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Laser light in combination with electromagnetic traps has been used ubiquitously throughout

the last three decades to control atoms and molecules at the quantum level. Many approaches

with varying degrees of reliance on dissipative processes have been discovered, investigated, and

implemented in both academic and industrial settings. In this thesis, we theoretically investigate

and propose three practical techniques which have the capacity to slow, cool, and trap particles with

narrow linewidth optical transitions. Each of these methods emphasizes a high degree of coherent

control over quantum states, which lends their operation a reduced reliance on spontaneous emission

and thus makes them appealing candidates for application to systems that lack closed cycling

transitions. In a more general setting, we also study the transfer of entropy from a quantum

system to a classically-behaved coherent light field, and therefore advance our understanding of the

role of dissipative processes in optical pumping and laser cooling.

First, we describe theoretically a cooling technique named “sawtooth wave adiabatic passage

cooling,” or “SWAP cooling,” which was discovered experimentally at JILA and has since been

implemented elsewhere with various atomic species. Second, we discuss some of the results of

an experimental realization of SWAP cooling and connect them to the theoretical model. Third,

we propose the extension of the coherent mechanism underlying SWAP cooling to the additional

task of trapping in a configuration named the “SWAP magneto-optical trap,” or “SWAP MOT.”

Fourth, we propose a method to fundamentally speed up the adiabatic transfer process required for

these techniques by using a shortcut-to-adiabaticity protocol based on Lewis-Riesenfeld invariants.

Lastly, we propose and theoretically analyze a simple Gedankenexperiment which can be used to

study the potential transfer of entropy from an ensemble of particles to a coherent light source.
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Chapter 1

Context and outline

It is only within the last century that we have discovered ways to create light sources with

a high degree of coherence, i.e., light comprised of a multitude of photons with a narrow range of

frequencies in lockstep with one another. One such source, the laser, has enabled us to control

the dynamics of an ever-growing number of atomic and molecular species with unprecedented

precision. By using lasers in parallel with other electromagnetic fields, we have learned how to

drastically reduce the speed, temperature, and size of dilute gases consisting of these quantum

particles. These techniques are essential to countless studies in both applied and basic science,

from Bose-Einstein condensation to condensed matter and quantum computing [9, 43, 97, 102].

The diverse quantum nature of atoms and molecules often requires us to devise laser slowing,

cooling, and trapping protocols that are unique to the species. This is especially true for heavier

atoms and most molecules since they contain a relatively rich internal quantum structure due to the

interactions among their constituent protons, neutrons, and electrons. Therefore, an obvious way to

simplify the complexity of a slowing, cooling, or trapping process is to limit the number of internal

states the system can occupy. However, this is a difficult task because optical pumping supplies

energy to the system, which nature actively dissipates in the form of spontaneous photons. These

spontaneous emission events irreversibly transfer the system to a potentially undesired quantum

state, which can ultimately lead to a loss of control over its motion. Therefore, methods which

reduce these events could allow for previously unachievable experiments on quantum gases.

At the same time, some type of irreversible process is a fundamental ingredient of a cooling
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or trapping process, so we can not rely on purely coherent (non-dissipative) techniques. This is

because entropy must be removed from a system in order for it to become colder and denser. An

ideal mechanism then must have a minimal (but non-negligible) reliance on an irreversible process,

which is most often spontaneous emission. As we will show, the recently discovered “sawtooth

wave adiabatic passage” (SWAP) cooling technique [13, 141] exhibits reduced reliance on sponta-

neous emission compared to the oldest and most commonly implemented laser cooling mechanism:

Doppler cooling. Starting from this discovery, we dedicate our focus to answering the following

questions in this thesis:

(1) How exactly does the SWAP protocol lead to cooling if its underlying mechanism seems to

be purely coherent in nature, and therefore not capable of entropy reduction?

(2) Can the SWAP protocol be extended to trap particles in space, as is done with Doppler

cooling in a conventional magneto-optical trap?

(3) What are the lowest achievable temperatures and cloud sizes with SWAP-based methods?

(4) Can we speed up these techniques in time, although they are fundamentally adiabatic and

consequently slow in nature?

(5) Is there some irreversible process other than spontaneous emission which could be respon-

sible for the reduction in entropy of a quantum gas?

We begin with a survey of relevant background information in Chapter 2 which further

contextualizes our contributions. We then answer (1) and the first part of (3) in Chapter 3, in

which we present our experimental and theoretical studies of SWAP cooling. Subsequently, we

study (2) and (3) in Chapter 5 by combining the SWAP protocol with a magnetic trap to produce

an additional trapping force. Next, we apply an adiabatic speedup protocol to the state-transfer

process in Chapter 6, thereby addressing (4). From a more general perspective, we then address

(5) in Chapter 7 by studying the entropy absorption properties of a classically-behaved coherent

light field. We conclude with a brief summary in Chapter 8.



Chapter 2

Introduction

Now that we have laid out the general framework of this thesis, we provide a review of

the topics that are essential to understanding its contents. We begin with highlighting the main

concepts behind the interaction of matter with light in first and second quantization in Section 2.1.

We then turn to a quick overview of the theory of open quantum systems in Section 2.2, which

allows us to efficiently study a quantum system that is interacting with its surrounding environment.

In our description of open quantum systems, we will introduce the density matrix formulation of

quantum mechanics, the quantum master equation, and a stochastic computational tool called

the Monte Carlo wave function method, or quantum jump method. We will use these techniques

extensively throughout our work. Next, we introduce the semiclassical theories of Doppler cooling

and the conventional magneto-optical trap (MOT) in Section 2.3. These widely-used cooling and

trapping processes will serve as a benchmark to which we will compare the results of SWAP cooling

and the SWAP MOT in Chapters 3 and 5, respectively.

2.1 Coherent models of light-matter interaction

The interaction of quantum matter with light forms the very core of each study we present in

the following chapters. There exist many excellent textbooks [71, 127, 174] that comprehensively

cover various models developed by the scientific community for this type of interaction. In all cases,

these models can be sorted into one of two categories: they treat the light as either a classical or

quantum mechanical electromagnetic field. While the latter is unequivocally closer to reality, it
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comes with the additional cost of complexity, and in some cases introduces unnecessary detail.

Because we are interested in physics involving both models, we derive the Hamiltonian for a two-

level quantum particle interacting with light in either case in Sections 2.1.3 and 2.1.4. In the

classical case, we include the motional degrees of freedom of the particles, which will be essential

to our studies on the mechanical effects of laser light in Chapters 3-6. In the quantum case, we

limit our discussion to motionless particles, as done in our study of quantum entropy transfer in

Chapter 7. On a related note, we also briefly discuss the manifestation of spontaneous emission

and its various models in Section 2.1.5.

Of course, we also need a quantum mechanical description of the matter, which is comprised

of individual particles such as atoms or molecules. The light interaction alters both the quan-

tum mechanical “internal” states of the electrons bound to these particles and the motional, or

“external,” state of the entire particle, so we need to choose a model that incorporates both of

these effects. With this in mind, in Section 2.1.1 we derive an interaction Hamiltonian in the case

when the particle is explicitly treated quantum mechanically (first quantization), whereas the exact

nature of the light field is not yet specified. We then simplify this Hamiltonian for the case of a

two-level particle and introduce some common notation in Section 2.1.2.

Figure 2.1: Spatial diagram of the light-matter interaction. A neutral quantum particle consisting
of a single electron at position re and a nucleus with center-of-mass position rn interacts with a
light field with wave vector k, wavelength λ = 2π/|k|, electric field E, and magnetic field B.
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2.1.1 First quantization: quantum treatment of matter

We consider the neutral, single-electron particle depicted in Fig. 2.1. The electron has charge

q = −e, where e is the elementary charge, which means that the rest of the particle, which we

simply call the “nucleus,” has a net charge q = e. We loosely follow the derivations for the light-

particle interaction described in Refs. [71] and [127], although we explicitly factor in the nucleus

subspace and therefore describe the physics in detail. For clarity, we first provide our conventions

for labeling various vectors and operators in Table 2.1.

Table 2.1: Conventions for vector operator quantities. Here we use the short hand “COM” for
center-of-mass.

quantity symbol

electron position r̂e

nucleus COM position r̂n

particle COM position r̂

relative electron-nucleus position ∆r̂

arbitrary position R̂

electron kinetic momentum p̂e

nucleus kinetic momentum p̂n

total particle momentum p̂

relative electron-nucleus momentum ∆p̂

The Hamiltonian Ĥ0 of the particle in the absence of light is

Ĥ0 =
p̂2
e

2me
+
p̂2
n

2mn
+ V̂ (r̂e − r̂n). (2.1)

Here, we have labeled quantities related to the electron (nucleus) with the subscript e (n). For

j ∈ {e, n}, the quantities p̂j = −i~∇j = −i~∂r̂j
are kinetic momentum operators, mj are masses,

and r̂j are position operators. The potential energy V̂ encapsulates all electron-nucleus interac-

tions. Notice that Eq. (2.1) looks identical to the classical Hamiltonian of the electron-nucleus

system except the position and momentum variables have been replaced with quantum mechanical
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operators. These operators satisfy the commutation relations

[(r̂j)a, (p̂k)b] = i~δabδjk, [(r̂j)a, (r̂k)b] = 0, [(p̂j)a, (p̂k)b] = 0 (2.2)

for particles j, k ∈ {e, n} and spatial dimensions a, b ∈ {x, y, z}.

In the presence of light, the Hamiltonian becomes

Ĥ =
[p̂e + eA(r̂e, t)]

2

2me
+

[p̂n − eA(r̂n, t)]
2

2mn
+ e[Φ(r̂n, t)− Φ(r̂e, t)] + V̂ (r̂e − r̂n), (2.3)

where t is time and A(r̂, t) and Φ(r̂, t) are the vector and scalar potentials associated with the

light field evaluated at the appropriate positions. Note that these potentials are functions of the

electron and nucleus position operators and thus can affect their quantum states, but we have

not yet specified whether the light itself is classical or quantum mechanical. These potentials are

related to the light’s (physical) electric and magnetic fields E(R̂, t) and B(R̂, t) by

E(R̂, t) = −∇Φ(R̂, t)− ∂A(R̂, t)

∂t
,

B(R̂, t) = ∇×A(R̂, t),

(2.4)

where R̂ is any position vector operator. (We reserve the symbol r̂ for the center-of-mass position

of the particle, which is introduced later.)

The form of the particle Hamiltonian given in Eq. (2.3) can be simplified through a series of

gauge transformations. First, we choose the radiation gauge so that Φ = 0 and ∇ ·A = 0, which

removes the electron-light and nucleus-light electric potential energy terms in Eq. (2.3). Next, we

transform the Hamiltonian under the gauge transformation Û = exp [−ieχ(r̂n, r̂e, t)], where

χ(r̂n, r̂e, t) = χe(r̂e, t)− χn(r̂n, t), (2.5)

and the χj ’s are undetermined gauge functions. (See Refs. [44] and [45] for a detailed discussion of

gauge choice in quantum electrodynamics.) After this operation, the Hamiltonian reads

Ĥ =
{p̂e + e[A(r̂e, t) +∇eχe(r̂e, t)]}2

2me
+
{p̂n − e[A(r̂n, t) +∇nχ(r̂n, t)]}2

2mn

+ e

[
∂χe(r̂e, t)

∂t
− ∂χn(r̂n, t)

∂t

]
+ V̂ (r̂e − r̂n).

(2.6)
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Before we choose the gauge functions χj , we apply the “electric dipole approximation,” which

will drastically simplify the form of the Hamiltonian. From electromagnetic theory, the light field’s

vector potential A(R̂, t) satisfies the wave equation, which has solution

A(R̂, t) = A0 exp[i(k · R̂− ωt)] + c.c. (2.7)

Here, c.c. denotes the complex (or Hermitian) conjugate, A0 is the amplitude of the vector po-

tential, and k and ω are the wave vector and frequency of the light. Because typical atomic

dimensions (|r|atom / 10−9 m) are much smaller than optical wavelengths (λ ' 10−7 m), it follows

that k ·ratom ∝ |r|atom/λ� 1, and thus that the vector potential is approximately uniform over the

dimensions of the particle. It is therefore valid to approximate the vector potential as a spatially

uniform vector, which we evaluate for convenience at the center-of-mass r of the particle (defined

in Eq. (2.11)):

A(r̂j , t) ≈ A(r̂, t) = A0 exp[i(k · r̂ − ωt)] + c.c.,
|∇A|
|A| ∝ |k| � 1/|ratom|. (2.8)

Eqns. (2.8) are what is meant by the electric dipole approximation in the field of light-matter

interactions, although the exact position at whichA is evaluated depends on the context. Equipped

with this useful approximation, we now make the clever choice χj(r̂j , t) = −A(r̂, t) · r̂j which

satisfies

∇jχj(r̂j , t) ≈ −A(r̂, t),
∂χj(r̂j , t)

∂t
= E(r̂, t) · r̂j , (2.9)

in which we used Eq. (2.4). With these results, the Hamiltonian reduces to

Ĥ =
p̂2
e

2me
+
p̂2
n

2mn
+ e(r̂e − r̂n) ·E(r̂, t) + V̂ (r̂e − r̂n). (2.10)

Our next alteration is to describe the physics in terms of the center-of-mass of the particle and

relative motion of the electron and nucleus. This is motivated by the relative position dependence

of the last two terms in Eq. (2.10). The center-of-mass r̂ and relative ∆r̂ coordinates are

r̂ = (mer̂e +mnr̂n)/(me +mn), ∆r̂ = r̂e − r̂n, (2.11)



8

and the total p̂ and relative ∆p̂ momenta are

p̂ = p̂e + p̂n, ∆p̂ = (mep̂e −mnp̂e)/(me +mn). (2.12)

(These coordinates also satisfy the canonical commutation relations [73].) In terms of these coor-

dinates, Eq. (2.10) becomes

Ĥ =
p̂2

2m
+

(∆p̂)2

2µ
− d̂ ·E(r̂, t) + V̂ (∆r̂), (2.13)

in which d̂ ≡ e∆r̂ is the particle’s dipole moment operator. We shall refer to the term in Eq. (2.13)

involving d̂ as the “dipole term.” By inspecting this result, we notice that two of the four terms

determine the internal bound states of the electron-nucleus interaction in terms of their relative

positions and momenta. This part of the Hamiltonian,

Ĥinternal =
(∆p̂)2

2µ
+ V̂ (∆r̂), (2.14)

has been characterized to high precision in previous theories and experiments for each atomic and

molecular species we study. As such, its spectrum and states are well defined, so we consider it to

be “solved” and thus separate it from the rest of our Hamiltonian. Substituting this notation into

Eq. (2.13), we at last arrive at the desired form of the Hamiltonian:

Ĥ = Ĥinternal +
p̂2

2m
− d̂ ·E(r̂, t). (2.15)

Eq. (2.15) is the form of the Hamiltonian we will use to describe all particle-light interactions.

2.1.2 The two-level particle

In the previous section, we did not specify the internal quantum structure of the particle

as given by Eq. (2.14). Here, we briefly describe the simplifications made to Eq. (2.15) when the

particle can be treated as a two-level system. That is, we suppose that only two of the quantum

internal states determined by Ĥinternal are relevant during the interaction, and thereby isolate our

attention to the idealized, yet rich model of the two-level particle.
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Figure 2.2: Energy level diagram of the internal states of a two-level system, separated by energy
∆E = ~ωa.

As is customary, we refer to the two internal states of the particle as the “excited” and

“ground” state with associated vectors |e〉 and |g〉 in the Hilbert space of Ĥinternal. This terminol-

ogy reflects the former state’s higher relative energy by an amount ~ωa, where ωa is the angular

frequency of a photon containing the same amount of energy (see Fig. 2.2). We refer to these states

as the “bare eigenstates” or “bare basis” of Ĥinternal because the Hamiltonian is diagonal in this

basis in the absence of light. In fact, defining the baseline energy at ~ωa/2 above the ground state,

we may write Ĥinternal, often called the “free particle Hamiltonian,” as

Ĥinternal =
~ωa

2
|e〉 〈e| − ~ωa

2
|g〉 〈g| = ~ωa

2
σ̂z, (2.16)

in which σ̂z is a Pauli matrix. For this reason, it is said that the excited and ground states |e〉 and

|g〉 form a pseudo-spin 1/2 system. More generally, the usual raising (σ̂+ = |e〉 〈g|) and lowering

(σ̂− = |g〉 〈e|) operators, along with the usual Pauli spin operators, σ̂x,y,z, whose coordinate labels

are implicitly understood to refer to the pseudo-spin space, operate on the internal states.

We now shift our attention to the other operator acting on the internal Hilbert space: the

particle dipole moment operator d̂ [see Eq. (2.13)]. This operator induces transitions between the

internal states, which physically corresponds to the absorption and emission of photons from the

light field. The polarization ε̂ of the light field is chosen based on the magnetic quantum numbers

me and mg of the states |e〉 and |g〉 (linear if me = mg and circular if me = mg ± 1), so we should

also include it in when calculating the matrix elements of d̂:

d̂ · ε̂ = 〈g|d̂ · ε̂|e〉 |g〉 〈e|+ 〈e|d̂ · ε̂|g〉 |e〉 〈g| = 〈g|d̂ · ε̂|e〉 (σ̂− + σ̂+). (2.17)

In the second step, we (without loss of generality) chose the phase of the off-diagonal dipole matrix
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elements to be real. (See Ref. [174] for a derivation of this result from a parity argument.) We

note that the extension of these methods to a three (or more) level system, as done in Chapter 5,

is straightforward.

2.1.3 Interaction of a moving two-level quantum system with a classical light field

For many purposes in the field of light-matter interactions, a classical treatment of the light

is sufficient. In particular, the effects of a light field containing many photons (such as a laser) is

often treated as an unperturbed, time-dependent electric potential. That is, the amplitude E0 of

the light’s electric field E(r̂, t) is unchanged by the particle interaction, even though the particle

absorbs photons. (We address the validity of this treatment to some extent in Chapter 7.) In this

case, we can write the electric field as

E(r̂, t) = ε̂ E0f(r̂, t), (2.18)

where ε̂ is the polarization direction, E0 is the (constant) field amplitude, and the spatiotemporal

profile f(r̂, t) depends on the laser setup.

We restrict our studies to laser light propagating along one spatial dimension, which we call

the z-direction so that the wave vector is k = ±k êz. Here, we have used the notation êj to denote

a unit vector pointing along the j-direction. In Chapters 5 and 6, we will consider the effects of

traveling waves, for which the function f is [126]

ftraveling(r̂, t) = cos(kẑ − ωLt) =
1

2

(
ei(kẑ−ωlt) + e−i(kẑ−ωLt)

)
, (2.19)

where ωL is the laser frequency. In Chapter 3, we will consider the effects of a standing wave (the

sum of counterpropagating traveling waves), for which the function f is

fstanding(r̂, t) = cos(kẑ − ωLt) + cos(kẑ + ωLt) = 2 cos(kẑ) cos(ωLt). (2.20)

Notice that the amplitude of a standing wave is twice as large as that of a traveling wave. For this

reason, care needs to be taken when defining the coupling strength, often called the Rabi frequency,

between the light field and the particle.
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The next obvious step is to substitute the electric field E [Eq. (2.18)] for the laser setup of

interest into the Hamiltonian Ĥ [Eq. (2.15)]. For the case of the traveling wave [Eq. (2.19)], the

dipole term is

−d̂ ·E(r̂, t) = −〈g|d̂ · ε̂|e〉 E0

2
(σ̂− + σ̂+)

(
ei(kẑ−ωLt) + e−i(kẑ−ωLt)

)
, (2.21)

in which we used Eq. (2.17) for the dipole moment operator. This expression can be simplified

by invoking the “rotating wave approximation,” which removes terms that are unlikely to affect

the dynamics due to their required energy when the light is quasi-resonant. Inspecting the relative

energies of the bare eigenstates [see Fig. 2.2], we learn that the raising σ̂+ = |e〉 〈g| and lowering

σ̂− = |g〉 〈e| operators supply and remove energy from the particle, respectively. This means that

their expectation values have a time-dependence that satisfies σ̂± ∝ e±iωat, and hence that each

term in Eq. (2.21) (when distributed) oscillates in time with frequencies of magnitude |ωa ± ωL|.

Under the rotating wave approximation, we remove terms oscillating with the sum frequency, as

only the terms oscillating with the difference frequency |ωa − ωL| govern the observable dynamics.

Simultaneously defining the Rabi frequency as

Ω ≡ −〈g|d̂ · ε̂|e〉 E0

~
, (2.22)

Eq. (2.21) reduces to

−d̂ ·E(r̂, t) =
~Ω

2

(
σ̂−e−i(kẑ−ωLt) + σ̂+ei(kẑ−ωLt)

)
, (2.23)

which is the form often used in the literature. This process is very similar to the standing wave

case. We will extensively use Eq. (2.23) and its equivalent standing wave form in our studies of

laser slowing, cooling, and trapping.

If the frequency of the light changes in time, we replace the accumulated temporal phase of

the light ωLt in all above equations with its equivalent integral form:

ωLt→ η(t) ≡
∫ t

t0

ωL(t′) dt′. (2.24)
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This replacement is important if the range of the applied light frequencies δωL = max[ωL(t)] −

min[ωL(t)] is at least on the order of the other relevant frequencies in the interaction, such as the

Rabi frequency Ω [Eq. (2.22)], recoil frequency ωr [Eq. (2.66)], and spontaneous emission rate γ

[Eq. (2.35)]. In the following chapters, δωL is on the order of MHz, which is often larger than these

other frequencies, and hence we make the adjustment. In principle, the wave vector k should also

be adjusted in the spatial phase:

k =
ωL
c
→ k(t) ≡ ωL(t)

c
. (2.25)

However, the change in wave vector δk = δωL/c is much smaller than the only other relevant

quantity: the particle “wave vector,” p/~. This is true because the spread in the particle momentum

is fundamentally bounded from below by the photon momentum ~k in the processes we propose,

as we show in Chapter 3. Therefore, we approximate k to remain fixed in all cases.

2.1.4 Second quantization: interaction of motionless two-level quantum system

with a quantized light field in a cavity

Figure 2.3: A quantum particle is placed in an optical cavity that contains a quantized light field.

When the quantum nature of the light is essential to understanding the physics of interest,

then one must quantize the light field through the process of second quantization. This procedure

promotes the light’s electric and magnetic fields to operators (related to individual quanta, or

photons) that evolve according the laws of quantum mechanics. For brevity, we refer the reader
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to the second chapter of Ref. [71] for an in-depth derivation of quantized light fields and only

derive the interaction Hamiltonian, called the Jaynes-Cummings Hamiltonian, for a single-mode

quantum electromagnetic field and a quantum two-level particle in an optical cavity [see Fig. 2.3].

Although it is not strictly necessary, we also remove the atomic motion for simplicity. The resulting

interaction is related to what we study in Chapter (7).

Because the boundary conditions of electrodynamics and quantum mechanics play a role in

the derivation, it is necessary to quantize the electromagnetic field within a “quantization volume”

V . In the case of Chapter (7), this volume will correspond to the optical cavity which contains

the quantized field. The single-mode quantized electric field of light with frequency ω propagating

along the z-direction in a cavity is found to be

Ê(r̂, t) = ε̂

(
~ω
ε0V

)1/2

sin(kẑ)(â+ â†) = ê E0f(r̂) (â+ â†), (2.26)

in which E0 = (~ω/ε0V )1/2 characterizes the maximum vacuum electic field amplitude, and f(r̂) =

sin(kẑ) is the spatial profile. (We have written this operator in the Schrödinger picture, so it is time-

independent.) Notice that Eq. (2.26) looks very similar to its classical counterpart in Eq. (2.18),

except we now include the creation â† and annihilation â operators of the quantum harmonic

oscillator, which have the basic properties

â† |n〉 =
√
n+ 1 |n+ 1〉 , â |n〉 =

√
n |n− 1〉 , [â, â†] = 1. (2.27)

In this case, the operators act on a Fock space {|n〉}∞n=0 which describes the photon occupancy of

the cavity. Their inclusion in Eq. (2.26) reflects the dependence of the electric field amplitude on

the number of cavity photons.

If the particle is motionless, then we can demote the particle position operator ẑ to a classical

value z, which is the (fixed) position of the particle in the cavity. With this result, the dipole term

in Eq. (2.15) becomes

−d̂ · Ê(r̂, t) = −〈g|d̂ · ε̂|e〉 E0 sin(kz) (σ̂− + σ̂+) (â+ â†), (2.28)
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where we have again used Eq. (2.17). Invoking the rotating wave approximation and defining the

vacuum Rabi frequency g as

g(z) ≡ −2 〈g|d̂ · ε̂|e〉 E0 sin(kz)

~
, (2.29)

the dipole term becomes

−d̂ · Ê(r̂, t) =
~g(z)

2
(σ̂−â† + σ̂+â), (2.30)

which is the typical form of the Jaynes-Cummings interaction Hamiltonian. Combining this result

with the free particle Hamiltonian [Eq. (2.16)] and the free field Hamiltonian

Ĥ0,field = ~ωâ†â (2.31)

(for which we dropped the trivial vacuum energy term), we arrive at the full Jaynes-Cummings

Hamiltonian:

ĤJC =
~ωa

2
σ̂z + ~ωâ†â+

~g
2

(σ̂−â† + σ̂+â). (2.32)

Notice that we have absorbed the position dependence into the definition of g. We will study a

system very closely related to this result in Chapter 7.

2.1.5 The spontaneous emission process

The last fundamental physical process we need to introduce is spontaneous emission, which

causes a quantum system in a state other than the lowest-energy state to eventually “relax” to

a lower-energy state. The scientific community has developed many different physical theories to

explain this phenomenon over the last century [131, 132]. From a classical perspective, this process

is induced by the radiation reaction, i.e., the interaction of the electron with its own electromagnetic

field. The theory of quantum electrodynamics, however, elicits a different origin: it is caused by the

interaction of the particle with the ground, or “vacuum” states of the universe’s electromagnetic

field. In other words, the quantum perspective argues that the non-zero energy of the ground state

of the free-space electromagnetic field (or “zero-point energy”), which contains no photons, causes

an irreversible exponential decay of excited state populations. We provide the reader with the

following insightful quote, which connects these two perspectives:
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“Of course we always get the same expression γ for the spontaneous emission rate
[when deriving it with different orderings of quantum mechanical operators], be-
cause the operators we are reordering do in fact commute, but our interpretation
of the origin of spontaneous emission may change. Again this is a consequence of
the intimate, fluctuation-dissipation connection between radiation reaction and the
zero-point, vacuum electromagnetic field.”

P. W. Milonni, Why spontaneous emission? [130]

Because the classical perspective underestimates the value of γ by a factor of 2, modern

authors adopt the quantum perspective [71, 127]. This derivation involves coupling a quantum

system to the free-space (“infinite”-volume) quantized electromagnetic field, or “background radi-

ation field,” which has a continuum of frequency modes. Generalizing the single-mode formalism

discussed in Section 2.1.4, the multi-mode (m.m.) Jaynes Cummings Hamiltonian is

ĤJC,m.m. =
~ωa

2
σ̂z + ~

∑
s

ωsâ
†
sâs +

∑
s

~gs
2

(σ̂−â†s + σ̂+âs), (2.33)

in which s is a mode index. To gain intuition for why we expect dynamics to occur even in a space

devoid of photons, consider the following matrix elements of ĤJC,m.m.:

〈g, 1s|ĤJC,m.m.|e, 0s〉 =
~gs
2
. (2.34)

Physically, the fact that the matrix element in Eq. (2.34) is non-zero tells us that a quantum particle

can still transition from its excited state to a ground state. More specifically, we should expect a

quantum particle prepared in the excited state |e〉 to undergo vacuum Rabi oscillations with each

mode s.

We now introduce an important approximation: the “Weisskopf-Wigner approximation” [127,

189]. Under the assumption that the bandwidth of the background radiation field is large, the

correlation time τcorr between any two different modes is correspondingly small. If this correlation

time is small compared to the timescales associated with the particle evolution, then we can “coarse-

grain” over the evolution of the particle state. (We will revisit this approximation in the derivation

of the master equation in Section 2.2.2.) This approximation leads to destructive interference of

the vacuum Rabi oscillations, and the net effect is irreversible exponential decay into the ground
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state |g〉. It can be shown that this decay rate, called the free-space spontaneous emission rate γ,

is

γ =
ω3
a | 〈g|d̂|e〉 |2
3πε0~c3

. (2.35)

In principle, we could accurately evolve the dynamics of our quantum particle by incorpo-

rating the background radiation field into all of our calculations. However, the detailed evolution

of the this field is generally not of interest, and we have shown that it can be effectively modeled

by the inclusion of γ. Therefore, it would be desirable to construct a general theory that accounts

for the effects of the background radiation field without its explicit inclusion. This leads us to the

theory of open quantum systems, which is discussed in the next section.

2.2 Theory of open quantum systems

In Section 2.1, we derived a mathematical formalism for the interaction of a two-level quantum

particle with light under “coherent,” i.e., Hamiltonian dynamics. In the following chapters, we will

not be interested in the evolution of the background radiation field introduced in Section 2.1.5, or

for that matter, any other presence in the universe that could possibly affect the system of interest.

However, we have no choice but to incorporate the background field’s pervasive effects if we hope

to accurately capture the system’s dynamics. We therefore study the system through the theory

of open quantum systems [25]. In this framework, the universe is split into two subspaces: the

“system,” which we are interested in studying, and the “environment” (the rest of the universe),

which potentially affects the system but is not of interest.

Before we can introduce this theory, we must introduce the density operator ρ̂, also called the

density matrix. This matrix will take the place of the state vector |ψ〉 in describing the state of our

system, and is described in Section 2.2.1. We will then show how the background radiation field can

be formally separated from the dynamics, yielding a quantum master equation that describes the

system in Section 2.2.2. We then present a convenient way to incorporate the effects of dissipation

on particle motion in Section 2.2.3. In Section 2.2.4, we discuss a useful and experimentally-
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motivated calculational tool for simulating the master equation: the Monte Carlo wave function

method.

2.2.1 The density matrix formalism

We often find ourselves in situations in which the exact quantum state of a system is unknown,

but we do know that it may be in one of several states |ψi〉, each with a probability pi. The system

is then said to be in a statistical ensemble of the states |ψi〉. This is a fundamentally separate

notion from a quantum superposition

|Ψ〉 =
∑
i

αi |ψi〉 , (2.36)

in which αi is a probability amplitude and |Ψ〉 is the quantum state of the system, because Eq. (2.36)

assumes that the state |Ψ〉 is a specific vector sum of the states |ψi〉. In other words, if we were to

create many copies of our system, then a randomly chosen copy would be in |ψ〉i with probability

pi. In this sense, the system exists as a classical distribution of quantum states, which has the

mathematical representation [127]

ρ̂ =
∑
i

pi |ψi〉 〈ψi| , (2.37)

in which ρ̂ is the “density matrix.” This type of state may arise due to experimental limitations in

state preparation. However, even an initial pure state will evolve into a mixed state if it undergoes

some decoherence process, in which the system irreversibly interacts with its environment. In the

following chapters, we extensively study systems which may undergo the decoherent spontaneous

emission process, and hence we must adopt the density matrix perspective.

We now point out some important properties and terminology for the density matrix formal-

ism. We refer the reader to Ref. [139] for a much more detailed and complete presentation.

Unit trace: We immediately see from Eq. (2.37) that the trace of the density matrix satisfies

Tr[ρ̂] =
∑
j

〈j|ρ̂|j〉 =
∑
i,j

pi 〈j|ψi〉 〈ψi|j〉 =
∑
i,j,k,k′

pic
∗
k′ck 〈j|k〉 〈k′|j〉 =

∑
i

pi
∑
j

|cj |2 = 1, (2.38)

in which the sets {|j〉}, {|k〉}, and {|k′〉} form a basis for the Hilbert space. This is the equivalent

condition for state normalization 〈Ψ|Ψ〉 = 1.
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Pure vs. mixed states: Notice that the density matrix reduces to a single outer product state

ρ̂ = |ψi〉 〈ψi| if the system can only be in the state |ψi〉, i.e., pi = 1 and therefore pj = 0 for j 6= i.

In this case, there is no classical uncertainty in the state of the system, and the density matrix is

therefore said to be in a “pure state.” If ρ̂ is not pure, then it is said to be in a “mixed state.” One

way to measure whether a density matrix is pure or mixed (without explicit diagonalization, which

may be difficult) is to calculate its “purity” Tr[ρ̂2]. It can be shown that

1

d
≤ Tr[ρ̂2] ≤ 1, (2.39)

where d is the dimension of the Hilbert space, and Tr[ρ̂2] = 1 if and only if ρ̂ is pure.

Operator expectation values: For a state |Ψ〉, the expectation value of an observable Â is given by

the familiar calculation

〈Â〉 = 〈Ψ|Â|Ψ〉 . (2.40)

Generalizing this notion to the density matrix case, we see from Eq. (2.37) that

〈Â〉 =
∑
i

pi 〈ψi|Â|ψi〉 =
∑
i

pi 〈ψi|Â

∑
j

|j〉 〈j|

 |ψi〉 =
∑
j

〈j| ρ̂Â |j〉 = Tr
[
ρ̂Â
]
. (2.41)

Evolution: For a closed quantum system (no interactions with an external entity), the state ρ̂(t) is

evolved in time according to the von-Neumann equation

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
. (2.42)

This result can be easily derived from the fact that each state |ψi〉 evolves under the Schrödinger

equation

i~
d |ψi〉
dt

= Ĥ |ψi〉 . (2.43)

Reduced density matrices: If the density matrix ρ̂ describes a bipartite system, i.e, a system com-

prised of two distinct parts a and b, each of which live in a subspace of the total Hilbert space

Ha,Hb ⊆ H respectively, then the “reduced density matrix” ρ̂i of each subsystem is given by

ρ̂i = Trj [ρ̂], i 6= j. (2.44)



19

Equipped with these properties, we can now derive the quantum master equation which is

used to describe open quantum systems.

2.2.2 The quantum master equation

Figure 2.4: Diagram of a bipartite quantum system. The total Hilbert space HT is divided into
the “system” subspace H and the “environment” subspace HE . Image from Ref. [113].

As shown in the previous section, a closed quantum system living in a Hilbert space HT ,

where T represents the “total” system, described by a density matrix ρ̂T is evolved in time by

the von-Neumann equation [Eq. (2.42)], which is the density matrix version of the Schrödinger

equation. In this section, we discuss the key concepts behind the derivation of the quantum master

equation, which evolves states in a subspace of interest H ⊆ HT of HT , which we call the “system”

subspace, potentially interacting with the (uninteresting) remainder of the total system, which we

call the “environment” subspace HE . The various spaces are shown diagrammatically in Fig. 2.4.

We refer the reader to Ref. [70] for an excellent formulation of this derivation.

The steps for deriving the master equation is as follows:

(1) Solve the von-Neumann equation [Eq.(2.42)] for the total density matrix ρ̂T under the

effects of the total Hamiltonian ĤT to second order in perturbation theory (the Born
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approximation)

(2) Trace over the environment subspace HE using Eq. (2.44)

(3) Simplify the result based on the timescale hierarchy

τcorr � τsys � τband, (2.45)

where τcorr is the (vanishingly small) correlation time of the background field modes, τsys

is the characteristic timescale of the system of interest, and τband is the (very large) inverse

bandwidth of the background radiation field (the Weisskopf-Wigner, or Markov approxi-

mation)

The resulting equation for the system density matrix ρ̂ reads [113]

dρ̂

dt
=

1

i~
[Ĥ, ρ̂] + L̂ρ̂, (2.46)

where Ĥ is the system Hamiltonian, and

L̂ρ̂ =
∑
i

(
Ĵiρ̂Ĵ

†
i −

1

2

{
Ĵ†i Ĵi, ρ̂

})
(2.47)

is the “Lindblad superoperator.” The operators Ĵi, called “jump operators,” incorporate the dis-

sipative effects of the system’s interaction with the environment by projecting higher-energy state

populations to lower-energy states at the appropriate dissipative rate. In other words, the Ĵi’s

describe the various decay channels of the system. Eq. (2.46) is the workhorse of our studies in the

following chapters.

There are important consequences to introducing a dissipative process into a quantum system.

First, it allows for an arbitrarily initialized system to reach a steady-state configuration. This can

be seen by setting the time derivative of ρ̂ in Eq. (2.46) to zero:

0 =
1

i~
[Ĥ, ρ̂ss] + L̂ρ̂ss ⇒ [Ĥ, ρ̂ss] = −i~L̂ρ̂ss. (steady-state) (2.48)

For L̂ρ̂ 6= 0, this equation can be solved for the steady-state density matrix ρ̂ss. However, if there

were no dissipative processes (L̂ρ̂ = 0), then Eq. (2.48) states that ρ̂ must commute with Ĥ to reach
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steady-state, which is not true for an arbitrary initial state. Second, a dissipative interaction allows

for an irreversible change of the system’s entropy. Of course, there would be a corresponding change

in the environment’s entropy by the second law of thermodynamics. In the following chapters, we

will often choose the system Hamiltonian Ĥ to evolve the system into a relatively low-entropy

steady-state configuration.

