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Characterization of ultrashort vacuum and deep ultraviolet
pulses is important in view of applications of those pulses for
spectroscopic and dynamical imaging of atoms, molecules,
and materials. We present an extension of the autocorre-
lation technique, applied for measurement of the pulse
duration via a single Gaussian function. Analytic solutions
for two-photon ionization of atoms by Gaussian pulses are
used along with an expansion of the pulse to be characterized
using multiple Gaussians at multi-color central frequencies.
This approach allows one to use two-photon autocorrela-
tion signals to characterize isolated ultrashort pulses and
pulse trains, i.e., the time-dependent amplitude and phase
variation of the electric field. The potential of the method
is demonstrated using vacuum and deep ultraviolet pulses
and pulse trains obtained from numerical simulations of
macroscopic high harmonic spectra. © 2021 Optical Society
of America

https://doi.org/10.1364/OL.427200

The generation of ultrashort vacuum ultraviolet (VUV) and
deep ultraviolet (DUV) laser pulses [1–3] is important since
excitation and ionization energies of many atoms, molecules,
nanoparticles, and materials lie in this spectral region. Such laser
sources are used to trigger, steer, probe, and image physical proc-
esses and chemical reactions on the ultrafast time scale, down to
the attosecond regime [4–12]. Temporal pulse characterization
is often required to enable the analysis of the spectroscopic data.
Many ultrashort pulse characterization methods rely on the
measurement of ions or photoelectrons via the autocorrelation
or cross-correlation approach (for an overview, see [13]). In
cross-correlation methods, the pulse to be characterized is used
in superposition with a well-characterized infrared pulse [14–
19], while for autocorrelation measurements, two replicas of the
unknown pulse are used [20–24].

In an autocorrelation measurement, ion signals are recorded
as a function of the time delay between the two replicas of the
pulse. Generalized two-photon ionization cross sections for the
interaction of a single Gaussian pulse with the target are then
used to fit the autocorrelation trace and determine the pulse
duration. This powerful method has been applied to estimate
the duration of attosecond extreme ultraviolet (XUV) pulses
[20,24], VUV, and DUV pulses [1,23]. The application of
current pulse characterization techniques in the VUV and DUV
spectral regions is limited, since many methods, such as the

reconstruction of attosecond beating by interference of two-
photon transitions (RABBITT) [14] or attosecond streaking
technique [15], rely on the ionization of the target by absorption
of a single photon from the unknown pulse.

In this work, we consider an extension of the single-Gaussian
autocorrelation technique, which enables the characterization
of the temporal pulse envelope of an isolated ultrashort VUV
pulse or a pulse train, i.e., the time-dependent amplitude and
phase variation of the electric field. The extension is based on
the analytical solution to the time-dependent Schrödinger
equation (TDSE) for the perturbative two-photon ionization of
an atom by a Gaussian laser pulse in the single-active-electron
approximation [25]. Since the solution includes both resonant
and non-resonant pathways, it can be used for the characteri-
zation of broadband pulses with photon energies in the regime
of typical atomic excitation energies. The unknown pulse is
approximated as a superposition of Gaussian pulses, for which
the amplitudes and temporal widths are determined via fitting
to the two-photon autocorrelation signal generated by the
unknown laser pulse. We demonstrate this extension of the
single-Gaussian autocorrelation technique via applications
based on results for ultrashort VUV pulses from numerical
simulations of macroscopic high harmonic generation (HHG).

For the characterization, we use that the electric field of any
arbitrary pulse can be written as the real part of an expansion in
a basis of multi-color Gaussian functions (Hartree atomic units
are used: e = ~=m = 1 a.u.):

f̃ (t)= | f̃ (t)|e−iφ(t)
=

∑
n, j

f̃n, j exp

[
−
(t − τn, j )

2

2T2
n, j

− iω j t

]
,

(1)
where | f̃ (t)| and φ(t) are the time-dependent amplitude and
phase of the unknown pulse, respectively. f̃n, j is the complex
amplitude, τn, j is a translation in time, and Tn, j is the width
of a Gaussian pulse with central frequency ω j . In the examples
below, we consider linearly polarized pulses, but the expansion
can be applied to other polarizations as well.

