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The development of ultrashort laser pulses with durations of a few tens of attoseconds (1 as

= 10−18 s) has opened the possibility of observing and controlling the motion of electrons in matter

at their natural time scale. However, the broad spectral bandwidth of the pulses pose the challenge

that several linear and nonlinear pathways compete and interfere during the interaction of those

pulses with the target. The ionized electrons contain information about the target, the electronic

wavepacket prior to ionization, the laser pulse, and the various pathways to ionization. In this

thesis, we will use numerical and analytic tools to study and interpret these ionization spectra.

Additionally, we will examine electron excitation to Ryberg states driven by intense IR pulses and

discuss the tools we are developing to study electron correlation.

First, we will give a brief review of ultrafast and ultrastrong physics literature. This is fol-

lowed by an overview of the numerical and analytic methods used in this thesis including our recent

insights in frequency corrections for short pulses and work on using radial basis functions to solve

the time-dependent Schrödinger equation. We then focus on few photon ionization including effects

induced by ultrashort pulses, the development of novel generalized asymmetry parameters, and the

reconstruction of electronic wavepackets undergoing attosecond motion. Next, we present theoret-

ical studies concerning the analysis of excitation and stabilization effects related to Rydberg states

in the case of both linear and bi-circular laser pulses. Finally, we will discuss the development and

first tests of a fully correlated two-electron code that utilizes a basis of hyperspherical harmonics.
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Chapter 1

Introduction

In 1905, Einstein published a paper on the photoelectric effect [56], for which he later received

the Noble Prize. The effect shows when light is shined on an object an electron can be ionized from

an atom, molecule, or solid by absorbing a photon with a sufficiently high energy. With the advent

of the laser in 1960, it became possible to focus coherent light tight enough to allow the ionization

process to occur not only by absorbing one but many photons in rapid succession leading to a

process known as multiphoton ionization [85]. Since then, laser intensities have increased to the

point where the superposition of the electric field of the laser with the attractive potential produced

by a nucleus can create a barrier and allow the electron to tunnel and ionize from the atom [123].

Furthermore, depending on various laser parameters, the electron that tunneled through the barrier

can interact with the laser field and recombine with the residual ion. During the recombination

process, photons are released at harmonics of the driving laser’s central frequency. This process

can convert a large numbers of infrared (IR) photons into a single X-ray photon in a process known

as high-order harmonic generation (HHG) [71, 140, 40]. HHG is one method that allows for the

production of bright X-ray laser pulses with pulse durations as short as tens of attoseconds [256, 37]

(10−18 sec). Recent developments have allowed for the generation high-order harmonics using

not only linearly polarized lasers but also lasers or combination of lasers with other polarizations

[64, 196, 125, 58, 100]. Such pulses provide the tools necessary for the imaging of electron dynamics

on their fundamental time scale [135].

Einstein’s photoelectric effect mostly considered continuous wave (CW) light that produced a
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near delta function like energy distribution. These CW lasers are good for precision energy measure-

ments, however, their time resolution it greatly limited. The recent advances in attosecond pulse

technology have strongly decreased the interaction time allowing for the imaging of (attosecond)

electron dynamics at the cost of energy bandwidths of the pulses on the order of several eVs. The

largely increased pulse bandwidth, however, leads to many competing pathways of ionization that

can involve different numbers of photons complicating the ionization process. The photoelectron

angular distributions (PAD) produced by such pulses contain complex shapes that encode features

of the target’s initial wavefunction, ionization cross sections for each process, the ionizing pulse,

and the various competing pathways to ionization. This naturally raises the question of how can

one backtrack all of this information from such a PAD signal?

In this thesis, we will explore methods to understand and image the motion of electrons on

ultrashort time scales from ionization signals and photoelectron angular distributions. Then, we

will also analyze how intense IR light can cause that electrons are being trapped in highly excited

states although the absorption of a single additional photon would lead to ionization. Finally, the

focus will be turned to a new numerical method that we are developing to study two fully correlated

electrons interacting with each other and an ultrafast laser pulse.

1.1 Attosecond time scale

The idea of an attosecond (1 as = 10−18 sec) is difficult to wrap ones mind around. Some

perspective can be gained by noting that there are more attoseconds in a single second than seconds

in the lifetime of the universe. At this ultrashort time scale, nearly all motion in an atom, molecule

or solid is frozen. Only the motion of electrons, particularly that in atoms as visualized in Fig. 1.1,

is non-negligible. With laser technology recently reaching pulse durations with sub 100 attosecond

pulse widths [256, 37], it is becoming possible to “image” electrons as they move around inside of

atoms and molecules. One approach to imaging electron motion will be presented in this thesis

(see Chap. 4).
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Figure 1.1: Relevant space and time scales present in ultrafast physics. (Figure from [135])

1.2 Light sources

The fields of ultrastrong and ultrafast physics rely on bright laser light to study and under-

stand the behavior of matter on short time scales. The light used ranges from intense IR radiation,

that can bend atomic and molecular potentials enough to allow electrons to tunnel into the contin-

uum, to hard X-rays that can ionize multiple electrons with a single photon. The intense IR light

is often produced using Ti:sapphire or similar laser setups. In the following subsections, we will

briefly describe the two major sources of ultrafast extreme ultraviolet (XUV) to X-ray sources and

the applications they are designed for.

1.2.1 High harmonic generation

High harmonic generation (HHG) is a process that converts low-energy photons of intense

IR laser pulses into high-energy photons of an X-ray laser pulse through a highly non-linear and

non-perturbative process. The process is often understood through the so-called three step model

shown in Fig. 1.2 [140, 40, 197]. First, the strong electric field of the IR laser bends the atomic

Coulomb potential allowing for the electron to tunnel ionize. Next, the electron interacts with the
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field gaining energy and reversing direction when the oscillating field changes direction. Finally,

the electron recombines with the ion releasing its energy in the form of a high-energy photon. For

linearly polarized laser pulses, the emitted electrons have energies corresponding to (2n+1)ω where

n is an integer and ω in the central frequency of the driving laser pulse.

Figure 1.2: Schematics of the three step model in which an electron tunnel ionizes, is accelerated in
the continuum by the driving laser and recombines with the remaining ion producing a high energy
photon. (Figure from [197])

Nowadays, HHG sources can produce laser pulses with arbitrary polarization [64, 196, 125, 58,

100]. The theoretical method for generating circularly polarized HHG sources was proposed more

than two decades ago [53, 150]. By using two counter rotating cicularly polarized IR lasers with

frequencies ω and 2ω, a so called counter-rotating bi-circular laser pulse is produced. The three fold

symmetry of the final laser pulse allows for the electron to recombine with the parent ion, something

that is not possible with a circularly polarized pulse alone. The resulting HHG spectrum contains

circularly polarized harmonics at energies of (3n+ 1)ω and (3n+ 2)ω with alternating helices and

no harmonic at energies of 3nω. Since then, non-collinear methods of circularly polarized HHG

[100] and methods for elliptically polarized harmonics [12] have been demonstrated.

HHG sources have the advantage that they are compact table top setups. Additionally,

the light produced is coherent and carrier-to-envelope phase locking can be achieved in certain

cases, which make it possible to control the light produced in these sources. As a result, trains of
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attosecond long pulses can be generated [128], and isolated pulses with a duration of only a few

tens of attoseconds have been demonstrated [256, 37]. For more details on HHG light sources, we

refer to Ref. [197, 38]

1.2.2 Free electron lasers

Free electron lasers (FEL) differ significantly from HHG sources. Often located at large

shared user facilities [218], they start with a high energy electron beam from an accelerator. The

electron beam is then passed through an undulator consisting of alternating magnetic fields. The

electrons oscillate back and forth leading to a phenomenon known as micro bunching and the

generation of light. After leaving the undulator, the electron beam is dumped while an X-ray laser

pulse propagates towards the experimental stations, as shown in Fig. 1.3. By tuning the spacing

between the magnets, the frequency of the light can be changed.

Figure 1.3: Schematics of an FEL laser showing the electron bunch production, undulator, and
beam dump that are essential parts to generate an X-ray pulse. (Figure from [202])

Due to the large amount of energy in an electron bunch, FEL sources are much brighter than

HHG sources in the same frequency range. FEL can produce arbitrary polarized laser pulses [109]

and pulses with a duration less than a femtosecond have been demonstrated [158]. The laser pulses,
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however, are only partially coherent and their shape varies widely from shot to shot limiting their

application for effects that depend significantly on the control of the pulse parameters. For more

details on FEL technology, see [218].

1.3 Organization of this thesis

The remainder of this thesis is organized as follows. In Chap. 2 we cover the relevant the-

oretical and experimental background. Chap. 3 provides a detailed description of the analytical

and numerical methods used in this thesis to model ultrafast laser-atom interactions. In Chap. 4

we present results of computations showing the impact of ultrashort laser pulses on the ionization

process and how the ionized electrons can be used to analyze electron motion on the attosecond

time scale. Next, in Chap. 5 various mechanisms by which electrons are excited into Rydberg states

when interacting with intense IR laser pulses are discussed. Finally, in Chap. 6 we provide details

on the development of a two-active electron code using hyperspherical harmonics including its cur-

rent status, first tests, and possible paths forward. In this thesis, atomic units (~ = e = m = 1)

are used throughout unless noted otherwise.



Chapter 2

Theoretical and experimental background

2.1 Attosecond dynamics

Understanding and imaging motion on fast time scales has been of interest for more than

a century. In 1878, Eadweard Muybridge invented high speed photography to find out if all of

a horse’s feet leave the ground at a full gallop [174]. Since then, high speed photography has

reached time scales of ∼ 10−5s, a long ways off of the attosecond (10−18s) time scale of electron

motion. On attosecond time scales, only electrons in atoms and molecules display significant motion

(see Fig. 1.1) rendering electronic or mechanical shutters, from traditional photography, useless.

Additionally, the electrons being imaged are quantum objects further complicating the imaging

process. Before we go into the methods used for imaging electron motion, lets dive into what we

mean when we say a quantum object is moving.

For a time independent system, such as an atom or molecule in vacuum, there exists a set of

stationary states that are eigenfunctions of the system’s Hamiltonian (for details see Sec. 3.1). In

the case of an atom or molecule, these stationary states are the bound or continuum states which

we will call |ψj(r)〉. These states depend on space, and evolve in time like eiEjt where Ej is the

energy of the jth stationary state, i =
√
−1 is the imaginary number, and t is time. This shows

that only the phase of the state is changing in time. As the global phase of a wavefunction is not

observable, an electron occupying a single stationary state displays no motion.

For attosecond motion to occur, either the system’s Hamiltonian must become time depen-

dent, e.g. by introducing a laser pulse, and/or multiple stationary states must be populated forming
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a superposition. The former is often required to image the motion of electrons, but the latter is

simpler to understand. We will, therefore, start with the motion produced by an electron in a

superposition of more than one stationary state. In principle, one or more of the states could be

continuum states, but for simplicity we restrict ourselves to bound states only in the following

discussion. The resulting electronic wavefuction can be written as

|Ψ(r, t)〉 =
N−1∑

j=0

aje
i(φj+Ejt) |ψj(r)〉 (2.1)

where aj is a non-negative real number, φj is a phase, Ej is the energy of the state, and the

superposition contains N total states each labeled by the subscript j. The global phase can be

accounted for by removing the time dependent phase of the ground state by setting E0 = 0. The

relative phases of the excited states (j > 0) changes in time like (Ej −E0)t resulting in dynamics if

Ej 6= E0. For a two state system, the dynamics will be periodic with a period of T = 2π/|E1−E0|.

Fig. 2.1 shows the dynamics of the wavefunction for a helium atom in a 1s− 2p+ superposition as

it rotates with a period of approximately 200 attosecond.

∆t (as)
0 65 130

Figure 2.1: An isosurface of the wavefunction of a helium atom in a 1s− 2p+ superposition (|rΨ|)
undergoing attosecond motion. (Figure from [233])

Adding additional states to the superposition allows for arbitrarily complicated field free

dynamics to occur. In order to “image” the wavepacket, all of the values for aj and φj must be

obtained at some time t0 with the restrictions that a0 =
√

1−∑N−1
j=1 a2

j and φ0 = 0 to enforce



9

normalization and removing the global phase, respectively. Then using Eq. 2.1, the time dependence

of the system is known. A method for imaging simple superpositions is presented in Sec. 4.3.

When the system’s Hamiltonian becomes time dependent, however, the above approach does

not capture the dynamics completely. If the time dependent operator is weak, relative to the

time independent operators, the dynamics maybe captured by allowing aj and φj to become time

dependent quantities. When effect of the time dependent operator becomes comparable or larger

than the independent operators, the stationary states, |ψj(r)〉, may no longer be a good basis to

describe the system. Imaging the dynamics of such a system requires techniques beyond the scope

of this thesis.

2.2 Pump-probe spectroscopy

Pump-probe spectroscopy is a powerful tool for imaging ultrafast processes. The general

concept is quite simple. Two isolated ultrashort pulses are produced. The first pulse, known as

the pump pulse, prepares the system by starting some dynamical process. Some time after the

end of the first pulse, the second (probe) pulse images the target. By delaying the probe pulse

with respect to the pump pulse, the impact of the dynamics on a given observable can be observed

experimentally. This gives a glimpse at how the system evolves over time. Although conceptually

easy to understand, attosecond pump-probe spectroscopy is an extremely difficult experiment to

perform for the following reasons.

In many cases, it is required to have both angle- and/or energy-resolved spectra of the ion-

ized electrons. With the development of experimental techniques, such as velocity map imaging

(VMI) [131, 210] or cold target recoil ion momentum spectroscopy (COLTRIMS) [229], the de-

tection of angle-resolved emission of the photoelectron following few-photon ionization of atomic

and molecular targets has become possible [153]. Additionally, one requires the ability to produce

well controlled isolated ultrafast laser pulses. In the recent past, it has become possible to gener-

ate isolated attosecond pulses [70]. This has opened the door for the application of pump-probe

spectroscopy to attosecond physics.
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In 2001, the first experimental observation of attosecond electron dynamics was made with

a pump-probe setup including a few cycle visible light pulse and an attosecond soft-X-ray pulse

[95]. The bandwidth of attosecond laser pulses allows for both bound and continuum states to be

studied [161] and, more recently, charge dynamics in Tryptophan on the sub 4fs time scale have been

observed showing that attosecond pump-probe spectroscopy may be applied to complex molecules

[137]. As experimental techniques evolve, the application of attosecond pump-probe experiments

will continue to expand. In this thesis, we look at how pump-probe spectroscopy can be used to

understand the ionization of electrons in superposition states in Sec. 4.2 and reconstruct attosecond

electron motion in Sec. 4.3.

2.3 Few photon ionization

Multiphoton ionization was proposed by Göppert-Mayer in 1931 [85]. Thirty years later, two

photon ionization was demonstrated experimentally, shortly after the advent of the laser [120]. As

we approach a century since the proposal of multiphoton ionization, research in this area is still

progressing. With recent advances in HHG and FEL laser pulse sources in the extreme-ultraviolet

(EUV) wavelength regime, studies involving few photon ionization in the perturbative intensity

regime have been of both experimental and theoretical interest [177, 230, 220, 193, 65, 214, 86,

66, 112, 113, 153, 207, 82, 47, 103, 104, 25, 243]. Using tools like VIM and COLTRIMS allows

for both the direction and momentum of the ionized electrons to be detected. At a given electron

energy, the probability distribution of an electron being ionized in a specific direction is known as

a photoelectron angular distribution (PAD).

PADs contain information containing about the phase and amplitude of the various partial

waves produced during the ionization process. These signals have been used to study the com-

petition between resonant and non-resonant two-photon ionization pathways [112, 113, 153] and

between one- and two-photon ionization channels [82, 47, 25]. These tools are also used to inves-

tigate the impacts of many other physical effects, such as a significant circular dichroism via the

asymmetry in the forward-backward electron emission from bromocamphor molecules induced by
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circularly polarized light has been identified [26]. Observation of the breakdown of the symmetry

in the photoelectron emission of argon has been shown in the region of the Cooper minimum [110],

molecular vibrations and chirality have been studied [75] and other applications range from studies

of coherent control [199] to the characterization of ultrashort laser pulses [35].

Through the contents of Chap. 4 we explore the impacts of few photon ionization using

ultrashort pulses (Sec. 4.1), proposing new asymmetry parameters for understanding few photon

ionization of electrons in superpositions (Sec. 4.2) and how few photon ionization can be used to

reconstruct attosecond electron motion (Sec. 4.3).

2.4 Rydberg state excitations induced by strong fields

Excited states in atoms and molecules have played an important role in the understanding of

many physical phenomena in strong field physics such as resonant enhancement in the population

of excited states [42, 119], structures in the energy spectrum [72, 190, 3], and in energy-resolved

angular distributions [209] of photoelectrons. When excited states become resonant with a one- or

multiphoton process from an initial state, the electron can populate the excited state. Depending

on the system and laser involved, the population in the excited state can be trapped or it can

enhance the probability of another process occurring. The role of excitation was initially observed

via resonant enhancement in the population of excited states [42, 119] and structures in the energy

spectrum [72, 190, 3] and in energy-resolved angular distributions [209] of photoelectrons.

As the laser intensity increases, the ionization potential of an atom shifts into the continuum

due to the AC-Stark shift. Additionally, the resonances of highly excited states, known as Rydberg

states, follow the same trend. The AC-Stark shifted resonance (E′) for highly excited states is

therefore approximately

E′ = E + Up , (2.2)

where E is the field-free energy of the excited state, Up = I/4ω2 is the ponderomotive energy, I is

the peak laser intensity, ω is the central frequency of the laser, and E′ is the energy of the shifted
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resonance. The initial findings were explained examining the effects of multiphoton absorption

becoming resonant with the AC-Stark shifted states.

More recently, significant excitation of atoms has also been observed in the tunneling regime

and described by the frustrated tunneling ionization (FTI) model for linearly polarized lasers [180].

Similar to the three-step model of HHG, the FTI model starts with the tunnel ionization of an

electron. The electron then interacts with the trailing end of the laser pulse which is slowing

it down. Finally, the electron is recaptured by the ionic potential ending with a final energy

corresponding to that of a Rydberg state. This observation has renewed the general interest in the

mechanisms leading to the population of excited Rydberg states during the interaction of an atom

with an intense laser pulse (most recently, e.g., in Refs. [38, 145, 144, 260, 221, 32, 142, 59, 27, 73,

152, 219, 89, 176, 248, 19, 138, 261, 22, 74, 115, 109, 156, 247, 194]).

The FTI model is semi-classical and provides no predictive power for the angular momentum

distribution of the populated excited states. Therefore, recent theoretical studies of the excitation

mechanism in linearly polarized strong fields mainly consider the distribution of the population

as a function of the principal quantum number of the excited states [145, 144, 261, 247, 194]. It

was shown that the modulation of the excitation probability is related to the channel closing effect

[134, 145, 144, 194]. The latter phenomenon occurs at threshold intensities at which the absorption

of one more photon is needed to ionize the atom due to the AC- Stark shift. The interpretation that

an increase in excitation can be understood as result of the shift of the first ATI peak below the

ionization threshold [145, 144] is in agreement with the explanation of earlier experimental results

(e.g., [72, 119, 209]) via the resonance enhanced population of AC-Stark shifted excited states.

On the other hand, the literature provides very limited understanding of the angular momen-

tum distribution in the populated Rydberg states by linearly polarized fields. Assuming the initial

state has even angular momentum, it has been shown that the populated Rydberg states have an-

gular momentum with the same parity as Np − 1, with Np being the minimum number of photons

needed to ionize the AC-shifted ionization potential using Floquet theory for a monochromatic laser

field [134] and results of numerical calculations for laser pulses with a trapezoidal envelope [194].
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Furthermore, the angular quantum number of the states with the largest population in numerical

calculations [145, 144, 194] agrees well with semiclassical estimations [6], initially performed for

low-energy angular resolved photoelectron distributions.

For more complex laser set-ups, such as bichromatic circularly polarized laser pulses, almost

no work on the population of Rydberg states has been done. Recently, in bicircular fields it has

been observed that the probability to ionize an atom is significantly enhanced if the two fields are

counter-rotating as compared to co-rotating fields [157]. In that work, the authors propose that

the counter-rotating pulse’s ionization pathways allow for resonance enhanced ionization while the

co-rotating pulse’s do not due to selection rules. However, distributions over the quantum numbers

(principal, angular momentum, magnetic) were not presented. Such analysis can shed further light

on the role of excited states in the pathways to ionization since excitation in a resonant multiphoton

process should rely on the spin-angular momentum selection rules for the absorption of circularly

polarized photons.

In this thesis, we examine the excitation of Rydberg states in Chap. 5. We study the angular

momentum distributions caused by linearly polarized lasers in Sec. 5.1 and the various mechanisms

present in the excitation of Rydberg states by bicircular laser pulses in Sec. 5.2.

2.5 Electron correlation

For many effects in ultrafast physics, the single-active electron approximation (SAE), where

one electron is allowed to move in an effective potential of all remaining electrons and nuclei, is

valid. However, for laser pulses with high energy photons, multiple electrons can interact leading

to effects caused by electron correlation. Boll et al. recently showed that the SAE approximation

breaks down in the interaction of helium with lasers at high central frequencies [25].

Electron correlation effects can manifest themselves in many ways. One such example can

be found in direct vs. autoionizing channels [39] where anisotropy and asymmetry parameters

have been used to study the impact of the 3s−1np resonance in argon. When interacting with

an autoionizing resonance, a photon is absorbed by an electron with energy that would allow for
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ionization and the promotion of a second electron to an excited state. The first electron remains

in the resonant state long enough to share its energy via electron correlation with another electron

that is excited to a state of higher energy. The first electron is then ionized at a lower energy.

In addition to autoionizing resonances, two electrons can be ionized by a single photon in

a process known as single photon double ionization [160]. The process proceeds via two main

mechanisms, non-sequential double photoionaization (NSDI) and shake-off. In NSDI, the first

electron absorbs a high energy photon before it interacts with a second electron. Both electrons are

then ionized with similar final energies. The ionized electrons are correlated and have been shown to

produce a double slit pattern when double ionizing the H2 molecule [5]. When even higher photon

energies are used, the first electron can be ionized so quickly, that the ionic potential is rapidly

changed and a second electron is ionized with a vary small relative momentum in the shake-off

process [33]. At even higher photon energies, core electrons can be ionized leaving a hollow atom.

A valence electron can then relax into the hole left behind. To conserve energy, a second valence

electron is ionized in a process known as the Auger effect originally proposed in 1922 [166].

In order to study these problems in detail, fully correlated multi-electron calculations are

required. A solution to the time dependent Schrödinger equation (TDSE) in full dimensions requires

3Ne + 1 dimensions where Ne is the number of electrons and the last dimension is time. For

time dependent problems, a full solution for two electrons is possible, but requires the use of

supercomputer resources [231]. The typical approach is to expand the wavefunction in bi-spherical

harmonics resulting in two radii that must be discretized to large distances increasing the size of

the wavefunction to be stored. In Chap. 6 we discuss our recent developments and first tests of a

two-electron code based on hyperspherical harmonics with the goal to potentially remove the need

for supercomputers since only a single radius needs to be discretized.



Chapter 3

Modeling laser-atom interactions

In order to model laser-atom interactions, the regime of laser parameters must be considered.

The studies presented in this thesis fall well within the so-called dipole oasis shown in Fig. 3.1 [151].

The dipole oasis shows the areas where the dipole and non-relativistic approximations are valid. The

right edge of the dipole oasis in Fig. 3.1 occurs when the wavelength of light becomes comparable

to the size of an atom, and the upper left limits correspond to the large amount of energy in a laser

pulse. In the latter case, the magnetic components of the field become non-negligible resulting in

the breakdown of dipole and non-relativistic approximations.

Figure 3.1: The dipole oasis shows the laser parameters that ensure that the dipole and non-
relativistic approximations hold. (Figure from [151])

To study the dynamics of an electron interacting with and intense laser pulse, we solve the

time-dependent Schrödinger equation (TDSE, Sec. 3.1). For the intense laser pulses used in this
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work, an analytic solution to the TDSE has not been found. Therefore, numerical solutions to the

TDSE, described in Sec. 3.3, are used for the majority of the studies in this thesis. Numerical

solutions to the TDSE are computationally intensive since they require tight sampling near the

atomic core to ensure the ground state is properly represented, and large boxes to allow ionized

wavepackets to remain on the grid. As a result, it is sometimes useful to apply approximate

methods. At low intensities, typically below 1013 W/cm2, the laser can be treated as a perturbation

to the atomic potential allowing for approximate solutions to be obtained via perturbation theory

(Sec. 3.2). At the other extreme when the laser pulse is much stronger than the atomic potential,

the strong field approximation (SFA) can be used [133, 57, 205].

For the hydrogen atom, an analytic potential for the Coulomb interaction of the electron

with the nucleus is known. However, for multi-electron atoms, one must use a single-active electron

(SAE) potential to solve the TDSE. The SAE potentials used in this work are described in Sec. 3.4.

Once a solution to the TDSE has been obtained, we use various observables, discussed in Sec. 3.5,

to analyze the final wavefunction. Finally, the laser pulse definitions and frequency correction for

ultrashort pulses is given in Sec. 3.5.

3.1 Time-dependent Schrödinger equation

The TDSE can be written as

i
∂

∂t
ψ(r, t) = Ĥψ(r, t) (3.1)

where i =
√
−1 is the imaginary number, Ĥ is the Hamiltonian which describes the system, and

ψ(r, t) is the time dependent wavefunction. The Hamiltonian for a system with Ne correlated

electrons interacting with a laser field and Nn fixed nuclei is given by

Ĥ =

Ne∑

e=1

(
p̂2
e

2
+ Vlas(r, t)−

Nn∑

n=1

Zn
re,n

)
+

Ne∑

e1<e2=1

1

re1,e2
(3.2)

where p̂e = (−i∇e) is the momentum operator of the eth electron, Vlas(r, t) is the laser operator,

Zn is the charge of the nth nucleus, and ri,j is the Euclidean distance between particles i and j. The
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laser interaction is typically considered using both the dipole and non-relativistic approximation in

either the length gauge (Vlas = −E(t) · r) or velocity gauge (Vlas = −A(t) · p̂e/c). Since no analytic

solution for more than one electron in a central potential is known, as the problem is not separable,

numerical methods are required. Solving the TDSE accurately in full dimensions for more than

one electron is extremely difficult and next to impossible for three or more active electrons. For

most studies, we make the single-active electron approximation (SAE) where all except one ‘active’

electron and the nuclei are fixed in space. A SAE potential generated by the nuclei and remaining

electrons is then used to model the interaction of the active electron with the fixed electrons and

nuclei. The SAE Hamiltonian of an atom interacting with a laser field therefore becomes

Ĥ =
p̂2

2
+ Vlas(r, t) + VSAE(r), (3.3)

where VSAE(r) is the SAE potential. The exact form of the SAE potentials used in this work is given

in Sec. 3.4. Extensions towards two-active electron calculations beyond the SAE approximation are

discussed in Chap. 6. Finally, it is often convenient to split the problem into a time-independent

field-free Hamiltonian (Ĥ0) and the time dependent laser field such that

Ĥ = Ĥ0 + Vlas(r, t). (3.4)

Eigenfunctions associated with H0 can be used to analyze the results of a simulation.

3.2 Perturbation theory

In the case of a weak laser field (typically for intensities below 1013 W/cm2) relative to the

atomic potential the TDSE can be solved using perturbation theory (PT). In some cases, such as for

the hydrogen atom, the corresponding terms of the perturbation series can be solved analytically.

However, for many of the SAE potentials that we use there is no analytic solutions. In such a case,

a numerical solution to the first-order terms of the series provides much of the same insight.