2.2.3 The Lindblad superoperator in laser slowing, cooling, and trapping

In Chapters 3-6, we will be studying two- and three- level quantum particles that are free

to move in one spatial dimension. To determine the Lindblad superoperator L̂ρ̂ for this type of

system, we need to characterize the decay channels Ĵ associated with the spontaneous emission

process. For simplicity, we demonstrate the derivation of L̂ρ̂ for a moving two-level particle that

may emit linearly polarized light (Chapters 3, 4, and 6) or circularly polarized light (Chapter 5).

The extension to the three-level case is straightforward.

Because the particle exists in three-dimensional space, it may emit spontaneous photons

with angular momentum ~q and wave vector ksp according to a (normalized) dipole radiation

pattern [135]

N±(u) =
3

8

(
1 + u2

)
, N0(u) =

3

4

(
1− u2

)
, (2.49)

in which u = cosφ, and 0 ≤ φ ≤ π is the angle between ksp and the axis of motion, which we call the

z-axis here. The subscripts denote the angular momentum of the emitted photons, which depends

on the internal level structure of the system of interest. Notice that Eq. (2.49) is continuous,

which means that there is a continuum of decay channels corresponding to the different emission

directions. The jump operator corresponding to the variable u is then

Ĵu =
√
γN(u)e−ikẑuσ̂−, (2.50)

where we have used |ksp| = k, and the exponential operator accounts for the associated momentum

recoil

∆pu = ~ku (2.51)
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of the particle along the z-axis. Generalizing the sum in Eq. (2.47) to an integral, we find that

L̂ρ̂ = γ

(∫ 1

−1
duN(u)e−ikẑuσ̂−ρ̂σ̂+eikẑu − 1

2

{
σ̂+σ̂−, ρ̂

})
. (2.52)

We emphasize that we have integrated over u in the anticommutator terms in Eq. (2.52).

For computational simplicity, we now discuss how to perform a coarse discretization of the

dipole radiation pattern such that the particle remains on a momentum grid with a spacing defined

by the photon momentum ~k, but the distribution still sufficiently models the momentum diffusion

caused by the continuous pattern [Eq. (2.49)]. More specifically, let us define the discretized

radiation pattern

Ndisc
q (u) = Aq [δ(u− 1) + δ(u+ 1)] +Bq δ(u), (2.53)

where δ is the Dirac delta function, which allows for the emission of a spontaneous photon with

momentum ~q along the ±ẑ-directions (with equal probability Aq by symmetry) and spontaneous

emission perpendicular to the ẑ-direction with probability Bq. Then, the Lindblad superoperator

in Eq. (2.52) can be approximated by

L̂q ρ̂ = γ

(
Aq e

−ikẑσ̂−ρ̂σ̂+eikẑ +Aq e
ikẑσ̂−ρ̂σ̂+e−ikẑ +Bq σ̂

−ρ̂σ̂+ − 1

2

{
σ̂+σ̂−, ρ̂

})
. (2.54)

We choose Aq and Bq by enforcing that the resulting first and second moments of the momentum

recoil [see Eq. (2.51)] match that of the continuous pattern. The first moments are 〈∆p〉 = 0 in all

cases by symmetry. For the case of linear polarization (q = 0), the second moments are

〈∆p2〉 = (~k)2

∫ 1

−1
duu2N0(u) =

1

5
(~k)2,

〈∆p2〉disc
= (~k)2

∫ 1

−1
duu2Ndisc

0 (u) = 2A0(~k)2.

⇒ A0 =
1

10
, B0 =

8

10
. (2.55)

For circular polarization (q = ±1), the second moments are

〈∆p2〉 = (~k)2

∫ 1

−1
duu2N±(u) =

2

5
(~k)2,

〈∆p2〉disc
= (~k)2

∫ 1

−1
duu2Ndisc

± (u) = 2A±(~k)2.

⇒ A± =
1

5
, B± =

3

5
. (2.56)

We will use Eq. (2.54) with the Aq’s and Bq’s determined in Eqns. (2.55) and (2.56) in each of the

following chapters that involve particle motion.
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2.2.4 The Monte Carlo wave function method

Armed with the quantum master equation [Eq. (2.46)], we are in principle ready to be-

gin investigating the physics of interest in each of our proposed projects. Our investigations in

Chapters 3-6 involve the usage of time-dependent light fields, which makes Eq. (2.46) analytically

intractable. We are therefore compelled to adopt a numerical approach. While the dimension of

the internal state Hilbert spaces dint of the two- and three-level quantum particles we consider are

relatively small and therefore numerically tractable, their external Hilbert space dimension dext is

potentially very large. This means that calculating the density matrix ρ̂(t), which has (dintdext)
2−1

degrees of freedom, is computationally expensive. Fortunately, there exist various methods of ap-

proximating the solution to the quantum master equation, such as mean field theory, quantum and

c-number Langevin theory [127], truncated cumulant theory, and the Monte Carlo wave function

method [63, 70, 135, 151].

We adopt the last procedure, which involves the stochastic evolution of many state vectors

|ψ〉, which have 2(dint +dext)−2 degrees of freedom. This lower scaling makes their evolution faster

computationally at the expense of only approximating the dynamics. This method is based on the

assumption that the information gained by continuously monitoring the system for signatures of

dissipative events, which yield “quantum jumps” [133] to lower energy states in the system, can

be used to infer the state of the system at any given time for a particular experiment iteration.

In all of the cases we consider, a quantum jump corresponds to the emission of a spontaneous

photon, although there may be multiple “decay channels” depending on the emission pattern and

the number of internal states. These experimental iterations can be either physical (performed in a

laboratory) or numerical (simulated on a computer); we consider the latter scenario. Each iteration

can be roughly understood as a particular (and potentially stochastic) run of the experiment and is

accordingly called a “quantum trajectory.” It follows that the density matrix, which represents the

average state of the system over all possible outcomes, can then be approximated as the average of

these individual trajectories [see Eq. (2.61)].



24

We follow the Monte Carlo wave function approach outlined in Ref. [63]. The algorithm for

the evolution of each quantum trajectory, which can performed in parallel, is as follows:

(1) Initialization: If the initial state of the system is pure (ρ̂(0) = |φ〉 〈φ|), then initialize the

wave function as the corresponding state vector: |ψ(0)〉 = |φ〉. If the initial state is mixed,

then randomly initialize the wave function as one of the |ψi〉’s [Eq. (2.37)] weighted by their

probabilities. Generate and store a random number 0 ≤ r ≤ 1. Proceed to step (2).

(2) Evolution: Evolve the wave function under the non-Hermitian Hamiltonian

Ĥeff = Ĥ − i~
2

∑
i

Ĵ†i Ĵi, (2.57)

in which the Ĵi’s are the jump operators introduced in the previous section, until either (i)

the final desired time is reached, or (ii) the norm of the wave function satisfies

〈ψ(t)|ψ(t)〉 = r. (2.58)

(Note that the norm of the wave function |ψ(t)〉 may have decreased due to the non-

Hermiticity of Ĥeff.) In case (i), proceed directly to step (4). In case (ii), proceed to step

(3).

(3) Quantum jump: A quantum jump has occurred. Simulate the jump by randomly choosing

a decay channel Ĵi weighted by the decay channel probabilities

Pi =
〈ψ(t)|Ĵ†i Ĵi|ψ(t)〉∑
j 〈ψ(t)|Ĵ†j Ĵj |ψ(t)〉

. (2.59)

Once the decay channel has been determined, set the (normalized) state after the jump to

be

|ψ′(t)〉 =
Ĵi |ψ(t)〉

〈ψ(t)|Ĵ†i Ĵi|ψ(t)〉
. (2.60)

Repeat step (2).

(4) Repeat the entire process if another quantum trajectory is desired.
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At any time during the evolution, the approximate density matrix can be calculated according

to the equation

ρ̂(t) ≈ 1

N

N∑
j=1

|ψj(t)〉 〈ψj(t)| , (2.61)

where j indexes a particular quantum trajectory, and N � 1 is the total number of quantum

trajectories. We would arrive at the exact form of the density matrix in the limit N → ∞.

Operator expectation values can then be approximated through Eq. (2.41), although it generally

requires less memory to calculate the expectation value on a trajectory-by-trajectory basis with

Eq. (2.40) and then average the results.

Eq. (2.61) demonstrates why decoherence processes tend to change an initially pure state

to a mixed state. Namely, if there were no decoherence processes, then Ĥeff would be Hermitian.

Consequently, the norm of each wave function wouldn’t change, and no stochasticity would be

introduced into the quantum trajectories. Each quantum trajectory would hence be identical, and

Eq. (2.61) would then be pure.

2.3 Doppler-based cooling and trapping processes

At this point, we have presented the essential mathematical and computational tools neces-

sary for calculating the quantities we discuss in the following chapters. In this section, we describe

the commonly-implemented methods of two-level Doppler cooling and the conventional magneto-

optical trap (MOT), which provide us with a benchmark to which we will compare the laser cooling

and trapping techniques we describe in Chapters 3 and 5.

2.3.1 Approximation of classical particle motion

In most theoretical treatments of Doppler cooling and MOTs, the particle is approximated

to be a classical point particle, i.e., the position and momentum operators r̂ and p̂ are replaced

with the classical variables r and p which are evaluated at the center-of-mass of the particle. (In

the context of laser cooling and trapping, this is often called the “semiclassical approximation,”

which is not to be confused with the approximation of light as a classical electromagnetic field,
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although these approximations are often invoked in tandem.) We showed in Section 2.1 that the

electric field E(r, t) of the applied light has a characteristic length determined by the wavelength

λ = 2π/k. To treat the motion of the particle classically, then, the spatial width σr̂ of the particle’s

wave function (or wave packet) must be small compared to the wavelength of the light:

σr̂ � λ. (2.62)

Moreover, the wave packet’s momentum spread σp̂ must correspond to a spread of Doppler shifts

that is small compared to the linewidth γ of the cooling transition [53]:

kσp̂
m
� γ, (2.63)

where m is once again the particle mass. Together with the Heisenberg uncertainty principle

σr̂σp̂ ≥ ~, (2.64)

these localization conditions imply that

χ ≡ ωr
γ
� 1, (2.65)

in which

ωr =
~k2

2m
(2.66)

is the “recoil frequency” of the transition. Notice that ~ωr corresponds to the kinetic energy of a

particle with a momentum equal to that of a single photon p = ~k and hence sets a frequency scale

for the particle motion.

Eq. (2.65) is equivalent to the condition that the timescale of the internal state dynamics

(determined by γ) is much faster than the timescale of the particle motion (determined by ωr),

and therefore that we can approximate the internal states to be in steady state at all times. For

most laser cooling transitions, ωr is on the order of kHz and γ is on the order of MHz, so this

approximation is valid. However, the systems we consider in the following chapters correspond to

χ ≈ 1, so we must preserve the quantum mechanical nature of the center-of-mass position and
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momentum. Nevertheless, it is still useful to understand the effects of Doppler cooling in this

regime for the sake of context and comparison. For the remainder of this chapter, we will consider

systems obeying Eq. (2.65). Moreover, we will only study motion along one dimension, which we

call the z-direction.

2.3.2 Cooling force

In Section 2.1.1, we derived the following expression [Eq. (2.15)]

Ĥ = Ĥinternal +
p̂2

2m
− d̂ ·E(r̂, t). (2.67)

for the interaction of a quantum particle with a light field. We now wish to investigate the resulting

mechanical effects on the particle, i.e., the evolution of its center-of-mass motion due to the forces

induced by the light. Of course, this is described by Newton’s second law of motion [127]

F̂ (t) =
dp̂

dt
=
i

~
[Ĥ, p̂] = −∂Ĥ

∂r̂
=

∂

∂r̂

(
d̂ ·E(r̂, t)

)
. (2.68)

Notice that only the dipole term results in a force because Ĥinternal involves the particle’s relative

coordinates (and not the center-of-mass) and the kinetic energy term commutes with p̂.

Figure 2.5: (a) Laser setup for Doppler cooling. Counterpropagating beams interact with particles
of velocity v. (b) Energy level diagram of the two-level particle with the laser frequency ωL. Notice
that the laser is red detuned, i.e., ωL < ωa so that δ < 0 [see Eq. (2.70)].

Under the assumptions introduced in Section 2.65 (classical, one-dimensional motion) and

the electric dipole approximation of Section 2.1.1 (electric field is uniform over the spatial extent

of the particle), the expectation value of the light force operator F̂ (t) defined in Eq. (2.68) is

F (t) = 〈F̂ (t)〉 = 〈d̂ · ε̂〉E0
∂f(z, t)

∂z
, (2.69)
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in which we used Eq. (2.18). It is necessary to use a standing wave [two counterpropagating laser

beams, Fig. 2.5(a)] to realize cooling, which means that function f is given by Eq. (2.20). After the

rotating wave approximation, incorporating the steady-state solution of the internal state variables

(as given by the optical Bloch equations [126]), and averaging over a wavelength, the resulting force

is

FDoppler = −βv = ~k2 8s0(δ/γ)

(1 + (2δ/γ)2)2 v = ~k2 8s(δ/γ)

1 + (2δ/γ)2
v, (2.70)

in which v = p/m is the particle velocity,

δ = ωL − ωa (2.71)

is the laser “detuning” from the transition frequency of the two-level particle,

s0 ≡ 2|Ω|2/γ2 (2.72)

is the on-resonance saturation parameter, and

s ≡ s0

1 + (2δ/γ)2
(2.73)

is the saturation parameter. We emphasize that Eq. (2.70) is only valid in the limit of low saturation,

s� 1, so that the steady state excited state population

ρee =
s

2(1 + s)
, (2.74)

is low. This is because a low excited state fraction ensures that spontaneous emission returns

particles to the ground state. Otherwise, stimulated emission would occur, which in this case

would cancel the average force. Additionally, some nontrivial, velocity-dependent, multiphoton

forces (see Sections 3.6.1 and 3.6.2) begin to affect the dynamics if the saturation is not low.

Notice that Eq. (2.70) has the form of a damping force, so it will tend to reduce the speeds

of moving particles if the friction coefficient satisfies β > 0. The reduction of velocities to zero,

regardless of the initial velocity, is exactly what is meant by laser “cooling.” The cooling condition

β > 0 is equivalent to δ < 0, or ωL < ωa [see Fig. 2.5(b)]. So, this procedure will tend to cool the
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particles if the laser frequency is designed to be lower than the transition frequency of the two-level

particle. In analogy to the red color of lower frequency light, this is referred to as a “red detuned”

configuration.

Let us now provide an intuitive, microscopic description of the mechanism behind this

“Doppler cooling” process. Because both lasers are red detuned in the laboratory frame (by de-

sign), they are not “on resonance” with a motionless particle, i.e., the magnitudes of the frequency

of the light ωL and the transition frequency ωa do not exactly match. However, if the particle is

moving along the z-direction, then it will perceive a Doppler shift kv for each laser in its frame of

reference. More specifically, the light which is propagating in the opposite direction of its motion

(counterpropagating) will be “blue shifted,” and the light which is propagating along the same

direction as its motion (copropagating) will be further “red shifted.” Therefore, the counterpropa-

gating laser is closer to resonance with the particle, and is then more likely to cause the particle to

absorb a photon. Because photons have momentum, this absorption will impart an impulse to the

particle in the opposite direction of its motion. Soon after, the particle will release a spontaneous

photon. (This is much more likely than stimulated emission because s � 1.) Many iterations of

this absorption - spontaneous emission process will result in the cooling of the particle to a zero

average velocity, as the absorbed photons always push against its motion, and the effects of the

spontaneous photons average to zero due to the random emission direction. This photon picture

will prove to be invaluable in understanding the laser cooling and slowing protocols we propose in

the following chapters.

2.3.3 Minimum temperature

The previous section elucidated the circumstances under which the laser configuration de-

picted in Fig. 2.5(a) would apply a viscous optical force to a two-level particle exhibiting classical

motion. It seems from what we presented so far that all particles would eventually reach zero

velocity and remain motionless. This is of course not what happens because the particles also

undergo momentum diffusion due to their continuous interaction with the laser [126]. For example,
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near zero velocity, the particles no longer preferentially interact with a single beam, which causes

them to randomly absorb a photon from either beam and potentially gain speed. Additionally,

the particles have a chance of emitting spontaneous photons if they have a nonzero excited state

fraction, which yields a force in a random direction.

It can be shown that the balance between the cooling force and the momentum diffusion

results in a Gaussian spread of velocities. This suggests that we can characterize the ensemble of

particles by a “temperature” T in a similar fashion to the theory of statistical mechanics. More

specifically, it can be shown by modelling the motion as a random walk (or a Fokker-Planck equa-

tion) that the momentum distribution W (p) of the particle ensemble equilibrates to the form

W (p) ∝ e−βp2/2mD, (2.75)

in which β is the friction coefficient derived in the previous section [Eq. (2.70)] and D is the diffusion

coefficient. While D can be derived in a rigorous way from these models, we instead provide an

intuitive, quick derivation [126]. Consider a particle locked to a momentum grid with spacing

~k. As a consequence, the particle can emit spontaneous photons only along the z-axis. For a

single beam, the probability per unit time that the particle emits a spontaneous photon is given

by the scattering rate γp = γρee. Multiplying this rate by two (since there are two beams) and

incorporating the magnitude of the momentum recoil results in the diffusion coefficient

D =
2(∆p)2

∆t
= 4γp(~k)2. (2.76)

Comparing the form of Eq. (2.75) to that of a 1D Maxwell-Boltzmann momentum distribution, we

arrive at the Einstein relation

kBT =
D0

β
. (2.77)

Substituting our results from Eqns. (2.70) and (2.76) into Eq. (2.77) and minimizing the tempera-

ture with respect to detuning δ, we arrive at the “Doppler temperature” formula

TD =
~γ

2kB
. (2.78)
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This corresponds to a temperature of roughly 25µK for a γ = 2π × 1 MHz linewidth transition.

We will compare the Doppler temperature TD to the temperatures resulting from the methods we

propose in the following chapters.

2.3.4 The magneto-optical trap

Figure 2.6: Relevant states of a Jg → Je = Jg + 1 transition for a conventional MOT. Using the
notation |J,mj〉, the labeled states are |0〉 = |0, 0〉, |±〉 = |1,±1〉. We also provide the Zeeman
shifts ±bz in the case of a nonzero magnetic field.

Now that we have characterized the forces and temperatures achieved with Doppler cool-

ing, we explain its combination with a quadrupole magnetic trap to form a magneto-optical trap

(MOT) [126]. Such a configuration is relatively easy and inexpensive to create, robust to exper-

imental errors, and exhibits both cooling and trapping capabilities. We will replace the cooling

mechanism of this apparatus to generate higher coherent forces in Chapter 5. We first specify

the necessary state structure, magnetic field, and laser configuration, and then we discuss the

underlying physics of the MOT.

The trapping force is a consequence of the energy of a magnetic dipole moment µ̂ in an

external magnetic field B. In analogy with the classical case,

ĤB = −µ̂ ·B. (2.79)

The magnetic dipole moment of a quantum system is related to its total angular momentum Ĵ
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through the relationship

µ̂ = −gjµB
~
Ĵ , (2.80)

in which µB is the Bohr magneton, and gj is the Landé g-factor. We consider the simple three level

system depicted in Fig. 2.6, which has two excited Zeeman sub-levels |Je,Me = ±1〉 = |±〉 and one

ground state |Jg,Mg = 0〉 = |0〉. Such a system exists as part of a Jg → Je = Jg + 1 transition,

which occurs in many atoms. Notice that we have labeled the states by their magnetic quantum

numbers mj = 0,±1. The ground and excited state manifolds are separated by an energy ~ω0,

and the magnetic sub-levels decay to the ground at a rate γ. We have omitted the |Je,me〉 = |1, 0〉

state from the model because it will not be optically pumped, and hence does not participate in

the dynamics.

Figure 2.7: The laser (σ− − σ+) and current (I) distribution for a 1D conventional MOT. The
anti-Helmholtz coils generate a magnetic field B(z) = |∇B|z, where |∇B| is the magnetic field
gradient [see Eq. (2.82)].

The magnetic field induced by the anti-Helmholtz coils of a magnetic quadrupole trap [see

Fig. 2.7] is given by

B(r) = |∇B|
√
y2 + z2 + 4x2 (2.81)

in which |∇B| is the magnetic field gradient, z and y form a plane parallel to the current loops, and

x is along the axial direction. Because we consider motion only along the z-direction, the magnetic

field becomes

B(z) = |∇B|z êz. (2.82)



33

Using Eqns. (2.82) and 2.80 in Eq. (2.79), we find that

ĤB = ~bz (|+〉 〈+| − |−〉 〈−|) , (2.83)

in which b = gµB|∇B|/~, and g is the g-factor of the transition. The laser configuration consists

of counterpropagating lasers of opposite circular polarization σ− and σ+, as shown in Fig. 2.7.

These lasers can drive the |0〉 → |−〉 and |0〉 → |+〉 transitions, respectively. Care must be taken

to properly align the currents and laser polarizations into the exact configuration shown in Fig. 2.7

(or the equivalent configuration flipped about an axis pointing out of the paper). Otherwise, the

particles will be driven out of the trap.

Figure 2.8: Energy diagram and laser configuration for a conventional MOT.

The laser frequency ωL is tuned below the zero-magnetic field transition frequency ω0 (δ < 0)

so that the Doppler cooling process still operates in a MOT. We now demonstrate the microscopic

mechanism for realizing a trapping force. Consider a particle with zero momentum on the right side
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of the trap at position z′, as shown in Figure 2.8. Because the laser is red detuned and the excited

states have a Zeeman shift [Eq. (2.83)], it is closer to resonance with the |0〉 → |−〉 transition.

Therefore, the particle will preferentially absorb from the σ− beam, which is coming from the right

side of the trap. The particle will then experience an impulse that drives it toward the center of the

trap. The same process occurs for particles on the left side of the trap with the |0〉 → |+〉 transition

and the σ+ laser. Just as in Doppler cooling, we operate in the low-saturation limit s � 1 so the

particles emit a spontaneous photon soon after the absorption. (This explains why the coherent

Zeeman force F̂B = −∂ĤB/∂z, which tends to pull particles away from the center of the trap with

this absorption procedure, does not play a major role in the dynamics.) This cycle is repeated

many times, which ultimately leads to both cooling and trapping of the particle ensemble.

The trapping force can also be demonstrated from a macroscopic force perspective. The force

imparted to the particles by each of the traveling waves is given by [126]

F± = ±~kγ
2

s0

1 + s0 + (2δ±/γ)2
, (2.84)

in which

δ± = δ ∓ k · v ± bz. (2.85)

(We will find that this is very similar to an important, motion-based detuning we define in Chap-

ter 5.) We can find the total force F on the particles through the vector sum of the two forces F±

due to the circularly polarized traveling waves:

F = F+ + F− = −βv − κr. (2.86)

Notice that the first term on the rightmost side of Eq. (2.86) is the same friction force we found

in Doppler cooling. This verifies that particles in a MOT are still cooled by the Doppler cooling

mechanism. The second term is a restoring force with

κ =
b

k
β, (2.87)

which immediately implies that particles will also experience a conservative trapping force toward

the center of the trap.



Chapter 3

SWAP cooling: theoretical investigation

In this chapter, we present our theoretical contributions toward understanding the sawtooth

wave adiabatic (SWAP) cooling method. This work resulted in our Physical Review A article

(Ref. [13]), which was published in August 2018 and largely constitutes the material presented

in this chapter. The experimental realization of SWAP cooling is the subject of Chapter 4. In

this cooling method, two-level particles undergo successive adiabatic transfers upon interaction

with counter-propagating laser beams that are repeatedly swept over the transition frequency.

We explain the basic mechanism behind its operation and characterize the parameter regime in

which it is most efficient and practical. We show that particles with narrow linewidth transitions

can be cooled to near the recoil limit. We also demonstrate that SWAP cooling has an inherently

reduced reliance on spontaneous emission compared to Doppler cooling, which makes it particularly

applicable to systems lacking closed cycling transitions, such as molecules.

3.1 Introduction

The use of coherent light to cool the motion of particles such as atoms to sub-Kelvin tem-

peratures has greatly expanded the capabilities of atomic and molecular physics [123]. The earliest

and simplest mechanism demonstrated and understood was Doppler cooling [77, 192], which relies

on preferential absorption between counterpropagating lasers, followed by spontaneous emission.

While Doppler cooling is simple and robust, the large number of spontaneous emissions involved

has several drawbacks: spontaneously emitted photons impart random momentum kicks to the
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particle that cause diffusion and limit the achievable temperatures. These spontaneous emission

events can also result in the particle falling into internal states that are no longer near resonance

with the applied light so that the cooling ceases. In the case of atoms, the latter can be mitigated

by adding a small number of additional lasers to “repump” into cooled states, but in the case of

molecules the number of uncooled states may be so large that this approach becomes a significant

challenge [31]. Doppler cooling can reach the recoil temperature (set by the recoil energy from a

single emitted photon) for narrow linewidth transitions such that γ < ωr, where γ and ωr are the

optical transition linewidth and recoil frequency respectively. However, the cooling time scale in

this parameter regime is long, scaling inversely with γ.

Several approaches to laser cooling have been developed to mitigate the negative effects of

spontaneous emission [3]. In sub-Doppler cooling mechanisms such as Sisyphus cooling [54], the

energy removed per spontaneously emitted photon is large, allowing lower temperatures to be

reached. In Raman sideband cooling [78], tight confinement of the atom can suppress the effect

of momentum recoil associated with spontaneous emission, enabling cooling to nearly the ground

state of the external potential well. Cavity-cooling techniques [84] can be used to reduce free-space

spontaneous emission by causing preferential decay to a desired state via the output coupler of an

optical resonator.

Recently, we have experimentally demonstrated a new cooling mechanism, named “SWAP

cooling” (sawtooth wave adiabatic passage cooling) in which particles are coherently driven be-

tween ground and excited states of a narrow-linewidth optical transition by counterpropagating,

frequency-swept lasers. Spontaneous emission is still critical in order to remove entropy from the

system to achieve steady-state cooling, but by coherently driving a particle between its ground and

excited state multiple times, large amounts of energy can be removed per spontaneous emission.

This provides a way to generate significant forces and to reach low temperatures while maintaining

a large velocity capture range. The approach is largely insensitive to perturbations such as laser fre-

quency drifts, magnetic fields, and AC Stark shifts. These factors have made SWAP cooling a useful

experimental technique for cooling atomic strontium using its 7.5 kHz linewidth, dipole-forbidden
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1S0 → 3P 1 transition [141]. A related procedure has been used in the generation of a new form

of magneto-optical trap [137]. Sub-Doppler cooling of 87Rb was recently observed using SWAP

cooling with two-photon Raman transitions between ground hyperfine states [74]. In general, the

approach is applicable to any atomic species, especially alkaline-earth-like atoms that possess inter-

combination transitions. Further, the reduced reliance on spontaneous emission may make SWAP

cooling a useful tool for cooling molecules that have narrow linewidth optical transitions, such as

the 160 kHz linewidth X2Σ→ A′2∆3/2 transition in YO [49].

Here, we present a detailed theoretical analysis of SWAP cooling. We explore the minimum

achievable temperature as well as the various laser-particle interactions that affect particle dynam-

ics. We investigate its capture range and the forces involved in the cooling process. We show that

for appropriate parameters, SWAP cooling can be used to cool to near the recoil limit. We also

simulate the rate at which spontaneous photons are emitted during cooling, confirming that the

amount of energy removed per spontaneous emission event can greatly exceed the limits of Doppler

cooling.

3.2 Basic mechanism

The main mechanism for momentum removal in SWAP cooling is the coherent transfer of

a particle toward zero momentum via adiabatic passage. Momentum is removed by time-ordered

stimulated absorption and emission of photons caused by interaction with a standing wave formed

by counter-propagating laser beams. To describe the cooling, we consider a two-level particle with

internal states |e〉 and |g〉, separated in energy by ~ωa, and one dimension of motional freedom

along the ẑ-direction (see Figure 3.1). We choose to represent the external degree of freedom in the

momentum basis and with label |p〉, where p denotes a momentum eigenstate such that p̂ |p〉 = p |p〉.

As shown in Figure 2, the laser frequencies, ωL(t), follow an asymmetric sawtooth waveform

with full range ∆s and period Ts so that the slope of the sawtooth ramp is α ≡ ∆s/Ts. The

sawtooth frequency ramp is centered on the transition frequency, ωa, and the frequency is linearly

ramped from below to above ωa. We approximate the wavenumber, k, to be fixed throughout the
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Figure 3.1: (a) Spatial setup of the standing wave (two counterpropagating lasers with frequency
ωL(t)) and particle (circle) with velocity v in the lab frame. (b) Energy level diagram of the bare
internal states, separated by energy ∆E = ~ωa.

sweeping sequence. This also implies that the recoil frequency, ωr = ~k2/2m, is fixed, where m is

the mass.

Figure 3.2: Top: The laser frequency, ωL(t), as a function of time. The approximate resonance
frequencies for a particle with velocity v are labeled. The sweep range is chosen to be large enough
such that both beams will become resonant with the particle at some time during the sweep.
Bottom: The ideal excited-state fraction, Pe, in the adiabatic regime. The particle remains in the
excited state for a time interval τe.

The direction of particle motion matters since Doppler shifts set the time-ordering of which

beam first interacts with the particle. To understand this time-ordering, consider a particle initially

in the state |g, pi〉. The Doppler shift ensures that the counter-propagating beam is the first to

sweep across the transition frequency. If we first focus on the case with pi > 0, this adiabatically

transfers the particle to the state |e, pi − ~k〉 via stimulated absorption. After some time, the co-
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propagating beam will achieve resonance, adiabatically transferring the particle to |g, pi − 2~k〉 via

stimulated emission. For pi < 0, the mapping is |g, pi〉 → |e, pi + ~k〉 → |g, pi + 2~k〉. In either

case, the particle is transferred closer to zero momentum. The net result is the removal 2~k of

momentum and transfer back to the particle’s initial internal state without spontaneous emission.

Subsequent sweeps would then continue to remove momentum in units of 2~k. Figure 3.2 shows

this process by illustrating the ideal excited state fraction, Pe, over two sweeps.

The particle’s internal state at the beginning of a sweep is a crucial factor in determining

the impulse it receives from each laser. If the particle instead begins a sweep in the excited state,

it is transferred away from zero momentum. Hence, one of the roles of spontaneous emission is

to ensure that the particle begins a sweep in the ground state. This is achieved by requiring an

imbalance between the times spent inside and outside of the two resonances, which corresponds to

∆s > 4|kv|. (3.1)

This condition also enforces the requirement that the sweep range, ∆s, is large enough for both

laser beams to achieve resonance with the particle.

There are several other conditions that must be satisfied in order to realize SWAP cooling.

In order to ensure a low probability of decay during the time interval the particle is in the excited

state, τe, we require the condition

τe �
1

γ
. (3.2)

Importantly, the Rabi frequency of each laser beam, Ω0, and the laser frequency sweep rate, α,

must satisfy the condition

κ ≡ Ω2
0

α
≥ 1, (3.3)

so that there is a substantial probability, Pa, for an adiabatic transition at each resonance [194]:

Pa = 1− exp

[
−π

2

Ω2
0

α

]
. (3.4)

We shall refer to κ as the adiabaticity parameter. Any κ that satisfies Eq. (3.3) is said to be within

the adiabatic regime, and any κ that does not satisfy Eq. (3.3) is said to be within the diabatic
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regime.

3.3 System dynamics

The quantum master equation

dρ̂

dt
=

1

i~
[Ĥ, ρ̂] + L̂ρ̂ (3.5)

governs the time evolution of the density matrix, ρ̂, whose Hilbert space includes both the particle’s

internal and external degrees of freedom. The Hamiltonian, Ĥ, captures the coherent dynamics,

while the Lindblad superoperator, L̂ρ̂, captures the incoherent dynamics due to spontaneous emis-

sion and the associated recoil.

The operators ẑ and p̂ describe the particle’s position and momentum, respectively. The

excited and ground states, |e〉 and |g〉, form a pseudo-spin 1/2 system, as discussed in Section 2.1.2.

The electric field of the applied lasers is polarized along the quantization axis, x̂, (see Figure 3.1)

and is described in first quantization by the operator

Ê(ẑ, t) = x̂E0

[
cos (kẑ + η(t)) + cos (kẑ − η(t))

]
. (3.6)

Here, the amplitude of each standing wave is E0, and the time-dependent accumulated phase of

the laser field, η(t), from initial time t0 is

η(t) ≡
∫ t

t0

ωL(t′) dt′ . (3.7)

In the interaction picture defined by the free Hamiltonian

Ĥ0(t) =
p̂2

2m
+

~
2
ωaσ̂

z, (3.8)

the particle’s non-dissipative dynamics, under the dipole and rotating wave approximations, is

described by the interaction Hamiltonian

Ĥ =
~
2

Ωs cos

(
kẑ +

kp̂

m
t

)(
σ̂+e−iθ(t) + h.c.

)
, (3.9)
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where

θ(t) ≡
∫ t

t0

ωL(t′)− ωa dt
′ = η(t)− ωat (3.10)

is the time-dependent phase of the laser field’s detuning from resonance. The standing wave’s peak

Rabi frequency,

Ωs ≡ 2Ω0 = −2 〈e|d̂ · x̂|g〉E0

~
, (3.11)

characterizes the interaction strength of the electric field with the particle’s electric dipole operator

d̂. We refer the reader to Sections 2.1 and 2.2 for more model details.

In order to keep the momentum distribution on a discretized grid for computational simplicity,

we approximate the dipole radiation pattern to produce recoil of magnitudes −~k, 0, and ~k along ẑ

with probabilities 1
5 : 3

5 : 1
5 , respectively [135]. As discussed in Section 2.2.3, the resulting Lindblad

superoperator is

L̂ρ̂ = γ

(
1

5
eikẑσ̂−ρ̂σ̂+e−ikẑ +

1

5
e−ikẑσ̂−ρ̂σ̂+eikẑ +

3

5
σ̂−ρ̂σ̂+ − 1

2

{
σ̂+σ̂−, ρ̂

})
. (3.12)

We emphasize that this form of L̂ρ̂ is only valid for states |e〉 and |g〉 with magnetic quantum

numbers m satisfying ∆m = ±1. For states with the selection rule ∆m = 0, such as the dipole-

forbidden 1S0 →3P1 transition
(
|g〉 ≡ |1S0,m = 0〉 and |e〉 ≡ |3P1,m = 0〉

)
studied in Chapter 4,

one should use recoil probabilities 1
10 : 8

10 : 1
10 .

In summary, we consider numerical and theoretical results of Eq. (3.5) with Ĥ given by

Eq. (3.9) and L̂ρ̂ given by Eq. (3.12) in the following sections.

3.4 Dynamics in the high-velocity regime

The core mechanism whereby SWAP cooling removes momentum and energy from a particle’s

motion is most easily understood in a regime in which one can consider that the particle interacts

sequentially with one traveling wave and then the other. We shall henceforth refer to this as the

“high-velocity regime.” To define it, we must consider the time it takes to adiabatically transfer a

particle with initial velocity vi between its internal states, which we call τjump, as well as the time
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interval separating the two resonances, which we denote by τres. In the adiabatic regime, it can be

shown that τjump = 2Ω0/α (see [185]). We derive τres in the following subsection.

3.4.1 Resonance times and intervals in the adiabatic limit

In the adiabatic limit (Ω2
0 � α), most of the population transfer for a motionless particle

occurs around t = 0 for a detuning profile δ(t) = αt, as this is when the laser is in resonance with

the particle. By energy conservation (see Eq. (3.24) with n = 0), motional degrees of freedom

translate this “resonance period” for a particle in the state |g, p〉 interacting with a right-traveling

wave to the time that satisfies

αtright − ωr(2β + 1) = αtright − kv − ωr = 0, (3.13)

where β ≡ p/~k. For high-velocity particles (kv � ωr), the resonance period agrees with the

intuitive Doppler shift result. However, the additional recoil term is important for low velocity

(kv ' ωr) particles. A similar result can be found for the interaction of a ground-state particle

with a left traveling wave (β → −β), which translates the resonance period to

αtleft − ωr(−2β + 1) = αtleft + kv − ωr = 0. (3.14)

The resonance periods for a particle starting in the excited state can be found with the substitution

ωr → −ωr on the additional recoil term. It is easily shown that adiabatic transfer with motion has

the same probability as the motionless case [194].

