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Dipole-dipole interactions lead to frequency shifts that are expected to limit the performance of next-
generation atomic clocks. In this work, we compute dipolar frequency shifts accounting for the intrinsic
atomic multilevel structure in standard Ramsey spectroscopy. When interrogating the transitions featuring
the smallest Clebsch-Gordan coefficients, we find that a simplified two-level treatment becomes
inappropriate, even in the presence of large Zeeman shifts. For these cases, we show a net suppression
of dipolar frequency shifts and the emergence of dominant nonclassical effects for experimentally relevant
parameters. Our findings are pertinent to current generations of optical lattice and optical tweezer clocks,
opening a way to further increase their current accuracy, and thus their potential to probe fundamental and
many-body physics.
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Introduction.—Current optical atomic clocks have
reached unprecedented precision and accuracy [1–10],
making them cutting-edge platforms for many techno-
logical applications and for the exploration of many-body
[11–20] and fundamental physics [21–25]. The reduction
of noise in atomic detection and laser stabilization in such
systems has allowed measurements of the atomic tran-
sition with submillihertz resolution [6,26,27]. At this
point, dipole-dipole interactions between the atoms are
expected to play an important role, in the form of
induced density-dependent shifts in the measured atomic
transition frequency. Simple two-level models have
been applied to quantitatively determine these dipolar
shifts [28–34], but, in reality, atoms have a complex
internal multilevel structure which has to be taken
into account. This calls for a deeper understanding of
the role of multiple internal levels in dipolar systems
[35–39], which is also relevant for applications in quan-
tum simulators [11,17,18,40] and quantum computing
[41–43].
In this work, we investigate dipolar frequency shifts

experienced by arrays of multilevel atoms in a Ramsey
spectroscopy protocol. In general, the strength of dipolar
interactions is set by the magnitude of the transition’s
dipole moment, which is proportional to a Clebsch-Gordan
coefficient (CGC). However, in multilevel atoms the
dependence of the dipolar shift on the choice of transition
is more complex. This is because the CGC between two
specific states not only sets the strength of the dipole
couplings, but also affects the coupling strength to nearby
levels. Specifically, transitions with low (high) CGC feature
a stronger (weaker) decay to and interactions with their
neighboring states.

Our results show that the magnitude of the dipolar
frequency shift is mainly controlled by the CGC of the
interrogated levels. Therefore, one can strongly suppress
dipolar shifts by selectively choosing the levels with the
smallest CGC. We also find that interactions with nearby
levels can significantly modify the shift. Specifically, we
show that a full multilevel calculation is necessary when the
CGC of the interrogated transition is small, whereas
simplified two-level models are accurate when the CGC
is large. Surprisingly, the relevance of the multilevel
structure holds even in the presence of strong magnetic
fields, under which the large Zeeman shifts suppress
exchange with nearby levels. Moreover, we find that the
suppression of the shift from small CGC leads to an
increased relative importance of beyond-mean-field effects
for specific experimentally relevant array geometries and
laser wave vector configurations. In short, our work offers a
simple way for current experiments to reduce dipolar shifts
by almost 2 orders of magnitude, while at the same time
drawing theorists’ attention to the important yet largely
neglected role of internal levels in many-body dipolar
systems.
Multilevel coupled dipole model.—We consider a system

of N pointlike atoms pinned in a deep optical lattice or a
tweezer array with unity occupation, always in their
motional ground state. We assume that each atom i has
a multilevel internal structure of ground and excited
manifolds, g and e, with respective total angular momenta
Fg and Fe. There are thus ð2Fa þ 1Þ hyperfine states
jamii ≡ ja; Fa;mii with angular momentum projections
m ∈ ½−Fa; Fa�, for each manifold a ∈ fg; eg. The photon-
mediated interaction between the atoms occurs via both
coherent exchange and incoherent decay of excitations [see
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Fig. 1(a)], and the dipole dynamics can be modeled by a
multilevel coupled dipole master equation [38,39,44–46]
_̂ρ ¼ −i½Ĥ; ρ̂ðtÞ� þ Lðρ̂Þ (ℏ ¼ 1), where

