to our ansatz recognizes that the
dynamics of the center of mass of the many-body oscillator
can be written independently from the dynamics of the relative
coordinates of the individual particles. The center-of-mass
wave functions will be Hermite Gaussians as in Eq. (25), ex-
cept with the mass replaced by Mg × m. In particular, though
it has greater mass, the center-of-mass energy spectrum is
identical to the single-particle case, En = (n + 1/2)h̄ω0 be-
cause it also experiences a force constant that is Mg times
larger than that of the single particle. One again arrives at
Eq. (33) with the assumption that the center-of-mass wave
function is a coherent state, while the relative coordinate wave
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functions are all in their ground state. One reproduces Eq. (34)
through appropriate scaling of the oscillation amplitude α.

VII. GATE INTERACTION ENERGY

We are now equipped to return to the analysis of the model
for the gate well. One might wonder how our ansatz, the
presence of oscillating condensate, can be associated with the
gain needed to maintain oscillation. Recognize that particles
which enter an initially empty gate find themselves in a region
of population inversion—at the top of a ladder of levels lead-
ing to a ground state. In his wonderfully pedagogical article,
Glauber [28] describes how such an inverted ladder system
coupled to a reservoir leads to gain rather than damping.
Indeed, in his “inverted” harmonic oscillator, he establishes
that an initial small coherent oscillation amplitude grows ex-
ponentially in time, extracting energy from the reservoir rather
than dissipating energy into it. Glauber uses this harmonic
oscillator plus reservoir as a model for classical gain in an
electromagnetics context. Whereas his Gedanken oscillator
draws power from the reservoir at an exponentially increasing
rate, in our case power is provided by the chemical potential
of particles in the source well, which rate is necessarily lim-
ited. That limited rate leads to saturation and consequently a
constant oscillation amplitude.

Our objective in this section is to determine the interaction
between the oscillating condensate in the gate and the tran-
sistor modes. The transistor mode spacing is degenerate with
the oscillation frequency of the condensate, and this leads to
phase coherence between the transistor states, which is what
led us to define the normal modes basis earlier. Determining
the coupling interaction energy sets the stage for understand-
ing how the interaction can lead to a self-consistent oscillation
amplitude α together with a particle current flowing to the
drain. In the following section we show that the drain current
leads to cooling of the gate particles—a conclusion that is
consistent with the kinetic theory. Even for modest amplitudes
of oscillation we can expect |α| � kBTG/h̄ω0, in which case
the uncertainty in particle energy associated with a coherent
state is larger than the spread of energies associated with the
gate temperature. Thus for the purposes of this section, we
assume that the gate particles all occupy a common state,
approximately the canonical massive coherent state (33).

The many-body interaction Hamiltonian (6) can be sepa-
rated into three contributions:

ĤGI = ĤGG + ĤMM + ĤGT. (35)

The first, referring to the interaction of gate particles, involves
particles operators corresponding to the gate bound states:

ĤGG = η

2

N∑
i jkl=0

Ui jkl b̂
†
i b̂†

j b̂k b̂l . (36)

Other than the finite set of levels involved, this is the usual
interaction Hamiltonian for the many-body harmonic oscil-
lator. For a condensate in the ground state, the contribution
H0000 corresponds to the mean-field energy that shifts the
chemical potential. This mean field energy remains the same
for the displaced ground state, at least when the mean field is
small compared to the level spacing. The value of the mean

field is determined self-consistently in a later section. Again
considering a condensate in the ground state, contributions
such as H0 j0 j correspond to mean-field shifts of energy levels.
This does not impact the level spacing and so qualitatively
does not change the physics of our system. The same is true
when the ground state is displaced. Other self-energy terms
lead to the Bogolyubov excitation spectrum. We ignore these
in detail, but they are implicitly treated as a source of noise
and (gate-internal) dissipation associated with our oscillator.

The second term of Eq. (35) accounts for mass exchange
between the gate and transistor modes. Accordingly, the
summation includes terms that have three particle operators
belonging to either the gate or to transistor modes, and one
from the other. The mass exchange describes the approach
to chemical potential equilibrium between the transistor and
gate modes. For our purposes it will suffice to simply assume
chemical equilibrium self-consistently.

The last term, ĤGT, is our primary interest. This coupling
between gate and transistor modes is mediated by phonon
interactions with the condensate.

While the canonical coherent state involves all oscillator
modes, our transistor model assumes that a finite set of levels
can participate. We introduce the truncated coherent state, |α̃〉.
In the (single-particle) Fock basis:

|α̃〉 =
√

CN (α̃)e−|α̃|2 / 2
N∑

n=0

α̃n

√
n!

|n〉, (37)

where CN (α̃) is a normalization factor:

C−1
N (α̃) = e−|α̃|2

N∑
n=0

|α̃|2n

n!
. (38)

For notational simplicity we will drop the tilde from the state
amplitude α. Equation (37) describes a particle undergoing
dipole oscillation with complex amplitude α = |α|eφg and
frequency ω0.