In the high-velocity regime [see Eq. (3.16)], there is one stimulated absorption and one stimu-

lated emission per sweep in SWAP cooling. From Eqs. (3.13) and (3.14), the time separating these

resonant phenomena for a particle with initial velocity vi, labeled τres, is

τres =
2(kvi − 2ωr)

α
. (3.15)

It should be noted that (3.15) is only valid in the adiabatic limit, since the time associated with

the stimulated absorption recoil has been included.



43

Figure 3.3 shows the time-ordering of these processes, as well as a measure of the total excited

time, τe, defined as the sum of τjump and τres in this regime. Roughly half of each τjump overlaps

0

0.5

1

τjump τjump

τe

τresP
e

Time (one sweep)

Figure 3.3: The excited state fraction, Pe, of a particle prepared in the state |g, 10~k〉 over one
sweep. Values are: ∆s = 200ωr, Ts = 22/ωr, and Ω0 = 5ωr.

with τres. Therefore, to keep the resonances separated, we define the high-velocity regime to be the

range of velocities that satisfy τjump < τres, or

|Ω0| < |kvi − 2ωr|. (high-velocity regime) (3.16)

It is important to emphasize that particles outside of the high-velocity regime may still be cooled

under the SWAP cooling procedure. However, their dynamics are more difficult to describe and

analyze qualitatively.

3.4.2 Dressed state picture

A convenient and intuitive way to understand adiabatic transfer is the dressed state formal-

ism. Working in the laser frame, we diagonalize the Hamiltonian

Ĥ(t) =
p̂2

2m
− ~

2
δ(t)σ̂z +

~
2

Ωs cos(kẑ)σ̂x, (3.17)
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at each instant in time. Here, δ(t) ≡ αt is the laser detuning from resonance, since the detuning

is linearly ramped from −∆s/2 to ∆s/2. We track the evolution of the minimal set of eigenstates

necessary to demonstrate the evolution of a particle that begins a sweep in the state |g, p〉 in the

high-velocity regime. This set maps to the bare eigenstates

{|g, p〉 , |e, p− ~k〉 , |g, p− 2~k〉 , |e, p− 3~k〉} (3.18)

in the limit of large detuning (|δ(t)| � |kv|). The avoided crossing of a multi-photon process known

as a Doppleron resonance, which does not affect the dynamics of a particle in the high-velocity

regime, is also present (see Section 3.6.1 for details).

|g, p− 2h̄k〉

|g, p〉

|e, p− 3h̄k〉

|e, p− h̄k〉

|e, p− 3h̄k〉

|e, p− h̄k〉

|g, p− 2h̄k〉

|g, p〉n = 1
Doppleron
resonance

E
n
er
gy

Detuning

Figure 3.4: Eigenvalue energy vs. detuning for the four coupled states given in Eq. (3.18). The inset
shows the splitting of an n = 1 Doppleron resonance, which is small in the high-velocity regime.
The red arrows identify the physical path being considered. Dashed lines show the evolution of the
uncoupled states. Values are: Ω0 = 2ωr, α = ω2

r , Ts = 50/ωr. p = 4~k.

Figure 3.4 shows the instantaneous eigenvalues as the detuning is linearly ramped. Starting

in the state |g, p〉, the particle diabatically crosses the higher-order Doppleron resonance, thus being

transferred into a different eigenstate. It then undergoes two adiabatic crossings, which correspond
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to the two resonances previously discussed, and ends up in the state |g, p− 2~k〉, signifying the

removal of 2~k of momenta. It is important to note that Figure 3.4 only depicts the correct

evolution of a particle that follows the red arrows; in reality, the surrounding states would couple

to states of higher and lower momenta.

3.4.3 Coherent dynamics

In order to further illustrate the dynamics strictly due to coherent evolution, we numerically

calculated the time evolution of the root-mean-square (rms) momentum of the particle, prms =√
〈p̂2〉, as it underwent SWAP cooling starting from the initial state |ψi〉 = |g, 10~k〉 and without

spontaneous emission (γ = 0). The Rabi frequency was chosen such that the simulation operated

in the high-velocity regime for all momentum states |pi| > ~k.

Figure 3.5 shows the rms momentum, prms, vs. time, expressed in terms of the number of

sweeps. The probability of finding the particle in the excited state, Pe = |〈e|ψ〉|2, is also shown

on the right hand axis. One sees that during each sweep the particle was adiabatically transferred

to the excited state and then back to the ground state. Each transition was accompanied by a

reduction in the particle’s momentum by ~k for a total of 2~k per sweep. As the momentum of

the particle was reduced, the time between transitions became shorter (i.e., the width of the pulses

became smaller). This is what one would expect since the velocity of the particle and therefore the

accompanying Doppler shift is decreased.

By symmetry, and as confirmed by calculation, the rms momentum decreased in an identical

manner for the state with opposite initial momentum, |g,−10~k〉. Course graining over the indi-

vidual sweeps, the effective force exerted on the particle drives it toward zero velocity, independent

of its initial direction of motion. As a result, one should draw an important distinction between the

force exhibited here and a “slowing force” that can be understood as applying a uniform transla-

tion to the momentum of all particles. Such slowing forces are often implemented in the context of

slowing a molecular beam with chirped-frequency light [196] or using rapidly varying electrostatic

potentials as is done in Stark decelerators [21], but do not lead to steady-state cooling.
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Figure 3.5: Root-mean-square momentum, prms (step-like curve; magenta), for a particle starting
in the state |g, 10~k〉 over five sweeps. The curve exhibiting rising and falling pulses shows the
excited state fraction, Pe (cyan). The particle experiences a significant reduction in prms and is left
in a superposition of the internal states. Values are: ∆s = 120ωr, Ts = 1000/ωr, and Ω0 = ωr.

On the final sweep shown in Figure 3.5, the particle approached zero momentum where

the dynamics are modified. At the end of the final sweep, the particle had a 50% probability

of occupying the |g, 0〉 state, and a 25% probability of occupying each of the |e, ~k〉 and |e,−~k〉

states, resulting in a final rms momentum of prms = ~k/
√

2 and a final excited state probability of

Pe = 1/2. We will see that being left in the excited state at the end of the sweep is an important

consideration for understanding the final equilibrium temperature.

3.4.4 High-velocity regime dynamics including dissipation

We have shown that under the influence of purely coherent dynamics, a particle prepared in

its internal ground state can be sufficiently transferred to low momentum. In a realistic system,

however, the presence of spontaneous emission restricts the amount of time a particle may remain

in the excited state, Eq. (3.2), which increases for higher initial momentum. Nevertheless, in

the context of the high-velocity regime in the adiabatic limit, it can be shown that there is no
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upper bound on the momentum states that can be transferred to lower momentum via the SWAP

cooling procedure, contingent that arbitrarily high Rabi frequencies and sweep rates are accessible.

However, there exists a fundamental lower bound:

∣∣∣ p~k ∣∣∣ ' 1 +
2κγ

ωr
. (3.19)

This motivates the use of SWAP cooling on a transition for which κγ/ωr is small. It is a requirement

of adiabatic transfer to have κ at least on the order of unity, so the experimentalist only has the

freedom to vary the ramp slope α and Rabi frequency Ω0 accordingly. Regardless of experimental

laser parameters, narrow linewidth transitions (on the scale of the recoil frequency) are preferable

if the goal is to maximally cool the system.

3.5 Forces and capture range

For analyzing the cooling dynamics, it is useful to investigate the equivalent classical force

exerted on a particle as a function of its velocity or momentum. We have chosen to describe this

relationship by defining various quantities that provide information about the impulse imparted to

the particle over a single sweep.

3.5.1 Conservative forces

One way to describe impulsive momentum kicks applied to the particle is the change in its

rms momentum due to a single sweep:

∆prms ≡
√
〈ψf | p̂2 |ψf 〉 −

√
〈ψi| p̂2 |ψi〉, (3.20)

where |ψi〉 is the state of the particle prior to the sweep and |ψf 〉 is the state of the particle after

the sweep. We describe the impulse in this way (rather than the average momentum) because the

system exhibits Bragg oscillations, which are transitions between resonantly coupled momentum

states |p〉 ↔ |−p〉 (see Section 3.6.2). These oscillations yield an additional momentum change that

is qualitatively different to the adiabatic transfer dynamics that we are interested in and does not
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contribute to the cooling process. The rms momentum is a measure that by construction excludes

the effect of such Bragg oscillations.

Figures 3.6 and 3.7 show the computed rms impulse ∆prms vs. the initial momentum pi for

a particle initially prepared in |ψi〉 = |g, pi〉 and |ψi〉 = |e, pi〉, respectively. The values chosen for

the adiabaticity parameter, κ = 0.5 (top rows) and κ = 4 (bottom rows), demonstrate the system’s

behavior in the diabatic and adiabatic regimes, respectively, and were varied by changing only the

Rabi frequency, Ω0. The probability of being left in the excited state at the end of the sweep, Pe,

is also provided.

To aid in the description of the dynamics, we have labeled specific regions of momentum

space with the symbols (0), (1), and (2), where (i) labels the maximum number of lasers the

particle substantially interacts with at any time during the sweep. More specifically, a particle

with initial velocity vi lies within the region defined by:

|kvi| >
∆s

2
region (0)

|Ω0| < |kvi| <
∆s

2
region (1) (3.21)

|kvi| < |Ω0| region (2).

Note that region (1) roughly corresponds to the high-velocity regime, Eq (3.16). Uninterestingly,

particles in region (0) do not significantly interact with the laser field, so we restrict our discussion

to regions (1) and (2).

For most states in region (1), the resulting ∆prms and Pe after the sweep are roughly constant.

The general results of a diabatic sweep in region (1), as seen in both Figures, may be interpreted

as giving a low imparted impulse and a failure to return the particle to its initial internal state. In

contrast, the general results of an adiabatic sweep in region (1) are an impulse of |∆prms| ≈ 2~k

and significant return to the initial internal state; these are the ideal coherent dynamics of the

high-velocity regime as previously discussed. The highest momentum states within region (1) do

not quite undergo this ideal behavior, even in the adiabatic regime, because the particle does not

begin the sweep in an eigenstate of the Hamiltonian, Eq. (3.9).



49

0

0.5

1

-120 -60 0 60 120

P
e

pi (units of h̄k)

0

0.5

1

-120 -60 0 60 120

P
e

pi (units of h̄k)

-2

0

2

-120 -60 0 60 120

(0) (1) (2) (1) (0)

∆
p r

m
s

(u
ni

ts
of

h̄
k
)

pi (units of h̄k)

-2

0

2

-120 -60 0 60 120

∆
p r

m
s

(u
ni

ts
of

h̄
k
)

pi (units of h̄k)

(a) (b)

(d)(c)

Figure 3.6: ∆prms vs. pi ((a) and (c)) and Pe vs. pi ((b) and (d)) for a particle that started in the
state |g, pi〉 at the beginning of a sweep. The various momentum regions in Eqs. (3.21) are labeled
in Figure 3.6(a) and are presented in all subplots by vertical, dashed lines. The horizontal, dashed
line corresponds to ∆prms = 0. The adiabaticity parameter κ lies in the diabatic regime for plots (a)
and (b) (κ = 0.5,Ω0 = 9.5ωr) and in the adiabatic regime for plots (c) and (d) (κ = 4,Ω0 = 26.8ωr).
Values are: ∆s = 360ωr, Ts = 2/ωr.
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Figure 3.7: ∆prms vs. pi ((a) and (c)) and Pe vs. pi ((b) and (d)) for a particle that started in state
|e, pi〉 at the beginning of a sweep. The various momentum regions in Eqs. (3.21) are labeled in
Figure 3.7(a) and are presented in all subplots by vertical, dashed lines. The adiabaticity parameter
κ lies in the diabatic regime for plots (a) and (b) (κ = 0.5,Ω0 = 9.5ωr) and in the adiabatic regime
for plots (c) and (d) (κ = 4,Ω0 = 26.8ωr). Values common to all plots are: ∆s = 360ωr, Ts = 2/ωr.
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As previously mentioned, Dopplerons and the ambiguous time-ordering of the two laser in-

teractions can significantly modify the force in region (2) such that the physics is more complex.

The effect of this complex behavior is clearly visible in Figures 3.6 and 3.7 as |pi| approaches zero.

In particular, a particle within region (2) initially in the internal ground state will be transferred

to the excited state after a sweep, which would then send it on a trajectory toward increasingly

higher momentum. This motivates the requirement described by Eq. (3.1), which will on average

reset the particle to the ground state for the next sweep via spontaneous emission.

3.5.2 Forces including dissipation

While Section 3.5.1 provides insight into the conservative forces in SWAP cooling, it does not

include the dissipative features that ultimately lead to phase-space compression and equilibration.

Moreover, we enforced specific state preparation at the beginning of each sweep. In order to explore

the forces one would expect in the laboratory, i.e., with γ 6= 0 and no specific state preparation, we

define an average impulse as

∆pavg ≡ Tr [p̂ρ̂f ]− Tr [p̂ρ̂i] (3.22)

with the constraint that the internal state populations are the same at the beginning and end

of the sweep. The quantities ρ̂i and ρ̂f are the density operators associated with the initial and

final particle states, respectively. We shall call these internal state populations the “steady-state”

populations, P ss
e for each pi. Note that steady-state here refers only to the internal state populations

being equal before and after the sweep cycle; the momentum in general will change. This choice

of representing the impulse is motivated by the desire to compare to other cooling methods where

the internal populations reach a stationary situation, and to thereby allow investigation of the

relationship between force and particle velocity in a more general context.

Figure 3.8(a) displays ∆pavg for a large range of initial momentum states pi. The parameters

were chosen such that the time between the two laser interactions, τres, obeyed τres ≤ 1/γ for all

|kvi| < ∆s/2. We see that the overall effect of SWAP cooling yielded an impulse toward zero
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range). Each point was averaged over 1000 trajectories. Values are: ∆s = 1800ωr, Ts = 1.0/ωr,
Ω0 = 60ωr, γ = ωr.

momentum for |kvi| < ∆s/4 and an impulse away from zero momentum for ∆s/4 < |kvi| < ∆s/2.

This motivates Eq. (3.1) as a characterization of the momentum capture range of SWAP cooling.

For low momentum, the effects of Bragg oscillations, Dopplerons, and the ambiguous time-ordering

of laser interactions result in momentum dynamics that differ from those in the high-velocity regime.

Figures 3.8(b) and 3.8(c) present the steady-state excited state fraction, P ss
e , and the average

number of incoherent scattering events per sweep, which we call ξ, for the same parameters. We

see that impulses with magnitudes of nearly 2~k are imparted for |pi| near 25~k with only ∼ 0.2

scattering events per sweep. Moreover, the momentum states around |pi| = 25~k experienced an

average force of |∆pavg/Ts| ≈ 2~kγ, which is roughly four times the cooling force that one expects

from a radiation pressure force that fully saturates the atomic transition. This means that SWAP

cooling can provide large cooling forces with a relatively low scattering rate. We investigate this

useful feature in more detail in Section 3.8.
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3.6 Effect of higher-order processes

3.6.1 Doppleron resonances

As the laser frequencies are swept, multi-photon transitions often called Dopplerons come

to resonance even when single-photon transitions do not. As shown in Figure 3.9(a), an nth-

order Doppleron process is characterized by the absorption of n+1 photons from one beam and the

emission of n photons into the other, resulting in a (2n+1)~k net momentum transfer to the particle,

and it being left in the opposite internal state from which it started [134]. In general, Doppleron

resonances can occur both before and after the single-photon resonances, and their existence has

the potential to substantially affect particle dynamics outside the high-velocity regime.

Doppleron resonances only occur for specific values of laser detuning. For a particle with

initial momentum pi = βi~k, the time of an nth-order Doppleron resonance can be found from

energy conservation:

β2
i ~ωr + (n+ 1)~ωL(t) = n~ωL(t) + ~ωa + β2

f~ωr. (3.23)

We have neglected the AC Stark shift here for simplicity. In Eq. (3.23), the terms proportional to

n are the energies of the photons being absorbed and emitted, ~ωa is the transition energy, and the

terms proportional to ωr are the initial and final kinetic energies of the particle.

Paired with the momentum condition βf = βi−(2n+1), where βf is the particle’s momentum

after the Doppleron process, the time, tn, of an nth-order Doppleron resonance for a lab-frame laser

detuning profile δn(t) = αtn obeys

αtn = −(2n+ 1)kvi + (2n+ 1)2ωr = −
(
n+

1

2

)
(kvi + kvf ). (3.24)

Regardless of the Rabi frequency, multiphoton effects become relevant for low momentum

states. From numerical methods, the 1st-order splitting in a dressed state picture (see Figure 3.4)

behaves as

Ω(1) ≈ Ω3
0

16(kvi − 3ωr)2
, (3.25)
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(b)

(a)

Figure 3.9: (a) A 1st-order Doppleron resonance, characterized by the condition βf = βi − 3. (b)
A Bragg resonance between the states |g,±2~k〉.

which suggests that the probability of adiabatically passing through a first-order Doppleron reso-

nance is [194]

P (1)
a = 1− exp

[
− π

512

Ω6
0

α(kvi − 3ωr)4

]
. (3.26)

The size of the argument in this exponential can be used to define the conditions for which

Dopplerons are relevant for a particle with velocity vi. Because SWAP cooling requires Eq. (3.3)

to be satisfied, we choose to define the Doppleron regime as follows:

|Ω0| > |kvi − 3ωr| (Doppleron regime). (3.27)

Comparing this result with Eq. (3.16), we see that the Doppleron regime describes nearly all
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remaining states outside the high-velocity regime. Of course, there exist similar conditions for

higher-order Doppleron resonances.

Increasing Ω0, i.e., allowing for more Doppleron resonances, may decrease the amount of time

it takes to reach a steady-state temperature, as they allow for more momentum transfer. However,

the final temperature increases with Ω0 (see Figure 3.13). Thus, minimum temperatures with a

high capture range may be achieved by dynamically changing the Rabi frequency as the particle is

cooled over time.

3.6.2 Bragg oscillations

Momentum states experience nontrivial effects due to Bragg oscillations, i.e., particle scat-

tering from a light grating (the standing wave). These transitions, which are between states with

±β~k momenta where β is an integer, occur at a rate [114]

ΩB,β(t) ≈ |Ω0|2β
4β(8ωr)β−1[(β − 1)!]2δ(t)β

, (3.28)

provided that |δ(t)| > |Ω0| > γ. Figure 3.9(b) displays the energy diagram for a Bragg resonance

between the |g,±2~k〉 states. If there are many oscillations, it is likely that system noise will cause

the oscillations for different particles to become out of phase, leaving, on average, half of the atoms

in either momentum state. This phenomenon is an important consideration in the analysis of the

impulses in Figure 3.10.

Integrating Eq. (3.28) and dividing by 2π gives the total number of βth-order Bragg oscilla-

tions between times ti and tf :

Nβ(ti, tf ) =
1

2π

∣∣∣∣∫ tf

ti

ΩB,β(t′) dt′
∣∣∣∣ ∝ ∣∣∣∣∫ tf

ti

1

δ(t′)β
dt′
∣∣∣∣ . (3.29)

The quantities ti and tf are related to the times of stimulated absorption/emission during the

sweep process, as these will carry the particle away from the states that are experiencing Bragg

oscillations.

To provide a few interesting examples, 1st-order Bragg transitions affect the dynamics of the
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initial states |ψ〉0 = |g, ~k〉 , |g, 3~k〉. From Eq. (3.29) and using Eqns. (3.13) and (3.14),

N1 ≈
κ

8π
ln

∣∣∣∣2ωr∆s

∣∣∣∣ , |ψ〉0 = |g, ~k〉 ; (3.30)

N1 ≈
κ

8π
ln

∣∣∣∣ ∆s

6ωr

∣∣∣∣ , |ψ〉0 = |g, 3~k〉 .

The Bragg oscillations occur before the SWAP resonances for |g, ~k〉 and after the SWAP resonances

for (|g, 3~k〉). Although N1 scales logarithmically with ∆s in both cases, a sufficiently large sweep

range will promote multiple Bragg oscillations.

The effect of Bragg oscillations at low pi, which manifests as a sharp, linear feature in Figure

3.8(a), is elucidated by considering the effect of switching the sweep direction. Bragg oscillations

can mix the particle between the |±pi〉 states before the particle resonates with the lasers, so the net

∆pavg is independent of the sweep direction. To compare ∆pavg with and without these oscillations,

we define impulses ∆p± in the following way:

∆p± ≡ (∆pavg)pos ± (∆pavg)neg

2
(3.31)

in which the subscripts “pos” and “neg” refer to the sign of the ramp, i.e., red to blue or blue to

red detuning, respectively. By symmetry, we expect the effect of Bragg oscillations to be present

in ∆p+ and to cancel in ∆p−. Figure 3.10 displays ∆p± as a function of the initial momentum,

pi. The substantial effect of Bragg oscillations were seen to be present in ∆p+ for |pi| < 7~k.

For pi nearer to the high-velocity regime, which is |pi| > 30.5~k for this set of parameters, Bragg

oscillations do not play a significant role, and we observe ∆p+ tending to zero, and ∆p− tending

to ±1.5~k.

3.7 Temperature limit as γ → 0

We now provide the results of a SWAP cooling simulation that includes the effects of dissi-

pation, but in the limit γ → 0. To accomplish this, we modifed the frequency profile to be a series

of single sawtooth ramps with period Ts � 1/γ, each separated by a time Twait � 1/γ, as shown

in Figure 3.11. This “sweep-wait” scheme effectively mimics the cooling process for a particle with
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Figure 3.10: ∆p± vs. pi. The sharp, linear feature in ∆p+ is due to Bragg oscillations, which mix
the particle between the |±pi〉 states before it reaches resonance with the lasers. Each point is
averaged over 1000 trajectories. Values are: ∆s = 1800ωr, Ts = 1.0/ωr, Ω0 = 60ωr, γ = ωr.

an ultranarrow linewidth. It also reduced the required computation time by allowing (i) ∆s to be

small and (ii) the use of the analytical expression for free-space spontaneous decay. We modeled the

limit Twait →∞ and γ → 0 by setting γ = 0 and projecting any remaining excited state population

to the ground state, along with simulating any accompanying momentum recoil.

Figure 3.12 presents the evolution of a particle that started in the state |g, 10~k〉 under this

cooling scheme. At the end of this simulation, the temperature of the particle was observed to

asymptote to a value near the recoil limit, 2Tr, where

kBTr ≡
(~k)2

2m
= ~ωr, (3.32)

and kB is Boltzmann’s constant. We use the variance in p as a measurement of the 1D temperature,

T , i.e.,

σ2
p

2m
≈ 〈p

2〉
2m

=
1

2
kBT. (3.33)

It should be noted that not all steady state solutions are Gaussian in nature, but are centered

on zero momentum. Thus, the first equality in Eq. (3.33) universally holds once the system has

equilibrated.
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Figure 3.11: Frequency profile for the simplified “sweep-wait” cooling scheme.
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Figure 3.12: Cooling of a particle that begins in the state |g, 10~k〉 to the recoil limit after 5 sweep-
wait cycles. Top inset: A snapshot of the momentum distribution P (p) halfway through the 7th

sweep. Bottom inset: A closer look at the cooling trajectory once the system reached equilibration.
The recoil limit, 2Tr, is included as a horizontal, dashed line. This curve is the average of 100
trajectories. Values are: ∆s = 100ωr, Ts = 60/ωr, and Ω0 = 2ωr.
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It is also interesting to consider how the final temperature scales with Ω0. Figure 3.13 displays

this relationship in both the diabatic and adiabatic regimes. A minimum temperature was found

just within the adiabatic regime. From the numerics, the temperature was observed to follow a

linear relationship

kBT =
1

2
~Ω0 (3.34)

in the adiabatic regime, which we attribute to decreased time ordering between adiabatic transfers

and the particle spending more time in the excited state, hence more scattering events. This linear

relationship held for at least twice the domain of Figure 3.13. An increase in temperature was

observed in the diabatic regime, which we attribute to both a reduction in conservative forces as

described in Section 3.5.1, and the presence of a significant excited state fraction at the end of each

sweep, leading to more diffusion from spontaneous emission.
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Figure 3.13: Stationary values of 〈p2/2m〉 as a function of Ω0 in the sweep-wait sequence. The
vertical, solid line labels the value of Ω0 that divides the diabatic and adiabatic regimes. The
recoil limit is represented as a horizontal, dashed line. Deep within the adiabatic regime, the
temperature scales linearly with Ω0. Values are: ∆s = 100ωr, Ts = 60/ωr. Each point is averaged
over 500 trajectories.

In Chapter 4, we present a plot which shows the same quantities as in Fig. 3.13, but with
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experimental and simulation data for the γ = 2π × 7.5 kHz linewidth 1S0 →3P1 transition in 88Sr.

The simulation data was created by employing the method of Monte Carlo wave functions (see

Section 2.2.4) with the SWAP cooling quantum master equation [Eq. (3.5)].

3.8 Cooling efficiency

We now compare the efficiency of SWAP cooling with Doppler cooling. We define “cooling

efficiency” here as the energy carried away from the system per scattering event. This choice is

motivated in part by the potential application of SWAP cooling to systems where closed cycling

transitions may not be accessible and therefore a large number of spontaneous emission events are

undesirable. We calculate the cooling efficiency by preparing an ensemble of particles in a specific

initial state, |g, 20~k〉, and subsequently applying both Doppler and SWAP cooling for comparison.

Here, we used the SWAP cooling scheme presented in Figure 3.2, in which dissipation is included

at all times.

Clearly, many fewer scattered photons are required for SWAP cooling to reduce the energy

and to bring the system close to equilibrium. In fact, in the simulation, SWAP cooling was able

to remove up to an average of 5~k of momentum per scattered photon. As a consequence, in

comparison to Doppler cooling’s ideal cooling efficiency, we deduce that SWAP cooling promises to

be well-suited to cooling particles where the adverse affects of spontaneous emission are significant,

such as those that lack closed cycling transitions.

3.9 Conclusion

The SWAP (sawtooth wave adiabatic passage) procedure proves to be a robust and simple

cooling mechanism. Our analysis of both the coherent and dissipative dynamics of two-level par-

ticles suggests that it has numerous applications, such as to systems with narrow linewidth or no

closed cycling transitions. We have shown its ability to cool particles to the recoil limit while simul-

taneously inducing larger cooling forces and maintaining a higher cooling efficiency than Doppler

cooling.
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The scope of the calculations presented in this paper were limited to two-level atoms mov-

ing along one-dimension. It will be interesting to consider more general atomic systems and more

general geometries of laser and trapping fields. In particular, SWAP cooling may be applied to

magneto-optical trapping [12, 137], to optical lattices, and to general multilevel laser cooling strate-

gies [74, 171]. The realization of the SWAP protocol in a magneto-optical trap is in fact the topic

of the next chapter. Furthermore, while it is important to recognize that while our calculations

are fully quantum mechanical (consisting of a complete description of the internal and external

variables) with the inherent advantages of not having to make approximations, it will also be useful

to develop and validate semiclassical methods where many-sweep cycles can be treated with higher

efficiency. This will be important to treat more massive systems such as complex molecules.

In the future, it will be interesting to further elaborate on the concept of a cooling efficiency,

i.e., the removal of a system’s energy and entropy per scattering event, in the general context of

laser cooling theory. For example, the information associated with the momentum of a particle
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initially in the state |g, pi〉 may be encoded in the time record of spontaneously emitted photons.

This provides significant motivation for a systematic analysis of entropy dynamics in the various

implementations of laser cooling that may prove to be an insightful and useful endeavor for the

laser cooling and atomic physics community. We discuss this topic to some extent in Chapter 7.

The protocol we have proposed is inherently limited by the requirement of adiabatic transfer

between quantum states. We discuss the relaxation of this requirement by use of an adiabatic

speedup protocol in Chapter 6.



Chapter 4

SWAP cooling: experimental results and comparison to theory

Now that we have developed and studied SWAP cooling from a theoretical perspective, we

present the results of its first experimental realization as well as a comparison of the experimental

results to theory. While we also discuss its basic mechanism, forces, and achievable temperatures in

this chapter, we refer the reader to Chapter 3 for a more detailed analysis. The content shown here

is mainly from our New Journal of Physics article (Ref. [141]), which was published in February

2018. To put the discovery of SWAP cooling into context, we quote the wise and humbling words

of Matthew A. Norcia, who first witnessed its cooling potential in the laboratory as a graduate

research assistant in James Thompson’s lab at JILA:

“Basically, I pressed a button on the function generator.”

Dr. Matthew Norcia, A Little Less Spontaneous [98]

The content shared in the chapter demonstrates that SWAP cooling is a robust cooling

mechanism capable of exerting large forces via a weak transition and with reduced reliance on

spontaneous emission. We present a simple intuitive model for the resulting frictional force, and

directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble.

We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 →3P1 transi-

tion in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method

to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.
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4.1 Introduction

The development of Doppler cooling and sub-Doppler cooling in the 1980’s has revolutionized

our ability to control neutral atoms, ions, and mechanical resonators [34, 42, 59]. Since then,

Doppler cooling techniques have been extended to narrow-linewidth optical transitions to achieve

lower temperatures and high phase-space density [62, 86, 91, 110, 176, 186]. Additionally, there

is an ongoing effort to use Doppler cooling for molecules [85, 170]. Each of these pursuits face

certain persistent limitations. The use of weak transitions limits the forces achievable with Doppler

cooling, and the narrow transition linewidth makes the cooling very sensitive to perturbations of

the cooling transition frequency [92] and to drifts in the cooling laser frequency. In the case of

molecules, the large number of spontaneous emissions required for Doppler cooling is a key obstacle

due to the high probability of spontaneous Raman transitions to undesired states.

Here we present a new form of laser cooling that mitigates these issues. Our technique relies

on the adiabatic transfer of atoms to and from a long-lived optically excited state to both slow

and cool the atoms. Because the role of spontaneous emission is reduced (though not eliminated)

relative to standard Doppler cooling techniques, our technique enables large forces to be generated

even on weak transitions, and may facilitate the extension of laser cooling techniques to systems

that lack closed cycling transitions. Of particular interest, this technique may be applied to the

slowing and cooling of molecules with narrow linewidth optical transitions [49, 99].

From a fundamental perspective, this work has important implications for the ongoing dis-

cussion of the role of spontaneous emission in dissipating entropy during laser cooling [51, 124]. Our

view is that spontaneous emission (or another form of dissipation) is necessary to achieve phase-

space compression, but that the total number of spontaneously scattered photons required can be

quite low (of order one). Similar conclusions have been reached in the study of optical pumping in

high angular momentum states of atoms [159] and cooling with single spontaneous emission events

[152].
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4.2 Basic mechanism

To understand our cooling mechanism in its simplest form, we consider a two-level atom

with a long-lived optically excited state |e〉 and ground state |g〉 moving in one dimension with

velocity v (Fig. 4.1a). Two counterpropagating laser beams with wave-number k and frequency ω

are linearly ramped in frequency from below to above the atomic transition frequency ωa, with full

sweep range ∆s. This ramp is repeated to form a sawtooth pattern in time (Fig. 4.1c). Each laser

interacts with the two-level atom with a Rabi frequency Ω, which is larger than the spontaneous

decay rate γ from |e〉 to |g〉. The sweep range is adjusted such that ∆s > Ω, 4kv. The frequency

sweep rate α = (dω/dt) fulfills the Landau-Zener condition α � Ω2 for adiabatic transfer of

population between ground and excited states. Lastly, the jump in laser frequency at the end of

each ramp is treated as perfectly diabatic.

In the reference frame of the atom, both cooling beams start below resonance with the atomic

transition. Doppler shifts due to the atomic motion cause the beam counter-propagating to the

atom’s velocity to appear kv higher in frequency and the co-propagating beam to appear kv lower

in frequency. As the laser sweep upward in frequency, the counter-propagating beam sweeps over

resonance first, and adiabatically transfers the atom from |g〉 to |e〉. Because of the long lifetime

of the excited state, the atom remains in |e〉 until the co-propagating beam sweeps over resonance

and adiabatically transfers it back to the ground state. In this process, the atom has absorbed

one photon from the beam propagating against its motion, and emitted a photon into the beam

propagating along its motion, resulting in a net momentum transfer of 2~k against its motion. The

laser frequency is then diabatically jumped back to its start frequency such that the atom remains

in |g〉, and then the process is repeated.

Similar principles have been explored [87, 129, 142, 172, 173] to generate large forces. In

these works, the time-ordering of the left and right-going pulses is fixed by parameters external to

the atom. Here, because the time-ordering of the interaction with the two beams is determined

by the atomic velocity, the force always opposes the atom’s velocity, and thus causes slowing for
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Figure 4.1: (a) A moving atom is illuminated by two counter-propagating laser beams, whose
frequencies are modulated with a saw-tooth wave-form. (b) The atom is treated as a two-level
system with transition frequency ωa. (c) Representation of frequencies in lab frame. Because
of Doppler shifts resulting from atomic motion, the co-propagating (counter-propagating) laser
beams are resonant with |g〉 to |e〉 transition when the laser frequency ω = ωa − kv (ωa + kv).
Because ω increases with time, the counter-propagating laser sweeps over the transition before the
co-propagating laser. If the atom starts in |g〉, the counter-propagating laser transfers the atom
from |g〉 to |e〉 as it sweeps over resonance, and the co-propagating laser transfers the atom back
to |g〉. This results in the transfer of two photon recoils of momenta to the atom in the correct
direction to slow the atom. (d) Simulation of trajectories in momentum space. When the atoms
have large momenta, each sweep lowers the momentum by 2~k. At lower momenta, multi-photon
processes can transfer larger amounts of momentum.

atoms moving in either direction.

4.3 Numerical demonstration of basic mechanism

Fig. 4.1d shows simulated trajectories for atoms that begin at different initial momenta using

a Monte Carlo wave function trajectory method [63], which is further discussed in Section 4.7.

Atoms are prepared in a pure quantum state specified by their internal ground state and fixed

momentum. The average momentum over 50 trajectories is calculated at each time step. At high
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momentum, each sweep lowers the momentum of the atom by roughly 2~k. At lower momentum,

we find that the change in momentum per sweep can greatly exceed 2~k, as multiple photons are

transferred between the two cooling beams.

At low momentum, the role of spontaneous emission becomes more important. As the atom

is slowed to near-zero velocity, the Doppler shift becomes small compared to the Rabi frequency,

kv . Ω, and the condition for deterministic time ordering of adiabatic transfers from the two beams

no longer holds. When this occurs, the simple picture of sequential adiabatic transfers to and from

|e〉 becomes invalid, and the probability that the atom is found in |e〉 at the end of the sweep, which

ideally should be 0, becomes appreciable. While the sawtooth frequency sweep leads to slowing for

an atom that is in the ground state at the beginning of a sweep, it causes an atom that starts in

the excited state to increase in velocity. In the absence of spontaneous emission, the atom would

find itself on a heating trajectory after initial cooling. The presence of spontaneous emission is

therefore critical, as it ensures that the atom preferentially starts in |g〉 at the beginning of each

sweep. This breaks time reversibility, enabling cooling and phase space compression to occur.

We can extract the rate of spontaneous emission events from the simulation. For a trajectory

that begins at 100 photon momenta and realistic sweep and atomic properties for 88Sr, the atom’s

momentum is initially reduced by an average of five photon momenta for each spontaneous emission

event. This can be compared to Doppler cooling, which requires at least one scattered photon per

photon momentum removed, and in practice typically much more. Once the atom has reached its

equilibrium temperature, the average scattering rate is slightly less than one photon per sweep for

the same parameters. If applied to a species for which spontaneous emission is problematic (like

molecules), it may be useful to apply velocity-selective optical pumping to a dark state to avoid

the continued scattering of photons from already cooled particles.

4.4 Demonstration of steady-state cooling and phase space compression

We experimentally verify that our mechanism leads to cooling by applying two counter-

propagating beams to an ensemble of 88Sr atoms pre-cooled to roughly 600 µK (Fig. 4.2a). The
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K

Figure 4.2: Experimental study of an atomic ensemble using one-dimensional cooling by adiabatic
transfer. (a) An ensemble of atoms, precooled to around 600 µK, is illuminated by frequency-
swept counterpropagating beams for a variable amount of time. The one-dimensional temperature
is decreased to a steady-state value of 45 µK by the cooling lasers. (b) The phase-space density
in one dimension (grey trace) and three dimensions (black trace) is increased during the cooling
process.

frequency of the two beams is swept upwards by ∆s = 2π × 6.6 MHz every 50 µs. The fre-

quency sweep is centered on the resonance of the dipole-forbidden 1S0 →3P1 transition, which has

a linewidth of γ = 2π×7.5 kHz. The two beams are linearly polarized in the direction of a 3.3 gauss

magnetic field, such that the light-atom interaction can be described as a two-level system with

|g〉 ≡ |1S0,mj = 0〉 and |e〉 ≡ |3P1,mj = 0〉, where mj labels the magnetic Zeeman sub-level.

