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High-order harmonic generation (HHG) is a highly nonlinear process where an electron driven

by an intense, typically infrared, laser pulse ionizes, accelerates in the laser field and recombines

with the parent ion, emitting a photon with frequency many times that of the driving field. The

coherent radiation emitted from many atoms in the focus of the driving laser leads to the generation

of an ultrashort ultraviolet or x-ray laser pulse. Numeric solution of the time-dependent Schrödinger

equation (TDSE) accurately describes the single-electron process, including the low-energy region

of the emission spectrum for which the atomic potential and excited states play a significant role.

The coherent macroscopic response (e.g., from a gas jet) involves the emission of a very large

number of atomic radiators (e.g., 1015) that each interacts with the driving laser at different peak

intensities and carrier-envelope phases. Full ab-initio simulation of the macroscopic response using

exact numeric single-electron calculations are not feasible.

In this thesis, we present results of three projects related to high-order harmonic genera-

tion with a focus on the below- and near-threshold regime, in which excited states of the atom

and the specific form of the atomic potential play an important role. First, we present a re-

producible ab-initio method to produce benchmark tests between calculations based on the time-

dependent Schrödinger equation (TDSE) in the single-active-electron approximation (SAE) and

time-dependent density functional theory (TDDFT) in the highly nonlinear multiphoton and tun-

neling regime of strong-field physics. As key to the benchmark comparison we obtain an analytic

form of SAE potentials based on density functional theory, which we have applied for different

atoms, ions, and molecules. Using these potentials, we find remarkable agreement between the

results of the two independent numerical approaches (TDDFT and SAE-TDSE) for the high-order
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harmonic yields in helium, demonstrating the accuracy of the SAE potentials as well as the predic-

tive power of SAE-TDSE and TDDFT calculations for the nonperturbative and highly nonlinear

strong-field process of high harmonic generation in the ultraviolet and visible wavelength regime.

Next, we investigate resonance enhancement of near-threshold HHG, identifying similar res-

onance effects in broad parameter regimes, including hydrogen driven by near- and mid-infrared

pulses as well as helium with 400 nm lasers. We differentiate behavior that may be explicable

through semi-classical trajectory models (generally at higher intensity) from features which are not

consistent with these models.

In the last part of the thesis, we develop a macroscopic description of high-order harmonic

radiation resulting from the interaction of atomic systems with an intense laser pulse using ab-

initio solutions of the time-dependent Schrödinger equation (TDSE). We show that for this highly

nonlinear process, interpolation can be performed across laser intensity for a given wavelength,

limiting the number of full time-dependent Schrödinger equation calculations to about one hundred.

The significantly reduced computational time as compared to more sophisticated methods opens a

path toward the extension of macroscopic high harmonic calculations based on ab-initio microscopic

results to more complex targets and interactions. We investigate the near-threshold regime of the

spectra, showing that the degree of coherence of the off-harmonic radiation generated during the

pulse is much lower than that of the harmonics, but this radiation extends to larger divergence

angles than the harmonic signals – providing the option for separation of the different signals in

this part of the spectrum. Finally, we analyze high harmonic generation from the spatial phase

distribution for broadband Gaussian pulses with a negative Porras factor, showing an interference

pattern in the angular distribution of below- and near-threshold harmonics, which is not present

for the monochromatic Gouy phase distribution.
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Chapter 1

Introduction

1.1 Background

Lasers are widely used in medicine, industry, defense, and scientific research. The ability to

precisely apply power is important itself, but lasers offer other benefits, especially in the broad realm

of detection and measurement. Observing reflection of light off of and absorption into materials has

consistently exposed otherwise inaccessible information. One form of light is particularly relevant

for its uses in this way: x-ray imaging and x-ray diffraction off crystals. The short wavelength and

high photon energy of x-ray radiation makes it a tool for detailed observation and analysis that

easily pierces obscuring materials (e.g., flesh). Ultraviolet (UV) lasers tuned to energies relevant

in atoms and molecules serve as a different sort of probe. The main interest of this thesis is in

modeling the generation of ultrashort UV laser pulses from a theoretical perspective with the goal

of deepening our understanding and control of the sources and the underlying physical processes.

1.1.1 Single- and multi-photon absorption

In 1887, it was observed that metals exposed to light would release electrons with kinetic

energy related only to the color (frequency) of the light and not its intensity [7]. In 1905, Albert

Einstein described this effect as resulting from the quantization of light [8]. Electrons would absorb

energy from light in the form of single photons with energy proportional to the frequency, but

would not absorb more than one photon no matter the photon density (i.e., intensity). In 1930,

Maria Göppert-Mayer suggested that a sufficiently intense light would allow electrons to absorb
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multiple photons, reaching higher kinetic energies than allowed by Einstein’s rule [9]. With the

advent of lasers in 1961, her prediction was verified – two-photon absorption was observed [10]. As

laser technology advanced to allow higher intensities, multiphoton absorption involving more than

two photons became possible.

1.1.2 Applications

Short duration, high energy laser pulses have applications in many disciplines [11, 12]. First,

lasers with shorter wavelength (higher frequency) allow use of light as “microscopes” with finer

spatial resolution. Likewise, taking “pictures” of rapid processes requires the use of measurement

techniques that operate on a similar time scale, or the behavior of interest will be blurred out.

Finally, controlling a process requires tools that can be applied at the characteristic frequency or

energy scale of the process. X-rays in general have wavelengths smaller than 10 nm and energies

above 100 eV; the subject of this thesis, high-order harmonic generation, in particular leads to

pulses with durations in the attosecond (10−18 s) to femtosecond (10−15 s) range [13, 14]. This

time scale corresponds to that of single-electron motion in valence shells and bulk-electron motion in

larger molecules – such as those found in biology. In combination with fine spatial resolution, HHG

lasers can benefit chemical and biological research and engineering via their ability to “film” and

control chemical reactions [15, 16]. Other methods of creating x-ray lasers, involving kilometer-

long electron accelerators, have greatly increased our understanding of proteins, photosynthesis,

and many other chemical reactions. In contrast, HHG can produce well-controlled lasers – with

a wide range of wavelengths – on a tabletop scale, allowing scientists in smaller labs access to a

powerful research tool. Finally, the process of HHG itself can be used to probe atomic and molecular

structure [17–19].

1.1.3 Hartree atomic units

When discussing physical phenomena, it is useful to use a unit system with an appropriate

scale. For example, consider various temperature systems – Fahrenheit is useful for gauging human
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Dimension Constant Conversion (1 a.u. = ... )

Charge electron charge, e 1.60218× 10−19 C
Mass electron mass, me 9.10938× 10−31 kg

Energy 2x hydrogen ionization potential 27.2110 eV
Angular momentum ~ 1.05457× 10−34 J*s

Length Bohr radius, a0 0.05292 nm
Time 1st Bohr orbital period / 2π 24.18884 as

Permittivity Coulomb’s constant ke = 1/4πε0 8.98755× 109 Nm2/C2

Speed of light c = 1/α = 137.03500

Table 1.1: Description of Hartree atomic units, including reference constants and conversion to
common units.

comfort and safety (corresponding roughly to 0◦− 100◦F ), while Celsius more intuitively describes

water (freezing and boiling at 0◦C and 100◦C, respectively), and Kelvin is important for applications

where total thermal energy is relevant (since temperatures in K are proportional to the thermal

energy, unlike in Fahrenheit or Celsius).

In strong-field atomic physics, one natural scale is that of the electron. Rather than talking

about masses smaller than 10−25 kilograms, charges as multiples of 1.6× 10−19 C, and so forth, we

use a unit system where as many dimensions as possible are scaled so that electronic behavior is

described in numbers of order 1. Most relevant constants are set to 1, but consistency is maintained,

requiring some (notably the speed of light, c) to have other values. Generally, constants with unity

values are left out of equations. Also, the unit abbreviation, a.u., is the same for all atomic units

regardless of dimension. In certain circumstances, equivalence is sensible (e.g., a photon with

frequency ω a.u. will always also have energy ω a.u.), but in other cases is not (that same photon

will have wavelength λ = 2πc
ω a.u.). Table 1.1 includes a few of the most important conversions.

1.2 Strong field ultrafast physics

Classically, a free electron in a laser field of the form

E(t) = E0 sin(ωt), (1.1)
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with intensity I = E2
0 and frequency ω, will move as follows

a =
qE

m
= −E0 sin(ωt) (1.2)

v =

∫
adt =

E0

ω
cos(ωt) + v0 (1.3)

x =

∫
vdt =

E0

ω2
sin(ωt) + v0t+ x0 (1.4)

where x0 and v0 are the initial position and velocity, respectively. From this, we can define char-

acteristic values for the field. First, the characteristic length of electron motion is simply the

amplitude of the oscillation – the so-called quiver radius

rq =
E0

ω2
. (1.5)

Similarly, we can consider a characteristic kinetic energy associated with field motion, the pon-

deromotive energy UP . Excluding energy associated with the average velocity of the electron (or,

transforming to a frame where this is zero), we have

T =
1

2
mv2 =

E2
0

2ω2
cos2(ωt), (1.6)

UP = 〈T 〉 =
E2

0

4ω2
=

I

4ω2
. (1.7)

The ponderomotive energy in particular appears often, as well as being used to define several

dimensionless parameters [20]:

γ =

√
IP

2UP
(1.8)

zf =
UP

2mc2
(1.9)

z =
UP
ω
, (1.10)

where the Keldysh parameter γ describes ionization as occurring through tunneling (γ � 1) or

multiphoton ionization (γ � 1); the free-electron intensity parameter zf describes the significance

of relativistic effects (minimal for all fields used in this thesis, where zf � 10−3); and, the non-

perturbative intensity parameter z naturally describes how non-perturbative interactions will be.

z will also appear later in its role as a measure of the typical number of photons involved in the

interaction with the field.
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1.2.1 Laser pulses

In contrast to the idealized continuous wave (CW) lasers above (Eq. (1.1)), strong-field lasers

have a finite extent in time and driving laser pulses are given by:

E(t) = f(t)E0 sin(ωt+ φ), (1.11)

where E0 =
√
I is the amplitude of the electric field for peak intensity I, ω = 2πc/λ is the central

frequency for wavelength λ, φ is the carrier-envelope phase (CEP), and f(t) is some envelope

function, such as the sine-squared or Gaussian envelope

fsin2(t) = sin2

(
πt

τ

)
(1.12)

fGauss(t) = exp

(
− ln(2)

(
2t

τ

)2
)

(1.13)

with τ = 2πNτ/ω being the pulse duration for a pulse of Nτ cycles. As is typical, we define

durations as full width for sine-squared, and full width half max (FWHM) for Gaussian envelopes.

In this thesis, we do not report results with Gaussian envelopes, but do additionally use variations

of the sine envelope with faster rise or fall:

fsinnsinm(t) =


sinn

(
πt
τ

)
t ≤ 0

sinm
(
πt
τ

)
t ≥ 0

(1.14)

for even integers n,m.

1.2.2 Tunnel and multiphoton ionization

With laser pulses of moderate intensity (roughly 1013−1015 W/cm2) and wavelengths near the

visible (hundreds of nanometers), two pathways contribute to ionization, with dominance predicted

roughly by the Keldysh parameter γ: multiphoton ionization (γ > 1, at shorter λ and lower I) and

tunnel ionization (γ > 1, at longer λ and higher I). The diagram in Fig. 1.1 shows both processes.

An electron is initially in the ground (1s) state of an atomic potential (black curve).
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In the case of tunnel ionization, the potential is distorted (blue curve), leading to a finite

potential barrier. After tunnel ionization, the electron is assumed to start at rest at the tunnel exit,

x0. The rate of ionization depends exponentially on the instantaneous value of the electric field

[21], resulting in bursts of ionization every half-cycle. In the case of multiphoton ionization (three-

photon ionization shown here), the electron absorbs several photons of energy ω (purple arrows),

resulting in non-zero kinetic energy, T0 at the moment of ionization. For weak fields, perturbation

theory gives a rate of INγ , where Nγ is the number of photons involved in ionization. However,

non-perturbative, above-threshold ionization (ATI) – in which more photons than the minimum

required for ionization are absorbed – is an area of active research not discussed in this thesis (cf.

[22–24]).

1.3 AC Stark shift1

In the presence of an alternating electric field, the energies of states shift. For states whose

eigenenergy En is much less than the photon energy ω, this shift becomes simply UP [25]

E′n = En + UP . (1.15)

As a result, the effective ionization potential also shifts

I ′P = IP + UP , (1.16)

and as a consequence, multiphoton ionization channels may close. In Fig. 1.2, we show the shifted

energies (in ω) of ionization (I ′P , black dashed line) and excitation from 1s to hydrogen n = 2

(i.e., E′2s − E0 and E′2p − E0, blue line) and n = 3 (e.g., E′3s − E0, orange line) shells. When the

minimum energy to ionize an electron exceeds the energy of an Nγ-photon process (i.e., I ′P > Nγω),

multiphoton ionization must occur primarily through absorption of Nγ + 1 (or more) photons, and

we say the Nγ-photon channel has closed. For transition into bound states, resonant excitation

has greatly enhanced probability if E′n − E0 = Nγω. For short intense pulses, the energy shift as

1 The results of this Section are also presented in [3].
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Figure 1.1: Diagram of ionization processes. (black) Field-free atomic potential and 1s bound state
energy. (blue) Tunnel ionization: Potential distorted by external field, resulting in tunnel exit x0.
(purple) Three-photon ionization resulting in excess kinetic energy T0.
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a function of time may also be relevant (Fig. 1.3). For this purpose, we define an approximate

time-dependent shift [26, 27]

E′n(t) = En + UP (t) (1.17)

where

UP (t) ≡ |
~E(t)|2

4ω2
. (1.18)

In [3], we investigated the impact of such channel closings and resonances on the distribution

of Rydberg state population after a pulse. To this end, we considered peak intensities such that

n = 8 states shifted into multiphoton resonance with Nγ = 10, 11, . . . 15 at central frequency

ω, corresponding to a wavelength of 800 nm. Due to the finite duration of laser pulses (versus

monochromatic CW fields), more than one manifold of states can be resonantly excited. For

example, the bandwidth of a 20 o.c. sin2 pulse at 800 nm covers all excited states n ' 6 within the

same Nγ photon process. We further note that in the present cases, the n = 3 and n = 2 states are

approximately resonant via Nγ − 1 and Nγ − 2 photon processes, respectively, assuming that the

energy shift of these states equals the ponderomotive energy as well.