Therefore, it is advantageous to provide a general framework that can be used for both

analytical and numerical solutions. We start by diagonalizing the field-free Hamiltonian H0 to
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discretize both the bound (Sec. 3.3.6) and continuum states (Sec. 3.3.7). The result can be written

as a Green’s function

G0(t, t′) =
∑∫

g

e−iEgt |φg(t)〉
〈
φg(t

′)
∣∣ eiEgt′ , (3.5)

where |φg(t)〉 are the field free states (both bound and continuum), Eg is the energy of the state,

and t denotes time. For some initial wavefunction |Ψ0(r, t)〉, the consecutive orders of the PT can

be obtained via

|Ψi+1(r, t)〉 =

∫ t

−∞
dt1G0(t, t1)Vlas(t1) |Ψi(r, t1)〉 (3.6)

with i = 0, 1, 2, . . .. The total wavefunction in Nth order can then be obtained via a sum such that

|Ψ(r, t)〉(N) =

N∑

i=1

|Ψi(r, t)〉 . (3.7)

By taking N → ∞, the resulting wavefunction is exact in the regime where the perturbation is

small as compared to other interaction terms. However, if the perturbation is of similar order as

compared to other terms in the Hamiltonian, the series will not converge to the correct answer

leading to the breakdown of PT. The wavefunction obtained using PT can be used to extract

observables (Sec. 3.5) in the same way as for a (full) numerical solution of the TDSE. Additionally,

for laser-matter interactions PT offers the option to analyze the wavefunction of a particular order

to extract further information about how many photons are involved in a process.

3.2.1 Selection rules

The wavefunction is often expanded in 3D spherical harmonics to take advantage of selection

rules for interactions with an electric field. We proceed by considering the selection rules for length

gauge (Vlas = −E · r). For simplicity, we consider a linearly polarized laser field along the z-axis,

i.e.

Vlas = −Ezz. (3.8)
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Noting that z = r cos(θ) we obtain

Vlas = −Ezr cos(θ) (3.9)

= −2Ezr

√
π

3
Y 0

1 (θ, φ), (3.10)

where Y m
` (θ, φ) is a spherical harmonic. This expansion can then be used to calculate the angular

portion of a matrix element between two wavefunctions with Vlas as a perturbation:

〈
Y m′
`′

∣∣∣Vlas |Y m
` 〉 = −2Ezr

√
π

3

〈
Y m′
`′

∣∣∣Y 0
1 |Y m

` 〉 . (3.11)

The integral over three spherical harmonics can be written as

∫

4π
Y m1∗
`1

Y m2∗
`2

YM
L =

√
(2`1 + 1)(2`2 + 1)

4π(2L+ 1)
〈`1, 0, `2, 0|L, 0〉 〈`1,m1, `2,m2|L,M〉 , (3.12)

where 〈`1,m1, `2,m2|L,M〉 is a Clebsch–Gordan coefficient. Thus, we get

〈
Y m′
`′

∣∣∣Vlas |Y m
` 〉 = −Ezr

√
(2`1 + 1)(2`2 + 1)

3(2L+ 1)

〈
`′, 0, 1, 0

∣∣`, 0
〉 〈
`′,m′, 1, 0

∣∣`,m
〉
, (3.13)

which is only non-zero for `′ = ` ± 1 and m′ = m. Therefore, the selection rules for a linearly

polarized laser along the z-axis are given by ∆` = ±1 and ∆m = 0. Similarly, for a linearly

polarized laser along either the x or y axis one gets ∆` = ±1 and ∆m = ±1. Finally, a circularly

polarized laser in the xy-plane leads to ∆` = ±1 and ∆m = 1 for absorbing a photon from a

right-handed circularly polarized field and ∆` = ±1 and ∆m = −1 for absorption of a photon from

a left-handed circularly polarized laser field. By taking advantage of these selection rules, one can

greatly reduce the size of a wavefunction used in a particular order of PT or in a numerical TDSE

solution.

3.3 Numerical methods

For much of the parameter regime we are interested in, perturbation theory fails as an approxi-

mation method. Therefore, we have developed and implemented numerical solvers of the TDSE.

As for most partial differential equations, numerical solutions to the TDSE have a relatively simple
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general form with the complexity hidden in the details. First, one chooses a basis/discretization

to write down the solution, in our case the wavefunction. Next, the operators are expanded in

the basis and written as a matrix. Then, one obtains a set of initial conditions at the start of the

simulation, in our case typically a bound state of the atom or molecule. Finally, the initial condition

is propagated in time with updates to the operating matrix between time steps. In this section,

we will lay out the basis/discretization choices in Sec. 3.3.1, followed by a detailed discussion of

the implementation in the remaining subsections. For the sake of simplicity, we will focus on

single-active electron calculations in this section (for details on two-active electron calculation see

Chapter 6).

3.3.1 Coordinate systems

The solution to a single-active electron calculation is three dimensional in space. The simplest

and most general strategy would be to expand the wavefunction on a 3D grid in real space with

the atom or molecule placed in the center. Such a grid is generated by discretizing each dimension

(1D problem) with N grid points and then taking a Kronecker product producing a 1D vector that

represents the full 3D Cartesian space. The derivative operators can then be discretized utilizing

finite differences (discussed in the next section) and stored in a matrix. The implementation is

relatively straight forward and there are no assumptions about the symmetry of the problem.

However, this method has its flaws. If a potential has a singularity, such as the Coulomb potential

at zero (V = −1/r), special care must be taken to avoid sampling that point. Additionally, the size

of the calculation scales like N3 when the number of grid points in each dimension (N) increases.

Therefore, obtaining converged results for large atoms, which require smaller grid spacing to sample

the core properly, and high intensities, which require larger box sizes to keep the wavefunction on

the grid, becomes computationally impractical. It is, therefore, useful to consider the symmetries

of the problem in question to greatly speed up the calculations. Two standard approaches are to

utilize cylindrical or spherical coordinates.

The problem of an atom or a linear molecule aligned along a linearly polarized laser is
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cylindrically symmetric. Therefore, in this case using cylindrical coordinates is the natural choice.

By choosing the laser polarization (and internuclear axis) along the z-axis, the solution in the

angular coordinate φ is given by the initial condition and remains constant. Thus, one only needs

to find a solution in the z and ρ dimensions numerically, reducing the problem to two dimensions.

As a result, solutions scale like N2 which significantly accelerates calculations as compared to a 3D

Cartesian code.

However, in our studies we have actually found that spherical codes are often even faster.

When written in spherical coordinates, the TDSE for a central potential (such as an atom) can

be separated into a radial equation that contains the potential, and an angular portion that is

independent of the potential. The angular solution can then be found analytically in the form of

spherical harmonics and the radial solution is all that remains. For the hydrogen atom an analytic

solution exists. However, in general for a radial potential it is not guaranteed that there is an

analytic solution. Therefore, we expand the wavefunction in spherical harmonics and use finite

difference to discretize the radial portion. Since the laser field only couples spherical harmonics

according to the selection rules ` → ` ± 1 and m → m,m ± 1 depending on the polarization, the

number of spherical harmonics needed is rather small (typically `max < 50) with a weak dependence

on laser intensity and wavelength. The result is a code that scales like N`max for linear polarization

and N`2max for arbitrary polarization. Since `max is small, the code typically scales like N as the

pulse intensity, wavelength, or target atom is changed.

3.3.2 Finite difference

To discretize the spatial derivatives, we use finite difference. When using finite differences

(FD), derivatives are represented by a set of coefficients called a stencil. The stencil provides

the non-zero weights ci for various sample points of the function. We can then write the second

derivative of ψ known at various evenly spaced grid points labeled by n as

d2

dx2
ψn ≈

1

∆x2

∑

i

ciψi (3.14)
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The non-zero ci coefficients are given in the table below for various orders of accuracy:

Order cn−3 cn−2 cn−1 cn cn+1 cn+2 cn+3

2nd -1 2 -1

4th −1/12 4/3 −5/2 4/3 −1/12

6th 1/90 −3/20 3/2 −49/18 3/2 −3/20 1/90

Although it is possible to hard code the stencil weights, it becomes quite tedious particularly

for high order stencils, non-uniform grids, and near boundaries where off-centered stencils are

needed. Therefore, in this work we utilize the Fornberg method [68] to obtain the necessary stencil

for a particular simulation. For the remainder of this discussion, we will assume that we are using

second order derivatives. However, it is straightforward to expand it to higher order derivatives by

adding more off-diagonal elements in matrices discussed in this section.

We begin with a 1D wavefunction and later extend to ND wavefunctions. Let us assume

that we start with ψ(x) known at various points along the x-axis spaced by a grid step of dx. We

will label the points by n such that ψn = ψ(x0 +ndx) with x0 being the smallest x value. Inserting

this into Equation 3.14 we get

d2

dx2
ψn ≈

1

∆x2
(−ψn−1 + 2ψn − ψn+1) . (3.15)

For the point ψn+1 we can therefore write

d2

dx2
ψn+1 ≈

1

∆x2
(−ψn + 2ψn+1 − ψn+2) . (3.16)

This holds until we reach the other end of the grid. If we consider as boundary condition that

ψ(x0 − dx) = ψ(xN + dx) = 0, then the points at x0 − dx and xN + dx can be simply left out

of the matrix, which automatically imposes this boundary condition. For higher order stencils, an

off centered difference formula is needed such that the boundary condition is only imposed at one



23

point. The operator becomes a system of linear equations in the form of a matrix:

d2ψ

dx2
≈ 1

∆x2




2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2







ψ0

ψ1

...

ψN−1

ψN




(3.17)

One uses a tensor product to produce the two and three dimensional versions of the operator.

3.3.3 Radial basis functions

A disadvantage of grid based methods, such as 3D Cartesian codes, is the structure of the

grid. The required structured grids for FD do not give the freedom to refine the sampling in

points of interest, such as near the nucleus, while sparsely sampling at large radii, due to the

Kronecker product. Radial basis functions (RBF), on the other hand, is a meshless method that

allows for sampling points, called nodes, to be placed anywhere [69]. The lack of required structure

significantly reduce the number of points required to approximate the wavefunction. In this work

the RBF method described below was applied to quickly obtain bound and continuum states.

However, more work will be needed to allow for time propagation of the wavefunction in a laser

field.

The RBF method starts with a set of N unique points in space called nodes that discretize

the problem space. A stencil of size n < N is then made for each node via its n−1 closest neighbors

by using a k-nearest neighbors algorithm. For a RBF wavefunction φ(r), one defines the matrix

A =




φ(|x1 − x1|) φ(|x2 − x1|) · · · φ(|xn − x1|)

φ(|x1 − x2|) φ(|x2 − x2|) · · · φ(|xn − x2|)
...

...
...

φ(|x1 − xn|) φ(|x2 − xn|) · · · φ(|xn − xn|)




, (3.18)

where xj represents the coordinates of a node. It is then possible to calculate the weights ωj of an
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operator L evaluated at some point xc by solving




| 1 x1 y1 z1 · · · e−αr1

A | ...
...

...
...

...

| 1 xn yn zn · · · e−αrn

− − − + − − − − − −

1 · · · 1 |

x1 · · · xn |

y1 · · · yn | 0

z1 · · · zn |
...

... |

e−αr1 · · · e−αrn |







ω0

...

ωn

−

ωn+1

ωn+2

ωn+3

ωn+4

...

ωn+m




=




Lφ(|x− x1|)|x=xc

...

Lφ(|x− xn|)|x=xc

−

L1|x=xc

Lx|x=xc

Ly|x=xc

Lz|x=xc

...

Le−αr|x=xc




. (3.19)

The matrix A imposes the RBF restrictions while the additional rows and columns allow for

polynomials up to some degree (1, x, y, z, x2, xy, · · · ) to be attached, improving the order

of accuracy for the stencil. We can also attach other functions such as a Slater type orbital1

(e−αr) to treat the discontinuity in the hydrogen atom wavefuction at r = 0. The weights ωj for

j = 1, . . . , n are used as the matrix elements in the operator matrix and weights with j > n are

discarded. When solving a PDE, it is often useful to take xc = x1 for each stencil such that the

weights can be reused during time propagation. However, one can freely choose xc allowing for the

node placements to adapt to the PDE solution over time.

For the solution to the hydrogen atom we use 7th order polyharmonic spline functions (φ(r) =

r7). The node set is then chosen to emulate the standard spherical codes that are used. To do this,

we discretize the radius at values rj = (j+dr)/2 for j = 0, . . . , jmax. A maximal determinate (MD)

node set [211] for each radius is added to the total RBF node set. The MD node sets simulate the

use of spherical harmonics, which drastically reduces the required number of nodes for the problem

at hand.

1 The method was developed in collaboration with Dylan Abrahamsen and Bengt Fornberg (Department of Applied
Mathematics, University of Colorado Boulder).
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Figure 3.2: Panels (a) and (b) show the convergence of the lowest energy bound states in Hydrogen
without and with an attached Slater type orbital respectively for various radial spacing (dr). The
solid blue line show the error in the 1s state and dashed lines show the error for n = 2 states (2s,
2p−1, 2p0, and 2p1) in random order. Panel (c) shows the minimum and maximum imaginary part
of the calculated bound state energies.

Choosing a fixed order of MD nodes for all values of r leads to two major issues. At small r,

the nodes on each shell are much closer than the distance to the neighboring shells leading to the

obstacle that stencils do not couple in the radial direction. This can be avoided by reducing the

order of the MD node sets at small r so that the radial grid spacing (dr) is less than or equal to

the average distance between neighboring MD nodes within a shell. The order of the MD node set

then increases as r increases to the set maximum order. At large r, a similar issue occurs, where

only nodes at fixed angles (θ and φ) with varying radii are chosen for a given stencil. To avoid this,

each MD node set is quasi randomly rotated before being added to the total node set.

A final implementation issue is caused when attaching Slater type orbitals (e−αr) to the

stencil. Since e−αr becomes small quickly for increasing r, it can have variations below machine

precision in a given stencil. The result is a linear dependence with the constant term producing poor

stencils. To remedy this issue, e−αr is only attached for stencils centered at radii with e−αr1 > 10−10.

Convergence of the lowest five bound states using the RBF code are shown in Fig. 3.2. Results

were obtained on a mesh with an extension of 30 a.u. in radial direction, 8th order MD node set,

7th order PHS RBF, attached polynomials up to 3rd order, and a stencil size of 54 nodes. Panels

(a) and (b) shows the error in the states energy without and with a Slater type orbital e−r being

attached. The addition for the Slater type orbital give machine precision for the ground state (blue
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line) and improves the 2s (orange line) energy until nonphysical states appear with dr < 0.1. The

2pm states see little benefit from inclusion of the Slater type orbital.

Fig. 3.2(c) shows the maximum and minimum imaginary part of the energy of the five cal-

culated states. The splitting occurs for the states with m 6= 0 when meshes other than a Cartesian

lattice are used. The states with Im[E] < 0 lead to unstable time propagation for the Crank-

Nicolson method used in this work. Further work on mesh generation, hyperviscoisty, and/or time

propagation methods will be needed to study time dependent problems with the RBF method.

3.3.4 Numerical integration

For equally spaced grids used in our finite difference methods, either the midpoint or trapezoid

rule are used for numerical integration. For both methods the integration is performed by

∫

x
f(x′)dx′ ≈

n∑

i=1

cif(xi) (3.20)

where f(xi) is the value of the function at xi and x is the integration interval. The midpoint rule is

used if the grid is placed at half grid points on the interval (i.e. xi = (2i+1)dx/2 for i = 0, 1, 2, ..., n).

In this case ci = 1/dx for all grid points. For the trapezoid rule the grid points sample the ends of

the integration range resulting in c0 = cn = 1/2dx and ci = 1/dx for i = 1, . . . , n− 1.

In the case of the RBF code, the MD node set comes with a provided integration weight for

the angular integration and the radial integration is done via the midpoint rule. For the spherical

code, the angular integration is done analytically since spherical harmonics are orthonormal.

3.3.5 Boundary conditions

The wavefunction at large r must decay to zero for it to be normalizable. Therefore, we set

the wavefunction to zero at rmax and increase the value of rmax until a converged result is obtained

(Sec. 3.3.9). Exterior complex scaling (ECS), which is discussed in the next paragraph, insures that

the wavefunction decays prior to hitting the boundary. For the Cartesian code, this is the only

boundary condition needed. For the cylindrical and spherical codes, another boundary condition
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Figure 3.3: The finite difference stencil near the edge of the grid. Panel (a) shows how in the fourth
order finite difference the stencil extends beyond the grid leading to a boundary condition being
imposed at two points. Panel (b) shows the non-centered 4th order stencil that enforces a single
boundary condition.

at r = 0 is required. The cylindrical code the grid is chosen such that the grid points are given by

xj = (2j + 1)dx/2 with j = 0, 1, 2, . . . , n and the boundary condition of ψ(−x) = ψ(x) is used. In

the spherical code, however, xj = jdx with j = 1, 2, 3, . . . , n and the boundary condition ψ(0) = 0

is used. To enforce a boundary condition a “ghost node” is implemented. The ghost node is a

grid point that falls outside of the grid. If the ghost node is set to zero, the coefficient is left off

the matrix, and the boundary condition is met. If the stencil extends beyond the grid by more

than one point, such as in 4th order finite difference, the stencil is shifted so that only one point

is beyond the grid and it retains the same width (see Fig. 3.3). For the cylindrical case, the ghost

node is taken at ψ(−dx/2). Since ψ(−x) = ψ(x), the stencil coefficient at ψ(−dx/2) is added to

the coefficient for ψ(dx/2) which imposes the boundary condition.

To absorb any outgoing wave packets, we utilize an exterior complex scaling method (ECS,

[92]) on the outer portion of the grid. This is equivalent to changing the spatial step used in finite

difference from xn+1 = xn + dx to xn+1 = xn + eiηdx. In test calculations we have found that η =

π/4.0 works well. The result is an exponential decay of the wavefunction in the absorbing region.

Obtaining the finite difference weights in the transition and ECS region is done by implementing

the Fornberg method [68] using complex numbers.
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3.3.6 Bound state calculations

The bound states of the system are simply the eigenstates of the Hamiltonian with energies

less than zero. Therefore they satisfy the equation

Ĥφi = Eiφi (3.21)

where Ĥ is the Hamiltonian, Ei is the energy, and φi is the bound state assuming Ei < 0. To solve

for the bound states, we use the Krylov-Schur method that is implemented in the SLEPc library

[97, 208]. When obtained using SLEPc, the states have a random complex phase associated with

them. The phase is physically irrelevant unless one is creating a superposition or comparing results

of calculations that use different bound state sets such as a TDSE and PT result. To avoid issues,

it is best to use a single bound state calculation for each project. The populations obtained via

projections onto excited bound states at the end of a simulation are, for example, useful to analyze

and verify selection rules for a given laser polarization.

The coordinate system used for bound state calculations will control which states are gener-

ated. For spherical calculations, each ` block can be calculated independently and the results are

independent of m. Likewise, results of cylindrical 2D calculations are obtained for fixed m quantum

number. Finally, Cartesian 3D calculations will provide all n, `, and m states in one calculation

with the states being oriented at a random angle.

3.3.7 Continuum states

The continuum has states at all levels with energy larger than zero in the physical problem.

However, when we solve the TDSE numerically, due to the finite extension of the grid the continuum

is represented via a discrete set of states. For example, in spherical coordinates the TDSE solution

on the grid requires ψ(0) = ψ(rmax) = 0 (for the radial coordinate). The boundary condition is the

same as for an infinite square well with a bottom in the shape of V (r). The continuum states are,

therefore, a distorted solution to the infinite square well problem. We can obtain these states by

the same method as used in the bound state calculations providing a discrete set of energies that
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represent the continuum. This method is used for the numerical PT solution discussed in Sec. 3.2.

When calculating a photoelectron (energy or angular) spectrum, however, it is advantageous

to be able to select the energy of the continuum wave. For this case, we utilize the shooting method

[215] to obtain a continuum wave at a given energy. The method is given via an ODE which one

solves as follows. The wavefuction at r = 0 is set to zero by the boundary condition. The first

point at r0 = dr is set to an arbitrary value (in this case 1) giving

φkl(r0) = 1. (3.22)

with k =
√

2E. The second point is then obtained by

φkl(r1) = φkl(r0)

(
dr2

[
`(`+ 1)

r2
+ 2V (r0)− 2E

]
+ 2

)
. (3.23)

Each additional point can be found by

φkl(ri+1) = φkl(ri)

(
dr2

[
`(`+ 1)

r2
+ 2V (ri)− 2E

]
+ 2

)
− φkl(ri−1). (3.24)

Once the wavefunction has been obtained, we match the asymptotic solution to that for a hydrogen-

like atom

φkl(r � 1)→ sin

[
kr − lπ

2
+
Z

k
ln(2kr) + δkl

]
. (3.25)

The continuum state oscillates between -1 and 1 at r � 1 leading to a normalization of

A =




1√
|φkl(r)|2 +

∣∣∣∣
φ′kl(r)

(k+ Z
kr

)

∣∣∣∣
2




r=rmax

. (3.26)

Finally, we extract the phase shift δkl by

δkl =


arg



iφkl(r) +

φ′kl(r)
(k+ Z

kr
)

(2kr)iZ/k


− kr +

lπ

2



r=rmax

. (3.27)

This continuum state can then be used to obtain the photoelectron spectrum by

P (k, θ, φ) ∝

∣∣∣∣∣∣
∑

l,m

Y ∗l,m(θ, φ)

∫
e−iδkl(i)lφkl(r)

∗ψ(r, t)dr

∣∣∣∣∣∣

2

. (3.28)
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3.3.8 Time propagation

Time propagation is often performed using the split-operator method where the Hamiltonian

(Ĥ) is split into its spatial dimensions, e.g. along (z) and perpendicular (ρ) to the polarization

direction of a linearly polarized laser. Similarly, the problem can be split along x, y, and z for an

arbitrary laser polarization. The resulting propagation scheme is given by

ψ(r, t+ ∆t) ≈ e−iĤρ∆t
2 e−iĤz(t)∆te−iĤρ

∆t
2 ψ(r, t), (3.29)

where

e−iĤ∆t ≈ 1− i∆t
2 Ĥ

1 + i∆t
2 Ĥ

. (3.30)

This produces a set of tridiagonal matrices which can be solved with O(N ) operations and O(N )

memory. However, parallelization of such a method on a modern supercomputer with distributed

memory can be cumbersome, requiring multiple all-to-all Message Passing Interface (MPI) messages

during each time step which strongly reduces its scalability.

Instead, we avoid splitting the Hamiltonian and propagate the total Hamiltonian in time

using a second order Crank-Nicolson scheme where

ψ(r, t+ ∆t) ≈ e−iĤ∆tψ(r, t). (3.31)

We note that the Crank-Nicolson method is not tridiagonal (due to a tensor product) and a direct

solution would require O(N 3) operations and O(N 2) memory which is significantly more than in

the split operator method. However, the system of equations in the full Crank-Nicolson method

is sparse and iterative methods can be used to vastly accelerate the time propagation. We utilize

the Generalized Minimal Residual Method (GMRES), implemented in PETSc [8, 9], which solves

the sparse system of linear equations in O(N log(N )) operations and O(N ) memory. The PETSc

library makes it straightforward to parallelize the Crank-Nicolson method on modern supercom-

puters with distributed memory. On a local supercomputer (Summit, CU Boulder), we achieved

super-linear scaling up to 3,000+ cores (see Fig. 3.5) allowing us to complete simulations in a matter

of hours that would take weeks running on a high-end workstation.
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dx Z=1 Z=2 Z=3 Z=4 Z=5

4.000e-01 5.995e-03 6.217e-02 1.590e-01 2.568e-01 3.416e-01

2.000e-01 3.035e-04 5.995e-03 2.612e-02 6.217e-02 1.086e-01

1.000e-01 1.041e-05 3.035e-04 1.841e-03 5.995e-03 1.392e-02

5.000e-02 2.225e-07 1.041e-05 7.810e-05 3.035e-04 8.331e-04

2.500e-02 -2.663e-09 2.225e-07 2.290e-06 1.041e-05 3.204e-05

1.250e-02 -7.101e-10 -2.672e-09 2.992e-08 2.225e-07 8.341e-07

Table 3.1: The relative error of the ground state energy for a hydrogen-like atom with a nuclear
charge Z. A grid spacing around 0.1 produces well converged results for Z = 1. Excited states
have lower relative error.

3.3.9 Convergence studies

Numerical solutions to the TDSE require a convergence study to ensure that the final results

are reliable. One does this by varying a free parameter, such as grid spacing, spherical harmonic

expansions, time step, etc. until the observable in question remains within some tolerance. It is

possible to use an error calculation and reduce it until a numerical tolerance is met. However,

graphical convergence, when two lines plotted on top of each other are indistinguishable, is often

a more practical convergence criteria. In Table 3.1 we show how the error of the ground state

energies of a hydrogen-like atom with difference charge (Z) converges with decrease of the grid

spacing when using 4th order finite difference.

For a fixed target, it is advantageous to use the highest order finite difference that is stable.

Fig. 3.4 shows the convergence of the 1s, 2s, and 3s energy levels of the hydrogen atom using

2nd through 20th order FD. The slope of the convergence for each curve matches the order of the

method. 20th order FD achieves a converged result with the largest grid spacing leading to a shorter

calculation. It is therefore advantageous for bound state calculations. However, the Hamiltonian for

higher order methods become increasingly non-Hermitian near the boundaries leading to unstable

time propagation for 6th or higher order FD. Therefore, we have used 4th order for the vast majority

of calculations that we have performed in this work.
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Figure 3.4: Convergence with respect to grid spacing for various orders of FD for the 1s (a), 2s
(b), and 3s (c) states in hydrogen atom.
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Figure 3.5: Scaling results for present Crank-Nicolson method. Two runs each for calculations with
1 million (blue with squares) and 15 million grid points (green with triangles) have been performed.
Note that the scaling improves with increasing number of grid points.

3.3.10 Parallel Computing

Many simulations can be performed on a laptop or small desktop, however, the largest cal-

culations, such as those done in Cartesian coordinates or utilizing bicircular laser polarizations,

benefit from supercomputing resources. Since the code is implemented utilizing the PETSc library

and through the use of MPI, we are able to take advantage of the distributed memory of a mod-

ern supercomputer. Linear scaling, i.e. the computational time is cut in half when twice as many

processors are used, is often the benchmark for code scaling. Our code obtains super-linear (better

than linear) scaling on the Summit supercomputer up to 3,000+ processors (see Fig. 3.5). This is
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Atom z Zc c a1 b1 a2 b2

H 1 - - - - - -

He 1 1 2.0329 0.3953 6.1805 - -

Ne 1 9 0.8870 -9.9286 1.3746 -5.9950 3.7963

Table 3.2: Coefficients of SAE potentials in Eq. 3.33 for hydrogen, helium, and neon from [204].

possible due to the increased size of cache memory as the number of CPUs increases. This allows

for calculations that would take a month on a desktop to be completed in a few hours on a super-

computer. Additionally, the supercomputing systems come with a large increase in the available

RAM (often on the order of terabytes) significantly reducing the memory limitations on calculation

size.

3.4 Single-active electron potentials

For many atoms, full treatment of Eq. 3.2 is impractical, if not impossible. Since in many

ultrafast laser-atom interactions, primarily a single valence electron is involved, in this case it

becomes advantageous to treat only the single-active electron in the potential produced by freezing

the remaining N−1 electrons in their ground state reducing the problem from 3N -dimensions down

to three dimensions. The resulting Hamiltonian becomes

Ĥ = −p2

2
+ VSAE(r) + Vlas(t) , (3.32)

where Vlas(t) is the laser operator and VSAE(r) is the SAE potential. The SAE potentials utilized

in this work take the form [204]

VSAE(r) = −z
r
− Zce

−cr

r
−
∑

n

ane
−bnr. (3.33)

The coefficients are obtained by fitting to a potential obtained through density functional theory

(DFT). In Table 3.2 we show the coefficients for SAE potentials used in this thesis.
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3.5 Observables

The wavefunction, given as numerical solution of our calculations, is not experimentally

observable. It is therefore necessary to extract experimentally relevant information via observables.

For a given observable Ô, the expectation value is obtained by calculating 〈Ψ| Ô |Ψ〉. In this work we

have studied high order harmonic generation (HHG) spectra, ionization, bound state populations,

and photoionization (energy and angular) distributions.

HHG spectra are obtained by first calculating the dipole acceleration using the Ehrenfest

theorem

âj =
∂V (r)

∂j
, (3.34)

where j ∈ x, y, z are the Cartesian coordinates. For the hydrogen atom, âj = j/r3 where r is the

distance from the nucleus. Then the HHG spectrum is obtained by taking a Fourier transform such

that

ÔHHG(ω)j =

∣∣∣∣
∫ ∞

−∞
e−i2πωt 〈Ψ(t)| âj |Ψ(t)〉 dt

∣∣∣∣
2

. (3.35)

Bound state populations are obtained using

Pφi = |〈φi|Ψ〉|2 , (3.36)

where φi is the field-free bound state and Ψ is the wavefunction.