The cooling beams are applied for a time of 50 µs to 1200 µs (i.e. application of 1 to 24

sweeps) after which the beams are turned off. The temperature of the atomic cloud is determined

from a fluorescence image of the cloud after free ballistic expansion for 10 ms. In the direction

of beam propagation, we find that for these parameters the atoms are cooled from their initial

temperature of roughly 600 µK to 45 µK in of order 300 µs or 6 sweeps.

Importantly, we directly observe an increase in phase-space density during the cooling process,

and not simply velocity reduction. We measure atom loss during cooling to be negligible and the

relative increase in phase space density is ρ/ρ◦ = ∆x◦∆v◦/(∆x∆v), where ∆x and ∆v (∆x◦ and
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∆v◦) are the measured cloud size and velocity spread after (before) cooling. In Fig. 4.2b, this

quantity is shown as the grey line. The black line in Fig. 4.2b accounts for measured heating in

the orthogonal directions (which for simplicity we have assumed to be equal in the two directions).

Note that because the atoms are not confined and the cooling is only applied along one dimension,

this increase of phase-space density is much smaller than one would obtain with the same decrease

in temperature for three-dimensional cooling in a harmonic trap.

4.5 Comments on entropy removal

The fact that phase-space density increases indicates that entropy is removed during the cool-

ing process. This may seem problematic for a mechanism that relies heavily on unitary dynamics

and stimulated emission. However, as discussed above, the presence of even small amounts of spon-

taneous emission is critical for breaking time reversibility and enabling phase-space compression.

In related works [152, 159], it was found that the number of scattered photons required to remove

entropy from a system can be quite low (of order one).

In these protocols, the timing of the emitted photons encodes key information about the initial

state of the quantum system. In an idealized version of our cooling mechanism, the dynamics are

completely unitary as the atom is slowed from a high initial momentum. When it reaches some

lower momentum threshold, the simple picture of subsequent adiabatic transfer breaks down and

the atom begins to scatter photons. In this way, the initial velocity of the atom is encoded in the

time delay before the atom began to scatter photons, and the atom’s initial entropy in momentum

space is mapped onto entropy contained in the measurement record of when photons are and are

not spontaneously emitted. While a detailed analysis of the entropy transfer is beyond the scope

of the work here and will be explored more fully in future work, we believe that the above picture

captures the essential physics of how phase-space compression is achieved.
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Figure 4.3: Cooling into a moving reference frame. (a) We apply a frequency offset in the lab
reference frame between the two beams, which creates a moving reference frame in which the
beams have equal frequency. (b) If the laser frequency is swept upwards, (green points) the atoms
settle into the moving reference frame, which has a velocity indicated by the dashed black line. If
the laser frequency is swept downwards (orange points), the atoms accelerate in the other direction,
without cooling. If the frequency sweep is symmetric (purple points), atoms experience a small
acceleration due to radiation-pressure imbalance. (c) Acceleration vs. polarization angle between
two beams. Acceleration is enhanced when the polarizations of the two beams are aligned. The
solid line represents the maximum acceleration for a saturated two-level atom without stimulated
emission. The dashed red line represents the measured acceleration with a single beam. Black points
represent acceleration with both beams applied. The dashed black line represents the acceleration
that two photon recoils per sweep of the laser frequency would produce.

4.6 Cooling forces

We now turn to a more detailed characterization of the forces involved in the cooling process.

Previously, we have considered the case where the instantaneous frequencies of the two beams are

equal in the lab frame. If, however, we introduce a fixed relative offset frequency between the
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counter-propagating beams (as shown in Fig. 4.3a), then atoms that are stationary in the lab frame

will be accelerated until their velocity matches that of the frame F moving at velocity vF = ∆/2k,

in which the two beams appear to have equal instantaneous frequencies.

We apply the frequency-swept beams for a variable amount of time Ta, then measure the

resulting velocity of the atoms. This is shown in Fig. 4.3b for several sweep configurations. The

green points represent the cooling configuration described above, with the laser frequency adiabat-

ically swept from low to high and diabatically jumped from high to low. The two beams are offset

by a detuning ∆/2π = 400 kHz, and are swept by ∆s/2π = 8 MHz every 33 µs. We observe that

the atoms undergo initial acceleration until they reach equilibrium with the velocity of the moving

frame vF = 0.14 m/s.

To rule out the interpretation that the atoms are merely being dragged by the moving standing

wave formed by the detuned lasers, we reverse the direction of the sawtooth sweep without changing

the relative detuning ∆ of the two beams. The standing wave still moves in the same direction

as before, but now the atoms accelerate in the other direction. While the upwards sweep causes

saturation of the atomic velocity at vF , no such saturation is apparent for a downwards sweep.

This confirms that the downwards sweep configuration does not lead to cooling.

Finally, when we apply a symmetric triangle-ramped frequency sweep to the lasers, the atoms

undergo a much smaller acceleration, likely due to incidental residual radiation pressure from an

intensity imbalance between the two beams.

Because our mechanism relies on stimulated emission, much larger accelerations can be

achieved than would be possible with Doppler cooling on such a narrow transition. To quan-

tify this acceleration, we apply the beams for a time much shorter than it takes the atoms to reach

equilibrium velocity, and measure the resulting change in velocity. If we apply only one of the two

cooling beams, the atoms experience an acceleration consistent with (γ/2)(~k/m) = 155 m/s2, the

expected value for a maximally saturated atom.

We see a far more dramatic effect when we apply both beams at the same time (Fig. 4.3c).

When the polarizations of the two beams are aligned, we observe a maximum acceleration of around
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600 m/s2 for a sweep period of 20 µs, a factor of almost 4 above both the observed acceleration

from the leftward beam alone and the maximum expected acceleration for a two-level atom without

stimulated emission. This measured acceleration is within ten percent of the value we would expect

if each sweep of the laser frequency led to two photon recoils of momentum transfer, though this

agreement may partly be due to a cancellation between the effects of imperfect adiabatic transfers

and multi-photon processes. When the polarizations are made orthogonal, the acceleration returns

to near the single-beam value, as only one of the beams interacts with |e〉.

4.7 Temperature measurement and comparison to simulation
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Figure 4.4: Temperature vs. Rabi frequency for a sweep range of 7 MHz and repetition rate of
15 kHz. Red line represents the results of our simulations, and black points are experimental
data. The red band indicates uncertainty of prediction due to statistical uncertainty in simulation
results, experimental calibration of Ω, and variations in Rabi frequency during the sweep. The
vertical line at 130 kHz represents the approximate point at which we expect adiabaticity to break
down: Ω2 = α. We discuss possible sources for the disagreement at high Rabi frequency in the
main text.

We now compare our experimentally measured temperature to simulation in Fig. 4.4. This

plot presents the same quantities as the idealized γ → 0 study in Section 3.7, but for γ 6= 0.

The simulation used is a Monte Carlo wave function approach, as introduced in Section 2.2.4,

which evolves the quantum master equation

dρ̂

dt
=

1

i~
[Ĥ, ρ̂] + L̂ρ̂ (4.1)
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described in detail in Section 3.3. While the external electric field associated with the cooling

lasers is treated classically, the internal and external atomic degrees of freedom are treated fully

quantum mechanically. The wave function contains ground and excited internal states in addition

to a discrete family of external momentum states, which are equally spaced in units of ~k up to a

maximum cutoff. The unitary dynamics are generated by the single-particle Hamiltonian

Ĥ =
p̂2

2m
+

1

2
~ωaσ̂z + ~Ω cos(kẑ)

(
σ̂+e−iη(t) + h.c.

)
, (4.2)

where the instantaneous phase of the applied coherent field η(t) is the time integrated instantaneous

frequency, with the frequency ramped in the sawtooth pattern previously described. Because the

full atom and field system is an open quantum system due to the presence of spontaneous emission,

the Lindblad superoperator proportional to the spontaneous emission rate

L̂ρ̂ = γ

(
1

5
eikẑσ̂−ρ̂σ̂+e−ikẑ +

1

5
e−ikẑσ̂−ρ̂σ̂+eikẑ +

3

5
σ̂−ρ̂σ̂+ − 1

2

{
σ̂+σ̂−, ρ̂

})
(4.3)

is also included to fully simulate the associated quantum master equation.

Both experiment and simulation show a minimum temperature as a function of Rabi fre-

quency. At low Rabi frequency, the Landau-Zener condition α� Ω2 breaks down, leading to inef-

ficient adiabatic transfers. For the parameters used in (Fig. 4.4), α = Ω2 when Ω = 2π × 130 kHz,

roughly the point at which temperature is minimized in both the simulation and experimental

results.

At larger Ω, both the experimentally measured and simulated temperatures rise with Ω,

though the predicted and observed values appear to disagree at large Ω. This may be explained by

the use of an approximate dipole radiation pattern which is better suited for a ∆mj = ±1 transition

in the Lindblad superoperator [Eq. (4.3)], which introduces additional momentum diffusion and

therefore results in a higher temperature. Moreover, several experimental factors could lead to

this discrepancy. Because an acousto-optic modulator (AOM) is used to sweep the frequency of

the cooling lasers, there are significant power variations during the sweep. Including this effect in

our simulation resulted in lower temperatures at high Rabi frequency, and this effect can explain
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much of the disagreement (as indicated by the red band in Fig. 4.4). Furthermore, imperfect laser

polarization and finite bias field may lead to cooling on the transitions to 3P1, mj = ±1, especially

at high Rabi frequency. Nevertheless, the data roughly obeys the linear relationship

kBT ∝ ~Ω, (4.4)

for values of Ω in the adiabatic limit, which we discussed in Section 3.7 in the limit γ → 0.

These results highlight that obtaining low temperatures requires low Rabi frequencies, and a

sufficiently slow sweep such that the Landau-Zener condition α . Ω2 is maintained. These condi-

tions indirectly constrain the values of the atomic decay rate γ that are compatible with achieving

low temperatures. In order to be in a regime where adiabatic transfer can be performed efficiently,

we require that Ω� γ, which motivates the use of narrow linewidth transitions in order to utilize

a low Rabi frequency and obtain a low temperature. The sweep rate α is further constrained by

the condition that the atoms should not decay between subsequent adiabatic transfers to and from

the excited state, which requires α/2kv & γ. If we take v to be the initial velocity of the particles

to be cooled, this condition represents a tradeoff between low final temperatures (which necessitate

a small sweep rate α), and a large velocity capture range (which requires large α). This tradeoff

becomes more favorable for long-lived excited states, though in principle can be mitigated in certain

applications by dynamically adjusting the sweep rate and range as the particles are cooled.

By optimizing the sweep parameters in our simulation to achieve low equilibrium tempera-

tures for 88Sr atoms that begin at low temperature (making capture range a more minor concern),

we achieve an equilibrium temperature of 2.3 µK. We find that colder temperatures can be achieved

in simulation by using a longer-lived excited state. For comparison, this temperature is roughly an

order of magnitude above the Doppler cooling limit for the same transition. Clearly, the key merit

of our cooling mechanism is not its ability to achieve the lowest possible temperature, but rather to

provide relatively strong forces on weak transitions, a large capture range, and a reduced reliance

on spontaneous emission.
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4.8 Conclusion

We have demonstrated a novel cooling mechanism in which large accelerations may be

achieved even on optical transitions with low scattering rates. This mechanism may find ap-

plication to the cooling of molecules, and can improve the performance of atomic cooling using

dipole-forbidden optical transitions. From a technical perspective, this cooling method has the

advantage of low sensitivity to long-term laser frequency drifts and to perturbations of the atomic

transition frequency, for example to those encountered while loading into a deep optical dipole trap

[92].

After the publication of this study, various extensions and modifications to this cooling mech-

anism have been realized and proposed, including the theoretical investigation [13] described in the

previous chapter, the use of circularly polarized beams and magnetic field gradients to form a

magneto-optical trap [12, 137, 171] (which is the subject of the next chapter), the application to

87Rb (which has no narrow-line optical transition) by using Raman transitions [74], and the decel-

eration of a beam of 163Dy atoms [146]. We also expect that this cooling mechanism can be used

to achieve near ground state cooling of tightly confined atoms. To speed up the adiabatic transfers

and therefore increase the stimulated forces, we also consider the incorporation of an adiabatic

speedup protocol [14] in Chapter 6.



Chapter 5

SWAP MOT

In the previous two chapters, we demonstrated how the SWAP protocol can be used to

cool atoms and molecules with narrow linewidth optical transitions. In this chapter, we show

theoretically how it can be combined with a magnetic trap to supply an additional trapping force.

This work resulted in a publication in Physical Review A (Ref. [12]) in May 2020. As opposed

to related methods that have been previously reported [137], our approach utilizes repeated cycles

of stimulated absorption and emission processes to achieve both trapping and cooling, thereby

reducing the adverse effects that arise from photon scattering. Specifically, we demonstrate this

method’s ability to cool, slow, and trap particles with fewer spontaneously emitted photons, higher

forces and in less time when compared to a traditional MOT scheme that utilizes the same narrow

linewidth transition (see Section 2.3.4). We calculate the phase space compression that is achievable

and characterize the resulting system equilibrium cloud size and temperature.

5.1 Introduction

Trapping and slowing devices based on the removal of momentum, energy, and entropy via

light are ubiquitous and essential in most experiments on quantum gases. Techniques such as the

slowing and cooling of particles by preferential absorption from a counterpropagating laser [68,

77], the magneto-optical trap [156], Zeeman decelerators [172], the bichromatic force [191], and

sawtooth-wave adiabatic passage (SWAP) cooling [13, 141] all rely on many cycles of an engineered

light-matter interaction for this purpose.
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It is widely understood that spontaneous emission is a fundamental requirement for the laser

cooling and trapping of atoms and molecules. This is due to the fact that the scattered photons

irreversibly remove entropy, allowing the system to violate the conditions for Liouville’s theorem to

apply and to thereby undergo compression in terms of the occupied volume in phase space. While

incorporating repeated scattering events is acceptable for systems with a closed cycling transition,

this can lead to significant loss for systems with many degrees of freedom, such as molecules, which

may have a large number of dynamically decoupled internal states, or “dark states.” Protocols such

as the optical repumping from uncoupled states to cooled states can mitigate this issue [90, 170],

but a more absolute solution would be to significantly reduce the number of spontaneous emissions

necessary to achieve slowing, cooling, and trapping.

SWAP cooling can cool a system to equilibrium with fewer spontaneous emissions than

Doppler cooling and slow a distribution of particles using purely coherent dynamics [13]. We

present the results of combining SWAP cooling with a quadrupole magnetic trap, which we call

a SWAP MOT [140]. We show that a SWAP MOT is able to demonstrate slowing, cooling, and

trapping with fewer scattered photons, higher conservative forces, and in less time when compared

with a traditional MOT scheme.

Our approach differs from other methods of implementing the SWAP procedure in a MOT

[137, 171] because we formulate a method to incorporate the stimulated emission process originally

envisioned in the first proposals of SWAP cooling [13, 141]. This addition promotes both cooling

and trapping and reduces the number of scattered photons required for equilibration. In order

to achieve the desired coherent dynamics, we propose that the cooling laser polarizations and

magnetic field directions (or, equivalently, the direction of the electron’s magnetic moment) should

be abruptly switched at the center and end of each sweep (see Fig. 5.1).

In Section 5.2 we explicate the particle dynamics achieved with the SWAP MOT protocol.

In Section 5.3 we develop a semiclassical model in which the internal states are treated quantum

mechanically and the external states are treated classically. Section 5.4 explains the details of our

numerical algorithm. In Section 5.6 we define regimes in phase space that exhibit different types of
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Figure 5.1: A schematic of the two experimental setups for the 1D SWAP MOT (motion only
along the x-direction) that operate in alternating periods of the cooling cycle. Anti-Helmholtz coils
with current I and counterpropagating lasers of opposite circular polarization σ+ and σ− create a
magnetic-optical trap for neutral particles (pink circle). The laser polarizations and current direc-
tions are (ideally) instantaneously, periodically switched between the two setups as the detuning of
each laser, which is linearly ramped from below to above the resonance of the cooling transition,
passes through zero.

dynamic behavior under SWAP MOT evolution, define capture range conditions, and demonstrate

phase space compression and MOT loading. In Section 5.7 we provide various scaling properties of

the procedure over the range of interesting system parameters.

5.2 SWAP MOT mechanism

The SWAP procedure relies on the coherent transfer of a particle between quantum states via

adiabatic rapid passage. The internal structure of the simplest quantum system that demonstrates

the desired dynamics consists of two excited states with a common ground state, which we label

|+〉 , |−〉 , and |0〉, respectively. The labels correspond to the values m = ±1 and 0, where m is the

magnetic quantum number, such as that occurs in a system with a J = 0→ J = 1 transition, where

J is an angular momentum quantum number. Due to our choice of laser polarization, omission of
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Figure 5.2: (a) The minimum internal state structure necessary for demonstrating SWAP MOT
dynamics. The transition frequency ω0, natural linewidth γ, laser frequency ωL(t), detuning δ(t),
and Zeeman shifts ±bx of the excited states are included. (b) The laser detuning δ(t) (dashed) and
excited state fraction Pe(t) (solid) vs time t over a sweep of period Ts. The particle resonates with
the lasers at the times t1 and t2 when δ(t) = ±δm (dot-dashed), where δm is the motional detuning
[see Eq. (5.2)].

the |J,m〉 = |1, 0〉 state is valid, as it is not optically pumped. As shown in Fig. 5.2(a), the excited

states are separated in energy from the ground state by ~ω0, where ω0 is the transition frequency,

assumed to be in the optical domain. In the presence of a magnetic field, the excited states are

shifted in energy according to the Zeeman shift ±~bx, where b = gµB(∇B)/~, g is the g-factor of

the transition, µB is the Bohr magneton, and x is the displacement of the particle from the trap

center. Both excited states decay to the ground state with a rate given by the linewidth γ. For

simplicity, we limit our discussion to one dimension.

As displayed in Fig. 5.1, the experimental setup is nearly identical to that of a type I 1D



79

MOT [126]. However, instead of fixing the laser detunings

δ(t) = ωL(t)− ω0 (5.1)

below the transition frequency, they are repeatedly swept from below to above the cooling transition

in a sawtooth pattern (see the dashed curve in Fig. 5.2(b)) with full period Ts. In Eq. (5.1), ωL(t)

is the instantaneous laser frequency. Additionally, the directions of the currents I in the anti-

Helmholtz coils and the polarizations of the cooling lasers are switched at a rate 2/Ts. The current

directions are chosen such that the magnetic field along the radial direction at the center of the

trap, which we call the x-direction (see Fig. 5.1), has the form B(x) = (∇B)x during the first half

of the sweep, and B(x) = −(∇B)x during the second half, where ∇B > 0 is the magnetic field

gradient. The laser traveling along the +x (−x)-direction has circular polarization σ+ (σ−) during

the first half, and then these polarizations are exchanged for the second half.

The general desired coherent dynamics over a single cycle of the SWAP procedure is as

follows. Let us assume that the particle begins in |0〉, which is a good assumption due to the effects

of spontaneous emission for appropriate system parameters. The particle resonates with one of the

lasers when the laser detuning δ(t) is equal in magnitude to the particle’s motional detuning

δm ≡ bx+ kv, (5.2)

which is the sum of its Doppler and Zeeman shifts, as shown in Fig. 5.2(b). Here, k is the wavenum-

ber of the transition and v is the velocity of the particle. More specifically, at the time t1 during

the first half of the sweep defined by δ(t1) = −|δm|, the particle absorbs a photon from one of

the cooling lasers and is transferred into whichever excited state |e〉 ∈ {|+〉 , |−〉} first comes into

resonance. Then, at the time t2 in the second half of the sweep defined by δ(t2) = |δm|, the particle

emits a photon into the other laser by stimulated emission and is transferred coherently back to

|0〉 [see Pe(t) in Fig. 5.2(b)] with the corresponding momentum shift. It is essential to our method

that both the laser polarizations and magnetic field direction are switched between the times t1

and t2 so that the particle resonates with the correct laser as to achieve stimulated emission and
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the consequent second momentum recoil. This second stimulated process in a sweep is exactly

what differentiates our method from other SWAP MOT protocols [137, 171]. Very importantly,

this protocol replaces the scattering event required after every absorption in Doppler cooling with

a stimulated emission, mitigating the adverse effects of momentum diffusion that would otherwise

occur. This feature allows the particle to experience the impulse of many photon momenta while

avoiding spontaneous emission.

It is necessary to demonstrate that this protocol inherently generates a force toward the

center of the trap (trapping), a force that opposes the particle’s motion (slowing), and an overall

frictional force (cooling). In order to illustrate its trapping capability, consider a motionless particle

with position x > 0 [see Fig. 5.3(a)]. The Zeeman shift causes the particle to absorb a σ− photon

from the left-traveling laser during the first half of the cycle and to emit a photon into the right-

traveling σ− laser during the second half, transferring the particle back to |0〉 with a net impulse

of two photon momenta toward the center of the trap. Its slowing capability is elucidated by

considering a particle with momentum p > 0 near the center of the trap [see Fig. 5.3(b)]. In

this case, the Doppler shift causes the particle to absorb a σ− photon from the left-traveling laser

during the first half and to emit a photon into the right-traveling σ− laser during the second half,

transferring the particle back to |0〉 also with a net impulse of two photon momenta that opposes

the particle’s motion. Examples with negative x or p similarly would cause trapping and slowing via

interaction with the σ+ laser. The cooling effect is more subtle. To be precise, we define cooling

as compression of the particle’s classical phase space volume, which is achieved through irreversible

entropy flow from the particle to free space via the process of spontaneous emission. This most

frequently occurs when the Doppler and Zeeman shifts are equal in magnitude but opposite in sign,

as the particle resonates with both lasers simultaneously and is left with a significant excited state

fraction at the end of a sweep. Spontaneous emission then resets the particle to the ground state

for the next sweep, yielding a net drift in phase space toward the phase space origin. Although

the discussion so far has been descriptive, we we will elucidate the details of the full dynamics in

Section 5.6 through the numerical solutions to follow.
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Figure 5.3: A qualitative demonstration of the trapping force (a) and slowing force (b) in a SWAP
MOT. The cooling lasers (with circular polarizations σ±) and sign of the magnetic field B(x) setup
are included. (a) Top: The energy eigenvalues E(x) of Ĥ(t) with Ω = 0 of a motionless particle
(p = 0) as a function of position x during the first half of the sweep. An example system (pink circle)
with x > 0 in the state |0〉 absorbs a σ− photon, yielding an impulse toward x = 0 and transferring
the particle into the |−〉 state. This occurs at the time t1 when the swept laser frequency satisfies
δ(t1) = −bx. Bottom: E(x) vs. x and laser and magnetic field setup during the second half of
the sweep. The example system emits a σ− photon, yielding another impulse toward x = 0 and
transferring the particle back to the |0〉 state. This occurs at the time t2 > t1 when the swept laser

frequency satisfies δ(t2) = bx. (b) Top: The relative energy eigenvalues ∆E(p) ≡ E(p) − p2

2m of of

Ĥ(t) with Ω = 0 for the states W (p) [see Eqn. (5.11)] for a particle at the center of the trap (x = 0)
as a function of momentum p in the first half (top) and second half (bottom) of the sweep. An
example system experiences an impulse toward p = 0 by undergoing similar dynamics to Fig. 5.3(a)
with the substitutions x→ p and bx→ kv.

5.3 Model and semiclassical approximations

In order to capture the intricate features of the SWAP procedure, we first develop a fully

quantum mechanical model for the particle and then make appropriate semiclassical approximations

to create a computationally tractable simulation. We refer the reader to Sections 2.1 and 2.2 for

general details on modeling light-matter interactions. As previously described, Fig. 5.2(a) displays
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the internal state structure. We track motion along one dimension, for which the particle has

momentum and position operators p̂ and x̂.

The system is subject to counter-propagating lasers of opposite circular polarization (which

we denote as σ+ and σ−) of instantaneous frequency ωL(t) and a magnetic field that depends

linearly on the coordinate as B̂(x̂) = (∇B)x̂. The detunings of the lasers δ(t) [see Eq. (5.1)] are

set to follow a sawtooth waveform pattern centered at zero with range ∆s and period Ts. In the

Schrödinger picture, the coherent dynamics is described by the Hamiltonian

Ĥ(t) =
p̂2

2m
+ ~ω0 (|+〉 〈+|+ |−〉 〈−|) + ~bx̂ (|+〉 〈+| − |−〉 〈−|)

+
~Ω

2

(
ei[kx̂−η(t)]σ̂+

+ + h.c.
)

+
~Ω

2

(
e−i[kx̂+η(t)]σ̂+

− + h.c.
)

(5.3)

during the first half of the sweep, with similar form but substitutions k → −k and b→ −b during

the second half of the sweep. The particle mass is m, the wavenumber of the laser light (which

we approximate to be constant) is k, and the magnetic field gradient is characterized by b, which

was defined in Section 5.2. The (equal) Rabi frequencies of both of the counterpropagating lasers

are Ω, and

η(t) ≡
∫ t

0
ωL(t′) dt′ (5.4)

is the time-dependent accumulated phase of the laser field. The operators σ̂+
i ≡ |i〉 〈0| and σ̂−i ≡

(σ̂+
i )† = |0〉 〈i| are the raising and lowing operators corresponding to transitions between the ground

state and the two excited states.

The quantum master equation

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
+ L̂ρ̂ (5.5)

governs the time evolution of the density matrix, ρ̂, which fully describes the particle’s internal and

external states. The Lindblad superoperator captures the incoherent dynamics due to spontaneous

emission and its associated recoil. As discussed in Section 2.2.3, we approximate the continuous

dipole radiation pattern to produce discrete recoils of magnitudes −~k, 0, and ~k along the x-

direction with probabilities of 1
5 : 3

5 : 1
5 , respectively [63, 135]. Although it is not absolutely
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necessary to make the simplification that there are only three allowed impulses arising from the

direction of the photon emission, the resulting numerical implementation is more straightforward

due to the fact that one may take advantage of the presence of uncoupled momentum families.

This approximation yields a Lindblad superoperator of the form

L̂ρ̂ = γ
∑

i∈{+,−}

(
3

5
σ̂−i ρ̂σ̂

+
i +

1

5
eikx̂σ̂−i ρ̂σ̂

+
i e
−ikx̂ +

1

5
e−ikx̂σ̂−i ρ̂σ̂

+
i e

ikx̂ −
{
σ̂+
i σ̂
−
i , ρ̂

})
. (5.6)

In the interaction picture defined by the free Hamiltonian

Ĥ0(t) = ~ωL(t) (|+〉 〈+|+ |−〉 〈−|) , (5.7)

the interaction Hamiltonian is

ĤI(t) =
p̂2

2m
− ~δ(t) (|+〉 〈+|+ |−〉 〈−|) + ~bx̂ (|+〉 〈+| − |−〉 〈−|)

+
~Ω

2

(
eikx̂σ̂+

+ + h.c.
)

+
~Ω

2

(
e−ikx̂σ̂+

− + h.c.
)
. (5.8)

The corresponding force operator that describes the coherent evolution of the external variables is

then

F̂ ≡ −∂ĤI

∂x̂
= ~b (|−〉 〈−| − |+〉 〈+|)− i~Ωk

2

(
eikx̂σ̂+

+ − h.c.
)

+
i~Ωk

2

(
e−ikx̂σ̂+

− − h.c.
)
. (5.9)

We now make several approximations to form a tractable, semiclassical model. By the term

“semiclassical,” we refer to reducing the number of motional degrees of freedom of the particle that

need to be tracked, while the laser field is treated classically. The parameter that characterizes the

separation of timescales required to treat the motion classically is [53]

χ ≡ ωr
γ
� 1, (5.10)

where ωr ≡ ~k2/2m is the recoil frequency of the transition (see Section 2.3). However, the SWAP

procedure causes fewer spontaneous emissions as χ increases [13], so Eq. (5.10) may not necessarily

hold. Moreover, the rapid adiabatic passage protocol generates coherences between quantum states,

so tracking a single value for the semiclassical momentum p is insufficient. Instead, we simplify our
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formalism by limiting the number of quantum states we track at any given time. We retain the

term “semiclassical” for this simplification and our consequent treatment of the particle’s external

variables, and we consider its validity in Section 5.5.

The σ+ − σ− polarization scheme prevents multiphoton processes by angular momentum

conservation [53], so a particle in an eigenstate |0̃(p)〉 ≡ |0, p〉 can only be transferred to the states

|−̃(p)〉 ≡ |−, p− ~k〉 and |+̃(p)〉 ≡ |+, p+ ~k〉 (and vice versa) during the first half of the sweep.

The same statement holds true for the second half of the sweep with k → −k. Therefore, we only

track the particle’s evolution in the subset of basis states

W (p) ≡ {|0̃〉 , |+̃〉 , |−̃〉} (5.11)

of the composite Hilbert space, then update p appropriately as the particle absorbs and emits

photons.

Next, we treat the particle’s external variables in the Hamiltonian ĤI(t) semiclassically by

making the substitutions p̂ → p and x̂ → x, where p is a momentum eigenvalue satisfying p̂ |p〉 =

p |p〉 [which also parameterizes W (p)], and x is a c-number that characterizes the particle’s spatial

position. These classical phase space coordinates will be updated according to a procedure that we

develop in Section 5.4. With the state |0̃〉 defining zero energy, the semiclassical Hamiltonian that

evolves W (p) is

Ĥs(t) = −~(δ(t)− δm) |+̃〉 〈+̃| − ~(δ(t) + δm) |−̃〉 〈−̃|+ ~Ω

2

(
σ̂x

+̃
+ σ̂x

−̃

)
, (5.12)

where σ̂x
ĩ
≡ σ̂+

ĩ
+ σ̂−

ĩ
. Note that the motional detuning δm determines the condition for resonance

in Eq. (5.12) as previously discussed. Additionally, we have omitted recoil energy terms ~ωr under

the approximation that they are small in comparison to ~δm.

The coherent evolution of x and p is typically accounted for via Newton’s laws of motion

under the classical force

F (t) =
〈
F̂ (t)

〉
= ~b

[∣∣∣c−̃(t)
∣∣∣2 − ∣∣∣c

+̃
(t)
∣∣∣2] + ~Ωk

(
Re
[
i〈σ̂+

−̃
(t)〉
]
− Re

[
i〈σ̂+

+̃
(t)〉
])
, (5.13)
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where
∣∣∣c

ĩ
(t)
∣∣∣2 ≡ ∣∣∣〈̃i|Ψ(t)〉

∣∣∣2 are the instantaneous populations of state |̃i〉 determined from the

particle’s wave function |Ψ(t)〉 evolved under Ĥs(t). As opposed to other semiclassical treatments

of laser cooling [126], the effects of F (t) on the particle momentum are intrinsically incorporated

into our model due to the p-dependence of the quantum states in W (p). Nevertheless, we provide

this force analysis as a consistency check. As we will motivate in Section 5.6, we make the physically

reasonable assumption that the coherent force due to photon absorption and emission is much larger

than the coherent Zeeman force that arises from the gradient of the magnetic field, i.e., b � Ωk,

which reduces Eq. (5.13) to

F (t) ≈ ~Ωk
(

Re
[
i〈σ̂+

−̃
(t)〉
]
− Re

[
i〈σ̂+

+̃
(t)〉
])
. (5.14)

In this limit, the impulse experienced by the particle at any time in the first half of the sweep is

∆p(t) =

∫ t

t0

F (t′) dt′ ≈ ~k [∆P+(t0, t)−∆P−(t0, t)] , (5.15)

where ∆P±(t0, t) ≡ P±(t) − P±(t0) are the changes in population of the states |±̃〉 between the

times t0 and t. Eq. (5.15) agrees with the result obtained from calculating

∆p(t) = 〈Ψ(t)|p̂|Ψ(t)〉 − 〈Ψ(t0)|p̂|Ψ(t0)〉 . (5.16)

Eqns. (5.12) and (5.15) uniquely determine the coherent evolution of a particle during the

first half of a sweep. The corresponding equations for the second half of the sweep are found by

the substitutions k → −k and b → −b. The incoherent dynamics are described by the Lindblad

superoperator Lρ̂ in Eq. (5.6) with the appropriate substitutions.

5.4 Variant of quantum trajectories

We are now in a position to choose a simulation method for determining the semiclassical

evolution of particles in the SWAP MOT. In this section, we develop a variant of the Monte Carlo

quantum trajectories method in the time domain [63, 135]. The traditional Monte Carlo wave

function method is outlined in Section 2.2.4. This choice is motivated by this method’s ability to
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create a time record for the emission of spontaneous photons by individual particles, i.e., a quantum

jump. We will use this knowledge about the jump time to simulate the motional dynamics as

accurately and efficiently as possible within our semiclassical framework.

In the quantum trajectory method, the density matrix ρ̂(t) is obtained by averaging the

associated pure states of many “quantum trajectories,” each described by a state vector |ψ〉:

ρ̂(t) ≈ 1

N

N∑
i=1

|ψi(t)〉 〈ψi(t)| , (5.17)

where N � 1 is the number of simulated trajectories. The state vectors are continuously evolved

under a non-Hermitian Hamiltonian defined as

Ĥeff ≡ Ĥ −
i~
2

∑
i

Ĵi
†
Ĵi (5.18)

in addition to discrete quantum jumps that correspond to the various decay channels in the system

[63, 135]. As we present below, our method retains these features and introduces fictitious quantum

jumps of |ψ〉 into one of the elements of W (p), directly followed by an update of the coordinates x

and p based on the results of the projection. These additional operations allow us to calculate an

effective, coarse-grained, single phase space trajectory (x(t), p(t)) for each quantum trajectory.

In the case of distinguishable spontaneous emission processes, the jump operators Ĵi take the

form Ĵi =
√
γσ̂−i . In our model, the spontaneous photons due to the decay of the the excited states

|±〉 to the ground state |0〉 are distinguishable in principle by their polarization, so our effective

semiclassical Hamiltonian is

Ĥeff(t) ≡ Ĥs(t)−
i~γ
2

(
|+̃〉 〈+̃|+ |−̃〉 〈−̃|

)
. (5.19)

The time evolution protocol for each quantum trajectory is as follows. Note that k > 0

(k < 0) in the first (second) half of the sweep.

(1) Initialize the classical phase space coordinate (x, p) by sampling from a chosen distribution.

Using this choice of p, prepare the quantum state in a state vector that lies in the basis

W (p). Record the quantum state as |ψr〉, the time as tr, and the initial phase space

coordinate as (xr, pr).
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(2) Continuously evolve |ψ(t)〉 under Ĥeff(t) [Eq. (5.19)] with the external coordinate, (xr, pr),

held constant. This evolution can be interrupted at at a time tj when one of two possible

discrete quantum jump events occur:

Case A The middle or end of a sweep is reached.

(i) Simulate a fictitious quantum jump of |ψ(tj)〉 into one of the basis states in

the subspace W (pr) using populations to determine the relative likelihood, i.e.,

|ψ(t)〉 → |ψP 〉 ∈W (pr).

(ii) Calculate the corresponding impulse ∆p and displacement ∆x according to

∆p = 〈ψP |p̂|ψP 〉 − 〈ψr|p̂|ψr〉 ∈ {0, ~k,−~k};

∆x =
1

m

∫
p(t′) dt′ ≈ 1

m

pavg

2
∆t =

1

m

(
pr +

∆p

2

)
(tj − tr) (5.20)

so that the new phase space coordinate is

(x, p) = (xr + ∆x, pr + ∆p). (5.21)

(iii) Relabel the basis subset W (pr) with the updated momentum p.

(iv) Replace |ψr〉 , tr and (xr, pr) with their updated values |ψP 〉, tj , and (x, p).

Case B A spontaneous photon is detected according to the quantum trajectory proce-

dure [63, 135].

(i) Simulate which state |ẽ〉 ∈ {|+̃〉 , |−̃〉} the system occupied and hence decayed

from using probabilities weighted by the excited state populations, i.e., project

|ψ(tj)〉 → |ψP 〉 = |ẽ〉.

(ii) Apply ∆p and ∆x according to Eqns. (5.20) and update (x, p) to correspond to

this choice.

(iii) Simulate the spontaneous emission process further by updating p to account for

the momentum recoil by selecting one of the three possibilities in the discretely

represented dipole radiation pattern. Assign |ψ(tj)〉 = |0̃〉.
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(iv) Relabel the basis subset W (pr) with the updated momentum p.

(v) Replace |ψr〉 , tr and (xr, pr) with their updated values |0̃〉, tj , and (x, p).

(3) Repeat as needed from step 2 until a desired final time is reached.

We choose to perform the operations described in Case A at the middle and end of each sweep

because the particle ideally undergoes one adiabatic transfer per half sweep by the design of the

SWAP procedure, and hence experiences the impulse of a single photon momentum.

