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Átomos bosónicos ultrafrı́os en redes ópticas: una
descripción general
Ana Maria Rey

JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA

Resumen

Este artı́culo hace una ruta a través de la fı́sica de átomos ultrafrı́os atrapados en redes
ópticas, comenzando desde el sistema no interactuante y terminando en la fı́sica de muchos
cuerpos que describe el régimen fuertemente correlacionado.
Palabras claves: átomos ultra frı́os, redes ópticas; estadı́stica cuántica bosónica; superflu-
idez; aislante de Mott; magnetismo cuántico

Abstract

This article makes a route through the physics of ultra cold atoms loaded in optical lattices
starting from the simple non-interacting system and going into the many-body physics that
describes the strongly correlated regime.

Keywords: ultra cold atoms; optical lattice; bosonic quantum statistics; superfluidity; Mott
insulator; quantum magnetism

Introduction

Ultracold atoms and molecules provide opportunities for studying quantum many-body
physics with unprecedented flexibility in the design, control and analysis of experiments.
This has been made possible by cooling and trapping techniques that have been developed
since the 1980s, by progress in optical control and imaging of atoms and molecules, and by
developments in theory and experiment that make possible the independent evaluation of
basic atomic and molecular properties.

When atoms are illuminated with laser beams, the oscillating electric field of the lasers in-
duces a dipole moment in the atoms which in turn interacts with the electric field. This
interaction modifies the energy of the internal states of the atoms in a way that depends on
the light intensity. Therefore, a spatially dependent intensity induces a spatially dependent
potential energy which can be used to trap the atoms. This is the basic idea of an optical
lattice. Optical lattices have been widely used in atomic physics as a way to trap and cool
atoms. In the recent years ultracold atoms in optical lattices have become a unique meeting
ground for simulating strongly correlated quantum systems, exploring non-linear phenom-
ena, investigating quantum coherence and generating large-scale entanglement, ultimately
leading to quantum information processing in these artificial crystal structures.
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This article begins by reviewing the basic physics of atom-light interactions and how they
can be used to trap atoms in optical lattices. Then we discuss the behavior of a single atom in
a lattice and introduce important concepts such as band structure, Bloch waves and Wannier
functions. Finally we discuss theoretical mean field methods commonly used to deal with
interacting systems and apply them to calculate the phase diagram of the Bose Hubbard
model, an iconic model that describes the behavior of interacting bosons loaded in deep
optical lattice potential. After that, we use the introduced techniques to compute quantum
correlations and other many body properties of the system. We finalize by discussing the
use of ultra-cold atoms in lattice as quantum simulators of quantum magnetism.

1 Materials and Methods

Bose Einstein condensation (BEC) in bosonic gases was predicted by Einstein in 1925
(Einstein, 1925a) based on the quantum statistics ideas developed by Bose for photons
(Bose, 1924). The basic idea of BEC is that below a critical temperature a macroscopic
number of particles occupy the lowest energy state: as the temperature, T, is decreased
the de-Broglie wave length, which scales like T−1/2, increases and at the critical point it
becomes comparable to the inter-particle mean separation. At this point the wave func-
tions of the particles are sufficiently smeared out so that there is always some overlap and
a Bose Einstein condensate is formed. Although Einstein’s prediction applied for a gas of
noninteracting atoms, London suggested that, BEC could be the mechanism underlying the
phenomenon of superfluidity in 4He (London, 1938a, 1938b), despite the strong interac-
tions in this system. Further evidence for this point of view came from neutron scattering
experiments (Svensson & Sears, 1987).

Experimental efforts to create a BEC in dilute gases date back to the 1980’s (Silvera &
Walraven, 1980). The first experiments concentrated on using atomic hydrogen but mainly
the large rates of inelastic collision prevented these experiments from succeeding. It was not
until 1995, using the advances made in laser cooling techniques (Foot, 1991), that BEC in
dilute alkali atomic gases was achieved. The first series of experiments were done with ru-
bidium (M. H. Anderson, Ensher, Matthews, Wieman, & Cornell, 1995), sodium (Davis
et al., 1995) and lithium (Bradley, Sackett, & Hulet, 1997) vapors. In these experiments
atoms are typically collected in a Magneto-Optical Trap (MOT) and compressed and cooled
to micro-Kelvin temperatures using laser cooling techniques. They are then subjected to
evaporative cooling a process that allows the system to be cooled to nano-Kelvin tempera-
tures. At a critical phase space density BEC takes place. In such a condensate a macroscopic
number of atoms, generally up to 106, collectively occupy the lowest energy state.

The experimental realization of BEC in alkali gases opened unique opportunities for explor-
ing quantum phenomena on a macroscopic scale. However, weakly interacting dilute gases
described by a mean field picture are the simplest many body systems one can possible find.
In order to be in the weakly interacting regime, the ratio between the interaction energy
of uncorrelated atoms at a given density, Eint , and the quantum kinetic energy needed to
correlate particles by localizing them within a distance of order of the mean inter-particle
distance, Ekin, must be small. For three dimensional systems Eint ∼ n 4π h̄2as

m (as is the scat-
tering length, which fully characterizes the low energy scattering processes, n is the mean
particle density and m is the atomic mass) and Ekin ∼ h̄2

2m n2/3. Thus, the ratio between these
two energies is proportional to n1/3as. In dilute alkali vapors this ratio is generally of order
0.02. To enter the strongly correlated regime, an obvious way to proceed is either to in-
crease the density or to tune the scattering length. It is indeed possible to tune the scattering
length to large values by using a Feshbach resonance. The problem of this approach is,
however, that the lifetime of the condensate strongly decreases due to three-body loses. An
entirely different way to reach the strongly correlated regime is by using optical lattices (see
below). By increasing the depth of the optical lattice the ratio between kinetic energy and
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potential energy can be changed without changing the scattering length. The idea is that in
the presence of an optical lattice the particles can acquire a very large kinetic effective mass,
Ekin ∼ h̄2

2m n2/3 → Ekin ∼ h̄2

2m∗ n2/3 with m∗� m and thus a significantly larger Eint/Ekin ratio.
The beauty of this approach is that the lattice depth can be used as an experimental knob
to change the kinetic to interaction energy ratio allowing us to reach different many-body
regimes.

1.1 Optical Lattices

Optical lattices are periodic potentials created by light-matter interactions. When an atom
interacts with an electromagnetic field, the energy of its internal states depends on the light
intensity. Therefore, a spatially dependent intensity induces a spatially dependent potential
energy. Optical lattices have been widely used in atomic physics as a way to trap and cool
atoms.

Neutral atoms interact with light in both dissipative and conservative way.

The conservative interaction comes from the interaction of the light field with the induced
dipole moment of the atom which causes a shift in the potential energy called AC Stark
shift.

The dissipative interaction comes due to the absorption of photons followed by spontaneous
emission. Laser cooling techniques make use of this dissipative process.

1.1.1 AC Stark Shift

Consider a two level atom, with internal ground state |g〉 and excited state |e〉 separated
by an energy h̄ωo. The atom is illuminated with a monocromatic classical electromagnetic
field E = E (x)e−iνt +E ∗(x)eiνt with amplitude E (x) and angular frequency ω = 2πν .

The the electromagnetic field interacts with the atomic dipole, given by an operator d̂ =
µeg|e〉〈g|+µ∗

eg|g〉〈e|, with µeg = 〈e|d̂|g〉 the dipole matrix elements, and the total Hamilto-
nian of the system can be written as

Ĥ = h̄ωo |e〉〈e|−
(
µeg|e〉〈g|+µge|g〉〈e|

)
·
(
E (x)e−iνt +E ∗(x)eiνt

)
, (1)

Going to the rotating frame, neglecting processes with a rapidly oscillating phase, exp(−i(ωo+
ω)), and denoting the laser detuning by ∆ = ω −ω0, the total Hamiltonian can be written
as

Ĥ =−h̄∆ |e〉〈e|−
(

h̄Ω(x)
2

|e〉〈g|+ h̄Ω∗(x)
2

|e〉〈g|
)
, (2)

Where Ω(x) is the Rabi frequency given by h̄Ω(x) = 2E (x) ·µge.

If the detuning is large compared to the Rabi frequency, |∆| � Ω, the effect of the atom-
light interactions on the states ,|e〉 and |g〉, can be determined with second order perturbation
theory. In this case, the energy shift E(2)

g,e is given by

E(2)
g,e =±|〈e| Ĥ |g〉 |2

h̄∆
=±h̄

Ω(x)2

4∆
, (3)

with the plus and minus sign for the |g〉 and |e〉 states respectively. This energy shift is
the so called ac-Stark shift. Since the atoms are practically always in the ground state, the
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energy of the atoms is changed according to the stark shift h̄ Ω(x)2

4∆ , which defines the optical
potential.

Furthermore, if instead of interacting with an monocromatic electromagnetic field, the
atoms are illuminated with superimposed counter propagating laser beams, the beams inter-
fere and the interference pattern results in a periodic landscape potential or optical lattice.