A harmonic oscillator having a finite set of levels cannot
be associated with a set of ladder operators in the usual way;
however, the truncated wave functions reasonably approxi-
mate those of the canonical coherent state provided |α| � √

N
and in this same limit CN (α) 	 1. At the same time we will
find that the solution to self-consistent dynamics indicates
states whose oscillation amplitudes is placed near the border
of the inequalities. Figure 4 shows truncated states corre-
sponding to two different oscillation amplitudes for N = 36.
The smaller amplitude closely approximates the shape of a
coherent state, while it is notable that the larger amplitude
exhibits squeezing. We note that the squeezing is enhanced as
N becomes larger and as the amplitude reaches its maximum
value. We additionally comment that mean field effects will
alter the mode’s shape at large gate chemical potentials.

Having laid the foundation in the previous section, a
premise of this work is that phonon absorption or emission
by the transistor states corresponds to phonon emission or
absorption primarily by the whole of the condensate. As in-
dicated earlier, the center-of-mass energy eigenstates have the
same energy spacing h̄ω0 as the individual particles; though
phonon energy is quantized, energy gained or lost is shared
among the particles. The result is a change of oscillation am-
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FIG. 4. Probability density for truncated coherent states corre-
sponding to a harmonic oscillator having N = 36; the z-axis is
normalized to units of (h̄/mω0)1/2. The solid lines correspond to the
state at the classical turn-around time while the dashed lines corre-
spond to the moment its position is at the middle of the potential. The
blue curves correspond to an amplitude of |α|2/N = 0.56, while the
red curves correspond to an amplitude of |α|2/N = 0.84.

plitude corresponding to an energy change that is a fraction of
h̄ω0 per particle. The relevant phonon interaction Hamiltonian
is derived from Eq. (6) in conjunction with our assumed gate
state vector (37):

ĤGT = 2ηCN e−|α|2
N∑

n=1

Un
α2n−1

√
n!(n − 1)!

b̂†
n−1b̂†

SDb̂nb̂SG + H.c.,

(39)

where H.c. stands for Hermitian conjugate and the overlap
factors are

Un =
∫

ψ∗
n−1(x)ψn(x)ψ∗

SD(x)ψSG(x) dx. (40)

The supposition that the gate is approximately in a displaced
ground state corresponding to an oscillating dipole with am-
plitude α means that the operators b̂†

n−1bn are independent of
mode number and can be replaced with a c-number:

b̂†
n−1bn → Mg; {n � N}. (41)

The primary focus of this work is on the system as os-
cillator, establishing a self-consistent result stemming from
the assumption that the gate exhibits dipole oscillation in the
form of a (truncated and massive) coherent state. With this in
mind we invoke the assumption that the stationary solution for
the gate and transistor states can be approximated as a direct
product of pure coherent states:

|G〉 ≈ |α; Mg〉|+; M+〉|−; M−〉. (42)

The direct product approximation enables a straightforward
calculation of the interaction energy. Before continuing to the
calculation, however, it is perhaps useful to point out the key
underlying assumptions that have brought us this far, and re-
flect on aspects that could lead to their breakdown: Given the
replacement of particle operators with a c-number, Eq. (41),
we recognize that the gate state |α; Mg〉 is itself assumed to
be a direct product of the individual particle states of the
gate. In particular our assumed massive coherent gate state
ansatz is a special case of a direct product state. While the
many-body ground state (i.e., the Bose-Einstein condensate)

FIG. 5. Coupling factor |α|χ (α) relative to its maximum value
for a truncated harmonic oscillator having N = 36 levels (plus the
ground state). Notice that the peak occurs near |α| = √

N = 6.

of a harmonic oscillator potential is indeed a direct product
state, we do not establish here that the same is necessarily true
in our dynamical case. Interactions among the gate particles,
embedded in Eq. (36), which can be significant compared with
the interaction energy calculated below, can possibly lead to
an entangled gate state. Further, we can expect that interac-
tions of the transistor modes with the reservoir modes of the
source well lead to mixed states. Under usual circumstances
such mixing would lead to damping of coherence between
the transistor modes. Left to its own, the dipole oscillation of
the condensate will decay, reflecting finite quality factor (Q)
and other factors. If oscillation is to take place, system gain
must be present to overcome damping and drive coherence.
We return to this issue in a later section discussing oscillation
threshold. In the presence of oscillation, the underlying dis-
sipation effects, both positive and negative, will manifest as
noise in the oscillation phase and amplitude. Finally, interac-
tion between the transistor modes and the gate can cause the
two to be entangled, possibly leading to a squeezed oscillation
output as alluded to above. The topics of noise, entanglement,
and other interesting and admittedly important aspects of this
atomtronic system are left to future works.