As a framework for comparison and consistency, we have developed an analogous model for a

traditional 1D MOT, which we use in Section 5.6. In that case, the phase space variables are only

updated whenever a spontaneous event occurs, as this is typically the only mechanism whereby

the system can traverse momentum space. The resulting cloud size, temperature, and spontaneous

photon record are in close agreement with other models [126]. Moreover, the SWAP MOT algorithm

we present agrees well with a fully quantum σ+−σ− SWAP cooling model with no magnetic trapping

(as opposed to the configuration previously developed in [13, 141] with linearly polarized lasers),

which can easily be implemented computationally due to its translational invariance. Further

investigation of the validity of this three-state model is presented in the following section.

5.5 Validity of three-state basis in SWAP MOT simulation

Here we justify the reduction of the subset to three basis states. Starting the particle in the

state |ψ0〉 = |0, p〉, we evolve it according to ĤI(t) [Eq. (5.8) with x̂ → x = const for simplicity]

over the first half of a sweep in the 7-state basis

W7 ≡ {|0, p〉 , |0, p± 2~k〉 , |+, p± ~k〉 , |−, p± ~k〉}. (5.22)

For our choice of |ψ0〉, these are the only states that can possibly become occupied in one sweep,

so it is equivalent to using the full basis set in [13]. At the middle of the sweep, the state is

|ψ1/2〉 = c0
1/2 |0, p〉+ c−1/2 |−, p− ~k〉+ c+

1/2 |+, p+ ~k〉 , (5.23)
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where the ci1/2’s are the probability amplitudes of each state. Note that this is the same state we

would have calculated had we only tracked the 3-state basis

W3 ≡ {|0, p〉 , |+, p+ ~k〉 , |−, p− ~k〉}. (5.24)

Next, we calculate the state at the end of the sweep in two ways. In one case (the “7-state

formalism”), we simply propagate |ψ1/2〉 under ĤI(t) with b → −b and k → −k (i.e., switching

the magnetic field and laser polarizations according to our protocol) in W7 over the second half

of a sweep to yield the state |ψ7
f 〉; this is the final state found by tracking the full 7-state basis

throughout the entire sweep. The other case (the “3-state formalism” used in Chapter 5) is more

complicated because we must project |ψ1/2〉 into one of the states in W3 using probabilities weighted

by their populations, which means the final state of the particle will be a mixed state. Here, we

propagate three states

|ψ0
1/2〉 = |0, p〉 ; |ψ−1/2〉 = |−, p− ~k〉 ; |ψ+

1/2〉 = |+, p+ ~k〉 (5.25)

according to ĤI(t) with b→ −b and k → −k in W7 over the second half of a sweep. Labeling the

results as |ψ0
f 〉 , |ψ−f 〉, and |ψ+

f 〉, the final state for the 3-state formalism is

ρ̂3
f = |c0

1/2|2 |ψ0
f 〉 〈ψ0

f |+ |c−1/2|
2 |ψ−f 〉 〈ψ−f |+ |c+

1/2|
2 |ψ+

f 〉 〈ψ+
f | . (5.26)

The state ρ̂3
f is what is calculated according to our simulation procedure, aside from the additional

complexity of updating x at the middle of the sweep.

We now compare the resulting final states ρ̂7
f = |ψ7

f 〉 〈ψ7
f | and ρ̂3

f using two metrics. The first

is the fidelity of quantum states

F (σ, ρ) = Tr

√√
σρ
√
σ, (5.27)

which reduces to

F (ρ̂3
f , ρ̂

7
f ) = 〈ψ7

f |ρ̂3
f |ψ7

f 〉 (5.28)

since the final state in the 7-state formalism is pure. The other is a comparison of the final state

probability distributions P ji = 〈i|ρ̂jf |i〉 according to the chi-squared test. That is, we compare the
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chi-squared value

χ2 =

7∑
i=1

(P 3
i − P 7

i )2

P 7
i

(5.29)

to the number of degrees of freedom df = 6 to quantitatively compare the final probability distri-

butions.

Fig. 5.4a displays F and χ2 for a region of classical phase space centered on the phase space

origin. We refer the reader to Fig. 5.5 and the cited equations therein to gain intuition about the

expected dynamics of particles in phase space. The fidelity F of the states ρ̂3
f and ρ̂7

f (Fig. 7.3)

generally increases with |δm|, which implies that the 3-state formalism becomes more accurate in

determining both the population and coherences of the particle’s quantum state when the stimulated

absorption and emission processes are time-resolved. This is expected because the particle becomes

distributed over more quantum states when the stimulated processes overlap, which is not captured

by the 3-state formalism.

On the other hand, we find that the chi-squared values χ2 are much smaller than the number

of degrees of freedom df = 6 in the entire region of phase space (Fig. 5.4b). This suggests that

the final population distributions P 3
i and P 7

i are nearly identical. For example, at the phase space

coordinate (kx, p/~k) = (2750, 20), which has a relatively high χ2 value of 6 · 10−9, we find that P 3
i

and P 7
i are identical to four decimal places. These results imply that the 3-state formalism very

accurately captures the final population distribution of a particle over the states W7 over one sweep,

which is promising because these populations directly determine the momentum (and therefore the

position) distribution in the SWAP MOT. We expect that this result extends to more than one

sweep.

5.6 Phase space dynamics

Now that we have developed and motivated a detailed semiclassical model, we are in a position

to simulate and characterize the dynamics in a SWAP MOT. In this section, we first provide general

insight for appropriate choices of the many experimental parameters. Then, as a relevant physical
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Figure 5.4: Phase space contour plots of various metrics that compare the final states of the 3-state
and 7-state formalisms. The relative simulation parameters are identical to those used in Fig. 5.5
except γ → 0.

example, we simulate the dynamics of the SWAP MOT procedure as applied to the molecule

yttrium monoxide (YO) using parameters for one of its narrow linewidth transitions. We use the

simulation results to further elucidate the dynamics in various regions of phase space, which are

separated by diagonal lines with slopes determined by the motional detuning (see Fig. 5.5):

δm = bx+ kv = Mε+ 2βωr ⇒
dβ

dε
= − M

2ωr
. (5.30)

Here, M ≡ b/k is the frequency that characterizes the magnetic field gradient, and ε ≡ kx and

β ≡ p/~k are the position and momentum expressed in the appropriate dimensionless units corre-

sponding to the optical transition. Finally, we compare the results of the trap loading process and

phase space compression to those in a traditional MOT.

5.6.1 Choosing appropriate experimental parameters

The essential constraints for the experimental parameters arise from the requirement of

rapid adiabatic passage, which forms the foundation of the SWAP method. Landau and Zener

proved [194] that population is efficiently transferred between two stable quantum states as long
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as the laser frequency is linearly swept over the energy splitting of the states with the following

condition satisfied:

κ ≡ Ω2

α
> 1, (5.31)

where we define κ as the adiabaticity parameter and α ≡ ∆s/Ts is the slope of the frequency

ramp [194]. Experimental parameters that satisfy Eq. (5.31) are said to operate within the adiabatic

regime.

Additionally, it can be shown [185] that the transfer process takes a time τj = 2Ω/α in the

adiabatic regime. Because it is necessary for the system to remain in the excited state without

spontaneously decaying for at least a time τj, it must satisfy τj � 1/γ. Combining this result with

Eq. (5.31), we find that the Rabi frequency must satisfy

Ω� γ. (5.32)

This is exactly what is meant by adiabatic rapid passage [2].

We now discuss the choice of the sweep range ∆s. In Section 5.2, we described how a particle

can experience a coherent force and a consequent impulse of 2~k per sweep if it begins in the internal

ground state |0〉. However, it will still experience an impulse that leads to cooling and trapping,

albeit smaller in magnitude, even if it begins with some excited state population. By symmetry,

this impulse will aid in cooling and trapping a particle only if its wave function predicts that it is

more likely to begin a sweep in |0〉. One way to guarantee this condition is to enforce an imbalance

such that the particle spends more time outside the two photon resonances, allowing spontaneous

emission to preferentially optically pump the system to |0〉 for the next sweep. The most obvious

way to do this is to introduce a waiting period in between each sawtooth ramp. However, because

it is often desirable to cool and trap as quickly as possible, we only consider situations with no

waiting period. In this case, we achieve a time imbalance whenever

4|δm| ≤ ∆s, (5.33)

since the resonances are spaced in frequency by 2|δm|.
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Next, we consider restrictions on the sweep period Ts. In the sequence discussed in Section 5.2,

the particle spends a time τe ≈ 2|δm|/α in one of the excited states in between the two resonances.

(This can be seen by writing the detuning during a single sweep as δ(t) = αt and noting that the

lasers resonate with the particle when δ(t) = ±δm.) Therefore, in order for the particle to maintain

a low probability of spontaneous emission in between resonances, τe must satisfy

τe ≈
2|δm|
α

< 1/γ. ⇒ 4|δm| < 2∆s

γTs
. (5.34)

The resetting to the internal ground state enforced by the time imbalance is only useful if the

particle does not have a significant chance of decaying between resonances during the next sweep.

So, applying Eq. (5.33) and Eq. (5.34), a reasonable restriction on the sweep period Ts is given by

γTs < 2 , (5.35)

in order to obtain fast results. It has been shown experimentally that a cooling force twice as large

as the radiation pressure force was achieved in a 163Dy system with the choice γTs ≈ 0.1 [146].

However, some experiments may require the much stricter condition of minimal spontaneous events.

In these cases, one should instead come close to saturating the bound in Eq. (5.35) so that there

is substantial time to reset to the ground state via spontaneous emission in the event of incorrect

time-ordering of absorption and emission.

We now derive a condition for the choice of magnetic field gradient. As will be explained in

Section 5.6.3.1, there is a specific region of phase space, which we call the “ideal region,” where

particles generally undergo a change in momentum of 2~k per sweep via the coherent dynamics

discussed in Section 5.2. Here, it is a good approximation to expand the momentum to first order

in time, i.e.,

β(τ) ≈ β0 +
dβ

dτ
τ ≈ β0 − 2sgn(δm

0 )τ. (5.36)

In Eq. (5.36), τ ≡ t/Ts labels the number of sweeps, and we have made the approximation that the

momentum transfer ∆β = 2 is uniformly distributed over a sweep instead of localized near photon

resonances. Note that the sign function arises because the sign of δm determines which laser the
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system interacts with first, and therefore the direction of the impulse. This family of trajectories

has an instantaneous slope of magnitude∣∣∣∣dβdε (τ)

∣∣∣∣ =
1

ωrTs|β0 − 2sgn(δm
0 )τ | ≤

1

ωrTs|β0|
, (5.37)

which was derived by applying the integral relationship x =
∫
v dt, equivalent to ε = 2ωrTs

∫
β dτ .

Any trajectory with a slope whose magnitude is smaller than Eq. (5.30) has a substantial like-

lihood of moving out of the ideal region and into an undesirable “heating region,” described in

Section 5.6.3.3. Therefore, it is reasonable to bound the slope of our trajectories, as given in

Eq. (5.37), from below by the the slope of the diagonal lines that define different phase space

regions [Eq. (5.30)], which leads to the condition

MTs ≤ 2/|β0|. (5.38)

Because the minimum achievable temperature in SWAP cooling is the recoil temperature [13], it is

safe to assume that the momenta of most of the particles satisfy |β0| > 1.

As mentioned earlier, it is necessary to choose a sweep period Ts that comes close to saturating

Eq. (5.35) when it is a priority to minimize spontaneous events. Combining Eqns. (5.35) and (5.38)

in this limit yields the restriction

M ≤ γ. (5.39)

Together, Eqns. (5.32) and (5.39) motivate our omission of the coherent Zeeman force in Section 5.3.

5.6.2 Cooling and trapping of the molecule YO

Figure 5.5 displays simulated phase space trajectories for a cloud of Yttrium Monoxide (YO)

particles being cooled and trapped in a SWAP MOT using its 5.9 kHz linewidth X2Σ+ → A′2∆3/2

transition [60]. Motivated by recent experimental progress [60], the initial particle distribution was

characterized by Gaussians with standard deviations σε0 = 9.1 ·103 and σβ0 = 11.5, and is displayed

as yellow target symbols “+” in Fig. 5.5. By comparing the initial and final particle distributions,

the latter displayed as purple triangles, it is clear that phase space compression was achieved. We

quantify this result in Section 5.6.4.
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Figure 5.5: Phase space dynamics in a SWAP MOT. The variables β and ε label a particle’s
momentum as a multiple of the number of photon momenta and number of inverse wavenumbers
from the center of the trap, respectively. The diagonal lines, which have slopes determined by
Eq. (5.30), separate phase space into regions that are labeled above the plot and characterized
by Eq. (5.42). Several sample simulated phase space trajectories are displayed as green lines.
The black arrows show the flow of time. Particles in the “ideal” region, labeled (i), are generally
cooled and trapped, while those outside the “ideal” region, labeled (ii), are heated out of the
trap. Each of the particles’ initial momenta and positions (yellow targets) were sampled from
Gaussian distributions with standard deviations σβ0 = 11.5 and σε0 = 9.1 ·103, respectively. Values
are: ωr = 0.67γ, M = 0.05γ, Ω = 55γ, ∆s = 2000γ, Ts = 1.5/γ, and tmax = 375/γ. For this
set of parameters, the particles are slightly cooled and become significantly more trapped (final
coordinates are displayed as purple triangles).

The simulation parameters were chosen under the conditions derived in Section 5.6.1. Because

we wish to highlight the SWAP MOT’s ability to cool and trap with fewer scattered photons, the

sweep period was chosen to satisfy γTs = 1.5, which is close to the bound in Eq. (5.35). The

magnetic field gradient was consequently chosen to be M = 0.05γ in order to yield significant

trapping with a capture range roughly corresponding to any particles with momenta smaller in

magnitude than 3σβ0 [see Eq. (5.38)]. These choices bounded the motional detuning of most
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particles to the interval

|δm| ≤Mσε0 + 2σβ0ωr ≈ 470γ. (5.40)

Therefore, the choice ∆s = 2000γ guaranteed that most particles underwent the dynamics described

in Section 5.2 [Eq. (5.33)] and did not frequently emit spontaneous photons in between the two

resonances [Eq. (5.34)]. Finally, to operate in the regime of adiabatic rapid passage, the Rabi

frequency was chosen to be Ω = 55γ [see Eqns. (5.31) and (5.32)].

5.6.3 Characteristic dynamics in different phase space regions

The diagonal lines in Fig. 5.5 divide phase space into regions with different characteristic

behavior, which we now discuss in the following sections.

5.6.3.1 Region of ideal coherent dynamics

Upon investigation of the coherent dynamics under Eq. (5.12) in the adiabatic limit, we can

deduce that a particle initialized in the internal ground state |0〉 populates a single excited state

during a sweep only if |δm| > |Ω|. (In our previous work, we referred to a similar condition as the

“high-velocity regime” [13].) Otherwise, power broadening would bring both lasers into resonance

with the particle simultaneously, distributing population among all three states. Specifically, a

particle with δm > |Ω| (δm < −|Ω|) first absorbs a photon from the σ− (σ+) laser. Then, after

the laser polarizations and the magnetic field are abruptly switched, the particle eventually emits

a photon into the other laser, which now has the correct polarization (see Fig. 5.3). Thus, the

particle experiences a negative (positive) impulse of magnitude 2~k after each sweep in the absence

of spontaneous emission.

When spontaneous emission is included, the particle must not spend too much in the excited

state τe [see Eq. (5.34)] or else dissipation will occur. In order to retain mostly coherent dynamics,

we propose that τe must be smaller than the time log(2)/γ, as half of the particles will decay on

average before resonating with the other laser in this time. Combining these results, we expect
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coherent dynamics to approximately describe any particles with motional detunings δm that satisfy

|Ω| < |δm| < α log(2)/2γ. (5.41)

We will call this the “ideal” region, as most particles that are initialized in this region are eventually

trapped and cooled. As seen in Fig. 5.5, particles in the ideal region, which are labeled (i), follow

trajectories that generally exhibit an effective “attraction” to the lines δm = ±|Ω|. It should be

noted that the black arrows display the direction of the flow of time during the simulations.

5.6.3.2 Dynamics near δm = 0

In this regime, the Zeeman and Doppler shifts are comparable in magnitude but opposite in

sign. Thus, the resonances with each laser are no longer time resolved, resulting in population of

both excited states and therefore frequent spontaneous emission events. Nevertheless, we observe an

average attraction of the trajectories to the line δm = 0 in phase space. This attraction paired with

ballistic expansion causes the particle to eventually drift toward the phase space origin in a similar

manner to the dynamics within a traditional MOT. After many cycles, the system equilibrates

about the phase space origin, as discussed in Section 5.7.

5.6.3.3 Dynamics outside the ideal region

The condition |δm| < ∆s/2 is necessary to ensure that the particle resonates with both lasers

at some point during the sweep. Obviously, particles outside of this regime will undergo purely

ballistic expansion, as seen by the trajectories labeled (ii) at later times in Fig. 5.5.

If a particle is in the region defined by α log(2)/2γ < |δm| < ∆s/2, there is a significant chance

of spontaneous emission before resonating with the second laser in a sweep. If the spontaneous

emission does occur, the particle will absorb a photon when it resonates with the second laser,

directing it even further from the ideal region. In this sense, the particle is heated and will eventually

escape the trap, as evidenced by the trajectories labeled (ii) at earlier times in Fig. 5.5. The most

extreme case of heating occurs when |δm| ≈ ∆s/2; here, the absorption-emission sequence becomes
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centered at the extremes of the sawtooth wave instead of at the center, leading to coherent transfer

of the particle away from the phase space origin.

Assembling these considerations together, we arrive at the following complete picture of the

phase space regions, labeled in Fig. 5.5:

|δm| ≤ |Ω| (overlap, scattering)

|Ω| < |δm| < α log(2)

2γ
(ideal coherent dynamics)

α log(2)

2γ
< |δm| < ∆s

2
(heating)

∆s

2
< |δm| (ballistic expansion). (5.42)

Figure 5.6: Semilog plots of the evolution of the phase space density metric G [see Eq. (5.44)]
for the YO system subject to the SWAP MOT and traditional MOT (Doppler). The used SWAP
MOT simulation parameters were identical to those in Fig. 5.5. The detunings of the lasers in
the traditional MOT simulation were set to δ = −Ω, and all other parameters were identical to
the SWAP MOT simulation. Quantities were averaged over all trajectories that become trapped
within the overlap region [see Eq. (5.42)] from Ntot = 2000 total trajectories. (a) G vs. time t
for all trapped particles. The SWAP MOT equilibrates more quickly than the traditional MOT.
Inset: The SWAP MOT captures a higher fraction f(t) of particles. (b) G vs. the average number
of spontaneous emissions per particle. Spontaneous emissions of non-trapped particles are not
included. The SWAP MOT equilibrates with significantly fewer spontaneous emissions per trapped
particle.

In summary, particles that begin in the ideal region are transferred to the overlap region

with few scattering events. Once there, the particle frequently scatters photons and the system

eventually equilibrates. Any particles that begin outside the ideal region are most likely heated out
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of the trap.

5.6.4 Phase space compression

The ultimate signature of a laser cooling method’s ability to effectively trap and cool a system

is the ability to overcome the limits imposed by Liouville’s theorem for Hamiltonian evolution and

exhibit compression in terms of occupied phase space volume. One useful metric that can be used

to quantify the particle density in phase space is the root-mean-square (rms) interparticle spacing

in phase space, lrms. If we label the position of a particle in phase space with the dimensionless

vector r ≡ {ε, β}, then lrms is

lrms ≡
1

N

√√√√ N∑
i>j

|ri − rj |2, (5.43)

where N is the number of trajectories considered out of the total number Ntot. For our purposes,

we only need to consider the trajectories that ultimately become trapped within the overlap region.

We define a metric G for the particle phase space density as

G ≡ 1/lrms, (5.44)

and we label the fraction of trapped particles with f = N/Ntot.

In order to gain intuition into the interpretation of G, let us briefly consider its form for

a system with a phase space distribution F (r) that can be modeled as a product of Gaussian

distributions in ε and β with standard deviations σε and σβ:

F (r) =
N

2πσεσβ
exp

[
−1

2

(
ε2

σ2
ε

+
β2

σ2
β

)]
. (5.45)

The continuous form of Eq. (5.43) is

lrms =
1

N

√
1

2

∫
dr1 dr2 F (r1)F (r2)|r1 − r2|2, (5.46)

so using Eq. (5.45) in Eq. (5.46) results in

G = 1/
√
σ2
ε + σ2

β. (5.47)
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Further, let us consider the case when the system is in the Bose-Einstein condensate (BEC) regime.

Here, the system would occupy a single volume element of phase space, which corresponds to

∆x∆p/h = ∆ε∆β/2π ≈ 1. In the symmetric case ∆ε = ∆β, we find that G is on the order of

unity. These results help with interpreting the resulting scale of the calculated values for G in the

SWAP MOT, where G will always be considerably below the quantum degenerate value.

Figures 5.6(a) and 5.6(b) show the evolution of G and f for the YO transition introduced in

Section 5.6.2 subject to both a traditional MOT and the SWAP MOT as a function of time along

with the average number of spontaneous emissions per particle. Only particles that ultimately

settle within the overlap region [see Eq. (5.42)] are considered. The insets display the fraction f of

particles that are currently within the overlap region. It is evident that both procedures compressed

phase space, but the SWAP MOT did so more than three times faster and with roughly a third

of the spontaneous emissions required by the traditional MOT for this set of parameters. This

result shows that the SWAP MOT can apply higher dissipative forces and remove entropy with a

higher photon efficiency, i.e., it removes more energy and momentum per scattered photon than a

traditional MOT.

5.6.5 MOT loading

The previous subsection showcases the SWAP MOT’s ability to efficiently trap and cool. Here,

we demonstrate its ability to coherently translate high momentum states toward zero momentum,

which is desirable in, e.g., the loading of molecules from an oven or supersonic nozzle for which a

low number of scattered photons is a priority.

Commonly utilized particle loading devices, such as the Zeeman slower, rely on radiation

pressure to reduce the particle speed and yield a force that is fundamentally limited by the linewidth

of the transition [126]. Consequently, such a process requires roughly one spontaneous photon per

absorbed slowing photon. In contrast, the SWAP protocol is fundamentally limited by the rate at

which one can can stimulate rapid adiabatic passage. Hence, operating in the regime Ω� γ yields

significantly higher coherent forces and therefore smaller slowing distances with fewer scattering
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Figure 5.7: Simulated phase space trajectories of particles being loaded into a SWAP MOT and
traditional MOT (Doppler). The trajectories generally flow toward the phase space origin, which is
labeled by a purple circle. The particles subject to the SWAP MOT experience much higher forces
compared to the radiation pressure force intrinsic to the traditional MOT. Common parameters
are: ωr = 0.67γ, Ω = 60γ, β0 = 200, σε0 = 1000, σβ0 = 10. SWAP MOT parameters are: M =
0.012γ, ∆s = 1600γ, Ts = 1/γ, tmax = 175/γ, ε0 = −2 · 104. Traditional MOT parameters are:
M = 0.0025γ, δ = −60γ, tmax = 1000/γ, ε0 = −105. Inset: The average momentum number βavg

vs. the average number of spontaneous emissions per particle. The SWAP MOT is loaded with
fewer spontaneous photons and in a shorter distance.

events.

Figure 5.7 shows the results of simulating the slowing of YO on the 5.9 kHz transition

using both a traditional MOT and a SWAP MOT. We chose the Rabi frequency Ω = 60γ for

both procedures to allow for high coherent forces in the SWAP MOT and rapid absorption in

the traditional MOT. The laser detunings in the traditional MOT were set to δ = −Ω so that

the particles were close to resonance with the counterpropagating laser at the beginning of the

simulation. The SWAP magnetic field gradient M = 0.012γ was chosen so that the trajectories lay

on the border between the overlap and ideal regions for the entire slowing process, which minimized

the amount of time the particles spent in the excited states while keeping the resonances sufficiently
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separated. It is evident that this procedure applied forces to the particles in the SWAP MOT that

were roughly five times larger than the traditional MOT and consequently slowed them in roughly

one-fifth of the distance. As shown in the inset of Fig. 5.7, the SWAP procedure produced roughly

a fifth of the spontaneous photons required by the traditional MOT in order to reach the region of

the phase space origin for this set of parameters. Therefore, the SWAP MOT may potentially be

a strong candidate for molecular slowing, as it produces high coherent forces with few spontaneous

photons, which may thereby reduce the adverse effect of optical pumping into dark states.

5.7 Equilibrium temperatures and cloud sizes

The simulated phase space diagram shown in Fig. 5.5 and the resulting phase space densities

shown in Fig. 5.6 suggest that particles captured in a SWAP MOT eventually equilibrate to a final,

fixed phase space distribution. In this section, we describe the associated equilibrium momentum

and position distributions by analyzing their dependence on both laser intensity and the ratio ωr/γ,

where the latter quantity characterizes the separation between the external and internal timescales.

The equilibrium momentum and position probability distributions P (β) and P (ε) from a YO

SWAP MOT simulation are displayed in Figs. 5.8(e) and 5.8(f). The parameters were identical to

those in Fig. 5.5, except Ω = 60γ here. Both distributions can approximately be described by a

normalized Gaussian function with zero mean, as shown by the fits displayed as blue curves. In

this way, we can consider the measured width to the momentum distribution as approximately the

standard deviation of a thermal 1D Maxwellian distribution. From the equipartition theorem,

p2
rms

2m
= ~ωrβ2

rms =
1

2
kBT, (5.48)

thereby defining an effective temperature T . We find this type of fit to be much more accurate

for the momentum distribution than is observed for the position distribution. Nevertheless, the

points displayed as purple circles in Figs. 5.8(a-d) are extracted by fitting each resulting probability

distribution to a Gaussian with zero mean.

Figures 5.8(a) and 5.8(c) display the equilibrium root-mean-square momenta βrms and po-
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sitions εrms for various values of Ω/γ using the YO transition introduced in Section 5.6.2. These

plots provide information about the effects of the laser intensity I on the equilibrium phase space

distribution, since Ω/γ ∝
√
I [126]. One reason these plots are of interest is because the lowest

temperature in other cooling methods is typically achieved in the limit of low saturation, i.e., Ω→ 0

(although in this limit the cooling may take a long time and the trapping effect is reduced), which

is not usually experimentally reasonable due to the demands of adiabaticity [Eq. (5.31)] and rapid

adiabatic passage [Eq. (5.32)]. The vertical, black dashed line separates the plots into diabatic

(left) and adiabatic (right) regimes. We observe that the minimum temperature and cloud size is

achieved slightly within the adiabatic region, where particles are efficiently transferred into reso-

nant states with minimal negative effects from power broadening. A similar result for the minimum

temperature was previously discovered for SWAP cooling [13, 141].

Figures 5.8(b) and 5.8(d) display the equilibrium root-mean-square momenta βrms and posi-

tions εrms for various values of ωr/γ when Ω = 60γ. This ratio is a fundamental property of the

cooling transition, so this investigation transcends our focus on the specific YO transition used

elsewhere in this work and provides a better understanding of the SWAP protocol’s efficacy on

an arbitrary transition. As seen in Fig. 5.8(b), βrms decreases as ωr/γ increases, which provides

direct evidence for our claim that SWAP procedures applied to narrow linewidth transitions result

in lower temperatures T . On the other hand, we observe an increase in cloud size in Fig. 5.8(d).

In the deeply adiabatic regime, we observe that the root-mean-square values scale as

βrms ∝
√

Ω

ωr
; εrms ∝ Ω. (5.49)

Numerical fits according to the equation

βrms =

√
Ω

Cωr
(5.50)

are displayed as green dot-dashed curves in Figs. 5.8(a) and 5.8(b). Figure 5.8(c) is numerically fit

to the equation

εrms = CΩ. (5.51)
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Figure 5.8: (a-d): Equilibrium root mean square momenta βrms and positions εrms as a function
of Rabi frequency Ω [(a) and (c)] and recoil frequency ωr [(b) and (d)], both in units of the
linewidth γ. The vertical, dotted black lines in subplots (a) and (c) display the Rabi frequency
for which the adiabaticity parameter κ = 1 [see Eq. (5.31)]. Numerical fits to plots (a-c), which
are displayed as green dot-dashed curves, are discussed in the text. Common parameters are:
M = 0.05γ, ∆s = 2000γ, and Ts = 2/γ. The recoil frequency in plots (a), (c), (e) and (f) is
ωr = 0.67γ, and the Rabi frequency in plots (b), (d), (e) and (f) is Ω = 60γ. Each point (purple
circles) was averaged over data taken from 800 independent trajectories, each being sampled once
per sweep over 1,500 sweeps. (e-f): Equilibrium momentum and position probability distributions
P (β) and P (ε). Gaussian fits (blue curves), which were used to extract root-mean-square values,
are discussed further in the text. Histogram data was taken from 800 independent trajectories, each
being sampled once per sweep over 1,500 sweeps. In (f), the black curve is the effective potential
Veff(ε) [Eq. (5.59)] that generates the non-Gaussian position distribution [Eq. (5.54), red curve].

The scaling constants C for each independent fit are displayed within each plot. Combining

Eq. (5.48) with the observed trend in Eq. (5.49), we find that

kBT ∝ ~Ω, (5.52)
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which agrees with previous studies of SWAP cooling (see Ref. [13] and Chapter 3).

In a traditional MOT, the equilibrium temperature Ttrad scales with the linewidth γ [126]:

kBTtrad ∝ ~γ. (5.53)

providing this is larger than the recoil temperature. Comparing this to Eq. (5.52), we find that the

temperature reached in a SWAP MOT must be larger since Ω� γ. As was discussed in the original

SWAP cooling papers [13, 141], we again reach the conclusion that the utility of the SWAP MOT

is not its low temperatures, but its ability to apply larger forces and reach equilibrium faster and

with fewer scattered photons. This is especially applicable to systems with narrow line transitions,

i.e., small γ.

5.7.1 SWAP MOT effective potential

As shown by the red curve in Fig. 5.8(f), the position distribution is actually more accurately

described by the sum of two Gaussians of different widths:

X(x) ≈ w√
2πσ1

exp

(
− x2

2σ2
1

)
+

(1− w)√
2πσ2

exp

(
− x2

2σ2
2

)
, (5.54)

where 0 ≤ w ≤ 1 describes the relative weight of the two Gaussians, and σ1 and σ2 are the widths of

the two distributions. Note that we have normalized the distribution for simplicity. This suggests

that the effective potential Veff(x) describing both the conservative and dissipative effects of the

SWAP MOT has an exaggerated dip near x = 0, similar to that of a dimple trap [188]. Here we

derive an effective potential Veff(x) from the resulting equilibrium position distribution, which we

include as a black curve in Fig. 5.8(f).

In a state of thermodynamic equilibrium, the classical phase space distribution ρ of a system

is given by [168]

ρ(x, p) = Z−1e−H(x,p)/kBT , (5.55)

where Z is the partition function and H is the system Hamiltonian. If we consider a system with

a Hamiltonian of the form

H(x, p) =
p2

2m
+ Veff(x), (5.56)
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where Veff(x) is an effective potential, then the position distribution X(x) satisfies

X(x) ≡
∫
ρ(x, p) dp ∝ e−Veff(x)/kBT . (5.57)

Equivalently,

Veff(x) ∝ − logX(x). (5.58)

In the case of the SWAP MOT, we find that

Veff(x) ∝ − log

[
w√
2πσ1

exp

(
− x2

2σ2
1

)
+

(1− w)√
2πσ2

exp

(
− x2

2σ2
2

)]
(5.59)

by using Eq (5.54). We plot this effective potential against the simulated position space distribution

arising in the SWAP MOT in Fig. 5.8(f).

5.8 Conclusion

We have proposed a novel cooling, trapping, and slowing scheme for neutral particles, which

we have termed the SWAP MOT. We have outlined an experimental protocol and developed a

simple and efficient semiclassical model and simulation that demonstrates its ability to generate

phase space compression. We have also specified a protocol for determining appropriate experi-

mental parameters for application to an arbitrary transition. Our results demonstrate the SWAP

MOT’s ability to generate large coherent and dissipative forces with fewer scattered photons than

traditional MOTs. We provided a discussion of the resulting equilibrium 1D temperature and cloud

size scaling properties with Rabi and recoil frequencies and compared the results to those found

from our theoretical model of the traditional MOT.

Aside from eventual experimental implementation, there are several topics that could be

studied in future work. We have not explicitly simulated 3D dynamics, but we conjecture that

applying the SWAP MOT protocol to each dimension successively in time is a viable option [171].

Also, the incorporation of shortcuts to adiabaticity could speed up the protocol with a low energetic

cost [75]. We consider one such shortcut to adiabaticity approach in the next chapter. Moreover,

there are a number of additions to the simulation that would be required to more accurately
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capture the dynamics in the quantum regime (aside from developing a computationally efficient

algorithm to simulate the fully quantum model developed in this work), such as spontaneous photon

reabsorption, particle collisions, and system loss to states that are not resonant with the cooling

laser frequencies.

Furthermore, we identify that the stimulated emission process can be realized in our model

via any operation that reverses the sign of the magnetic dipole potential energy

ĤB(x̂) = −µ̂ · B̂(x̂) (5.60)

at the middle of the sweep, where

µ̂ = −gJµB

~
Ĵ (5.61)

is the magnetic dipole moment of the particle and Ĵ is the total electronic angular momentum. We

incorporated the sign flip by magnetic field switching, but this is technically difficult in an exper-

imental setting and it is fundamentally impossible to perfectly, diabatically switch the magnetic

field direction. Other potentially more experimentally viable options are applying π-pulses at the

middle of each sweep in order to transfer the population between the excited Zeeman sublevels,

thereby flipping the sign of Ĵ , or optically pumping into a nearby hyperfine manifold with a spin

g-factor of opposite sign. Alternatively, it is possible that a vertically-shifted, sinusoidal magnetic

field could also achieve similar dynamics.



Chapter 6

Speeding up particle slowing using shortcuts to adiabaticity

The cooling and trapping mechanisms discussed in Chapters 3-5 inherently rely on the dy-

namics to be adiabatic, and can therefore take a potentially unfeasible amount of time. In this

chapter, we propose a method that relaxes the adiabatic condition by applying laser pulses that

achieve the same state transfer effects in a shorter amount of time. We focus on the simpler case

of particle slowing, i.e., reducing its kinetic energy but not necessarily its temperature, although

we anticipate that it can be applied within cooling and trapping protocols. This work resulted in

a publication in Physical Review A (Ref. [14]) in October 2020.

More specifically, this method can potentially generate large forces without the associated

momentum diffusion that results from the random directions of spontaneously scattered photons.

We consider time-resolved laser pulses with periodically modified detunings that address an ultra-

narrow electronic transition to reduce the particle momentum through repeated absorption and

stimulated emission cycles. We implement a shortcut to adiabaticity approach that is based on

Lewis-Riesenfeld invariant theory. This affords our scheme the advantages of adiabatic transfer,

where there can be an intrinsic insensitivity to the precise strength and detuning characteristics

of the applied field, with the advantages of rapid transfer that is necessary for obtaining a short

slowing distance. For typical parameters of a thermal oven source that generates a particle beam

with a central velocity on the order of meters per second, this could result in slowing the particles to

near stationary in less than a millimeter. We compare the slowing scheme to widely-implemented

slowing techniques that rely on radiation pressure forces and show the advantages that potentially
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arise when the excited state decay rate is small. Thus, this scheme is a particularly promising

candidate to slow narrow-linewidth systems that lack closed cycling transitions, such as occurs in

certain molecules.

Figure 6.1: (a) Schematic of the normalized velocity distributions P (v) of the particle beam before
(solid) and after (dashed) the slowing process. We characterize the initial distribution by a Gaussian
function with a standard deviation σv and mean velocity v̄. (b) Particles exit an atom or molecule
source and are collimated into the slowing region. The spatial setup of the sequentially-pulsed
counterpropagating lasers, which have time-dependent frequencies ω1(t) and ω2(t), and a sample
particle with velocity v in the laboratory frame are displayed in the slowing region. The circular
inset shows the two-level internal structure of each particle.

6.1 Introduction

For decades, laser cooling atoms and molecules to near absolute zero has been at the forefront

of research into the interactions of light and matter [41, 46, 123, 149]. Ultracold ensembles provide

testbeds for exploring fundamental physics [164], can create low-temperature superfluids such as

Bose-Einstein and fermionic condensates [9, 157], and can be used as platforms for quantum sim-

ulators [94]. Since atom and molecule sources typically produce particles with high velocities, it is

usually necessary to first perform a precursor stage that removes a substantial fraction of the kinetic

energy associated with the random thermal motion, as shown in Figure 6.1(a). A specific example

is sodium atoms produced in an oven at thermal velocities of a few hundred meters per second

that need to be slowed to a few meters per second before being transferred into a magnetic and/or

optical trap [150, 160, 193]. An assortment of particle slowing methods have been developed for this

precursor stage, including Stark and Zeeman decelerators [7, 81, 138, 148], centrifuge decelerators
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[40], electrostatic trapping methods [20], frequency-chirped laser slowing [181], white light slowing

[49, 79], and angled slowing [112], among others. Once slowed, the particles may possess sufficiently

low kinetic energy that they can be efficiently loaded into a finite-depth electromagnetic trap [126],

such as a magneto-optical trap (MOT), and then be cooled using light [176, 183], cooled through

evaporation that redistributes energy through two-body collisions [177], or sympathetically cooled

with another species [64].