1.1.2 Dissipative interaction

In the above discussion we implicitly assumed that the excited state has an infinite life time.
However, in reality it will decay by spontaneous emission of photons. This effect can be
taken into account phenomenologically by attributing to the excited state an energy with
both real an imaginary parts. If the excited state has a life time 1/Γe, the energy of the
perturbed ground state becomes a complex quantity which we can write as

E(2)
g =

h̄
4

Ω(x)2

∆− iΓe/2
=V (x)+ iγsc(x), (4)

V (x) = h̄
Ω(x)2∆

4∆2 −Γ2
e
≈ h̄

Ω(x)2

4∆
, γsc(x) =

h̄
2

Ω(x)2Γe

4∆2 −Γ2
e
≈ h̄

Ω(x)2Γe

8∆2 . (5)

The real part of the energy correspond to the optical potential whereas the imaginary part
represents the rate loss rate of atoms from the ground state. The sign of the optical potential
seen by the atoms depend on the sign of the detuning. For blue detuning, ∆ > 0, the sign is
positive resulting in a repulsive potential, and the potential minima correspond to the points
with zero light intensity. On the other hand, in a red detuned light field, ∆ < 0, the potential
is attractive and the minima correspond to the places with maximum light intensity.

The optimal detuning for an optical lattice depends on the available laser power I (Ω2 ∝ I)
and the maximum dissipative scattering rate that can be tolerated. By using a small detuning
it is possible to create larger trap depths for a given laser intensity since the optical potential
scales as V ∼ I/∆. However, since the inelastic scattering rate scales inversely proportional
to the detuning squared as Γe/∆ V , the laser detuning should be chosen as large as possible
within the available laser power in order to minimize inelastic scattering processes and
create a conservative potential. For large detunings spontaneous emission processes can be
neglected and the energy shift can be used to create a conservative trapping potential. This
is the physics that describes optical lattices.

1.1.3 Lattice Geometry

The simplest possible lattice is a one dimensional lattice (1D) lattice. It can be created by
retro reflecting a laser beam, such that a standing wave interference pattern is created. This
results in a Rabi frequency Ω(x) = Ωo sin(kx) which yields a periodic trapping potential
given by

Vlat(x) =Vo sin2(kx) =
h̄Ω2

o

4∆
sin2(kx) (6)

where k = 2π/λ is the the wave vector of the laser light and Vo is four times times the
intensity of a single laser beam without retro-reflection, due to the constructive interference
of the lasers.

Periodic potentials in higher dimensions can be created by superimposing more laser beams.
To create a two dimensional lattice potential for example, two orthogonal sets of counter
propagating laser beams can be used. In this case the lattice potential has the form
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Vlat(x,y) =Vo
(
cos2(ky)+ cos2(kx)+2ε1 · ε2 cosφ cos(ky)cos(kx)

)
(7)

Here k is the wave vector of the lattice light, ε1 and ε2 are polarization vectors of the counter
propagating set and φ is the phase between them. If the polarization vectors are not orthog-
onal and the laser frequencies are the same, they interfere and the potential is changed
depending on the time phase. This can be used to tune the geometry of the generated poten-
tial. A simple square lattice with one atomic basis can be created by choosing orthogonal
polarizations between the standing waves. In this case the interference term vanishes and
the resulting potential is just the sum of two superimposed 1D lattice potentials. Even if the
polarization of the two pair of beams is the same, they can be made independent by detun-
ing the common frequency of one pair of beams from that the other. Typically a negligible
frequency difference compared with the optical frequency is required to achieve indepen-
dence, thus, even in this case to a good approximation the wave vectors can be considered
equal.

A more general class of two 2D lattices can be created from the interference of three laser
beams (Blakie & Clark, n.d.; Peil et al., 2003) which in general yield non separable lat-
tices. These kind of lattices can provide tighter on-site confinement, better control over the
number of nearest neighbors and significantly reduced tunneling between sites compared
with the counter propagating four beam square lattice. In Fig. 1 we show a variety of possi-
ble 2D optical lattice geometries that can be made by three and four interfering laser beams.
Different type of lattice potentials can be created in 3D by the interference of at least 5 laser
beams.

Figura 1. Optical lattices potential. (a) A hexagonal Lattice, (b) A square lattice, (c) A
rectangular lattice, (d) An oblique lattice, (e) A centered rectangular lattice, (f) A four
beam square lattice. (a)–(e)Lattice potentials are for different configurations of 3 beams,
(f) is a potential for the 4 counter-propagating laser beam configuration. This figure is a
courtesy of P. Blair Blakie (Blakie & Clark, n.d.)
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Results and discussion

Cold atoms interacting with a spatially modulated optical potential resemble in many as-
pects electrons in the solid crystals ion-lattice potential. However optical lattices have many
advantages with respect to solid state systems. Not only they are free from defects but also
they can be controlled very easily by changing the laser field properties. Moreover, different
from solids where the lattice spacings are generally of order of Amstrongs, lattice constants
in optical lattices are typically three order of magnitude larger.

Single particle physics

Bloch functions

Figura 2. Band structure in a periodic potential

One of the most important characteristics of a periodic potential is the emergence of a
band structure. Consider a one dimensional particle described by the Hamiltonian H =
p̂2

2m +Vlat(x), where Vlat(x) = Vlat(x+ a). Bloch’s theorem (Ashcroft & Mermin, 1976;

Ziman, 1964) states that the eigenstates φ (n)
q (x) can be chosen to have the form of a plane

wave times a function with the periodicity of the potential:

φ (n)
q (x) = eiqxu(n)q (x), (8)

u(n)q (x+a) = u(n)q (x). (9)

Using this ansatz into the Schrödinger equation, Hφ (n)
q (x) = E(n)

q (x)φ (n)
q (x), yields an equa-

tion for u(n)q (x) given by:

[
( p̂+h̄q)2

2m
+Vlat(x)

]
u(n)q (x) = E(n)

q u(n)q (x) (10)

Bloch’s theorem introduces a wave vector q. The quantity q should be viewed as a quantum
number characteristic of the translational symmetry of the periodic potential, just as the
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momentum is a quantum number characteristic of the full translational symmetry of the
free space. Even though is not the same, it turns out that h̄q plays the same fundamental
role in the dynamics in a periodic potential than the momentum in the absence of the lattice.
To emphasize this similarity h̄q is called the quasimomentum or crystal momentum . In
general the wave vector q is confined to the first Brilloiun zone, i.e. −π/a < q ≤ π/a.

The index n appears in Bloch’s theorem because for a given q there are many solutions to
the Schrödinger equation. Eq. (10) can be seen as a set of eigenvalue problems in a fixed
volume, one eigenvalue problem for each q. Therefore, each of them, has an infinite family
of solutions with a discretely spaced spectrum with modes labelled by the band index n.
On the other hand, because the wave vector q appears only as a parameter in Eq. (10), the
energy levels for a fixed n has to vary continuously as q varies. The description of energy
levels in a periodic potentials in terms of a family of continuous functions E(n)

q each with
the periodicity of a reciprocal lattice vector, 2π/a, is referred as the band structure. The
lattice potential is generally expressed in units of the atom recoil energy, ER = h̄2k2/(2m),
with k = π/a.

Fig. 2 shows the band structure of a sinusoidal potential. For V0 = 0, the particles are free so
the spectrum is quadratic in q. As the potential is increased the band structure appears.The
band gap increases and the band width decreases with increasing lattice depth.

Figura 3. Bloch functions in a periodic potential. Similar lattice depths than those ones of
Fig.2

In the absence of a lattice the eigenfunctions of the free system are plane waves (see Fig. 3).
As the lattice depth is increased the barrier height between adjacent lattices sites increases
and the eigenstates of the system tend to get localized at each lattice site (regions around
the potential minima).

1.1.4 Wannier orbitals

Wannier orbitals are a set of orthogonal normalized wave functions that fully describe par-
ticles in a band and that are localized at the lattice sites. They are defined as:
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wn(x− xi) =
1√
M ∑

q
e−iqxiφ (n)

q (x), (11)

where the sum is over the first Brillouin zone, M is the total number of lattice sites and xi
is the position of the ith lattice site. Wannier orbitals are thus a unitary transformation of
the Bloch functions and are formally an equivalent representation to describe the periodic
system.

Figura 4. Wannier functions in a periodic potential plotted together with a schematic
lattice potential. Wannier functions constitute an orthogonal set of maximally localized
wave functions. For the 3Er system shown sidelobes are visible, for 10Er the sidelobes are
hardly visible under the scale used in the figure.

The actual form of a Wannier function may be understood if we Eq.(8) to be approximately
the same for all Bloch states in a band. Under this approximation the Wannier function at
the origin can be shown to be

wn(x)≈ u(n)(x)
sin(kx)

kx
. (12)

They look likes u(n)(x) at the site center, but it spreads out with gradually decreasing os-
cillations with are needed to ensure orhogonality. In Fig. 4 we show a Wannier orbital
centered at the origin site.