Ĥ ¼ −
X
i;j

Δij
gmen;gm0en0 σ̂

engm
i σ̂

gm0en0
j ; ð1Þ

Lðρ̂Þ ¼
X
i;j

Γij
gmen;gm0en0 ð2σ̂

gm0en0
j ρ̂σ̂engmi

− fσ̂engmi σ̂
gm0en0
j ; ρ̂gÞ; ð2Þ

and σ̂ambni ¼ jamiihbnji. For a two-level atom, these oper-
ators become the usual raising/lowering Pauli operators.
For clarity, we have used Einstein notation for levels in the
equations above (i.e., repeated indices m;m0; n, or n0 are
summed). The terms proportional to Δij

gmen;gm0en0 and

Γij
gmen;gm0en0 characterize the elastic and dissipative compo-

nents of the dipolar interactions and their amplitudes
relate to the free-space electromagnetic Green’s tensor
Gij ≡Gðri − rjÞ of an oscillating point dipole at position
rj according to

Δij
gmen;gm0en0 ≡ Cen

gme
�
n−m · RefGijg·Cen0

gm0en0−m0 ;

Γij
gmen;gm0en0 ≡ Cen

gme
�
n−m · ImfGijg·Cen0

gm0en0−m0 ;
ð3Þ

where Cen
gm ≡ hFg;m; 1; n −mjFe; ni is the CGC

of the transition gm ↔ en with polarization vector
en−m. We define the spherical basis e0 ¼ ẑ, e�1 ¼
∓ ðx̂� iŷÞ= ffiffiffi

2
p

. The vacuum Green’s tensor is given

by GðrÞ ¼ ð3Γ=4Þðeik0r=ðk0rÞ3Þ½ðk20r2 þ ik0r − 1Þ1−
ðk20r2 þ i3k0r − 3Þr̂ ⊗ r̂�, where r̂ ¼ r=r, r ¼ jrj. Γ ¼
jdegj2k30=½3πℏϵ0ð2Fe þ 1Þ� is the total spontaneous decay
rate, deg the radial dipole matrix element, k0 ¼ ω0=c ¼
2π=λ the atomic transition wave number and ϵ0 the vacuum
permittivity. For i ¼ j, the coherent interaction coefficient
is Δii

gmen;gm0en0 ¼ 0 and the incoherent term reduces to the
single-particle spontaneous decay term Γii

gmen;gm0en0 ¼
δn−m;n0−m0Cen

gmC
en0
gm0Γ=2. Note that the total decay rate Γen ≡

2
P

m Γii
gmen;gmen ¼ Γ is the same for any excited state en

because of the sum rule
P

m jCen
gm j2 ¼ 1.

Ramsey spectroscopy with multilevel atoms.—We inves-
tigate the effect of the atomic multilevel nature on the
following Ramsey spectroscopy protocol assuming, at
first, zero external magnetic field. We start by selecting
a pair of states gα and eβ, driving the transition between
them with a resonant laser of pulse area θ, wave vector
k0, and polarization ϵ. The laser drive is assumed to
be much stronger than the interaction energies, such
that it creates an uncorrelated coherent superposition
jΨgα;eβi ¼⊗j ½cosðθ=2Þjgαij þ eik0·rj sinðθ=2Þjeβij�. We
hereafter consider θ ¼ π=2, as generally used in clock
experiments, or θ ¼ π=4, as the latter can lead to more
pronounced and thus easily observable dipolar shifts. Then,
the system evolves freely for a dark time t. By analogy with
two-level systems, we define hŜyi≡ ImfhŜeβgαig and
hŜxi≡ RefhŜeβgαig, where the multilevel collective spin
operator (under the appropriate gauge transformation that
removes the phase k0 · rj imprinted by the laser on atom j)
reads Ŝeβgα ¼ P

j e
ik0·rj σ̂

eβgα
j . The collective vector pre-

cesses around the z direction of the Bloch sphere and
accumulates an azimuthal phase as a result of the dipole-
dipole interactions. The corresponding time-dependent
frequency shift is defined as

δgαeβðtÞ≡ 1

2πt
arctan

hŜyiðtÞ
hŜxiðtÞ : ð4Þ

Dipolar interactions also lead to a reduction of the con-

trast CgαeβðtÞ≡ ð1=NÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hŜxi2ðtÞ þ hŜyi2ðtÞ

q
.

We employ three different types of approximations to
investigate this multilevel many-body system: (i) A short-
time perturbative expansion, valid for t ≪ Γ−1 that we
use to compute the dipolar frequency shift at first order in
time, i.e., δgαeβðtÞ ≈ δ

gαeβ
0 þ δ

gαeβ
1 t. (ii) A mean-field (MF)

approximation, which neglects quantum correlations,
i.e., hσ̂abi σ̂cdj≠ii ≈ hσ̂abi ihσ̂cdj≠ii. (iii) A second-order cumulant
expansion, which factorizes three-point (and higher-order)
correlations in terms of one- and two-point functions [47].
In the MF and cumulant simulations we further assume that
only gα, eβ, and their adjacent levels (i.e., gα�1 and eβ�1)
play a relevant role in the dynamics, as demonstrated
in [47].