The ability to produce a large number of ultracold particles is made difficult by practical

shortcomings of slowing methods, such as a large slowing distance that requires significant physical

space, or substantial spread in the final velocities of the particles. Furthermore, the main hindrance

to slowing particles that lack closed cycling transitions is that there may be leakage of population to

dark electronic states that are not coupled with the fields that perform the laser cooling and slowing,

resulting in the loss of the particle from the system. Even if this does not occur, spontaneous

emission of many photons creates momentum diffusion due to the random emission direction, and

this results in heating and a finite limit on the achievable temperatures. These issues make methods

that increase slowing forces and minimize the number of scattering events through enhanced control

of tailored coherent dynamics, such as sawtooth-wave adiabatic passage (SWAP) cooling [12, 13,

74, 137, 141, 171], the Allen-Eberly scheme [8], stimulated Raman adiabatic passage (STIRAP), the

adiabatic passage force, and the bichromatic force [33, 125, 129, 172, 173, 187] enticing candidates

to consider for particle slowing. However, one concern is that in order to satisfy an intrinsic

adiabaticity condition, the time evolution should typically be slow and this could result in a long

stopping time and associated large stopping distance.

In order to speed up adiabatic processes while still achieving substantial population transfer,

there has been a growing interest in so-called “shortcuts to adiabaticity” [75], i.e., processes that

are able to transform systems from an initial quantum state to the same final quantum state as an

ideal adiabatic process but in much less time. In this chapter, we present a fast, simple, and robust

particle slowing scheme that employs one such shortcut method: inverse engineering based on Lewis-

Riesenfeld invariants (LRI) [37, 38, 39, 76, 103, 105]. The slowing scheme involves driving sped-up
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transitions from a stable ground state to an excited state and back using counter-propagating,

pulsed lasers with intensity and detuning profiles prescribed by the LRI shortcut method, as shown

schematically in Figure 6.1(b). By applying this protocol many times, the particle can in principle

be subject to the impulse of many photon momenta without emitting spontaneous photons. In

Section 6.2, we further motivate the use of our slowing scheme. In Section 6.3, we outline the general

theory of LRI-based inverse engineering. In Section 6.4, we present our theoretical model and derive

the laser intensity and detuning profiles that result from the LRI shortcut method. In Section 6.5,

we study the resulting classical forces, slowing times, and slowing distances, demonstrating that

we are able to generate higher forces than what is achieved with radiation pressure as employed

in methods such as Zeeman slowing. In Section 6.6, we simulate particle slowing dynamics by

applying our method to various atomic and molecular species with narrow linewidth transitions.

In Section 6.5, we study our slowing scheme’s robustness to various systematic errors that one may

encounter when implementing the protocol in an experimental setting, and compare these results

to slowing with π-pulse transitions and SWAP slowing.

6.2 Motivation for the speed-up protocol

The concept of coherent transfer between quantum states is a ubiquitous component of most

quantum control techniques. The most basic way to achieve such a transfer between two electronic

quantum states is to apply a resonant, coherent light pulse for a time t = π/Ω, where Ω is the

Rabi frequency. While this Rabi-flopping “π-pulse” method completely transfers population, at

least in principle, it is not robust to small errors in Ω, the frequency ω of the light source, or

coupling to other states outside of the two-level manifold. A further detrimental effect arises when

applying this method to quantum particles with motion due to the associated Doppler shift kv of

the laser light experienced by the particle, where v is the velocity of the particle as measured in the

laboratory frame and k = 2π/λ is the wavenumber of the transition with wavelength λ. This shifts

the laser light away from resonance with the particle, which changes both the rate and maximum

amount of population transfer between the states. This issue can be remedied by tuning the laser
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light back into resonance with the particle, but this is of limited utility when the goal is to transfer

population in many particles that possess a distribution of velocities.

A robust solution to these problems is to chirp the laser frequency through the resonance, as

was shown by Landau and Zener in their theory of adiabatic passage [194]. However, such a method

is limited in the sense that the laser chirping must be adiabatic, i.e., sufficiently slow compared to

the strength of the coupling Ω. More specifically, they showed that the population of state |2〉, P2,

after the laser is chirped from a detuning of minus infinity to positive infinity, is

P2 = 1− exp

(
−π

2

Ω2

α

)
, (6.1)

where α is the frequency chirping rate in rad/s2. Thus, if the experiment is operated in the limit

Ω2 � α, then P2 ≈ 1, regardless of the particle’s initial velocity, a phenomenon known as adiabatic

passage. The requirement of infinite time can be relaxed if the laser frequency is adiabatically

chirped over a frequency range larger than 2Ω in the moving frame of every particle, as can be seen

in a dressed state picture. The velocity-independent feature of adiabatic passage motivated the

development of SWAP cooling [12, 13, 74, 137, 141, 171], which utilizes periodic frequency chirps

to coherently transfer a particle between quantum states in such a way that its momentum can

be significantly reduced. A natural extension of SWAP cooling is to employ its ability to apply

large coherent forces in the process of particle slowing. However, there are several issues that arise

in this venture. The obvious issue is the requirement of adiabaticity, which limits the timescale

for population transfer and can lead to undesirably large slowing distances and times. Another

potentially detrimental problem that arises from this slow evolution is the particle’s tendency to

relax from the quantum state with higher energy to the quantum state with lower energy through the

process of spontaneous emission, which would disturb the coherent slowing process and introduce

unwanted momentum diffusion. This motivates transferring as quickly as possible, and thereby

satisfying the requirements, i.e., Ω � Γ, for adiabatic rapid passage [27]. Furthermore, in the

neighborhood of the resonance, there are significant oscillations in the populations that result

from the precession of the Bloch vector as it travels along the Bloch sphere [67, 185], which can
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complicate the amount of population transfer. A detailed investigation of these oscillations and

other important timescales in Landau-Zener transition theory is presented in [185].

As we will show, our derivation of an alternative scheme for coherent transfer, by use of

LRI theory, ameliorates every issue we have discussed thus far. We drive a different path along

the Bloch sphere (see Section 6.4.4) in order to speed up the transfer time and remove the high

frequency population oscillations while utilizing the same amount of laser power. But perhaps

the most appealing feature of our scheme is the ability to exactly transfer population between

quantum states in a finite time, which in principle permits high-fidelity slowing of a particle with

arbitrarily high momentum to near rest.

6.3 Lewis-Riesenfeld Invariant-based inverse engineering

In this section, we present a brief overview of the LRI shortcut method. This approach allows

us to derive specific laser intensity and detuning profiles that can be used to generate fast dynamics

with the same results as adiabatic processes.

A dynamical invariant Î(t) is a Hermitian operator with a time-independent expectation

value, i.e.,

〈Î〉 = 〈Ψ(t)| Î(t) |Ψ(t)〉 = const, (6.2)

where |Ψ(t)〉 is the state vector evolved by the Hamiltonian Ĥ(t). It can be shown that the states

|ψn(t)〉, defined by a gauge transformation

|ψn(t)〉 = eiαn(t) |φn(t)〉 (6.3)

of the eigenbasis |φn(t)〉 of Î(t), are each a solution to the time-dependent Schrödinger equation.

In Eq. (6.3), the “Lewis-Riesenfeld phases” αn(t) are defined as

αn(t) =
1

~

∫ t

t0

〈φn(t′)| i~ ∂

∂t′
− Ĥ(t′) |φn(t′)〉 dt′, (6.4)

where t0 is some initial reference time and ~ is the reduced Planck constant. It follows that a
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general solution |Ψ〉 to the Schrödinger equation can be decomposed as

|Ψ(t)〉 =
∑
n

cn |ψn(t)〉 =
∑
n

cne
iαn(t) |φn(t)〉 , (6.5)

where cn are time-independent amplitudes [105]. From Eq. (6.5), the unitary time-evolution oper-

ator in the invariant basis is

Û(t) =
∑
n

eiαn(t) |φn(t)〉 〈φn(t0)| , (6.6)

which can be used to solve for the Hamiltonian:

Ĥ(t) = i~
∂Û(t)

∂t
Û †(t). (6.7)

These results indicate numerous benefits for this method. In particular, if Ĥ(t) and Î(t) are

designed to commute at t0 and some final time tf , i.e.,[
Ĥ(t0), Î(t0)

]
=
[
Ĥ(tf ), Î(tf )

]
= 0, (6.8)

then the final state |Ψ(tf )〉 will maintain the initial populations for each eigenstate [75], and we

therefore recover the results of an adiabatic process without the requirement of slow time-evolution.

Also, by combining Eqns. (6.6) and (6.7), we can explicitly inverse-engineer the Hamiltonian in the

invariant basis:

Ĥ(t) =− ~
∑
n

α̇n |φn(t)〉 〈φn(t)|+ i~
∑
n

|∂tφn(t)〉 〈φn(t)| . (6.9)

Eqns. (6.7)-(6.9) define what is meant by invariant-based inverse engineering. Equating the Hamil-

tonian in the invariant basis to the original Hamiltonian creates a map between the physical param-

eters and the auxiliary parameters that define the invariant operator. In Section 6.4.3, We will use

this procedure to derive the laser intensity and detuning profiles for each single-photon transition

in our slowing scheme.

6.4 Model

We consider the experimental setup depicted in Fig. 6.1(b). As shown in the circular inset,

we consider each particle to possess two internal electronic states labeled |g〉 and |e〉 with an energy
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Figure 6.2: Left: frequency diagram of an isolated subset of states in the lab frame. The laser
frequencies ωi(p̄, t) [see Eqns. (6.10)] are dynamically updated according to the solution derived from
the Lewis-Riesenfeld invariant shortcut method to promote quick, coherent transfer from (a) |g, p̄〉 to
|e, p̄− ~k〉, followed by (b) |e, p̄− ~k〉 to |g, p̄− 2~k〉. Right: experimental parameters and particle
dynamics over a |p̄〉 → |p̄− 2~k〉 sequence of period 2T . (c) Square-pulse Rabi frequency profiles
Ω1(t) (red) and Ω2(t) (blue) with amplitude Ω [see Eq. (6.37)]. (d) Lewis-Riesenfeld detuning
profile δ(t) [see Eq. (6.38)] with cutoff frequency ±δcut [see Eq. (6.51)] for each laser. (e) Ideal
excited state fraction Pe dynamics. (f) Ideal average momentum 〈p̂〉 dynamics. Parameters are:
T = 0.032/ωr, Ω = 100ωr, δcut = 250ωr, Γ = 0, p̄ = 100~k, and β = 0.85π/2.

separation of ~ωa, where ωa is a frequency assumed to be in the optical domain. The excited

state |e〉 can decay to the ground state |g〉 at a rate given by the natural linewidth Γ. We track

motion along one dimension, for which the particle has position and momentum operators ẑ and

p̂. A thermal beam of particles exits an atom or molecule source (e.g., an oven) at a high average

velocity v̄ and potentially large velocity spread σv. The goal is to quickly remove kinetic energy

from the particles such that an appreciable fraction of the final distribution is centered on zero

velocity [see Fig. 6.1(a)]. In order to achieve this goal, the particle beam sequentially interacts

with pulsed slowing lasers aligned parallel to the beam axis upon entering the slowing region. The

essential dynamics are displayed in Fig. 6.2 and are as follows: The counterpropagating laser (laser

1) is switched on, and the particle absorbs a photon and transits to |e〉. Then, laser 1 is switched off

as the copropagating laser (laser 2) is switched on, and the particle emits a photon by stimulated

emission, transitioning back to |g〉. By conservation of momentum, the particle has experienced
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an impulse of 2~k by the end of the sequence. By repeating many times, we can remove many

photon momenta from the particle without the emission of spontaneous photons, contingent that

the operation occurs quickly compared to any decoherence processes.

We set the Rabi frequency of each laser Ωi(t) (with i = 1, 2) to follow a square pulse temporal

profile. The peak value Ω [see Fig. 6.2(c)] will be derived from the LRI shortcut method. This choice

of waveform relaxes the requirement of exactly aligning the centers of periodic Rabi frequency and

laser detuning profiles in time as is needed in other protocols [129, 167, 173], and thus makes the

process more robust. We parameterize the instantaneous frequencies ω1(t) and ω2(t) of each laser

field in the form

ω1(p̄, t) = ωa − δ(t)− kv̄ + ωr

ω2(p̄, t) = ωa + δ(t) + kv̄ − 3ωr,

(6.10)

so that, after accounting for the mean particle velocity v̄ = p̄/m, each laser is resonant with the

transitions displayed in Fig. 6.2(a) and Fig. 6.2(b) when the detuning δ(t) is zero. We will derive

an explicit form for δ(t) from the LRI shortcut method. Here, ωr ≡ ~k2/2m is the recoil frequency

of the transition, i.e. ~ωr is the kinetic energy obtained by an atom at rest from the absorption of a

single photon, and m is the particle mass. Also, we have made the typical approximation that the

wavenumber ki(t) of each laser is equal to the constant k at all times, even though the frequency

is varying. It should be pointed out that although we have chosen specific signs for δ(t) in each

laser frequency ωi(p̄, t) [see Eq. (6.10)], these are not the only conventions that can be employed to

result in slowing.

6.4.1 System dynamics

We refer the reader to Sections 2.1 and 2.2 for general details on modeling light-matter

interactions. When applied to a system with momentum p̄ = mv̄, the Hamiltonian takes the

general form

Ĥ(p̄, t) = Ĥself + Ĥint(p̄, t), (6.11)
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where

Ĥself =
p̂2

2m
+

~ωa
2
σ̂z (6.12)

is the particle’s free evolution Hamiltonian. The quantity σ̂z ≡ |e〉 〈e| − |g〉 〈g| is the usual Pauli

spin matrix. Under the dipole and rotating wave approximations, the particle-field interaction

Hamiltonian Ĥint(p̄, t) in the Schrödinger picture is given by

Ĥint(p̄, t) =
~
2
σ̂−
[
Ω1(t)ei[kẑ+η1(p̄,t)] + Ω2(t)e−i[kẑ−η2(p̄,t)]

]
+ h.c. (6.13)

where σ̂− ≡ |g〉 〈e| is the lowering operator. The quantity ηi(p̄, t) is the accumulated phase from

an initial time t0 for each laser field [see Eq. (6.10)]:

ηi(p̄, t) ≡
∫ t

t0

ωi(p̄, t
′)dt′. (6.14)

In order to capture the relevant physics in the first half of the sequence, we omit the second

term in Eq. (6.13) (since laser 2 is off) and transform into the interaction picture defined by the

Hamiltonian

Ĥ0(t) =
p̂2

2m
+

~
2

[ωa − δ(t)] σ̂z. (6.15)

The resulting interaction picture Hamiltonian Ĥ1(p̄, t) is

Ĥ1(p̄, t) =
~δ(t)

2
σ̂z +

~Ω1(t)

2

(
σ̂− exp (i [kẑ + k(v̂ − v̄)t+ ωrt]) + h.c.

)
, (6.16)

where v̂ = p̂/m is the velocity operator. The interaction picture Hamiltonian for the second half

Ĥ2(p̄, t) is found by the substitutions 1 → 2, δ(t) → −δ(t), k → −k, and ωr → −3ωr. After the

complete evolution with Ĥ1(p̄, t) followed by Ĥ2(p̄, t), the momentum p̄ is updated to p̄ − 2~k for

the laser detunings [i.e., see Eq. (6.10)] under the assumption that the particle momentum has been

changed accordingly, and the process is repeated.

We incorporate the effects of incoherent dynamics due to spontaneous emission and its asso-

ciated recoil by evolving the density matrix operator ρ̂ of the system under the quantum master

equation,

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
+ L̂ρ̂, (6.17)
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where the Lindblad superoperator L̂ is

L̂ρ̂ = Γ

(
1

5
eikẑσ̂−ρ̂σ̂+e−ikẑ +

1

5
e−ikẑσ̂−ρ̂σ̂+eikẑ +

3

5
σ̂−ρ̂σ̂+ − 1

2

{
σ̂+σ̂−, ρ̂

})
. (6.18)

Here, Γ is the optical transition linewidth (we reserve the symbol γ for an auxiliary variable), and,

for convenience, we have approximated the continuous dipole radiation pattern as allowing only

the three discrete recoil possibilities that correspond to whole intervals of photon quanta. For

states |e〉 and |g〉 coupled by a circularly-polarized standing wave, the correct coarse discretization

of the radiation pattern yields possible impulses of ∆p of −~k, 0, and ~k along the slowing axis

with associated probabilities of 1
5 ,

3
5 , and 1

5 , respectively. We refer the reader to Ref. [135] and

Section 2.2.3 for more details on the dicretization procedure.

6.4.2 Eigensystem in a momentum subspace

Our next task is to find appropriate forms for the Rabi frequencies Ωi(t) and detuning δ(t)

by following the shortcut protocol. In order to do this, we will perform analytical calculations for

transfer 1 in a small, isolated subset W (p̄) of the full composite Hilbert space:

W (p̄) = {|g, p̄〉 , |e, p̄− ~k〉} = {|G〉 , |E〉}. (6.19)

The subset

W ′(p̄) = {|e, p̄− ~k〉 , |g, p̄− 2~k〉} (6.20)

is used to calculate the corresponding quantities for transfer 2 [see Fig. 6.2(b)], but we do not

explicitly show the derivation here as it follows in a straightforward manner. We expect the

resulting shortcuts to be useful for application to the entire Hilbert space because the dynamics

that result from the interaction with each traveling wave are relatively simple, i.e., there are no

multiphoton resonances that would cause population transfer to other quantum states [134]. In

Section 6.6, we apply the resulting Rabi frequencies and laser frequencies from this calculation to

the entire system in a numerical simulation.
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The interaction Hamiltonian Ĥ1(t) written in the subspace W (p̄) is given by

Ĥ
(W )
1 (t) =

~δ(t)
2

σ̂zW +
~Ω1(t)

2
σ̂xW (6.21)

where σ̂zW ≡ |E〉 〈E| − |G〉 〈G| and σ̂xW ≡ |G〉 〈E|+ |E〉 〈G|. As we will show in subsection 6.4.3, we

cast the invariant eigenvectors in a similar form as the eigenvectors of Ĥ
(W )
1 (t) to apply the LRI

shortcut method. The eigenvalues of Ĥ
(W )
1 (t) are

E±(t) = ±~Ω̃1(t)

2
, (6.22)

where Ω̃1(t) ≡
√
δ(t)2 + Ω1(t)2 is the generalized Rabi frequency. The corresponding instantaneous

eigenvectors are

|+〉 = cos
(χ

2

)
|E〉+ sin

(χ
2

)
|G〉 ,

|−〉 = sin
(χ

2

)
|E〉 − cos

(χ
2

)
|G〉 ,

(6.23)

with the mixing angle defined by cosχ ≡ δ(t)/Ω̃1(t).

In general, if a system begins in an eigenstate of the Hamiltonian and the time evolution obeys

the conditions of the adiabatic approximation, the state of the particle will simply adiabatically

follow, only picking up an inconsequential global phase. Therefore, if one chooses experimental

parameters such that the particle is initialized in one of the dressed states and the dressed state

adiabatically evolves from |G〉 to |E〉 (or vice versa), then we can change the particle momentum

by ~k. However, these adiabatic states must evolve slowly to satisfy the adiabatic condition that

arises from Landau-Zener theory. We shall now speed up this adiabatic passage by constructing a

driving Hamiltonian based on the LRI shortcut method.

6.4.3 Deriving detuning profiles from the auxiliary equations

We are now in a position to design an invariant operator in order to end up with the desired

final populations using the formalism established in Section 6.3. Its construction and associated

eigenvalue equation can be a difficult process, and various methods have been introduced to over-

come this [56, 69, 95, 105]. However, since we have the form of the Hamiltonian and its eigenvectors,
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we need only to parameterize Î(t) and |φn(t)〉 in the same functional forms. Thus, in a similar man-

ner to [38], we use the inverse engineering approach to parameterize δ(t) and Ω(t) as to begin and

end the sweep with the desired populations. (Note that this derivation holds for time-dependent

Ω(t) unless noted otherwise.)

We parameterize the eigenvectors of the invariant Î(t) in parallel to Eq. (6.23):

|φ+(t)〉 = cos
(γ

2

)
eiβ |E〉+ sin

(γ
2

)
|G〉 ,

|φ−(t)〉 = sin
(γ

2

)
|E〉 − cos

(γ
2

)
e−iβ |G〉 ,

(6.24)

where γ = γ(t) and β = const are auxiliary angles. We have introduced the unitary phase eiβ

parameterized by β as an additional degree of freedom to explore with the shortcut protocol [see

Section 6.4.4]. From Eqns. (6.24), it follows that the invariant can be written in the basis of the

Hamiltonian as

Î(t) =
~Ω′

2

 cos γ sin γ eiβ

sin γ e−iβ − cos γ

 (6.25)

with eigenvalues λ± = ~Ω′/2, where Ω′ is an arbitrary constant frequency in order to keep Î(t)

with units of energy. Substituting Eqns. (6.21) and (6.24) into Eq. (6.4), we calculate the Lewis-

Riesenfeld phases for transfer 1 as

α±(t) = ∓1

2

∫ t

0
(δ cos γ + Ω1 sin γ cosβ) dt′. (6.26)

Substituting these phases into Eq. (6.9), we find that the Hamiltonian is parameterized by

Ĥ
(W )
1 (t) =

~
2

 A Beiβ

B∗e−iβ −A

 , (6.27)

where

A = δ(t) cos2 γ + Ω1(t) cos γ sin γ cosβ, (6.28)

B = δ(t) cos γ sin γ + Ω1(t) sin2 γ cosβ − iγ̇. (6.29)
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Equating the two forms of the Hamiltonian [Eqns. (6.21) and (6.27)], we arrive at the auxiliary

equations

γ̇ = Ω1(t) sinβ, (6.30)

δ = Ω1(t) cot γ cosβ. (6.31)

Next, we determine the boundary conditions on the auxiliary variables γ and β required for

state transfer from state |G〉 to |E〉. As seen from Eq. (6.24), γ must satisfy

γ(t0) = πn; γ(tf ) = γ(t0) + π(2m+ 1), (6.32)

where n and m are integers. For simplicity and without loss of generality, we choose n = m = 0

so that γ evolves from 0 to π and causes the state to align with |φ−(t)〉 at t = t0, tf . Since the

commutator between Ĥ
(W )
1 (t) and Î(t) is[

Ĥ
(W )
1 (t), Î(t)

]
=

~2Ω′

2

[
− iΩ sin γ sinβσ̂zW + (δ sin γeiβ − Ω cos γ)σ̂†W

+ (Ω cos γ − δ sin γe−iβ)σ̂W

]
,

(6.33)

where σ̂W ≡ |G〉 〈E|, we should also impose

Ω(t∗) sin γ(t∗) sinβ = 0, (6.34)

β = qπ (6.35)

for t∗ = t0 and t∗ = tf and integer q to align the eigenbases of Ĥ
(W )
1 (t) and Î(t) at the beginning

and end of the shortcut process [see Eq. (6.8)]. The condition (6.34) is automatically satisfied by

(6.32), whereas the condition (6.35) is not necessary to enforce in the case of complete state transfer

because it only affects non-physical, global phases.

We have now parameterized the Hamiltonian in terms of the auxiliary angles and found

boundary conditions for these angles for the interaction with laser 1. The corresponding quantities

for the subsequent interaction with laser 2 are derived in a similar manner.

Together Eqns. (6.30)-(6.32) directly determine the experimental parameters δ(t) and Ω1(t).

In the general case of Ω1(t) 6= const, we would be faced with the task of choosing, from an infinite set
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of Hamiltonians, a particular form of γ(t) and β(t) that satisfies Eqns. (6.30)-(6.32) [38]. However,

we will now simplify the discussion by restricting the solution to the form Ω1(t) = Ω = const,

whereby the auxiliary equations (6.30) and (6.31) can be solved analytically, which we now show.

Let us label the time required to perform the shortcut as T . Defining t0 = 0 (and therefore tf = T ),

the auxiliary equation for γ using γ(0) = 0 yields

γ(t) = (Ω sinβ)t. (6.36)

The other boundary condition γ(T ) = π [see Eq. (6.32)] requires that

π = ΩT sinβ. (6.37)

Combining Eqns. (6.36) and (6.37) and substituting the result into Eq. (6.31), we find that

δ(t) =
π cotβ

T
cot

(
πt

T

)
. (6.38)

We provide a plot of δ(t) for a particular choice of β and T in Fig. 6.2(d).

We have now found a particular Hamiltonian that will drive the transition |G〉 → |E〉 with

dynamics that need not be adiabatic. The analogous solution can be used for laser 2 to drive the

transition |e, p̄− ~k〉 → |g, p̄− 2~k〉 using precisely the same theoretical formalism. The method

may be optimized further with respect to different cost functions (e.g., see Ref. [175]).

6.4.4 Bloch sphere trajectories

Different choices of the auxiliary angle β [see Eq. (6.24)] can result in very distinct dynamics

as the particle is transferred from |G〉 to |E〉, which can be seen by investigating the associated

Bloch sphere trajectories. The resulting trajectories under the interaction Hamiltonian Ĥ1(t) [see

Eq. (6.21)] are purely longitudinal and are parameterized by the azimuthal angle φ(β) = π + β.

For a more appropriate comparison, we instead work in the time-independent interaction picture

defined by the self-energy of the particle [see Eq. (6.12)], which results in the interaction picture

Hamiltonian

ĤI(t) =
~Ω

2

(
eiθ(t) |E〉 〈G|+ h.c.

)
(6.39)
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Figure 6.3: Bloch sphere trajectories (thick curves) between the initial state |G〉 and final state |E〉
parameterized by the auxiliary angle β [see Eq. (6.24)] in the free-energy interaction picture [see
Eq. (6.39)]. We set the Rabi frequency Ω to be equal for all trajectories, and the slowing periods
T are given by Eq. (6.37). The cutoff detunings for β = 1

40
π
2 and β = 1

2
π
2 are δcut = 318Ω and

δcut = 225Ω, respectively [see Eq. (6.51)].

in the subspace W (p) [see Eq. (6.19)], where

θ(t) ≡
∫ t

t0

δ(t′) dt′ (6.40)

is the accumulated phase of the detuning δ(t) derived from the LRI shortcut method [see Eq. (6.38)].

Bloch sphere trajectories for three choices of β are displayed in Figure 6.3. For the sake

of comparison, we chose to fix the Rabi frequency Ω across all trajectories so that the slowing

periods T are completely determined by β [see Eq. (6.37)]. A choice of auxiliary angle satisfying

β = (r + 1
2)π for integer r minimizes the slowing period T ; this is simply resonant Rabi-flopping

(δ(t) = 0). For r = 0, i.e., a resonant π-pulse, the system follows the purely longitudinal Bloch

sphere trajectory (yellow, dotted curve). This choice of β can lead to experimental challenges, such

as inefficient transfer due to sensitivity to errors in Ω (see Section 6.5). On the other hand, a choice

of auxiliary angle satisfying β ≈ sπ for integer s causes T to tend to infinity, as in an adiabatic

process. We approximate the choice s = 0 by using the very small auxiliary angle β = 1
40
π
2 , which

results in a trajectory that precesses significantly (blue, solid curve). This choice also comes with

complications, such as a high chance of spontaneous emission and a large slowing distance. We
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take all of these considerations into account and choose from the range 0� β < π/2 in our slowing

simulations in Section 6.6, which results in an intermediate trajectory (red, dash-dotted curve).

6.5 Slowing dynamics in classical phase space

The usefulness of the LRI shortcut method is ultimately determined by whether or not it

can achieve a practical device that is competitive with the current state of the art. With this in

mind, we calculate the resulting classical force, slowing time, slowing distance, scattering rate, and

number of scattered photons of this method and compare the results to commonly-implemented

processes that rely on radiation pressure (RP), such as a Zeeman or Stark decelerator. These

quantities are derived below and collected in Table 6.1.

We use Eq. (6.37) in order to calculate the classical force FLRI exerted on the particle during

each sweep:

FLRI =
~k
T

=
Ω~k sinβ

π
. (6.41)

The classical force from RP is given by

FRP = Γ~kρee ≤
Γ~k

2
, (6.42)

where ρee is the excited state fraction, and the inequality is saturated at infinite laser power [126].

Next, we consider the time required to transfer the particle to zero momentum. We assume

the particle begins the slowing process in the state |g, p̄0〉. It receives an impulse of ~k against its

motion after every sweep for a total time

∆tLRI = T p̄0/~k =
πζ0

Ω sinβ
, (6.43)

where ζ0 ≡ p̄0/~k. Assuming that the force FRP remains constant, the slowing time for RP is

∆tRP =
ζ0

Γρee
, (6.44)

since approximately one scattered photon is required per slowing photon.
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We now calculate the distance a particle in the final momentum wave packet travels in physical

space throughout the slowing process in order to reach zero momentum. We approximate p(t) to

be linear:

p(t) ≈ p̄0 − ~kt/T (6.45)

so we may write the slowing distance as

∆xLRI =
pavg

m
∆t =

ωrTζ
2
0

2π
λ, (6.46)

where pavg = p̄0/2 is the time-averaged momentum and λ is the wavelength of the transition.

Because laser power is typically the limiting experimental factor, we use Eq. (6.37) to rewrite

Eq. (6.46) as

∆xLRI =
ωrζ

2
0

2Ω sinβ
λ. (6.47)

Using Eq. (6.42), we can obtain a similar expression for the RP slowing distance:

∆xRP =
ωrζ

2
0

2πρeeΓ
λ. (6.48)

Comparing the LRI and RP results, we find that our scheme is able to exert higher forces, and

therefore slow particles in less time and in a shorter distance, with fewer scattered photons when

Ω sinβ � πΓρee. For choices of sinβ and ρee on the order of unity, this amounts to the limit Ω� Γ.

In the LRI analysis, we have not incorporated any effects due to dissipation. Since the slowing

mechanism is purely coherent in nature, it would be ideal if there were no spontaneous emission

events. This can be achieved in several ways: the use of ultra-narrow linewidth transitions, applying

the entire slowing protocol in a time shorter than the lifetime of the excited state (which typically

requires extremely high laser power but also results in very small slowing distances), or applying

the shortcut protocol on a Raman transition between internal ground states. The last method is

beyond the scope of this work, but may extend the application of this protocol to other atomic and

molecular species. Nevertheless, the scattering rate Rs of each slowing technique is approximately

RsLRI ≈
Γ

2
; RsRP ≈ Γρee ≤

Γ

2
, (6.49)
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since the particles in the LRI scheme are in the excited state for roughly half of the time, suggesting

that the scattering rates are on the same order. However, the expected number of scattered photons,

N = Rs∆t, for each technique is

NLRI ≈
Γ

Ω

π

2 sinβ
ζ0; NRP ≈ ζ0, (6.50)

which means that the LRI scheme generates fewer scattered photons when Ω sinβ � Γ.

6.6 Slowing Examples

By repeatedly driving the transition |g, p̄〉 → |e, p̄− ~k〉 followed by |e, p̄− ~k〉 → |g, p̄− 2~k〉

according to our shortcut solution, we now show that we are able to slow a significant number of

particles when the full composite Hilbert space is taken into account. After each pair of transitions,

we update the momentum p̄ to p̄− 2~k in the laser frequencies [see Eq. (6.10)], as we assume that

the initial population in |g, p̄〉 has moved to |g, p̄− 2~k〉. Note that this procedure results in the

slowing of a pulse, as opposed to a steady-state ensemble, of particles. We assume that the jump in

laser frequency at the end of each ramp is perfectly diabatic. Since there is very little population

transfer when δ(t) � Ω, we do not track the detuning profile’s asymptotic behavior, as this can

cause numerical errors. We thus take δ(t) to be equal to a constant ±δcut in these regions, defined

by

δ(t < t0 + tcut) = −δ(t > tf − tcut) = δcut (6.51)

for some cutoff time tcut, as shown in Fig. 6.2(d). We evolve the master equation [Eq. (6.17)] using

the method of quantum Monte Carlo wave functions [135]. This involves unraveling the master

equation into trajectories based on stochastic simulation of spontaneously emitted photons.

Fig. 6.4 presents the momentum distribution of an ensemble of particles before (blue) and

after (orange) application of our slowing scheme over 100 sweeps in the case of purely coherent

(left column) and dissipative (right column) dynamics. In the dissipative case, we chose Γ = ωr

as an order-of-magnitude estimate for a narrow-linewidth transition. We chose to initialize the

momentum distribution as either a momentum eigenstate at 100~k (top row) or a Gaussian profile
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with an average momentum 〈p̂〉 = 100~k and a standard deviation of σp,0 = 10~k (bottom row),

which typically corresponds to an initial average particle speed on the order of 1 m/s. While

actual physical systems may have much higher initial particle beam speeds, this choice sufficiently

demonstrates the slowing effects of our protocol. We have chosen to use the average momentum

of the Gaussian as the initial momentum used in the laser frequencies (p̄0 = 〈p̂〉) because it results

in the largest fraction of slowed particles. For experimental accessibility and robustness, we chose

β = 0.85π/2 and Ω = 100Γ, which results in a shortcut time T = 0.032/Γ [see Eq. (6.37)] typically

on the order of microseconds, much shorter than the associated timescale of radiation pressure

slowing on the transition. This choice of Ω also sets the expected number of scattered photons N

to be on the order of unity [see Eq. (6.50)].

As seen in Fig. 6.4, a substantial fraction of the distribution is slowed to near zero momentum.

We first discuss the results in the case of purely coherent dynamics (left column). If the system

begins in the eigenstate |g, 100~k〉 [Fig. 6.4(a)], about 99.3% of the population ends in the zero

momentum eigenstate. (We attribute the lack of 100% transfer to our use of a cutoff frequency

δcut = 244ωr.) If the system begins in a Gaussian state [Fig. 6.4(c)], about 35% of the population

ends with momentum |p| ≤ 10~k, which corresponds to about half of the population within one

standard deviation of the average momentum in the initial distribution.

In the case of dissipative dynamics, 29% of the population ends with momentum |p| ≤ ~k if

the system is initialized in the eigenstate |g, 100~k〉 [Fig. 6.4(b)], and 13% of the population ends

with momentum |p| ≤ 10~k if the system is initialized in the Gaussian state [Fig. 6.4(d)]. In both

cases, there was an average of 1.6 scattered photons per particle, which agrees with the predicted

scattering rate given in Table 6.1. These results demonstrate that our protocol can potentially

slow a significant fraction of particles to zero momentum in a very short distance and with few

spontaneous emission events. An appealing feature of our protocol is its ability to apply high

slowing forces with a virtually negligible reliance on spontaneous emission.

As a more realistic demonstration, we present several atomic and molecular species that are

reasonable candidates for our slowing protocol in Table 6.2. We simulated the slowing of each
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Figure 6.4: Initial (blue) and final (orange) momentum distributions P (p) of a system subject to the
slowing protocol. The system is initialized in the internal ground state |g〉 and with a momentum
distribution of either the 100~k eigenstate (top row) or a Gaussian state with average momentum
〈p̂〉 = 100~k and width σp = 10~k (bottom row). The excited state linewidth is Γ = 0 in (a)
and (c), and Γ = ωr in (b) and (d). Further details are discussed in text. Other parameters
are: Ω = 100ωr, T = 0.032/ωr, ttot = 1.6/ωr, and δcut = 244ωr, β = 0.85π/2, and p̄0 = 100~k.
Subplots (b) and (d) are averaged over 1,000 trajectories.

species with an initial momentum of 200~k using a 0.1 W/cm2 laser intensity, and provide the

expected slowing times ∆t, slowing distances ∆x, and capture fractions C in Table 6.3. The

saturation intensity Isat, laser intensity I, and Rabi frequency Ω can be calculated according to

[126]

2

(
Ω

Γ

)2

=
I

Isat
; Isat ≡

πhcΓ

3λ3
, (6.52)

where h is Planck’s constant and c is the speed of light. The calculated slowing times and distances

become smaller as the transition dipole matrix element increases, as can be seen for the species

with larger linewidths. However, the required temporal control of the Rabi frequency and detuning
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profiles in these cases may be an experimental challenge. One solution is to simply reduce the laser

power, but this can quickly move the parameters away from the regime Ω� Γ, which increases the

chance of spontaneous emission and hence reduces the capture fraction C.