At the beginning of each simulation, the wavefunction is normalized to 1 such that

〈Ψ(t0)|Ψ(t0)〉 = 1 . (3.37)

Ionization probabilities can then be calculated in two manners. In the first method one propagates

the wave function after the pulse allowing the ionized part to be absorbed at the ECS boundary.

The ionization probability is then obtained by taking

Pion = 1− | 〈Ψ|Ψ〉 |2 (3.38)

since 〈Ψ(t0)|Ψ(t0)〉 = 1. This method is slow to converge and can lead to numerical round off errors

due to extended time propagation. The preferred method for calculating the ionization probability
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is

Pion = 1−
∑

i

|〈φi|Ψ〉|2 (3.39)

where φi is a bound state and the sum over i includes all states the grid supports with a real part

of the energy that is less than zero. Therefore, the ionization probability can be obtained at the

end of the pulse reducing the computational expense and numerical error.

The photoelectron spectrum (energy and angular) can are obtained at the end of the pulse

by calculating

P (k, θ, φ) ∝

∣∣∣∣∣∣
∑

l,m

Y ∗l,m(θ, φ)

∫
e−iδkl(i)lφkl(r)

∗ψ(r, t)dr

∣∣∣∣∣∣

2

, (3.40)

where φkl(r) is a continuum wave, δkl is a phase shift, and Yl,m(θ, φ) is a spherical harmonic. The

angular distribution is obtained by plotting the angular dependence (θ and φ) for a given energy.

The energy distribution is obtained by integrating over θ and φ (see Sec 3.3.7 for details on obtaining

φkl(r) and δkl).

3.6 Frequency shift2

Few-cycle laser pulses are used in many interesting strong-field applications (for reviews, see

e.g., [197, 225, 238, 187, 242, 249]). For example, high-order harmonics and (isolated) attosecond

pulses are generated, ultrafast atomic and molecular dynamics as well as charge transfer and exciton

dynamics can be induced and time resolved, molecular structure can be imaged on ultrashort time

scales, or chemical reactions may be controlled. Therefore, light sources generating ultrashort

intense laser pulses in different regions of the spectrum, at extreme ultraviolet [79], ultraviolet

[48], optical [67], near-infrared [259, 178, 179] and infrared wavelengths [111, 200, 176], have been

developed over the past decades. The simulation of the time-dependent response of matter to a

few-cycle pulse, e.g. via the numerical solution of the corresponding time-dependent Schrödinger

equation (TDSE), can however crucially depend on the definition of the electric field E(t) used.

To achieve quantitative agreement between theory and experiment, the potential issues present in

2 The content of this subsection has been also published in J. Venzke, T. Joyce, et al. PRA 98, 063409 (2018).
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both numerical calculations and experiment must be well understood and minimized.

As pointed out by Chelkowski and Bandrauk [35], the representation of E(t) via an envelope

function times a trigonometric function may lead to a non-vanishing potential A(t) at the end of

the pulse. This inconsistency can be resolved by first defining the magnitude of the vector potential

A(t) as (we use Hartree atomic units: e = me = ~ = 1) [35]:

A(t) =
cE0

ωA
f(t) cos(ωAt+ φA), (3.41)

where f , ωA, c, E0 and φA are the envelope function, central frequency, speed of light, peak electric

field amplitude, and carrier envelope phase of the vector potential, respectively. The prefactors

ensure that the peak intensity of the laser field is I = c
8πE

2
0 . The magnitude of the electric field is

then obtained via the derivative:

E(t) =− 1

c

∂

∂t
A(t)

=E0f(t) sin(ωAt+ φA)− E0

ωA

∂f(t)

∂t
cos(ωAt+ φA).

(3.42)

The expression for the electric field, Eq. 3.42, includes a term that depends on the time

derivative of f and, hence, may have significant effects in the case of few-cycle pulses. As we will

show below, a direct implication is that the central frequency of the electric field spectrum, ωE , is

not equal to ωA. The frequency shift |ωE − ωA| is a purely electromagnetic effect that is directly

related to the definition of the electric field via the vector potential given in Eq. 3.42. For long

pulses, the frequency shift is small, but it increases as pulse duration decreases. Note, that in

experiment typically the central laser frequency of the electric field ωE is measured and reported,

while in numerical calculations it is useful to define the laser pulse via the vector potential and the

related central frequency ωA. It is therefore important to study what impact, if any, the difference

between the central frequencies has on numerical calculations, or on the interpretation of theoretical

results.

By solving the time-dependent Schrödinger equation both numerically, as well as within

perturbation theory, we show below that theoretical results obtained for linear processes, such as

excitation and ionization, involving few-cycle pulses with the same value for the central frequencies



37

ωA and ωE do not coincide. Furthermore, we find that the frequency shift is also noticeable for

nonlinear processes, such as two-photon excitation and high-order harmonic generation, and it

scales with the number of photons involved. Our results also demonstrate that it is the central

frequency of the electric field ωE that is the physical relevant quantity for the interpretation of laser

driven quantum mechanical processes. Therefore, the frequency shift should be taken into account

when setting the central frequency ωA of the vector potential in a numerical calculation or, more

generally, a theoretical analysis.

3.6.1 Estimation of frequency shift
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Figure 3.6: Temporal (left) and spectral (right) distributions of vector potential (solid lines) and
electric field (dashed line) for pulses with FWHM of one cycle (top), and three cycles (bottom) at
central frequency ωA = 1.0 a.u. of the vector potential. Also shown is the Gaussian envelope of the
vector potential. (Figure from [236])

The frequency shift due to the difference in central frequencies is illustrated in Fig. 3.6, where

the vector potential A and the electric field E, obtained from Eqs. (3.41) and (3.42) for a Gaussian
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Name Envelope Function f(t) N/NFWHM γ2

Gaussian e−(t/T )2
0.849 0

Cos2

{
cos2

(
t
T

)
−π

2 ≤ t
T ≤ π

2

0 otherwise
0.723 -0.594

Cos4

{
cos4

(
t
T

)
−π

2 ≤ t
T ≤ π

2

0 otherwise
0.777 -0.381

Sech sech( tT ) 1.19 2.00

Table 3.3: Several common analytic pulse envelopes. The conversion factor between N , as defined
in Eq. 3.45 (number of cycles within one standard deviation to either side of the maximum), and
the more typical NFWHM (number of cycles in the full-width half-maximum of the electric field) is
given. The last column shows the excess kurtosis γ2, defined in Eq. 3.47, which is independent of
the pulse duration T . (Table from [236])

envelope f(t), are compared in both the time and frequency domain. While the temporal behavior

is satisfactory, the spectral distributions reveal different central frequencies. We define the central

frequency ωA (ωE) as the location of the maximum in the spectral density |Ã(ω)| (|Ẽ(ω)|). The

discrepancy is much greater for the one-cycle full-width at half-max (FWHM) pulse (top), than for

the three-cycle FWHM pulse (bottom).

For the further analysis, we note that in order for the central frequencies to be well-defined

and consistent with the definition of ωA in Eq. 3.41, we make several assumptions about the

envelope f(t):

• f(t) is nonnegative and continuously differentiable,

• f(t) falls off at least exponentially for large |t|,

• f(t) contains no appreciable Fourier components larger than ωA.

These assumptions could be relaxed significantly, but they are sufficient for the present discussion

and all practical purposes. The ratio of the central frequencies is given by the leading terms of an
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expansion in 1/N as3 :

ωE
ωA

=
1 +

√
1 + 4(πN)−2

2
+

γ2

6π4
N−4 +O(N−6) (3.43)

≈ 1 +
√

1 + 4(πN)−2

2
. (3.44)

Here

N ≡ ωA
π

√∫∞
−∞(t− t0)2f(t)dt∫∞

−∞ f(t)dt
. (3.45)

is the number of cycles within one standard deviation to either side of the pulse center, with

t0 ≡
∫∞
−∞ tf(t)dt∫∞
−∞ f(t)dt

, (3.46)

and lastly γ2 is the excess kurtosis of the envelope

γ2 ≡

[∫∞
−∞(t− t0)4f(t)dt

] [∫∞
−∞ f(t)dt

]

[∫∞
−∞(t− t0)2f(t)dt

]2 − 3. (3.47)

Note that N is proportional to the more typical NFWHM (number of cycles in the FWHM of f(t)),

but the ratio N/NFWHM depends on the shape of the envelope (c.f., Table 3.3).

Eq. 3.43 indicates that the ratio ωE/ωA depends on the number of cycles and the pulse shape,

but it is independent of peak intensity, carrier envelope phase, ellipticity, and ωA itself. In fact, the

first term of the expansion, Eq. 3.43, is a very accurate estimate even for single cycle pulses, showing

that the shift is nearly independent of pulse shape. This can be seen from the comparison between

the predictions based on Eq. 3.43 with the exact frequency shift for a variety of pulse shapes in

Fig. 3.7. The exact shift was calculated by numerically maximizing the analytic expressions for

|Ẽ(ω)|. The slight dependence on pulse shape is visible in the inset; the differences are described

well by the correction term in Eq. 3.43, which involves the excess kurtosis γ2.

In the next section, we demonstrate that ωE is the physically observable and relevant central

frequency. Therefore, when modeling the interaction with a pulse using Eqs. (3.41) and (3.42), one

3 The analytic work for obtaining the frequency correction and perturbation theory calculations was preformed
by T. Joyce.
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Figure 3.7: Ratio ωE/ωA as a function of the normalized number of cycles N defined in Eq. 3.45.
The numerical results were calculated by maximizing Ẽ(ω) for Gaussian (dotted line), sech (dashed-
dotted line), and sin4 (dashed line) envelopes and are compared with the simple analytic estimate
(solid line) given in Eq. 3.43. The inset reveals a slight dependence on envelope shape, which can
be attributed to the correction term in Eq. 3.43. (Figure from [236])

should determine ωA such that it corresponds to the correct ωE . There are two different methods

to do this. The first one is to specify N , and use Eq. 3.43 to obtain ωA. However since N depends

implicitly on ωA through Eq. 3.45, the envelope f(t) must be stretched in time by the same factor

such that N remains unchanged. The second method is to specify f(t) instead of N . In that case,

substituting Eq. 3.45 into Eq. 3.43 and solving for ωA yields

ωA ≈ ωE −
∫∞
−∞ f(t)dt

ωE
∫∞
−∞(t− t0)2f(t)dt

. (3.48)

Greater accuracy could be obtained in either case by including the correction term in Eq. 3.43;

however, the results in Fig. 3.7 show that this is in general not necessary.

3.6.2 Applications

In this section we present results of numerical calculations and first-order perturbation theory

which exemplify effects of the frequency shift on observables related to excitation, ionization and
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high harmonic generation induced by short laser pulses. The frequency shifts obtain using first-

order perturbation theory and numerical calculations agree well with our analytical predictions

shown in Section 3.6.1. To this end, we solved the 3D one-electron time-dependent Schrödinger

equation (TDSE) in velocity gauge:

i
∂

∂t
ψ(r, t) =

[
p2

2
− A(t) · p

c
+ V (r)

]
ψ(r, t) (3.49)

and length gauge

i
∂

∂t
ψ(r, t) =

[
p2

2
+ E(t) · r + V (r)

]
ψ(r, t) (3.50)

for atomic hydrogen with a soft-core Coulomb potential

V (r) = − 1√
r2 + α2

. (3.51)

We consider a linearly polarized laser pulse within the dipole approximation, so A(t) = A(t)ẑ and

E(t) = E(t)ẑ. Taking advantage of azimuthal symmetry, the wavefunction can be represented in

2D cylindrical coordinates ρ and z. We used the second order finite difference method for spatial

derivatives and the fully implicit second order Crank-Nicholson method for time propagation. The

laser field magnitudes A(t) and E(t) were defined as in Eq. 3.41 and Eq. 3.42, with a Gaussian

envelope function f(t). Specifically,

A(t) =
E0c

ωA
sin(ωAt)e

−(2t/τ)2 ln 2 , (3.52)

where τ is the FWHM pulse duration. The results presented below were obtained in velocity gauge,

but additional test calculations in length gauge have confirmed that the results are gauge invariant.

In all calculations for single photon ionization, excitation and high harmonic generation we

used α = 0.029 a.u., a grid spacing of 0.1 a.u., and a time step of 0.1 a.u. The soft core parameter is

used to match the ground state energy to that of atomic hydrogen, given by E1s = −0.5001 a.u. on

the grid, and an excited state energy of E2p = −0.12504 a.u. To ensure the wavefunction remains

on the grid for our calculation of the photoelectron spectrum, the grid extended 500 a.u. in the

ρ-direction and 1000 a.u in the z-direction, with an exterior complex scaling absorbing boundary in



42

the outer 50 a.u for single photon ionization (Sec. 3.6.2.1). The excitation (Sec. 3.6.2.2) and high

harmonic generation (Sec. 3.6.2.3) calculations were preformed on a grid that extended over 100

a.u. in the ρ-direction and 200 a.u. in the z-direction, with an absorbing boundary over the outer

5 a.u.

3.6.2.1 Single photon ionization

First, we consider single photon ionization of the hydrogen atom by a few-cycle laser pulse

with peak intensity 1013 W/cm2 and central frequency ωcentral = 2.0 a.u. The central frequency is

implemented either by setting ωA = ωcentral or setting ωE = ωcentral, using the method described

in the previous section. Photoelectron momentum spectra P (k) were obtained by the following

procedure: the TDSE was propagated for five times the FWHM pulse duration plus an additional

100 a.u. in time, then all bound states with principle quantum number n ≤ 8 were projected out,

and lastly the remaining unbound wavepacket ψionized was projected onto Coulomb wave functions

up to lmax = 5. That is,

P (k) =

lmax∑

l=0

∣∣∣∣
∫
Fl(− 1

k , kr)Y
∗
l0(r̂)ψionized(~r)d3~r

∣∣∣∣
2

. (3.53)

The results in Fig. 3.8 show that in fact the photoelectron spectra for central frequency

ωA = 2 a.u. (solid lines) and ωE = 2 a.u. (dashed lines) do not agree due to the frequency shift.

As expected, the discrepancy is larger for 2 cycle FWHM (panel (b)) than for 10 cycle FWHM

(panel (a)) pulses. These results however raise the question whether the central frequency of the

vector potential ωA or the central frequency of the electric field ωE is the relevant quantity for

further physical interpretation or a comparison with experimental data. To address this question,

we consider the resonant population transfer between bound states by analyzing results of numerical

calculation as well as those obtained using first-order perturbation theory in the next subsection.
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Figure 3.8: Photoelectron spectra P (k) as function of photoelectron momentum obtained for inter-
action of hydrogen atom with laser pulses at central frequencies ωA = 2 (dashed line) and ωE = 2
(solid line) and duration of (a) 10 cycles and (b) 2 cycles FWHM. (Figure from [236])

3.6.2.2 Excitation

Next, we examine transitions to the n = 2 orbitals in the hydrogen atom as a function of

both pulse length and central frequency of the vector potential (ωA) and the electric field (ωE).

Typically, the excitation probability is largest when the central frequency of the laser matches the

resonant frequency for np photon absorption, given by

ωres = |Efinal − Einitial|/np, (3.54)

where Efinal and Einitial are the energy of the final and initial state, respectively. In view of the

predicted frequency shift between the central frequencies ωA and ωE , we therefore expect that the

results for resonant excitation will provide insights into the physical relevance of ωA vs. ωE .

Within first order perturbation theory, the excitation probability is given by:

Pi→f = |Ã(ωres)|2
(µωres

c

)2

=
π

ln 2

(
µE0ωresτ

4ωA

)2 [
e−(ωA−ωres)2τ2/(16 ln 2) − e−(ωA+ωres)2τ2/(16 ln 2)

]2
,

(3.55)

Here we have used the pulse defined in Eq. 3.52 and µ = 27.53−5 is the transition dipole for the
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hydrogen 1s→ 2p transition. Eq. 3.55 shows that the excitation probability Pi→f is not maximized

at ωA = ωres, due to the prefactor of ω−2
A . This prefactor originates from Eq. 3.41, where it ensures

that the peak intensity is held fixed as ωA changes.
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Figure 3.9: Population in 2p state following one-photon excitation of hydrogen atom with a laser
pulse as a function of ωA (left) and ωE (right) for different pulse lengths at peak intensity 1012

W/cm2. Each line represents results obtained for a fixed pulse duration in terms of τ1 = 405 as.
The results from time-dependent Schrödinger equation (TDSE) calculations (a,b) and predictions
within first-order perturbation theory (PT) (c,d) are in excellent agreement. The vertical line
marks the energy difference between 2p and initial 1s state. The green dots indicate the maximum
excited state population for each pulse duration. (Figure from [236])

We have also obtained the population in the 2p state due to single photon excitation by

direct numerical solution of the TDSE. These numerical results are presented together with those

obtained within first order perturbation theory, Eq. 3.55, in Fig. 3.9 as function of ωA (left column)

and ωE (right column) for various pulse lengths. The pulse length τ is measured in multiples of
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the period associated with the resonant frequency

τnp =
2π

ωres
=

2πnp
|Efinal − Einitial|

, (3.56)

such that τ1 ≈ 405 attoseconds, τ2 ≈ 811 attoseconds and so on for the 1s → 2p transition. For

long pulses the peak in the population (marked by a green dot) occurs at the expected frequency

ωres (marked by vertical line) for a resonant transition in all distributions. When the pulse length

is decreased, the peak in the distributions as a function of ωE (right column) remains at ωres. In

contrast, the peak shifts significantly towards lower frequencies in the distributions as a function of

ωA (left column) due to the frequency shift. We note that the results of our numerical calculations

(upper row) are in excellent agreement with those obtained using first-order perturbation theory

(lower row) and indeed both reveal the same dependence on the central frequencies ωA and ωE .

Thus, the differences in the distributions as functions of ωA and ωE are not a numerical artifact but

are due to the frequency shift. Furthermore, the observed shift agrees with our estimate obtained

in the previous section. Thus, we can conclude that the central frequency of the electric field is the

physically relevant quantity for interpreting laser induced excitation processes.
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Figure 3.10: Numerical results for population in 2s state following two-photon excitation with
τ2 = 811 as. The vertical line marks half of the energy gap between 1s and 2s representing the
resonance condition for the two photon process. Other parameters are the same as in Fig. 3.9.
(Figure from [236])

These conclusions are further supported by our numerical results for two-photon excitation
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from the 1s to the 2s state in Fig. 3.10. Whereas the peak of the population as a function of

ωE (panel b) occurs at ωres, independent of the pulse duration, the peak of the population as a

function of ωA once again shifts to lower frequencies in Fig. 3.10(a). We note that, if the population

as function of ωA in Figs. 3.9 and 3.10 were used to determine the energy difference |Efinal−Einitial|,

the error caused by the frequency shift would be twice as much in the two-photon case as in the

one-photon case, accounting for the difference in τnp . This indicates that multiphoton processes

may be affected by the frequency shift even more than few-photon processes. To further illustrate

this point, we examine high harmonic generation.

3.6.2.3 High harmonic generation

Finally, we consider a highly nonlinear laser induced process. High harmonic generation

(HHG) in atoms can be described as absorption of an odd number of photons leading to the

excitation of a electron, followed by the emission of a single photon as the electron recombines

into the ground state. Based on the results above, we expect that in this nonlinear process the

frequency shift ∆ω between ωA and ωE will lead to a shift of the energy of the npth harmonic by

np∆ω. In our calculations the HHG spectrum has been obtained by a Fourier transformation of

the time dependent dipole acceleration along the laser polarization direction. A Hanning filter was

used to return the dipole acceleration to zero at the beginning and end of the simulation.

Fig. 3.11 shows the various harmonics in a HHG spectrum as a function of the number of cycles

in the driving laser pulse at a peak intensity of 1×1014 W/cm2 and central frequencies ωA = 0.0625

a.u. (upper panel) and ωE = 0.0625 a.u. (lower panel), corresponding to a wavelength of 730 nm.

The spectrum consists of odd harmonics and additional emission lines due to the population of

excited states during the interaction with the laser pulse. While we will focus on the generation

of harmonics, we note that the emission lines occur at photon energies between the 5th and 9th

harmonics. The corresponding field-free energy differences between the excited states and the

ground state in our numerical model of the hydrogen atom are marked, as reference, by white

vertical dashed lines.
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Figure 3.11: HHG spectrum at driver wavelength 730 nm (ωcentral = 0.0625 a.u.) vs. number of
cycles NFWHM. In the upper plot the central frequency ωA = ωcentral while in the lower panel
ωE = ωcentral. The vertical white dashed lines mark field-free transition energies between excited
states and the ground state, while the green solid lines mark the harmonic energies npωE with
respect to the central frequency of the electric field. (Figure from [236])

In the spectrum as function of multiples of ωA (panel a) one can see that the centers of

the harmonics do shift to energies larger than npωA, as the pulse duration decreases. In fact,

the energies of the harmonics follow the analytical predictions for npωE (green solid lines). As

expected, the shift increases with larger the harmonic number. In contrast, in the HHG spectrum

obtained as multiples of ωE (panel b) the centers of the harmonics remain at the same energy,

i.e. npωE (green solid lines), as the pulse duration decreases. This confirms the importance of

the shift between the central frequencies of the vector potential and the electric field in nonlinear

processes driven by ultrashort pulses. Furthermore, the HHG results confirm that the central

frequency of the electric field ωE is the physical relevant quantity for the interpretation of light

induced processes. Consequently, if in a numerical simulation or theoretical analysis the vector
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potential is set via Eq. 3.41, it is necessary to consider the frequency shift between ωA and ωE to

avoid a misinterpretation of the results. Our analytical estimates of the frequency shift in Eq. 3.43

and Eq. 3.48 provide formulas to obtain ωA from the physically relevant ωE .

To summarize, we have shown that the definition of the electric field of a laser pulse via the

derivative of the vector potential, which guarantees that both quantities vanish at the beginning

and end of the pulse, implies that the central frequencies of the spectral distributions of the vector

potential and electric field do not coincide. In our analysis we have derived an analytical estimate

of the frequency shift, which shows that the shift mainly depends on the number of cycles in the

pulse and becomes most relevant for few-cycle pulses. Utilizing results of numerical simulations

and first-order perturbation theory we have analyzed how the frequency shift affects excitation,

ionization and high harmonic generation induced by short laser pulses. The effect is found to be

most noticeable in nonlinear strong-field processes since the frequency shift scales with the number

of photons involved. Both, numerical results and predictions based on first-order perturbation

theory agree well with each other and confirm that the central frequency of the electric field is

the physically relevant quantity for the interpretation of the light induced processes. Thus, the

shift should be taken into account when setting the central frequency of the vector potential in

numerical simulations to avoid potential misinterpretation of the theoretical results, specifically

when compared to experimental data. Eq. 3.43 and Eq. 3.48 provide formulas to obtain ωA from

the physically relevant ωE .



Chapter 4

Imaging attosecond wave packet dynamics with photoelectrons

In the previous chapter, we provided an overview of the theoretical methods used to study

ultrafast laser-matter interactions. In this chapter, we will apply these tools to the process of atomic

ionization. We will focus on the impacts of ultrashort pulses on few photon ionization, asymmetries

that appear in the angular dependence of the emission of photoelectrons due to ionization of atoms

in single states and superposition states, and a method to obtain amplitude and phase information

of a wavefuction representing attosecond motion using photoelectron angular distributions (PAD).

In these studies we will consider interaction with lasers similar to experimentally available

ultrabright light sources such as free-electron lasers [218] and table-top laser systems based on high-

order harmonic generation [197, 38] that deliver high-intensity pulses of few- or sub-femtosecond

duration. Nowadays, laser pulses with a duration as short as a few tens of attoseconds have

been achieved experimentally [256, 37]. Isolated attosecond pulses or trains of attosecond pulses

have been generated from the vacuum ultraviolet to the soft X-ray wavelength regime and the

polarization of such pulses can nowadays be controlled. This recent progress in ultrafast laser

pulse technology makes it possible to probe, steer and control the dynamics of electrons in atoms,

molecules and solids [238, 187, 31, 249, 201, 188]. To name a few examples, the time-resolved

measurement of the electron emission in the photoelectric effect has been realized [34, 216, 129,

226, 114]. Using an isolated attosecond pulse or a train of extreme-ultraviolet attosecond pulses

to ionize an atom along with an infrared laser field interferograms have been measured to obtain

information about phases of electron wavepackets, an important milestone towards reconstructing
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the wavefunctions of atoms [206, 161]. By extracting the phase and amplitude via application of

photoelectron spectroscopy recently the birth of a photoelectron through a Fano resonance has

been observed on the attosecond time scale [83].

The production of extreme-ultraviolet (EUV) pulses using high harmonic generation (HHG)

and free-electron lasers (FEL) has led to a resurgence of multiphoton ionization studies in the per-

turbative intensity regime recently [177, 230, 220, 193, 65, 214, 86, 66, 112, 113, 153, 207, 82, 47,

103, 104, 25, 243]. Along with experimental techniques, such as velocity map imaging [131, 210]

or cold target recoil ion momentum spectroscopy [229], the detection of angle-resolved emission

of the photoelectron following few-photon ionization of atomic and molecular targets has become

possible [153]. Probing atoms and molecules in their ground or excited states with ultrashort laser

pulses opens a new regime where several linear and nonlinear ionization pathways compete and

interfere [112, 153, 82, 47, 104, 25, 243, 235]. PADs are determined by the amplitudes and phases

of the partial waves of all pathways contributing to the emission at a given energy into a given solid

angle. PADs and related anisotropy parameters are therefore useful observables to obtain quanti-

tative insights in the relative strength of the different pathways and their competition. This has

been demonstrated in the past for the competition between resonant and non-resonant two-photon

ionization pathways [112, 113, 153] and for one- and two-photon ionization channels [82, 47, 25].

In the simple case of photoionization from a single state, anisotropy and asymmetry parameters

have been used in the past to identify and analyze interesting physical effects. For example, a

significant circular dichroism via the asymmetry in the forward-backward electron emission from

bromocamphor molecules induced by circularly polarized light has been identified [26]. Observation

of the breakdown of the symmetry in the photoelectron emission of argon has been shown in the

region of the Cooper minimum [110]. Interference between resonant and non-resonant pathways

[112] or direct and autoionizing channels [39] can be identified via anisotropy and asymmetry pa-

rameters. Other examples can be found in double photoionization [160] or molecular vibrations and

chirality [75] and applications range from studies of coherent control [199] to the characterization

of ultrashort laser pulses [35].
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In this chapter, we examine the PADs of electrons which are emitted when atoms are ionized

by few photon processes during the interaction with ultrashort pulses with the goal to image

attosecond dynamics. In Sec. 4.1 we study the impact of the increased bandwidth of these ultrashort

pulses on the PAD for a two-photon process including intensity and pulse jitter studies. In this

initial ionization study from a single state (i.e., the ground state of the atom), we will perform the

analysis with conventional asymmetry and anisotropy parameters. Next, in Sec. 4.2 we extend these

studies to the more general case of ionization from a superposition state. Since in these situations

application of the conventional parameters fail, we will present a new set of generalized asymmetry

parameters (GAPs) that is an extension of the standard front-back asymmetry parameter. It allows

to study interference in the emission from states with differing magnetic quantum numbers that

can be prepared via excitation with circularly and elliptically polarized laser pulses. Finally, we

will consider the time dependent ionization of helium atom, prepared in the 1s−2p1 superposition,

and present tools capable of reconstructing dynamics that repeat over a 200 attosecond period from

the PADs in Sec. 4.3.