(a) (b)

FIG. 1. (a) Ramsey spectroscopy for multilevel atoms with
internal level structure Fg ¼ Fe ¼ 9=2 in an optical lattice. The
atoms are prepared in a superposition of a particular ground and
excited pair of states gα and eβ by a laser with wave vector k0,
polarization ε, and pulse area θ. During a dark time t, the atoms
interact via coherent and incoherent dipole-dipole processes, Δij

and Γij, respectively. This induces a frequency shift δgαeβ ∼ jCeβ
gα j2

controlled by the CGC of the interrogated transition. The
schematic form of the dipolar shift corresponding to interrogating
π-polarized transitions (colored according to their CGC) is
depicted here. CGCs squared for different σ� and π transitions
are displayed. (b) Shift from the Ramsey protocol addressing
three different π-polarized transitions for a 3D lattice of spacing
d ¼ 7λ=12 with N ¼ 103 atoms and θ ¼ π=2.
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Short-time perturbative expansion.—To gain physical
intuition of the problem, we analytically derive short-time
expressions for the shift. The zero-order shift reads

δ
gαeβ
0 ¼ −

cos θ
2πN

X
i;j≠i

Uji
gαeβ ; ð5Þ

where we have defined Uji
gαeβ ≡ Γji

gαeβ ;gαeβ sinðk0 · rijÞþ
Δji

gαeβ ;gαeβ cosðk0 · rijÞ. Physically, the term Uji
gαeβ describes

the classical interaction energy between two oscillating
dipoles at positions ri and rj [28], where both coherent and
incoherent processes contribute. At this order, only the
transition between gα and eβ, directly driven by the pulse, is
involved and the MF treatment is exact. Furthermore, δ

gαeβ
0

is proportional to jCeβ
gα j2 [see Eq. (3)], so that the multilevel

system differs from two-level atoms [28] via a renormal-
ization by the CGC. Note that the zero-order shift vanishes
for a θ ¼ π=2 pulse, as the dipole-dipole induced preces-
sion of the collective Bloch vector requires a nonzero hŜzi
component.
The next-order correction does involve other levels and

is given by

δ
gαeβ
1 ¼ −

1

2πN

X
i;j≠i

�
Uji

gαeβ Γ̃gαeβðθÞ

þ
X
p

�X
k≠i;j

Wkji
p ðθÞ þ

X
p0

Qji
p;p0 ðθÞ

��
; ð6Þ

with p and p0 referring to polarizations [47].
The first contribution in Eq. (6) is similar to the zero-

order shift. The cos θ, however, is replaced by Γ̃gαeβðθÞ,
which contains a collective contribution and an explicit
dependence on the CGC of the transition interrogated. The
Wkji

p ðθÞ are two-photon coherent and incoherent processes
between three different atoms, where one of the contrib-
uting transitions is always gα ↔ eβ. Thus, these terms are

proportional to at least jCeβ
gα j2. The Qji

p;p0 ðθÞ terms corre-
spond to processes involving two atoms only, yet not
necessarily from the gα ↔ eβ transition. As two-photon
processes, they nevertheless contain the product of four
CGCs and, as we shall discuss later, they carry beyond-
mean-field contributions.
Suppression of the frequency shift.—Although our con-

clusions are valid for generic multilevel systems, in this
work we focus our analysis on the case of 87Sr, given its
metrological relevance for atomic clocks [1,5,11,17].
More specifically, we assume multilevel atoms with
Fg ¼ Fe ¼ 9=2, organized in a 2D or 3D array with
magic-wavelength spacing d ¼ 7λ=12 [48], see Fig. 1(a).
For simplicity, we will hereafter consider addressing
π-polarized transitions (i.e., α ¼ β), where the quantization
axis is defined by the laser polarization ϵ. For this system

it is important to know that the CGC for π-polarized
transitions scales as Cem

gm ∝ m, i.e., it is largest for�9=2 and
smallest for �1=2.
A direct consequence of the zero- and first-order terms’