1.1.5 Tight binding approximation

The tight-binding approximation deals with the case in which the overlap between Wannier
orbitals at different sites is enough to require corrections to the picture of isolated particles
but not too much as to render the picture of localized wave functions completely irrelevant.
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In this regime to a very good approximation one can only take into account overlap between
Wannier orbitals in nearest neighbor sites. Furthermore, if initially the atoms are prepared
in the lowest band, the dynamics can be represented quite satisfactorily by using Wannier
functions of only the lowest band. The tight-binding model is commonly used to solve the
problem of a particle in a periodic potential when also an external potential V (x), not strong
enough or sharp enough to induce interband transitions, is applied.

By expanding the wave function in lowest band Wannier orbitals,

Ψ(x, t) = ∑
i

ψi(t)w0(x− xi), (13)

we get the following equations of motion

ih̄
∂
∂ t

ψi(t) =−J (ψi+1(t)+ψi−1(t))+V (xi)ψi(t)+ εoψi(t), (14)

with

J = −
∫

dxw∗
0(xi)How0(x− xi+1)dx, (15)

εo =
∫

dxw∗
0(x)How0(x)dx (16)

J is the tunneling matrix element between nearest neighboring lattice sites and εo is the
unperturbed on site energy shift. Eq. (14) is known as the discrete Schrödinger equation
(DSE) or tight binding Schrödinger equation.

For the special case of a sinusoidal potential Vlat(x) =Vo sin2(kx) for which Mathieu func-
tions are the exact solutions an analytic expression for J can be obtained:

J/ER = α
(
Ṽo
)γ e−β

√
Ṽo (17)

with α =1.39666, β =1.051 and γ =2.12104 and Ṽo =Vo/ER. Note that J decreases expo-
nentially with the lattice depth.

1.1.6 Semiclassical dynamics

Solving Eq. (14) is presumably not possible for an arbitrary V (xi). However, we get general
insight to the nature of solutions by an application of the correspondence principle. It is
well known that wave-packet solutions of the Schrödinger equation behave like classical
particles obeying the equations of motion derived from the same classical Hamiltonian.
The classical Hamilton equations are

ẋ =
∂H
∂ p

, ṗ =−∂H
∂x

. (18)

Using the correspondence principle and the resemblance of the crystal momentum or quasi-
momentum to real momentum, the semiclassical equations of a wave packet in the first band
of a lattice can be written as (Ashcroft & Mermin, 1976; Ziman, 1964)

ẋ = v(0)(q) =
1
h̄

dE(0)
q

dq
, h̄q̇ =−dV (x)

dx
. (19)
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The semiclassical equations of motion describe how the position and wave vector of a
particle evolve in the presence of an external potential entirely in terms of the band structure
of the lattice. If we compare the acceleration predicted by the model with the conventional
newtonian equation, mẍ = −dV (x)/dx, we can associate an effective mass induced by the
presence of the lattice, m∗. This is given by

1
m∗ =

1
h̄2

d2

dq2 E(0)
q . (20)

If no external potential is applied, V (x) = 0, Bloch waves are the solutions of tight binding
equation: ψ j(t) = f (q)j e−i(Eqt)/h̄ , f (q)j = 1√

M
eiqa j with M is the total number of lattice sites.

If also periodic boundary conditions are assumed, the quasimomentum q is restricted to be
an integer multiple of 2π

Ma . The lowest energy band dispersion relation in this case is given
by

Eq =−2J cos(qa) (21)

From the above equation it is possible to see the connection between J and the band width

J =
(

Eq= π
a
−Eq=0

)
/4 (22)

The effective mass becomes m∗ = h̄2

2Ja2 cos(qa) and close to the bottom of the band q → 0,

m∗→ h̄2

2Ja2 . Since the tunneling decreases exponentially with the lattice depth, the effective
mass grows exponentially. In the presence of interactions, the large effective mass manifest
itself in a substantial enhancement of the interaction to kinetic energy ratio, in comparison
to the free particle case. This is the reason why atoms in optical lattice can reach the strongly
interaction regime.

1.2 Bose Hubbard Hamiltonian and the superfluid to Mott insulator transition

The simplest non trivial model that describes interacting bosons in a periodic potential is the
Bose Hubbard Hamiltonian. This model has been used to describe many different systems
in solid state physics, like short correlation length superconductors, Josephson arrays, crit-
ical behavior of 4He and, recently, cold atoms in optical lattices (Jaksch, Bruder, Cirac,
Gardiner, & Zoller, 1998). It has been studied analytically with many different techniques
(Krauth, Caffarel, & Bouchaud, 1992; Sheshadri, Krishnamurthy, Pandit, & Ramakr-
ishnan, 1993; van Oosten, van der Straten, & Stoof, 2001; M. P. A. Fisher, Weichman,
Grinstein, & Fisher, 1989; Freericks & Monien, 1996) as well as numerically (Batrouni,
Scalettar, & Zimanyi, 1990; Scalettar, Batrouni, & Zimanyi, 1991; Niyaz, Scalettar,
Fong, & Batrouni, 1991; Batrouni, Scalettar, Zimanyi, & Kampf, 1995; Batrouni et
al., 2002). The Bose Hubbard Hamiltonian features a quantum phase transition from a
superfluid to a Mott insulator state. This transition has been observed experimentally in
ultracold atoms systems in 1D, 2D and 3D lattice geometries(Greiner, Mandel, Esslinger,
Hänsch, & Bloch, 2002; Paredes et al., 2004; Spielman, Phillips, & Porto, 2007).

We begin the analysis by considering the second quantized Hamiltonian that describes inter-
acting bosonic atoms in an external trapping potential plus lattice. We will assume s-wave
interactions which are the relevant interactions in ultra cold gases. In the grand canonical
ensemble it is given by:

Ĥ =
∫

dxΦ̂†(x)
(
− h̄2

2m
∇2 +Vlat(x)

)
Φ̂(x)+(V (x)−µ)Φ̂†(x)Φ̂(x) (23)

+
1
2

4πash̄2

m

∫
dxΦ̂†(x)Φ̂†(x)Φ̂(x)Φ̂(x),
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where Φ̂†(x) is the bosonic field operator which creates an atom at the position x, Vlatt(x) is
the periodic lattice potential, V (x) denotes any additional slowly- varying external potential
that might be present (such as a harmonic trap), as is the scattering length and m the mass
of an atom. µ is the chemical potential which acts as a lagrange multiplier to fix the mean
number of atoms in the grand canonical ensemble.

Similar to the noninteracting situation where we used Wannier orbitals to span the single
particle wave function, it is convenient to span the field operator in terms of Wannier or-
bitals. Assuming that the vibrational energy splitting between bands is the largest energy
scale of the problem, a conditions which can be fulfilled in most of the experiments, atoms
only populate the lowest band and one can restrict the expansion to include only lowest
band Wannier orbitals w0(x),

Φ̂(x) = ∑
j

âjw0(x−xj), (24)

Here âj is the annihilation operator at site j which obeys bosonic canonical commutation
relations. The sum is taken over the total number of lattice sites. If Eq. (24) is inserted in Ĥ
and only tunneling between nearest neighbors is considered, we obtain the Bose Hubbard
Hamiltonian

ĤBH = −J ∑
<j,i>

â†
i âj +

1
2

U ∑
j

â†
j â†

j ajaj +∑
j
(Vj −µ)â†

j âj. (25)

Here the notation < j, i > restricts the sum to nearest neighbors sites. J given by Eq.(15)
and

U =
4πash̄2

m

∫
dx |w0(x)|4 , (26)

Vj = V (xj) (27)

The first term in the Hamiltonian proportional to J is a measure of the kinetic energy of the
system. Next-to-nearest neighbor tunneling amplitudes are typically two orders of magni-
tude smaller than nearest neighbor ones in the tight-binding limit and to a good approxima-
tion they can be neglected.

The second term determines the interaction energy of the system. The parameter U mea-
sures the strength of the repulsion of two atoms at lattice site j. The integral (26) is not
as sensitive as Eq. (15) to the oscillatory tails characteristic of the Wannier orbitals, and
a Gaussian approximation can be used to estimate it (Jaksch et al., 1998). Under the
Gaussian approximation, the ground state wave function centered at the origin of a sep-
arable sinusoidal lattice, with lattice depth Vα in the α = x,y,z direction, has the form

w0(x)∼ ∏α=x,y,z exp−
(

xα√
2ahoα

)2
, with ahoα =

√
h̄

mωhoα
and ωhoα =

√
4ErVα

h̄2 . Using this
ansatz in the integral (26) yields an onsite interaction given by

U =
h̄as√

2π
ωho

aho
, (28)

with the bar indicating the geometric mean. As the intensity of the lattice is increased the
tunneling rate decreases exponentially and the onside interaction increases as a power law,
V d/4

0 , (d is the dimensionality of the lattice).
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The third term in the Hamiltonian takes into account the energy offset at site j due to a slow
varying external potential V (x).