4.1 Short pulse effect in ionization of ground-state helium atom1

Two-photon ionization of atoms, specifically the helium atom, has been studied in theory and

experiment in the past, first concerning total ionization yields [177, 230, 220, 193, 65, 214, 66] and,

more recently, with a focus on photoelectron angular distributions [112, 113, 153, 25]. It has been

shown, that the PADs strongly depend on the pulse duration or, equivalently, the spectral width of

the EUV pulses. Initially, theoretical studies by Ishikawa and Ueda revealed that the competition

between resonant and nonresonant pathways depends on the pulse width [112, 113]. Changes in the

PADs for 1 - 21 fs pulses at photon energies below the first ionization energy were characterized by

the even anisotropy parameters β2 and β4. Via these parameters the relative phase between the s-

and d-wave packets for the photoelectron emission can be determined. Related experimental work

at the SPring-8 Compact SASE Source test accelerator verified the co-presence of the two pathways

1 The content of this section has been also published in J. Venzke et al., J. Phys. B. 53, 085602 (2020).
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[153]. Very recently, Boll et al. extended these studies, covered a much wider photon energy range

and explored the impact of radial and angular electron correlation [25]. They showed that in the

low-energy regime a single-active electron picture is valid while at higher energies in the regime of

autoionizing states angular correlations play a major role for the understanding of the PADs.

The ongoing quest in shortening pulses at extreme- and deep-ultraviolet wavelengths towards

the single-cycle regime in duration are achieved via large spectral widths. Such broadband energy

pulses give rise to competition between one- and two-photon (as well as three-photon) ionization

processes for emission at a given energy. As mentioned in Ref. [25], in helium atom this leads to the

additional interference of the s- and d-wave packets due to two-photon absorption with a p-wave

packet from single photon absorption. In this section, we study the transition regime between

single photon ionization and two-photon absorption. We first show how in this regime the PADs

quickly change over a small window of pulse duration, about 1 cycle in full width at half maximum

(FWHM). The variation is reflected in the anisotropy parameters βi (i = 1, 2, 3 and 4), which

show the transition as well as the interference between the ionization pathways. The dependence

on pulse duration, photon energy as well as photoelectron energy is studied. We further consider

how variation of pulse parameters, such as the carrier-envelope-phase (CEP), the peak intensity,

and the partial coherence of FEL pulses, do impact the anisotropy parameters. Finally, we briefly

study at which intensities three-photon ionization, which occurs for these large bandwidth pulses

as well, may become observable. In order to accurately account for the different pulse parameters,

we have performed simulations based on the time-dependent Schrödinger equation. Since a recent

study has shown that for pulses with central photon frequency below the first ionization potential

of the helium atom the single-active electron (SAE) picture remains valid [25], we have used a SAE

potential for our numerical simulations.

We solve the time dependent Schrödinger equation for the interaction of a electron in a

spherically symmetric SAE potential with the electric field E of a linearly polarized laser pulse

(along the ẑ-direction) in dipole approximation and length gauge as described in Chapter 3. We

have expanded the wavefunction in spherical harmonics up to lmax = 20 with m = 0 due to the
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symmetry of the problem. The radius is discretized using fourth order finite difference method with

a grid spacing of 0.05 a.u. and a maximum radius of 300 a.u. We utilized the exterior complex

scaling method on the outer 30 a.u. of the grid with a time step of 0.01 a.u. and apply a SAE

potential given in Eq. 3.33. Our numerical simulations have been performed for laser pulses with

central frequencies at or near to the energy difference between the field-free 1s and 2p state of the

helium atom. In our SAE model of helium the ground state energy is -0.944 a.u., while the 2p

energy is -0.128 a.u. To ensure that the electric field integrates to zero [35], we define the vector

potential following the procedure described in Sec 3.6.

As result from our ab-initio numerical calculations we obtain the wavefunction at the end of

the interaction with the laser pulse. Via projection on continuum states we can then determine the

ionization probability as well as photoelectron energy and angular distributions. If more than one

pathway, such as one- and two-photon ionization, contribute to the emission of the photoelectron at

a given energy in a given direction, our numerical simulations do not allow to separate the respective

probabilities for each channel easily. This is in contrast to calculations based on perturbation theory,

in which the amplitude for each pathway is evaluated and can be analyzed separately. In order to

analyze the dominant pathways for photoemission as functions of intensity, photoelectron energy

and pulse duration, we therefore determine anisotropy parameters (β-parameters), which provide

quantitative insights in the different pathways involved as well as the interference between them

[82, 47, 25].

It has been shown [136] that the photoelectron angular distribution for an isotropic target is

given by:

P (E, θ) =
σ(E)

4π


1 +

n∑

j=1

βj(E)Pj(cos(θ))


 (4.1)

where θ is the angle of electron emission with respect to the polarization direction of the laser

field, while σ(E) is the ionization probability at E and Pj are the Legendre polynomials. The

anisotropy parameters βj depend on the amplitudes of the different pathways leading to emission

of the photoelectron (for explicit expressions, see [82]). For combinations of one- and two-photon
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ionization processes, that will be the focus of our study, contributions from the first four βj-

parameters are expected. The contributions related to the odd polynomials indicate interference

between partial waves resulting from one- and two-photon absorption. We also note that the

impact of three-photon ionization, that we will briefly consider below, is expected to show up in

the anisotropy parameter β5 and higher order parameters.

We have determined the anisotropy parameters in our calculations using Equation (4.1) as

follows. At the end of the simulations of the time-dependent Schrödinger equation we obtained the

photoelectron angular distribution at a given momentum k by projecting the wavefunction onto the

field-free continuum states on the numerical grid. The numerically obtained PAD has been then

projected onto the j-th Legendre polynomial Pj (j = 1, . . . , 5) and the results have been normalized

using the total ionization probability σ.

4.1.1 Results and Discussion

Following a general discussion of the processes involved in Sec. 4.1.1.1, we present PADs and

related anisotropy parameters for pulses having a Gaussian envelope. The results are analyzed,

in view of a competition between one- and two-photon ionization, as a function of pulse duration,

central frequency and peak intensity in Sec. 4.1.1.2. Impact of shot-to-shot fluctuations of the

carrier-envelope-phase, the peak intensity and the partial coherence of FEL pulses are studied in

Sec. 4.1.1.3.

4.1.1.1 Impact of one-, two-, and three-photon processes in ultrashort pulses

To first illustrate the impact of the one-, two- and three-photon ionization pathways on the

emission of the photoelectron in ultrashort laser pulses, let us consider an emission induced by a

pulse with central frequency ω0 tuned to the 1s − 2p energy gap. The broad energy spectrum of

an ultrashort Gaussian pulse is schematically depicted in the panels of Figure 4.1 centered about

the energy of the 2p-state. Absorption of two photons by an electron in the ground state at the

central frequency ω0 (c.f., Figure 4.1(b)) will lead to its emission at energy E = 2ω0 − |E1s|. If
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Figure 4.1: Schematic representation of one- (a), two- (b), and three-photon (c) ionization in an
ultrashort pulse. The Gaussian distribution shows the spectral width of the ultrashort pulse cen-
tered about the energy of the 2p-state. The red arrows represent the photon absorption pathways,
and the black lines depict some of the resonant structure of the helium atom. (Figure from [235])

the bandwidth of the pulse is broad enough (i.e., the pulse duration is sufficiently short) ionization

of a photoelectron with the same photoelectron energy can occur via absorption of one photon

with energy 2ω0 (c.f., Figure 4.1(a)) or via absorption of three photons with energy 2
3ω0 (c.f.,

Figure 4.1(c)). We note that besides the two-photon and three-photon pathways with absorption

of photons of equal energies, there exist more such pathways to a final photoelectron energy E for

absorption of photons with unequal energy as long as the sum of the photon energies is equal to

2ωE .

The occurrence of the one- and three-photon processes requires a broad spectral bandwidth

of the pulse. That means, for long pulses we expect that only the two-photon ionization process is

present. If the pulse is shortened to a few optical cycles, both the one- and three-photon channels

become effective, since the probability of photon absorption at energies away from the central

frequency increases. In the perturbative intensity regime the probability for a n-photon process

scales as In, where I is the intensity of the pulse. We therefore expect that at a given ultrashort

pulse duration at low intensities the one-photon process dominates over the two-photon process

in an ultrashort laser pulse. As the intensity increases, first the two-photon process should then

become dominant, before at significantly higher intensities contributions from the three-photon
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process will become detectable. In this section, we mainly study the transition from one- to two-

photon processes, while the influence of the three-photon process will be given minor attention.

Figure 4.2: Photoelectron angular distributions for helium atom ionized by laser pulses at central
photon energy ω0 = 22.2 eV, peak intensity I0 = 1011 W/cm2, carrier-to-envelope phase φ = 0 and
three different pulse durations: N = 0.6 FWFM cycles (0.112 fs, left column), N = 1.2 FWHM
cycles (0.224 fs, middle column) and N = 1.8 FWHM cycles (0.335 fs, right column). Angular
distributions are obtained for three values of photoelectron energy E = 1.45(2ω0 − |E1s|) = 1.0
a.u. (top row), E = 2ω0 − |E1s| = 0.687 a.u. (middle row), and E = 0.58(2ω0 − |E1s|) = 0.4 a.u.
(bottom row), where E1s is the energy of the 1s state in the SAE potential. (Figure from [235])

4.1.1.2 One- vs. two-photon ionization

In Figure 4.2 we present examples of PADs that show the transition from single photon

ionization, illustrated by the p-wave character of the distribution (panels (d, g, h)), to an emis-

sion following two-photon absorption, highlighted by the dominating d-wave character in the PAD

(panels (b, c, f)). The results are obtained for ionization by a laser pulse at a central photon

energy ω0 = 22 eV, which corresponds to the energy difference between the 1s- and 2p-states in the

single-active electron potential for helium used in the calculations, peak intensity I0 = 1011 W/cm2
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and carrier-to-envelope phase φ = 0. At a given photoelectron energy, the transition occurs for a

variation of the pulse duration, e.g. at E = 2ω0−|E1s| = 0.687 a.u. from 0.112 fs to 0.335 fs (middle

row). Conversely, for a fixed pulse duration, the transition is seen for increase of the photoelectron

energy, e.g. at τ = 0.224 fs from 0.4 a.u. to 1.0 a.u. (middle column). In the transition regime the

PADs exhibit the interference between the one- and two-photon ionization processes.

Figure 4.3: Cross section σ(E) as a function of peak intensity for photoelectron emission at energy
E = 2ω0− Ip = 18.7 eV in 0.5-cycle (one-photon process dominates), 1.0-cycle (transition regime),
and 1.5-cycle (two-photon process dominates). Central photon energy ω0 = |E2p − E1s| = 22.2 eV
and carrier-to-envelope phase φ = 0. (Figure from [235])

Further insights in the transition between the two processes can be found via the cross section

σ(E) and the first four anisotropy parameters βi (i = 1, . . . , 4) . In Figure 4.3 the results for the

cross section are shown as function of peak intensity at fixed photon and photoelectron energies.

The cross section for a 0.5 cycle pulse has a slope of one corresponding to the dominance of one

photon ionization over the whole intensity regime. In contrast, the cross section obtained for the

1.5 cycle pulse is dominated by the two photon process due to the reduced bandwidth of the pulse.

In the data for the 1-cycle pulse the transition from the one- to the two-photon process is seen to

occur near 1012 W/cm2.

In Figure 4.4 the results for the β-parameters are shown as function of pulse duration and peak

intensity at fixed photon and photoelectron energies. The even β-parameters show the transition

from dominant one-photon ionization (β2 > 0, β4 ≈ 0) to dominant two-photon ionization (β2 ≈ 0,
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Figure 4.4: Parameters β1 (a) to β4 (d) as function of pulse duration (FWHM) and peak inten-
sity. Central photon energy ω0 = |E2p − E1s| = 22.2 eV, carrier-to-envelope phase φ = 0 and
photoelectron energy E = 2ω0 − Ip = 18.7 eV. (Figure from [235])

β4 > 0), while the odd β-parameters exhibit the regime of interference between the two processes

(β1 < 0 and β3 < 0 for φ = 0). The latter peak where the magnitudes of the two transition

amplitudes coincide. At a given peak intensity the interference regime extends over a change of

pulse duration of about 0.5 cycles at FWHM. For a fixed pulse duration, the interference regime

extends over a variation of peak intensity by a factor of 2-5. We can therefore expect that the

results are rather stable with respect to intensity fluctuations of the pulse. The impact of other

potential pulse fluctuations in the experiment on the β-parameters will be discussed in subsection

4.1.1.3.

The transition probabilities of the one- and two-photon processes, σ1 and σ2, scale linearly

and quadratically with intensity. Assuming that the two-photon ionization process involves pre-
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dominantly the absorption of photons at equal energies, the peak intensity at maximum interference

can be estimated as Iinfer ∝ D(1)(E)f(Ω)/(D(2)(E)f2(ω)), where D(i)(E) is the square of the tran-

sition dipole moments for the one- and two-photon process, f is the spectral distribution of the

pulse and Ω = 2ω = E + |E1s|. Since ω = ω0 for the results in Figure 4.4, f(ω) = f(ω0) = 1 and

Iinfer ∝ f(Ω). Thus, we expect that the interference between the two processes requires a larger

spectral bandwidth, i.e. shorter pulse duration, the larger the peak intensity of the pulse. The

results in Figure 4.4 confirm this expectation.

Figure 4.5: Anisotropy parameters β1 (left) and β2 (right) as function of pulse duration and pho-
toelectron energy E for central frequencies ω0 = 1.1|E1s−E2p| (top row), ω0 = |E1s−E2p| (middle
row) and ω0 = 0.9|E1s − E2p| (bottom row) at peak intensity of 1011 W/cm2 and φ = 0. In each
panel the dashed line corresponds to E = 2ω0 − Ip. (Figure from [235])
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Next, we consider how the transition between the two pathways depends on the photoelectron

energy and the central photon frequency at a given peak intensity I0 = 1011 W/cm2 and carrier-

to-envelope phase φ = 0. To this end, we show in the Figure 4.5 the anisotropy parameters β1

(left column) and β2 (right column) as a function of photoelectron energy and pulse duration for

central frequencies below (top row), on (middle row) and above (bottom row) resonance with the

1s− 2p transition in the helium single-active electron potential. We restrict ourselves to β1 and β2

since the higher order β-parameters contain equivalent information (see Figure 4.4). Also shown in

Figure 4.5 is the photoelectron energy E = 2ω0 − Ip, corresponding to a two-photon transition at

the central frequency ω0.

The comparison shows that the transition regime depends on the central frequency, since

the regime shifts for a given pulse duration to larger photoelectron energies as the central frequen-

cies increases (from bottom to top). At a given central frequency, the pulse duration, at which

the transition between the one- and two-photon ionization pathways occurs, increases as the pho-

toelectron energy decreases. Qualitatively, this dependence can be understood using the relation

Iinfer ∝ D(1)(E)f(Ω)/(D(2)(E)f2(ω)). For photoelectron energies larger than E = 2ω0−Ip (dashed

line), both ω and Ω are larger than the central frequency. Consequently, at large photoelectron

energies a broader spectral distribution (shorter pulse duration) is required for the same value of

f(Ω)/f2(ω) than at photoelectron energies below E = 2ω0 − Ip (dashed line), where ω < ω0 while

Ω > ω0.

Finally, we briefly mention that in the limit of short pulses and high intensities, both the one-

and three-photon processes can interfere since the three-photon process scales with I3. The results

for the anisotropy parameter β5 in Figure 4.6 confirm this expectation. At a photoelectron energy of

2ω0−|E1s| (panel (a)) a peak intensity of about 1014 W/cm2 and a rather large spectral bandwidth

is required to facilitate the three-photon process with significant probability since the corresponding

photon energies are smaller than the central frequency. The distribution over photoelectron energy

(panel (b)) shows that the impact of the three-photon ionization process is indeed more visible at

energies near E = 3ω0 − |E1s|.
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Figure 4.6: Anisoptropy parameter β5 (a) as function of pulse duration and peak intensity at
central frequency ω0 = |E1s − E2p| and photoelectron energy 2ω0 − |E1s| and (b) as function
of pulse duration and photoelectron energy at central frequency ω0 = 0.9|E1s − E2p| and peak
intensity of 1013 W/cm2. The dotted lines correspond to E = 2ω0 − Ip and E = 3ω0 − Ip. The
other parameters are as in Figures 4.4 and 4.5, respectively. (Figure from [235])

4.1.1.3 Impact of pulse fluctuations

For the discussion in the previous subsection we have considered results obtained at fixed

pulse parameters. The results in Figures 4.4 and 4.5 show that the transition regime occurs over

a rather small window of pulse duration while it appears to be rather stable for variations of the

peak intensity up to half an order of magnitude. The photon energies in the extreme ultraviolet can

be nowadays generated using high-order harmonics or free electron lasers. In view of the technical

difficulties to control the carrier-to-envelope (CEP) of ultrashort pulses as well as the fluctuating

pulse shapes in the self-amplified spontaneous emission (SASE) mode of free electron lasers, we

have studied the impact of these variations on the anisotropy parameters.

To study the dependence on the CEP we have averaged the results about a given value φ0

using a Gaussian distribution of width α as:

β
(α)
j (φ0) =

∑
i exp

[
−1

2

(
|φi−φ0|

2πα

)]
σ(φi)βj(φi)

∑
i exp

[
−1

2

(
|φi−φ0|

2πα

)]
σ(φi)

, (4.2)

where σ(φi) is the total ionization probability at CEP φi. The results for averages with (b) α = 0.2

and (c) α = 0.4 are compared in Figure 4.7 with the unaveraged results (panel (a)). As expected,

the odd β-parameters, which reflect the interference between the one- and two-photon processes,

strongly depend on CEP, while the even parameters are independent of it. Thus, the transition
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Figure 4.7: Anisotropy parameters β1 (solid line), β2 (dashed line), β3 (dotted line) and β4 (dashed-
dotted line) as function of carrier-envelope-phase. The results averaged using a Gaussian distri-
bution for the CEP (c.f., Eq. (4.2)) with widths of (b) α = 0.2 (in units of 2π) and (c) α = 0.4
are compared with the unaveraged results (a). Peak intensity: 1011 W/cm2, central frequency:
ω0 = |E1s−E2p|, pulse duration: 1.2 FWHM cycles and photoelectron energy 2ω0− |E1s|. (Figure
from [235])

from one-photon to two-photon ionization can be observed via β2 and β4 even in pulses without

CEP stabilization. Although the odd parameters depend on CEP, the corresponding results appear

to be indicative for the transition up to fluctuations of about π/2.

We have further studied the impact of fluctuations of temporal FEL laser pulse shapes [171].

We note that current FEL technology does not provide the bandwidth required to generate pulses

down to the one- or two-cycle limit at the photon energies considered here. We may still attempt to

give some theoretical insights concerning the robustness of the signal against the major fluctuations

present in an FEL pulse. To this end, we have applied a partial coherence method, which has been

used before to model longer FEL pulses [191]. We note that future technological progress towards

generation of ultrashort FEL pulses in the EUV regime may necessitate to extent the current

approach.

To generate the FEL pulses used in the numerical simulations, the spectrum of a vector

potential with Gaussian envelope corresponding to peak intensity I0 and FWHM pulse duration τ0

is used as an input. Each spectral component is then multiplied with a random phase factor and

an inverse Fourier transform is taken producing A′(t), which is then normalized and windowed in

time to give:

AFEL(t) = A0f(t)
Re [A′(t)]

max |Re [A′(t)] | (4.3)
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where A0 = cE0/ωA in Equation (3.41) and f(t) represents the envelope, here a Gaussian envelope.

The electric field of the FEL pulse is then obtained using Equation (3.42). The resulting pulse

simulates the partially coherent nature of the SASE pulses produced by an FEL. The average

of results from numerical simulations over an increasing number of shots is expected to resemble

results similar to those produced during an FEL beam-time. Here, the β-parameters are calculated

using a weighted average

βFELj (E) =

∑Nshots
i σi(E)βj,i(E)
∑Nshots

i σi(E)
, (4.4)

to account for the photoelectron yield shot to shot.

In Figure 4.8 we compare the results for βFEL1 (left) and βFEL2 (right) as function of pho-

toelectron energy and pulse duration of the Gaussian window used in modeling the FEL pulses,

averaged over 10 (panels (c, d)) and 200 (panels (e, f)) FEL shots for each pulse length (i.e., 6,200

calculations in total) with the exemplary results from a single shot (panels (a,b)). A robust dis-

tribution for βFEL2 emerges as the number of shots increases, clearly showing the transition from

a one- to a two-photon process (the same conclusion holds for βFEL4 , not shown). However, the

interference in the photoelectron angular distributions cannot be determined via FEL laser pulses,

since the results for βFEL1 and βFEL3 (not shown) average to zero in the transition regime. We note

that the generated FEL pulses are not transform-limited and the pulse duration of the Gaussian

window used in modeling the pulses does not correspond to that of Gaussian pulses used in the

previous subsection 4.1.1.2. Comparing the data presented in Figure 4.8(f) with those in Figure

4.5(d) we estimate that the effective pulse duration of a bandwidth-limited Gaussian pulse with a

spectrum corresponding to the average spectrum of the generated FEL pulses is about 0.6 times

shorter than that of the Gaussian window.

4.1.2 Summary

In this Section we have provided theoretical results, obtained from numerical solutions of

the time-dependent Schrödinger equation, for the competition between one-photon and two-photon

ionization in an ultrashort extreme-ultraviolet laser pulse. We have shown that the transition
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Figure 4.8: Anisotropy parameters β1 (left) and β2 (right) as function of pulse duration of the
Gaussian window used in modeling the FEL pulses and photoelectron energy averaged over 10
(middle row) and 200 (bottom row) partially incoherent free electron pulses as compared to a
single shot result (top row). Peak intensity of the Gaussian window: I0 = 1011 W/cm2 and central
frequency of the spectral distribution ω0 = |E1s − E2p|. (Figure from [235])

between the two processes can be observed in the photoelectron angular distributions and the

related anisotropy parameters βi (i = 1, . . . 4) as function of pulse duration, peak intensity, central

photon frequency and photoelectron energy distribution. While the even β-parameters exhibit the

transition via a change from zero to a finite value, the odd parameters indicate the interference

regime. At given photon and photoelectron energies this regime extends over about 0.5 FWHM

cycles in duration and a variation by a factor of 2-5 in peak intensity. The impact of three-photon
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ionization, which becomes available at these broadband pulses as well, is seen at high intensities

and large photoelectron energies. Finally, we have considered typical variations in the CEP of

ultrashort pulses, e.g. as produced in high harmonic generation, and fluctuating pulse shapes in

free-electron laser pulses. It is found that the transition between one- and two-photon ionization

can be observed via the even β-parameters in FEL pulses and pulses without CEP stabilization.

4.2 Generalized asymmetry parameters2

While studies of quantum systems in a single state are important, very interesting physics

arises from the systems in superposition states. Nowadays the most prominent example of a two-

level quantum mechanical system is a qubit with its important applications in quantum computa-

tion and quantum simulations [213]. Yet, also the internal motion of quantum mechanical systems,

whether it is rotational, vibrational or electronic, is determined via superposition states. In ultra-

fast science the observation and resolution of such dynamics and, hence, the observation of atoms or

molecules in superposition states has always played a central role. Currently, it is the superposition

of atomic or molecular electronic states and the related attosecond electron dynamics that is the fo-

cus of studies in the field [80, 161, 105, 246]. Perhaps the simplest case of such dynamics is a helium

atom in a superposition of 1s and 2p1 state which results in a wavepacket rotating in a plane around

the nucleus with a period of ∼ 200 attoseconds. The dynamics in such quantum systems in super-

position states can be probed via ionization with an ultrashort laser pulse. Unlike for the ionization

of a quantum system prepared in a single state, e.g. the ground state, conventional anisotropy and

asymmetry parameters fail to provide comprehensive tools for the analysis of photoionization from

atomic superposition states. As shown in the previous section, the simplest case of a competition

between one- and two-photon ionization processes can be analyzed using asymmetry parameters

if the atom is prepared in the ground state (see also, [112, 153, 82, 47, 104, 25, 243, 235]). In

contrast, these analysis tools are either not applicable or do not provide a straightforward interpre-

tation for the same processes if the atom is in the superposition of two states. Thus, an extension

2 The content of this section has been also published in J. Venzke et al., Sci. Rep. 10, 16164 (2020).
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of the toolbox for the characterization of the states and the identification of competing pathways

is desirable. In this section, we propose a new set of generalized asymmetry parameters which are

sensitive to interference effects in the photoionization of atomic systems in superposition states.

As we will show these new parameters can be used to identify the interplay of competing linear

and nonlinear pathways at low and high intensities, as well as at ultrashort pulse durations. The

application and relevance of the parameters is tested using state-of-the-art numerical solutions of

the time-dependent Schrödinger equation. Our method provides a new approach to the analysis of

experiments dedicated to resolving attosecond electron dynamics.

4.2.1 Generalized asymmetry parameters

We consider a prototypical example in ultrafast science and, more general, in atomic physics,

which is schematically shown in Fig. 4.9. An atom in a superposition of two quantum states with

different magnetic quantum numbers m, say the ground (g) and an excited (e) state is probed via

ionization by an ultrashort linearly polarized laser pulse. The photoelectron emission is induced

by a pulse with central frequency ω tuned to the energy gap of the two states. The broad energy

spectrum of an ultrashort Gaussian pulse is schematically depicted in the panels of Fig. 4.9 centered

about the energy of the excited state. There are three competing pathways leading to photoelectron

emission with energy 2ω − |Eg|, where Eg is the ground state energy of the atom: (a) absorption

of one photon at ω from the excited state, (b) absorption of two photons with sum frequency 2ω

from the ground state and (c) absorption of one photon at 2ω from the ground state. While the

ionization from the excited state (a) is the dominant pathway at low peak intensities and long pulse

duration, the transitions from the ground state will interfere at higher peak intensities (two-photon

process, (b)) and if the bandwidth of the pulse is broad enough (i.e., the pulse duration is sufficiently

short, (c)). The exemplary results obtained from the solutions of the time-dependent Schrödinger

equation in Fig. 4.9 for the interaction of neon atom, prepared in the superposition of 2p−1- and

3d2-states (d) or prepared in the same superposition but including additionally ionization from the

2p0 and 2p1 ground states (e), with a linearly polarized laser pulse show that the photoelectron



67

Eg

Ee

Ip

E
n
e
rg

y
(a)

−2 −1 0 1 2

∆`

Eg

Ee

Ip

E
n
e
rg

y

∆`

(b)

−2 −1 0 1 2

Eg

Ee

Ip

E
n
e
rg

y

∆`

(c)

−2 −1 0 1 2

In
te

n
si

ty
( W

/c
m

2
)

1010

1012

1014

1 4

Pulse length (cycles)

(d)

1 4

Pulse length (cycles)

(e)

Figure 4.9: (a-c): Ionization pathways effective in different intensity and pulse length regimes. (d)
Photoelectron angular distributions for ionization of neon atom, prepared in 2p−1− 3d2 superposi-
tion, as function of intensity and pulse length. (e) The same as (d) including additionally ionization
from the 2p0 and 2p1 states. (Figure from [232])

angular distributions (PADs) vary significantly as function of pulse duration and peak intensity.

The forward-backward asymmetry, often used in the past, cannot be applied to identify the impact

of the different pathways in these PADs. Therefore, a new set of asymmetry parameters is needed

for photoionization from superposition states with ultrashort laser pulses.
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4.2.1.1 Definition

We start by expanding the PAD as a coherent sum of spherical harmonics, assuming the

atom is ionized by a linearly polarized pulse aligned along the z-axis as

P (θ, φ) =

∣∣∣∣∣
∑

`

C
mg
` Y

mg
` (θ, φ) + Cme` Y me

` (θ, φ)

∣∣∣∣∣

2

(4.5)

where mg (me) are the magnetic quantum numbers of the ground (excited) state in the superpo-

sition, Cm` is the complex amplitude and Y m
` (θ, φ) is the spherical harmonic. The asymmetry in

the PADs due to the interference between different channels is related to the relative phase and

amplitude of the spherical harmonics. For each spherical harmonic, the sign of the phase is sym-

metric (asymmetric) across the xy-plane when `+m is even (odd), while in the xy-plane the phase

is proportional to eimφ.

In the xy-plane there are regions of destructive and constructive interference between the

transition amplitudes from the ground and excited state, as illustrated on the left of Fig. 4.10. The

regions can be labeled by

ci =

⌊
(φ− φ0)∆m

π

⌋
(4.6)

where bc is the floor function, φ0 is a reference angle, and ∆m = |mg −me| (∆m = 3 in Fig. 4.10).