Since each Gaussian has an independent phase factor, in the
multi-Gaussian approach, the nonlinear phase accumulation
ω(t)≡ dφ

dt can be determined from the interferences in the
two-photon autocorrelation trace. If a large frequency variation
is expected, an alternative basis of linearly chirped Gaussian
functions can be utilized by substituting T−2

n, j → T−2
n, j + iαn, j ,
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where αn, j is an additional parameter. For all pulses considered
in the present work, we have used αn, j = 0 to limit the number
of fitting parameters.

Next, we utilize the analytic solution of the two-photon ion-
ization amplitude for interaction of an atom in the single-active-
electron approximation with two Gaussian laser pulses:

a (2)f ,i (τn2, j2 , τn1, j1 )

=−
π

4
f̃n2, j2 f̃n1, j1 Tn2, j2 Tn1, j1

∑
Em<0

z f ,m zm,i

× exp

(
−

1

2
T2

n2, j21
2
f ,m −

1

2
T2

n1, j11
2
m,i + i1 f ,mτn2, j2 + i1m,iτn1, j1

)

×

{
1+ erf

[
1
√

2T̄

(
τn2, j2 − τn1, j1 + i

(
T2

n2, j21 f ,m − T2
n1, j11m,i

))]}
.

(2)

We note that Eq. (2) is a generalization of the solution for a
single Gaussian pulse given in [25]. Here, T̄2

= T2
n2, j2
+ T2

n1, j1
,

1m,i = Em,i −ω j1 , and 1 f ,m = E f ,m −ω j2 , where Em,i
and E f ,m are the energy differences between the field-free
intermediate (m) states and the initial (i ) and final ( f ) states,
respectively. z f ,m and zm,i are the transition dipole moments
between the respective states, which can be obtained via various
theoretical techniques for an atom. In the present applications,
we restrict the sum to intermediate states with Em < 0. To
compute erf(x + i y ), we use a continued fraction approxima-
tion for the majority of the complex plane [26] and patch the
(nonphysical) singularities near the origin with the global Padé
approximation [27] and other singularities near the imaginary
axis with the standard Padé approximation. Since we want to
characterize ultrashort pulses with large bandwidths, we have
also taken into account the one-photon ionization amplitude
for interaction with the nth Gaussian pulse, which is given by

a (1)f ,i (τn, j )=−i

√
π

2
f̃n, j Tn, j z f ,i exp

(
−

1

2
T2

n, j1
2
f ,i + i1 f ,iτn, j

)
.

(3)
The autocorrelation signal for the interaction with two repli-

cas of the arbitrary pulse delayed by a time interval τ to each
other can then be approximated by the multi-color Gaussian
approach as

PNg (τ )=

∫
E f >0

∣∣∣A(1)f ,i (τ )+ A(2)f ,i (τ )

∣∣∣2dE f , (4)

where the integral over E f includes all final levels f for the one-
and two-photon processes, respectively:

A(1)f ,i (τ )=
∑

n

∑
j

a (1)f ,i (τn, j )
(
1+ e i E f ,i τ

)
, (5)

A(2)f ,i (τ )=
∑

n2

∑
j2

∑
n1

∑
j1

a (2)f ,i (τn2, j2 , τn1, j1 )
(
1+ e i E f ,i τ

)
+a (2)f ,i (τn2, j2 + τ, τn1, j1 )e

iω j2 τ + a (2)f ,i (τn2, j2 , τn1, j1 + τ)e
iω j1 τ .
(6)

To characterize the envelope of the unknown ultrashort pulse,
we introduce an objective function between the autocorrelation
signal Pexact(τ ), measured with the unknown pulse, and the

approximate multi-Gaussian signal PNg (τ ) as

objNg
(τ )=

|Pexact(τ )− PNg (τ )|

Pexact(0)
, (7)

where Pexact(0) is the maximum ionization yield for which the
two replicas of the pulse perfectly overlap. For a given number
of Gaussian pulses, Ng , the L2 norm of the objective function is
then minimized with respect to variation of f̃n, j , τn, j , and Tn, j
using the standard nonlinear least squares approach, where the
objective function has complexity that scales as the square of the
number of basis functions used. Without loss of generality, for
exactly one n, j , we choose f̃n, j real and fix τn, j = 0.