The interaction energy can be found by substitution of
Eqs. (13), (40), and (42) into Eq. (39):

〈EGT〉 = χ (α)|α|Mg

[
cos (φ)(M+ − M−) − i

1

2
κ2 sin (φ)

× (√
M+(M− + 1) −

√
M−(M+ + 1)

)]
. (43)

Here the coupling factor is

χ (α) ≡ 4ηCN (α)e−|α|2
N∑

n=1

|α|2(n−1)

√
n!(n − 1)!

|Un|. (44)

The phase φ is the difference between the dipole oscillation
phase φg and the phase associated with the symmetric tran-
sistor (normal-mode) state: φ ≡ φg − (φSD − φSG). Figure 5
presents a plot of the coupling factor |α|χ (α) as a function of
the oscillation amplitude for a gate oscillator having N + 1 =
36 + 1 levels. For small amplitudes the coupling factor is
linear in α while it peaks and then falls to zero at larger
amplitude. The peak occurs a bit below

√
N = 6.

This concludes the development of the many-body treat-
ment of the transistor gate. The gate interaction energy,
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FIG. 6. The atomtronic transistor oscillator “DC” equivalent cir-
cuit consists of a battery having an internal resistance along with
a bias potential which physically corresponds to the bias shown in
Fig. 1. The transistor itself is characterized by a negative transre-
sistance and a gate capacitance that sets the number of particles in
the gate. The drain resistance reflects the fact that the output current
carries energy that can be used to do work (in this case, “heating” the
vacuum).

Eq. (43), along with the coupling constant (44), is the central
mathematical result of this section.

Two aspects are of particular note. The first is that the
interaction energy is zero if the number of particles in the sym-
metric and antisymmetric states are equal. The second is that
the energy is dependent on the relative phase between the os-
cillating dipole and the transistor modes. The transistor modes
themselves are coupled to a reservoir particles in the source
well characterized by a temperature and chemical potential.
There is nothing a priori that determines the occupation or
phase of these modes.

VIII. A CLASSICAL EQUIVALENT CIRCUIT

While the key physics of transistor behavior is implicit in
Eq. (43), understanding transistor action and the conditions
under which oscillation can occur are vastly easier to compre-
hend by transitioning to continuous variables and a classical
picture involving chemical potential differences μ and particle
currents I . For example, we write the particle number in the
gate in terms of a capacitance:

Mg = μgCg. (45)

We have defined the capacitance as the electronic dual, for
which the unit is the Farad, i.e., C2/J. The atomtronics capac-
itance here is given in units of (particle)2/J We can likewise
write the flow of particles per second into the drain as a
current:

Id = 1

2
�T(M+ + M−). (46)

Within the classical picture we can make substantial use
of the DC equivalent circuit that is shown in Fig. 6. The
circuit is “powered” by the chemical potential provided by
the source particles, represented as a battery potential μB and
having an added bias potential shown as VSS. Any battery
is fundamentally associated with an internal resistance RI.
The internal resistance associated with an electrical battery is
always positive and leads to heating of the battery as current
flows. An atomtronic battery is associated with an internal
resistance that can be either positive or negative, depending,
respectively, on whether it supplies condensed or thermal

atoms. In the latter case, the resistance causes cooling of
the battery, a manifestation of forced-evaporation techniques
used to produce Bose condensates, for example. As is the
case in electronics, a holistic circuit design would include an
appropriately chosen resistance in series with the battery, as
in Fig. 2; here we lump a possible added series resistance into
the battery internal resistance.

The drain resistance RD is positive and accounts for the
energy lost to the vacuum as particle current flows from the
gate to the drain. The source capacitance CS accounts for
the chemical potential developed in the source as particles
flow from the battery. Likewise CG accounts for the chemical
potential developed in the gate as particles accumulate there
in a (displaced) condensate. The gate-source resistance, rgs,
represents the change in potential energy experienced by par-
ticles flowing from the source to the gate. Note in particular
that we refer to the source well potential μs after current has
flowed from the battery through the internal resistance.

In absence of the coupling we suppose that the battery
provides a population to the transistor modes in the ratio
determined by a Boltzmann factor:

MN+2

MN+1
= exp

(
− h̄ω0

kBTB

)
. (47)

The upper state population leads to a corresponding bias cur-
rent in the presence of tunneling that can be written

I0 = μBCS�T exp

(
− h̄ω0

kBTB

)

≡ Id ← (〈Eγ 〉 = 0),

(48)

in which I0 is contributed to equally by symmetric and anti-
symmetric modes. Equation (48) supposes the bias current is
small so that the drop across the internal resistance is negli-
gible. Given fixed battery temperature and chemical potential
as well as barrier heights, the bias current will exponentially
depend on the applied bias potential, VSS .