Setting φ0 at an angle where the interference switches from constructive to destructive, regions of

destructive interference signal are labeled by even ci while odd ci denote regions of constructive

interference. Next we define the following integrals:

Ieven± =
∑

even ci

∫
P (θ, φ) dΩ±ci (4.7)

Iodd± =
∑

odd ci

∫
P (θ, φ) dΩ±ci (4.8)

where dΩci is the solid angle for the region ci in the positive (z > 0) or negative (z < 0) hemisphere

with respect to the xy-plane. In the example in Fig. 4.10 (left) each integral represents the total

photoelectron signal in the regions of a specific color (dark blue, light blue, dark red, light red).

We now define general asymmetry parameters (GAPs) that account for the relative difference in
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the regions of constructive and destructive interference:

A∆m
p ≡





∣∣∣ (I
even
+ +Ieven− )−(Iodd+ +Iodd− )

Ieven+ +Ieven− +Iodd+ +Iodd−

∣∣∣
max(φ0)

even γ

∣∣∣ (I
even
+ +Iodd− )−(Iodd+ +Ieven− )

Ieven+ +Ieven− +Iodd+ +Iodd−

∣∣∣
max(φ0)

odd γ

(4.9)

where γ = `e +me + `g +mg +Np with `g (`e) are the quantum numbers of the ground (excited)

state in the superposition, and p = (γ mod 2) is the parity of γ. Each parameter A∆m
p is related to

a certain total number of absorbed photons, Np = Ng+Ne, where Ng (Ne) is the number of photons

absorbed in the transition from the ground (excited) state. We note that GAPs cannot only be

defined for ionization of superposition states with a linearly polarized laser pulse along the z-axis,

but the definition can be extended, for example, to ionization with a circularly polarized ionizing

laser pulse in the xy-plane. In that case γ = `e+me+`g+mg, the number of photons is not included

as both ` and m change by 1 for each photon absorbed. Using ∆m = |(mg ±Npg) − (me ±Npe)|

for right (+) and left (-) handed circular polarized probe pulses, processes with different number of

photons involved can be studied by analyzing the signals with different ∆m. Here, in the further

discussion and applications we, however, focus on the case of a linearly polarized probe pulse.

To exemplify the significance of the asymmetry parameters we consider the ionization of Ne

atom, initially prepared in the 2p−1 − 3d2 superposition (i.e., `g = 1, mg = −1, `e = 2, me = 2;

and, hence, lg + mg + le + me = 4), by an ultrashort intense laser pulse. As discussed at the

outset, we expect interferences between two kind of pathways depending on the peak intensity

and the pulse duration. For an ultrashort pulse at low intensities one-photon transitions from

the ground (Fig. 4.9(c), Ng = 1) and the excited states (Fig. 4.9(a), Ne = 1) will interfere, with

Np = Ng +Ne = 2, γ = 6 and p = 0. An examplary PAD, obtained via numerical TDSE solution

in the relevant intensity and pulse duration regimes, is shown at the top of the right column in

Fig. 4.10. For even γ the corresponding parameter A3
0 relates to the difference between the total

photoelectron signals in the dark red and light blue shaded regions, as depicted at the top of the

middle column of Fig. 4.10. Comparison with the PAD shows that this difference indeed accounts
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Figure 4.10: Conceptual illustration of GAPs (for ∆m = 3). Left: Integrals I
even/odd
± , Eqs. (3,4),

are defined over regions of constructive and destructive inferference, indicated by different colors
(dark blue, light blue, dark red, light red), in xy-plane. Middle: GAPs are constructed based on the
parity of the parameter γ = le +me + lg +mg +Np from the integrals over the regions denoted by
a certain color (light blue, dark red). Right: Examplary PADs displaying the asymmetry captured
by the parameters for even and odd γ. (Figure from [232])

for the asymmetry in the PAD induced by the interference of the transition amplitudes for the

one-photon processes from the ground and the excited states. In contrast, due to the dependence

of multiphoton transition amplitudes on the intensity of the pulse at longer pulse duration and

higher intensities it is expected that the one-photon transition from the excited state (Fig. 4.9(a),

Ne = 1) interferes with the two-photon absorption from the ground state (Fig. 4.9(b), Ng = 2),

giving rise to Np = 3, γ = 7 and p = 1 for ionization of Ne(2p−1 − 3d2). The regions relevant in

the calculation of the asymmetry parameter A3
1 and the corresponding exemplary PAD for the Ne

atom are presented in the bottom row of Fig. 4.10. The comparison indicates the significance of

the asymmetry parameter A3
1 for the detection of the interference at high intensities.
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4.2.1.2 Application via numerical simulations

For the application of the GAPs we have considered certain superpositions of two atomic

states which are first prepared by a pump pulse and then probed by a linearly polarized pulse at a

set time delay such that the relative phase between the two states is determined. In the calculations

we have therefore simulated the interaction with the probe pulse only by using numerical solutions of

the time-dependent Schrödinger equation (TDSE) for the interaction of a electron in a single-active

electron (SAE) potential with the electric field E of a linearly polarized laser pulse (aligned along

the quantization ẑ-axis) in dipole approximation and length gauge with a frequency corrected laser

as described in Chapter 3. The present calculations are performed utilizing single active electron

potentials for He atom and Ne atom [204] with the electron initially prepared in a superposition

of the ground and an excited state. The TDSE has been solved by expanding the wavefunction

in spherical harmonics (up to `max = 50 for all relevant m values), as described in Sec. 4.1. The

computations have been performed on a radial grid of 300 a.u. with a grid spacing of 0.05 a.u.

using exterior complex scaling on the outer 15 a.u. of the grid. A time step of 0.05 a.u. has been

used.

4.2.2 Results and discussion

For our applications we have considered individual superposition states in neon (Fig. 4.11)

and realistic superposition states considering all possible initial mg states of neon and helium atoms

(Fig. 4.12). The central frequency of the applied electric field was set to the energy difference of the

initially populated field-free states (ω0 = |Eg − Ee|). To analyze the relevance of both the short-

pulse parameter A∆m
0 and the high-intensity parameter A∆m

1 calculations have been performed

for one- and four-cycle probe pulses (FWHM pulse durations) as function of the peak intensity of

the pulse. At the end of each simulation of the time-dependent Schrödinger equation we obtained

the photoelectron angular distribution at a given momentum k (corresponding to a photoelectron

energy of E = 2ω−|Eg|) by projecting the wavefunction onto the field-free continuum states on the



72

numerical grid. The asymmetry parameters A∆m
0 and A∆m

1 are then determined from the numerical

PADs using Eq. (4.9).
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Figure 4.11: Generalized asymmetry parameters A1
0 (solid lines) and A1

1 (dashed lines) as function
of intensity for ionization of superpositions of 2p−1 − 3d0 (a), 2p0 − 3d1 (b), and 2p1 − 3d2 (c)
in neon atom with initial populatations of 0.5 for each state (top row). Results in bottom row
for superpositions with populations of P2p−1 = 0.98, P3d0 = 0.02, P4s0 = 0.00057 (d), P2p0 =
0.94, P3d1 = 0.06 (e), and P2p1 = 0.88, P3d2 = 0.12 (f). Results have been obtained for one-cycle
(blue lines) and four-cycle (orange lines) pulses at photoelectron energy E = 2ω− Ip. (Figure from
[232])

To exemplify the application and provide basic insights in the relevance of the GAPs, we have

first considered superpositions of individual sublevels in different shells of the neon atom as initial

state. Fig. 4.11 shows results for the GAPs as a function of peak intensity for interaction of a neon

atom, prepared in (2p−1−3d0) (a,d), (2p0−3d1) (b,e), and (2p1−3d2) (c,f) superpositions. For the

results in the top row equal population in the two initial states has been considered, while for those

in the bottom row populations, as produced via one-photon excitation by a 50 cycle, 1013 W/cm2

right handed circulary polarized pump pulse, are used for the initial state (states with populations

larger than 10−5 are considered, see figure caption for values). The central frequency of the ionizing

probe laser pulse is tuned to the energy gap between the field-free ground and excited states.
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Overall, except for the results in panel (a) which we will discuss below separately, the short-

pulse parameter A1
0 (solid lines) is large at low intensities and for the shorter of the two pulse

durations. This is expected from our discussion above and confirms that the parameter is an

indicator for the interference of the one-photon signal from the ground state and the one-photon

signal from the excited state. Since both of these signals are first order in intensity, their relative

strengths and, hence, the A1
0 parameter are independent of intensity at low intensities for a given

initial superposition state. As the intensity increases, the relative amplitude of the two-photon

ionization channel increases and finally dominates over the one-photon channel from the ground

state. This trend is reflected in both the short-pulse and the high-intensity parameters. The

increase in A1
1, resulting from the interference between the one-photon excited state signal and the

two-photon ground state signal, shows in which intensity regime the two-photon signal starts to

overtake the short pulse signal. Simultaneously with the increase of A1
1 we observe a decrease of the

A1
0 signal, in agreement with our physical interpretation of the relevance of the different pathways.

Parenthetically, we note the onset of an increase of the A1
0 parameter at high peak intensities is

likely due to pathways involving higher order processes with an even number of total photons.

While the general trends of the two parameters are similar in most of the cases, there is one

exception where the details differ significantly. In the case of the (2p−1 − 3d0)/
√

2 superposition

(panel a), A1
0 shows a different trend. It remains constant at low intensities before increasing

at higher intensities. As the laser pulse and relative populations are fixed in the top row (a-

c) of Fig. 4.11, the change in amplitude and shape of A1
0 and A1

1 are caused by changes in the

cross-sections of the various states. We, therefore, attribute the different trend in the A1
0 signal

in panel (a) to be due to the dominance of the one-photon transition from the 3d0 state at all

intensities, since m = 0 states are, in general, easier to ionize with a linearly polarized pulse

than those with |m| > 0. This interpretation is further supported by the results in Fig. 4.11(d)

for a superposition with much lower initial population in the 3d0-state. Despite the difference

in magnitude of transition amplitudes, now the interference between the one-photon pathways is

effective and the general expected trend for the short-pulse parameter A1
0 is present.
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Comparison of the results in the two rows of Fig. 4.11 shows that the intensity at which

the transitions in the parameters occur depends on the population in the two states in the initial

superposition. Since in the bottom row the populations in the excited states are low, the relative

magnitudes of the corresponding one-photon transition amplitudes from the excited states as com-

pared to those from the ground state levels are weaker than for the equally populated superpositions

(top row). Therefore, we observe the impact of the two-photon pathway from the ground state at

lower intensities in the results in the bottom row. Additionally, the A1
1 signal becomes sensitive to

changes in pulse length due to the weak signal from the excited state. Thus, the GAPs may also be

useful to detect the population ratio in the superposition states. Here, we do not further analyze

this feature, but focus on the more general application of the parameters to identify the presence

of different ionization pathways.
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Figure 4.12: Same as Fig. 4.11 but for superpositions generated by a right-handed circularly po-
larized pulse via one-photon transition in helium atom (a), three-photon transition in neon atom
(b), and one-photon transition in neon atom (c) (for details see text). (Figure from [232])

So far, in Fig. 4.11 we considered simple albeit somehow artificial superposition states re-

stricted to certain sublevels of two shells in the neon atom. Now, we extend our analysis to three

different initial states as they can be generated with right-handed circularly polarized pump laser

pulses: (a) one-photon excitation of helium atom to the 2p1 state leading to (1s−2p1)/
√

2 superpo-

sition, (b) three-photon excitation of neon atom to the 3d shell, leading to an initial state consisting

of a superposition with equal population in 2p−1 and 3d2 along with populated 2p0, and 2p1 states

(note, that the latter two 2p states cannot be excited by the absorption of three right-handed cir-
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cularly polarized photons to the 3d shell), and (c) one-photon excitation of neon atom to the 3d

shell leading to the combination of the three superposition states analyzed separately in the bottom

row of Fig. 4.11. In Fig. 4.12, we present results for the GAPs of the corresponding calculations.

The initial superpositions in case of the helium data (a) and the neon data in panel (b) consist of

just one state in the excited shell and show the same general trends as those in the majority of

the panels of Fig. 4.11 with the decrease of A∆m
0 along with the increase of A∆m

1 occurring in a

certain intensity regime. The transitions in helium occur at a higher peak intensity due to the more

tightly bound helium ground state, which is harder to ionize. The overall trends of the results in

Fig. 4.12(c) for the more complex initial superposition, consisting of six states in the 2p- and the

3d-shell of neon. The one-cycle pulse data are similar to those discussed before, providing the same

information about the impact of the two-photon transition from the ground state. However, the A1
1

parameter, particularly at the longer pulse duration, shows an additional interference structure in

the transition regime. It is likely that this is due to an interference between transitions originating

from two excited states differing by ∆m = 1, here between one-photon ionization signals from 3d0

and 3d1 as well as from 3d1 and 3d2. Although the number of absorbed photons in these transition

is not 3, the resulting γ has the same parity as the signal from a 2pm − 3dm+1 state.
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Figure 4.13: Asymmetry parameter A1
1 for ionization of helium atom (1s-2p1) with one- and four-

cycle pulses at central frequency ω = 1.2ω0. (Figure from [232])

The high-intensity asymmetry parameter A∆m
1 is not only indicative of the general features
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concerning the interferences between the pathways discussed above, but also provides insights in

more subtle aspects. In the top row of Fig. 4.11 the maximum of the asymmetry parameter A∆m
1

occurs at the same intensity independent of the pulse duration. This is due to the fact that in the

calculations the central frequency was set to the energy difference of the initially populated states.

In this case the center of the photoelectron energy distributions due to the one-photon ionization

from the excited state and the two-photon transition from the ground state nearly coincide. If the

frequency is detuned from the resonance, the position of maximum interference strongly depends

on the pulse duration. Due to the larger spectral width of the pulse at shorter pulse duration, the

interference between the channels becomes most effective at higher intensities than the longer pulse

duration results, at which the photoelectron distributions from the two channels have less overlap.

This effect is seen in the results in Fig. 4.13 for photoionization at a central frequency of 1.2 times

the energy difference between the 1s- and 2p1-states in helium atom.
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Figure 4.14: Asymmetry parameter A1
0 for ionization of helium atom (1s-2p1) with one-cycle pulses

at central frequency ω0. Results of averages over different Gaussian distributions of CEP with
width α are compared with those at fixed CEP (α = 0, solid line). (Figure from [232])

Finally, it is important to consider variations in the laser parameters relevant for an appli-

cation of the generalized asymmetry parameters in an experiment. Typically, the peak intensity

of the applied laser pulse may vary from shot to shot as well as over the interaction volume. The

results in Fig. 4.11 and Fig. 4.12 show that the two GAPs vary rather slowly as a function of

peak intensity. Thus, we can expect that variations in intensity in an experiment will not impact
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the results significantly. Another parameter that is usually difficult to control is the CEP of a

laser pulse, which typically becomes most important for ultrashort pulses. In the present study

the high-intensity A1
1 parameter is independent of variations in CEP. To study the dependence on

the CEP for the short-pulse low-intensity asymmetry parameter A1
0 we have obtained results as a

function of the CEP and averaged the results about a given value ϕ0 using a Gaussian distribution

of width α (in units of 2π) as:

A∆m
p (I, T ;α) =

∑
i exp

[
−1

2

(
|ϕi−ϕ0|

2πα

)]
σ(ϕi)A

∆m
p (ϕi, I, T )

∑
i exp

[
−1

2

(
|ϕi−ϕ0|

2πα

)]
σ(ϕi)

, (4.10)

where σ(ϕi) is the total ionization probability at CEP ϕi. In the calculations we have assumed

that the pump pulse (for the preparation of the initial state) has the same CEP as the probe pulse.

The comparison of the results for different averages in Fig. 4.14 with the results for fixed CEP

(solid line) shows that for He atom the short-pulse asymmetry parameter A1
0 is indicative for the

interference up to fluctuations of about π/2 in the CEP.

4.2.3 Summary

In summary, in this section we have introduced a set of generalized asymmetry parame-

ters (GAPs) which characterize the interference of linear and nonlinear pathways to ionization of

atoms, prepared in superposition states, due to the interaction with a linearly polarized intense

ultrashort laser pulse. These parameters may provide a new tool to analyze data in attosecond

experiments. The relevance of the parameters is demonstrated via the results of numerical simu-

lations of ionization of helium and neon atom. The impact of short pulse and nonlinear effects, as

they arise in experiments with free-electron lasers and high-order harmonic generation, is shown.

The dependence on the central frequency of the applied laser pulse and the impact of variations

of laser parameters, such as the peak intensity and the carrier-to-envelope phase, are analyzed and

discussed.
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4.3 Wavefunction reconstruction method3

As mentioned above, one of the simplest cases of a superposition of atomic states with

different orbital angular momentum and magnetic quantum numbers is that of a helium atom

in the 1s and 2p1 states. It results in an ultrafast electron dynamics given by a wave packet

rotating in a plane around the nucleus with a period of ∼ 200 attoseconds. We now use this

dynamics as a prototype example to study the reconstruction of the corresponding wave packet

via ionization with an ultrashort linearly polarized probe laser pulse. To this end, we analyze the

photoelectron angular distributions as a function of time delay from the instant of preparation

of the atomic superposition states. The concept is based on the idea to utilize quantum beating

signals, where the imaged wave packet is interfered with a reference wave, to reconstruct a wave

function [185, 173, 161, 130, 198, 116]. Accounting for the phase accumulation, ionization cross

sections, and characterization of the reference wave packet that is used in the measurement is a

non-trivial task. In this section we present a method for wave packet reconstruction based on

quantum beating signals that utilizes perturbation theory. Since the method requires knowledge

of the average values for intensity, carrier-to-envelope phase and pulse duration of the probe pulse

we perform a sensitivity study to show the impacts of noise produced in an experiment and the

limits in peak laser intensity on the reconstruction method. Finally, we consider the extension of

the method to imaging of wave packets consisting of superpositions of more than two states.

The rest of the section is organized as follows: In section 4.3.1 we first present and discuss

the ionization scheme on which the reconstruction method is based. Then we briefly review the

methods for the numerical methods used for the reconstruction algorithm. In section 4.3.2 we

present the application of the method to the reconstruction of a circular wave packet in helium

atom. Aspects of the error analysis with respect to the accuracy of the observation of the PADs

and the variation of the laser parameters will be presented. Furthermore, the impact of different

pathways on the reconstruction process will be studied. Finally, we briefly discuss the extension of

3 The content of this section has been also published in J. Venzke et al., PRA. 103, 042808 (2021).
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the method to superpositions of more than two states along with results for a specific three-state

superposition. The section ends with a summary.

4.3.1 Concept and theoretical methods

4.3.1.1 Pump-probe scheme

In this study, we focus on the reconstruction of a wave function and the related imaging of

the dynamics via photoelectron angular distributions (PAD). To this end, we start our simulations

in a superposition state of the atom. An experiment will require a pump pulse to generate the

superposition. There are a few requirements for the pump pulse itself to apply the reconstruction

scheme. Since the scheme relies on the measurement of the PADs at various time delays between

the pump and the probe pulse, the pump must be a reproducible pulse with a fixed carrier envelope

phase (CEP) such that the superposition generated for each measurement is very similar from shot

to shot if not the same. However, the form of the electric field of the pump pulse does not need to be

known. Next, the delay between the pump and probe pulses must be controlled on the attosecond

time scale to allow for measurements as a function of the delay. The shot-to-shot measurements

should be taken for time delays within one cycle of the probe pulse giving rise to the requirement of

an attosecond control over the delay. The total delay is irrelevant as long as the two pulses do not

overlap in time and the state to be imaged does not decay. Furthermore, photoelectrons generated

by the pump pulse have to be separated from those produced by the probe pulse. It might be

therefore useful to limit ionization by the pump pulse.

The method studied here can be applied to simple superpositions, consisting of population

in two or three atomic states. As prototypical example we consider a helium atom in a 1s −

2p1 superposition, which represents a circular wave packet rotating around the nucleus. This

superposition with equal population in the two levels can be created with a ∼ 23 cycle laser pulse

at 1014 W/cm2 tuned to the resonance frequency. Fig. 4.15(a) shows the dynamics via isosurfaces

of the wave function (i.e., |rΨ|2) rotating in the x− y plane on an attosecond time scale.
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Figure 4.15: (a) Isosurfaces of the 1s − 2p1 wave function (|rΨ|2 is shown) evolving in time. (b)
Ionization scheme in the x− y plane. The laser polarization along the x-axis is depicted in red, the
direction of the ionized electron is shown in orange, and the charge migration is shown in yellow.
Selection rules for ground state signal (c) and excited state signal (d). The solid lines illustrate the
transitions of photons absorbed at the central frequency and the dashed lines show the pathways
for short pulse effect due to the large bandwidth of an ultrashort pulse. (Figure from [233])

To characterize the motion, and in turn reconstruct the wave function, we expand the initial

wave function in the eigenbasis of stationary states and write the wave function at some time t as:

Ψ(r, t) = a0ψ0(r, t) +

N−1∑

j=1

aje
iθjψj(r, t) (4.11)



81

where aj is a positive real number, θj is a relative phase, and {ψj = Ψnlm; j = 0, . . . , N − 1} is the

eigenstate basis. While the basis may contain an infinite number of eigenstates, for practical means

in the numerical calculations and any application it has to be truncated at some finite number

N . Thus, the wave function depends on N − 1 phases and N amplitudes since the global phase

is not a physically relevant quantity. In this framework, the time dependence is contained in the

states |ψj(t)〉 and the initial wave function is completely reconstructed if all aj and θj for j ≥ 1 are

obtained since a0 is fixed by the normalization and we set the phase of ground state |ψ0〉 to zero.

If the wave function generated by the pump pulse can be reconstructed at a given time, the full

time dependent motion of the wave function has also been obtained.

In the reconstruction scheme that we consider the electron dynamics is probed via ionization

by an intense ultrashort laser pulse as a function of time delay after the end of the pump pulse. In

the scheme predictions of first- and second-order perturbation theory (PT) are used to determine the

unknown phases and amplitudes from the photoelectron angular distributions (PADs). The latter

may be determined in an experiment but in this theoretical study we utilize ab-initio numerical

calculations. For the case of a helium atom in a 1s−2p1 superposition, we apply a probe laser pulse

linearly polarized along the x-axis and detect the photoelectron angular distribution in the x − y

plane, i.e. for θ = π/2, as a function of the angle ϕ from the x-axis as shown in Fig. 4.15(b). The

absorption of a photon will induce transitions with `→ `± 1 and m→ m± 1 due to the selection

rules. The pathways from the ground (c) and the excited state (d) are shown in Fig. 4.15. The solid

arrows represent the pathways for the transitions at the central frequency of the probe pulse. Ip is

the ionization potential and the ovals indicate possible resonances. Since we analyze photolelectron

emission induced by ultrashort pulses, we need to consider additional pathways due to the broad

bandwidth of the pulse (Sec. 4.1). These pathways are the ionization from the ground state with

a single photon and the two-photon transition from the excited state, which are represented by

the dotted arrows in Fig. 4.15. Since states in the continuum with the same energy and quantum

numbers can be reached via different pathways, the photoelectron angular distribution will change

in both shape and yield as the relative amplitudes and phases of each signal varies.
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4.3.1.2 Numerical solution of time-dependent Schrödinger equation

In order to test the applicability and limits of the reconstruction method we use numerical

solutions of the time-dependent Schrödinger equation (TDSE) as substitute for actual measure-

ments of the photoelectron angular distributions. We consider the TDSE in length gauge and

single-active electron approximation as described in Chapter 3. We use a Helium SAE potential

giving a ground state energy of -0.944409 a.u. and a 2p energy of -0.12847 a.u. The potential has

been constructed for benchmark tests between TDSE and time-dependent density functional theory

(TDDFT) calculations [204]. The energies match those of the corresponding DFT potential while

the experimental values for the ground and the 2p state in helium are -0.9037 a.u. and -0.12382

a.u.

For the solution we have expanded Ψ(r, t) in spherical harmonics up to lmax = |mmax| =

20 and discretized the radius using fourth order finite difference. The wave function has been

propagated in time with a time step of 0.01 a.u., on a grid with spacing of 0.05 a.u., maximum

radius of 300 a.u., and exterior complex scaling on the outer 30 a.u. of the grid utilizing the Crank-

Nicolson method for time propagation. The numerical code has been tested against previously used

codes as well as results from numerical calculations published in the literature [217]. The electric

field is a frequency corrected sine squared pulse. Once the wave function has been propagated to

the end of the pulse we have obtained the photoelectron angular distribution by projecting onto

numerical continuum states.

4.3.1.3 Perturbation theory

To reconstruct the initial wave function, i.e. determine amplitudes and phases, we invert the

photoelectron angular distributions (here, TDSE results) as a function of time delay by utilizing

perturbation theory (PT) described in Sec. 3.2. To evaluate the PT wavefunction, we use the bound

states of the TDSE field free Hamiltonian for the initial states, and expand the Green’s function for

200 dipole allowed states per ` and m block. The states represent the bound part of the spectrum
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and a discretized continuum up to an energy of ∼ 59 eV. The matrix elements and time integrals

are performed numerically.

The PT results are then used to obtain a residual

R(a) =
∑

k,φ,τ

∣∣∣∣∣∣∣
PTDSE∑

k,φ,τ

|PTDSE|
− PPT(a)∑

k,φ,τ

|PPT(a)|

∣∣∣∣∣∣∣

2

(4.12)

where PTDSE and PPT are the TDSE and PT photoelectron distributions for all utilized final

momenta, time delays, and detection angles. The state vector a that minimizes R(a) gives the

reconstructed wave function. The normalization maintains the relative yields at each final mo-

mentum. To minimize R(a) for the two (three) state system considered below, 1000 (250) evenly

spaced samples were used. For the current applications, this minimization technique is sufficient.

For superpositions involving more states the dimensionality of the minimization space increases.

It is likely that for such studies more advanced minimization methods such as stochastic gradient

descent will be needed. We also note that the method is applied to image field-free wave packets,

i.e. a is time independent. For cases, in which a changes with time, an extension of the present

method is needed.

4.3.2 Results and discussion

4.3.2.1 Reconstruction of two-state superposition: Intensity limits and number of

samples

To apply the minimization and therefore reconstruct the wave packet, the photoelectron

angular distributions (PADs) have to vary as a function of time delay. It is therefore first interesting

to see at which laser parameters a significant variation in the PADs can be observed. To this end,

in Fig. 4.16 we show how the PAD varies within one optical cycle of the pump pulse. The delay ∆τ

in the Figure refers to some fixed reference time τ0 after the end of the first pulse. Comparison of

the TDSE results for a two-cycle (∼ 190 as FWHM, left column) and a ten-cycle (∼ 950 as FWHM,

right column) laser pulse at three peak intensities ranging from 1010 W/cm2 (bottom row) over 1012

W/cm2 (middle row) to 1014 (top row) W/cm2 is shown. In these calculations the photon energy
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Figure 4.16: Results of TDSE calculations for photoelectron angular distributions over one cycle
of the probe pulse field for ionization of 1s − 2p1 superposition with ultrashort two-cycle (left
column) and ten-cycle (right column) laser pulse with peak intensities of 1014 W/cm2 (top row),
1012 W/cm2 (middle row), and 1010 W/cm2 (bottom row). The time delays ∆τ are given with
respect to a reference time τ0 after the end of the first pulse. (Figure from [233])

ωE has been set to the energy difference between the initially equally populated field-free 1s and

2p1 states in helium atom ((|1s〉+ |2p1〉)/
√

2). The angular distribution is taken at photoelectron

energy E = 2ωE − Ip, where ωE is the central photon energy and Ip is the ionization energy.

Although the laser pulse has a FWHM of similar or even longer duration than the charge
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migration in the present application, the time delayed PAD shown in Fig. 4.16 has significant

enough variation for the minimization technique to converge. This is due to the coherent nature

of the applied laser light. Since the laser is tuned near the resonance, the oscillation of the electric

field approximately agrees with that of the superposition to be imaged. This allows for subcycle

time dependence to be encoded in the PAD signal.