1.2.1 Superfluid Mott insulator transition

At zero temperature the physics described by the Bose Hubbard Hamiltonian can be divided
in two different regimes. The interaction dominated regime when J is much smaller than
U , and the system is in the Mott insulator phase, and the kinetic energy dominated regime,
when tunneling overwhelms the repulsion and the system exhibits superfluid properties.
The transition between the two regimes is a consequence of the competition between the
kinetic energy which tries to delocalize the particles and the interaction energy which tries
to localize them and to make the number fluctuations small.

In the superfluid regime, the kinetic energy term dominates the Hamiltonian and the system
behaves as a weakly interacting Bose gas. Quantum fluctuations can be neglected and the
system can be described by a macroscopic wave function. For the translationally invariant
case the ground state consists of all atoms in the 0-quasimomentum mode

|ΨSF〉=
1√
N!

(
b̂†

0

)N
|0〉, (29)

where N is the total number of atoms and b̂†
q =

1√
M ∑j âjeiaq·j is the anhihilation operator of

an atom with quasimomentum. Remember a is the lattice spacing.

Since the many body state is almost a product over identical single particle wave functions
the system has a well defined phase and large number fluctuations ∼

√
N. The macroscopic

occupation of a single mode implies that the commutator of the annihilation and creation
operators that create and destroy a particle in the condensate mode can be neglected with
respect to the total number of atoms in the mode. Therefore, to a good approximation the
field operator can be replaced by a c-number,

b̂0 → 〈b̂0〉 (30)

This procedure can be interpreted as giving to the field operator a non zero average, 〈b̂0〉=√
Neiθ , and thus a well defined phase to system. Because the original Hamiltonian is invari-

ant under global phase transformation, this definition of BEC corresponds to an spontaneous
symmetry breaking (Bogoliubov, 1947; Dalfovo, Giorgini, & Stringari, 1999; P. W. An-
derson, 1966; Leggett, 2001; Leggett & Sols, 1991). The wave function associated with

the condensate mode, in this case the zero quasi-momentum eigenstate ψj =
√

N
M eiθ is of-

ten called “condensate wave function”. It characterizes the off-diagonal long range order
present in the one particle density matrix (Ginzburg & Landau, 1950; Penrose & On-
sager, 1956).

ρ(1)
i,j = lim

|i−j|→∞
〈â†

j âi〉= ψ∗
j ψj = N/M. (31)

Strictly speaking, in finite size systems with well defined number of particles neither the
concept of broken symmetry, nor the one of off-diagonal long range order can be applied.
However the condensate wave function can still be determined by diagonalization of the one
particle density matrix. The eigenstate with larger eigenvalue corresponds to the condensate
wave function.

As interaction increases the average kinetic energy required for an atom to hop from one
site to the next becomes insufficient to overcome the energy cost. Atoms tend to get localize
at individual lattice sites and number fluctuations are reduced. Deep in the Mott insulator
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phase the ground state of the system instead consist of localized atomic wave functions with
a fixed number of atoms per site.

|ΨMI〉= ∏
j

1√
no!

(â†
j )

no |0〉, (32)

where no = N/M is the filling factor or mean number of particles per site. We have assumed
that the number of particles is commensurate with lattice sites, i.e. that no is an integer.

The lowest lying excitations that conserve particle number are particle-hole excitations
(adding plus removing a particle from the system). The Mott phase is characterized by
the existence of an energy gap. The gap is determined by the energy necessary to create one
particle-hole pair.

1.2.2 Mean Field Phase diagram

The zero temperature Bose-Hubbard phase diagram (M. P. A. Fisher et al., 1989; Krauth
et al., 1992) of a translational invariant system Vj = 0 exhibits lobe-like Mott insulating
phases in the J-µ plane, see Fig. 5. Each Mott lobe is characterized by having a fixed
integer density. Inside these lobes the compressibility, ∂ρ/∂ µ with ρ the average density
of the system, vanishes.

The physics behind this diagram can be understood as follows: If we start at some point
in the Mott insulating phase and increase µ while keeping J fixed, there is going to be a
point at which the kinetic energy of adding an extra particle and letting it hop around will
balance the interaction energy cost. With an extra particle free to move around the lattice
phase coherence is recovered and the system enters the superfluid regime. Similarly, by de-
creasing µ from a point in the Mott phase, at some point eventually it will be energetically
favorable to remove one particle from the system. The extra mobile hole will induce also
phase coherence and the system will condense in a superfluid state. Since the kinetic energy
of the system increases with J, the width of the lobes decreases with J. The distance in the
µ direction at fixed J between the upper and lower part of the lobe is the energy gap. At
J = 0 the gap is just equal to U . Also at J = 0 the intersection points between the lobes with
density ρ = n0 and the ones with density ρ = n0 +1 are degenerated. Because there is not
energy barrier to the addition of an extra particle at this generated points the system remain
superfluid. Mott insulator phases occur only at integer densities, non-integer densities con-
tours lie entirely in the superfluid phase because there is always an extra particle that can
hop without energy cost.

The phase diagram includes two different types of phase transition. One type takes place
at any generic point of the phase boundary, and it is driven by the energy cost to add or
subtract small numbers of particles to the incompressible Mott state as explained above. On
the other hand, the other type only occurs at fixed integer density and takes place at the
tip of the lobes. This transition is driven at fixed density by decreasing U/J and enabling
the bosons to overcome the on site repulsion. The two kinds of phase transition belong to
different universality classes. In the generic one, the parameter equivalent to the reduced
temperature δ = T −Tc for finite temperature transitions that measures the distance from
the transition is δ ∼ µ − µc, with µc the chemical potential at the phase boundary. For the
special fixed density, on the other hand, one must take δ ∼ (J/U)− (J/U)c. As shown
in M. P. A. Fisher et al. (1989) provided δ ∼ µ − µc, the compressibility has a singular
part scaling near the transition as δ−α , α > 0. This scaling does not apply at the special
fixed density Mott-Superfluid transition for which δ ∼ (J/U)− (J/U)c and differentiation
with respect to delta becomes inequivalent to differentiation with respect to the chemical
potential.
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Figura 5. Zero temperature phase diagram of the Superfluid to Mott insulator transition.
The dashed lines are contours with fixed integer density.

Most of the features of the phase diagram discussed above can be verified by simple calcu-
lations done using a decoupling mean field approximation. Under the decoupling approxi-
mation one introduces a real superfluid order parameter ψ = 〈â†

j 〉 = 〈âj〉, and constructs a
consistent mean-field theory by substituting the kinetic energy term by

â†
j âi → â†

j 〈âi〉+ 〈â†
j 〉âi −〈â†

j 〉〈âi〉

= ψ(â†
j + âi)−ψ2 (33)

into Eq. 25. This yields

Ĥmean = −Jzψ ∑
j
(â†

j + âj −ψ)+
1
2

U ∑
j

â†
j â†

j ajaj +∑
j
(−µ)â†

j âj,

where z = 2d is the number of nearest-neighbor sites. This Hamiltonian is diagonal with
respect to the site index j, so we can use an effective onsite Hamiltonian. We will therefore
drop the subscript j in the following.

By treating ψ as the perturbation parameter one can use perturbation theory to calculate the
mean field energy. Assuming commensurate filling N/M = n0 = 1,2, . . . , to zero order in
ψ the ground state of the system will have energy E(0)

n0 and exactly n0 particles per site (Eq.
32). In this unperturbed occupation number basis the odd powers of the expansion of the
energy in ψ will always be zero. Up to four order the ground state energy becomes

E = E(0) +ψ2E(2) +ψ4E(4) (34)

with E(2)/Jz =−∑1
m=−1

|〈n0|â+â†|n0+m〉|2

E(0)
n0 −E(0)

n0+m
+1
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If we now follow the usual Landau procedure for second order phase transitions and min-
imize Eq. 34 with respect to the superfluid order parameter ψ , we find that ψ � 0 when
E(2) < 0 and that ψ = 0 when E(2) < 0. This means that E(2) = 0 signifies the boundary
between the superfluid and the insulator phases. The solution E(2) = 0 occurs for

µ±

Jz
=

1
2


U

Jz
(2n0 −1)−1±

√(
U
Jz

)2

−2
U
Jz
(2n0 +1)+1


 (35)

By equating µ+ = µ− one finds the point of smallest U for each lobe which corresponds to
the critical value at the tip:

Uc

Jz
=

(
2n0 +1+

√
(2n0 +1)2 −1

)
(36)

1.2.3 The Bose Hubbard model and Superfluidity

The concept of superfluidity is closely related to the existence of a condensate in the inter-
acting many-body system. Formally, the one-body density matrix ρ(1) (x,x′) has to have
exactly one macroscopic eigenvalue whichs defines the number of particles in the con-
densate; the corresponding eigenvector describes the condensate wave function φ0 (x) =
eiΘ(x) |φ0 (x)|. A spatially varying condensate phase, Θ(x), is associated with a velocity
field for the condensate by

v0 (x) =
h̄
m

∇Θ(x) . (37)

This irrotational velocity field is identified with the velocity of the superfluid flow, vs (x)≡
v0 (x) (Leggett, 1999; Lifshitz & Pitaevskii, 1980) and enables us to derive an expression
for the superfluid fraction, fs. Consider a system with a finite linear dimension, L along the
e1–direction, and a ground–state energy, E0, calculated with periodic boundary conditions.
Now we impose a linear phase variation, Θ(x) = θx1/L with a total twist angle θ over the
length of the system in the e1–direction. The resulting ground–state energy, Eθ will depend
on the phase twist. For very small twist angles, θ � π , the energy difference, Eθ −E0,
can be attributed to the kinetic energy, Ts, of the superflow generated by the phase gradient.
Thus,

Eθ −E0 = Ts =
1
2

mN fsv2
s , (38)

where m is the mass of a single particle and N is the total number of particles so that mN fs
is the total mass of the superfluid component. Replacing the superfluid velocity, vs with
the phase gradient according to Eq. (37) leads to a fundamental relation for the superfluid
fraction.

fs =
2m
h̄2

L2

N
Eθ −E0

θ 2 =
1
N

Eθ −E0

J (∆θ)2 . (39)

where the second equality applies to a one dimensional lattice system on which a linear
phase variation has been imposed. Here the distance between sites is a, the phase variation
over this distance is ∆θ , and the number of sites is M. In this case, J ≡ h̄2/(2ma2).