Equation (43) indicates that the coupling energy is zero
when the normal mode populations are equal. This will be
the case, for example, when the gate-drain barrier is infinite
such that the gate and source come into thermal equilibrium.
We will show below however, that another, self-consistent
solution, exists in which only one of the symmetric or an-
tisymmetric modes arises in the transistor and a significant
drain current, either I+ or I−, will flow. In other words, either
Id = I+, I− = 0 or Id = I−, I+ = 0. While both normal modes
corresponds to having particles equally likely found in the
lower and upper transistor states, particles can escape to the
drain only in the upper of the two. On the other hand, particles
entering from the battery occupy the lower and upper states
with a ratio that depends on the temperature, such that the
probability that the particle entered in the lower state is

� = 1 − 1

2
exp

(
− h̄ω0

kBTB

)
. (49)

Essentially all of the significant physics that follows arises
from a pair of conclusions related to the fact that current flow
into the drain corresponds to the removal of heat from the
system:

Pd = �h̄ω0Id. (50)
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The first conclusion is that the removal of heat is corresponds
to a negative gate-drain resistance rgs:

Pgs = −|rgs|I2
d ⇒

rgs = −�
h̄ω0

Id
.

(51)

The removal of heat indicates that the gate temperature will be
lower than the battery temperature. The source potential is of
course lower than the battery potential by the resistive drop:

μs = μB − IdRI. (52)

The second conclusion is that the gate potential is in fact
higher than the source potential,

μg = μs + �h̄ω0. (53)

Thus the current flows into the gate against the potential drop.
These two conclusions echo those of the kinetic treatment.

Most importantly, cooling of the gate supports the assump-
tion that the gate particles are condensed. Moreover, incoming
particles from the battery are very cold in the first place, yet to
form a condensate in the ground state of the gate requires that
the particles first lose a great deal of kinetic energy. Forming a
condensate that itself has kinetic energy requires substantially
less cooling that a ground-state condensate would.

IX. CURRENT GAIN AND STEADY STATE

The mechanism by which transistor action controls the
drain current is through the coupling energy, Eq. (43). To be
specific we suppose that the transistor levels are populated by
the antisymmetric mode, so that

〈Eγ 〉 � −χ (α)|α|CGμgM− cos(φ), (54)

where we have dropped the second term since the transmis-
sion κ2 is small compared with unity. With respect to the
oscillation amplitude, the coupling energy has a maximum
value of χ (α)|α| as illustrated in Fig. 5. To a reasonable
approximation:

max [χ (α)|α|] � χ0

√
N, (55)

where χ0 ≡ χ (0). We can thus write for this case that the
maximum coupling energy per particle that contributes to the
drain current as

V (φ) = −V0 cos(φ), (56)

in which

V0 � χ0

√
NCGμg. (57)

We recognize the coupling to be a phase-dependent po-
tential energy. Herein lies the origin of the current gain of
the transistor: In absence of coupling, only particles having
energy within a narrow band around ET = (N + 2)h̄ω0 can
contribute to the drain current (see Fig. 3). In the presence of
coupling, however, particles corresponding to normal modes
nominally having too much or too little energy can never-
theless contribute to the current provided they are associated
with the appropriate phase. (Here we are speaking loosely,
referring to a “particle’s phase” where more appropriately
speaking, it is the phase of the interference of the two wave

FIG. 7. In the presence of coupling to the oscillating condensate,
only one of the two normal modes enters the gate by resonant tun-
neling (here, the antisymmetric modes shown in blue). The other is
reflected (the symmetric modes, shown as magenta). The interaction
energy enables large range of incident particle energies to enter into
the gate in comparison to the interaction-free case. The drain current
is thus also much larger.

functions corresponding to upper and lower transistor states
relative to the phase of the oscillating truncated coherent
state). In other words, such particles can borrow energy from,
or lend energy to, the interaction energy. Once again to be spe-
cific we consider particles associated with the antisymmetric
modes. Particles having an energy ET + δE can participate in
the drain current provided they are associated with a phase:

φ = arccos

(
δE

V0

)
. (58)

Assuming the density of states is constant within the range
ET ± V0, the total drain current is given by the ratio of the
coupling energy to the tunneling energy:

Id = 1

1 − �

V0

h̄�T
I0 = μBCS

V0

h̄
, (59)

where the prefactor takes into account the Boltzmann factor
for the relative number of atoms in the lower compared to
the upper transistor state. We thus see that the presence of
coupling induces a current gain:

β = Id

I0
= 1

1 − �

V0

h̄�T
. (60)

We are now in a position to understand the manner in
which the single-normal mode enters into a self-consistent
solution. The complement phase φ(δE ) + π of the matched
phase of Eq. (58) is associated with a symmetric mode, the
energy of which is nonresonant with the transistor modes. The
net impact of the interaction energy is illustrated in Fig. 7.
The exception is the small band of energies around ET with
φ = π : this small band can be thought of as responsible for
spontaneous emission and fluctuations in the drain current.
Though important to fully characterize circuit behavior we
neglect their contribution in this work.