At the lowest intensity (Fig. 4.16, bottom row) we observe that the two-cycle signal varies

significantly. This is due to the interference between the one-photon ionization channels from the

excited state and the ground state. The pathway from the ground state provides a significant

contribution to the electron emission due to the broadband spectrum of the ultrashort two-cycle

pulse (Sec. 4.1 and Sec. 4.2). Thus, as the time delay varies, the relative phase of the ground

and excited states changes producing a quantum beating. In contrast, for the longer ten-cycle

pulse the spectrum of the pulse is more narrow. Consequently, the contribution from the one-

photon pathway from the ground state is much smaller. Hence, the PAD for the ten-cycle pulse at

the lowest intensity shows minimal variation as a function of time delay since it is dominated by

ionization of the excited state.

As the intensity increases, the relative contribution of the two-photon ionization pathway from

the ground state increases because the power dependence of the signals scales with the number of

photons absorbed. Since the two-photon channel depends on the absorption of photons at the

central energy the significance of the contribution does not depend on the pulse duration. As a

result, we observe that at the largest intensity considered in Fig. 4.16 (top row) both the two- and

the ten-cycle PADs vary strongly as function of the time delay. This is due to the interference

between the one-photon ionization from the excited state and the two-photon ionization from the

ground state.

To demonstrate the reconstruction method the errors in reconstructing the amplitude (a,

d) and phase (b, e) of the superposition state (|1s〉 + |2p+〉)/
√

2 in helium atom as a function

of peak intensity are shown in Fig. 4.17. The error is obtained via ∆a = a′ − a where a is the

amplitude or phase of the original wave function and a′ is the corresponding amplitude or phase



86

1010 1011 1012 1013 1014 1015
intensity (W/cm2)

−0.10

−0.05

0.00

0.05

0.10

Δa
1

(a)(a)(a)

NΔ2
NΔ5
NΔ10

1010 1011 1012 1013 1014 1015
intensity (W/cm2)

−π
4

−π
8

0

π
8

π
4

Δϕ
1 (
ra
d)

(b)(b)(b)

NΔ2
NΔ5
NΔ10

1010 1011 1012 1013 1014 1015
intensity (W/cm2)

10−11

10−9

10−7

10−5

10−3

10−1

R(
a)

(c)(c)(c)N=2
N=5
N=10

1010 1011 1012 1013 1014 1015
intensity (W/cm2)

−0.10

−0.05

0.00

0.05

0.10

Δa
1

(Δ)(Δ)(Δ)

1010 1011 1012 1013 1014 1015
intensity (W/cm2)

−π
4

−π
8

0

π
8

π
4

Δϕ
1 (

rΔ
d)

(e)(e)(e)

1010 1011 1012 1013 1014 1015
intensity (W/cm2)

10−11

10−9

10−7

10−5

10−3

10−1

R(
a)

(f)(f)(f)

Figure 4.17: Errors in amplitude (a, d) and phase (b, e) for the two-state reconstruction using
PADs generated with laser pulses at two, five and ten cycle pulse duration. Also shown is the
residual R(a) (c, f). The reconstructions are based on PADs at 20 time samples (∆t = τ/20) using
PADs in the full x− y plane (upper row) and photoelectron signals in forward-backward direction
(lower row). (Figure from [233])

of the reconstructed wave function. The reconstruction is based on PADs taken at 20 time delays

over one period of quantum beating τ = 2π/|E2p1 − E1s|. Also shown are the final results of the

minimization for R(a) (panels (c) and (f)).

Reconstructions of two cases are compared in which either the full PAD in the x − y plane

via signals at 6,285 equally spaced angles (upper row) or only the signals in the forward-backward

direction along the polarization axis of the probe pulse (lower row) are used. The results in in

the upper row show that the reconstruction method reproduces the initial state up to peak laser

intensities of about 1013 W/cm2 if the full x− y plane and 20 time samples are used. The increase

of the errors at intensities larger than 1013 W/cm2 indicates that higher-order processes begin to

contribute leading to the breakdown of the present second-order reconstruction method. For a

two-state superposition just two amplitudes and the relative phase have to be determined. Using

the full PAD with several thousand signals is oversampling for the reconstruction method. This is

confirmed by the results for the reconstruction (d-f) using the PAD signals in forward-backward
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direction only.
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Figure 4.18: Same as Fig. 4.17 but based on PADs at just two time delays. Errors in amplitude
(filled symbols with solid lines) and phase (open symbols with dashed lines) are shown for using
PADs in the full x − y plane (blue squares) and in forward-backward direction (orange circles).
(Figure from [233])

Next, we have studied if one can limit the number of PAD samples over time. To this end,

we present in Fig. 4.18 the errors in amplitude and phase based on a reconstruction using just

two PADs over one period of quantum beating τ = 2π/|E2p1 − E1s|. If the full PAD in the x − y

plane is used (blue squares) the reconstruction method remains successful over the same intensity

regime as before. However, when the available signals are limited to the forward-backward direction

(orange circles), the data are insufficient for a one-to-one mapping between the initial state and

the obtained photoelectron signal. Consequently, the reconstruction fails at nearly all peak laser

intensities, since for just two time samples the normalization leads to a greater chance that multiple

values for amplitudes and the relative phase produce a given signal.

Thus, for the basic case of equal population in a two-state superposition and probing with

a pulse having a central frequency equal to the field-free energy difference of the state, our results

show that the reconstruction method is successful for intensities in the perturbative regime up to

1013 W/cm2. If the PADs can be measured over a broad range of angles probing at two times over

one cycle of the probe pulse field is sufficient. In contrast, if only the forward-backward asymmetry

signals are measured more time samples are needed.
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4.3.2.2 Impact of different pathways
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Figure 4.19: Comparison of amplitude error for (a) two and (b) five cycle probe pulse from cal-
culations using full second order PT (blue), neglecting only the two-photon transition from the
excited state (orange) and neglecting both the one-photon transition from the ground state and
the two-photon amplitude from the excited state (green) in the reconstruction. (Figure from [233])

The reconstruction depends on the effective interference of at least two amplitudes to have

a quantum beating. In the full reconstruction we consider the contributions from four pathways

(one- and two-photon transitions from ground and excited states). It is interesting to ask which

pathways contribute effectively besides the one-photon transition from the excited state. To study

this question, we have deliberately neglected individual amplitudes in the reconstruction. In Fig.

4.19 we compare the results of these calculations with those of the full reconstruction (blue bars)

based on the full x − y plane and 20 time samples. We show the results for the amplitude error

only and note that those for the phase error lead to the same conclusions.

We performed two set of test calculations: First, we utilized all amplitudes except the two-

photon signal from the excited state (orange bars). Next, we have removed the one-photon signal

from the ground state and the two-photon signal from the excited state from the reconstruction

(green bars). Both transition amplitudes are expected to have an impact at ultrashort durations

due to the broad bandwidth of the pulses. Indeed, we do see noticeable changes for the two-cycle

data (a) while there appears to be insignificant impact for the five-cycle pulse (b) at all intensities.

For a two-cycle probe pulse, at intensities less than 1013 W/cm2, the reconstruction without
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the two-photon amplitude from the excited state matches the full data (Fig. 4.17(a)). At higher

intensities, the results deviate which agrees with the expectation. Removing also the one-photon

transition from the ground state from the reconstruction causes the results to deviate from the full

results at 1010 W/cm2 and above 1013 W/cm2. At the lowest intensity it is the one-photon signal

from the ground state that provides a dominant contribution to the PAD, leading to the deviation

at 1010 W/cm2. At intensities above 1013 W/cm2, the additional exclusion of the one-photon signal

leads to a better reconstruction than for the full data and when the two-photon pathway from the

excited state is neglected. This can indicate that inadvertently the two ultrashort amplitudes have

an opposite effect on the reconstruction or that an even higher-order amplitude is more dominant

than the lower-order processes.

4.3.2.3 Variation of central frequency and population

So far, we have considered a special case with equal population in the two states and the

central frequency tuned to the energy difference between the two field-free states. We will now study

deviations from this special case. First, we consider a laser pulse detuned from the energy difference

between the two equally populated states. We have calculated the photoelectron distribution

at E = ωE − |Ee|, where Ee is the energy of the excited 2p1-state. Given a sufficiently broad

spectral range, i.e. sufficiently short pulse, the one-photon ground state signal (peaking at about

E = ωE − |Eg|) at low intensities will interfere with the excited state signal creating the same

quantum beating as before allowing for the reconstruction process to work. In Fig. 4.20 we show the

reconstruction results for a laser with central frequency of ωE = 0.8ω0 (upper row) and ωE = 1.2ω0

(lower row). The results lead to the same conclusion as for the resonant case, namely that the

reconstruction method can be applied in the perturbative intensity regime up to 1013 W/cm2.

To show that the reconstruction works for a two-state superposition with arbitrary unknown

amplitudes and phases, we have performed a ‘blindfold experiment’ where the population of the

states were chosen randomly. The random values were held unknown and were only accessed to

obtain the final error at the end of the reconstruction procedure. We have used this approach
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Figure 4.20: Amplitude (a, c) and phase (b, d) errors for ionization at a detuned photon frequency
of ω = 0.8ω0 (upper row) and ω = 1.2ω0 (lower row). The reconstructions are based on full PADs
in x− y plane at 20 time delays. (Figure from [233])
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Figure 4.21: Amplitude and phase error for the reconstruction of an arbitrary unknown two-state
superposition. Reconstruction is based on full PADs in x−y plane at 20 time delays with a five-cycle
probe pulse. (Figure from [233])
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in several calculations and for probe pulses of different duration, with results leading to the same

conclusion. As an example, one set of results for this ‘blindfold’ experiment is presented in Fig. 4.21,

showing that the reconstruction is successful with the same low errors as in the other cases studied.

4.3.2.4 Detector accuracy and variation of laser parameters
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Figure 4.22: Comparison of (a) amplitude and (b) phase error for reconstruction using PADs at
machine precision (blue) and with accuracy limited to 1% and 10%. (Figure from [233])

For the reconstructions so far we have used results from TDSE calculations up to machine

precision. Since detectors in experiment do not operate with the same precision we have studied how

less accurate data may impact the success of the reconstruction. To this end, we have deliberately

added random noise at a certain percentage level of the maximum signal in the PADs to the TDSE

data. In Fig. 4.22 we compare the results for the reconstruction with added noise at the 1% and

10% level with those at machine precision using the signals from the full x− y plane and 20 time

samples. It is seen that an accuracy of detection at the 1% level is sufficient to reconstruct the

wavefunction with similar error as in the full calculation with TDSE data at machine precision.

Similar results and conclusions have been obtained for the other cases presented in Figs. 4.17 and

4.18. We expect that this limit can be achieved in a measurement.

We have further considered variations in the laser parameters relevant for an application of

the reconstruction method in an experiment. Typically, the peak intensity of the applied laser
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Figure 4.23: Amplitude (a) and phase (b) error for variation of CEP only (blue squares with solid
lines), intensity only (orange circles with dashed lines) and both CEP and intensity (green stars
with dotted lines) at peak intensity of 1011 W/cm2 and pulse duration of 2 cycles. Reconstruction
is based on full PADs in x− y plane at 20 time delays. (Figure from [233])

pulse may vary from shot to shot as well as over the interaction volume. Another parameter that

is usually difficult to control is the carrier-to-envelope phase (CEP) of a laser pulse, specifically for

ultrashort pulses. To study the impact on the reconstruction, CEP, peak intensity, and both CEP

and peak intensity have been varied randomly within a certain percentage in the TDSE results.

The results in Fig. 4.23 show that the reconstruction method still works well up to 10% variation

in both parameters before significant errors occur. Perhaps most surprising is the rather large

acceptable tolerance in the CEP even for the shortest pulses, since CEP variations often lead to

large changes in experimental observables. We assume that the shot to shot variation is ‘averaging

out’ over the various time delays leading to a quality in the reconstruction similar to fitting a linear

regression to noisy data.

4.3.2.5 Extension to superpositions of more than two states

Finally, we consider the extension of the reconstruction method to a superposition of more

than two states. The ionization scheme shown in Fig. 4.15(c) and (d) can be applied to each

excited state in the superposition separately, taking the waves generated via one- and two-photon

transitions from the ground state as reference. For the reconstruction measurement of PADs at

separate energies for each excited state in the superposition is required. Based on PT results,
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residuals R(a) (Eq. 4.12) have been obtained, taking into account both final momenta to reconstruct

the wave function.
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Figure 4.24: Amplitude (a, c) and phase (b, d) errors for the reconstruction of the superposition
(|1s〉+ |2p1〉+ |3p1〉)/

√
3 in the helium atom (upper row: errors for 2p-state, lower row: errors for

3p-state). (Figure from [233])

To test the extension of the method we have considered the helium atom in the (|1s〉+ |2p1〉+

|3p1〉)/
√

3 superposition. A probe laser pulse at central photon energy tuned halfway between the

|2p1〉- and |3p1〉-state and measurement of PADs at both E = ω−|E2p| and E = ω−|E3p| have been

applied. The results of the reconstruction, based on PADs in the full x− y-plane taken at 20 time

delays, are shown as function of peak intensity for different pulse durations in Fig. 4.24. The results

show that a similar degree of accuracy in the reconstruction as for the two-state superposition is

achieved within the same intensity limits. The example indicates that the present method may be

extended to even more complex wave packets and electron dynamics.
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Extension of the reconstruction method to more complex superpositions will however require

attention to the interference with the ground state signal and the increased dimensionality of the

minimization space. Since the minimization process appears to be convex, a standard minimization

algorithm, like stochastic gradient descent, may be sufficient for an efficient reconstruction. For

each additional state in the interference scheme, the signal at the photoelectron energy chosen

must include interference with at least one other state. This can be achieved if all transitions

from the excited states interfere with that from the ground state by using a short pulse. If only

longer pulses are available, coupling over many pairs of states reduces the required bandwidth for

a reconstruction. Finally, due to the selection rules some initial states do not generate a signal

in the xy-plane. In this case it may be required to utilize a full 4π-PAD for reconstruction of the

corresponding superposition.

4.3.3 Summary and outlook

In this section we have studied the use of perturbation theory to reconstruct an atomic

wave function representing ultrafast field-free charge migration. In the reconstruction scheme the

photoelectron angular distributions obtained by ionizing an atom, prepared in a superposition of two

or three states, are used. The electron dynamics are encoded in the PAD signal via interference of

the ground and excited state ionization signals. Time delayed measurements allow for the extraction

of all amplitudes and phases of the initial wavefuction that fully characterizes the charge migration.

Results of applications based on TDSE calculations show that the reconstruction is highly accurate

for probe pulse intensities below 1013 W/cm2 while allowing for CEP (intensity) variations of 10%

(20%) from shot to shot. Additionally, a detection accuracy for the PADs of about 1% for a

reconstruction with small error is required.

These results may provide some basic guidelines for future experimental progress in imaging

electron motion on its fundamental time scale via the detection of photoelectron angular distribu-

tions. However, the results also show that experimental challenges remain. Controlling the creation

of ultrashort laser pulses, especially those with attosecond pulse duration, is a non-trivial task. For
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the current method to be applied, average values for intensity, CEP and pulse duration of the

electric field of the probe pulse must be obtained and shot-to-shot variations must be limited up

to a certain degree. Given the rate of advancement in attosecond laser pulse technology over the

last decade, this level of pulse control may be, however, achieved in the coming years.

Additionally, precise knowledge of one- and two-photon transition dipoles is required to per-

form perturbation theory calculations for the target atom with high accuracy. Over the last decades

several standard theoretical methods, such as multielectron theories, density functional theory or

calculations using accurate single active electron potentials, have been developed to perform such

calculations. As theoretical methods for bound and continuum wave functions further advance, the

current and other reconstruction methods will become increasingly accurate.



Chapter 5

Rydberg state excitations induced by intense near-infrared radiation

In the previous chapter, we have studied ionization of atoms involving few photons. We will

now turn our attention to processes in strong-field physics where many-photon processes driven by

intense IR lasers are studied. When large numbers of photons are absorbed, the discrete nature

of the multi-photon picture begins to blurs, allowing for processes to be understood in a comple-

mentary way through classical trajectory analysis and tunneling processes. Fundamental processes

in strong-field atomic physics are above-threshold ionization (ATI) [4], high harmonic generation

(HHG) [71, 164, 62], and non-sequential double ionization [239]. These highly nonlinear processes

are induced by the absorption of multiple photons from the laser field, which in the limit of a large

photon number can also be described as a tunneling process. Excitation of the atom is known to

play an important role in each of the processes. It has been initially observed via resonant enhance-

ment in the population of excited states [42, 119] and structures in the energy spectrum [72, 190, 3]

and in energy-resolved angular distributions [209] of photoelectrons. These resonance effects have

been explained by multiphoton absorption through Rydberg states, which are AC-Stark shifted in

the presence of a laser field. More recently, significant excitation of atoms has also been observed

in the tunneling regime and described by the frustrated tunneling ionization model [180].

For linearly polarized lasers, the latter observation has renewed the general interest in the

mechanisms leading to the population of excited (Rydberg) states during the interaction of an atom

with an intense laser pulse (most recently, e.g., in Refs. [38, 145, 144, 260, 221, 32, 142, 59, 27, 73,

152, 219, 89, 176, 248, 19, 138, 261, 22, 74, 115, 109, 156, 247, 194]). The important role of Rydberg
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states in various strong-field ionization processes and harmonic generation has been discussed. For

example, resonant enhancement of below-threshold harmonics [227, 38, 32], emission from excited

states via free induction decay [32, 19], high harmonic emission through ionization from excited

states and recombination to the ground state [23, 19] have been predicted and observed.

Recent theoretical studies of the excitation mechanism in linearly polarized strong fields

mainly consider the distribution of the population as a function of the principal quantum number

of the excited states [145, 144, 261, 247, 194]. It was shown that the modulation of the excitation

probability is related to the channel closing effect [134, 145, 144, 194]. Theoretical analysis of the

angular momentum distribution in the populated Rydberg states by linearly polarized fields is less

advanced. Predictions of Floquet theory for a monochromatic laser field [134] and results of numer-

ical calculations for laser pulses with a trapezoidal envelope [194] yield that the angular momentum

of the excited Rydberg states has the same parity as Np − 1, where Np is the minimum number

of photons needed to ionize the atom. Furthermore, the angular quantum number of the states

with the largest population in numerical calculations [145, 144, 194] agrees well with semiclassical

estimations [6], initially performed for low-energy angular resolved photoelectron distributions.

Besides interactions with linear polarized laser pulses, recently studies on the interaction of

atoms and molecules with intense fields generated by the superposition of two circularly polarized

laser pulses have seen an upsurge in activity in strong-field experiment and theory. For the most

part, the renewed interest results from the capability to control the polarization of emitted light

in high-order harmonic generation with such pulses. The physical principle has been proposed

and applied first two decades ago [53, 150]. More recently, efficient phase matching of circularly

polarized high-order harmonic beams in the EUV and soft X-ray regime using bichromatic beams

with counter-rotating circular polarization has been demonstrated [64, 196, 125, 58, 100]. Since

then, much experimental and theoretical work on high-harmonic generation [169, 165, 170, 36, 17,

98, 149, 159, 10, 203, 181, 46, 63, 258, 195, 18, 139, 7, 43, 12, 108, 117, 99, 184, 143], ionization and

photoelectron momentum distributions [175, 254, 167, 157, 168, 156, 189, 29, 101, 146, 1, 30, 50, 141,

87, 49, 148, 55, 76, 124, 2], double ionization [155, 51, 21, 44, 252, 107, 154] and other strong-field
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processes [253, 28, 84] driven by bichromatic circularly polarized laser pulses has been performed.

One interesting aspect in these kind of strong-field interactions is the control of ionization via the

helicity of the applied bichromatic pulses [167, 157, 148]. Such studies complement related work on

the dependence of the ionization rate by one-color circularly pulse on the relative helicity between

the pulse and the electron in the atomic orbital [14, 122, 96, 15, 16, 13, 182, 90, 47, 244, 241, 255,

52, 147, 228].

For the interaction with bichromatic circularly polarized laser pulses resonant excitation

also plays an important role. It has been observed that the probability to ionize an atom is

significantly enhanced if the two fields are counter-rotating as compared to co-rotating fields [157].

The experimental observations were interpreted as due to the increased density of excited states

accessible for resonant enhanced multiphoton ionization in the case counter-rotating fields. Results

of numerical solutions of the time-dependent Schrödinger equation in Ref. [157] did confirm a close

relation between the ratios of total excitation and ionization probabilities for counter-rotating and

co-rotating circularly polarized laser pulses. However, the results for excitation of the atom were

not further resolved by distributions over the quantum numbers (principal, angular momentum,

magnetic). Such analysis potentially can shed further light on the role of excited states in the

pathways to ionization since excitation in a resonant multiphoton process should rely on the spin-

angular momentum selection rules for the absorption of circularly polarized photons (∆l = ±1 and

∆m = ±1).

In this chapter, we present results for excitation of atoms with linearly polarized (Sec. 5.1)

and bi-circular (Sec. 5.2) laser pulses. Interpretation of the distributions of excitation over the

states with different quantum numbers will be given using multiphoton selection rules.

5.1 Linear polarization1

As mentioned before, for the interaction with linear polarization earlier work for monochro-

matic laser fields [134] and laser pulses with a trapezoidal envelope [194] have been performed.

1 The content of this section has been also published in J. Venzke et al., Physical Review A 98, 043434 (2018).
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Here, we extend these previous analysis by considering excitation in laser pulses with more real-

istic sine-squared and Gaussian envelopes. This gives us the opportunity to study if the parity of

the populated angular momentum states in such pulses agrees with the selection rules obtained for

monochromatic fields and how the results depend on the pulse length at low and high intensities. In

Sec. 5.1.2 we then investigate how the population of angular momentum states leaves its footprints

in the radiation generated via transitions from the excited states to the ground state.

For our studies we have made use of results of numerical solutions of the time-dependent

Schrödinger equation (TDSE) for the interaction of the hydrogen atom with an intense linearly

polarized laser pulse. Specifically, we are solving the time-dependent Schrödinger equation (TDSE)

for the interaction of an atom with a linearly polarized intense laser pulse in the velocity gauge

(Eq. 3.3) for the Hydrogen atom (VSAE(r) = −1/r). The code utilizes cylindrical coordinates and

second order finite difference. In all calculations presented below we used a grid ranging up to ρ =

750 a.u. and z = ±750 a.u. with a grid spacing of ∆ = 0.1 a.u. in both directions and a time step

of ∆t = 0.15 a.u. We use the outer 37.5 a.u. of the grid in both directions for the ECS potential.

This grid can easily fit bound states up to n = 14 within the real portion of the grid.

5.1.1 Angular momentum distributions

5.1.1.1 Parity effect in pulses

We study the angular momentum distribution in Rydberg states of the hydrogen atom. To

this end, we consider processes during which these states are shifted into resonance with multiphoton

absorption from the initial ground state of the atom (with energy Ei). Assuming that the energy

shift of high lying excited states under the influence of an intense laser field is approximately

equal to the ponderomotive shift [3] and the shift occurs instantaneously during the pulse [93], the

intensity for a Np photon process to resonantly excite approximately with an excited state with

energy En is then given by:

I = 4ω2
E(NpωE + Ei − En). (5.1)
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In our calculations we have considered peak intensities such that the n = 8 states are in resonance

at central frequency ωE , corresponding to a wavelength of 800 nm, with Np = 10, 11, . . . , 15 photon

processes. Since we study the interaction with laser pulses, instead of monochromatic fields, more

than one manifold of states can be resonantly excited. For example, the bandwidth of a 20 cycle

sine squared pulse at 800 nm covers all excited states n ' 6 within the same Np photon process.

We further note that in the present cases, the n = 3 and n = 2 states are approximately resonant

via Np−1 and Np−2 photon processes, respectively, assuming that the energy shift of these states

equals the ponderomotive energy as well.
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Figure 5.1: Excited state distribution as function of n (vertical axis) and l (horizontal axis) at the
end of 20 cycle pulses with sine-squared envelope and peak intensities: (a) I0 = 3.4× 1013 W/cm2,
(b) I0 = 6.0 × 1013 W/cm2, (c) I0 = 8.6 × 1013 W/cm2, and (d) I0 = 1.12 × 1014 W/cm2. Left
(right) column corresponds to cases in which the Rydberg states are resonant with an even (odd)
number of photons. (Figure taken from [237])

The population in each quantum state (n, l) at the end of the pulse is shown in Fig. 5.1

(20 cycle pulses with sine-squared envelope) and Fig. 5.2 (14 FWHM cycle pulses with Gaussian

envelope) for intensities between 1013 and 1014 W/cm2. The results shown in the left (right)

column correspond to cases in which the Rydberg states are resonant with an even (odd) number

of photons. In all cases we see that the highest angular momentum states (l > 7) are not vary
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Figure 5.2: Same as Fig. 5.1 but for pulses with Gaussian envelope and 14 cycles FWHM. The
pulse duration approximately matches that for the sine-squared pulses in Fig. 5.1 at FWHM.
(Figure taken from [237])

populated, in agreement with previous studies [194] and semiclassical estimates [6]. In the results

we indeed observe signatures of the selection rules resulting in dominant population of states with

an even (odd) angular momentum quantum number for the absorption of even (odd) photons in

the plots on the left (right). This shows that in the intensity regime of 1013 to 1014 W/cm2 the

parity selection rules, previously studied for monochromatic fields and flat-top pulses, are effective

for long pulses of about 20 cycles. Since the parity effect is found to occur independent of the

form of the envelope we restrict ourselves below to pulses with sine-squared envelope. However,

we observe that the contrast between the population in even and odd states is stronger at lower

intensities. We will further discuss this aspect in subsection 5.1.1.2.

The results also show that for an odd parity process (right column) predominantly one angular

momentum state (l = 5) is populated. This is in agreement with the results presented by Li et

al. [144], who conjectured that electrons in the low angular momentum states more easily absorb

additional photons resulting in suppression of population in these states due to ionization. However,

our results for even parity processes exhibit a pattern, alternating in l, showing that both low and
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high angular momentum states, except for the s-states, remain populated at the end of the pulse.
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Figure 5.3: The absorption pathways in an even (odd) photon process in the left (right) panel. Green
squares represent virtual states with energy Nω above the ground state and angular momentum l.
The yellow squares represent real states labeled by the quantum numbers. Solid lines refer to open
pathways while dashed lines represent pathways which are suppressed due to population trapping
in a lower excited state. (Figure taken from [237])

We therefore put forward an alternative explanation. To this end, in Fig. 5.3 we show the

various pathways leading to a resonant population in the n = 8 (and the other Rydberg) states

for absorption of an even (top panel) or an odd (bottom panel) number of photons, termed by

Np. Starting from the 1s ground state, the absorption of successive photons proceeds through

virtual states (depicted via empty green squares in Fig. 5.3), following the selection rule ∆l = ±1.

As mentioned above, for the hydrogen atom and a pulse at a central wavelength of 800 nm the

(shifted) n = 3 and n = 2 states are approximately resonant via Np−1 and Np−2 photon processes,

as shown in Fig. 5.3 (real states are depicted by yellow squares labeled with quantum number nl).

Assuming that the resonant transitions to lower lying energy levels cause a trapping of population

in these states, further absorption from these states will be suppressed. Such suppressed pathways

are denoted by dashed lines in Fig. 5.3, while other (open) pathways are represented by solid lines.

Following the pathways, we see that in the manifold of the Rydberg levels for an even number

photon process (left panel) the l = 2 state is partially and the l = 4, 6, . . . states are fully accessible,

while the l = 0 (s-state) should be suppressed, which is in agreement with the pattern, alternating

in l, that we observe in Figs. 5.1 and 5.2 (left columns). In contrast, for an odd number photon
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process (right panel) the pathways to the l = 1 states are strongly and those to the l = 3 states are

partially suppressed, making the states with l = 5 state the first fully accessible states among the

Rydberg levels, in agreement with the results presented in Figs. 5.1 and 5.2 (right columns).