The population in each quantum state (n, l) at the end of the pulse is shown in Fig. 1.4 for

intensities between 1013 and 1014 W/cm2. The results shown in the left (right) column correspond

to cases in which the Rydberg states are resonant with an even (odd) number of photons. In

all cases, we see that the highest angular momentum states (l > 7) are not much populated, in

agreement with previous studies [28] and semi-classical estimates [29]. In the results, we observe

signatures of selection rules resulting in dominant population of states with an even (odd) angular

momentum quantum number for the absorption of even (odd) photons in the plots on the left

(right). This shows that in the intensity regime of 1013 to 1014 W/cm2 the parity selection rules,

previously studied for monochromatic fields and flat-top pulses, are effective for long pulses of about

20 cycles. However, we observe that the contrast between the population in even and odd states is

stronger at lower intensities.

The results also show that for an odd parity process (right column) predominantly one angular
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Figure 1.2: Diagram of the AC Stark shift as a function of laser intensity for a wavelength of 800
nm. (solid lines) Excitation and (dashed line) ionization energies are given in units of ω. As the
intensity increases, N -photon ionization channels close (e.g., the 9-photon channel at intensities
above about 6× 1012 W/cm2) and excited states shift across resonances.

Figure 1.3: Diagram of the time-dependent AC Stark shift. Near the peak of the pulse, the effective
ionization potential (top dashed line) rises above the energy of five photons (red arrows), while the
2s state energy (top solid line) shifts briefly into 4-photon resonance.
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momentum state (l = 5) is populated. This is in agreement with the results presented by Li et

al. [30], who conjectured that electrons in the low angular momentum states more easily absorb

additional photons resulting in suppression of population in these states due to ionization. However,

our results for even parity processes exhibit a pattern, alternating in l, showing that both low and

high angular momentum states, except for the s-states, remain populated at the end of the pulse.

Chapter 3 investigates related processes in resonance-enhanced HHG.

1.3.1 High-order harmonic generation

In high-order harmonic generation (HHG), an atom or molecule is exposed to a high-intensity,

low-frequency laser. An electron absorbs many photons (up to thousands [31]) before being driven

back into the atom; all of the absorbed energy is then emitted as a single photon. When a laser

shines on a gas consisting of many such atoms, the emitted photons form high-frequency laser light

with lower intensity. The emitted photons have a large range of frequencies with similar intensities

– an unusual and useful trait. Of primary interest are the high-energy portions (into the x-ray

regime) and the incredibly short duration of these laser pulses.

HHG is characterized by a so-called plateau where radiation occurs with consistent inten-

sity at odd multiples of the driving laser frequency, ω. In Fig. 1.5, we show a schematic HHG

spectrum. The first few harmonics (1ω, 3ω, 5ω, and 7ω) below the ionization threshold (IP ) show

exponentially-decreasing intensity as predicted by perturbation theory. However, the next several

odd harmonics (through 21ω) appear at the same intensity, forming the plateau. After a so-called

“cut-off” energy (21ω), the intensity of harmonics again decreases exponentially.

HHG can be understood through a three-step semi-classical model [32–34] (Fig. 1.6). An

electron is initially in the ground state of an atomic Coulomb potential. Then, an intense field

initiates tunnel ionization. The freed electron oscillates purely under the influence of the external

field (Eq. (1.4)), gaining kinetic energy. When the electron again approaches the vicinity of the

nucleus, it has a chance to recombine back to the ground state. In doing so, it emits the excess

energy as a single high-energy photon. Semi-classical trajectory analysis (Sec. 1.4.1) predicts the
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Figure 1.4: Excited state distribution as function of quantum numbers n (vertical axis) and
l (horizontal axis) at the end of 800 nm, 20 cycle pulses with sine-squared envelope and peak
intensities: (a) I0 = 3.4 × 1013 W/cm2, (b) I0 = 6.0 × 1013 W/cm2, (c) I0 = 8.6 × 1013 W/cm2,
and (d) I0 = 11.2 × 1013 W/cm2. Left (right) column corresponds to cases in which the Rydberg
states are resonant with an even (odd) number of photons. (Taken from [3].)
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Figure 1.5: Diagram of a high-order harmonic generation spectrum marked by a plateau of radiation
at similar intensities.
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Figure 1.6: Diagram of the 3-step model of high-order harmonic generation. (Taken from [4].)

maximum kinetic energy upon return as 3.17UP , resulting in the radiation cut-off of IP + 3.17UP .

Various additional considerations result in a more complicated interaction and may allow for higher

return energies, including inclusion of the Coulomb force in classical trajectories, the presence of

quantum trajectories, and multiphoton ionization.

As with perturbative harmonics, atomic inversion symmetry across the laser polarization

direction prohibits even-harmonic radiation [35]. This symmetry is not present in other systems

(e.g., most molecules) or when significant electron density departs the ground state.

HHG has been a subject of intense research for decades, for a variety of reasons. Firstly, unlike

other methods of generating high energy photons (e.g., linear accelerators such as at SLAC [36]),

HHG can be performed on the tabletop scale. Additionally, HHG allows a higher level of coherence

and control of various parameters including the CEP, polarization, and angular momentum of the

laser [37, 38].
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1.3.2 Free-induction decay

In the context of strong-field physics, free-induction decay (FID) is simply the process

whereby electrons in excited np states decay to the ground state and emit photons with the corre-

sponding energy ω = En−E0 [39]. The bandwidth of this radiation is generally quite small relative

to that of harmonic radiation, appearing as sharp peaks. Additionally, FID continues well after

the end of the driving laser pulse, unlike most other radiative processes. In our numeric methods,

FID is not fully captured since the vacuum field necessary for spontaneous emission is absent –

FID radiation appears due to the oscillation of electrons in a superposition state, but the excited

population never decays to the ground state and energy is not conserved. Fortunately, the timescale

of spontaneous decay is generally orders of magnitude longer than the duration of our pulses, and

the approximation of infinite lifetime is good.

1.4 Numeric methods

This thesis does not cover the development of new methods for simulation of single-electron

behavior, but we briefly describe tools developed by others – in some cases implemented during the

course of this research.

1.4.1 Semi-classical trajectories

From the 3-step model of HHG, one may derive an approximative description where electron

motion is simulated through simple Newtonian methods. Namely, the initial position and momen-

tum of the electron are set by ionization conditions (typically, placing the electron at the tunnel

exit with zero initial velocity) and motion then proceeds according to the classical equations of mo-

tion, often excluding the effect of the Coulomb potential. In this case, motion may be analytically

predicted (i.e., Eq. (1.4)), but when the full force is included:

F (x, t) = FE(t) + FC(x) = −E0 sin(ωt)− x

|x3|
, (1.19)
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numeric solutions are required, such as Verlet integration [40] where the position and velocity are

computed for progressive steps in time, ti+1 = ti + dt:

x(ti+1) = x(ti) + v(ti)dt+ 0.5a(ti)dt
2 (1.20)

a(ti+1) = F (x(ti+1), ti+1) (1.21)

v(ti+1) = v(ti) + 0.5 (a(ti+1) + a(ti)) dt. (1.22)

Radiation is then predicted whenever x crosses 0, and the resulting energy is given by the kinetic

energy T = 1/2v2 plus IP .

A broader discussion of semi-classical trajectories can be found in Hostetter et al. [41],

including: methods to avoid issues with the singularity in the Coulomb field and derive the radiation

phase computed from classical action; and, an alternate set of initial conditions meant to represent

multiphoton ionization. We do not present results of calculations of semi-classical trajectories in

this thesis, but any remarks are based on a reproduction of the algorithm as presented in [41].

1.4.2 Finite difference and eigenstate problems

For the vast majority of Schrödinger equation cases, there is no analytic solution to even

the time-independent problem. Thus, we proceed with numerical solution through discretization

of space and time, for example the wavefunction ψ(x, t) → ψ(xi, tj) with indices i, j = 0, 1, ....

In this thesis, all discretization occurs on uniformly-spaced grids and with uniform time steps, so

xi+1 = xi + ∆x and tj+1 = tj + ∆t.

Spatial derivatives are then computed through finite differences, for example the 2nd-order

approximations:

∂

∂x
ψ(xi) ≈

−ψ(xi−1) + ψ(xi+1)

∆x
(1.23)

∂2

∂x2
ψ(xi) ≈

ψ(xi−1)− 2ψ(xi) + ψ(xi+1)

∆x2
, (1.24)
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which may be expressed as matrix equations, such as

∂2ψ(xi)

∂x2
=

1

∆x2



2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2





ψ(x0)

ψ(x1)

...

ψ(xN−1)

ψ(xN )


. (1.25)

The time-independent Schrödinger equation (in one dimension)

Enψn(x) =

[
− ∂2

∂x2
+ V (x)

]
ψ(x) (1.26)

becomes an eigenvalue/eigenvector problem. Our early eigenstate solutions were based on a trick

of the time-dependent numeric propagator (called Imaginary Time Propagation, see Sec. 1.4.3.2).

However, more recently we have utilized [42] the Arnoldi method of eigenvalue solutions [43].

While the TISE has spherical symmetry for atomic potentials, we often require eigenstates

as the initial conditions for further time-dependent interactions with laser fields without such sym-

metry. For all results of this thesis, linearly-polarized lasers are used and the electron density

remains in the subspace where magnetic/azimuthal quantum number m = 0. Thus, we perform

computations with discretization in cylindrical (ρi, zi) or spherical (ri, Y
0
l ) coordinates.

1.4.3 Time-dependent Schrödinger equation

Solutions to the TDSE (length gauge)

i
∂

∂t
ψ(~r, t) = Hψ(~r, t) =

[
−∇

2

2
+ V (~r) + ~E(t) ∗ ~r

]
ψ(~r, t) (1.27)

naturally require propagation in time. Considering the propagator formulation

ψ(~r, t) = e−iH∆tψ(~r, t), (1.28)

we may achieve numerical tractability through the Cayley form [44]

e−iH∆t ≈
1− i∆t

2 H

1 + i∆t
2 H

, (1.29)
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and the Crank-Nicolson method [45]:(
1 + i

∆t

2
H

)
ψ(t+ ∆t) =

(
1− i∆t

2
H

)
ψ(t). (1.30)

The resulting problem in multiple dimensions may be performed either through approximating the

effect of the Hamiltonian along each dimension (e.g., H = Hx1 +Hx2):

e−iH∆t ≈ e−iHx1
∆t
2 e−iHx2∆te−iHx1

∆t
2 , (1.31)

or through direct solution relying on modern sparse-matrix methods, such as the Generalized

Minimal Residual method [46]. The former is simpler to code, but the latter benefits from better

parallelization on large computational systems. Results in this thesis comprise both methods, which

we have previously shown to give consistent results [3].

1.4.3.1 Exterior complex scaling

One issue with simulations on discrete grids is that the grid cannot have infinite extent – we

are in practice placing our interaction in a box. For weak fields, it may be possible to use numerical

grids large enough that no appreciable electron density reaches the edge, but this is not feasible for

simulations in the strong-field regime of interest. Instead, one must ensure that behavior of interest

(e.g., HHG trajectories) fits within the extend of the grid, and appropriately handle departure

of ionized electron density. The former is generally a matter of checking numeric convergence by

scanning the box size, but we have found a radius of three times the quiver radius rq = E0
ω2 to

generally suffice for HHG simulations. For the escaping density, we use Exterior Complex Scaling

(ECS) [47, 48], where the edges of the grid are rotated into complex space by an angle η = π/4:

ρ (or r) =


ρ ρ ≤ ρ0

ρ0 + (ρ− ρ0)eiη ρ ≥ ρ0

(1.32)
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z =



−z0 + (z + z0)eiη z ≤ −z0

z −z0 ≤ z ≤ z0

z0 + (z − z0)eiη z ≥ z0.

(1.33)

We apply this transformation only to the kinetic energy term of the Hamiltonian to avoid undesir-

able density-explosion from the oscillating electric field [49].

1.4.3.2 Imaginary Time Propagation

Given a numeric library for solution of the TDSE, Imaginary Time Propagation (ITP) is a

simple and popular method of generating initial states similar to the power method. An initial

wavefunction guess ψ(~r, t = 0) is made based on analytic solutions or random generation. The

wavefunction is then propagated in steps of imaginary time ψi(~r, t = −iN∆t) and normalizing

|ψ|2 = 1 until reaching numeric convergence. This functions by replacing eigenstate quantum

oscillation:

ψ(~r, t) =
∑
n

cnψn(~r, t = 0)e−iEnt (1.34)

with exponential enhancement of the ground state (i.e., state with most negative energy):

ψ(~r, t = −iN∆t) =
∑
n

cnψn(~r, t = 0)e−EnN∆t. (1.35)

The first excited state may be acquired by projecting out the ground state after each iteration (via

Gram-Schmidt orthogonalization), and so forth for additional states.