Technically the phase variation can be imposed through so-called twisted boundary condi-
tions (M. E. Fisher, Barber, & Jasnow, 1973). In the context of the discrete Bose-Hubbard
model it is, however, more convenient to map the phase variation by means of a unitary
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transformation onto the Hamiltonian (Roth & Burnett, 2003; Rey et al., 2003). The re-
sulting “twisted” Hamiltonian in this case

Ĥθ =
M

∑
j=1

n̂ jVj − J
M

∑
n=1

(e−i∆θ â†
j+1â j + ei∆θ â†

j â j+1)+
U
2

M

∑
j=1

n̂ j(n̂ j −1) . (40)

exhibits additional phase factors e±i∆θ — the so-called Peierls phase factors — in the hop-
ping term. We calculate the change in energy Eθ −E0 under the assumption that the phase
change ∆θ is small so that we can write:

e−i∆θ � 1− i∆θ − 1
2
(∆θ)2 . (41)

Using this expansion the twisted Hamiltonian (40) takes the following form:

Ĥθ � Ĥ0 +∆θ Ĵ− 1
2
(∆θ)2T̂ = Ĥ0 + Ĥpert , (42)

where we retain terms up to second order in ∆θ . The current operator Ĵ (Note that the
physical current is given by this expression multiplied by 1

h̄ ) and the hopping operator T̂ are
given by:

Ĵ ≡ iJ
M

∑
j=1

(â†
j+1â j − â†

j â j+1) (43)

T̂ ≡ −J
M

∑
j=1

(â†
j+1â j + â†

j â j+1) . (44)

The change in the energy Eθ −E0 due to the imposed phase twist can now be evaluated in
second order perturbation theory

Eθ −E0 = ∆E(1) +∆E(2) . (45)

The first order contribution to the energy change is proportional to the expectation value of
the hopping operator

∆E(1) = 〈Ψ0|Ĥpert|Ψ0〉=−1
2
(∆θ)2〈Ψ0|T̂ |Ψ0〉 . (46)

Here |Ψ0〉 is the ground state of the original Bose-Hubbard Hamiltonian. The second order
term is related to the matrix elements of the current operator involving the excited states
|Φν〉 (ν = 1,2, ...) of the original Hamiltonian

∆E(2) =− ∑
ν�0

|〈Ψν |Ĥpert|Ψ0〉|2

Eν −E0
=−(∆θ)2 ∑

ν�0

|〈Ψν |Ĵ|Ψ0〉|2

Eν −E0
. (47)

Thus we obtain for the energy change up to second order in ∆θ

Eθ −E0 = (∆θ)2
(
− 1

2
〈Ψ0|T̂ |Ψ0〉− ∑

ν�0

|〈Ψν |Ĵ|Ψ0〉|2

Eν −E0

)
= M(∆θ)2D,

D ≡ 1
M

(
− 1

2
〈Ψ0|T̂ |Ψ0〉− ∑

ν�0

|〈Ψν |Ĵ|Ψ0〉|2

Eν −E0

)
. (48)

The quantity D, defined above, is formally equivalent to the Drude weight used to specify
the DC conductivity of charged fermionic systems (Shastry & Sutherland, 1990). The
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superfluid fraction is then given by the contribution of both the first and second order term:

fs = f (1)s − f (2)s ;

f (1)s ≡ − 1
2NJ

(
〈Φ0|T̂ |Φ0〉

)
, (49)

f (2)s ≡ 1
NJ

(
∑
ν�0

|〈Φν |Ĵ|Φ0〉|2

Eν −E0

)
.

In general both, the first and the second order term contribute. The superfluid fraction is 1
for the noninteracting system and decreases slowly for small U/J. In the region of the Mott
transition fs drops rapidly and goes to zero in the Mott-insulator phase. The rapid decrease
of the total superfluid fraction is largely due to the second order contribution.

1.2.4 Bogoliuov treatment of the superfluid to Mott transition

As mentioned before the Bose Hubbard Hamiltonian is the simples model that describes
interacting bosons in a lattice. Even though the Hamiltonian looks simple in general it is
very difficult to deal with exactly and perturbative or approximated treatments are in order.
A systematic approach to deal with the weakly interacting regime uses the ideas proposed by
Bogoliubov in 1947 (Bogoliubov, 1947). The Bogoliubov approximation starts by treating
the field operator as a c-number plus a small fluctuating term. The c-number describes
the condensate or the coherent part of the matter field and the fluctuating term accounts for
quantum correlations. Since in a weakly interacting gas, quantum fluctuations are small, one
can neglect third and higher terms in the fluctuating field and derive an effective quadratic
Hamiltonian in the fluctuating field which can be exactly diagonalized.

In the following, we will apply the Bogoliubov approximation to the Bose Hubbard Hamil-
tonian and derive the correspondent Bogoliubov-de Genes(BdG) equations as developed in
Refs. (van Oosten et al., 2001; Roth & Burnett, 2003; Rey et al., 2003). We will restrict
our analysis to zero temperature T = 0.

In the very weakly interacting regime, to a good approximation, the field operator can be
written in terms of a c-number plus a fluctuation operator:

âi = ψi + ϕ̂i. (50)

Replacing this expression for ân in the Bose Hubbard Hamiltonian leads to :

Ĥ = Eo + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4, (51)

with

H0 = −J ∑
<n,n′>

ψ∗
n ψn′ +∑

n
(Vn −µ)|ψn|2 +

U
2
|ψn|4, (52)

Ĥ1 = −J ∑
<n,n′>

ϕ̂nψ∗
n′ +∑

n

(
Vn −µ +U |ψn|2

)
ψ∗

n ϕ̂n +h.c., (53)

Ĥ2 = −J ∑
<n,n′>

ϕ̂†
n ϕ̂n′ +∑

n
(Vn −µ)ϕ̂†

n ϕ̂n +

U
2 ∑

n

(
ϕ̂2†

n ψ2
n + ϕ̂2

n ψ2∗
n +(ϕ̂†

n ϕ̂n + ϕ̂nϕ̂†
n )|ψn|2

)
, (54)

Ĥ3 = U ∑
n

ϕ̂†
n ϕ̂†

n ϕ̂nψn +h.c., (55)

Ĥ4 =
U
2 ∑

n
ϕ̂†

n ϕ̂†
n ϕ̂nϕ̂n (56)
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Where < n,n′ > restricts the sum over m to nearest neighbors and h.c. stands for the hermi-
tian adjoint. The terms of the Hamiltonian have been grouped in equations according to the
number of non condensate operators which they contain.

The first step is the minimization of the energy functional H0. This requires the condensate
amplitudes ψn to be a solution of the following non-linear equation,

µψn =−J ∑
<m,n>

ψm +(Vn +U |ψn|2)ψn (57)

This equation is known as the discrete nonlinear Schrödinger equation (DNLSE). It is
a discrete version of the so called Gross-Pitaevskii equation (GPE) (E. P. Gross, 1961;
Pitaevskii, 2003). It can be also obtained by spanning the GPE equation in a Wannier or-
bital basis and then using the tight binding approximation (see Eq. 14.) If ψn is a solution
of Eq. 57 it means that the linear Hamiltonian Ĥ1 vanishes.