dependence on the CGC is that the shift can be strongly
suppressed by choosing the appropriate transition, i.e., the
one with the lowest CGC. This effect is illustrated in
Fig. 1(b), where the dark-time evolution of the shift in a 3D
array is monitored for three different transitions, α ¼ −9=2,
−5=2, and −1=2. As a consequence of the scaling with the
CGC, the shift is reduced by a factor 81 for the α ¼ −1=2
transition, as compared to α ¼ −9=2. Note that the sup-
pression remains valid even at longer times beyond the
regime of validity of the short-time expansion. The decay
of the contrast CgαeβðtÞ also shows a scaling with the CGC,
which leads to suppressed subradiance or superradiance
effects for α ¼ −1=2 [47]. Furthermore, the excellent
agreement in Fig. 1(b) between the short-time expressions
(dotted lines) and the MF dynamics (full lines) until
Γt ≈ 0.2 shows that, on these time scales, the beyond-
MF terms [Q in Eq. (6)] do not contribute substantially.
Further insight is provided by the local dipolar shift

patterns δ
gαeβ
i ≡ 1=ð2πtÞ arctanðhŝyi i=hŝxi iÞ [single-particle

counterpart of Eq. (4)], which directly encode the

FIG. 2. Local frequency shifts δi for a 3D lattice with N ¼ 103

atoms, interrogated by a laser with a pulse area of π=2 and a
dark time of Γt ¼ 0.3 as shown in the configuration labeled
by a triangle for (a) a two-level system and transitions
(b) g−9=2 ↔ e−9=2, (c) g−1=2 ↔ e−1=2, and (d) g−1=2 ↔ e−1=2 in
the presence of a large magnetic field B. The shift is calculated
using Eq. (6) and is averaged along ϵ, with the resulting
contribution at positions ðxi; yiÞ. Shifts are rescaled by the
corresponding CGC squared and by an overall 10−2 factor.
(e) Comparing the global shift of the multilevel model for
transitions α ¼ −9=2 (top) and α ¼ −1=2 (bottom) (full and
dotted lines, for zero and large magnetic fields, respectively) to a
two-level model (dashed lines). (f) Absolute value of the differ-
ence between maximum and minimum of the local shift (δmax

i and
δmin
i ) versus magnitude of the global shift jδj for different
geometries with N ∼ 103. Symbols represent configurations
shown in the legend. The light-blue symbols correspond to the
large-jBj limit for α ¼ −1=2.
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anisotropic and geometry-dependent character of dipolar
interactions. Local density shifts are amenable for exper-
imental observation via imaging spectroscopy [27], since
they are insensitive to laser drifts which are common for all
atoms in the array. In Figs. 2(a)–2(d), we present the local
shifts obtained with π=2 pulses on 3D lattices withN ¼ 103

for α ¼ −9=2 and −1=2.
The magnitude of the shifts shows again an overall

suppression with jCeα
gα j2, which we emphasize by rescaling

the plots as δi=ðΓjCeα
gα j210−2Þ. However, the dipolar patterns

of the −9=2 and −1=2 transitions feature distinguishable
spatial profiles: the different dispositions of maxima and
minima of the local shifts go beyond the mere jCeα

gα j2
scaling.
The local shifts of the −1=2 transition reveal a more

pronounced sensitivity to the multilevel structure compared
to the −9=2 case, as confirmed by simulations of pure two-
level atoms, which show patterns that are almost indis-
tinguishable from the −9=2 case. Furthermore, a scaling
with N also confirms this conclusion for the global shift, as
shown in Fig. 2(e). This is because the −1=2 π transition
has a small CGC compared to the adjacent σ� transitions,
whereas for the −9=2 π transition the opposite is true, see
Fig. 1(a). Therefore, nearby levels play a more important
role in the −1=2 case.
Figure 2(f) also reveals that an appropriate choice of the

geometry and laser wave vector allows one to further
reduce the shift, as previously observed for two-level
systems [28,31,34]. Our main finding in this regard is that
the dipolar shift saturates for large N in all cases shown,
except in 2D when the laser polarization is perpendicular to
the atomic plane, see Figs. 3(a) and 3(b). This is because in
the latter configuration, all the dipoles align perpendicular
to the plane and the corresponding dipolar interactions
depend only on the distance between atoms, and not on
their orientation [47].
Role of magnetic fields.—Optical clock experiments are

typically conducted under a bias magnetic field B (along
the quantization axis) that allows one to spectroscopically
address specific transitions. This leads to a Zeeman shift of
order μ0jBj (with μ0 ≡ μB=ℏ and μB the Bohr magneton)
for the gα ↔ eα transition considered, which trivially adds
to the zero-order expression of Eq. (5) and can be removed
in the appropriate rotating frame. However, magnetic fields
can nontrivially affect dipolar shifts at higher orders.
If the magnetic field is weak (i.e., μ0jBj≲ Γ), we find