The open-loop properties of electronic field-effect transis-
tors are typically characterized in terms of a transconductance:

Id = gmμg. (61)
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Combining Eqs. (57) and (59), evidently

gm = χ0

√
NCGCSμB/h̄. (62)

Our oscillator circuit operates in closed loop, such that the
gate potential depends on the drain current,

μg = μ − IdRI, (63)

in which the driving potential μ is defined as

μ ≡ μB + �h̄ω0. (64)

Therefore the steady-state circuit drain current is

Idss = gm

1 + gmRI
μ. (65)

We note that in steady state, the coupling energy, Eq. (57),
averages to zero. Moreover and equivalently, the transistor
normal mode oscillation is 90◦ out of phase with the conden-
sate dipole oscillation. We would expect as much for a driven
or a forced oscillator operating in steady state.

In steady state, power is dissipated by the battery internal
resistor, leading to heating of its reservoir of particles:

Pb = I2
dssRI =

(
gmμ

1 + gmRI

)2

RI. (66)

At the same time, the drain cooling causes cooling of the gate:

Pg = −�h̄ω0Idss = − gmμ

1 + gmRI
�h̄ω0. (67)

Our discussion thus far treats the gate as ideally harmonic,
meaning equally spaced energy levels. In practice, anhar-
monicity of the gate potential will cause decoherence among
the oscillator levels. Resonant circuits are typically character-
ized by a quality factor:

Q ≡ ω0

�osc
, (68)

in which �osc characterizes the linewidth, or inverse coherence
time of the oscillator. The finite quality fact implies the kinetic
energy of the oscillator is converted into heat at a rate

Posc = �oscμgCG|α|2h̄ω0. (69)

The dissipated power can be incorporated in the equivalent
circuit by adding a resistance in series with the (negative)
gate source resistance. Cooling of the gate through rgs will
compensate for the dissipated oscillator energy provided

� � �oscμgCGN. (70)

As the inequality becomes violated for the case of low
Q-factor, the oscillator can no longer reach its maximum
amplitude. In this case, steady state is achieved with a lower
oscillation amplitude such that the

|α|2 = �

�oscμgCG
. (71)

X. OSCILLATION THRESHOLD AND REMARKS

Thus far we have simply assumed that our system oscillates
and determined the conditions under which the assumption
is self-consistent, utilizing the aid of an equivalent circuit.

Oscillation relies upon coherence that is maintained between
the upper and lower of the two transistor modes. How can such
coherence be understood in the context of system thermody-
namics? This brings us to a consideration of an oscillation
threshold in which parameters are such that it is thermody-
namically advantageous for the system to support oscillation.
Let us first consider a readily understandable case in which
this is not true, that is, when there is no tunneling from the
gate to the drain (� = 0): The battery provides a reservoir
of particles having a specified temperature TB and chemi-
cal potential μB. Coupling of the transistor modes to modes
of the gate will eventually bring the gate well into thermal
equilibrium with the source, meaning the gate temperature
and chemical potential are equal to those of the source. The
populations of the upper and lower transistor modes will differ
by a Boltzmann factor. In the transistor normal mode basis,
thermal equilibrium corresponds to equal populations of the
symmetric and antisymmetric modes [and therefore zero in-
teraction energy, according to Eq. (43)]. The fact that the two
wells are in thermal equilibrium means that a Bose condensate
is present in the gate; one with a large population of particles
so that its chemical potential is sufficient to compensate for
the additional bias potential of the source. With an initial state
of population inversion, the formation of the condensate must
be accompanied by reverse current flow from gate to source
to remove energy from the gate.

At equilibrium, note that one would expect the dipole
mode of the gate condensate to undergo thermal excitation
corresponding to kBTs of energy. Such dipole oscillation will
induce coherence between the transistor modes (because the
oscillation frequency is degenerate with the mode spacing),
but coupling of the transistor modes with other system modes,
including those of the battery, will cause the coherence to
decay. In particular, let us suppose that the dipole oscilla-
tion of the gate condensate is in some manner excited to a
large amplitude: the amplitude of oscillation will decay to its
thermal equilibrium value. The decay occurs as the excess
energy flows back to the source as heat, due to excitation
from the lower to upper transistor modes, and subsequent
coupling of the upper mode to the source reservoir. In other
words, even if the gate well is perfectly harmonic, coupling of
condensate to the source through the transistor modes leads to
finite quality factor Q of the dipole oscillation. Of course, in
thermal equilibrium there is no net particle flow between the
source and gate.