The quadratic Hamiltonian Ĥ2 allows the leading order effects of the non-condensate atoms
to be taken into account. Ĥ2 can be diagonalized by finding a basis of so-called quasipar-
ticle states which do not interact which each other. Mathematically this involves a linear
canonical transformation of the single-particle creation and annihilation operators â†

n and
ân into quasiparticle operators α̂†

s ,α̂s. The transformation is what is known as Bogoliubov
transformation and is given by

ϕ̂n = ∑
s�0

us
nα̂s − v∗s

n α̂†
s . (58)

In general the spectrum of fluctuations includes a zero mode. This mode is the Goldstone
boson associated with the breaking of global phase invariance by the condensate. The zero
mode is essentially non perturbative and it introduces an artificial infrared divergence in low
dimensional models. For this reason quadratic approximations are actually improved if the
contribution from this mode is neglected all together (Al Khawaja, Andersen, Proukakis,
& Stoof, 2002). A different way to deal with the zero mode has been proposed by Refs.
(Castin & Dum, 1998; Gardiner, 1997; Morgan, 2000a, 2000b). For simplicity we are
going to ignore zero mode fluctuations and restrict the fluctuation operators to act only on
the excited states.

The Bogoliubov transformation Eq. 58 is required to be canonical, which means that it
preserves the commutation relations and leads to bosonic quasiparticles. To satisfy this, the
amplitudes {us

n,v
s
n} are constrained by the conditions:

∑
n

u∗s
n us′

n − v∗s
n vs′

n = δss′, (59)

∑
n

us
nvs′

n − v∗s
n u∗s′

n = 0. (60)

The necessary and sufficient conditions that the quasiparticle amplitudes have to fulfill to
diagonalize the Hamiltonian are provided by the so called Bogoliubov-de Gennes (BdG)
equations (

L M
M ∗ L

)(
us

vs

)
= ωB

s

(
us

−vs

)
(61)

with us = (us
1,u

s
2, ...) , vs = (vs

1,v
s
2, ...) and ψ = (ψ1,ψ2, ...). The matrices L and M are

given by

Lnm = −J ∑
<n,l>

δnlδlm +δnm(2U |ψn|2 +Vn −µ) (62)

Mnm = −Uψ2
n δnm. (63)
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with δnl the Kronecker delta which is one if n = k and zero otherwise. If the BdG equations
are satisfied, the quadratic Hamiltonian takes the form

Ĥ2 = ∑
s�0

[
h̄ωB

s α̂†
s α̂s +

1
2
(
h̄ωB

s −Lss
)]

. (64)

The quasi-particle energies h̄ωB
s come in pairs: if h̄ωB

s is a solution for the amplitudes (us,vs)
then −h̄ωB

s is also a solution for the amplitudes (vs∗,us∗). The solution with zero energy is
always a solution and in this case the amplitudes must be proportional to the condensate
(v0,u0) ∝ (ψ,ψ). We explicitly exclude the zero mode solution to guarantee that the exci-
tations are orthogonal to the condensate.

To have a complete description of the quadratic Hamiltonian, we define the one-body den-
sity fluctuation matrix , ρnm, and the anomalous average matrix, mnm, as:

ρnm = 〈â†
nâm〉−〈â†

n〉〈âm〉, (65)
mnm = 〈ânâm〉−〈ân〉〈âm〉. (66)

The averages denote an ordinary quantum expectation value. In the zero temperature situa-
tion, the average is over the ground quasiparticle state given by α̂s|0〉 = 0 and the ρnm and
mnm can be written in terms of quasiparticle amplitudes as:

ρnm = ∑
s�0

vs∗
n vs

m, (67)

mnm = −∑
s�0

us
nvs∗

m . (68)

The quantity ρnn represents the non-condensate population at position n or depletion at
position n. If the average number of atoms is N, the depletion and condensate atoms are
related by the equation:

N = ∑
n

〈
â†

nân
〉
= ∑

n

(
|ψn|2 +ρnn

)
(69)

To understand many-body effects included in the quadratic approximations we study the
case where no external confinement is present, Vn = 0. We assume a d dimensional separa-
ble square optical lattice with equal tunneling matrix element J in all directions and periodic
boundary conditions. The total number of wells is M.

Due to the translational symmetry of the system the condensate amplitudes are constant over
the lattice, ψn =

√
nc. The quasiparticle modes have a plane wave character and therefore

can be related to quasimomentum modes:

uq
n =

1√
M

eiq·xnuq, vq
n =

1√
M

eiq·xnuq. (70)

Here the vector q denotes the quasi-momentum whose components assume discrete values
which are integer multiples of 2π

a d√M
with a is the lattice spacing. The amplitudes uq and vq

must satisfy the condition |uq|2 −|vq|2 = 1 and can all be chosen to be real and to depend
only on the modulus of the wave vector (uq = u−q, vq = v−q).
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In the translationally invariant system the DNLSE reduces to

µ = −zJ+ncU (71)

where z is the number of nearest neighbors z = 2d.

The BdG equations become the following 2×2 eigenvalue problem

(
Lqq −Mq−q

Mq−q −Lqq

)(
uq
vq

)
= h̄ωq

(
uq
vq

)
, (72)

with
Lqq = εq +ncU, Mq−q = ncU. (73)

Here we have introduced the definition εq = 4J ∑d
i=1 sin2( qia

2 ).

The quasiparticle energies h̄ωq and modes are found by diagonalizing Eq.(73):

h̄2ω2
q = L 2

qq −M 2
q−q = εq

2 +2Uncεq, (74)

u2
q =

Lqq + h̄ωq

2h̄ωq
=

εq +ncU + h̄ωq

2h̄ωq
, (75)

v2
q =

Lqq − h̄ωq

2h̄ωq
=

εq +ncU − h̄ωq

2h̄ωq
, (76)

uqvq =−
Mq−q

2h̄ωq
=

ncU
2h̄ωq

(77)

and
n = nc +

1
M ∑

q�0
v2

q, (78)

with n the total density, n = N/M. The constrain that fixes the number of particles can be
written as

nc = n− 1
M ∑

q�0

(
εq +Unc

2h̄ωq
− 1

2

)
. (79)

As opposed to the free particle system where for high momentum always the single particle
energy (which grows as q2) is dominant, in the presence of the lattice the single particle
excitations are always bounded by 4Jd. Therefore, in the regime Unc/J > 1 the interaction
term dominates for all quasimomentum and so h̄ωq ∼

√
2Uncεq. On the other hand, in

the weakly interacting regime, the most important contribution to the sum comes from the
low lying modes. For these modes is also true that h̄ωq ∼

√
2Uncεq. Thus, to a good

approximation the condensate fraction can be written as:

nc ≈ g−
√

Unc

J
α (80)

with
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α = α(d,M)≡ 1
M ∑

q�0

√
J

2
√

2εq
(81)

g =

{
n+ M−1

2M Un/J � 1
n Un/J � 1

(82)

In Eq.(82) the term M−1
2M is a finite size effect term which is important to keep for low

density systems. α is a dimensionless quantity which depends only on the dimensionality
of the system. In the thermodynamics limit, M → ∞ the sum can be replaced by an integral
and we find

α(1,∞) → 1
2
√

2π
ln(cot(qo))

∣∣∣
qo→0

(83)

α(2,∞) = 0.227293 (84)
α(3,∞) = 0.160287 (85)

The infrared divergency in the one dimensional thermodynamic limit is a consequence of
the importance of long wave length correlations in low dimensional systems. For finite one
dimensional systems however α(1,M) has a finite value.

Because Eqs. ((74)-(75)) are completely determined if nc is known, by solving Eq. (80) we
obtain all necessary information. The solution of the algebraic equation is:

nc ≈ g+
α2U
2J

−
√

g
α2U

J
+

α4U2

4J2 (86)

Eq. (86) tells us that for very weak interactions almost all the atoms are in the conden-
sate. As interaction increases the condensate fraction decreases but it only vanishes when
U/J → ∞. The BdG equations therefore fail to predict any superfluid to Mott insulator
phase transition. Since for non integer fillings the system is never a Mott insulator the BdG
equations describe much better incommensurate systems.

1.2.5 External trapping potential

Up to this point we have discussed the basic aspects of the superfluid-Mott insulator tran-
sition in a translationally invariant system. The situation is different for a inhomogeneous
system with a fixed total number of atoms and external confinement. This is the case real-
ized in experiments, where besides the lattice there is a harmonic trap that collects the atoms
at the center. In this case the density of atoms is not fixed since the atoms can redistribute
over the lattice and change the local filling factor.

To deal with the inhomogeneous case, it is possible to define an effective local chemical
potential, µj = µ −Vj, at each lattice site j. If the change in the mean number of atoms
between neighboring sites is small, the system can be treated locally as an homogeneous
system. Because in the inhomogeneous case, the local chemical potential is fixed by the
density, as the ratio U/J is changed the system can cross locally the boundary between
the superfluid and Mott insulator phases. For example if the chemical potential at the trap
center falls into the n0 = 2 Mott lobe, one obtains a series of Mott domains separated by a
superfluid by moving to the boundary of the trap mimicking a wedding cake. In this manner,
all different phases that exist for given J/U are present simultaneously.

The existence of such wedding-cake-like density profiles of a Mott insulator is supported
by Monte Carlo calculations in one, two, and three dimensions. It has been pointed out
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recently nevertheless that at the quantitative level the local density approximation is not
fully correct (Rigol, Batrouni, Rousseau, & Scalettar, 2009) and corrections of the local
density approximation have been measured in 2D systems (Jiménez-Garcı́a et al., 2010).