Due to our method’s sensitivity to spontaneous emission, a rough estimate for the capture

fraction C is given by the fraction of particles that do not emit a single spontaneous photon

throughout the slowing process. Using Eq. (6.50), this is approximately

C ≈ exp (−NLRI) = exp

(
−Γ

Ω

π

2 sinβ
ζ0

)
. (6.53)

This formula is on the same order as the simulated capture fractions given in Table 6.3 for Ca,

Sr, and YO, but it underestimates the results for Yb and BaH, suggesting that particles can still

be slowed after emitting spontaneous photons. Eq. (6.53) is not a fundamental limit, as it can be

improved with a more sophisticated implementation of the shortcut process, such as introducing

occasional waiting periods so that the particles return to the internal ground state (as is done in

other methods [129]), allowing the laser pulses to overlap in time (see Fig. 6.6), or repeating the

slowing protocol over a range of momentum states. For example, we were able to increase the

simulated 174Yb capture fraction by over an order of magnitude to C = 1.7× 10−4 by introducing

a laser pulse overlap fraction f = 0.2 as discussed in Section 6.7.

6.7 Robustness

We now study the robustness of the shortcut slowing scheme to various systematic errors

that may arise in an experimental setting. Specifically, we modify the Rabi frequency amplitude,

then separately consider the result of slowing a particle with a momentum p that is not equal to

the momentum accounted for in the laser frequencies p̄ (Fig. 6.5). We also consider the scheme’s

robustness to the temporal overlap f of the square pulses (Fig. 6.6), which may minimize scattering

events since it potentially reduces the amount of time the particle remains in the internal excited

state. For simplicity, we focus on a single |g〉 → |e〉 → |g〉 process and calculate the resulting

impulse ∆p experienced by the particle. Moreover, we employ a phase relation between the laser
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Figure 6.5: Robustness comparison of π-pulse slowing (purple, plus), SWAP slowing (green, cross),
and the shortcut scheme (blue, circle with cross) over a p̄ → p̄ − 2~k transfer process. Ideally,
the resulting impulse ∆p satisfies ∆p/2~k = −1. The evolution is purely coherent (Γ = 0), the
momentum of the particle (which is addressed by the laser frequencies) is p̄ = 2~k, and the Rabi
frequency is Ω = 10ωr for all processes. (a) Impulse ∆p experienced by the particle, in units of
the ideal impulse magnitude 2~k, as a function of the error in the Rabi frequency amplitude ε [see
Eq. (6.55)]. The shortcut scheme is the most robust protocol when ε > 0. (b) ∆p/2~k as a function
of the relative momentum of the particle δp with respect to the momentum p̄ = 2~k used in the
laser frequencies [see Eqns. (6.10) and (6.56)]. For this set of parameters, the shortcut and π-pulse
scheme are generally more robust than SWAP slowing. π-pulse parameters are: T = 0.314/ωr and
β = π/2. SWAP slowing parameters are: T = 1/ωr and ∆ = 50ωr. Shortcut parameters are:
T = 0.44/ωr, δcut = 230ωr, and β = 0.5π/2.

pulses such that the Rabi frequency of each pulse is purely real. The correct detuning profiles

are employed throughout this section. We set the Rabi frequency to Ω = 10ωr across all slowing

methods, but necessarily allow for different slowing times.

Using the auxiliary variable β = 0.5π/2, we compare the robustness of our scheme to both

π-pulse and SWAP slowing. As discussed in Section 6.4.4, The π-pulse solution is a special case

of our slowing method with the choice β = π/2, which results in a fixed detuning [see Eq. (6.38)].

SWAP slowing is simulated by using a sawtooth-wave detuning profile with full range ∆ and period

T for each single-photon transfer. Unlike SWAP cooling, the lasers are sequentially pulsed as in

Fig. 6.2(a) and 6.2(b), and the laser detunings are centered on the momentum p̄.
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While there is not a unique way to choose the SWAP slowing parameters, we used the

following method. Landau and Zener showed [194] that the population of the second (initially

unoccupied) state P2 if the laser is linearly chirped from a detuning of minus infinity to positive

infinity, is given by Eq. (6.1). Therefore, to obtain a transfer probability of at least 95%, we chose to

set Ω2/α = 2. Next, we increased the chance of population transfer by setting the shortcut period

to be several times larger than the approximate time τj required to transfer population between

quantum states in the adiabatic regime [185]:

τj =
2Ω

α
=

0.4

ωr
⇒ T =

1

ωr
> τj . (6.54)

These choices constrained the sweep range to be ∆ = 50ωr. Note that the resulting SWAP slowing

period T = 1/ωr is significantly longer than the π-pulse (T ≈ 0.3/ωr) and shortcut slowing (T ≈

0.4/ωr) periods [see Eq. (6.37)].

Fig. 6.5(a) presents the resulting particle impulse ∆p as a function of the error in the Rabi

frequency amplitude, which is characterized by the small parameter ε:

Ω→ Ω(1 + ε). (6.55)

While the shortcut scheme applies a similar impulse ∆p compared to the π-pulse method for ε < 0,

it is the most robust method for ε > 0. The SWAP slowing result, while being the most robust

method for ε < 0, can change significantly with small changes to the parameters. This instability is

as a result of high-frequency population oscillations [185]. Moreover, when dissipation is included,

the much longer SWAP slowing period increases the chance of spontaneous emission, which can

disrupt the slowing process. These results demonstrate the utility of the shortcut scheme, as it

is robust to small errors ε and takes much less time than SWAP slowing. Note that intensity

modulators typically have errors less than approximately 5%.

Fig. 6.5(b) presents the effects of applying each slowing method to a particle with a momen-

tum p which is not equal to the momentum p̄ accounted for in the laser frequencies [see Eq. (6.10)].

Such an error occurs when slowing a cloud of particles with a distribution of momenta. We param-
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eterize this difference in momentum with the variable δp as:

p = p̄+ δp. (6.56)

In this case, we find that the shortcut scheme is most robust for small δp, but SWAP slowing

becomes more robust for |δp| > 3~k. This change in the trend for SWAP slowing near the particular

values δp = ±3~k is due to population oscillations, and the results can again change significantly

with small changes in the parameters. In the limit of adiabatic dynamics and time-resolved transfers

(which necessarily takes a long time), SWAP slowing is generally most robust to this error since

the rate of change of the detuning profile in SWAP slowing is constant, thereby removing the need

to align the center of the laser detuning profile with the Doppler shift of the particle. It should be

noted that it is not necessarily a problem that the shortcut scheme is less robust to large deviations

of δp from zero because we scan through values of p/~k in integer steps by design. What is more

important is that the shortcut scheme is more robust when |δp| < ~k than SWAP slowing, as

particles will not necessarily have integer momentum.

Figure 6.6: Impulse ∆p experienced by the particle, in units of the ideal impulse magnitude 2~k,
as a function of the laser pulse overlap fraction f . The impulse is calculated under both coherent
(Γ = 0) and dissipative (Γ = ωr) dynamics. Other parameters are: T = 0.44/ωr, δcut = 230ωr, Ω =
10ωr, p̄ = 2~k, and β = 0.5π/2. All points are averaged over 1,000 trajectories.

Fig. 6.6 presents the effects of allowing the laser pulses to overlap in time. We define the
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overlap fraction of the square pulses f such that f = 0 when the pulses are completely time-resolved

but occur sequentially with no delay, and f = 1 when the pulses occur at the same time for the

entire pulse duration. We find, in the case of purely coherent dynamics (Γ = 0), that a pulse

overlap fraction as large as f = 0.2 does not change the impulse experienced by the particle. In the

case of dissipative dynamics, we find that there is an optimal f that maximizes the impulse ∆p.

This optimal f , which depends on system specifics, must be small enough to allow transfer to |e〉

before the transfer back to |g〉, but large enough to minimize the time the particle spends in the

excited state, thereby minimizing the chance of spontaneous emission. It should be noted that a

pulse overlap introduces the possibility of multiphoton, or Doppleron, resonances [134] which may

interfere with the single-photon slowing dynamics.

When slowing a particle with a large initial momentum p � ~k to rest, we emphasize that

the slowing efficiency is significantly affected by even a small deviation from the ideal impulse

∆p = −2~k since the error compounds exponentially with the number of transfer processes, and

the particle is generally not transferred back to |g〉 for the next pulse sequence. It may be possible to

further enhance the robustness of the slowing protocol to the rapidly changing detuning profile at the

beginning and end of the transfers by using a Rabi frequency profile that satisfies Ω(t0) = Ω(tf )→ 0,

such as a Gaussian or a sinusoidal function [129, 167, 173]. However, in order to satisfy the auxiliary

equations and boundary conditions [see Eqns. (6.30)-(6.32)], the peak Rabi frequency may need to

be larger than what we consider here.

6.8 Conclusion and Outlook

In this work, we proposed a purely coherent particle slowing scheme. By utilizing the method

of inverse-engineering based on Lewis-Riesenfeld invariant theory, we demonstrated that these slow-

ing designs are able to achieve effective adiabatic dynamics but with a short slowing time. We

illustrated how to design Rabi frequency and detuning profiles that achieve the desired dynamics

and demonstrated that our slowing blueprint is a promising alternative to conventional slowing

schemes that rely on radiation pressure for narrow linewidth systems or systems that lack a closed
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cycling transition. We theoretically examined the effective classical forces exerted on the particles

during the slowing processes and demonstrated that, when the Rabi frequency is large compared

to the excited state decay rate, our scheme is able to exert significantly higher forces than radia-

tion pressure while maintaining a very low number of scattered photons. We also showed that our

proposed slowing scheme is robust to various systematic errors.

A possible practical implementation of our scheme is to directly apply it to a particle beam

exiting a supersonic nozzle or buffer gas cell. Our scheme may also be utilized as a second slowing

stage after particles exiting an effusive oven have been slowed in a precursor stage to the order of

10 m/s and the initial spread in velocity has been greatly reduced. Additionally, it may be possible

to implement our protocol as a steady-state slowing procedure by compensating for the changing

particle velocity with a magnetic field gradient instead of the time-dependent laser frequencies, in

a similar approach to a Stark or Zeeman decelerator.

A natural next step would be to optimize our shortcut solutions with respect to different cri-

teria. Time-optimization of different adiabatic shortcuts has been studied previously for two-level

systems [161, 162], STIRAP [136], and frictionless cooling in harmonic traps [175]. Another opti-

mization criterion comes from the fact that adiabatic shortcuts cannot be implemented without an

energetic cost, an intrinsic relationship that has been rigorously studied for Berry’s transitionless

quantum driving algorithm [28], various other shortcuts [1], and in its applications to quantum

computing [52]. Thus, minimizing the energetic cost for a fixed sweep period is, in effect, find-

ing the most efficient shortcut. Additionally, quantum optical control based protocols could be

implemented to derive further solutions [72].

Another appealing scheme is a similar shortcut protocol applied to a system with an internal

state structure comprised of two stable ground states coupled to an excited state, such as found in

a J = 1→ J ′ = 1 transition, where J is the total electronic angular momentum quantum number.

Speeding up a Raman transition between the ground states could remove twice as much momentum

per transition. This model, while generally requiring more laser power, has the additional benefit

of an engineered excited state linewidth, which can be made arbitrarily small if the lasers are
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sufficiently detuned from the excited state. Moreover, applying anti-symmetric detuning sweeps

could allow for control of the slowed velocity range, potentially resulting in a slowed distribution

with a low temperature.

There are similarities between our results and others [111, 129, 167, 173] in the sense that

two-level inversion is achieved in the diabatic limit. A more thorough investigation could further

our understanding of the connection between these solutions and adiabatic shortcuts.

Furthermore, it is impossible to implement the LRI scheme to the entire momentum Hilbert

space by hand. An intriguing possible solution to this problem is to employ advanced optimization

techniques, such as quantum optimal control and reinforcement learning, to find a solution that

maximizes the slowing scheme’s capture range or minimizes the energetic cost of implementing the

shortcut for a given sweep period.



Chapter 7

Entropy transfer from a quantum particle to a classical coherent light field

In the previous chapters, we studied various laser cooling (Chapters 3 and 4), trapping

(Chapter 5), and slowing (Chapter 6) techniques. In the cases involving cooling, we saw that the

ensemble of quantum particles eventually equilibrated to some temperature and cloud size. As

discussed in Section 2.2.2, this was a consequence of the dissipative spontaneous emission process,

which irreversibly carried away entropy from the ensemble by its interaction with the environment

and allowed the system to reach a steady-state configuration. We can also ask the question as

to whether the degrees of freedom of the laser light could also remove entropy from the particle

ensemble. However, this would require a quantized model of the laser light (see Section 2.26) and

a relaxation of the assumption that the laser light is unperturbed by the particle-laser interaction.

We adopt this perspective and investigate its consequences in this chapter.

In this chapter, we develop and theoretically analyze a simple Gedankenexperiment which

involves the interaction of a coherent state with a quantum particle in an optical cavity. We quantify

the resulting alteration of the light field by measuring the fidelity of its initial and equilibrium states.

Using Bayesian inference, we demonstrate the information transfer through photon measurements.

In addition, we employ the concepts of quantum entropy and mutual information to quantify the

entropy transfer from the particle to the light field. In the weak coupling limit, we validate the

usually assumed negligible alteration of the light field and entropy transfer. In the strong coupling

limit, however, we observe that the information of the initial particle state can be fully encoded in

the light field even for large photon numbers. Nevertheless, we show that spontaneous emission is a
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sufficient mechanism for removing the entropy initially stored in the particle. Our analysis provides

a deeper understanding of the entropy exchange between quantum matter and classical light.

7.1 Introduction

When studying a quantum system, it is generally desirable for it to be prepared in a low-

entropy configuration. Such systems can populate a relatively small number of quantum states,

which makes their dynamics more controllable, predictable, and comprehensible [22, 195]. If the

system of interest is a gas consisting of atoms or molecules, its entropy is typically reduced by

utilizing laser cooling and optical pumping techniques. In these processes, the particles absorb

light from an applied laser field and incoherently scatter the light into free space [126]. While

these methods can irreversibly remove entropy from the gas, the second law of thermodynamics

requires that the total entropy of the universe does not decrease, and therefore that the entropy

of the gas must have been absorbed by some other system. In this context, the most common

explanation is that the entropy of the gas is absorbed by the vacuum modes of the quantized

electromagnetic field [190]. This process is often cast in the framework of open quantum systems

whereby the quantized electromagnetic field is treated as an external reservoir, allowing for an

irreversible reduction of the gas’s entropy through the process of spontaneous emission [24, 65, 155].

It is typically explained that the reservoir can absorb a substantial amount of entropy due

to the large number of possible emission configurations [93, 126]. Moreover, it is often stated that

the coherent light field is not perturbed, and hence does not absorb entropy, because the quantum

counterpart to the laser field, the coherent state, is unaffected by the absorption of photons by the

gas. However, there are some studies that predict entropy removal from the gas via interaction

with the laser field [35, 50, 100, 124, 128]. In an effort to further understand the underlying physics

of laser cooling and optical pumping, we propose a simple Gedankenexperiment that probes the

change of a light field that coherently interacts with a particle containing nonzero initial entropy.

Our results conclude that the entropy initially possessed by the particle can be imprinted on the

applied light field, but the same information is also encoded in the spontaneous photons emitted
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by the particle.

�

Figure 7.1: (a) A schematic of the experimental setup. A particle (circle) is placed in a lossless
(κ = 0) optical cavity that contains a coherent light field. The particle can undergo spontaneous
emission into free space at rate γ. (b) Energy diagram of the particle’s internal state structure. It
is coupled to the cavity with strength g on the bright transition (|e〉 ↔ |b〉) and has a linewidth γ
on the dark transition (|e〉 → |d〉).

7.2 Motivation

We first consider the level of complexity necessary to demonstrate the state alteration and

entropy transfer processes with the goal of removing complications or details of any particular

cooling or pumping scheme that might obscure the core physics of interest. While other candidates

may exist, we model the initial state of the laser field as a coherent state, as this is the quantum

state that shares the most similarities with a classical coherent laser field [6]. The coherent state

is prepared in a lossless optical cavity, after which any external driving fields are turned off. The

cavity is an efficient way to incorporate quantization, and we anticipate that many of our findings

also apply to free-space coherent light fields. Because the essential physics of interest is the same,

we focus only on the effects of optical pumping on the evolution of the particles’ internal states.

To this end, we model the gas as a single, motionless particle that exists at an anti-node of the

optical cavity. With these considerations in mind, we construct the minimal experimental setup

depicted in Fig 7.1(a). The particle possesses two ground states and a single excited state, as

shown in Fig 7.1(b). The |b〉 ↔ |e〉 (bright) transition is resonant with the optical cavity, which

encapsulates the coherent interaction between the cavity field and the particle, while the |e〉 → |d〉

(dark) transition is mediated only by the spontaneous emission process, which models the incoherent

interaction between the background radiation field and the particle. The particle always transitions
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to the dark state |d〉 upon emission of a spontaneous photon so that the cavity isn’t trivially depleted

of photons.

By studying this model, we aim to quantify the alteration of the cavity field due to its

interaction with the particle and to determine if entropy is transferred from the particle subspace

to the cavity subspace through their resulting correlations. To achieve these goals, we employ both

statistical and information theoretic techniques. We first calculate the final cavity field state and

quantify its distinguishability from the initial cavity state through their quantum fidelity. Then,

we demonstrate that information about the particle becomes encoded in the cavity field by using

Bayesian inference. Lastly, we quantify the amount of entropy transferred from the particle to the

cavity field by calculating the quantum mutual information shared between the initial particle state

and final cavity state.

7.3 Model

We refer the reader to Sections 2.1 and 2.2 for details on modeling light-matter interactions.

The system of interest [Fig. 7.1(a)] consists of a three-level particle [Fig. 7.1(b)] coupled to a light

field in a lossless (κ = 0) optical single-mode cavity. Let us denote the Hilbert space of each

subspace as A and L, respectively. In the time-independent interaction picture, the system is

evolved according to the quantum master equation

dρ̂AL
dt

=
1

i~

[
ĤAL, ρ̂AL

]
+ L̂ρ̂AL. (7.1)

Here, the coherent cavity-particle interaction is described by the Jaynes-Cummings Hamiltonian

ĤAL =
~g
2

(
|b〉 〈e| â† + |e〉 〈b| â

)
, (7.2)

where g is the coupling strength, and â is the annihilation operator for the cavity field. As is

achieved in the moving frame of a particle in Doppler cooling, we have set the cavity to be resonant

with the particle’s bright state transition. The environment surrounding the system, which we

model as an infinite bandwidth bosonic bath that is coupled to the particle’s dark transition, has
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been traced out under the Born-Markov approximation [109, 127]. Its effects are incorporated

through the Lindblad superoperator

L̂ρ̂ = γ

(
L̂ρ̂L̂† − 1

2

{
L̂†L̂̂,ρ

})
, (7.3)

i.e., the only jump operator is Ĵ =
√
γL̂ =

√
γ |d〉 〈e|. This term describes the spontaneous emission

of photons into free space by the particle that occurs at a rate γ. We consider both analytical and

numerical solutions to Equation (7.1) in the sections that follow. We use both MATLAB and the

QuantumOptics package in the Julia programming language for numerical calculations [101, 120].

To model the entropy initially possessed by the particle, it is prepared in the mixed state

ρ̂A(0) = x |b〉 〈b|+ (1− x) |d〉 〈d| , (7.4)

where 0 ≤ x ≤ 1 is the probability that the particle begins in the bright state |b〉. As already

mentioned, the cavity field is initialized in a coherent state

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , (7.5)

where |n〉 is the n-photon Fock state, so that its initial density matrix reads

ρ̂L(0) = |α〉 〈α| . (7.6)

7.4 Calculating the final cavity field state

In order to derive an analytic form of the cavity field state in the limit t → ∞, we separate

the density matrix into Jordan blocks:

ρ̂b = 〈b|ρ̂|b〉 |b〉 〈b|+ 〈b|ρ̂|e〉 |b〉 〈e|+ 〈e|ρ̂|b〉 |e〉 〈b|+ 〈e|ρ̂|e〉 |e〉 〈e| ,

ρ̂d = 〈d|ρ̂|d〉 |d〉 〈d| ,
(7.7)

in which we momentarily drop the AL subscript for notational simplicity. This simplifies the

formalism because the initial particle-cavity state

ρ̂(0) = [x |b〉 〈b|+ (1− x) |d〉 〈d|]⊗ |α〉 〈α| (7.8)
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explicitly assumes there are no coherences between the three internal states. Taking a time deriva-

tive and using the master equation Eq. (7.1) in the form

∂ρ̂

∂t
=

1

i~

(
Ĥeffρ̂− ρ̂Ĥ†eff

)
+ L̂jump ρ̂, (7.9)

we find

˙̂ρd = γ 〈e|ρ̂|e〉 |d〉 〈d| , ˙̂ρb =
1

i~

[
Ĥeffρ̂b − ρ̂bĤ†eff

]
. (7.10)

Here, we used 〈i| L̂jump |j〉 = 0 for i, j ∈ {b, e} and defined

Ĥeff = Ĥ − i~γ
2
|e〉 〈e| , L̂jump ρ̂ = γ 〈e|ρ̂|e〉 |d〉 〈d| . (7.11)

We first diagonalize the non-Hermitian matrix Ĥeff in the subspace {|e, n− 1〉 , |b, n〉}

Ĥn =
~
2

 −iγ g
√
n

g
√
n 0

 (7.12)

for n > 0. The eigenvalues are λ
(n)
± = −i~Λ

(n)
± , with

Λ
(n)
± ≡

γ

4
± i

2

√
ng2 − γ2

4
, (7.13)

and the kernel of the matrix Ĥn − λ(n)
± În is spanned by

V̂n =
~
cn

 −iΛ(n)
+ −g

√
n

2

g
√
n

2 −iΛ(n)
+

 (7.14)

with normalization factor c2
n =

(
−i~Λ

(n)
+

)2
+ ~2g2n/4. We now define V̂ =

∑
n V̂n⊗ În so that the

bright manifold matrix can be written as ρ̂b = V̂ ρ̂V V̂
†.

We can use the method of Laplace transforms, L[Â](s) =
∫∞

0 dte−stÂ, to solve for the trans-

formed density matrix:

sL[ρ̂] = L[ ˙̂ρ](s) + ρ̂(0), (7.15)

which we then can solve for steady-state:

ρ̂(t→∞) = lim
s→0

L[ ˙̂ρ](s) + ρ̂(0). (7.16)
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Projecting with 〈d| and |d〉 and using the master equation Eq. (7.1), 〈d|ρ̂b|d〉 = 0, and 〈e|ρ̂d|e〉 = 0,

we find

ρ̂d(t→∞) = γ lim
s→0
〈e|L[ρ̂b](s)|e〉+ 〈d|ρ̂d(0)|d〉 . (7.17)

To solve for the first term on the right-hand side of Eq. (7.17), we find

L[ρ̂V ](s) = L
[
V̂ −1ρ̂b(V̂

†)−1
]

(s) =
∑
n,n′≥1

R̂n′,n ⊗ În′,n, (7.18)

where În′,n is a matrix with 1 at position n′, n and zeros everywhere else, and

R̂n′,n =
~2

cn′c∗n


g2
√
nn′

4(s+Λ
(n′)
+ +Λ

(n)∗
+ )

ig
√
n′Λ

(n)∗
+

2(s+Λ
(n′)
+ +Λ

(n)∗
− )

− ig
√
nΛ

(n′)
+

2(s+Λ
(n′)
− +Λ

(n)∗
+ )

Λ
(n′)
+ Λ

(n)
+

(s+Λ
(n′)
− +Λ

(n)∗
− )

 〈n′|α〉 〈α|n〉 . (7.19)

We next calculate

L[ρ̂b](s) =
∑
n,n′≥1

V̂n′R̂n′,nV̂
†
n ⊗ În′,n, (7.20)

and project with 〈e| and |e〉. Since the excited state in our basis in Eq. (7.12) is |e, n− 1〉, Eq. (7.17)

becomes

ρ̂d(∞) = |d〉 〈d| ⊗

(1− x) |α〉 〈α|+ x|α2|
∑
l,l′≥0

Kl,l′ 〈l′|α〉 〈α|l〉 |l′〉 〈l|

 , (7.21)

with

Kl,l′ ≡
(

1 +
l + l′

2
+

(l − l′)2

8m

)−1

, (7.22)

in which

m =
1

2

(
γ

g

)2

(7.23)

is the particle-cavity critical photon number. The quantity m characterizes the nonlinearity of the

particle-cavity interaction in the sense that the particle will undergo many (few) Rabi oscillations

before emitting a spontaneous photon in the strong (weak)-coupling regime m� 1 (m� 1) [96].

Projecting 〈b| and |b〉 on Eq. (7.16) and noting that the steady-state bright state population

results from the cavity being in the vacuum state |0〉, we have

ρ̂b(∞) = xe−|α|
2 |b〉 〈b| ⊗ |0〉 〈0| . (7.24)
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Tracing over the atomic states, we find that the final cavity field state is

ρ̂L(∞) = (1− x) |α〉 〈α|+ xρ̂c, (7.25)

in which

ρ̂c = e−|α|
2 |0〉 〈0|+ |α|2

∑
l,l′≥0

Kl,l′ 〈l′|α〉 〈α|l〉 |l′〉 〈l| (7.26)

characterizes the effects of the interaction.

7.5 Q-function for the final cavity field state

To gain intuition for the differences between the initial and final cavity states, we calculate

their Husimi Q-functions, which are defined as

Q(β) ≡ 〈β|ρ̂|β〉
π

. (7.27)

Here, the coherent states |β〉 form a basis for the 2-dimensional optical phase space (Re(β), Im(β)).

The initial cavity state has Q-function

Q0(β) =
〈β|ρ̂L(0)|β〉

π
=
| 〈α|β〉 |2

π
=

1

π
e−|α−β|

2
, (7.28)

while the Q-function for the final cavity state is

Q∞(β) =
〈β|ρ̂L(∞)|β〉

π
. (7.29)

The latter has a more complicated form since it is generally no longer a coherent state. Fig. 7.2

presents numerical plots of Q∞(β) for various m. To focus on the effects of the interaction, we

choose x = 1. We also choose α = 10 so that Q0(β) is localized and centered on the coordinate

(Re(β), Im(β)) = (10, 0) with a spread on the order of unity.

Fig. 7.2(a) displays Q∞(β) for the intermediate-coupling case m = 1. We find that Q∞(β)

does not differ significantly from Q0(β), which indicates that the cavity field nearly remains in a

coherent state. In the case of stronger coupling [m = 10−2, Fig. 7.2(b)], however, Q∞(β) remains

localized near |β| = |α|, but is spread over a larger phase range ∆φ. In the infinite-coupling limit
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m → 0 [Fig. 7.2(c)], we find that Q∞(β) has a uniform phase distribution, and therefore differs

substantially from Q0(β).

Let us now interpret these results. The function Q∞(β) always remains localized near the

circle defined by |β| = |α| = 10 because the average number of photons in the cavity

n̄ = 〈â†â〉 (7.30)

doesn’t significantly change. This is a consequence of the particle’s internal state structure [see

Fig. 7.1(b)], which prevents a reduction of n̄ by more than one, and our choice of a large initial

intracavity photon number: n̄0 ≡ n̄(0) = 100 = |α|2. On the other hand, we observe diffusion of

the phase φ as m decreases because the particle undergoes more Rabi oscillations with each Fock

state before emitting a spontaneous photon, thereby scrambling the cavity field’s phase coherence.

The coherences vanish completely in the limit m → 0 (as can be seen from the m-dependence of

Kl,l′ [Eq. (7.22)]), resulting in the uniform phase distribution shown in Fig. 7.2(c). This potentially

extreme change in the phase distribution is largely responsible for the distinguishability of the

initial and final cavity states, which we quantify in terms of their fidelity in the next section.

Figure 7.2: The Q-function Q∞(β) for the final cavity state ρ̂L(∞) [see Eq. (7.29)] for various m.
We set x = 1 and α =

√
n̄0 = 10. Although the amplitude of the state remains localized near

|β| = √n̄0 = 10, the spread in phase φ increases as m decreases.
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7.6 Calculating the fidelity between the initial and final cavity field states

We now quantify the alteration of the cavity field by calculating the Uhlmann-Jozsa fidelity

F (ρ̂, σ̂) =

(
Tr

√√
ρ̂σ̂
√
ρ̂

)2

(7.31)

between its initial and final states, which is a generalization of the transition probability for pure

states [89, 182]. The fidelity satisfies 0 ≤ F (ρ̂, σ̂) ≤ 1 for any two density matrices ρ̂ and σ̂, with

F (ρ̂, σ̂) = 1 if and only if ρ̂ = σ̂, and F (ρ̂, σ̂) = 0 if ρ̂ and σ̂ have support on orthogonal subspaces.

In particular, if we find that F (ρ̂, σ̂) 6= 1, then the cavity field is no longer in the coherent state

|α〉.

Because the cavity field is initially in a pure state, its fidelity with the final cavity state

ρ̂L(∞) is simply

F ≡ F [ρ̂L(0), ρ̂L(∞)] = 〈α|ρ̂L(∞)|α〉 . (7.32)

We point out that F = πQ∞(α), i.e., the fidelity is (up to a factor of π) the Q-function of the final

cavity state evaluated at β = α. We can therefore qualitatively predict features of the fidelity F

through the plots in Fig. 7.2. For example, we expect F to decrease as m decreases due to the

associated diffusion of the Q-function.

As seen from Eq. (7.25),

F = 1− x [1− f(n̄0,m)] , (7.33)

in which

f(n̄0,m) ≡ e−2n̄0

1 + n̄0

∑
l,l′≥0

Kl,l′
n̄l+l

′

0

l!l′!

 (7.34)

is the fidelity conditioned on the particle beginning in the bright state. We discuss this result in

Section 7.7.

7.6.1 Fidelity in the thermodynamic limit

We now calculate an analytic expression for F in the thermodynamic limit n̄0 →∞, which is

of interest if there are many photons in the cavity (as in laser cooling and optical pumping). Using
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the Laplace transform of Kl,l′ [see Eq. (7.22)] and the Fourier transform of the resulting Gaussian

term to reduce its order, we find that the sum in Eq. (7.34) can be rewritten as∑
l,l′≥0

Kl,l′
n̄l+l

′

0

l!l′!
=

∫ ∞
−∞

du

∫ ∞
0

ds

√
2m

πs
e−se2n̄0e−s/2 cosue−2mu2/s. (7.35)

In the limit n̄0 � 1, the integrand in Eq. (7.35) is localized around s = 0 and u = 2πp, where

p is an integer. This can be seen from the dominating term exp
(
2n̄0e

−s/2 cosu
)
. Expanding the

argument of this term to lowest order in s and u, we find that

e2n̄0e−s/2 cosu ≈ e2n̄0e−sn̄0
∑
p∈Z

e−n̄0(u−2πp)2
. (n̄0 � 1) (7.36)

From this result, we see that the relevant domains are 0 < s < 1/n̄0 and |u− 2πp| < 1/
√
n̄0.

Let us now consider the size of the integrand in Eq. (7.35) for fixed s. The Gaussian term

e−2mu2/s dampens the integrand for increasing u. Along with the term in Eq. (7.36), the integrand

is maximized when u = 0, and the next largest maxima occur when u = ±2π. Therefore, we

can neglect all the components other than p = 0 in Eq. (7.36) if the Gaussian term e−2mu2/s is

sufficiently small for all p 6= 0. This is true when

1� e−8π2m/s =⇒ m >
s

8π2
. (7.37)

Because the largest relevant value is s = 1/n̄0, this condition is strictest when

m > mmin ≡
1

8π2n̄0
. (7.38)

Because we are interested in the thermodynamic limit n̄0 → ∞, we can safely approximate

Eq. (7.36) with only the p = 0 component, and our result will be valid for all m. Using these

results, the sum in Eq. (7.35) becomes∑
l,l′≥0

Kl,l′
n̄l+l

′

0

l!l′!
≈ e2n̄0

∫ ∞
−∞

du

∫ ∞
0

ds

√
2m

πs
e−n̄0se−(n̄0+ 2m

s
)u2

=
e2n̄0

n̄0

√
2πme2merfc(

√
2m).

(m > mmin; n̄0 � 1) (7.39)

Substituting the result into Eq. (7.33) and applying the thermodynamic limit n̄0 → ∞, we

find that

lim
n̄0→∞

F = 1− x
[
1−
√

2πme2merfc(
√

2m)
]
. (7.40)
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7.7 Analyzing the fidelity result

We now analyze the fidelity F between the initial and final cavity states after its interaction

with the particle, which was calculated in the previous section. But first, we address a common

argument that claims that the cavity state should be unchanged (F = 1). It is often argued that a

coherent state is unaffected by the interaction because it is an eigenstate of the annihilation operator

â by definition: â |α〉 = α |α〉, and therefore is unperturbed by photon absorption. However, what

this argument fails to consider is the stimulated emission of a photon back into the cavity, which

can occur if the particle-cavity coupling rate is sufficiently large. With this additional process in

mind, we emphasize that a change of the cavity state is expected since it implies the action of the

creation operator â† [see Eq. (7.2)] on the coherent state, which yields nontrivial dynamics [5].

Nevertheless, we have calculated the fidelity F between the initial and final cavity states [see

Eq. (7.33)], and provide a numerical contour plot for the case x = 1 (so that F = f) in Fig. 7.3(a).

We find that f � 1, and therefore that the cavity state is significantly altered, when n̄0 ≥ 1 and

m < 1. This region of parameter space corresponds to a cavity containing at least one photon (on

average) and a strong cavity-particle coupling, respectively.

Because a cooling laser field contains many photons, we focus on the thermodynamic limit

n̄0 → ∞ for the remainder of our investigation, although we include some interesting results for

finite n̄0 towards the end of the chapter in Section 7.11. Fig. 7.3(b) displays the corresponding

fidelity [Eq. (7.40)], again for the choice x = 1, and a numerical result for n̄0 = 10, which agree

very well when m is sufficiently large, i.e., it satisfies Eq. (7.38).

We now consider the strong (m� 1) and weak (m� 1) coupling limits. From Eqns. (7.33)

and (7.40),

F ≈


1− x(1−

√
2πm), m� 1

1− x

4m
, m� 1

. (7.41)

Therefore, in the infinite-coupling limit m → 0, the fidelity becomes F = 1 − x. This shows that

the cavity field can be altered by the interaction provided that the particle has a chance of starting
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Figure 7.3: Fidelity F between the initial and final cavity states ρ̂L(0) and ρ̂L(∞) [Eq. (7.31)] when
the particle begins in the bright state [x = 1, see Eqns. (7.33) and (7.34)] as a function of the initial
intracavity photon number n̄0 and the critical photon number m. (a) Contour plot of F . When
m < 1 and n̄0 > 1, we find that F � 1, signaling a significant change in the cavity state. (b)
Numerical (solid, n̄0 = 10) and analytical [dashed, Eq. (7.40)] results for F as a function of m. For
m < mmin [dot-dashed, Eq. (7.38)], the results diverge.

in the bright state (0� x ≤ 1). However, in the zero-coupling limit m→∞, we find that F = 1,

and the field is not altered.

It is also interesting to consider how small the critical photon number must be for the initial

and final cavity states to be substantially distinguishable, e.g., for their fidelity to be F = 1
2 . For

simplicity and to achieve the greatest effect, we define such a critical photon number m1/2 in the

case when the particle is prepared in the bright state. From Eq. (7.40), we find that this occurs

when

m = m1/2 ≈ 0.0936. (7.42)

One can therefore observe a substantial alteration of the cavity state in an experimental setting by

studying a system satisfying m ≤ m1/2, or more generally, g ≥ 2.3γ � κ.

These results are direct evidence that the cavity state can be altered by interaction with a

particle, even in the limit of infinitely many photons, if the particle-cavity coupling is sufficiently
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large. We interpret the deviation from F = 1 as result of the development of correlations between

the particle and cavity states through the coherent interaction ĤAL [see Eq. (7.2)].

7.8 Bayesian analysis

Now that we have demonstrated an alteration of the cavity state after interaction with the

particle, we consider if any information about the particle is imprinted on the cavity field. As

discussed in Section 7.5, the change of the cavity state manifests primarily in its phase. This

suggests that simply measuring the field intensity

〈â†â(∞)〉 = n̄0 − x(1− e−n̄0) (7.43)

would not provide an effective way to extract this information, as it does not access the phase of

the state. Moreover, the potentially broad photon number distribution could introduce photon shot

noise. To create a measurement with which we can distinguish differences in both amplitude and

phase, we construct a noise-reduced method that can in principle measure the information encoded

in the cavity after a single experimental iteration. We first reduce the number of cavity photons

by applying the inverse of the displacement operator defined by the initial coherent state:

η̂L ≡ D̂(−α)ρ̂L(∞)D̂†(−α), (7.44)

which can be done, e.g., by removing a cavity mirror at t→∞ and feeding the cavity state and a

coherent state |α〉 into separate ports of a beam splitter [144]. (We emphasize that any information

about the particle contained in the cavity state is unaltered because this operation is unitary.)