the above results on the dipolar shift are only weakly
affected at late times. This is because the first-order
correction, Eq. (6), turns out to be independent of the
magnetic field [47]. In contrast, strong magnetic fields
(μ0jBj ≫ Γ) can significantly alter the short-time behavior
of the shift. Large Zeeman shifts effectively suppress
exchange interactions involving off-resonant transitions.
In other words, Δij

gmen;gm0en0 ¼ Γij
gmen;gm0en0 ¼ 0 unless

m ¼ m0 and n ¼ n0 (assuming different g factors for the
ground and excited manifolds). This leads to an effective
4-level (or 3-level) system composed of eα, gα, and the
ground levels adjacent to it. In this limit, almost all terms
in the first-order expression, Eq. (6), involving transitions
different from gα ↔ eα are suppressed, except for terms
with p ¼ p0 appearing in Qji

p;p0 [47].
Consistently with the discussion above, we find that the

modification of the shift strongly depends on the CGC
of the addressed transition. For −9=2 neither the global nor
the local shifts are substantially altered [47] [see, e.g.,
Figs. 2(e) and 3(a)]. In contrast, for −1=2 both the local
shift pattern [cf. Figs. 2(b) and (c)] as well as the global
shift [Figs. 2(e) and 3(b)] are significantly modified under a
large jBj. Despite this, the global shift remains suppressed
by the small CGC as found for small jBj.
Beyond-mean-field effects.—An important consequence

of the strong shift suppression is that higher-order, non-
classical terms can have a contribution comparable to the
lowest-order, semiclassical ones. The zero-order shift,
Eq. (5), is perfectly described by the MF approach, yet
the Q terms of the first-order, Eq. (6), are not. More

FIG. 3. Global shift for 2D arrays of atoms with laser
configuration shown in (c). (a),(b) N-scaling of the total shift
from the short-time expansion (red/blue) and beyond-MF con-
tribution (black) at Γt ¼ 0.3: (a) g−9=2 ↔ e−9=2 transition with
π=2, and (b) g−1=2 ↔ e−1=2 transition with π=4. The dotted, light-
colored lines correspond to the large-magnetic-field limit. The
inset of (a) shows the closeup region where beyond-MF correc-
tions become comparable to the total shift. (c),(d) Dipolar shift δ
as a function of the dark time: cumulant (full lines) against MF
(dashed lines) approximations for the g−9=2 ↔ e−9=2 (red),
g−5=2 ↔ e−5=2 (yellow), and g−1=2 ↔ e−1=2 (blue) transitions.
Simulations performed for N ¼ 82 atoms and using (c) a π=2
and (d) π=4 pulse.
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specifically, the difference between the shift given by
the exact, first-order perturbative equations and the MF
approximation reads

δ
gαeβ
BMF ≡ 1

2πN

X
i;j≠i

X
p

�X
p0

Qji
p;p0 ðθÞ −Wji

MF;pðθÞ
�
; ð7Þ

where Wji
MF;pðθÞ is a MF-only term related to Wkji from

Eq. (6) [47]. In general, we find beyond-MF effects to be
relevant in cases (but not in every case) where either the
system is small or when a transition with small CGC is
addressed.
Figure 3(c) shows the effect of beyond-MF terms for a

small 82 lattice, driven by a π=2 pulse with a polarization
orthogonal to it. There, the dynamics predicted by MF
(dashed lines) substantially deviates from the cumulant
result (solid lines) for all transitions considered. The
relevance of the beyond-MF term in these cases lies in
the comparably small magnitude of the MF part.
Figure 3(a) shows that for this system size the total shift
happens to be close to zero. On the contrary, at large N,
when the MF contributions are no longer suppressed, the
beyond-MF term becomes negligible.
Although beyond-MF corrections do not scale up with

N, we find cases where they can be relevant even for large
systems because of a strong suppression of the total shift
by the multilevel structure. An example is the case with a
pulse area of θ ¼ π=4 presented in Figs. 3(b) and 3(d) for
the same 2D lattice configuration of (a) and (c). Because
of the strong suppression of the total shift when address-
ing the −1=2 transition [see Eq. (5)], the beyond-MF
contributions become comparable in magnitude to the
actual shift. Figure 3(b) shows that this holds true for
lattices of size up to ∼103 atoms. Note, however, that in
this case the beyond-MF term is suppressed in the large
B-field limit.
Conclusion.—We have shown that dipolar frequency

shifts are strongly modified in systems featuring a multi-
level structure. The predicted 2 orders of magnitude
suppression obtained by properly addressing specific tran-
sitions can lead to the improved accuracy necessary for the
exploration of fundamental physics [21–25], providing new
insights on the behavior of strongly and long-range
interacting many-body systems.
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