How do things change if one allows tunneling from the
gate to the drain (� > 0) from the upper transistor level?
The majority of particles entering the gate occupy the lower
level, while the particles that leave through the drain must
do so from the upper state. In other words, the drain current
removes energy from the system as described in the previous
two sections. This causes the gate to become colder than the
source and have higher chemical potential as well. The pres-
ence of dipole motion of the gate condensate causes particles
to be transferred from the lower to upper state, causing more
cooling than there would be were dipole motion not resonant
with the transistor mode spacing.

The question, now, is whether the oscillation condition
determined earlier decays or is maintained. In microwave os-
cillator design it is common to utilize and equivalent oscillator
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FIG. 8. The decay of oscillation of an LC circuit due to the pres-
ence of a series resistance R0 can be compensated with the addition
of a negative resistor rgain < 0, the latter representing gain provided
by other circuit elements (and a source of power).

circuit such as the one shown in Fig. 8. The combination of
the inductor and capacitor support oscillation at a frequency
ωLC = 1/

√
LC, and an initial excitation will normally decay

at a rate embodied by an oscillator resistance R0. To com-
pensate for the dissipation and thus maintain oscillation one
thinks in terms of adding a negative resistance, rgain < 0.
Glauber’s inverted oscillator coupled to a reservoir corre-
sponds exactly to such an oscillator with negative resistance in
its classical limit [28]. In practice this resistance is necessarily
nonlinear, being larger in magnitude than the oscillator resis-
tance at small amplitude to provide net gain, and necessarily
decreasing to be equal in magnitude to the oscillator resistance
at a steady-state amplitude. We have already associated the
tunneling-induced cooling with the negative resistance rgs in
the equivalent circuit of Fig. 6, and determined a steady-state
value for that resistance (and other parameters). To address the
question of oscillation threshold, we are interested in the value
of negative resistance relative to an effective resistance that
embodies the circuit’s dissipative processes. Nominally we
expect cooling, and therefore the magnitude of the negative
resistance, to increase as the tunneling to increase. But at the
extreme of large tunneling, population of the upper transistor
state in the region of the gate remains small and coherence
between the two transistor levels will not be established.

A full many-body treatment of the transistor to determine
dissipation and gain characteristics is significantly cumber-
some. A semiclassical kinetic treatment to determine negative
resistance characteristics has, however, been carried out in [1]
and is explicitly depicted in Fig. 3 of that work. That the
presence of negative resistance can lead to power amplifica-
tion using a triple-well atomtronic transistor is established in
[3]. The latter work in particular establishes that a transistor
circuit can be configured to display the net gain required for
oscillation.

The presence of oscillation, when parameters support it,
is thermodynamically advantageous because the system can
maximally dissipate the power stored in the battery into the
vacuum. This is also the case of the laser, and essentially
any driven oscillator. By doing so, it can maximize the rate
at which the system approaches thermal equilibrium, in this
case with the vacuum of the drain.

It can thus be understood that the oscillation of the conden-
sate is driven by the available power from the battery through
the coupling of the two established by the transistor modes.
We began by writing that the combined gate-transistor state
as a direct product, Eq. (42). Coherence develops between
the upper and lower transistor modes through coupling of
the oscillating condensate described by the interaction energy

FIG. 9. Coherent matter wave emission from the transistor arises
because the resonant tunneling energy of particles arriving at the
gate is synchronized to the phase of the oscillating condensate. The
particle flux itself is random.

(43). Thus coupling is rather like that between an electromag-
netic field and two-level atoms participating in laser action,
though in our case the underlying particle modes interact
strongly with each other, unlike electromagnetic modes. The
transistor mode coherence is manifested in the fact that one
of the normal modes is driven to its vacuum state while the
other develops a coherent state having finite amplitude. Self-
consistency indicates the gate condensate undergoes dipole
oscillation with amplitude given by the number of oscillator
levels N , α �

√
N . The dipole oscillation and the oscilla-

tion associated with the surviving normal mode are mutually
coherent—in particular both oscillate at the gate frequency ω0

and, in the limit of large gain, are 90◦ out of phase.

XI. COHERENT MATTER-WAVE EMISSION

An electronic oscillator appropriately coupled to the vac-
uum using an antenna produces a coherent state of the
radiation field. To what extent is there an analogy with the
atomtronic oscillator? We have shown that the oscillator cir-
cuit develops a drain current that can be expressed in terms of
a gain relative to the uncoupled case. That gain arises because
of the spectrum of particle energies that can undergo resonant
tunneling is broadened by the interaction of the incoming
particles with the oscillating condensate. If one considers
incoming modes as though they were entering the gate from
free space, it would be evident that the current is comprised of
normal mode components whose kinetic energy is tied to their
phase according to Eq. (58). The total energy, kinetic plus
potential, is of course fixed at ET = (N + 2)h̄ω0. Nevertheless
there remains the fact that the potential energy of the particles
varies synchronously with the oscillation of the condensate,
as schematically illustrated in Fig. 9.