The shell structure has been experimentally measured by using indirect methods such as
mean field shifts (G. K. Campbell et al., 2006) and spatially selective microwave transi-
tions together with spin changing collisions (Fölling, Widera, Müller, Gerbier, & Bloch,
2006). Just recently direct insituo imaging methods with single lattice site addressability
have successfully resolved the shell structure in 2D systems (Gemelke, Zhang, Hung, &
Chin, 2009; Bakr et al., 2010; Sherson, Weitenberg, Endres, Cheneau, & Bloch, 2010)

So far we have restricted our analysis to spinless bosons. In the following we will consider
the more general situation in which the bosons carry an additional spin degree of freedom
and discuss the application of spinfull bosons towards the investigation of quantum mag-
netism.

1.3 Quantum magnetism in Cold atom systems

Let me start this section by asking a question. Why are some material ferromagnetic or
antiferromagnetic? The origin of magnetic ordering has been a topic of great interest in
condensed matter Physics.

Quantum mechanical many-electron systems without interactions universally exhibit para-
magnetism (they exhibit magnetic ordering only in the presence of a magnetic field). The
origin of quantum magnetism should then be sought in electron-electron interactions. In
most solids, however, the dominant part of the interaction between electrons is the Coulomb
interaction, which is perfectly spin-independent. We are thus faced with a very interest-
ing and fundamental problem in theoretical physics which is to determine whether spin-
independent interactions can be the origin of magnetic ordering.

1.3.1 Exchange interactions

As initially proposed for electrons by Dirac and Fowler (1926, 1929) and Heisenberg
(1926, 1928), effective spin-spin interactions can arise due to the interplay between the
spin-independent Coulomb repulsion and exchange symmetry and do not require any direct
coupling between the spins of the particles. The nature of such spin-exchange interactions
is typically short-ranged, since it is governed by the wave function overlap of the underlying
electronic orbitals.

The importance of exchange interactions can be already seen in two electron systems such
as the excited states of the helium atom with one electron in the hydrogenic ground state
φ0 and the other in an excited state φ1. Since Coulomb repulsion is spin independent the
ground state should be four fold degenerate, i.e. the states | ↑,↑〉, | ↓,↓〉, | ↑,↓〉, | ↓,↑〉 should
have in principle the same energy. However, the Pauli exclusion principle enforces the
wave function of fermionic particles to be antisymmetric under exchange and thus only the
following configurations are allowed 1√

2
(|φ1φ2〉− |φ2φ1〉)×|S = 1,M =±1,0〉 also called

orthohelium and 1√
2
(|φ1φ2〉+ |φ2φ1〉)× |S = 0,M = 0〉 the so called parahelium. With

|S = 1,M = 1〉= | ↑,↑〉, |S = 1,M =−1〉= | ↓,↓〉 and |S = 1,M = 0〉= 1√
2
(| ↑,↓〉+ | ↓,↑〉),

the spin triplet states and |S = 0,M = 0〉= 1√
2
(| ↑,↓〉−| ↓,↑〉) the singlet state. Since in the

singlet spin configuration the electrons tend to be closer due to the spatially symmetric wave
functions, the singlet experiences higher interaction energy than the triplets which on the
contrast minimize their interaction energy by avoiding each other. Consequently quantum
statistics breaks the spin degeneracy and makes the orthohelium (triplets) the lower energy
state.
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Figura 6. Experimental Control of exchange (Anderlini et al., 2007). Step 1: the system
was initialized as qubit state, with one atom in the Right (R) well and one atom in the Left
(L) well |1R,1L〉. Here 0,1 correspond to two different hyperfine states of the atoms,
which were used to encode the spin degree of freedom. Step 2: the two neighboring atoms
were transferred to the qubit state |0L,1R〉 using site-selective radio-frequency addressing
based on the spin-state dependence of the potential (indicated by the differing blue and red
potentials). Step 3: the potential barrier between the two sites was then lowered. Step 4:
the two sites merged, allowing the atoms to interact. Careful control of the potentials
during the merging process pushed the atom in the left site into the first excited state and
the atom from the right site into the ground state of the final single-well configuration.
Exchange interactions periodically the spin of the ground and excited atoms. The
corresponding spin exchange induced oscillations were measured by using band-mapping
and a Stern-Gerlach filtering protocol.

The singlet-triplet energy splitting induced by exchange can be modeled by the following
spin Hamiltonian

Hex =−Vex(S1 ·S2 +C) (87)

with Vex a coupling constant proportional to the orbital overlap.

While exchange interactions have been extensively discussed in the context of fermions,
similar exchange effects also apply to bosons, such as 87Rb with nearly state-independent
interactions in the lowest hyperfine manifold F = 1. Except here the particle wavefunctions
are symmetrised rather than anti-symmetrised and the singlet state becomes the low energy
state. Exchange interactions between pairs of 87Rb atoms were measured and controlled
in Anderlini et al. (2007) by initially preparing a Mott insulator state. Actually in the
experiment the exchange interactions were used to create entanglement between pair of
atoms.

Arrays of paired atoms were isolated and manipulated in the experiment via a double well
lattice. This “superlattice” potential can be obtained by superimposing two standing light
fields one with twice the periodicity of the other. Within a well the lowest and first vibra-
tional states were used as the φ0 and φ1 orbitals, and the hyperfine states |F = 1,mF =−1〉,
|F = 1,mF = 0〉 as the effective spin states ↑,↓
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Vex = −8πash̄2

m

∫
dx|w0(x)|2|w1(x)|2 (88)

C = 3/4 (89)

The steps followed in the experiment are summarized in Fig. 6

In a recent experiment exchange interactions were also probed and utilized for entangle-
ment generation using optical tweezers instead of optical superlattices. See Kaufman et al.
(2015) for details.

1.3.2 Superexchange interactions

In several topical insulators, such as ionic solids like e.g. CuO and MnO, however, an-
tiferromagnetic order arises even though the wave function overlap between the magnetic
ions is practically zero. In this case a ”superexchange” interaction can be effective over
large distance, as introduced in the seminal works of Kramers and Anderson (Kramers,
1934; P. W. Anderson, 1950). Here, the spin-spin interactions are mediated by higher-
order virtual hopping processes, which in the case of bosons (fermions) leads to an (anti)-
ferromagnetic coupling between particles on neighboring lattice sites (Auerbach, 1994).
Such superexchange interactions are believed to play an important role in the context of
high-Tc superconductivity (Lee, Nagaosa, & Wen, 2006).

The first time-resolved experimental observation of superexchange interactions in double-
well superlattices was reported in Ref. (Trotzky et al., 2008), which we proceed to describe.
It used isolated system of two coupled potential wells, which constitutes the simplest con-
cept for the investigation of superexchange-mediated spin dynamics between neighboring
atoms. The experiment used a single double well potential occupied by a pair of bosonic
atoms with two different spin-states denoted by ↑ and ↓. If the vibrational level splitting in
each well is much larger than all other relevant energy scales and intersite interactions are
neglected, the system can be described in a two-mode approximation by the Bose-Hubbard-
type Hamiltonian which can

be written as:

Ĥ = ∑
σ ,=↑,↓,

[
−Jσ

(
â†

σRâσL +h.c.
)]

+U↑,↓ ∑
j=R,L

n̂↑ jn̂↓ j + ∑
j=R,L,σ=↑,↓,

[
Uσ ,σ

2
n̂σ j(n̂σ j −1)

]
,

(90)
where the operators â†

σL,R and âσL,R create and annihilate an atom with spin σ in the left and
right well respectively, n̂σL,R count the number of atoms per spin-state and well. Jσ are the
tunnel matrix elements (the subscript σ accounts for the fact that in principle the two spin

states can see different lattice potentials) and Uσ ,σ ′ =
4πaσ ,σ ′ h̄2

m
∫

dx|w0σ (x)|2|w0σ ′(x)|2 are
the onsite interaction energies between an atom in spin σ and other in σ ′. The state of the
system can be described as a superposition of Fock states {|σ ,σ ′〉, |σσ ′,0〉|0,σσ ′〉}, where
the left and right side in the notation represent the occupation of the left and right well,
respectively, and the states |σσ ′,0〉 and |0,σσ ′〉 are spin triplet states (the singlet states
require the population of the second band to satisfy the symmetrization of the bosonic wave
function and are consequently energetically forbidden).