To test the characterization with this multi-Gaussian
approach, we obtain ultrashort pulses using results of numerical
macroscopic simulations of HHG spectra [28]. Calculations of
the microscopic single-atom response are performed by solving
the TDSE within the dipole approximation with

H(t)=−
1

2
∇

2
−

1

r
+ E(t) · y, (8)

where E(t) and y are the electric field and polarization direction
of the driving laser pulse. The wavefunction has been expanded
in 30 spherical harmonics and its radial part of and the poten-
tial are discretized utilizing fourth order finite difference on
a radial grid with spacing dr = 0.2 a.u. and grid sizes up to
rmax = 100 a.u. [29]. As an absorbing boundary, we use exterior
complex scaling (ECS), where the edge of the grid (10%) is
rotated into complex space by an angle η= π/4. We use the
Crank–Nicolson method to propagate the wave function start-
ing from the ground state with time step dt = 0.1. To obtain the
HHG spectra P (ω)= |ã(ω)|2, the dipole acceleration a(t) is
evaluated using the Ehrenfest theorem a(t)= 〈− ∂

∂ y (−
1
r )〉, and

the complex harmonic response ã(ω) is obtained by taking the
Fourier transform (without windowing).

For the macroscopic radiation signal, we consider the low gas
density regime, which is free from longitudinal phase-matching
effects. We then follow the approach used in [30], in which the
macroscopic yield is obtained as the superposition of the fields
generated at different points in the medium. Application of this
approach requires single-atom simulations for a large number of
intensities and phase factors. In the present simulations, 5× 105

single-atom results are used via an interpolation scheme based
on 100 exact TDSE results. The success of the interpolation
method has been verified elsewhere [28].

In Fig. 1(a), we show the below- and near-threshold parts of
the numerical macroscopic HHG signal obtained for a gas jet
of hydrogen atoms interacting with a 20-cycle, 800 nm pulse
at peak intensity 4× 1013 W/cm2. From this spectrum, we
first extract isolated ultrashort pulses by applying a Gaussian
filter in the frequency domain centered about the harmonic H0,
i.e., e−(H−H0)

2/2β2
, where β = 0.35 in the present work. The

temporal shape of the pulse filtered about the ninth harmonic
varies significantly from that of a Gaussian pulse [Fig. 1(b)]. For
the application of the characterization method, we use replicas
of the pulse with an intensity of 3.16× 1011 W/cm2 to deter-
mine the autocorrelation signal shown in Fig. 1(c). The signal
is obtained by solving the TDSE for the interaction of a helium
atom with the two pulses; a single-active-electron potential for
the helium atom [31] is used for these calculations.
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Fig. 1. (a) Macroscopic high harmonic spectrum in a hydrogen
atom driven by a 20-cycle, 800 nm laser pulse at 4× 1013 W/cm2:
full spectrum (black line) and spectrum after application of a Gaussian
filter about ninth harmonic (red line). (b) Temporal profile of filtered
ninth harmonic and (c) autocorrelation signal using filtered ninth
harmonic.

To characterize the filtered ninth harmonic, we choose a
single-color approach in which all Gaussian pulses have the
central frequency of the ninth harmonic. The results of the
approximations for the time-dependent amplitude | f̃ (t)|
(blue) and phase variation ω(t) (red) using up to six Gaussian
pulses (solid lines) are compared in Fig. 2 with the original pulse
(dashed lines). The reconstruction with a single Gaussian (a)
provides an estimate of the pulse width, but the double-hump
structure in the amplitude and the phase variation is, of course,
not reproduced. Already inclusion of a second Gaussian pulse
(b) provides a significant improvement in this respect; however,
the minimum in between the two humps, the small post-pulse
structure, and most of the phase variation are still not well
reproduced. Using four (c) and six (d) Gaussian pulses, first the
main part of the amplitude and then the post-pulse structure
and even the phase variation in major parts of the pulse, are
well reproduced. We, however, note that using autocorrelation
signals, time-independent phases cannot be determined, and
a certain pulse cannot be distinguished from the pulse with a
time-reversed envelope.