ITP has the advantage of building on tools already developed for (real) time propagation,

and generally converges rapidly for the first few states. However, it becomes inefficient for higher

excited states (when repeated orthogonalization is required) and may cease functioning altogether

due to limitations of machine precision. For this reason, methods better-grounded in linear algebra

(e.g., the Arnoldi method) are preferable.
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1.4.3.3 Simulating spectra

To derive the radiation spectrum from simulation of electron motion, we evaluate the dipole

acceleration a(t) using the Ehrenfest theorem

a(t) = 〈∇V 〉 , (1.36)

and compute the spectrum as its Fourier transform:

P (ω) =

∣∣∣∣∫ T

0
a(t)e−iωtdt

∣∣∣∣2 , (1.37)

where T is the final time of the simulation. Often, we apply a window function as described in

Sec. 1.5.1.

The dipole acceleration can generally be extracted from the integration of the wavefunction

at each time step during simulation without dramatically reducing efficiency. If necessary, it may

be output at a lower time resolution (dt = 0.1 a.u. is generally sufficient for resolving spectra, but

at times propagation of the wavefunction requires finer steps).

1.5 Tools for analyzing HHG

To understand HHG, we must be able to analyze the effects of several different pathways.

Consideration of HHG spectra or time-domain pulses independently can be useful (e.g., to identify

or measure attosecond pulses), but insight into the underlying processes based on this information

is often limited. There are several possible tools to enhance our understanding of the mechanisms

and physics:

(1) focus on a simpler approximate theory (e.g., strong-field approximation (SFA) [50–52],

classical trajectories), which can provide different access to what is going on than numerical

solutions of TDSE;

(2) perform analysis in a mixture of the time and frequency domains; or,

(3) widely scan laser and target parameters to seek trends, which can be especially useful given

how noisy HHG spectra often are.
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When analyzing radiation emitted near the ionization threshold, many approximative meth-

ods fail due to the complex impact of excited states and atomic potential – which are, for example,

entirely ignored in the basic strong-field approximation [32, 50–52] and still poorly represented in its

extensions [53, 54]. Considering laser parameters that fall in the strong-field multiphoton (vs. the

tunneling or perturbative multiphoton) regime of ionization and excitation similarly precludes the

use of most other approximate methods, or at least complicates them greatly, and therefore limits

intuitive insights based on the results (as in the case of generalized semi-classical trajectory meth-

ods, cf. Sec. 1.4.1). Therefore, we primarily utilize numeric solutions to the full time-dependent

Schrödinger equation (TDSE). The resultant spectra, however, often include many radiation peaks,

sidebands, and other features with sufficient magnitude to be of interest. On the other hand, the

temporal response during the pulse is consistently dominated by the low harmonics – i.e., one do-

main contains too much information and the other too little. Performing scans of laser (or target)

parameters will often at least clarify which radiation features are stable versus those existing only

in narrow slices of parameter space – and thus not likely to survive macroscopic propagation (see

Ch. 4) or appear in experiment. This can illuminate the mechanisms behind a subset of features

with simple dependence (e.g., FID signals which appear at the field-free |0〉 → |np〉 transition

energies). Often, though, understanding mechanisms requires simultaneous parsing of time and

frequency information, and frequently in conjunction with parameter scans. In the following sub-

sections, we will discuss the particulars of a few forms of time-frequency analysis and some remarks

on parameter scanning.

1.5.1 Temporal windowing

Perhaps the simplest way to gain insight into the interplay between time and frequency in

radiation is to consider a windowed Fourier transform of the dipole acceleration,

P (ω) =

∣∣∣∣∫ ∞
−∞

a(t)W (t)e−iωtdt

∣∣∣∣2 , (1.38)



21

with W (x) ∈ [0, 1] being some window function. We already introduced the commonly-used Black-

man window WBlackman(x, T ) = 0.42−0.5 cos(2πx/T )+0.08 cos(4πx/T ) [55]. By convention, most

numeric HHG spectra are reported using a Blackman window with width T equal to the laser pulse

duration. This eliminates radiation occurring after the end of the laser and generally smooths the

spectra.

However, windowing can also provide additional information, for example comparing the

spectra windowed to the span of the pulse versus one including extended propagation past the

end of the pulse. In a previous paper [3], we used this technique to demonstrate the impact of

populations of excited states with dipole-allowed transitions to the ground state on the spectra:

FID lines appearing as sharp peaks in the post-pulse radiation (see Fig. 1.7).

More generally, we may window to particular sections of the pulse (e.g., first half, peak ±2

o.c., etc.) to identify the radiation emitted during different periods. The primary limitations of

windowing are loss of spectral precision – since fewer data points in the Fourier transform include

actual data – and identifying windows that provide useful information.

1.5.2 Spectral filtering and temporal profiles

In the other direction, we may consider the temporal profile of radiation for particular spectral

regions. For example, we could ask what pulse would be produced by filtering to the radiation near

the 9th harmonic. This is accomplished by Fourier transforming the dipole acceleration into the

frequency domain, applying a spectral filter, R, then inverse Fourier transforming back to the time

domain

P (t;R) =
∣∣F−1

[
R(ω′)F [a(t′)]

]∣∣2 . (1.39)

Unless otherwise noted, we use for such studies a filter with a two-harmonic flat top and
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Figure 1.7: Radiation spectra generated during the pulse (red dashed lines) and those including line
emissions after the pulse (black solid lines) are shown for hydrogen driven by a 20 o.c. sine-squared,
800-nm pulse with peak intensities: (a) I0 = 3.4 × 1013 W/cm2, (b) I0 = 6.0 × 1013 W/cm2, and
(c) I0 = 16.4× 1013 W/cm2. The vertical gray lines show the field free energy differences between
the np energy levels (up to 14p) and the 1s ground state. (Taken from [3].)
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Gaussian falloff with σ = 0.1 harmonics, centered at harmonic N :

RN (qω0) =



exp
[
−1

2( q−(N−1))
0.1 )2

]
q ≤ N − 1

1 N − 1 ≤ q ≤ N + 1

exp
[
−1

2( q−(N+1))
0.1 )2

]
q ≥ N + 1

(1.40)

Spectral filtering in this way can be quite powerful – especially when combined with parameter

scans – but it is important to recognize artifacts of the filtering technique, including:

• Fourier transforms and windows/filters involve a sometimes surprising number of factors

and phases which must be managed carefully to avoid unintentional shifts in time or mag-

nitude scaling.

• If spectral filters are narrower than peaks or near-constant regions, it is possible to introduce

spurious frequencies, which can appear as temporal beating.

• Sidelobes resulting from too-sharp filter cut-offs, which may be appealing when attempting

to isolate narrow features.

1.5.3 Wavelet analysis

True time-frequency analysis provides information on the intensity of a signal in regions of

both time and frequency, together. The simplest method is to scan the center of a temporal window

across the duration of data, then stack the windowed frequency response. This has a variety of

drawbacks including those already mentioned. Many are resolved using a more complex method,

such as the continuous wavelet transform [56–58]. We specifically utilize a Morlet wavelet

f(ω, t; tf ) ∝
max(tE)∫
min(tE)

ω

Ω0
ER(t′)e

−iω(t′−t)− 1
2

(
ω

Ω0
(t′−t)

)2

dt′ (1.41)

where

ER(tE) =

∫ ωmax

0
ER(ω)eiωtEdω , (1.42)
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ω is the frequency of the wavelet, and t and Ω0 are the center and the variance of the Gaussian

window. The parameter Ω0 allows control of the time vs. frequency resolution of the wavelet. In

this thesis, we have chosen Ω0 = 6 or 54, which provide a good resolution in time or frequency,

respectively, for 800 nm lasers. We note that Eq. (1.41) provides the high harmonic spectrum for

Ω0 →∞:

fHHG(ω; tf ) ∝

tf∫
−∞

a(t′)e−iωt
′
dt′. (1.43)

While wavelet plots provide a great deal of information, there are drawbacks. Firstly, the

differences in scale (e.g., between different harmonics) require careful selection of color axis limits

to avoid either hiding important features or enhancing noise to the point of obscuring details. This

in turn leads to difficulties in comparing wavelet plots for different laser parameters. Even when

consistent and informative color scales are achieved, the sheer volume of information conveyed can

make comparisons visually complex.

1.5.4 Parameter scans

One of the strongest tools to understand any physical phenomena is to see what happens

under variation (“Does the heavier ball fall faster?”). In the context of theoretical physics, this is

particularly easy, as we may set any arbitrary laser or target parameters and analyze the simulation

results. In the simplest case of scalar observables, results may be plotted as a line against parameters

(e.g., probability of ionization vs. driving intensity). For radiation, though, this is generally not

as productive. For instance, plotting the intensity of a given harmonic obscures important features

(red/blue-shift, sidebands, width) and becomes unstable to deviations from the expected behavior

(e.g., when the “9th harmonic” is not centered at 9ω, or when nearby off-harmonic peaks have

greater intensity). For this reason, heatmaps are popular – allowing for plotting the full harmonic

spectrum as a function of some parameter. Similarly, we find great benefit in plotting scans of

the temporal profile of a given harmonic across, e.g., intensity. Finally, there are cases where the

results from a single simulation are already multidimensional, and scans can often not be visually
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processed without separate images (incl. slideshows and animated media). While important for

our research process, we avoid including such visualizations in this thesis.

1.6 Outline of this thesis

The rest of this thesis comprises three projects on high-order harmonic generation tied to-

gether by an emphasis on investigation of near-threshold harmonics and their connection to atomic

characteristics (including the potential and excited states). Additionally, methods are presented

for efficient simulation and analysis applicable to broad parameter regimes.

In Chapter 2, we will discuss single-active-electron (SAE) potentials for atoms, ions, and

molecules. These potentials allow the use of existing single-electron methods (especially numeric

TDSE libraries) for simulation of more complex targets. We outline a method for generating SAE

potentials based on analytic forms fit to density functional theory potentials – without any param-

eters modified by hand. Using one such potential, novel agreement is shown with time-dependent

density functional theory calculations for simulation of a strong-field process, namely HHG. We in-

troduce additional applications to HHG from multi-orbital atoms, and nonlinear polarization and

ionization of molecules.

In Chapter 3, we analyze the impact of field-shifted resonances on near-threshold HHG. We

focus on a particular set of spectro-temporal features associated with the 3p state of the hydrogen

atom shifting into 9-photon resonance, investigating the dependence on a variety of laser and target

parameters. We show that aspects of the behavior are quite general, and similar features appear

in a broad range of parameters, including more intense near-IR driving lasers, weak mid-IR pulses,

and helium driven by intense 400 nm pulses.

In Chapter 4, we introduce an efficient method of macroscopic summation built upon a man-

ageable set of TDSE simulations. Specifically, the response of macroscopic gas jets are determined

through Monte Carlo summation of relatively few (105−107) point-like radiators. The acceleration

response from each radiator is interpolated from a small set (100-1000) of full TDSE calculations.

This method allows for accurate simulation of near-threshold HHG – for the thin medium or low
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gas density regimes that are free from longitudinal phase-matching effects – which is not possible

with approximate methods such as the Strong-Field Approximation. The method is immediately

extensible to long wavelengths and to other atomic and molecular targets, and results are presented

for mid-IR pulses and helium driven by 400 nm pulses. We additionally demonstrate a distinct

interference pattern in the angular distribution of HHG for focal phase distributions associated

with highly-focused pulses.

Finally, in Chapter 5, we conclude with a summary of the topics discussed within this thesis

and consider future directions of the field supported by this work.



Chapter 2

Single-Active-Electron Potentials1

A widely-used method to study nonlinear effects in larger laser-driven atoms involves numer-

ical solutions of the time-dependent Schrödinger equation (TDSE) within the single-active-electron

(SAE) approximation. In the SAE approximation, it is assumed that the laser field only interacts

with one – typically the most weakly-bound – electron in the atom or molecule, considering all other

electrons as frozen spectators to the evolving physics. SAE-TDSE calculations have the advantage

of being a straightforward extension from common hydrogen TDSE codes. These calculations are

computationally efficient and scale well to parameter regimes (e.g., long wavelength and/or high

intensity) that are often infeasible to explore with multielectron codes. In cases where multielectron

calculations are possible, single-electron approximations still have value, since SAE-TDSE simula-

tions can serve in initial exploratory parameter sweeps before running more expensive calculations

to identify multielectron effects.

Furthermore, ab-initio SAE calculations can provide important benchmark results for more

sophisticated multielectron methods in parameter regimes where electron correlation effects are

small. In the perturbative interaction regime, such a comparison between results of time-dependent

density functional theory (TDDFT) simulations and ab-initio calculations using lowest-order per-

turbation theory has been done recently and a good agreement has been found [59]. This established

the applicability of TDDFT calculations for perturbative multiphoton processes. We are not aware

of a similar study at higher intensities for highly nonlinear and nonperturbative processes. A few

1 Some results of this chapter are also presented in [1]
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rare studies reporting a comparison between TDDFT and SAE-TDSE results for nonperturbative

strong-field processes typically attribute differences to the impact of multielectron effects [60, 61]

without establishing a benchmark test between SAE-TDSE and TDDFT calculations. The absence

of such benchmark tests partially contributes to the misconception in parts of the strong-field com-

munity that TDDFT studies cannot provide quantitative predictions for highly nonlinear processes

involving the continuum. In this Chapter, we show – by carefully constructing an SAE potential –

that indeed agreement between SAE-TDSE benchmark results and TDDFT results can be found.

Hence, we establish a method to check the accuracy of TDDFT calculations in view of multielectron

effects and disprove the misconception about the quantitative predictive power of TDDFT calcula-

tions. We further extend the SAE framework to the generation of simple, but accurate, potentials

for molecular dimers. Throughout, we place an emphasis on technical obstacles we encountered

and advice on how others may similarly overcome them in future work.