5.1.1.2 Short vs. long pulses and CEP effects
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Figure 5.4: Excited state distribution as function of l (horizontal axis) and n (vertical axis) at the
end of 2 cycle (panels on left), 10 cycle (panels in middle), and 20 cycle (panels on right) pulses,
at low peak intensity I0 = 3.4 × 1013 W/cm2 (top row), and high peak intensity I0 = 1.64 × 1014

W/cm2 (bottow row). (Figure taken from [237])

The time-frequency uncertainty relation yields that a pulse spectrum broadens as the number

of optical cycles decreases. Consequently, in an ultrashort pulse an excited state can be reached

via absorption of different number of photons. Due to this mix of even and odd number of photon

processes one may expect that in such pulses a separation in population of odd vs. even angular

momentum quantum states cannot be achieved. This is confirmed by the results of our numerical

calculations at low and high intensities, shown in Fig. 5.4(a) and (d). For a 2 cycle pulse there is a

smooth distribution over the lower angular momentum states for each principal quantum number

at low (3.4× 1013 W/cm2, panel (a)) and high (1.64× 1014 W/cm2, panel (d)) peak intensity.
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In contrast, the narrowing of the energy spectrum as pulse duration increases does not neces-

sarily lead to an increase of the population in the angular momentum states of one parity over the

other. For the low intensity 10-photon resonant process (3.4 × 1013 W/cm2, Fig. 5.4, upper row)

we observe in the numerical results that Rydberg states with a well defined angular momentum

parity are predominantly populated when the pulse duration is increased to 10 and 20 cycles. On

the other hand, at the higher intensity (1.64× 1014 W/cm2, Fig. 5.4, lower row) we observe some

contrast between the population in the angular momentum states of different parity for the 10 cycle

pulse (panel (e)), while the differences in the population of the different channels further blurs when

the duration is increased to 20 cycles (panel (f)).

Within the interpretation of resonant excitation the loss of the parity effect for long pulses

with high peak intensities can be understood as follows. At the higher peak intensity, the highly

excited states are shifted into resonance for 10-14 photon processes over the rising and trailing parts

of the pulse, before they are resonantly excited with a 15 photon process at the peak intensity.

Although the excitation probability raises with an increase of the intensity during the pulse, the

time intervals over which the states are in resonance with a certain photon-order process increase

with the pulse length. Thus, there is a significant excitation of the Rydberg states due to the

absorption of odd as well as even numbers of photons in a pulse at high peak intensity and long

duration.
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Figure 5.5: Population of excited states from a 20 cycle pulse with peak intensity of I0 = 1.64×1014

W/cm2 and CEP of φA = 0.204π (a) and φA = 0.882π (b). (Figure taken from [237])

Furthermore, excitation channels driven by absorption of different numbers of photons with
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the same parity may interfere, leading to the enhancement or suppression of population in certain

angular momentum states and the loss of the parity effect. Interference effects in excitation have

been studied extensively in the few-photon regime. Among others, it has been shown that the

excitation probabilities can be controlled via the carrier envelope phase (CEP) of the pulse, even

in the long pulse limit (e.g., [257, 245]). We observe in the results presented in Fig. 5.5 that

the population distribution in the angular momentum states driven by the present more complex

multiphoton processes indeed changes significantly with variation of the CEP at high intensities,

indicative of potential interference effects.

We note that there may exist alternative explanations for the loss of the parity effect in the

distribution at long pulses with high peak intensity. For example, in the tunneling regime the

mechanism of frustrated ionization has been explored [180]. According to that mechanism highly

excited states are populated during the trailing edge of the pulse by deceleration of the electron

over many laser cycles and electron recapturing once the laser pulse ceases. Since excited states

of any angular momentum can be populated during the recapturing, the loss of the parity effect

for long pulses at intensities in the tunneling regime is consistent with the frustrated ionization

mechanism as well.

5.1.2 Radiation spectra

It has recently been discussed [38, 32, 19] that the population of excited Rydberg states leads

to the emission of radiation due to the transition from the excited states into the ground state,

which can be observed in the below-threshold part of high harmonic spectra. In the case of atomic

hydrogen such emission is associated with an excitation of the np states. In view of the parity effect

in the excitation of the Rydberg states according to the absorption of an even or odd number of

photons, we expect that the emission may be enhanced or suppressed in certain intensity regimes.

To allow for the separation between the field induced and field free radiation we have calculated
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the high harmonic spectrum from the dipole acceleration a(t) such that

fHHG(ω; tf ) ∝
tf∫

−∞

a(t′)e−iωt
′
dt′. (5.2)
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Figure 5.6: Radiation spectra generated during the pulse (red dashed lines) and those including
line emissions after the pulse (black solid lines) are shown for peak intensities: (a) I0 = 3.4× 1013

W/cm2, (b) I0 = 6.0× 1013 W/cm2, and (c) I0 = 1.64× 1014 W/cm2. The vertical gray lines show
the field free energy differences between the np energy levels (up to 14p) and the 1s ground state.
(Figure taken from [237])

In Fig. 5.6 we present the radiation spectrum in the region of the 7th and 9th harmonics

produced by a 20 cycle, sin squared, 800 nm pulse at intensities (a) I0 = 3.4 × 1013 W/cm2, (b)

I0 = 6.0 × 1013 W/cm2, and (c) I0 = 1.64 × 1014 W/cm2. In each panel the red dashed line

shows the spectrum generated during the pulse (tf = τ) while the black solid line includes free

propagation after the pulse has ended (tf = 2τ). The difference between the two spectra exhibits

the radiation related to the transitions from the populated excited np states at the end of the pulse

to the ground state, which has previously been identified in both experiment [38] and macroscopic

simulations [32, 19].

Comparison of the spectra obtained at the two intensities clearly exhibits the expected dif-

ference in the features related to the parity effect in the population of the Rydberg states. At

an intensity of 3.4 × 1013 W/cm2 (Fig. 5.6a), the (shifted) Rydberg energy levels are resonantly

excited with a 10 photon process leading to population of the even angular momentum states.

Consequently, the spectrum is free of line emission from the almost unpopulated Rydberg p-states

while we find a strong line corresponding to the strongly populated 3p state, which is near resonant

with a 9 photon process. In contrast, by shifting the states by the energy of an additional photon,
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at an intensity of 6.0 × 1013 W/cm2 (Fig. 5.6(b)) we observe a rich line emission spectrum just

below the 9th harmonic line emissions from the np-states, that are resonantly populated by a 11

photon process. We note that the 6p and 7p states are the most populated np states and as a result

have the strongest emission lines. On the other hand the line corresponding to the 3p state, which

cannot be populated by absorption of 10 photons, is strongly suppressed.

As discussed in section 5.1.1.2, at the highest intensity I0 = 1.64×1014 W/cm2, the population

distribution in the angular momentum well defined parity begins to blur. This leads to a relatively

even population in states with principle quantum number 4 to 14 seen in (Fig. 5.4(f)). As a result,

we see in Fig. 5.6(c) line emission from all populated np states with similar strengths for the states

resolved in our spectrum.

5.1.3 Summary

We have analyzed in this section the angular momentum distribution in the Rydberg states

of a hydrogen atom excited by a short strong laser pulse, based on numerical results of the time

dependent Schrödinger equation, which we solved using a second order Crank-Nicolson scheme. At

low intensities the pattern in the population across the angular momentum states can be explained

via a parity effect due to the selection rules in multiphoton absorption along with the suppression of

pathways due to population trapping in low excited states, if the applied laser pulse is not too short.

At high intensities the parity effect gets lost even for long pulses, potentially since the Rydberg

states are in resonance with photon processes of different orders for a significant time during the

rising and trailing parts of the pulse. We predict that the parity effect can be observed via the

strengths of the line emissions from the np states emitted after the end of the pulse.
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5.2 Bi-circular polarization2

The time-dependent Schrödinger equation for the interaction of a electron in the potential of

the hydrogen atom with a superposition of two circularly polarized intense laser pulses in dipole

approximation and velocity gauge is given in Eq. 3.33 . The wavefunction Ψ is expanded in spherical

harmonics up to lmax = 45 and mmax = 45. The radius is discretized using fourth order finite

difference method with a grid spacing of 0.1 a.u. and a maximum radius of 750 a.u. with exterior

complex scaling on the outer 38 a.u. of the grid. The wavefunction is propagated in time using the

Crank-Nicolson method with a time step of 0.05 a.u. The choice of gauge was based on the faster

convergence of calculations in the velocity gauge for expansions of the wavefunction in spherical

harmonics [41, 88].

The interaction with the bicircular laser pulse is implemented via the total vector potential

as:

A(t) = Aω(t) + A2ω(t) (5.3)

where

AΩ(t) = A0,Ω sin2

(
πt

τΩ

)

× [sin (Ωt) x̂ + εΩ cos (Ωt)ŷ] (5.4)

for Ω = ω and 2ω, respectively. A0,Ω = c
√
IΩ

Ω , τΩ = 2πNΩ
Ω , and c is the speed of light, where IΩ

is the peak intensity and NΩ denotes the number of cycles. εΩ = ±1 denotes the helicity of the

fundamental and 2nd harmonic pulse, respectively.

We have performed numerical calculations for the interaction of hydrogen atom with co- and

counter-rotating bicircular pulses operating at the central wavelengths of 800 nm and 400 nm.

Intensities of the two pulses were varied to study the distribution in the excited states as function

2 The content of this section has been also published in J. Venzke, Y. Gebre, et al., Phys. Rev. A 101, 053425
(2020).

3 The corresponding numerical code has been developed by another graduate student (Y. Gebre). Results of that
code have been tested well against results obtained using length gauge with the numerical program described in this
thesis.
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of all quantum numbers, principal, angular momentum and magnetic. For the results presented

below we have used pulses with the same pulse duration in time.

5.2.1 Excitation with co-rotating pulses

Figure 5.7: Excited state distribution as function of n (vertical axis) and ` (horizontal axis) for (a)
m = −1, (b) m = −2, (c) m = −3 and (d) m = −4 at the end of 20 (at 800 nm) cycle pulses
(40 cycle at 400 nm) with sin squared envelope and total peak intensity of 1 × 1014 W/cm2 for
co-rotating laser pulses of equal intensity. (Figure taken from [234])

Selection rules for (single-)photon absorption from circularly polarized light are given by

∆l = ±1 and ∆m = ±1, where the change in the magnetic quantum number is positive (negative) if

the helicity of the light is right- (left-)handed. Extending the concept to multiphoton absorption, the

simultaneous change in both quantum numbers puts distinct constraints on the parity and helicity

of the accessible excited states in the atoms upon absorption of multiple photons. Specifically, it

is expected that states in which ` and m are either both even or both odd are being populated

during the interaction with the field. This selection holds for the interaction with a single circularly

polarized pulse as well as for the case of a superposition of two (or more) of such fields, independent

of the relative helicity of the two pulses.

In Fig. 5.7 we show examples of the population in the excited states of hydrogen atom

as a function of n and ` for various m values at the end of the interaction with bichromatic co-

rotating left-handed circularly polarized pulses. The results clearly confirm the expected population

distribution in states with either odd or even parity for a given value of m according to the selection

rules upon multiphoton absorption. The present results have been obtained for interaction with

equal peak intensities I400 = I800 = 5× 1013 W/cm2.
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Due to the correlation in changes of m and ` the observed pattern is independent of total

peak intensity, ratio of peak intensities and pulse duration, as long as the dipole approximation

holds. In our studies we have verified this up to intensities of 1 × 1014 W/cm2. This is different

from the case of linear polarization [237], where selective population concerning the parity of the

populated excited states is observed for long pulses and low peak intensities only. In that case

the restriction to a given m-channel and a broad energy spectrum (for short pulse durations) or a

significant Stark shift of the excited states (at high peak intensities) leads to a mixing of population

over the states with odd and even orbital angular momentum quantum numbers.
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Figure 5.8: Absorption pathways in co-rotating laser pulses at frequencies ω and 2ω starting from
a m = 0-state. Without lack of generalization it is assumed that both pulses have left-handed
helicity. Absorption of a photon at frequency ω and at frequency 2ω is represented by a red and
blue arrow, respectively. The numbers in the boxes denote the minimum number of photons to
reach a certain level. (Figure taken from [234])

In co-rotating bicircular laser pulses all the photons have the same spin (either +1 or −1),

consequently the magnetic quantum number always changes either by ∆m = +1 or by ∆m = −1

upon absorption of each photon. For our studies we have chosen left-handed helicity for both pulses

and, hence, only excited states with negative m can be populated upon absorption of photons from

the ground state with m = 0 (c.f., Fig. 5.8). Therefore, as already mentioned in Ref. [156], only

Rydberg states with high orbital angular quantum number ` are accessible. For example, for

excitation of Rydberg states (with n ≥ 4) in the hydrogen atom, the absorption of at least 4
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photons in laser field at 400 nm or at least 8 photons at 800 nm is required. Thus, Rydberg states

with ` < 4 (and m > −4) cannot be populated just via photon absorption alone.

Figure 5.9: Excited state distribution as function of orbital angular quantum number ` summed
over n ≥ 4 and m at (a) I400 = 5 × 1013 W/cm2, I800 = 5 × 1012 W/cm2, (b) I400 = 5 × 1013

W/cm2, I800 = 1× 1013 W/cm2, (c) I400 = 5× 1013 W/cm2, I800 = 5× 1013 W/cm2, and and (d)
I400 = 1× 1013 W/cm2, I800 = 5× 1013 W/cm2. Pulse durations: 20 cycles at 400 nm, 10 cycles at
800 nm. (Figure taken from [234])

Accordingly, the angular momentum distribution in the Rydberg states is controlled via the

relative intensity of the two fields at the fundamental and second harmonic frequency. This is

demonstrated in Fig. 5.9, where the excited state distribution as a function of `, summed for n ≥ 4

and all m, is shown. For large ratio of I400/I800 = 10 (panel (a)) the distribution is centered, as

expected, about ` = 4. As the intensity ratio decreases, high orbital angular momentum states get

increasingly populated due to the impact of the laser pulse at 800 nm.

Another interesting feature in Fig. 5.9 is that the population in angular momentum states

with ` < 4 increases significantly when the intensities of the two pulses are similar. Further

insight can be gained by the distribution over the magnetic quantum number, which is displayed

in Fig. 5.10(c) for the case of equal intensities. It is clearly seen that Rydberg states with magnetic

quantum numbers between m = 0 and m = −3 are populated. In view of the number of photons

needed to reach the Rydberg levels, the population in these states cannot be explained by absorption

of photons only.

Instead, we propose the following mechanism: Initially, Rydberg states with ` ≥ 4 are pop-

ulated via the absorption pathways shown in Fig. 5.8. Then a redistribution of population occurs

via Raman-type Λ-transitions (c.f., [81, 60]). In the present bichromatic laser field the Λ-process
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Figure 5.10: Excited state distribution as function of n (vertical axis) and m (horizontal axis)
summed over `. Laser parameters: 20 (800 nm) cycle pulses with sin squared envelope and total
peak intensity of 1× 1014 W/cm2 for co-rotating laser pulses of equal intensity. (Figure taken from
[234])

leads to a change in the magnetic quantum number, if photons from both fields are involved. For

the absorption of one 400 nm photon and emission of two 800 nm photons the magnetic quantum

number between initial and final state changes by ∆m = +1.

The order of absorption and emission may vary, i.e., the redistribution process can either

proceed via the continuum (absorption first, Fig. 5.10(a)) or via a lower excited state (emission

first, Fig. 5.10(b)). A larger change in m is achieved either via a sequence of these Λ-processes or

by higher order processes (e.g., absorption of two 400 nm photons followed by emission of four 800

nm photons leading to ∆m = +2). We note that similarly the absorption of two photons at 800

nm and the emission of a 400 nm photon will lead to a change of ∆m = −1 in the present set-up

and, hence, contribute to population of states with higher ` and m.

Our interpretation is further supported by the results in Fig. 5.11, which shows how the

population in states of certain quantum numbers for (a) ` = 2 and (b) ` = 3 changes as function of

the relative intensity of the two pulses. It is clearly seen that the population in these quantum states,

which are not accessible via direct absorption of photons from the ground state, increases as the

intensity of the pulse at 800 nm increases. Thus, these results provide further indications that the
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Figure 5.11: Distribution in magnetic quantum states for (a) ` = 2 and (b) ` = 3 and different
peak intensities of the 800 nm pulse. I400 = 5 × 1013 W/cm2 and other parameters are as in
Fig. 5.10. (Figure taken from [234])

presence of the redistribution process depends on the impact of both pulses and its effectiveness

increases with increase of the total intensity, in agreement with our interpretation of a Λ-type

process. The redistribution of population in Rydberg states via higher-order Raman-like process

induced by co-rotating bi-circular laser fields has been further studied in a project led by another

graduate student [77].

5.2.2 Excitation with counter-rotating pulses

As discussed in the previous subsection, the selection rules by which only states with ` and

m either both even or both odd hold independent of the relative helicity of the two pulses. This
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Figure 5.12: Same as Fig. 5.7 but for counterrotating laser pulses. (Figure taken from [234])

is confirmed by the results that we obtained for the interaction with two counterrotating pulses at

equal intensities and equal pulse duration presented in Fig. 5.12. Depending on whether m is even

or odd, the distribution over the orbital angular momentum shows population in states with even

or odd parity. As in the case of corotating pulses, the observed pattern is found independent of

total peak intensity, ratio of peak intensities and pulse duration.

Np(ω) : 0

Np(ω) : 1

Np(ω) : 2

Np(ω) : 3

Np(ω) : 4

m : − 4 − 3 − 2 − 1 0 1 2 3 4

0

1

2 1

3 2 3

4 3 2

Figure 5.13: Absorption pathways in counter-rotating laser pulses at frequencies ω and 2ω starting
from a m = 0-state. Without lack of generalization it is assumed that the pulses at frequency ω
has left-handed helicity, while the second harmonic pulse has right-handed velocity. Other symbols
as in Fig. 5.8. (Figure taken from [234])

Since in counter-rotating bicircular laser pulses photons of the two fields have opposite spin,

starting from the ground state with m = 0, excited states with both positive and negative magnetic

quantum numbers can be populated. The absorption pathways for the set-up chosen in the present

studies, namely right-handed helicity for the 800 nm pulse and left-handed helicity for the second

harmonic, are shown in Fig. 5.13. As can be seen from the Figure, the magnetic quantum num-
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ber reflects the difference between the number of 400 nm photons and that at 800 nm absorbed.

Furthermore, it can be seen that for a given total photon energy absorbed states with magnetic

quantum numbers separated by ∆m = ±3 are populated.

Figure 5.14: Excited state distributions as a function of m, summed over n ≥ 4 and ` (top), and as
a function of n and m, summed over ` (bottom), for the interaction with a left-handed circularly
polarized laser pulse at 800 nm (20 cycles) and a right-handed circularly polarized laser pulse at
400 nm (40 cycles). Both pulses have the same peak intensity of 5 × 1013 W/cm2. (Figure taken
from [234])

These features are clearly present in the population distributions as function of m, summed

over n and ` (top), and of n and m, summed over ` (bottom), in Fig. 5.14, which show the results

for counter-rotating pulses of equal peak intensity. In the Rydberg manifold (n ≥ 4) the highest

populatedm-states differ by ∆m = ±3, other states show some but lower population as the manifold

is AC-stark shifted during the interaction with the pulses. In view of the nonlinearity of multiphoton

processes, it is likely that the states showing the largest probability are being populated near the

peak of the pulses at which the highest total intensity is present. Overall, the strongest population

is seen for states with negative magnetic quantum numbers, leading to the conclusion that it most

likely that either five (for excited states with m = −5) or two (for excited states with m = −2)

more 800 nm photons with left-handed helicity than 400 nm photons with right-handed helicity are

being absorbed.

The distributions in Fig. 5.14 do not extend much beyond |m| = 5, which is consistent with
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Figure 5.15: Orbital angular momentum distributions in excited states induced by counter-rotating
laser pulses at 400 nm (20 cycles) and 800 nm (10 cycles) at peak intensities of (a) I400 = 5× 1013

W/cm2, I800 = 5 × 1012 W/cm2, (b) I400 = 5 × 1012 W/cm2, I800 = 5 × 1013 W/cm2, and (c)
I400 = 5× 1013 W/cm2, I800 = 5× 1013 W/cm2. (Figure taken from [234])

the results shown in Fig. 5.15 showing that there appears to be a highest orbital angular momentum

number `max beyond which the population in the states drops off quickly. This is in agreement

with previous studies for Rydberg state excitation [194, 237] and low energy angular momentum

distributions [6]. In Ref. [6] a random walk analysis of the absorption pathways between the

accessible quantum states is used to obtain the classical orbital angular momentum for a electron

with zero energy in a laser field has been derived as L =
√

2Zα0 where Z is the charge of the

residual ion and α0 is the quiver radius. Relating classical orbital angular momentum and the

orbital angular momentum quantum number by ` ≈ L − 1/2 we have estimated the maximum

` gained in the bicircular counter-rotating pulse. The estimates, shown by the solid red lines in

Fig. 5.15, are in good agreement with the cut-offs seen in the numerical results. We note that the

random walk analysis of Ref. [6] can be applied in the case of counter-rotating pulses, since in each

absorption step ∆m = ±1 and hence, in general, ∆` = ±1 is possible. In contrast, for co-rotating

pulses the changes in magnetic and angular quantum number are determined in each absorption

step (∆m = −1, ∆` = +1) and hence a random walk analysis is not applicable and a cut-off cannot

be derived.
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5.2.3 Summary

In this section we have studied the distributions over the orbital angular momentum (`)

and magnetic (m) quantum numbers in Rydberg states due to the interaction with bichromatic

circularly polarized laser pulses. Multiphoton selection rules lead to population of states in which

` and m are either both even or both odd, independent of relative helicity, peak intensity and pulse

duration. In the case of co-rotating pulses the results show that the distribution over the magnetic

quantum number can be controlled via the intensities of the two pulses. Furthermore, we propose

that the states are populated via direct absorption from the ground state and via Λ-type transitions

between Rydberg states of different ` and m, involving two photons at the fundamental wavelength

and one photon at the second harmonic. For bicircular laser pulses with opposite helicities Rydberg

states with magnetic quantum numbers that differ by ∆m = ±3 are predominantly populated. The

pattern allows to gain insights into the relative number of photons absorbed from the two fields. The

distribution is however restricted by the maximum orbital angular momentum quantum number

that can be estimated by classical considerations.



Chapter 6

Towards studies of correlation effects in attosecond electron dynamics

Solving the TDSE for two active electrons is a computationally difficult task. A naive ap-

proach would be to discretize the six spatial dimensions using finite difference. This approach

would provide a straightforward solution and runs well on supercomputing systems, however, the

size of the wavefunction scales like N6 where N is the number of grid points in each dimension.

Therefore, if one were to use a typical grid of 1000 points in each dimension, the wavefunction

would be 1018 points in size. Merely writing down the wavefunction in double precision floating

point numbers would require 16 Exabytes of RAM, approximately 100 times more RAM than exists

on the largest supercomputer in the world (Summit, Oak Ridge Leadership Computing Facility).

Instead, it is more convenient to choose a coordinate system and basis that greatly reduces the

size of the problem. One common approach is to use bi-spherical harmonics (e.g. [231]). In this

case, the position of each electron is expanded in 3D spherical coordinates. The radius is discretized

with finite difference, B-splines, finite-element discrete variable representation (FEDVR), or similar

method, and the two angular coordinates are expanded in the standard 3D spherical harmonics in

the same way a single-active electron code would do. When taking the tensor product of the two

electrons, the electron-electron repulsion term is then expanded in spherical harmonics such that

1

|r1 − r2|
= 4π

∞∑

`=0

m=∑̀

m=−`

1

2`+ 1

r`<

r`+1
>

Y ∗`m(θ1, φ1)Y`m(θ2, φ2). (6.1)

This results in a representation of the 6D space that can be used to solve the problem of two

electrons in a molecular or atomic potential interacting with a laser.
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In the bi-spherical codes, one must discretize two radii. As the grid increases in size, the code

still scales like N2. To circumvent this problem, we have implemented a code that contains a single

hyper-radius (R) and five angles that are expanded in 6D hyperspherical harmonics. Therefore, as

the grid size is increased, the code scales like N and the number of spherical harmonics is controlled

by the laser parameters. In the following section, we will describe the details to utilize two different

“coordinate systems” that solve the two active electron problem. The first is based on the use

of Jacobi coordinates, which allows for the finite mass of the nucleus to be accounted for. The

second is applied when using the infinite mass approximation for the nucleus, which allows that the

distance between the two electrons to be accessed more directly. The two problems can be solved

with similar sized wavefunctions, however, the time to calculate matrix elements is greatly reduced

in the second method.

This chapter covers the background for the TDSE program developed in hyperspherical coor-

dinates in Sec. 6.1 including the definition of hyperspherical harmonics in Sec. 6.1.1, the application

of Jacobi coordinates in Sec. 6.1.2, and the application of electron coordinates in Sec. 6.1.2. A dis-

cussion of the implementation of the code and first tests will be presented in Sec. 6.2 while Sec. 6.3

provides a brief overview of the challenges that remain and useful next steps which could make it

possible to run fully correlated two-electron calculations on desktop machines.

6.1 TDSE in hyperspherical coordinates

The TDSE

i
∂

∂t
Ψ = ĤΨ (6.2)

with Hamiltonian written in hyperspherical coordinates is given by

Ĥ = −1

2

[
1

R5

∂

∂R

(
R5 ∂

∂R

)
− K̂2(Ω5)

R2

]
+
W (Ω5)

R
, (6.3)

where R =
√∑

i x
2
i is the hyperradius with xi being a Cartesian coordinate, K̂ is the angular

momentum operator, Ω5 is the solid angle in 6D (5 angles), and V (R) = W (Ω5)/R being the

potential. We will use the hyperspherical harmonics which contain two-3D sub spaces as described
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in Sec. 6.1.1. The resulting volume elements are

dτ = R5drdΩ5 (6.4)

dΩ5 = cos2 α sin2 αdαdω (6.5)

dω = sin θr1dθr1dφr1 sin θr2dθr2dφr2 (6.6)

where θi and φi denote the angles in the i = r1 and i = r2 sub coordinate systems and α is the angle

produced by the right triangle with sides R, r1, and r2 as shown in Fig. 6.1. r1 and r2 will denote

the Jacobi Coordinates, if a finite mass nucleus is considered, or the single electron coordinates

when the infinite mass approximation is made.

r1

R
r2

α

Figure 6.1: Relation of the hyperradius (R) to the two single-electron sub coordinate systems (r1,
r2).

As for the 3D TDSE, it is beneficial to remove the first derivative in the radial equation.

This is accomplished by substituting Ψ = ψ/R5/2 to get as Hamiltonian

Ĥ = −1

2

[
∂2

∂R2
− K̂2(Ω5) + 15/4

R2

]
+
W (Ω5)

R
. (6.7)

The wavefunction can now be written as

ψ =
∑

K

UK(R)YK(Ω5) (6.8)

with UK(R) being the hyperradial part of the wavefunction and YK(Ω5) being the 6D hyperspherical

harmonics described in Sec. 6.1.1. Since hyperspherical harmonics are eigenfunctions of K̂2 with

eigenvalue K(K + 4), the Hamiltonian becomes

ĤK = −1

2

[
∂2

∂R2
− K(K + 4) + 15/4

R2

]
+
W (Ω5)

R
. (6.9)
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We solve this equation using finite difference to discretize the hyperradial function UK(R). For

W (Ω5) = 1 the equation is the 6D hydrogen atom (i.e. an electron interacting with a Coulomb

potential in 6 spacial dimensions, rather than the typical 3 spacial dimension) with an analytic

solution that can be used to test the hyperadial portion of the code (see [222] for energy levels).

The angular portion of the equations is then expanded in hyperspherical harmonics. The details of

the expansion are the focus of the remainder of this section.

6.1.1 Hyperspherical harmonic definition

There are multiple ways to define hyperspherical harmonics in 6D. Since they are equivalent

up to a unitary rotation, it is best to choose those that match the symmetry of the problem. In our

case, we choose spherical harmonics that contain a hyperangle α that connects two-3D spaces as

shown in Fig. 6.1. The 3D spaces belong to coordinates r1 and r2 with radii r1 and r2 respectively.