The previous two sentences are easy enough to say, but suf-
ficiently unfamiliar that it may be worth adding some context:
Consider an ensemble of Bose-condensed particles residing in
the ground state of a harmonic oscillator. We are comfortable
with the statement that the system consists of a collection of
identical particles, each whose potential and kinetic energies
vary in space in such a way that its total energy is fixed (at the
ground-state energy). In our case, the current comprises par-
ticles that all have the same total energy, but whose potential
and kinetic energy varies in time. This suggests we introduce
a wave field associated with the potential, which, just on the
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vacuum side of the gate-drain barrier we can write as

F (z, t ) = F0 cos (kmz − ω0t ), (72)

along with another wave field associated with the current:

I (z, t ) = I0 cos (kmz − ω0t ). (73)

Note in particular that these waves oscillate at the gate fre-
quency rather than with the frequency given by the particle
energy, ωd ≡ ESD/h̄. This is because the timing, say, of the
field maxima is tied to the oscillation frequency of the gate
condensate, and nothing downstream from the gate within the
drain can change that timing.

The two waves of Eqs. (72) and (73) are analogous to
the voltage and current waves associated with a transmission
line, and also somewhat analogous to the electric and mag-
netic fields of an electromagnetic wave (without the vector
nature of the latter). We can make good use of an elec-
tromagnetic analog by designating the wave amplitudes to
have dimensions of acceleration for F and momentum for I.
The two wave amplitudes are related through a real-valued
impedance Z:

F0 = ZI0, (74)

where

Z = n2 ω0

2m
≡ n2Z0, (75)

and n plays the role of an index of refraction:

n ≡
√

ω0

ωd
. (76)

We presume the waves propagate at the group velocity of a de
Broglie wave:

vm = 1

n

√
2h̄ω0

m
(77)

and are thus associated with the wave number:

km = n

√
mω0

2h̄
. (78)

The power transmitted into the drain by these waves is

〈Pd〉 = 1

2
F0I0. (79)

This needs to be consistent with the power supplied by the
oscillator to the drain:

Pd = Id h̄ω0 = V0μBCSω0. (80)

We thus obtain

I0 = 2

n

√
mh̄Id. (81)

Note that the total power delivered to the drain is, in fact,
higher than that specified by Eq. (80):

PTot = Id h̄ωd, (82)

since a portion of the power is provided not by the battery but
from the bias, VSS.

What, exactly, does the wave of Eq. (72) [or Eq. (73)]
represent? It certainly is not a wave function describing the

quantum state of an individual, or an ensemble, of the as-
sociated particles, any more than a classical electromagnetic
wave represents a wave function. Wikipedia’s definition of
“matter wave” relates directly to the de Broglie wavelength
associated with particles having a specific momentum, and
more generally in the literature it is used to refer to a wave
function associated with a massive, usually single, particle.
A de Broglie matter wave will exhibit standing-wave inter-
ference, for example, when reflected from a potential having
a substantially sharp boundary. The interference will exhibit
nodes with a spacing of half of the de Broglie wavelength:
λd = nλm for the typical situation in which n is much less than
unity. On the other hand our wave will also exhibit standing-
wave interference if retroreflected from a barrier, but with a
substantially larger distance between nodes: λm/2 = π/km. In
particular, as impedance is decreased the distance between
nodes in de Broglie interference becomes smaller, whereas
that of the wave of Eq. (72) becomes larger.

While it is not a de Broglie wave, it certainly seems ap-
propriate to refer to Eq. (72) [or Eq. (73)] as a “matter wave”
since it is a wave that is associated with massive particles,
and in general it will interact with other massive particles.
When the distinction is essential, let us refer to these waves
as classical or classically coherent matter waves, a phrase that
seems particularly appropriate given their connection with the
classical equivalent circuit of Fig. 6.

The thought of matter waves in classical terms leads one to
reconsider their nature, at least in the atomtronics context: The
quantization of the electromagnetic field leads to the powerful
notion of a photon, the smallest unit of energy, the “quantum,”
carried by a single mode of the electromagnetic field, along
with the identification of the photon as a particle. Following
the same quantization procedure as for the electromagnetic
field one can identify the quantized single-mode excitations of
the matter-wave field. As far as we know, such an identity does
not exist in the literature, so we will refer to the single-mode
excitation quantum of the matter-wave field as a “matteron.”
The coherent excitation of the single-mode matter-wave field
is thus our matter wave, and a matter wave comprises mat-
terons having energy h̄ω0.