In Sec. 2.1 we present the method to obtain analytical forms of SAE potentials based on DFT

calculations (which is essential for the benchmark tests). We establish the accuracy of the SAE

potentials by presenting predictions for energies of the ground state and singly excited states of

various atoms within the single-active-electron approximation (Sec. 2.1.4). In Sec. 2.2, we compare

results for high harmonic generation (HHG) from helium within the single-active-electron approx-

imation with those from TDDFT calculations based on the same DFT approach for a few highly

nonlinear cases. Next, we show as another application of the SAE potentials results for high-order

harmonic generation from outer and inner valence shells (Sec. 2.2.3). Finally, we discuss SAE po-

tentials for molecules and an application to nonlinear polarization and ionization in O2 (Sec. 2.3).

We summarize our results in Sec. 2.4 along with a brief description of published work by others

based on the SAE potentials.

2.1 Constructing SAE potentials

In this section, we discuss the construction of SAE potentials for atomic systems, based on

fitting to an effective Kohn-Sham potential. First, we discuss the concept in constructing the SAE
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potential for the benchmark tests before we briefly reiterate the density functional theory formalism

used to obtain the Kohn-Sham potential. Then we present the approach used to approximate the

Kohn-Sham potential via analytical functions and discuss strategies to determine the coefficients

in the model potential. Finally, we present the methods used to perform the ab-initio SAE-TDSE

and TDDFT calculations.

The construction of a potential to model single-active-electron behavior has been pursued

through several different strategies (e.g., [62–69]). SAE models are frequently developed using

analytic functions with free parameters that are fit to accurately simulate experimental behavior

in the scenario of interest (often by matching the ionization potential for the single active valence

electron to the experimental value, since many strong field processes – such as tunneling ionization

– strongly depend on it). Besides the long-range behavior of the SAE potential – which is essential

for the determination of the ionization behavior – electron dynamics driven by a strong laser pulse

also probe the short-range properties of the potential (e.g., excited states). Constructing an SAE

potential that reproduces well ground, inner, and excited state energies, is therefore useful for

studying laser-driven processes from the valence as well as inner shells. Furthermore, it provides a

reliable ground for benchmarking TDDFT calculations against ab-inito SAE-TDSE results, as we

will demonstrate in Sec. 2.2.2. Conceptually, the SAE potential should therefore be based on the

same DFT approach used in the TDDFT calculations without any free parameter adjustment.

To this end, we have obtained analytical forms of single-active-electron potentials, using den-

sity functional theory (DFT) and physical reasoning regarding the electronic structure of an atomic

system. Fits to the effective Kohn-Sham potential are made without using ad-hoc free parameters.

We establish the accuracy of the potentials by comparing ionization and excitation energies. Basing

the approaches on the same functional we are set up to make an accurate quantitative comparison

between SAE-TDSE and TDDFT calculations for HHG from helium at intensities in the nonper-

turbative regime. We further note that by providing analytical forms of the SAE potentials, the

SAE-TDSE vs. TDDFT comparisons can be reproduced or extended in the future.
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2.1.1 Density Functional Theory

In the Kohn-Sham density functional theory (DFT) formulation of multielectron systems

[70, 71], each orbital ψKSi,σ (r) (i = 1, . . . N) involved in the ground state of the spin-polarized

N -electron system is determined by solving a set of Schrödinger-like eigenvalue equations given by[
−1

2
∇2 + Veff,σ(r)

]
ψKSi,σ (r) = EKSi,σ ψ

KS
i,σ (r), (2.1)

where

Veff,σ(r) = Vext(r) + VH(r) + Vxc,σ(r) (2.2)

is the effective Kohn-Sham potential and σ denotes the spin of the electron. The terms in Eq. (2.2)

represent the external Coulomb potential Vext(r) = −Z
r , the Hartree potential VH(r) =

∫ ρ(r′)
|r−r′|dr

′

accounting for the electron-electron repulsion with the total electron density ρ(r) =
∑

σ ρσ(r) =∑
σ

∑Nσ
i=1 ρi,σ(r) with ρi,σ(r) =

∣∣∣ψKSi,σ (r)
∣∣∣2, and the exchange correlation term Vxc,σ(r).

An exact expression for Vxc is not known and several popular approximations to this quantity

exist. We make use of the strategy proposed by Krieger, Li, and Iafrate [72] and extended in [73].

We choose a sum of local (spin-)density approximation (LDA) exchange and correlation functionals:

vLDAxc,σ (r) = µLDAx,σ (ρ↑(r), ρ↓(r)) + µLDAc,σ (ρ↑(r), ρ↓(r)) (2.3)

where µLDAx,σ (r) = −
(

6
πρσ(r)

) 1
3 and with µLDAc,σ , as defined in Appendix C of [74], and apply a

self-interaction correction [74]:

vLDA−SICxc,i,σ (r) = vLDAxc,σ (r)− µLDAx,σ (ρi(r), 0)

− µLDAc,σ (ρi(r), 0)−
∫
ρi,σ(r′)

|r− r′|
dr′ . (2.4)

This results in an orbital-dependent potential, but the Optimized Effective Potential procedure

from [72] resolves this via

V KLI
xc,σ (r) =

Nσ∑
i=1

ρi,σ(r)

ρσ(r)
(vxc,i,σ(r) +Xi,σ) , (2.5)
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where Xi,σ is the solution to the set of linear equations:

(δji − (Mσ)ji)Xi,σ = V̄ S
xc,j,σ − v̄xc,j,σ, (2.6)

with

(Mσ)ji =

∫
ρj,σ(r)

ρi,σ(r)

ρσ(r)
dr , (2.7)

V̄ S
xc,j,σ =

∫
ρj,σ(r)

(
Nσ∑
i=1

ρi,σ(r)

ρσ(r)
vxc,i,σ(r)

)
dr , (2.8)

v̄xc,i,σ =

∫
ρj,σ(r)vxc,j,σ(r)dr . (2.9)

and note Xm,σ = 0 where m is the index of the highest occupied orbital (or indices for a degen-

erate set), so those terms are ignored. The potential V KLI
xc,σ (r) has been found self-consistently by

guessing a set of orbitals, i.e., ρi,σ, then using the orbitals to calculate an exchange correlation

potential (Eq. (2.5)), which is then used to update the orbital set as the lowest energy eigenstates

of the effective Kohn-Sham potential (Eq. (2.2)), repeating until convergence is reached. The DFT

calculations have been completed on a 1D spherical grid with spacing dr = 0.0025 a.u. and length

L = 80 a.u., requiring that the valence orbital energy EKSm,σ converges to a difference below 10−10

a.u. between iterations. Note this DFT implementation was coded entirely independently of the

Octopus [75–77] and Libxc [78] libraries used for our TDDFT comparison.

2.1.2 Notes on implementing DFT

While we are by no means experts on density functional theory or its implementations, we

do have some observations which may be of use to other strong-field researchers venturing into

DFT. As with much of programming, the best solution is not to do it yourself. There are plenty of

pre-existing libraries (such as Octopus) that should suffice for most purposes. These are the result

of years of careful thought and optimization. Here, we chose to write a DFT code from scratch so

as to allow fully independent comparison with Octopus TDDFT. The following few tips may be

helpful when coding a new DFT implementation:
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• Many simple DFT algorithms function through iterative convergence. This necessitates

both that individual iterations have high accuracy, and that non-convergent behavior is

avoided. An advantage, however, is that individual iterations can be manually adjusted,

as long as final convergence is achieved.

• As a simple example, any initial density distribution is valid. It may not converge, but it

will not converge to an incorrect answer.

• Especially for weakly-bound valence electrons (e.g., in lithium or negative ions), the density

tail of the DFT potential may extend further than expected. If the tail is not properly

constrained, small errors may compound, resulting in poor long-range behavior of the DFT

potential. If, for example, the density is too high far from the atom in one iteration, the

potential for the next iteration will be too shallow, resulting in even greater, incorrect

density. We managed this by using grids with a large extent and fixing the long range tail

to an exponential decay for the initial and middle iterations. Additionally, the iterative

process was cancelled when the tail was found to be flat or growing rather than decaying.

• For our process, an exceedingly common result involved two- or three-iteration loops. In-

stead of converging toward a single energy, the energy would consistently switch between

two or three energies (and, presumably, corresponding states and potentials). Generally,

none of these energies would be close to the correct one (estimated by other DFT results

or experiment, or compared after the fact). One method to avoid this involves mixing mul-

tiple previous iterations to set the initial conditions for the next one [79]. We did this at

the level of the density, mixing according to ρinput,i = (1− α)ρoutput,i−1 + αρinput,i−1. The

mixing parameter α limits the rate of change between iterations while also acting simply as

a non-physical dial to seek convergent behavior – according to our experience, calculations

with α = 0.7 often converged and with decent speed, but it was frequently necessary to

scan α to achieve convergence.
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• Computing a set of lowest eigenstates of some potential is a key component of the iteration.

The popular Imaginary Time Propagation (ITP) method [80] is ill-suited to this for a

number of reasons. Firstly, it is relatively slow, especially when computing eigenstates

above the ground state. Similarly, the accuracy falls off as higher eigenstates require manual

orthogonalization. Replacing ITP with the Arnoldi method [42] reduced the iteration time

by orders of magnitude, allowing for the generation of DFT potentials for atoms as large

as xenon. (Note: Arnoldi has similar benefits for generating initial TDSE states.)

• Whether using a DFT potential directly or fitting to an analytic form, it is important

that the short range behavior (generally a Coulomb singularity, with a constant offset as

seen in Figs. 2.1 and 2.2) is accurately captured. We made use of (constant) grids much

finer than practical for time-dependent calculations and visually checked that Vxc,σ(r → 0)

approached a constant.

2.1.3 Analytic fitting

One can proceed by using the DFT potential numerically; it is however instructive and useful

to provide an analytical form of the SAE potential as:

VSAE(r) = Vlong + Vshort + Vshell, (2.10)

where Vlong is the long-range Coulomb term:

Vlong(r) = −C0

r
, (2.11)

and Vshort is a screened Coulomb (or “Yukawa”) potential

Vshort(r) = −Zce
−cr

r
. (2.12)

In test calculations we left C0 and Zc as free parameters in the fitting procedure. The results,

shown in Table 2.1, are close to the expected values of C0 = Z − (Ne− 1), where Z is the charge of

the nucleus and Ne the number of electrons in the atom or ion, and Zc = Z − C0 accounts for the
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Species C0 Zc C0 + Zc

He 0.999441 1.000562 2.000002
Ne 1.066567 8.933208 9.999777
Ar 0.985250 17.014712 17.999962

Table 2.1: Fitting results for charge parameters C0 and Zc in SAE potentials for rare gas atoms
helium, neon, and argon.

remainder of the charge. For this reason we did not vary these parameters in the remainder of our

studies.

Vshell captures the effective SAE potential at intermediate distances with one exponential

term for each of the n orbital shells:

Vshell(r) = −
n∑
i=1

aie
−bir . (2.13)

This is motivated by the comparison of electron density and exchange correlation potential based

on DFT calculations (see Figs. 2.1 and 2.2) where we identify one smooth region per shell. We have

applied the above potential form to both atoms and ions up to argon. For a given species the same

potential is found for both valence and inner orbitals. We note that for larger atoms, the present

approach based on an orbital shell picture may need to be modified, since in such atoms subshell

densities are more strongly overlapping (see Sec. 2.2.4).

The effective single-active-electron potential VSAE :

VSAE(r) = −C0

r
− Zce

−cr

r
−

n∑
i=1

aie
−bir (2.14)

depends on n linear parameters (ai) and n + 1 nonlinear parameters (bi, c). We fit VSAE(r) to

Veff,↑(r) using the Levenberg-Marquardt (LM) least-squares curve fitting algorithm [81, 82] imple-

mented in the LMFIT library [83]. The LM algorithm involves methods to avoid local minima,

resulting in nonlocal fitting based on initial parameter guesses. As an extra check, the parameters

bi in the exponentials have been scanned across a range of initial guesses, selecting as final fit the

one with lowest chi-squared value. In Table 2.2 we show the results for the parameters of our fits

for a number of atomic and ionic species. The relative error between the fit and the actual DFT
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Figure 2.1: Results of DFT calculations for (a) electron density and (b) exchange correlation
potential of the helium atom (Taken from [1]).

Figure 2.2: Same as Fig. 2.1 but for the argon atom (Taken from [1]).
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Figure 2.3: Relative error between results of the analytical fit and DFT calculations for the
single-active-electron potentials for (a) helium and (b) argon (Taken from [1]).
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Species Experiment DFT SAE

He 0.9037 0.9453 0.944
Li 0.1981 0.1970 0.200
Be 0.3425 0.3262 0.326
Ne 0.7927 0.8353 0.834
Na 0.1888 0.2151 0.228
Mg 0.2811 0.2979 0.302
Ar 0.5792 0.6003 0.607
Ar+ 1.0154 1.0715 1.078
Ar2+ 1.4972 1.5850 1.593
Ar3+ 2.1980 2.1589 2.166
Ar4+ 2.7570 2.7835 2.791
Ar5+ 3.3446 3.4419 3.446

Table 2.3: Comparison of first ionization energies: Experimental data [2], DFT calculations, and
analytical potential fit (SAE) (Taken from [1]).

results for Veff,↑ is presented in Fig. 2.3 for helium and argon.

2.1.4 Ionization and excitation energies

We have obtained energies for the ground state and (singly) excited states of the atoms and

ions for the analytical SAE potential fits using the Implicitly Restarted Arnoldi Method [43]. For

the analytical SAE potentials we have performed calculations on the same 1D spherical grid as for

the DFT calculations, with dr = 0.0025 a.u. and L = 80 a.u..