Consider a situation wherein the particle is prepared in some diagonal mixed state [Eq. (7.4)],

and we are tasked with determining the initial particle state (“start in |b〉” or “start in |d〉”) for

a given experimental run by performing measurements exclusively on the displaced cavity state

η̂L. For simplicity, we calculate the results for the maximally mixed state (x = 1
2), but our

results can be generalized to any x. By symmetry, the most successful approach without per-

forming any measurements would be to sample from a flat probability distribution (the “prior”):
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P (start in |b〉) = P (start in |d〉) = 1
2 , for which the probability that we would be correct is

Pprior(correct) = 1
2 . What we show here is that a more accurate probability distribution can

be constructed by incorporating the results from a single measurement of the displaced cavity pho-

ton number distribution 〈n|η̂L|n〉, thereby proving that information about the particle is present

in the cavity field.

For our purposes, it is sufficient to reduce the outcome space to a binary scenario: either we

detect (i) zero photons (n = 0, “no click”) or (ii) one or more photons (n ≥ 1, “click(s)”). This

simplification is appropriate because we gain no additional information about the particle’s initial

state by distinguishing between nonzero numbers of clicks. With this approach, we only need to

calculate the vacuum state population 〈0|η̂L|0〉, which is conveniently equivalent to the fidelity F

[see Eq. (7.33)]. Notice that one can experimentally probe F by measuring this population. The

probability distribution in the event of “no clicks” is then

P (no click|start in |i〉) =


1, i = d

f(n̄0,m), i = b

, (7.45)

where f(n̄0,m) is the conditional fidelity. The “click(s)” conditional probability distribution is com-

plementary to Eq. (7.45). With these results, we can use Bayesian inference to construct a posterior

probability distribution for the initial particle state conditioned on the cavity measurement:

P (start in |i〉 |C) ∝ P (C|start in |i〉)P (start in |i〉);

i ∈ {b, d}; C ∈ {click(s), no click}.
(7.46)

Here, P (start in |i〉) is the (initially flat) prior distribution for the initial particle state [83]. The

posterior probability distribution is

P (start in |d〉 | click(s)) = 0;

P (start in |b〉 | click(s)) = 1;

P (start in |d〉 |no click) =
1

1 + f(n̄0,m)
;

P (start in |b〉 |no click) =
f(n̄0,m)

1 + f(n̄0,m)
.

(7.47)
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It is only left to demonstrate that the posterior probability distribution predicts the initial

particle state more accurately than the prior probability distribution, i.e., that we would correctly

predict the initial particle state with a probability satisfying Ppost(correct) > Pprior(correct) = 1
2 ,

by sampling from Eqns. (7.47). Using the posterior probability distribution, the probability that

we correctly predict the initial particle state is

Ppost(correct) =
1

1 + f(n̄0,m)
. (7.48)

Since 0 < f(n̄0,m) < 1, we find that Ppost(correct) ≥ 1
2 , and therefore conclude that information

about the particle is present in the cavity field. We emphasize that we have increased our chance

of predicting the initial particle state with a single measurement of the cavity state.

We now focus on the thermodynamic limit n̄0 → ∞, as often occurs in laser cooling and

optical pumping. In this limit, the conditional fidelity f is given by Eq. (7.40). Using this form of

f in Eq. (7.48), we find that

Ppost(correct) ≈


1−
√

2πm, m� 1

1

2

(
1 +

1

8m

)
, m� 1

. (7.49)

In the infinite-coupling limit m → 0, Ppost(correct) = 1. Therefore, a single measurement of the

cavity state can in principle predict the initial particle state with 100% accuracy, regardless of the

high-noise photon statistics. This is possible because in this limit the equilibrium cavity states

resulting from the particle starting in |b〉 and |d〉 have orthogonal support, as evidenced by their

vanishing fidelity {see Eq. (7.33) and Ref. [108]}. In the zero-coupling limit m → ∞, however,

Ppost(correct) = 1
2 = Pprior(correct), so the cavity measurement does not increase our chance of

predicting the initial particle state.

7.9 Calculating entropies and mutual information

In the next two sections, we switch gears and investigate the particle-field interaction through

the lens of information theory, which provides us with a way to quantify the entropy transfer pro-

cess. This perspective is appropriate because because we posit that the amount of transferred
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entropy is characterized by the mutual information [139] shared between the initial particle state

and the equilibrium cavity state. To connect the formalism of this section with the Bayesian infer-

ence approach of the previous section, we first calculate the amount of mutual information shared

between the initial particle state and final cavity field as determined by the classical conditional

probability distribution we derived through the photon number measurements [Eqns. (7.47)]. Then,

we calculate their quantum mutual information from a density matrix approach, which incorporates

all particle-cavity correlations. We reserve the analysis of these results for Section 7.10.

We briefly reminder the reader of some essential concepts from information theory. In general,

mutual information is defined as

I(Y : Z) = S(Y ) + S(Z)− S(Y Z) = S(Y )− S(Y |Z), (7.50)

in which Y and Z are probability distributions, {S(Y ), S(Z)} are their information entropies,

S(Y Z) is their joint entropy, and S(Y |Z) is the conditional entropy of Y given Z. The entropy S

is given by the Shannon entropy

S(Ycl) = −
∑
y

P (y) lnP (y) (7.51)

for a classical probability distribution Ycl with events y and probabilities P (y), whereas it is given

by the von Neumann entropy

S(ρ̂Y ) ≡ −Tr [ρ̂Y ln ρ̂Y ] . (7.52)

for a quantum probability distribution, which is described by a density matrix ρ̂Y . Intuitively,

I(Y : Z) is equal to zero in the absence of any correlations between the two distributions, and is

maximized if the higher-entropy distribution contains all of the information of the lower-entropy

distribution:

0 ≤ I(Ycl : Zcl) ≤min[S(Ycl), S(Zcl)],

0 ≤ I(ρ̂Y : ρ̂Z) ≤ 2 min[S(ρ̂Y ), S(ρ̂Z)].

(7.53)

Notice that the upper bound of quantum mutual information is twice as large as its classical

counterpart [106].
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7.9.1 Mutual information from cavity measurements

Here we calculate the (classical) mutual information [Eq. (7.50)] between the initial particle

state and equilibrium cavity state as determined by the cavity measurements introduced in Sec-

tion 7.8. Using the click probabilities from Eq. (7.33), the notation of Eq. (7.46), and generalizing

the conditional probability distribution in Eqns. (7.47) to any x, the conditional entropy of the

initial particle state given the cavity measurements is

S[A(0)|L(∞)] =−
∑
C,i

P (C)P (start in |i〉 |C) ln[P (start in |i〉 |C)]

= −xf ln

[
fx

1− x(1− f)

]
− (1− x) ln

[
1− x

1− x(1− f)

]
.

(7.54)

From the classical mixture in Eq. (7.4), the Shannon entropy of the initial state is

S[A(0)] ≡ S0 = −x lnx− (1− x) ln(1− x). (7.55)

Together, Eqns. (7.54) and (7.55) can be used to calculate the mutual information [Eq. (7.50)]

between the initial particle state and equilibrium cavity state as determined by the cavity measure-

ments:

I[A(0) : L(∞)] = S[A(0)]− S[A(0)|L(∞)]. (7.56)

7.9.2 Quantum mutual information

Let us now explain how to calculate the quantum mutual information between the initial

particle state and final cavity state. As seen from Eq. (7.50), this calculation requires knowing

the joint distribution of these two states. Because these states are defined at different times, we

calculate their joint distribution by incorporating an non-interacting auxiliary Hilbert space R

which purifies ρ̂A(0) and hence contains the entropy of ρ̂A(0) at all times. We purify the initial

particle state through its Schmidt decomposition. That is, we view the particle ensemble as the

reduced density matrix of a pure state, ρ̂A(0) = TrR |u〉 〈u|AR, where

|u〉AR =
∑
i

√
βi |ψi〉A ⊗ |φi〉R . (7.57)
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Here, |ψn〉A is an eigenvector of ρ̂A(0) with eigenvalue βn and |φn〉R ∈ R for an auxiliary Hilbert

space R. It can be shown that the reduced density matrices ρ̂A(0) and ρ̂R have the same eigenvalues

[139], which motivates the interpretation of ρ̂R = TrA |u〉 〈u|AR as an identically prepared ensemble

to ρ̂A(0), but with particles that are not interacting with the field. The total system’s density

matrix becomes ρ̂ARL, and the master equation [Eq. (7.1)] is edited by incorporating the identity

operator of R:

ĤAL → ĤAL ⊗ ÎR; Ĵ → Ĵ ⊗ ÎR. (7.58)

This updated master equation is then used to evolve the initial pure state

ρ̂ARL(0) = |u〉 〈u|AR ⊗ |α〉 〈α|L . (7.59)

We can then calculate the entropy of any subset of the ARL composite Hilbert space by performing

the appropriate trace operations.

Using this formalism, the quantum mutual information

I(ρ̂R : ρ̂L) = S(ρ̂R) + S(ρ̂L)− S(ρ̂RL), (7.60)

can then be calculated as follows. Because we prepare the initial particle state as

ρ̂A(0) = x |b〉 〈b|+ (1− x) |d〉 〈d| , (7.61)

then it follows that an appropriate Schmidt decomposition is

|u〉AR =
√
x |b, b〉+

√
1− x |d, d〉 . (7.62)

The corresponding initial (pure) state of the entire ARL (particle + auxiliary particle + cavity)

system is then

ρ̂ARL(0) = |u〉 〈u|AR ⊗ |α〉 〈α|

=
{
x |b, b〉 〈b, b|+ (1− x) |d, d〉 〈d, d|+

√
x(1− x) [|b, b〉 〈d, d|+ h.c.]

}
⊗ |α〉 〈α| .

(7.63)



158

We now evolve each term in Eq. (7.63) to its corresponding equilibrium state by using Eqns. (7.21)

and (7.24):

ρ̂ARL(∞) =

x |b〉 〈b|R ⊗

e−n̄0 |b〉 〈b|A ⊗ |0〉 〈0|L + n̄0 |d〉 〈d|A ⊗
∑
l,l′≥0

Kl,l′ 〈l′|α〉 〈α|l〉 |l′〉 〈l|L


+ (1− x) |d, d〉 〈d, d| ⊗ |α〉 〈α|+

√
x(1− x)e−n̄0/2 (|b, b〉 〈d, d| ⊗ |0〉 〈α|L + h.c.) .

(7.64)

From this result, the reduced density matrices in the RL, R, and L subspaces are

ρ̂RL(∞) = x |b〉 〈b| ⊗ ρ̂c + (1− x) |d〉 〈d| ⊗ |α〉 〈α| ;

ρ̂R(∞) = x |b〉 〈b|+ (1− x) |d〉 〈d| ;

ρ̂L(∞) = xρ̂c + (1− x) |α〉 〈α| ,

(7.65)

where ρ̂c is given in Eq. (7.26). Notice that ρ̂RL(∞) is separable, and is therefore not an entan-

gled state. The quantum mutual information I(ρ̂R : ρ̂L) [Eq. (7.60)] can be calculated (at least

numerically) directly from this result. We can simplify the result, however, since some of the von

Neumann entropies can be expressed in terms of the quantity S(ρ̂c):

S[ρ̂RL(∞)] = S0 + xS(ρ̂c);

S[ρ̂R(∞)] = S0,

(7.66)

in which S0 ≡ S[ρ̂A(0)]. We do not investigate the behavior of S(ρ̂c), but we emphasize that ρ̂c is

generally not pure, and hence has nonzero entropy. The von Neumann entropy of the L subspace

S[ρ̂L(∞)] is harder to calculate analytically because ρ̂c and |α〉 〈α| do not always have orthogonal

support. We can, however, use the identity [139]

∑
i

piS(ρ̂i) ≤ S
(∑

i

piρ̂i

)
≤
∑
i

piS(ρ̂i)−
∑
i

pi ln pi (7.67)

to place an upper and lower bound on the cavity field entropy. From Eqns. (7.65) and (7.67),

xS(ρ̂c) ≤ S[ρ̂L(∞)] ≤ S0 + xS(ρ̂c). (7.68)

The upper bound is saturated only if ρ̂c and |α〉 〈α| have orthogonal support.
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7.10 Analyzing the entropies and mutual information

We now analyze the results of the entropic perspective introduced in the previous section.

Because the cavity state is inherently quantum, the photon click measurements (which correspond

to the diagonal elements of the cavity density matrix) may not reveal all of the information con-

tained in the light field. Consequently, Eq. (7.56) underestimates the amount of mutual information

shared between the particle and cavity, so we will mostly use the results from the quantum cal-

culation. However, Eq. (7.56) is useful for approximating the quantum mutual information in the

thermodynamic limit n̄0 →∞, for which numerical calculations are intractable due to the infinite

dimension of the cavity Hilbert space.

It is useful to first consider the upper and lower bounds of the quantum mutual information.

Because ρ̂RL is separable [see Eq. (7.65)], the quantum mutual information satisfies Eq. (7.53)

without the factor of 2 [139]:

0 ≤ I[ρ̂R(∞) : ρ̂L(∞)] ≤ min{S0, S[ρ̂L(∞)]} ≤ S0, (7.69)

in which S0 ≡ S[ρ̂A(0)]. In other words, somewhere between none [I(ρ̂R : ρ̂L) = 0] or all [I(ρ̂R :

ρ̂L) = S0] of the entropy initially contained in the particle becomes encoded in the cavity field. An

important consequence of the classicality of Eq. (7.69) is that the spontaneous photons escaping

the system contain all of the information that becomes imprinted on the final cavity state, which

we demonstrate in Section 7.10.1.

Fig. 7.4(a) presents various quantum entropic quantities as a function of time t for the choices

x = m = 1
2 and α =

√
n̄0 =

√
5. These results were calculated by numerically evolving the quantum

master equation [Eq. (7.1)] with the aforementioned adjustments [Eqns. (7.58) and (7.59)], and then

calculating the von Neumann entropies [Eq. (7.52)] and quantum mutual information [Eq. (7.60)] of

the various subspaces. For convenience, we have scaled all quantities by the initial particle entropy

S0. As expected, the particle entropy S[ρ̂A(t)] decreases (as occurs in laser cooling and optical

pumping), the cavity state entropy S[ρ̂L(t)] increases, and the entire ARL space entropy increases

as it evolves under the non-unitary dynamics. Importantly, the quantum mutual information
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Figure 7.4: Entropic quantities scaled by the initial particle entropy S0 ≡ S[ρ̂A(0)]. (a) von Neu-
mann entropies S[ρ̂M (t)] [see Eq. (7.52)] of various subspaces M and quantum mutual information
between the field and auxiliary particle I(ρ̂R : ρ̂L) [see Eq. (7.60)] as a function of time t. Param-
eters: x = 0.5, m = 0.5, and n̄0 = 5. (b) Equilibrium I(ρ̂R : ρ̂L) as a function of m for various n̄0

with x = 0.5. The n̄0 →∞ curve is given by Eq. (7.56). The quantum mutual information reaches
its maximum value I(ρ̂R : ρ̂L) = S0 [see Eq. (7.69)] in the thermodynamic, infinite-coupling limit:
(n̄0,m)→ (∞, 0).

I(ρ̂R : ρ̂L) increases and equilibrates to a nonzero value, which indicates the imprinting of the

particle’s initial entropy onto the cavity field.

We present numerical results for the equilibrium value of I(ρ̂R : ρ̂L), scaled by S0, as a function

of m for various n̄0 in Fig. 7.4(b) (non-solid curves). These are calculated from the equilibrium

density matrices [Eq. (7.65)]. We find that I(ρ̂R : ρ̂L) can be as large as S0/2, and hence that a

significant amount of information about the initial particle state can be imprinted on the cavity

field, for n̄0 ≥ 1, provided that m is sufficiently small. As n̄0 increases, we find numerically that the

equilibrium quantum mutual information [Eq. (7.60) with the density matrices given by Eq. (7.65)]

and mutual information as determined by the cavity measurements [Eq. (7.56)] converge. Therefore,

we use Eq. (7.56) to analytically calculate the equilibrium value of I(ρ̂R : ρ̂L) in the thermodynamic
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limit n̄0 →∞ (solid curve). In the strong and weak-coupling limits, this simplifies to

I(ρ̂R : ρ̂L) ≈


S0 − ε(x,m), m� min

[
1,

1

2π

(
1− x
x

)2
]

−x lnx

4m
, m� 1

, (7.70)

in which

ε(x,m) = −
√

2πm

[
ln
√

2πm+ ln

(
x

1− x

)
− 1

]
(7.71)

is a small positive number. The additional constraint on m in the strong-coupling limit is a

consequence of the highly nonlinear behavior of I(ρ̂R : ρ̂L) for small m. In the zero-coupling limit

m →∞, we find that I(ρ̂R : ρ̂L) = 0, so the cavity field does not contain the information entropy

of the initial particle state, as expected. However, in the infinite-coupling limit m → 0, we find

that I(ρ̂R : ρ̂L) = S0, which means that the cavity field contains complete information about the

initial particle state. This agrees with our Bayesian inference result in Section 7.8.

Let us now prove analytically that the cavity contains complete information about the particle

only in the thermodynamic, high-coupling limit, i.e., that I(ρ̂R : ρ̂L) = S0 if n̄0 →∞ and m→ 0.

From Eq. (7.68), this occurs only if the density matrices ρ̂c and |α〉 〈α| have orthogonal support [139].

This condition is equivalent to

F (ρ̂c, |α〉 〈α|) = 0, (7.72)

where F is the fidelity [see Eq. (7.31)]. Using Eq. (7.25), this can be rewritten as

e−2n̄0

1 + n̄0

∑
l,l′≥0

Kl,l′
n̄l+l

′

0

l!l′!

 = 0. (7.73)

Because the term in parentheses is positive, the only way to satisfy Eq. (7.73) is to consider the

thermodynamic limit n̄0 →∞, for which the exponential tends to zero. In this limit, we can then

use Eq. (7.39) to simplify Eq. (7.73) to

√
2πme2merfc(

√
2m) = 0, (7.74)

which is true only when m → 0. Therefore, we come to the conclusion that I(ρ̂R : ρ̂L) = S0, and

therefore that the cavity state contains all of the information about the initial particle state, only

in the high-coupling (m→ 0), thermodynamic (n̄0 →∞) limit.
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7.10.1 Entropy of the spontaneous photon

We previously claimed that the spontaneous photon emitted by the particle contains all of

the information that becomes encoded in the cavity state. We prove this claim here.

Consider the quantum state describing the particle A, cavity field L, and environment P

(which we modeled as an infinite bandwidth bosonic bath). We remind the reader that in Sec-

tion 2.1.5 we discussed how the environment is responsible for the emission of spontaneous photons

by the particle. In our Gedankenexperiment, these three subspaces constitute the entire universe,

i.e., they form a closed system and undergo unitary evolution. If we purify the particle state (as

done previously) with the auxiliary Hilbert space R, then the density matrix of the entire system

at any time t is

ρ̂ARLP (t) = |ΨARLP (t)〉 〈ΨARLP (t)| , (7.75)

which is obviously pure. It follows that the entanglement entropy between the ARL and P subsys-

tems satisfies

S[ρ̂ARL(t)] = S[ρ̂P (t)]. (7.76)

Suppose we propagate the entire ARLP system to equilibrium. For n̄0 � 1, the equilibrium

particle state ρ̂A(∞) is approximately pure (or completely pure for n̄0 → ∞) because the particle

almost certainly ends in the dark state |d〉:

ρ̂A(∞) = xe−n̄0 |b〉 〈b|+ (1− xe−n̄0) |d〉 〈d| ≈ |d〉 〈d| . (7.77)

It immediately follows that

ρ̂ARL(∞) ≈ |d〉 〈d| ⊗ ρ̂RL(∞). (7.78)

The entanglement entropy is then

S[ρ̂ARL(∞)] ≈ S[ρ̂RL(∞)] = S0 + xS(ρ̂c), (7.79)

in which we used Eq. (7.66). Combining this result with Eqns. (7.68) and (7.76),

S[ρ̂L(∞)] ≤ S0 + xS(ρ̂c) = S[ρ̂RL(∞)] ≈ S[ρ̂ARL(∞)] = S[ρ̂P (∞)], (7.80)
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or

S[ρ̂L(∞)] ≤ S[ρ̂P (∞)]. (7.81)

Eq. (7.81) states that the environment S[ρ̂P (∞)] always absorbs at least as much information

entropy as the equilibrium cavity state. Therefore, spontaneous emission is always a sufficient

mechanism for the removal of entropy from the system.

7.11 Additional calculations

In this section, we provide some additional calculations that may be of interest in future work.

First, we calculate the complete photon number distribution of the displaced cavity state 〈n|η̂L|n〉

in the large (but not necessarily infinite) n̄0 limit for arbitrary m, and then in the infinite-coupling

limit m → 0 with arbitrary n̄0. We then calculate the fidelity F in the infinite-coupling limit for

arbitrary n̄0, which may be particularly interesting for studies of cavity QED interactions between

low-photon states and single particles.

Two useful equations in the infinite-coupling limit are the simplification of Eq. (7.22) to

Kl,l′ = δl,l′
1

1 + l
, (m = 0) (7.82)

where δl,l′ is the Kronecker delta, and the simplification of Eq. (7.25) to

ρ̂L(∞) = (1− x) |α〉 〈α|+ xe−n̄0

|0〉 〈0|+∑
n≥0

n̄n+1
0

(n+ 1)!
|n〉 〈n|

 . (m = 0) (7.83)

7.11.1 Displaced final cavity field photon distribution

Here we calculate the photon number distribution of the final cavity field state after action

of the displacement operator D̂(−α):

η̂L ≡ D̂(−α)ρ̂L(∞)D̂(α). (7.84)

As seen from Eq. (7.25),

〈n|η̂L|n〉 = (1− x)δn,0 + x

(
e−2n̄0 n̄n0
n!

+ n̄0Tn

)
, (7.85)
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in which

Tn ≡
∑
l,l′≥0

Kl,l′ 〈l′|α〉 〈α|l〉 〈n|D̂(−α)|l′〉 〈l|D̂(α)|n〉 . (7.86)

Using the ladder operations

â† |l〉 =
√
l + 1 |l + 1〉 ; â |l〉 =

√
l |l − 1〉 (7.87)

and displacement operator identities

D̂†(α)âD̂(α) = â+ α; D̂(α)âD̂†(α) = â− α; D̂(−α) = D̂†(α), (7.88)

we find that

Tn =
e−2n̄0 n̄n0
n!

n∑
p,q=0

(
n

p

)(
n

q

)
(−1)q+p

∑
l,l′≥0

Kl+p,l′+q
n̄l+l

′

0

l!l′!
(7.89)

Using the Laplace transform of Kj+p,j′+q [see Eq. (7.22)] and the Fourier transform of the resulting

Gaussian term to reduce its order, we find that

Tn =
e−2n̄0 n̄n0
n!

∫ ∞
−∞

du

∫ ∞
0

ds

√
2m

πs
e−s

(
1 + e−s − 2e−s/2 cosu

)n
e2n̄0e−s/2 cosue−2mu2/s. (7.90)

In the following two subsections, we compute 〈n|η̂L|n〉 under approximations which depend

on the values of m and n̄0.

7.11.1.1 n̄0 � 1,m > mmin

If we are interested in the regime n̄0 � 1, we can use the same argument as in Section 7.6.1

to simplify Tn. Using Eq. (7.36) with only the l = 0 term in Eq. (7.90), we find that we can

approximate Tn as

Tn ≈
n̄n0
n!

∫ ∞
−∞

du

∫ ∞
0

ds

√
2m

πs
e−n̄0su2ne−(n̄0+ 2m

s
)u2
. (m > mmin; n̄0 � 1,m, n) (7.91)

Integrating over u and using Tricomi’s confluent hypergeometric function [154], which has integral

representation

U(a, b, z) =
1

Γ(a)

∫ ∞
0

dt e−ztta−1(1 + t)b−a−1, (Re a > 0) (7.92)
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we can write the approximate form of Tn as

Tn ≈
2(2n)!m

4nn!n̄0
U

(
n+ 1,

3

2
, 2m

)
. (n̄0 � 1, n; m > mmin) (7.93)

Substituting this result into Eq. (7.86) and taking the thermodynamic limit n̄0 →∞, we find that

lim
n̄0→∞

〈n|η̂L|n〉 = (1− x)δn,0 + x
2(2n)!m

4nn!
U

(
n+ 1,

3

2
, 2m

)
. (7.94)

Invoking Stirling’s approximation, this can be further simplified for n ≥ 1 to

lim
n̄0→∞

〈n|η̂L|n〉 ≈ x 2
√

2e−nnnmU

(
n+ 1,

3

2
, 2m

)
. (n ≥ 1) (7.95)

7.11.1.2 m→ 0 and finite n̄0

When m→ 0, we can no longer neglect the l 6= 0 terms in Eq. (7.36). In this case, we instead

use Eq. (7.83) and find that

〈n|η̂L|n〉 = (1−x)δn,0+xe−n̄0

∣∣∣〈n|D̂(−α)|0〉
∣∣∣2 +

∑
k≥0

n̄k+1
0

(k + 1)!

∣∣∣〈k|D̂(α)|n〉
∣∣∣2
 . (m = 0) (7.96)

Using the identity

〈k|D̂(α)|n〉 =

√
n!

k!
αk−ne−|α|

2/2L(k−n)
n (|α|2) (7.97)

when k ≥ n [26, 55], Eq. (7.96) simplifies to

〈n|η̂L|n〉 = (1− x)δn,0 + xe−2n̄0

{
n̄n0
n!

+
n̄n+1

0

n!

n−1∑
k=0

1

1 + k

[
L

(n−k)
k (n̄0)

]2

+
n!

n̄n−1
0

∑
k≥n

1

1 + k

[
n̄k0
k!
L(k−n)
n (n̄0)

]2
}
,

(m = 0) (7.98)

where L
(q)
p (r) are the generalized Laguerre polynomials. Using the identity

(−x)n

n!
L

(n−k)
k (x) =

(−x)k

k!
L(k−n)
n (x) (7.99)

which is valid for all integer n and k, we can simplify Eq. (7.98) to

〈n|η̂L|n〉 = (1− x)δn,0 + x
n̄n0e

−2n̄0

n!
[1 + n̄0Sn(n̄0)] , (m = 0) (7.100)
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in which

Sn(n̄0) =
∑
k≥0

1

1 + k

[
L

(n−k)
k (n̄0)

]2
≈ e2n̄0

n̄n+1
0

(2n)!

n!

1

4n
1

2
√
πn̄0

. (7.101)

The last equality, which is valid when n̄0 � n, is demonstrated in Section 7.11.1.3. Using this

result in Eq. (7.100), we arrive at the displaced final cavity photon distribution:

〈n|η̂L|n〉 ≈ (1− x)δn,0 +

(
2n

n

)
1

4n
x

2
√
πn̄0

. (m = 0; n̄0 � n) (7.102)

For the Fock state populations 1 � n � n̄0, we can expand the n-dependent terms Equa-

tion (7.102):

〈n|η̂L|n〉 ≈
x

2π
√
nn̄0

. (m = 0; 1� n� n̄0) (7.103)

7.11.1.3 Evaluating the Laguerre polynomial sum Sn(n̄0)

To derive the asymptotic limit of the sum in Eq. (7.101), we first introduce the following

identity [30]:

∞∑
k=0

L
(n−k)
k (n̄0)tk = (1 + t)ne−n̄0t. (7.104)

The choice t = ex leads to

g(x) ≡
∞∑
k=0

L
(n−k)
k (n̄0)e(k+1)x = ex(1 + ex)ne−n̄0ex . (7.105)

We next calculate the antiderivative G(x) of g(x) with the ansatz

G(x) =
n∑
l=0

cl(1 + ex)le−n̄0ex . (7.106)

By enforcing G′(x) = g(x), we obtain

G(x) = − 1

n̄0

n!

n̄n0

n∑
l=0

n̄l0
l!

(1 + ex)le−n̄0ex . (7.107)

From the series representation of g(x) in Eq. (7.105) we find

G(x) =
∞∑
k=0

L
(n−k)
k (n̄0)e(k+1)x

k + 1
− 1

n̄0

n!

n̄n0

n∑
l=0

n̄l0
l!

(7.108)
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as a series for G. From Eqns. (7.105) and (7.108), we can write down the following Fourier series

∞∑
k=0

L
(n−k)
k (n̄0)eikx

k + 1
=
e−ix

n̄0

n!

n̄n0

n∑
l=0

n̄l0
l!

[
1− (1 + eix)le−n̄0eix

]
, (7.109)

∞∑
k=0

L
(n−k)
k (n̄0)eikx =(1 + eix)ne−n̄0eix . (7.110)

By the orthogonality of complex exponentials, we can write

Sn(n̄0) =
∞∑
k=0

1

k + 1

[
L

(n−k)
k (n̄0)

]2

=
1

2π

∫ 2π

0
dx(1 + e−ix)ne−n̄0e−ix e−ix

n̄0

n!

n̄n0

n∑
l=0

n̄l0
l!

[
1− (1 + eix)le−n̄0eix

]
.

(7.111)

In the large n̄0 � n limit we only need to consider highest order term l = n. This is appropriate

because we increase n̄0 without increasing n. With this we can approximate

Sn(n̄0) ≈− 1

2πn̄0

∫ 2π

0
dx e−ix(1 + e−ix)n(1 + eix)ne−2n̄0 cos(x). (7.112)

We now use a saddle point method. In the large n̄0 limit the measure will concentrate around

x = π. In that case we can use

e−2n̄0 cos(x) ≈ e2n̄0−n̄0(x−π)2
. (7.113)

Consequently we obtain

Sn(n̄0) ≈ e2n̄0

2πn̄0

∫ ∞
−∞

du e−iu(1− e−iu)n(1− eiu)ne−n̄0u2

≈ e2n̄0

2πn̄0

∫ ∞
−∞

duu2ne−n̄0u2

≈ e2n̄0

n̄n+1
0

(2n)!

n!

1

4n
1

2
√
πn̄0

,

(7.114)

which we use in Eq. (7.101).

7.11.2 Fidelity in the infinite coupling limit m→ 0

If we are instead interested in the case m→ 0 with finite n̄0, we can use Eq. (7.82) to simplify

Eq. (7.33) to

F = 1− x

1− e−2n̄0

1 + n̄0

∑
n≥0

1

1 + n

(
n̄n0
n!

)2
 . (m = 0) (7.115)
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Using the modified Bessel function of the first kind,

I1(2y) = y
∑
n≥0

1

1 + n

(
yn

n!

)2

, (7.116)

Eq. (7.115) becomes

F = 1− x
{

1− e−2n̄0 [1 + I1(2n̄0)]
}
. (m = 0) (7.117)

We now consider two cases for n̄0: (i) the thermodynamic limit n̄0 → ∞, and (ii) the quantum

limit n̄0 → 0, for which we can use the asymptotic expansions

I1(2n̄0) ≈ e2n̄0

2
√
πn̄0

(n̄0 � 1); I1(2n̄0) ≈ n̄0 (n̄0 � 1) (7.118)

respectively. Therefore, to leading order in n̄0, we conclude that the fidelity is given by

F ≈


1− xn̄0, n̄0 → 0

1− x
(

1− 1
2
√
πn̄0

)
, n̄0 →∞.

(m = 0) (7.119)

We also consider the limit m→∞, for which

lim
m→∞

Kn,n′ =

(
1 +

n+ n′

2

)−1

. (7.120)

In this case the double sum in Eq. (7.33) simplifies and

lim
m→∞

F = 1− x
{

1− e−2n̄0

[
1 +

1− e2n̄0(1− 2n̄0)

2n̄0

]}
. (7.121)

To leading order, the fidelity is then

lim
m→∞

F =


1− xn̄0, n̄0 → 0

1− x
2n̄0

, n̄0 →∞.
(7.122)

7.12 Conclusion

We have demonstrated through a simple Gedankenexperiment under what conditions the

entropy of a quantum system can be imprinted on a classical coherent light field, which we model
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as a coherent state in a lossless cavity. We have quantified the cavity state’s alteration due to

the particle-cavity interaction through the measurement of fidelity and proved that the cavity field

contains information about the initial state of the particle by the method of Bayesian inference

and using quantum information theoretic techniques. Our results demand reconsideration of the

underlying physics of laser cooling and optical pumping in the strong particle-light coupling regime,

as it suggests that the assumption of an unperturbed light field is not necessarily accurate.

The entropy transfer from the particle to the light field could be realized in an experimental

setting by studying a system that satisfies κ � γ, g. Although we have mainly focused on the

high-n̄0 limit, we believe that there is also interesting physics in the low-n̄0 regime. Our model

could also be generalized to further understand some cavity-based quantum memories [4, 88, 163]

by, e.g., incorporating cavity pumping and loss (κ 6= 0) or initializing the cavity field in a different

quantum state. We also anticipate that this system can be used as a platform to generate and

study novel photon-subtracted states [6].

There are many ways to extend this study for the purpose of modeling the laser cooling

process more accurately. Most notably, the incorporation of cavity pumping and loss could permit

a nontrivial equilibrium solution even when the particle can relax back to the bright state, which

would bring the particle’s internal state structure closer to that of typical two-level models. In

this case, one could even remove the background radiation field altogether to further investigate

the entropy dynamics of the laser-particle system [121]. Of course, particle motion could also be

incorporated, potentially allowing for another Hilbert space to absorb or emit entropy.

One could also study this system in the framework of phase space compression. However, the

rich correlations generated by quantum mechanical processes preclude a clear phase space approach

for quantum systems [17, 18, 143]. This would require, for example, a deeper understanding of the

connection between Wigner trajectories and Liouville’s theorem [165]. On a related note, one could

consider the use of quantum discord as a measurement of quantum correlation [66] as opposed to

von Neumann entropy.



Chapter 8

Conclusion

In this thesis, we investigated three novel techniques for manipulating the motion of atoms

and molecules with laser light and electromagnetic traps, as well as the transfer of entropy from a

quantum system to a classically-behaved yet inherently quantum light field. To contextualize and

formalize our approach, we provided the essential background material. We began with building up

the physical model for the interaction of quantum particles with light as determined from quantum

theory. This required constructing the Hamiltonian for an isolated atom or molecule, demonstrating

the emergence of its internal state quantum structure, and then coupling it to an electromagnetic

field. We outlined the classical and quantum descriptions of the light field, including the back-

ground radiation field which is responsible for spontaneous emission. A discussion of the theory

of open quantum systems naturally followed, in which we recast the Schrödinger equation into a

quantum master equation which efficiently models the system of interest and its interaction with

the environment. Next, we presented an algorithm for simulating the master equation called the

Monte Carlo wave function method, which we extensively used for approximating the dynamics in

studies involving particle motion. To further contextualize the proposed laser cooling and trapping

process, we also provided a brief description of the commonly-implemented Doppler cooling and

conventional magneto-optical trap methods.

Our first contribution was the theoretical description of SWAP cooling, a technique which has

the capability to cool atoms and molecules with narrow optical transitions. We explained its basic

mechanism, outlined its operating regime, and demonstrated its ability to generate large slowing
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forces without the need of spontaneous emission. Through numerical simulations, we demonstrated

its capacity to cool and characterized its minimum achievable temperature. To benchmark its

effectiveness, we compared it to Doppler cooling on the same transition and showed that it requires

fewer spontaneous photons to reach thermodynamic equilibrium. We then connected the theory

to an experimental realization of SWAP cooling on a narrow linewidth transition in 88Sr. Our

numerical simulations agreed with the experimental data, which corroborated our explanation

of SWAP cooling’s underlying physics. Next, we combined the SWAP cooling protocol with a

quadrupole magnetic trap to realize a novel magneto-optical trap, which we named the “SWAP

MOT.” We explained the necessary alterations to the cooling protocol and developed an efficient

semiclassical model. We described its effects on particle motion from a phase space trajectory

perspective and proved its potential to exhibit phase space compression with a higher efficiency than

a conventional MOT. Our numerical simulations showed that the minimum achievable temperatures

agreed with the SWAP cooling result and that the particles can become tightly confined in space.

We then relaxed the condition of adiabatic evolution by formulating a speedup protocol based on

Lewis-Riesenfeld invariants. We applied it in the context of laser slowing and characterized the

parameter regime in which it displays superiority over other common slowing methods. Our final

investigation involved tracking the transfer of information entropy from a quantum particle to a

classically-behaved coherent light field in a lossless optical cavity. We quantified the alteration of

the light field, corroborated many of the typical assumptions regarding the interaction of quantum

matter with laser light, and demonstrated that that in some extreme cases, information about the

quantum particle can become encoded in the light field.

We are optimistic that our proposed techniques will prove useful in advancing the scientific

community’s ability to control the motion of atoms and molecules. In particular, we hope that

these procedures will increase the catalog of molecules that can be captured in an optical trap

for use in basic science and quantum computing experiments. Also, we anticipate that our study

on entropy transfer from quantum particles will motivate further investigation into the underlying

physics of (and possibly be used to propose new methods of) optical pumping and laser cooling.
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