While the results in Fig. 2 visualize the potential of the
method, we quantify the convergence by errors for the
ionization signal using the objective function as

ErrorNg [Pion] =

√∫
dτ objNg

(τ )2, (9)

and the error in the field defined as

ErrorNg [ f̃ ] =

√∫
dt
∣∣∣ f̃exact(t)− f̃Ng (t)

∣∣∣2 (10)

in Fig. 3. Results for the filtered ninth (blue) and 11th (red)
harmonic are compared with each other. In both cases, the error
in the ionization signal (a) drops smoothly with an increase in
the number of Gaussians included in the method. The number
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Fig. 2. Comparison of time-dependent amplitude | f̃ (t)| (blue
line) and phase variation ω(t) (red line) of the filtered ninth harmonic
(dashed line) and reconstructed pulse with (a) one, (b) two, (c) four,
and (d) six Gaussians (solid line). The temporal profile is also provided
as insets within each subplot.
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Fig. 3. Error analysis of the Gaussian pulse characterization method
for filtered ninth (blue) and 11th harmonics (red): (a) ErrorNg [Pion]

Eq. (9) and (b) ErrorNg [ f̃ ]Eq. (10).

of Gaussians necessary for a similar degree of convergence is
smaller for the 11th harmonic, since the pulse envelope (not
shown) is less complex than that of the ninth harmonic. The
convergence in the error for the ionization signal corresponds to
a decrease in the error in the field (b), which reflects the observa-
tion in Fig. 2 that the pulse envelope is well reconstructed with a
few Gaussians. We note that already two Gaussians are sufficient
to provide an estimate of the FWHM pulse duration below 10
a.u. for both harmonics.

After applying the method to isolated ultrashort pulses by
filtering the spectrum about a single harmonic, we consider the
more complex temporal profile of a pulse train. To this end, we
have used a flattop filter to the macroscopic HHG spectrum,
where the leading edge is the same Gaussian filter used for the
ninth harmonic, and the trailing edge is a Gaussian filter applied
to the 11th harmonic. The temporal shape of the resulting pulse
train and the autocorrelation signal obtained with the pulse
train are shown in Figs. 4(a) and 4(b), respectively.

Since the spectral filtering covers two harmonics, we use a
two-color approach with central frequencies equal to those of
the ninth and 11th harmonics. A comparison of the original
pulse train with the reconstructions shows that one Gaussian
pulse per central frequency (c) provides a good approximation,
including the duration of the train as well as the duration of the
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Fig. 4. (a) Temporal profile of the filtered ninth to 11th harmonic
spectral range, (b) autocorrelation signal and comparison of time-
dependent amplitude (blue) and phase variation (red) of the original
pulse (dashed lines) and reconstructions (solid lines) obtained with
(c) one and (d) three Gaussians per central frequencies at ninth and
11th harmonics.

individual pulses in the train. However, the envelope with sev-
eral pulses in the train having similar amplitudes and most of the
phase variation are not well reproduced. Using three Gaussian
pulses per central frequency (d) improves the agreement with
the original pulse significantly.

In summary, using an extension of the two-photon autocor-
relation technique based on multiple Gaussian pulses about
one or several central frequencies enables a characterization of
the amplitude and phase variation of isolated ultrashort pulses
and pulse trains. The potential of the method is demonstrated
using VUV pulses obtained from numerical simulations of
macroscopic high harmonic spectra. The method can be further
improved by using alternative basis sets with more parameters or
more sophisticated search algorithms in the fitting procedure.
The same approach can also be applied to two-photon cross-
correlation signals of two isolated ultrashort VUV pulses. The
accuracy of the method depends on the determination of one-
and two-photon transition dipoles, for which several theoretical
methods are available.
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