In Table 2.3 we compare the ground state energies for the atoms and ions studied, obtained

in the DFT calculations and with the analytical SAE potential fits, with the experimental data

from the NIST Atomic Spectra Database [2]. The SAE potential results reproduce the DFT results

remarkably well, showing the success of the fitting procedure. The same conclusion holds for the

ionization energies of inner orbitals, as the example for neon atom in Table 2.4 shows. Further im-

provement concerning the agreement between the theoretical results and experimental data requires

more advanced DFT calculations (investigations suggest the next step up the functional ladder –

the Generalized Gradient Approximation – is not sufficient to noticeably improve agreement). In

Tables 2.5 and 2.6 we present a comparison between experimental data [2] and the predictions
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State Experiment DFT SAE

1s 35.1590 30.8598 30.9051
2s 1.8134 1.6723 1.6770

Table 2.4: Same as Table 2.3 but for ionization energies of inner orbitals in neon (Taken from [1]).

State Experiment SAE

2s -0.14595 -0.15969
2p -0.12382 -0.12847
3s -0.06126 -0.064999
3p -0.05514 -0.056679
3d -0.05561 -0.055581

Table 2.5: Comparison of experimental data [2] and predictions using the analytical potential fit
(SAE) for ionization energies of excited states in helium (Taken from [1]).

State Experiment SAE

4s -0.14834 -0.17196
4p -0.08937 -0.10843
3d -0.05606 -0.07170
5s -0.05581 -0.06463

Table 2.6: Same as Table 2.5 but for 3p5(2P ◦1/2)X argon excited states (Taken from [1]).
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obtained using the SAE potentials for some singly excited state energies of the helium and argon

atoms, which shows a reasonable agreement.

2.2 HHG with SAE potentials

2.2.1 SAE-TDSE and TDDFT methods

To obtain HHG spectra in the SAE-TDSE calculations, we have propagated the wavefunction

using the static potential VSAE(r) and the time-dependent laser interaction potential described in

length gauge as:

VI(t) = r ·E(t), (2.15)

where E is the electric field of the laser. In the present calculations, the initial state was set as

the ground state of the helium SAE potential. We have discretized the wavefunction and (radial)

potential on a cylindrical 2D grid with dρ = dz = 0.03 a.u, and grid sizes up to ρmax = 50 a.u. and

zmax = ±100 a.u.. We have applied the 2nd order Crank-Nicolson method and the split-operator

approximation to propagate the wavefunction starting from the initial state.

To study the accuracy of the SAE potentials, we compare results of SAE-TDSE calculations

with those of TDDFT calculations (performed by Tennesse Joyce). For the latter, the wavefunction

has been propagated using the Kohn-Sham orbitals obtained by solving the time-dependent Kohn-

Sham equations [
−1

2
∇2 + Veff,σ(r, t)

]
ψKSi,σ (r, t) = i

∂

∂t
ψKSi,σ (r, t), (2.16)

with

Veff,σ(r, t) = Vext(r, t) + VH(r, t) + Vxc,σ(r, t) , (2.17)

where

Vext(r, t) = −Z
r

+ VI(t) (2.18)

and the Hartree and exchange correlation terms depend now on the time-dependent density ρ(r, t).

The TDDFT calculations have been performed using the Octopus code [75–77] on a Cartesian 3D
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grid with spacing dx = 0.3 a.u. in a cylindrical box of length at least 70 a.u. in the z-direction, and

diameter at least 40 a.u. in the xy-plane. An additional 20 a.u. in every direction outside the box

was added for the complex absorbing potential. Note that use of 4th-order finite difference allows

for coarser dx here.

We have taken the laser to be linearly polarized in the z-direction, with a sin2 pulse envelope,

variable central frequency ω0, and full-width duration T = 8π/ω0 corresponding to four optical

cycles. That is,

E(t) = E0 sin2

(
πt

T

)
sin(ω0t)ẑ (2.19)

for 0 ≤ t ≤ T . We have evaluated the dipole acceleration a(t) using the Ehrenfest theorem

a(t) = 〈∇V 〉+ E(t). (2.20)

where V = VSAE (for SAE-TDSE) and V = −Z/r (for TDDFT). In the case of TDDFT, the

dipole accelerations from all orbitals are added together, and other interaction terms cancel. The

harmonic spectrum P (ω) is then obtained by taking the windowed Fourier transform of the dipole

acceleration,

P (ω) =

∣∣∣∣∫ T

0
a(t)W (t/T )e−iωtdt

∣∣∣∣2 , (2.21)

where W (x) = 0.42− 0.5 cos(2πx) + 0.08 cos(4πx) is the Blackman window [55].

2.2.2 Comparison of SAE-TDSE and TDDFT results

The good agreement between analytical fit and DFT results provides the grounds to pro-

ceed with the quantitative comparison between TDDFT and SAE-TDSE calculations for HHG. In

Fig. 2.4, we compare results of SAE-TDSE and TDDFT calculations for the HHG spectrum driven

by a 4-cycle laser pulse with peak intensity of Ipeak = 1015 W/cm2 at central wavelengths of (a)

λ = 267 nm (ω267 = 4.65 eV), (b) λ = 400 nm (ω400 = 3.10 eV), and (c) λ = 600 nm (ω600 = 2.07

eV). For each comparison, we have matched the two results at one point, namely the energy of the

driving laser pulse. We used the helium atom as a target, this being the simplest atomic system

with electron correlation effects. For laser wavelengths in the ultraviolet and optical regime, we
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Figure 2.4: Comparison of TDDFT results (dashed red line) and SAE-TDSE (solid black line)
results for HHG spectra generated in the interaction of a helium atom with a 4-cycle laser pulse at
peak intensity of 1015 W/cm2 and central wavelengths of (a) 267 nm, (b) 400 nm, and (c) 600 nm.
Vertical dashed lines denote the ionization potential IP and expected HHG cut-off energy for each
calculation. (Taken from [1].)
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expect that the correlation effects on the nonlinear and nonperturbative dynamics may be small.

Thus, the single-active-electron approximation should be applicable and, hence, constitute a test

bed for the comparison.

At the shortest wavelength (panel (a)), it requires six photons to exceed the field-free ioniza-

tion potential Ip = 25.7 eV (cf. Table 2.3), while the energy of seven photons is needed to exceed

the field-shifted ionization threshold of Ip+Up = 32.3 eV where Up = 9.3×10−5 Ipeak [PW/cm2] λ2

[nm] is the ponderomotive energy of a free electron in a laser field at the peak intensity. Further-

more, the HHG cut-off energy of 3.17Up + Ip = 46.7 eV ≈ 10ω267. The results of the TDDFT and

SAE-TDSE calculations are in excellent agreement over the whole spectrum, up to the expected

cut-off and even beyond. The position of the maxima and minima, the form of the odd high-order

harmonic lines, as well as the cut-off in the spectrum, are nearly identical in the results of both

independent calculations. We note small deviations between the results in the region of the 3rd and

5th harmonics, which either may be related to differences in the excited state spectra for the two

calculations or may indicate minor electron correlation effects. However, overall the comparison

shows that electron correlation effects appear to be negligible for this nonlinear process in helium

at a UV driver laser wavelength.

Similarly good agreement is found at the longer central wavelengths of 400 nm (b) and 600

nm (c); the other laser parameters are held the same as for the calculations at 267 nm. We note

that while the 267 nm calculation was in the so-called multiphoton regime, the Keldysh parameter

γ = 0.62 [50] indicates that the process at 600 nm occurs in the tunneling interaction regime. Due

to the longer wavelength, the ponderomotive energies are significantly larger. This results in larger

field-shifted ionization potentials and corresponding HHG cutoffs of 73.1 eV (b) and 132.2 eV (c),

corresponding to the 24th and 64th harmonic of the driving frequencies, respectively. While the

differences between the results of the two independent calculations are slighter larger than at the

UV driver wavelength, they remain overall clearly less than a factor of two. The largest deviations

are again found in the energy region near the ionization threshold. We note that at higher energies,

even subtle features are in excellent agreement for the two calculations.
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The agreement between the results demonstrates the accuracy and applicability of the single-

atom potentials and shows the capability of TDDFT to provide reliable results for nonperturbative

strong-field processes in this parameter regime. The deviations in the ionization threshold region

may be attributed to a minor role of electron correlation and/or excited states during the process.

We note that studies reporting a comparison between TDDFT and SAE-TDSE results for non-

perturbative strong-field processes are rare [60, 61] and we are not aware of another study in the

strong-field and tunneling regime reporting agreement in parameter regimes of small correlation

effects. Typically, differences between results have been interpreted as the effect of correlation

effects [60], even in parameter regimes in which we find excellent agreement between SAE-TDSE

and TDDFT results. This demonstrates the importance of the method in constructing SAE po-

tentials used in the present study and the general benchmark tests performed. It also clarifies the

sometimes expressed misconception that TDDFT calculation cannot provide accurate results in the

highly nonlinear multiphoton and tunneling regimes.

2.2.2.1 Subtleties of convergence

Informal discussions suggest that other groups have sought to compare TDSE and TDDFT

simulations of HHG and generally found poor agreement. We therefore think it is valuable to

address the process behind our final results, including various obstacles.

First off, TDDFT calculations are generally more expensive than TDSE calculations. Obvi-

ously, the extra computations required to periodically update the DFT potential contribute; but

additionally, TDDFT codes usually have different goals than TDSE codes and are optimized cor-

respondingly. In the case of linear polarization and atomic targets, most modern TDSE codes use

a spherical harmonic basis (as in our current TDSE code) or at least exploit azimuthal symmetry

(as the code used for the comparisons in this Chapter) for speed. Since most targets in TDDFT

codes do not have spherical symmetry, the option is rarely included. Thus, even single-electron

calculations (e.g., hydrogen) will often be much more expensive when run with a TDDFT library,

even though the actual physics is identical.
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As a result of this expense – and the differing needs of common calculations – TDDFT sim-

ulations are often run with larger grid spacing and smaller box size than is common in TDSE

simulations. Consequently, HHG convergence tests may (and, in our case, did) begin with the

TDDFT parameters far from being converged. This led to more complicated interactions between

simulation parameters than is typical for almost-converged TDSE cases. As one example, increas-

ing the box size along the laser polarization led to worse agreement! After further investigation,

we came to the conclusion that the issue was related to the relatively narrow box perpendicular to

polarization – electron wavepackets were artificially reflecting off the boundaries, leading to unex-

pected interference behavior as a function of box length. After increasing the box width sufficiently,

changes in the box length displayed a more normal convergence behavior.

On a different note, HHG depends significantly on the ionization potential. When this does

not agree between SAE-TDSE and TDDFT simulations, the spectra will differ. This suggests first

the utility of basing the two simulations on a shared potential formulation (e.g., a particular DFT

functional, in our case with one being static and fit to an analytic form). As above, it is also

important that both codes be converged for the ground state energy (here, grid spacing is most

important). Some of these notes may seem obvious, but when the result is a month-long TDDFT

calculation, there is the incentive to cut corners and assume that the simulation is sufficiently

converged when it may not be.

Finally, we provide a few notes relevant to any comparison of HHG calculations, including

those using different TDSE implementations. In principal, HHG can be computed equivalently via

the dipole moment, the dipole velocity, or the dipole acceleration. Since the dipole moment is the

simplest to compute, this approach may look most attractive. However, the equal treatment of

electron density anywhere on the grid leads to errors when ionized wavepackets must be absorbed.

Using the dipole acceleration (specifically via the Ehrenfest theorem, as shown above) minimizes

these issues and we have generally found that method to provide better convergence behavior with

respect to various numeric parameters, especially box size. The quality of the HHG spectrum using

the dipole velocity falls between the other two, but we have generally found its accuracy to be
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closer to calculations based on the dipole moment. Thus, we highly recommend the use of dipole

acceleration, even if adding it to a library appears complicated. For a thorough investigation and

discussion of more theoretical background, see [84].

Another potential issue can arise when a team is using multiple libraries since it is easy for

different definitions of parameters to come into conflict. Often, the results will only differ slightly,

making it feasible that the difference is intrinsic to methods rather than a result of miscommuni-

cation. A few examples:

• Is the “length of the box” defined by diameter or radius?

• How, exactly are the laser wavelength and frequency defined? For example, is the wave-

length exactly 800.0 nm or is the frequency set to 0.0570 a.u.?

• Is the duration of the pulse measured in FWHM (Gaussian) or full width (sine-squared)?

Are reported durations in fs rounded or does the pulse have a non-integer number of cycles?

• Is the laser field defined by an expression for electric field or for vector potential? The

difference introduces a CEP offset and frequency shift [85], both especially relevant for

short pulses. This is independent of gauge as the other field may be derived through

numeric or analytic differentiation/integration.

Lastly, one needs to be careful to ensure consistency of HHG calculations using the dipole

acceleration. Perhaps the simplest method is to pass the raw acceleration data through the same

plotting script. Otherwise, one needs to be aware of the following considerations:

• Is the acceleration windowed before applying the Fourier transform? If so, what window is

used?

• Are the Fourier transform conventions consistent? If not, an overall factor may appear.

• Do signals have consistent time sampling and padding? This is mostly a technical issue for

plotting, but important to consider when things go wrong.
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2.2.3 Multiple SAE-TDSE for larger atoms

Beyond the application for benchmark-testing TDDFT calculations, the present SAE poten-

tial can of course be applied for other studies as well. Recently, the influence of inner valence

shells on high harmonic generation has been studied [86–89]. The effects in the spectra are often

interpreted by multielectron or intershell correlation, so accurate single-active-electron calculations

can serve as a useful tool for comparison and, hence, identification of the correlation effects.

Using the potentials for neon, we have obtained high harmonic spectra from the outermost

2p shell (m = 0) and the inner 2s valence shell. In the calculations, we have applied a laser pulse

of 4 optical cycles at 800 nm and a peak intensity of 1014 W/cm2. Both spectra (cf. Fig. 2.5(a)

and (b)) show the characteristic features of an HHG spectrum with plateau and cut-off. However,

in both spectra there occurs a prominent peak between the 15th and 17th harmonic, at the energy

corresponding to the energy difference between the 2p and 2s states in our SAE potentials for neon.