These spaces will either represent a Jacobi coordinate (Sec. 6.1.2) or the space of each electron

(Sec. 6.1.3). The resulting 6D spherical harmonics are given by

Y
`r1 ,`r2
K,L,M (Ω5) =N

`r1 ,`r2
K P

(`r1+1/2,`r2+1/2)
n (cos(2α)) cos`r1 (α) sin`r2 (α) (6.10)

×
∑

mr1 ,mr2

〈L,M |`r1 ,mr1 , `r2 ,mr2〉
[
Y`r1 ,mr1 (r̂1)Y`r2 ,mr2 (r̂2)

]
(6.11)

with

N
`r1 ,`r2
K =

√
2(K + 2)(n!)Γ(n+ `r1 + `r2 + 2)

Γ(n+ `r1 + 3/2)Γ(n+ `r2 + +3/2)
. (6.12)

where P
(α,β)
n is the Jacobi polynomial, 〈L,M |`r1 ,mx, `y1 ,my〉 is a Clebsch–Gordan coefficient

(CGC), Γ is the gamma function, Y`r,mr(r̂) is the standard 3D spherical harmonics, Ω5 is the

6D solid angle containing five angular dimensions, and n = (K − `x1 − `y1)/2. K, L, M , `r1

and `r2 are the quantum numbers with K = 2n + `x1 + `y1 being the grand angular momentum,

`r1 ≥ 0 and `r2 ≥ 0 being the angular momentum for the r1 and r2 coordinates, respectively,

|`r1 − `r2 | ≤ L ≤ `r1 + `r2 and −L ≤ M ≤ L. We define K = {K,L,M, `r1 , `r2} allowing for the

simplified notation YK(Ω5).
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The hyperspherical harmonics contain three parts, each depending on one free parameter α,

r1, and r2. By defining

P̃
`r1 ,`r2
n (α) = N

`r1 ,`r2
K P

(`r1+1/2,`r2+1/2)
n (cos(2α)) cos`r1 (α) sin`r2 (α) (6.13)

hyperspherical harmonics become

Y
`r1 ,`r2
K,L,M (Ω5) = P̃

`r1 ,`r2
n (α)

∑

mr1 ,mr2

〈L,M |`r1 ,mr1 , `r2 ,mr2〉
[
Y`r1 ,mr1 (r̂1)Y`r2 ,mr2 (r̂2)

]
, (6.14)

which highlights the three main components including the dependence of the angles in the spaces

r1 and r2 as well as the dependence on the hyperangle α that couples the two spaces.

6.1.2 Jacobi coordinates

Jacobi coordinates are often used for studying many body interactions. They are defined

by choosing a particle and defining a relative coordinate between the chosen particle and a second

particle. The next particle is defined by a coordinate connecting the center of mass of all the

previous particles to the new particle. The pattern continues until all particles have been included.

The result is a set of coordinates that has dimension 3(N − 1) assuming the exact location of the

center of mass Rcm in space is irrelevant. For a three particle system, the center of mass is given

by

Rcm =
m1r1 +m2r2 +m3r3

M
(6.15)

with mi being the mass of the ith particle, ri being its spatial coordinate, and M =
∑3

i=1mi. The

three convenient sets of Jacobi coordinates are

x1 =

[
m2m3M

m1(m2 +m3)2

]1/4

(r3 − r2); y1 =

[
m1(m2 +m3)2

m2m3M

]1/4(
r1 −

m2r2 +m3r3

m2 +m3

)
(6.16)

x2 =

[
m3m1M

m2(m3 +m1)2

]1/4

(r1 − r3); y2 =

[
m2(m3 +m1)2

m3m1M

]1/4(
r2 −

m3r3 +m1r1

m3 +m1

)
(6.17)

x3 =

[
m1m2M

m3(m1 +m2)2

]1/4

(r2 − r1); y3 =

[
m3(m1 +m2)2

m1m2M

]1/4(
r3 −

m1r1 +m2r2

m1 +m2

)
. (6.18)

The three coordinate systems are depicted in Fig. 6.2. For the Helium atom we choose the nucleus

as m1 and the two electrons as m2 and m3. For the rest of the section, we set m1 → ∞ and
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m2 = m3 = m such that

x1 = β1(r3 − r2); y1 =
1

β1

(
r1 −

r2 + r3

2

)
(6.19)

x2 = β2(r1 − r3); y2 =
1

β2

(
r2 −

r3 + r1

2

)
(6.20)

x3 = β3(r2 − r1); y3 =
1

β3

(
r3 −

r1 + r2

2

)
, (6.21)

where β1 = 1/
√

2 and β2 = β3 = 1 within the infinite mass approximation. By applying a

Raynal-Revai coefficient (RRC) it is possible to transition between the three different coordinate

systems. The transformation conserves the angular momentum quantum numbers K, L, and M of

the hyperspherical harmonics.

m1

m3 m2
x1

y1

Coordinate: 1

RRC

PRRC = 1

m2

m1 m3
x2

y2

Coordinate: 2

RRC

PRRC = 2

m3

m2 m1
x3

y3

Coordinate: 3

Figure 6.2: The Jacobi coordinates for three body interactions. Each coordinate can be obtained
from the previous by utilizing a Raynal-Revai coefficient.

The RRCs for rotating between coordinate system i and j can be written explicitly as

< `xj , `yj |`xi , `yi >K,L=
(−1)ni+nj√
C
nj
`xj `yj

Cni`xi`yi

∑

λ1,λ2,λ3,λ4

iλ2−λ1+`yi−`yj

[
4∏

k=1

(2λk + 1)

]

×
〈
λ10λ30

∣∣`xj0
〉
〈λ20λ30|`xi0〉

〈
λ20λ40

∣∣`yj0
〉
〈λ10λ40|`yi0〉

× sgn(a12)λ1 sgn(a21)λ2 sgn(a11)λ3 sgn(a22)λ4




λ3 λ1 `xj

λ2 λ4 `yj

lxi lyi L




×
∑

ν,µ

(−1)µ|a12|2µ+λ1+λ2 |a12|2ν+λ3+λ4Cµλ1λ2
Cνλ3λ4

(6.22)

where sgn(aij) is the sign of aij , between spherical harmonics with quantum numbersK = 2ni+`xi+

`yi = 2nj+`xj+`yj , the sums go over all possible combinations of K = 2(µ+ν)+λ1+λ2+λ3+λ4 with
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(λi, µ, ν = 0, 1, 2, · · · ),
〈
λ10λ30

∣∣`xj0
〉

is a Clebsch Gordan coefficient,




λ3 λ1 `xj

λ2 λ4 `yj

lxi lxy L




is a Wigner

9j symbol, Cµαβ = (2µ+α+β+1)!
(µ)!(µ+α+β+1)!(2(µ+α)+1)!!(2(µ+β)+1)!! , a11 = cos(ξki), a22 = cos(ξki), a12 = sin(ξki),

and a21 = − sin(ξki) with ξki = arctan
(
(−1)PRRC

√
Mmj/(mimk)

)
where mi is the mass of the ith

particle, M is the total mass and P is the number of permutations of m1 → m2 → m3 → m1 as

shown in Fig. 6.2. As the value of K increases, RRCs become extremely computationally expensive

limiting the usefulness of this approach.

Utilizing the Jacobi coordinates, denoted by ‘1’ in Fig. 6.2, the Helium potential becomes

V (R) =
1

r23
− Z

r12
− Z

r13
(6.23)

which can be rewritten as

W (Ω5) = RV (R) =
1

x1

√
2
− Z

√
2

|ŷ1 + x̂1|
− Z

√
2

|ŷ1 − x̂1|
. (6.24)

By using the hyperspherical harmonics defined in Eq. 6.14, with r1 = x1 and r2 = y1, the first term

is easy to calculate through a 1D integral over α written explicitly below. However, the next two

terms would require a 5D integral which is expensive and numerically unstable if computed directly.

Instead, we will exchange particles in the coordinate system to allow the Jacobi coordinate xi to

correspond to the distance between the two interacting particles. The result is a 1D integral over α

that is similar to the electron-electron repulsion term. To achieve this, we utilize RRC (Eq. 6.22)

which allow us to write

Y
`xi ,`yi
K,L,M =

∑

`xj `yj

< `xj , `yj |`xi , `yi >K,L Y
`xj ,`yj
K,L,M (Ω5j ) , (6.25)

where Ω5i and Ω5j are the solid angles in the Jacobi coordinates labeled by i, j. We note that K,

L and M are conserved in this rotation allowing us to remove any subscripts.

For practical reasons, we need to calculate the matrix elements 〈K′|V (R = 1,Ω5i) |K〉 =

〈K′|W (Ω5i) |K〉 as the term 1/R can be factored out of V (R,Ω5i) removing its dependence on R.

We can then store the results of 〈K′|W (Ω5i) |K〉 in a hash table to be looked up when building the

matrix [126].
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The electron-electron repulsion term of W (Ω5) becomes

〈
K ′`′x1

`′y1
L′M ′

∣∣ 1√
2 cosα1

|K`x1`y1LM〉 =
1√
2
δ`′x1

,`x1
δ`′y1 ,`y1

δL′,LδM ′,M (6.26)

×
π/2∫

0

P̃
`′x1

,`′y1
n′ (α1)P̃

`x1 ,`y1
n (α1) sin2(α1) cos(α1)dα1 ,

(6.27)

where the delta functions arise from the integral over dω.

The Coulomb potential for the electron with mass m3 in W (Ω5) becomes

〈
K ′`′x1

`′y1
L′M ′

∣∣− Z R

r13
|K`x1`y1LM〉 =

∑

`x2 ,`y2

< `x2 , `y2 |`′x1
, `′x1

>K′,L′< `x2 , `y2 |`x1 , `x1 >K,L

(6.28)

×
〈
K ′`′x2

`′y2
L′M ′

∣∣ −Z
cosα2

|K`x2`y2LM〉 (6.29)

with PRRC = 1 and

〈
K ′`′x2

`′y2
L′M ′

∣∣ 1√
2 cosα2

|K`x2`y2LM〉 =
1√
2
δ`′x2

,`x2
δ`′y2 ,`y2

δL′,LδM ′,M (6.30)

×
π/2∫

0

P̃
`′x2

,`′y2
n′ (α2)P̃

`x2 ,`y2
n (α2) sin2(α2) cos(α2)dα2

(6.31)

and the Coulomb potential for the other electron (with m2) of W (Ω5) becomes

〈
K ′`′x1

`′y1
L′M ′

∣∣− Z R

r12
|K`x1`y1LM〉 =

∑

`x3 ,`y3

< `x3 , `y3 |`′x1
, `′x1

>K′,L′< `x3 , `y3 |`x1 , `x1 >K,L

(6.32)

×
〈
K ′`′x3

`′y3
L′M ′

∣∣ −Z
cosα3

|K`x3`y3LM〉 (6.33)

with PRRC = 2 and

〈
K ′`′x3

`′y3
L′M ′

∣∣ 1√
2 cosα3

|K`x3`y3LM〉 =
1√
2
δ`′x3

,`x3
δ`′y3 ,`y3

δL′,LδM ′,M (6.34)

×
π/2∫

0

P̃
`′x3

,`′y3
n′ (α3)P̃

`x3 ,`y3
n (α3) sin2(α3) cos(α3)dα3.

(6.35)
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Next, the laser potential for a linearly polarized laser aligned along the z-axis needs to be

calculated. The potential term is given by

Vlas(R) = −Ezz2 − Ezz3 = −2Ez
z2 + z3

2
, (6.36)

where z2 and z3 are the z-components of the two electrons and Ez is the magnitude of the z-

component of the electric field. Therefore, the laser couples to the z-component of the center of

mass of the two electrons namely

r2ecm =
r2 + r3

2
. (6.37)

Noticing that y1 from Eq. 6.16 contains r2ecm , the laser term only appears in the ŷ1 spherical

harmonics. Next, we need to calculate the Vlas(R) matrix element as

〈
K ′`′x1

`′y1
L′M ′

∣∣− 2Ezz2ecm |K`x1`y1LM〉 . (6.38)

In the infinite mass approximation, Rcm = y1 and therefore

z2ecm = β1y1 · ẑcm (6.39)

=
y1 cos(θy1)√

2
(6.40)

= 2

√
π

6
y1Y1,0(ŷ1) (6.41)

= 2

√
π

6
Rsin(α1)Y1,0(ŷ1) (6.42)

Using this in Eq. 6.38 we obtain

〈
K ′`′x1

`′y1
L′M ′

∣∣− 2Ezz2ecm |K`x1`y1LM〉 (6.43)

= −2Ez
〈
K ′`′x1

`′y1
L′M ′

∣∣ 2
√
π

6
Rsin(α1)Y1,0(ŷ1) |K`x1`y1LM〉
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which becomes

〈
K ′`′x1

`′y1
L′M ′

∣∣− 2Ezz2ecm |K`x1`y1LM〉

= −2Ezδ`′x1
`x1
δM ′MR

√
(2`′y1

+ 1)

2(2`y1 + 1)

×



π/2∫

0

P̃
`′x1

,`′y1
n′ (α1)P̃

`x1 ,`y1
n (α1) sin3(α1) cos2(α1)dα1




×
∑

m′x,m′y ,mx,my

[〈
`′y1
, 0, 1, 0

∣∣`y1 , 0
〉 〈
`′y1
,m′y, 1, 0

∣∣`y1 ,my

〉

×
〈
`′x1
,m′x, `

′
y1
,m′y

∣∣L′,M ′
〉
〈`x1 ,mx, `y1 ,my|L,M〉

]
(6.44)

Since the M quantum number does not change and M = 0 for the ground state of helium atom,

the sum over m′x,m
′
y,mx,my simplifies to a single sum over −min(L′, L) ≤ m ≤ min(L′, L) with

m′x = mx = −m and m′y = my = m as we get δm′y ,my from the second CGC, δm′x,−m′y (when

M ′ = 0) from the third CGC, and δmx,−my (when M = 0) from the forth CGC. If M 6= 0 is needed,

a different simplification is required.

6.1.3 Electronic coordinates

To remove the need for RRCs due to their numerical complexity for high K values, we will

use the nucleus as the origin and label the coordinates from the proton to the i-th electron as ri

where i = 1, 2. Therefore, we have

r1 =R cos(α) (6.45)

r2 =R sin(α) (6.46)

and a solid angle

dΩ5 = cos2(α) sin2(α)dαdωr1dωr2 . (6.47)

We will use spherical harmonics with labels Y
`r1 ,`r2
K,L,M (Ω5) where `ri is the spherical harmonic for the

3D space coordinate ri. The electron-nucleus terms take the form −Z/ri and the matrix elements
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become

−
〈
Ψ′
∣∣ Z
r1
|Ψ〉 = −Z

R
δL′,LδM ′,Mδ`′r1 ,`r1

δ`′r2 ,`r2

π/2∫

0

P̃
`′r1 ,`

′
r2

n′ (α)P̃
`r1 ,`r2
n (α) sin2(α) cos(α)dα (6.48)

and

−
〈
Ψ′
∣∣ Z
r2
|Ψ〉 = −Z

R
δL′,LδM ′,Mδ`′r1 ,`r1

δ`′r2 ,`r2

π/2∫

0

P̃
`′r1 ,`

′
r2

n′ (α)P̃
`r1 ,`r2
n (α) sin(α) cos2(α)dα. (6.49)

Note that the term 1/R can be factored out allowing the integral over α to be performed once and

stored in a lookup table to improve computational performance.

The electron-electron term is less straight forward. We start by using

1

|r1 − r2|
=
∞∑

`=0

∑̀

m=−`

4π

2`+ 1

r`<

r`+1
>

Y ∗`,m(r̂2)Y`,m(r̂1) (6.50)

and then after some extensive algebraic work we obtain

〈
Ψ′
∣∣ 1

|r1 − r2|
|Ψ〉 =

δL′,LδM ′,M
R

√
(2`′r1 + 1)(2`′r2 + 1)

(2`r1 + 1)(2`r2 + 1)
(6.51)

×
min(|`r1+`r2 |,|`

′
r1

+`′r2 |)∑

`=max(|`r1−`r2 |,|`′r1−`
′
r2
|)

〈
`′r1 , 0, `, 0

∣∣`r1 , 0
〉 〈
`′r2 , 0, `, 0

∣∣`r2 , 0
〉

(6.52)

×



π/4∫

0

P̃
`′r1 ,`

′
r2

n′ (α)P̃
`r1 ,`r2
n (α)

sin`+2(α)

cos`−1(α)
dα+

π/2∫

π/4

P̃
`′r1 ,`

′
r2

n′ (α)P̃
`r1 ,`r2
n (α)

cos`+2(α)

sin`−1(α)
dα




(6.53)

×
`′r1∑

m′r1=−`′r1 ,m
′
r2

=M ′−m′r1

〈
L′,M ′

∣∣`′r1 ,m′r1 , `′r2 ,m′r2
〉

(6.54)

×
`r1∑

mr1=−`r1 ,mr2=M−mr1 ,m=mr1−m′r1

(−1)m 〈L,M |`r1 ,mr1 , `r2 ,mr2〉 (6.55)

×
〈
`′r1 ,m

′
r1 , `,m

∣∣`r1 ,mr1

〉 〈
`′r2 ,m

′
r2 , `,m

∣∣`r2 ,mr2

〉
. (6.56)

Note the requirement for the last row gives m = mr1 −m′r1 and m = m′r2 −mr2 which gives the

delta function δM ′,M as well.

Finally, we need the laser operator

Vlas(R) = −Ezzr1 − Ezzr2 . (6.57)
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Since each electron has its own 3D space, it is easier to calculate the laser operator for each electron

independently. It is then convenient to define

Vlas(r1) = −Ezzr1 = −2Ezzr2

√
π

3
R sin(α1)Y1,0(r̂1), (6.58)

Vlas(r2) = −Ezzr2 = −2Ezzr2

√
π

3
R sin(α1)Y1,0(r̂2), (6.59)

Vlas(R) = Vlas(r1) + Vlas(r2). (6.60)

The resulting matrix elements are

〈
Ψ′
∣∣Vlas(r1) |Ψ〉 = −EzR

√
(2`′r1 + 1)

(2`r1 + 1)
δL′,L±1δM ′,Mδ`′r1 ,`r1±1δ`′r2 ,`r2

〈
`′r1 , 0, 1, 0

∣∣`r1 , 0
〉

(6.61)

×
π/2∫

0

P̃
`′r1 ,`

′
r2

n′ (α)P̃
`r1 ,`r2
n (α) sin3(α) cos2(α)dα (6.62)

×
min[l′r1 ,lr1 ,l

′
r2
,lr2 ]∑

mr=−min[l′r1 ,lr1 ,l
′
r2
,lr2 ]

〈
`′r1 ,mr, 1, 0

∣∣`r1 ,mr

〉
(6.63)

×
〈
L′,M

∣∣`′r1 ,mr, `r2 ,−mr

〉
〈L,M |`r1 ,mr, `r2 ,−mr〉 (6.64)

and

〈
Ψ′
∣∣Vlas(r2) |Ψ〉 = −EzR

√
(2`′r2 + 1)

(2`r2 + 1)
δL′,L±1δM ′,Mδ`′r1 ,`r1

δ`′r2 ,`r2±1

〈
`′r2 , 0, 1, 0

∣∣`r2 , 0
〉

(6.65)

×
π/2∫

0

P̃
`′r1 ,`

′
r2

n′ (α)P̃
`r1 ,`r2
n (α) sin3(α) cos2(α)dα (6.66)

×
min[l′r1 ,lr1 ,l

′
r2
,lr2 ]∑

mr=−min[l′r1 ,lr1 ,l
′
r2
,lr2 ]

〈
`′r2 ,mr, 1, 0

∣∣`r2 ,mr

〉
(6.67)

×
〈
L′,M

∣∣`r1 ,mr, `
′
r2 ,−mr

〉
〈L,M |`r1 ,mr, `r2 ,−mr〉 . (6.68)

In this derivation, we used M = 0 therefore mr1 = −mr2 . For M 6= 0 adjustments to the sum are

needed.
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6.2 Implementation and first tests

The RRC and non-RRC methods were both implemented in the same code, based on the

SAE-TDSE method. This allows for two electron calculations to be performed by simply changing

a few parameters in an input file.

Figure 6.3: Convergence of He atom first ionization potential (blue solid line) and excited states
(blue dashed line) with RRC (left) and non-RRC (right) methods. Reference lines for He-SAE
(black), NIST energies (red), and literature convergence (green, [126]) are shown.

To ensure the code is working properly, we have ran test on the convergences of the ionization

potential and low lying bound states shown in Fig. 6.3. Panel (a) shows the convergence of the RRC

method in blue as a function of the grand angular momentum using second order finite difference

with a grid spacing of 0.05 au. The convergence is in good agreement with the green lines from a

similar code [126]. Additionally, the NIST (red) and SAE potential (black) energy levels are shown.

Panel (b) shows the same data for the non-RRC method shown in blue. The non-RRC method has

more low lying bound states that are due to not separating out the eigenstates with two spin up

electrons. Taking account of it will reduce the runtime of the non-RRC method. As one can see,

both methods produce highly accurate bound states quite quickly. The excited states, however, are

slow to converge only outperforming the DFT based SAE potential energy levels with Kmax > 48.

As Kmax increases the matrix elements become increasingly difficult to calculate and the size of

the wavefunction grows rapidly. This greatly limits the usefulness of this method for two electron
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calculations without the use of supercomputing resources.

Figure 6.4: Rabi flopping between the 1s and 2p states in helium atom. The populations in the
1s (blue), 2p (orange), and all other states (green) for the SAE code are plotted. The black dots
show the two electrons simulations using the RRC method with Kmax = 48 agree well with the
SAE results.

To test the stability and accuracy of the time propagation linearly polarized laser field, the

RRC code was used to preform a 1s−2p Rabi flopping with Kmax = 48 to closely match the 1s−2p

energy gap to the SAE potential. The laser pulse had a sine squared envelope, peak intensity of 1014

W/cm2, resonant central frequency of 0.812 au (0.822 au) for the SAE (RRC) code with varying

pulse lengths ranging from 1 to 34 cycles. Fig. 6.4 shows the SAE populations in the 1s (blue), 2p

(orange), and all other bound/continuum states (green) for reference. The two electron populations

are shown in black. The agreement is quite good, and the small discrepancy are due to slightly

different energy gaps.

6.3 Outlook

The present methods still require improvement in order to perform converged two active

electron simulations on desktop systems. Switching from the RRC to the non-RRC method lead
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to orders of magnitude reduction in runtime for matrix generation. However, the need to perform

numerical integrals of Jacobi polynomials largely slows down the computation. Additionally, the

slow convergence of excited states with respect to the grand angular momentum leads to large

wavefuctions. If the hyperangle α is discretized using finite difference, the integrals become integrals

over delta functions and the slow convergence with respect to the grand angular momentum (K)

may be avoided.



Chapter 7

Summary

This thesis covers theoretical approaches to understand ultrafast processes in photoioniza-

tion, Rydberg state excitation, and electron correlation. In the first two chapters, an introduction

to ultrafast and strong-field physics was given with a review of relevant experimental and theoret-

ical studies. The numerical and analytical methods that are used in this thesis were covered in

Chap. 3, including original studies using RBFs to solve the time independent Schrödinger equation

(Sec. 3.3.3) and a frequency correction to ultrashort laser pulses (Sec. 3.6).

The focus was then turned to developing a method of imaging ultrafast electron wavepacket

dynamics using few photon ionization in Chap. 4. The extreme bandwidth of ultrafast pulses allows

for processes involving different numbers of photons from the same pulse to interfere. The impacts

on ionization of a helium atom were studied in Sec. 4.1 including the effects of pulse variations

present in experiment. Sec. 4.2 extends the typical forward backward ionization asymmetry from

ground states to the ionization of wavepackets in superposition with different m quantum numbers.

To this end, we presented a novel set of generalized asymmetry parameters (GAP) to study the

interference of the ground and excited state ionization signals. Finally, a method for reconstructing

wavepackets undergoing attosecond electron motion using perturbation theory was presented in

Sec. 4.3. The impact of shot to shot variations and the laser parameter regime required for a

quality reconstruction have been analyzed.

Next, Chap. 5 covers the excitation of Rydberg states by intense IR laser pulses. Linear

polarization results, in Sec. 5.1, show that the ` quantum number of the populated states has
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the same parity as the sum of the number of photons involved in the process and the ground

states ` quantum number. The FID signals present in the HHG spectrum allows for experimental

verification of this effect. Sec. 5.2 extended this study to bi-circular driving laser pulses, including an

analysis of the pathways to available resonances and the occurence of high order Raman transitions

which have been further studied in a project led by another graduate student [77].

Finally, we turned to the development and first tests of a fully correlated two electron code in

Chap. 6. We used hyperspherical harmonics to reduce the number of radii that must be discretized

from two to one. The code produces ground and excited state energies consistent with experimental

results and has produced a Rabi flop between the 1s and the 2p state in He that matches our SAE

codes. Future development may allow for fully correlated two electron calculations to be performed

efficiently on desktop computers opening the door for more in depth studies of time dependent

multi-electron effects in ultrafast physics.
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Knut, Ofer Kfir, Dimitry Zusin, Christian Gentry, Patrik Grychtol, Oren Cohen, Luis Plaja,
Andreas Becker, Agnieszka Jaron-Becker, Henry Kapteyn, and Margaret Murnane. Tomo-
graphic reconstruction of circularly polarized high-harmonic fields: 3d attosecond metrology.
Science Advances, 2(2), 2016.

[37] Ming-Chang Chen, Christopher Mancuso, Carlos Hernández-Garćıa, Franklin Dollar, Ben
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Markus Schöffler, Kunlong Liu, Ingo Barth, Jivesh Kaushal, Felipe Morales, Misha Ivanov,
Olga Smirnova, and Reinhard Dörner. Ultrafast preparation and detection of ring currents
in single atoms. Nature Physics, 14(7):701–704, 2018.

[53] H. Eichmann, A. Egbert, S. Nolte, C. Momma, B. Wellegehausen, W. Becker, S. Long, and
J. K. McIver. Polarization-dependent high-order two-color mixing. Phys. Rev. A, 51:R3414–
R3417, 1995.

[54] U. Eichmann, A. Saenz, S. Eilzer, T. Nubbemeyer, and W. Sandner. Observing Rydberg
atoms to survive intense laser fields. Phys. Rev. Lett., 110:203002, 2013.

[55] Nicolas Eicke and Manfred Lein. Attoclock with counter-rotating bicircular laser fields. Phys.
Rev. A, 99:031402, 2019.
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[132] M. Kotur, D. Guénot, Á Jiménez-Galán, D. Kroon, E. W. Larsen, M. Louisy, S. Bengtsson,
M. Miranda, J. Mauritsson, C. L. Arnold, S. E. Canton, M. Gisselbrecht, T. Carette, J. M.
Dahlström, E. Lindroth, A. Maquet, L. Argenti, F. Mart́ın, and A. L’Huillier. Spectral phase
measurement of a Fano resonance using tunable attosecond pulses. Nature Communications,
7(1):10566, 2016.

[133] V. P. Krainov. Ionization rates and energy and angular distributions at the barrier-suppression
ionization of complex atoms and atomic ions. J. Opt. Soc. Am. B, 14(2):425–431, 1997.

[134] K. Krajewska, I. I. Fabrikant, and A. F. Starace. Threshold effects in strong-field ionization:
Energy shifts and rydberg structures. Phys. Rev. A, 86:053410, 2012.

[135] Ferenc Krausz and Misha Ivanov. Attosecond physics. Rev. Mod. Phys., 81:163–234, 2009.



146

[136] G Laplanche, M Jaouen, and A Rachman. Angular distributions and polarisation phenomena
in non-resonant multiphoton ionisation of alkali-metal atoms. i. formal theory. Journal of
Physics B: Atomic and Molecular Physics, 19(1):79–100, 1986.

[137] Manuel Lara-Astiaso, Mara Galli, Andrea Trabattoni, Alicia Palacios, David Ayuso, Fabio
Frassetto, Luca Poletto, Simone De Camillis, Jason Greenwood, Piero Decleva, Ivano Tav-
ernelli, Francesca Calegari, Mauro Nisoli, and Fernando Mart́ın. Attosecond pump–probe
spectroscopy of charge dynamics in tryptophan. The Journal of Physical Chemistry Letters,
9(16):4570–4577, 2018.

[138] Seyedreza Larimian, Sonia Erattupuzha, Christoph Lemell, Shuhei Yoshida, Stefan Nagele,
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bicircular laser pulses. Phys. Rev. A, 101:053425, 2020.
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