The term may at first seem superfluous because, after
all, we know the drain output from our atomtronic circuit
comprises atomic particles. But the quanta associated with
the emitted matter-wave field are not atoms. Consider the
following Gedanken experiment to detect matterons and not
atoms per se: Fig. 10 illustrates a matter-wave mirror of mass
mm attached to a spring having spring constant ks, in turn
attached to a wall. The mass-spring system will have reso-
nant frequency ωs = √

ks/ms, and let us suppose the losses
are low. We expose the mechanical oscillator to a single-
frequency matteron beam for a significant time compared
with its oscillation period, then subsequently measure its os-
cillation amplitude. Energy will have been deposited in the
detector provided ω0 ≈ ωs. The momentum associated with
the matteron is evidently

p = h̄k0 =
√

2mh̄ω0. (83)

Importantly, atom number is conserved in interactions, but
matteron number is generally not, and while matterons carry
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FIG. 10. A mass-spring combination serves as a matter-wave
detector for a wave frequency given by the resonant frequency of the
mechanical oscillator, ωs = √

ks/ms. The standing wave node spac-
ing is λm/2 and in particular is different from that of the associated
atoms’ de Broglie wavelength.

momentum, their mass is zero. While the analogy is instruc-
tive, whether the concept of matterons proves to be as useful
as that of photons remains to be seen.

XII. CONCLUSIONS

Our analysis of the transistor oscillator began with the
ansatz that the gate many-body wave function is a displaced
ground state, which we have referred to as a “massive co-
herent state.” The idea is to justify the ansatz based on
self-consistency of the steady-state solution. The interesting
circuit dynamics is largely governed by the interaction energy,
Eq. (43), between the gate and the transistor modes. Recogniz-
ing that the gate well has a finite number of energy levels, we
find that the oscillation amplitude of the gate condensate must
saturate, i.e., the gate many-body wave function is not a per-
fect displaced ground state, but nevertheless it is a condensed
state, and furthermore there is a maximum oscillation ampli-
tude that corresponds to a maximum interaction energy. The
maximum interaction energy, in turn, leads to a drain current
that is substantially larger than it would be in absence of the
gate coupling. The drain current induces cooling of the gate
particles. That cooling, we argue, maintains the gate particles
in their condensed state, at least if the anharmonicity of the
gate well is not overly large. The final link in self-consistency
is apparent in the interaction energy, whose average value is
driven to zero only as the average relative phase between the
oscillating condensate and the (single) normal mode reaches
π/2. This occurs at a maximum of the oscillation amplitude
and is also characteristic of any forced simple oscillator.

We transition from a microscopic quantum picture to a
classical one utilizing an equivalent circuit that is similar to
that which would be used to analyze a transistor oscillator cir-
cuit such as the Colpitts oscillator of Fig. 2. The steady-state
circuit dynamics is fully characterized in terms of the circuit
design parameters in conjunction with the battery potential

and temperature. Of particular note is the determination of
the atomtronic analogs to the electronic transistor transcon-
ductance and current gain. It is fair to suppose, however, that
the predictions of the key parameters are valid provided the
battery chemical potential is not too large compared with
h̄ω0. Our treatment of the oscillator in terms of an equiva-
lent circuit led us to contemplate classical coherent matter
waves as analogs of electromagnetic waves. The coherence
of the matter waves is a consequence of the phase-dependent
potential arising from the transistor-gate interaction energy.
The phase dependence translates to a flow of particles whose
kinetic and potential energies oscillate in time in such a way
that their total energy remains fixed. Perhaps counterintu-
itively, the particle flux does not oscillate in time, yet this is
simply the same as the photon flux associated with a coherent
electromagnetic wave. We have seen that the classically coher-
ent matter wave is quite distinct from the elemental de Broglie
matter waves associated with massive particles. As one moves
from a region of high atomic potential energy to a region
of low potential, for example, the de Broglie wavelength be-
comes shorter, whereas the classical matter-wave wavelength
becomes longer. In the circuit context, classical matter waves
can be treated much like the electromagnetic waves of mi-
crowave circuitry. That is, their behavior is determined by
their frequency and the impedance properties of the circuitry.

The theory presented here has sought to extract qualitative
characteristics from what is otherwise a substantially compli-
cated problem in many-body quantum thermodynamics. Our
treatment gives rise to several predictions; most notable is the
emission of a classical matter wave, which can be verified
using interferometry. Another signature of oscillation is the
presence of a small condensate in the gate accompanied by
heating of the source well (due to power dissipation by the
battery’s internal resistance), in contrast to a large condensate
reflecting thermal equilibrium and net cooling of the source
well resulting from the most energetic particles escaping to
the vacuum. Other predictions can be experimentally tested
by varying circuit parameters, for example, to establish the
threshold and tuning characteristics of the circuit.

Our work has emphasized the analogs and duals between
atomtronics and electronics in an attempt to move atomtronics
to a similar footing as electronics. Electronics as a discipline
has managed to codify incredibly complicated nonthermal
equilibrium dynamical systems through a relatively small set
of principles, rules, and heuristics. In this way we hope to
leverage the vast knowledge within electronics to bring useful
quantum advantage to a technologically relevant foreground.
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