The peak is an artifact of the SAE-TDSE calculations which allow for transitions between the sub-

shells, although they are filled in the real multielectron atom. However, the unphysical feature is

completely removed once the amplitudes for the processes driven from the two sub-shells are added

and the full HHG spectrum (Fig. 2.5(c)) is obtained. This is another indication of the accuracy

of the single-active-electron potentials obtained with the present method, which therefore can be

applied for single-active-electron reference calculations, e.g., for the identification of multielectron

correlation effects.

2.2.4 Notes on SAE for large atoms

For larger atoms, the above analytic form, Eq. (2.14), does not always capture the shape of

the DFT potential well. The resulting poor quality fits are generally easy to spot from the output

of the fitting function. A few red flags are:

• The error is much higher than for similar atoms.

• Parameter values fall very close to the limits of the parameter range.
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Figure 2.5: Results of SAE calculations for high-order harmonic spectra generated from (a) 2p-shell
and (b) 2s-shell in neon by a 4-cycle laser pulse at peak intensity of 1014 W/cm2 and wavelength
of 800 nm. The vertical dashed line indicates the 2s − 2p transition energy at which an artificial
peak occurs in the spectra from the two sub-shells, which is removed once the the amplitudes for
both processes are added (Panel (c)). (Taken from [1]).
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• Parameter values for different terms are close together, or nearly opposite. For example,

we have encountered cases where b1 ≈ b2 and a1 ≈ −a2.

• Correlations between terms are reported as 1.0.

• The uncertainty in fitted parameter values is high (esp. when > 100%).

• Other warnings from the program, such as “Reached maximum iterations without achieving

requested tolerance.”

Often, these issues can be resolved by modifying the fitting options, such as increasing the

allowed parameter ranges, the number of iterations, or the initial parameter guesses. But, when

problems persist, it is useful to reconsider the analytic form.

For our SAE potentials, we have identified a few species where the predicted number of

exponential terms overfits the data. Specifically, neutral Rubidium and Strontium (with 5s valence

shell) produce poor fits with five exponential terms. Aside from a high fit error, the corresponding

fits display nearly every red flag mentioned above. However, when fit with four exponential terms,

the issues disappear while the fit error remains reasonable. These are the fits reported in Table 2.2.

For the two largest atoms considered, cadmium and xenon, we encountered different behavior.

Namely, one of the “exponential” terms in fact fit to a constant (i.e., b1 = 0.00 with nonzero a1).

Interestingly, no other red flags appeared. Reducing the number of terms to four or three decreased

the fit accuracy but did not eliminate the constant terms. Physically, constant potential terms

are not reasonable but it is unclear whether the issue is related to the DFT potential or that our

analytic form is missing some characteristic of these large atoms.

2.2.5 Effects of manual SAE parameter modification

Since many previous SAE potentials have included manual modification of parameters to

match experimental ionization potentials, we briefly explore the effects of various modifications of

VSAE on a helium HHG spectrum. For this particular investigation, we included only the exchange
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terms in Eqs. (2.3-2.4):

vLDA−SICx,i,σ (r) = µLDAx,σ (ρ↑(r), ρ↓(r))− µLDAx,σ (ρi(r), 0)−
∫
ρi,σ(r′)

|r− r′|
dr′ . (2.22)

The resulting IP values are lower than those for the vxc functional by up to about 5%, and fitting

parameters also vary. However, we do not expect this to affect the manner in which HHG changes

as a function of parameter values.

To begin, we have investigated the effects of removing individual terms from VSAE and

modifying other parameters to keep IP constant. We have performed the matching on the actual

2D cylindrical grid used for HHG calculations, with radius R = 40 a.u., length L = 120 a.u., and

grid spacing dx = 0.1 a.u.. Due to limitations of convergence in this older code, IP = 0.9477 differs

from the converged value for the eigenstate of the potential, −0.918 (consistent for numeric Veff

and fitted VSAE , on the finer grid described in Sec. 2.1.4). We have determined the parameter

values necessary to match IP – to at least three decimal places – using a simple secant search.

In Table 2.7, we show six such parameter sets with parameters and eigenstate energies on the

cylindrical grid. The first three potentials share nearly identical energies for all states, while the

remaining three differ greatly (up to 140%), or lack bound excited states entirely.

In Fig. 2.6, we show HHG with a driving laser of 1015 W/cm2, 4 o.c., and 800 nm for each of

these potentials. The results are indistinguishable for the first three, so we merge the legend entries.

After the 80th harmonic, the spectra show decent agreement – despite significant alterations to:

the short- and long-range behavior of the potentials, and the excited state spectra. In this highly

non-perturbative (UPω = 38) and tunneling-dominated (γ = 0.47) regime, the value of the ionization

potential appears to be the sole target feature influencing the shape of higher harmonics. However,

radiation near and below the ionization threshold is strongly impacted by the atomic potential

(and, as discussed in Ch. 3, excited state spectrum). This is especially clear for the short-range

potential, YE-a, which lacks excited states. In this case below-threshold radiation is strongly

suppressed relative to the plateau harmonics, as well as compared to below-threshold radiation of

other potentials.
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Figure 2.6: Results of SAE calculations for high-order harmonic spectra generated in the inter-
action of a helium atom with a 4-cycle laser pulse at peak intensity of 1015 W/cm2 and central
wavelength of 800 nm. Each line represents results for an SAE potential defined in Table 2.7. The
black line corresponds to the original potential as well as two other potentials with indistinguishable
spectra. Vertical dashed lines denote the shared ionization potential (IP = 0.948 a.u.) and HHG
cut-off (8.0 a.u.). Results have been normalized to the intensity at the cut-off.
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Additionally, we have performed calculations in which we have varied the SAE potential

to match the experimental ionization potential. These HHG spectra (not shown) differed from

those in Fig. 2.6, but the areas of agreement between different potentials and qualitative differences

remained consistent. We note that the modified full potential produced indistinguishable state

energies and HHG regardless of whether the a, b, or c parameter was chosen for modification.

2.3 Molecular SAE2

Here, we extend the SAE formulation to the oxygen molecule for investigation of nonlinear

polarization and ionization. In particular, we collaborated with the group of M. Kolesik (University

of Arizona) in extending their previous applications of the Metastable Electronic State Approach

(MESA) [90] to O2. In a previous paper, their group investigated molecular nitrogen using multi-

electron calculations [91], but attempts to use a simplistic model potential for O2 did not achieve

the expected level of agreement with experimental data. Our construction of the molecular SAE

potential follows primarily the same procedure as that for atomic SAE potentials above.

The effective Kohn-Sham potential Veff,σ(r) = Vext(r) + VH(r) + Vxc,σ(r) is here calculated

using the Octopus code (our separate DFT implementation is limited to species with radial symme-

try) on a cylindrical 2D (ρ, z) grid with spacing 0.05 a.u. and length of 10 a.u. in both dimensions.

The VH + Vxc,σ terms have the same form as in Sec. 2.1.1 above, now with two Coulomb terms for

the interaction with the nuclei, so

Vext(r) = − 8

|r− r1|
− 8

|r− r2|
. (2.23)

As above, all core electrons are included in the calculations (i.e., no pseudopotential is used). Here,

the valence electrons are spin-polarized.

For the analytic form, we use a pair of radially-symmetric functions centered at each nucleus

plus a cylindrically-symmetric term along the molecular axis. This approximately captures the

details of the potential from the core and valence electrons while retaining a simple form. Thus,

2 The results of this Section are also presented in [5]
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for a molecule aligned with the o-axis, we fit an analytic potential of the form

V (o, p, q) = f
(√

(o− L/2)2 + p2 + q2
)

+ f
(√

(o+ L/2)2 + p2 + q2
)

+ g
(
o,
√
p2 + q2

)
, (2.24)

where L = 2.3 a.u. is the bond length,

f(r) = −C0

2r
− Zce

−r/c

2r
+ a1e

−r/b1 (2.25)

with the net charge seen by the active electron, C0 = Z − (Ne − 1) = 1 split evenly across the

two nuclei, as well as the shielded charge, Zc = Z − C0 = 15, where Z (Ne) is the total number of

protons (electrons) in the molecule, and

g(o, ρ) = de−(o/co)2−(ρ/cρ)2
(2.26)

with the parameters obtained from a least-squares fit, c = 1.326, a1 = 10.804, b1 = 0.466, co =

3.248, cρ = 2.778, and d = 1.643 (all in Hartree atomic units).

The radial functions f(r) are a truncated form of the above atomic SAE potentials, drop-

ping the second (n = 2) exponential term for efficient fitting. Note that the parameter definitions

are different from above (for one, nonlinear parameters are here given as distances). The addi-

tional cylindrical Gaussian term g(x, ρ) with three fitting parameters coarsely captures the effect

of molecular bonding orbitals.

The numerical effective Kohn-Sham potential from the Octopus code is fitted to the analytic

form (2.24) using a similar least-squares fitting procedure to that above. Fitting of the radial

term is facilitated by (Fourier) transforming the 2D potential to a radial form. This improves

the speed of the fit, but is not strictly necessary. The accuracy of the fit can be seen from the

comparison of the analytical SAE fit with the numeric DFT potential in Fig. 2.7. Shown are cuts

along (a) and perpendicular to (b) the internuclear axis, as well as the relative error as a function

of the coordinates (c). Since the electron-nucleus potential Vext is the same in the two forms of

the potential, we have excluded it from the visualization to enhance the comparison. We further

note that the ionization potential of the analytic fit (Ip = 0.43 a.u.) agrees well with that of the

Octopus calculations (IP = 0.40 a.u.).
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Figure 2.7: Top row: Comparison of the analytical SAE potential fit (dashed red line) and the
numeric DFT potential (solid black line) (a) along the molecular axis (ρ = 0) and (b) for a line
bisecting the molecular axis at the origin (o = 0). Bottom row: (c) Relative error between numeric
DFT potential and analytic SAE fit (Eq. (2.24)). Note that the error, within a range of ≈ 1.5 a.u.
from the nuclei, is ≤ 5% (Taken from [5]).
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L C0 Zc c co cρ d a1 b1

H2 1.4314 1 1 0.316 13.841 18.637 -0.162 1.205 0.497
O2 2.3000 1 15 1.326 3.248 2.778 1.643 10.804 0.466

Table 2.8: Parameters for molecular VSAE (Eq. (2.24-2.26)) obtained in analytical fits of single-
active-electron potentials for various molecules.

2.3.1 Potentials for other molecules

We have also begun to construct analytic fits to other molecules – thus far, H2 based on

Octopus DFT calculations completed by Lauren Bauerle. For this and later symmetric dimer

molecules, we use the same analytic form, Eq. (2.24-2.26). The fitting process is unchanged and

we achieve similar results. For future work on asymmetric dimers such as CO, we suggest several

modifications:

(1) Consider additional or different bridge terms gj .

(2) Utilize separate parameters (excl. bond parameters L, d, co, cρ) for each atom.

(3) Allow charge coefficients C0,i and Zc,i to vary in the fit, while retaining a fixed sum.

2.4 Summary

To summarize, we have presented analytical forms for atomic and molecular SAE potentials,

which are based on results of DFT calculations. The potential fits are shown to provide a good

agreement with the DFT results for the energy of the ground state as well as with experimental data

for the energies of ground and excited states, and inner shells, of different atoms and ions, without

any ad hoc adjustment of parameters in the analytical forms. Using the potentials, a benchmark

test between SAE-TDSE and TDDFT calculations has been performed and a remarkable agreement

throughout the whole HHG spectra at ultraviolet and visible wavelengths has been achieved. Since

the calculations are based on two different approaches and different numerical codes, the agreement

indicates the accuracy of the SAE potentials as well as the capability of TDDFT to provide reliable
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results for a nonperturbative, highly nonlinear process such as high harmonic generation in this

parameter regime. Additionally, results of SAE calculations for HHG spectra from different shells

in neon reveal an artificial large peak at the transition energy between the 2s and 2p-states, which

is removed once the amplitudes of the processes from the two sub-shells are added up. Finally, we

discuss construction of SAE potentials for a usage beyond HHG, in the nonlinear polarization and

ionization of O2.

2.4.1 Usage in other work

In addition to projects with my direct involvement (above), other members of our group

successfully use the generated potentials for a variety of investigations, including on EUV ionization

of helium [92] and IR ionization of alkali and alkaline earth metals [93]. With the recent publication

of parameters and demonstrated agreement in helium HHG, we contribute to an ongoing discourse

on HHG from more complex atoms and molecules, including the first external citation [94].



Chapter 3

Resonance-Enhanced High-order Harmonic Generation

In the near-threshold region of the spectrum, off-harmonic spectral features, red-shifted with

respect to the harmonics, have recently received new attention in experiment and theory [39, 95–

101], since they cannot be interpreted using the standard three-step picture of high-order harmonic

generation. Instead, different interpretations based on resonant excitation followed by free induction

decay [39, 96, 99], resonant enhanced harmonic generation [100], as well as population of excited

states through frustrated tunneling ionization followed by free induction decay [101], have been put

forward.

In this Chapter, we investigate this spectral region with a particular focus on a set of radiation

features we associate with enhancement by the field-shifted 9ω → 3p resonance in hydrogen atoms.