In the limit of dominating interactions (Uσ ,σ ′ � J), when starting in the subspace of singly
occupied wells, the energetically high lying doubly occupied states can only be reached as
”virtual” intermediate states in second order tunneling processes. Such processes lead to a
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nearest neighbor spin-exchange interaction, which couples the states |σ ,σ ′〉:

| ↑,↑〉 → | ↑,↑〉 : −
4J2

↑
U↑,↑

| ↓,↓〉 → | ↓,↓〉 : −
4J2

↓
U↓,↓

| ↓,↑〉 → | ↓,↑〉 : −
J2
↑+J2

↓
U↑,↓

| ↑,↓〉 → | ↑,↓〉 : −
J2
↑+J2

↓
U↑,↓

| ↓,↑〉 → | ↑,↓〉 : − 2J↑J↓
U↑,↓

(91)

These type of processes can be recast in an effective spin Hamiltonian valid for an arbitrary
spin configuration (Auerbach, 1994; Duan, Demler, & Lukin, 2003; Kuklov & Svis-
tunov, 2003):

Ĥeff =−2J⊥ex
(
Ŝx

LŜx
R + Ŝy

LŜy
R

)
−2Jz

exŜz
LŜz

R −Be f f (Ŝz
R + Ŝz

L) (92)

where the effective coupling constants are given by Jz
ex =

2J2
↑

U↑,↑
+

2J2
↓

U↓,↓
−

J2
↑+J2

↓
U↑,↓

and J⊥ex =

2J↑J↓
U↑,↓

. Be f f =
2J2

↑
U↑,↑

−
2J2

↓
U↓,↓

acts as an effective magnetic field. Here constant terms have been
dropped. Note that for fermionic particles the same Hamiltonian can be derived but one
needs to replace J⊥ex →−J⊥ex and set the Uσ ,σ terms to infinity, to account for the fermionic
statistics.

For the generic case of spin independent interactions Uσ ,σ ′ =U (with a very good approxi-
mation the case for 87Rb atoms in the hyperfine level F = 1, which was the system used in
Trotzky et al. (2008)), and spin independent tunnelings Jσ ,σ ′ = J, one recovers the Heisen-
berg Hamiltonian

Ĥeff =∓2Jex (SL ·SR) (93)

with Jex = 2 J2

U . The negative sign is for bosons and favors ferromagnetic correlations. The
positive sign is for fermions and favors antiferromagnetism.

Let’s now allow for the presence of a bias or a tilt along the double well axis. This is capture
by adding to the Hamiltonian a term

−1
2

∆(n̂σL − n̂σR). (94)

When a potential bias ∆ > 0 is applied, the degeneracy of the two intermediate states in the
superexchange process is lifted. For J,∆ � U this leads to a modification of the effective
superexchange coupling with now Jex = J2/(U +∆)+ J2/(U −∆) = 2J2U/(U2 −∆2). By
tuning the bias to ∆ > U , it is possible to change the sign of Jex and therefore to switch
between ferromagnetic and antiferromagnetic superexchange interactions. For J � |U −∆|
the picture of an effective coupling via two virtual intermediate states is again valid.

The measured dynamical observable was time-dependent Néel order parameter or spin im-
balance Nz = (n↑L + n↓R − n↑R − n↓L)/2 starting with double wells initially prepared in
|↑,↓〉. Here n↑,↓;L,R = 〈n̂↑,↓;L,R〉 denote the corresponding quantum mechanical expectation
values.

Since the total magnetization operator, Ŝz
L + Ŝz

R, commutes with the Hamiltonian, for the
initial conditions in consideration we can restrict the Hilbert space to those states with zero
net total magnetization i.e. |↑,↓〉, |↓,↑〉,|0,↑↓〉 and | ↑↓,0〉 . In this case for symmetric double
wells (∆= 0), the Hamiltonian Eq. 90 can be diagonalized analytically to give a valid picture
for all values of J and U within the single band Bose-Hubbard model (BHM). A convenient
basis is given by the spin triplet and singlet state |t/s〉= (|↑,↓〉± |↓,↑〉)/

√
2 and the states
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|±〉 ≡ (|↑↓,0〉±|0,↑↓〉)/
√

2. Two of the eigenstates are linear combinations of |t〉 and |+〉,
where the one having the larger overlap with |t〉 is the ground state. The spin singlet |s〉
and the state |−〉 are already eigenstates themselves with energy 0 and U respectively. As
a direct consequence, |−〉 cannot be reached from the initial state |↑,↓〉 = (|s〉+ |t〉)/

√
2.

Therefore, the dynamical evolution of the spin imbalance contains only two frequencies

h̄ω1,2 =
U
2




√(
4J
U

)2

+1±1


 . (95)

The extraction of these frequencies from time-resolved measurements allows for the deter-
mination of 2J = h̄

√
ω1ω2 and U = h̄(ω1 −ω2) within the BHM.

Figura 7. Experimental measured traces. Taken from Ref. (Trotzky et al., 2008)

In order to investigate the spin dynamics atoms in Trotzky et al. (2008) atoms were prepared
in a 3D array of double wells with a Néel-type antiferromagnetic order, |↑,↓〉, in each
double-well. After rapidly ramping down the short lattice and thereby the double well
barrier the system was let to evolve for a hold time t, after which the spin-configuration was
frozen out by ramping up the barrier and then the ensemble average Nz(t) measured.

Two typical time traces characterized the dynamics. For low barrier depths (J/U > 1),
there was a pronounced time evolution of the spin imbalance Nz(t) consisting of two fre-
quency components with comparable amplitudes and frequencies. With increasing interac-
tion energy U relative to J, the frequency ratio increased, leaving a slow component with
almost full amplitude and an additional high-frequency modulation with small amplitude
(Fig. 1.3.2). For J/U � 1, the fast modulation is completely suppressed and the only pro-
cess visible was the superexchange oscillation.

1.3.3 Extended Bose-Hubbard Model

The inclusion of next-neighbor interactions to the simple BHM Hamiltonian defined in
Eq. 90 leads to the extended Bose-Hubbard-type Hamiltonian. For simplicity let’s focus
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on the experimentally relevant case of two coupled wells occupied by exactly two atoms in
the two different spin-states |↑〉 and |↓〉.

ĤEBHM = ĤBHM −∆J ∑
σ�σ ′

(n̂σL + n̂σR)
(

â†
σ ′Lâσ ′R + â†

σ ′Râσ ′L

)

+ ULR ∑
σ�σ ′

(
n̂σLn̂σ ′R + â†

σLâ†
σ ′Râσ ′LâσR

+
1
2

â†
σLâ†

σ ′Lâσ ′RâσR +
1
2

â†
σRâ†

σ ′Râσ ′LâσL

)
, (96)

where ULR corresponds to the inter-well interaction energy ULR = 4πah̄2

m ×
∫

w2
L(x)w

2
R(x)d

3x

and ∆J =− 4πah̄2

m ×
∫

w3
L(x)wR(x)d3x. It is apparent that those terms in Eq. 96 proportional

to ∆J act in the same way on an arbitrary Fock state in the system as the tunneling operator
does and therefore modify J to J′ = J +∆J, while the terms proportional to ULR lead to an
energy shift of the states with exactly one atom on each site with respect to the states with
double occupancy in a single well. The states |s〉 and |−〉 stay eigenstates of the system and
the states |t〉 and |+〉 are now coupled via the matrix

HEBHM
t,+ =

(
2ULR −2J′

−2J′ U +ULR

)
. (97)

with the eigenvalues

±h̄ωEBHM
1,2 =

U −ULR

2


1±

√(
4J′

U −ULR

)2

+1


+2ULR (98)

In the regime of strong interactions, the frequency ω2 is assigned to the superexchange
process and by means of perturbation theory up to second order, one finds the effective
coupling parameter to be J′ex = 2J′2/U −ULR. The direct spin-exchange term ULR favors an
antiferromagnetic ground state for repulsively interacting bosons. However the case ULR >
2J′2/U is never reached and the ground state remains always ferromagnetic for bosons (anti-
ferromagnetic for fermions). This is in agreement with the Lieb-Mattis theorem, which
states that the ground state of two bosons in a spin independent potential is a spin triplet
state. Experimentally deviations from the simple BHM were observed in Trotzky et al.
(2008). In fact, the EBHM description yields h̄(ω1−ω2)=U+3ULR which better described
the experimentally measured frequency difference for small short-lattice depths.

2 Conclusions

We discussed the basic physics that rules the quantum behavior of ultra-cold bosonic gases
loaded in optical lattice, starting from their single particle behavior and going into the main
properties that characterize the strongly interacting regime. Here we focused on describing
the basic tools developed by the atomic physics community in the last few decades, with the
mere purpose of introducing the basic concepts and to motive the interested reader to delve
and follow up onto more recent developments accomplished on these systems. In fact, quan-
tum simulation with ultracold atoms in optical lattices is now starting to reach the level of
maturity necessary for the use of these systems for the investigation of complex quantum be-
havior in regimes not accessible to classical computers. In particular, the improved control
of interactions and confinement (C. Gross & Bloch, 2017; Schäfer, Fukuhara, Sugawa,
Takasu, & Takahashi, 2020), and the development of improved site-resolved techniques
such as quantum gas microscopes (C. Gross & Bloch, 2017; Schäfer et al., 2020) and
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exquisite energy resolution allowed by state-of-the-art optical lattice clocks (S. L. Camp-
bell et al., 2017), are opening untapped opportunities towards the design and engineering
of synthetic quantum materials with capabilities beyond the ones offered by real materials.
It is clear that there is a great vista ahead and new exciting developments to come in next
generation experiments.
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