In Sec. 3.1, we introduce this feature through spectral results for an illustrative case, and discussion

of variations within the parameter space. Sec. 3.2 summarizes the prior work and semi-classical

trajectory hypothesis of another group. We then demonstrate a method for identifying and verifying

radiation associated with enhancement from a particular resonance and its associated delay(s) in

Sec. 3.3 before applying these insights to several distinct features, which appear across a wider

range of driving intensities (Sec. 3.4). Next, in Sec 3.5 we return to the trajectory hypothesis and

demonstrate that it explains some but not all observations. In Sec. 3.6, we investigate deviations

from our model by keeping our core feature (resonance time) constant through simultaneous scans

across multiple parameters. In the remaining Sections, we provide a brief discussion of results in

the distinct parameter regimes of: short and very long pulses (Sec. 3.7), the helium atom driven
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by a 400 nm laser (Sec. 3.8.1), and hydrogen atoms driven by a mid-infrared pulse (Sec. 3.8.2).

Finally, we provide a summary and discussion of future prospects in Sec. 3.9.

3.1 Spectral features

In Fig. 3.1, we show an example of a spectrum with harmonic peaks at ω, 3ω, 5ω, 7ω, and

11ω, in which the radiation near the 9th harmonic is strongly suppressed relative to both nearby

frequencies and neighboring harmonics. Additionally, there is an extra peak below the 7th harmonic

(near the 1s→ 2p transition energy of 6.58ω) with similar intensity. These radiation features occur

during the pulse, and do not have the narrow width characteristic of field-free decay from excited

states (cf. Fig. 1.7).

In order to gain further insights we have performed a series of calculations, for different peak

intensities, in which the wavefunction has been propagated during the pulse and over a period of

four times the pulse duration after the pulse. The results are shown in Fig. 3.2 as a function of

peak intensity. It is seen that the spectral structure below the 9th harmonic, observed in the results

shown above, is present over a certain range of intensities at about 3.8×1013 W/cm2. However, the

structure can be clearly distinguished from the free induction decay lines arising due to population

of excited states after the pulse ends – in Fig. 3.2(b) denoted and marked by red dashed lines.

In Fig. 3.3, results from similar sets of calculations varying driving laser wavelength (top

panel) and pulse duration (bottom panel) reinforce this conclusion, while highlighting trends in the

energy of the off-harmonic peaks. As either parameter is decreased, the side peaks clearly separate

further from 9ω. For shorter wavelengths (than about 790 nm), the 9ω radiation is dominant, but

the sidebands are still present. For the shortest pulses (less than about 7 o.c.), other structures

appear more intensely than both on-harmonic radiation and the feature present at longer durations.

Comparing spectral intensity and phase as a function of intensity in Fig. 3.4, the off-harmonic

feature appears to have less phase variation than the weaker lower-energy features, and to be related

to the on-harmonic emission at higher intensities. Combined with its significant strength within a

moderate volume of parameter space, one would expect the off-harmonic radiation to be visible in
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Figure 3.1: High harmonic spectrum generated in atomic hydrogen, exhibiting a rich structure in
the near-threshold region of the spectrum between harmonics 5 and 12. The hydrogen ionization
threshold of 0.5 a.u. = 8.77ω, where ω = 0.057 a.u. corresponds to the central driver wavelength
of 800 nm. Other laser parameters: sin2 pulse of 20 optical cycles with peak intensity of 3.8 ×
1013 W/cm2. Note that the intensity of the spectrum is scaled by the signal at the fundamental
frequency.
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Figure 3.2: HHG spectra as a function of peak intensity for (top) radiation during the pulse (as
in Fig. 3.1) and (bottom) for propagation of the wavefunction over a period of four times the
pulse duration after the end of the pulse. Results for each intensity have been normalized to the
maximum signal in the region between 8.75ω and 9.5ω. Red dashed lines denote field-free excited
state transition energies.
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Figure 3.3: HHG spectra as (top) a function of the driving wavelength at Nτ = 20 o.c., and (bottom)
a function of pulse duration at λ = 800 nm. For both plots, driving intensity I0 = 3.8×1013 W/cm2.
Results include spectral contributions (free induction decay) for propagation of the wavefunction
over a period of four times the pulse duration after the end of the pulse. Results for each wavelength
(top) or each duration (bottom) have been normalized to the maximum signal in the region between
8.75ω and 9.5ω. Red dashed lines denote field-free excited state transition energies.
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experiment (this is further supported by macroscopic calculations in Sec. 4.4.2).

3.2 Resonantly-initiated quantum trajectories

A similar structure in HHG from argon was previously explained by Camp et al. in Ref. [100]

via trajectories initiated by a resonantly-enhanced response through Stark-shifted excited states.

In pulses of moderate duration (e.g., 20 o.c.), the envelope varies slowly enough to consider

adiabatically-shifting states, but rapidly enough that the envelope cannot be considered constant

over the scale of the travel time of an HHG trajectory. Assuming that excited states shift with

UP (t) = | ~E(t)|2
4ω2 as described in Sec. 1.3, the resonance condition for sin2 pulses is given by:

I

4ω2
cos4

(
±Trπ
Nτ

)
= Nγ − (En − E0) , (3.1)

where Tr is the resonance time in o.c. relative to the envelope peak, Nγ is the number of photons

to be absorbed for the transition, En is the field-free energy of the resonant state, I is the peak

laser intensity, ω is the central frequency, and Nτ is the pulse duration (full width) in o.c.. In

their analysis, the radiation occurred at a specific delay after the resonances, td, measured in

optical cycles, dependent on the particular resonance but not on laser parameters. This delay was

attributed at least partially to the time associated with a semi-classical trajectory.

Camp et al. then claim the slope of the laser envelope is imprinted through the phase αUP /ω,

which depends on time of recombination – thus resulting in a red-shift (blue-shift) when recombi-

nation occurs on the falling (rising) side of the pulse:

∆ω = α
dUP /ω

dt

∣∣∣∣
t=±Tr+td

(3.2)

The scale of the phase is left as a free parameter, α, used to fit the predicted shift to the

observed radiation. We note that two other parameters – the degree of state shift as a fraction of UP ,

and delay between resonance and emission – are modified to achieve agreement between temporal

profiles of radiation and the predicted emission time. The values of these free parameters are

justified as falling roughly within the range of previous studies (esp. on semi-classical trajectories).
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Figure 3.4: HHG spectral (top) intensity and (bottom) phase as a function of peak intensity for
radiation during the pulse (other parameters as in Fig. 3.1).
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Our own investigations, below, confirm the association of temporal radiation with delays

after field-induced resonances (without by-hand modification – setting ∆E = UP (t)). However, in

Sec. 3.5, we find features not explained by the ∆ω prediction and present results suggesting that

semi-classical trajectories do not apply at the parameters of our primary attention (specifically,

intensities roughly at and below 3.8×1013 W/cm2). Interestingly, we do find evidence of trajectory-

like radiation at higher intensities.

3.3 Identifying resonances with temporal profiles

By windowing the spectrum and inverse-Fourier transforming, we may analyze the temporal

profile of particular harmonics. Here, the dipole acceleration is first Blackman-windowed and then

a flat-top spectral window of width 2ω with Gaussian fall-off of width 0.2ω is applied. We identify

resonance times as a function of laser parameters according to Eq. (3.1). In the Figures below, we

draw these as lines connecting the times for discrete values of a scan. This generally leads to gaps

near the point where rising- and falling-side resonances meet (e.g., when the exactly-resonant peak

intensity condition is not sampled), but allows for marking resonances on arbitrary scans of one or

more parameters.

A central benefit of these visualizations is the ability to match radiation features to particular

resonance features. This is done by comparing the timing of radiation to that of various resonances.

While several resonances may occur during a given pulse, we will generally be able to identify a

single specific resonance as only this one will consistently follow the timing of the radiation across

all parameter scans (and usually just 1-2 scans are sufficient). We then denote these resonances as

Nγω → |n〉 – for example, 9ω → 3p. Additionally, we often include the delay between resonance

and radiation, td, in optical cycles and which side of the envelope peak the resonance occurs, in

phrases such as: rising 9ω → 3p +1.8 o.c. or falling 9ω → 3p +0.5 o.c.. For the radiation features

in Figs. 3.1-3.3, we will now outline the steps of identifying the associated resonance (9ω → 3p) and

delays (0.5, 1.8, 3.0 o.c.). In later sections, we primarily present the results of this process, where

associated resonances and corresponding delays have already been identified.
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To begin, it is useful to plot a temporal profile scan as a function of driving pulse duration

Nτ , as shown in Fig. 3.5. In these scans, most dimensionless parameters (UP /ω, IP /ω, HHG cut-off,

etc.) remain constant, as does the set of resonances which occur during the pulse. The timing of

resonances Tr does change, as measured in optical cycles or absolute time (e.g., fs), though not in

fractions of the pulse duration. In Fig. 3.5, we identify four temporal features of the 9th harmonic.

This radiation is primarily generated through a feature on the trailing end of the pulse. A somewhat

weaker contribution occurs on the rising edge, which seems to merge with the strong feature in the

trailing part for short pulses. Additionally, for longer pulses (more than about 8 and 15 cycles,

respectively) there are two additional radiation features close to the pulse peak, varying in relative

intensity as a function of pulse duration (strongest near Nτ = 15 and 25 o.c., respectively). To the

eye, the slopes of all these features in the Figure, except for the strong feature on the trailing edge,

appear to be similar.

Next, in Fig. 3.6(a), we indicate the resonance times Tr for different transitions via dashed

lines in the same plot as shown in Fig. 3.5. According to Eq. (3.1), Tr is proportional to the cycle

duration Nτ . Therefore, resonances appear as straight lines with slopes depending on the resonance

chosen (and the other, fixed, laser parameters). As such, it is fairly simple to check which resonance

lines match the slope of radiation features and identify the delay td. In this case, the central six

lines – (9ω → 4p), (9ω → 3p), (8ω → 2s), rising and falling – seem promising as matches to the

slopes of the various radiation features. Upon checking, it becomes obvious that 9ω → 3p agrees

quite well with all features, while the other resonances do not. At the same time, it is possible to

estimate the delays between this resonance and the radiation, finding td ≈ 0.5, 1.8, 3.0 o.c..

In Fig. 3.6(b), we draw only the 9ω → 3p resonances, with delays td. Contrary to our

expectations, it appears the rising 9ω → 3p resonance produces radiation at three distinct delays.

While the difference between the consecutive delays (∆td = 1.3 and 1.2 o.c.) is approximately equal,

our investigations have uncovered no further examples to mark this as more than a coincidence.

(For example, we have not found radiation matching 9ω → 3p + 4.25 o.c., nor other resonances

associated with radiation at more than a single delay.) As a side note, the unexpected result of these
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multiple delays led us through a detour investigating the effects of pulse envelope and radiation in

longer pulses, which will be discussed in Secs. 3.5.1 and 3.7, respectively.

After identifying the resonance and delays associated with the radiation features in the present

results, we verify our conclusions by scanning other parameters. Firstly in Fig. 3.7, we present re-

sults obtained by varying the driving intensity. In this case, the only dimensionless parameter to

remain constant is the energy (in ω) of field-free ionization (IP /ω) or excitation (En/ω). Addition-

ally, the resonance condition Eq. (3.1) is achieved at different times with a dependence on intensity

that is not linear (namely, ∝ acos
(√

I
)

). Again, in Fig. 3.7(b) we see good agreement with the

rising 9ω → 3p resonance delayed as above. The falling resonance appears to have the correct

shape, but appears slightly later than a delay of td = 0.5 cycles.

Next, we scan the driving wavelength (results in Fig. 3.8); the conclusion is similar, though

the width of the scan window is larger, so we see more different features. Generally, radiation

features appear at certain times (0-2 o.c. after the peak of the pulse) then a split occurs at

larger wavelengths. The dependence is clearly nonlinear (and without a familiar analytic form; see

Eq. (3.1)). Usually – but not always – the falling-edge radiation is somewhat more intense than the

rising-edge. Again, the best/only resonance candidate for the emitted radiation for wavelengths

near 800 nm is 9ω → 3p, with fairly good agreement (incl. offset). For other wavelengths, some

features show similar bowl-like structure, while others have a zig-zag pattern of radiation time w.r.t

wavelength.

An additional parameter accessible for variation in computation but, in general, not in ex-

periment is the atomic potential. In Sec. 3.8.1, we will consider helium atoms in the single-active-

electron approximation, but this introduces many differences since the form of the potential changes

(affecting different states differently) and equivalent dimensionless parameters require moving to a

different wavelength and intensity region. Instead, here we consider continuous variations from the

hydrogen atom case by altering the nuclear charge, Z, without other modifications. This results in

the single effect that all transition energies scale by Z2. We expect 1s→(field-free-)continuum and

1s → 3p to have the greatest impact here, but cannot necessarily parse out the consequences of
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Figure 3.5: Temporal profile of radiation within 1ω of the 9th harmonic as a function of pulse
duration in atomic hydrogen for an 800 nm, 3.8× 1013 W/cm2 pulse. For each duration the results
have been normalized to a maximum of 1 for sake of comparison. A vertical dashed line denotes
the peak of the laser and a horizontal dashed line identifies the pulse parameters used as a base in
this Chapter (i.e., 20-cycle duration).
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Figure 3.6: Same as Fig. 3.5, but overlaid with lines denoting: (top) resonance times for 7- (ma-
genta) and 8- or 9- (white) photon resonances (there are no resonances with a smaller or larger
number of photons involved for these parameters) for 2s − 6p, and (bottom) 9ω → 3p resonances
delayed by 0.5 (solid), 1.8 (dashed), and 3.0 (dotted) optical cycles.



70

Figure 3.7: Temporal profile of radiation within 1ω of the 9th harmonic as a function of driving
pulse intensity in atomic hydrogen for an 800 nm, 20 o.c. pulse. For each intensity the results
have been normalized to a maximum of 1 for sake of comparison. A vertical dashed line denotes
the peak of the laser and a horizontal dashed line identifies the pulse parameters used as a base
in this Chapter (i.e., 3.8 × 1013 W/cm2 intensity). Panels show identical radiation data, but the
lower is overlaid with lines denoting 9ω → 3p resonances delayed by 0.5 (solid), 1.8 (dashed), and
3.0 (dotted) optical cycles.
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Figure 3.8: Temporal profile of radiation within 1ω of the 9th harmonic as a function of driving
wavelength in atomic hydrogen for a 20 o.c. pulse at 3.8× 1013 W/cm2. For each wavelength the
results have been normalized to a maximum of 1 for sake of comparison. A vertical dashed line
denotes the peak of the laser and a horizontal dashed line identifies the pulse parameters used as a
base in this Chapter (i.e., 800 nm wavelength). Panels show identical radiation data, but the lower
is overlaid with lines denoting 9ω → 3p resonances delayed by 0.5 (solid), 1.8 (dashed), and 3.0
(dotted) optical cycles.
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other state shifts. We note that the field-shifted transition energies do not scale in this same way

since UP does not depend on the potential of the target.

The results of the respective scan are shown in Fig. 3.9, and we see a variety of features quite

similar to those present in the wavelength scan in Fig. 3.8. Again, there are a number of “bowl”

features which match the shape of resonance lines, as well as a few zig-zags that do not. The initial

parameters (Z = 1, λ = 800, and I = 3.8× 1013 W/cm2) all seem to place us just at the transition

point between dominance of two different features, associated with the falling 9ω → 3p + 0.5 o.c.

and the rising 9ω → 3p + 3.0 o.c. delayed resonance lines.

From these scans, we conclude the identified resonances are correct, and the delays at least

are approximately correct (the falling-side delay consistently appears to be slightly longer than 0.5

cycles, but for now we leave the rising/falling delays equal). Further off of the base parameters,

some of the radiation diverges slightly from the 9ω → 3p predictions, while other features clearly

do not correspond to it at all. The deviations are explored in Sec. 3.6, while other resonances may

be identified using the process outlined above for different base scan intensities.

3.4 Radiation at other driving intensities

While Figs. 3.2 and 3.7 show how the generated radiation varies close to 3.8× 1013 W/cm2,

it is also valuable to consider a broader range in intensities. In Fig 3.10, we plot the spectrum for

driving intensities ranging from 0.5− 9.0× 1013 W/cm2. From this scan we identify and select five

intensities of particular interest (vertical white lines):

• 2.0 × 1013 W/cm2: Here are radiation features near 9ω similar to the case of 3.8 × 1013

W/cm2, studied previously. However, there is additional strong radiation in the region of

the Rydberg state transition energies.

• 3.0× 1013 W/cm2: A “normal” case where the harmonic radiation at 9ω clearly dominates

over any off-harmonic radiation.

• 3.8× 1013 W/cm2: The case we have investigated most closely, where radiation just below
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Figure 3.9: Temporal profile of radiation within 1ω of the 9th harmonic as a function of atomic
nuclear charge Z in a hydrogen-like atom for an 800 nm, 20 o.c. pulse at 3.8 × 1013 W/cm2. For
each Z the results have been normalized to a maximum of 1 for sake of comparison. A vertical
dashed line denotes the peak of the laser and a horizontal dashed line identifies the pulse parameters
used as a base in this Chapter (hydrogen, i.e., Z = 1). Panels show identical radiation data, but
the lower is overlaid with lines denoting 9ω → 3p resonances delayed by 0.5 (solid), 1.8 (dashed),
and 3.0 (dotted) optical cycles.
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Nγω → |n〉 td (o.c.) line style

9ω → 3p 0.5 white solid
9ω → 3p 1.8 white dashed
9ω → 3p 3.0 white dotted

10ω → 4s (or 4d) 0.5 magenta
10ω → 3s (or 3d) 1.2 red
9ω → 2p 0.8 cyan
7ω → 2p 0.8 yellow
9ω → 6p (or 6f or 6h) 0.8 green

Table 3.1: Identified resonances, delays, and line styles. We note that due to l-independent energies
in hydrogen atoms, some of the resonances can be ascribed to different states with the same l parity,
namely: 3s and 3d, 4s and 4d, 6p and 6f or 6h.

and above 9ω dominates over that at the harmonic.

• 5.6 × 1013 W/cm2: Similar features to the radiation generated at 3.8 × 1013 W/cm2, but

with strong and clearly-separated sidebands well above and below 9ω.

• 7.0×1013 W/cm2: Here, again the radiation emitted at 9ω dominates, but weaker sidebands

are still present.

For each of these base intensities we have performed the same process to identify resonances

and delays. As above, we generally have considered – in order – scans across pulse duration,

driving intensity, and driving wavelength. From each scan, we can eliminate potential resonances

which do not match the shape of the radiation curves, while estimating delays for the remaining

possibilities. Through this, we identified resonances and delays, accounting for most of the clear

radiation structures. In the Figures below, we plot all identified resonance-delays, labeled by

resonance and denoted by color defined in Table 3.1. As mentioned above, 9ω → 3p is the only

resonance for which we have identified multiple delays, differentiated by line style.

First, in Figs. 3.11 and 3.12, we show scans of pulse duration for each chosen intensity. As

above, all resonance conditions are straight lines versus pulse duration, so it is simple to identify

radiation connected to resonances. As in Fig. 3.5, which radiation feature is dominant often depends

on pulse duration. However, we are not able to identify a systematic rule or trend for this variation.

We note a plotting artifact visible in some figures (esp. in the lower part of Fig. 3.11’s top panel):
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Figure 3.10: HHG spectra as a function of peak intensity for radiation during the pulse. Results
for each intensity have been normalized to the maximum signal in the region between 8.75ω and
9.5ω. Red dashed lines denote field-free excited state transition energies.
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As a function of duration, it appears that radiation rapidly transitions between peaks and nodes.

This is a result of relatively coarse sampling, not a physical effect – radiation is slice-normalized for

each sampled duration, but smoothing in the Figure interpolates lower values for pixels between

actual data.

For 2.0 × 1013 W/cm2 (Fig. 3.11 top), a duration-independent radiation feature just after

the peak of the pulse dominates. This feature corresponds to the “normal” harmonic emission at

9ω, without resonant enhancement. However, for all durations, there are two additional duration-

dependent radiation features visible, which we identify to correspond to rising and falling reso-

nances. Specifically, the 7ω → 2p + 0.8 o.c. (yellow) and 9ω → 6p + 0.8 o.c. (green) delayed

resonances both agree well with these features on both the rising and falling sides (incl. across other

scans, see below). From the present results, we can however not determine conclusively which one

(or both) is the origin of the generated radiation. We note that the same resonances occur at all

higher intensities, but are in the rising and falling edge of the pulse far from the peak and in those

cases they do not appear to provide significant radiation.

In the spectra at 3.0 × 1013 W/cm2 (Fig. 3.11 bottom) the dominant radiation occurs just

after the peak of the pulse for durations up to about 15 o.c., then it shifts to earlier times with

increase of the pulse duration. This suggests that resonances do not play a strong role for shorter

pulses at this intensity. We have not definitively identified a resonance associated with the longer-

pulse radiation. There is some agreement (across different scans) with a much larger delay of

the resonances identified at the lower intensities (7ω → 2p and 9ω → 6p), specifically 4.3 o.c..

Unfortunately, the agreement is generally good only in small portions of each scan near the base

parameters (800 nm, 20 o.c., 3.0× 1013 W/cm2). Unlike the delayed resonances listed in Table 3.1,

here the features do not correspond with radiation in different and broader scans (for example, in

Fig. 3.12, we do not identify radiation features with the same slopes as the green/yellow lines at

later delays).

For 5.6×1013 W/cm2 (Fig. 3.12 top), there are two primary radiation structures corresponding

to the 10ω → 4s + 0.5 o.c. delayed resonance (magenta), but other structures are also present.
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Firstly, unlike for 3.8 × 1013 W/cm2, there are particular times (separated by 0.5 o.c.) when

radiation is emitted regardless of pulse duration. The intensity of this radiation increases strongly

when it coincides with resonance lines (esp. 10ω → 4s). This suggests a combined influence of the

field and envelope, which we will further investigate in Sec. 3.5. We note also the presence of other

resonance lines. Rising 9ω → 3p + 1.8 o.c. may be responsible for broadening and “smearing” the

rising radiation feature, and weaker features line up with other resonances.

Finally, at 7.0× 1013 W/cm2 (Fig. 3.12 bottom) we can see a single strong radiation feature

corresponding to rising 10ω → 3s + 1.2 o.c. (red) and 9ω → 2p + 0.8 o.c. (cyan) resonances, but a

great deal of weaker radiation features are also present. Similarly to 5.6× 1013 W/cm2, radiation

is enhanced at particular times, but the effect is not as sharp.

In Fig. 3.13, we present the temporal profile of radiation for the full intensity range. Before

considering individual radiation features, we may make some general observations. As for intensities

near 3.8×1013 W/cm2, the radiation appears in several “bowl” shapes centered just after the peak

of the pulse. For lower intensities ( / 5 × 1013), the structure of radiation tends to be smoother

and be strongest within the first three cycles after the peak of the pulse. At the higher intensities,

other structures are visible (e.g., discrete radiation times independent of intensity). Similarly, we

observe more complexity in radiation structures occurring after the peak of the pulse compared to

those before the peak.

With good agreement we have included identified resonances and delays in Fig. 3.13 (bottom

panel), which clearly explain the majority of radiation features. In regions where two or more

delayed resonances overlap, the radiation features broaden, but the number of resonances does not

appear to predict which radiation will dominate (cf. the 5− 6× 1013 W/cm2 range).

Scanning the wavelength for each of the four intensities (Figs. 3.14 and 3.15) serves as an

important additional check in resonance identification since the timing has a more complex depen-

dence than in either the intensity or duration scans. In general, the agreement is quite good within

a range of 50 nm centered about 800 nm. Beyond this range, there are radiation features which

appear to correspond to unidentified resonances. In other cases identified resonances seem to have
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Figure 3.11: Temporal profile of radiation within 1ω of the 9th harmonic as a function of pulse
duration in atomic hydrogen for an 800 nm pulse at (top) 2.0×1013 W/cm2 and (bottom) 3.0×1013

W/cm2. For each duration the results have been normalized to a maximum of 1 for sake of
comparison. A vertical dashed line denotes the peak of the laser and a horizontal dashed line
identifies the pulse duration used as a base in this Chapter (i.e., 20 o.c.). Lines are drawn for
delayed resonances as outlined in Table 3.1.
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Figure 3.12: Same as Fig. 3.11, but for (top) 5.6× 1013 W/cm2 and (bottom) 7.0× 1013 W/cm2.
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Figure 3.13: Temporal profile of radiation within 1ω of the 9th harmonic as a function of driving
pulse intensity in atomic hydrogen for an 800 nm, 20 o.c. pulse. For each intensity the results have
been normalized to a maximum of 1 for sake of comparison. A vertical dashed line denotes the
peak of the laser and horizontal dashed lines identify the intensities selected above. (lower plot)
Lines are drawn for delayed resonances as outlined in Table 3.1.
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the correct behavior with changing wavelength, but occur at larger wavelengths than the corre-

sponding radiation (i.e., lines appear at vertical offsets from radiation peaks). Identifying these

additional resonances would require more simulations (e.g., scanning various parameters around a

base pulse of 700 nm and 2.0× 1013 W/cm2 or 875 nm and 5.6× 1013 W/cm2). Deviations in the

already-predicted resonances are more interesting, potentially highlighting approximations in our

model; we will therefore investigate these in Sec. 3.6.

3.5 CEP and the trajectory model

Previously, Camp et al. [100] ascribed similar features to resonantly-initiated trajectories,

and described their free parameters as falling within the range of predictions from the group’s

earlier semi-classical trajectory calculations in [41]. Using a classical trajectory code based off the

description in this paper, we however did not find consistent initial conditions leading to trajectories

of the correct durations (0.5, 1.8, 3.0 o.c.) for our radiation at 3.8× 1013 W/cm2.

We have also tested the semi-classical model based on the following considerations. If semi-

classical trajectories are involved in the observed radiation, we would expect a clear dependence

of the radiation features on the carrier-envelope phase (CEP) since in any semi-classical trajectory

model, field values between ionization and recombination times will determine the travel time and

recombination energies possible. In “normal” HHG, the timing of radiation at a given energy

is constrained by the phase of the laser at time of ionization. Further, in the tunneling regime,

the field strength at moment of ionization determines both the ionization probability and the

initial parameters of trajectories (location of the tunnel exit). In a theoretical study where time

of ionization was gated by application of a second, VUV laser, field values at the moment of

ionization continued to strongly impact the spectral and temporal character of HHG [102]. Results

from a generalized semi-classical trajectory model mimicking trajectories initiated by multiphoton

ionization showed a dependence at least on the direction of the field, differentiating “uphill” and

“downhill” trajectories [41].

In Fig. 3.16, we investigate the CEP dependence for two intensities – (top panel) 3.8 ×
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Figure 3.14: Temporal profile of radiation within 1ω of the 9th harmonic as a function of driving
pulse wavelength in atomic hydrogen for a 20 o.c. pulse at (top) 2.0× 1013 W/cm2 and (bottom)
3.0 × 1013 W/cm2. For each wavelength the results have been normalized to a maximum of 1 for
sake of comparison. A vertical dashed line denotes the peak of the laser and a horizontal dashed
line identifies the laser wavelength used as a base in this Chapter (i.e., 800 nm). Lines are drawn
for delayed resonances as outlined in Table 3.1.
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Figure 3.15: Same as Fig. 3.14, but for (top) 5.6× 1013 W/cm2 and (bottom) 7.0× 1013 W/cm2.
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1013 W/cm2, and (bottom) 5.6 × 1013 W/cm2 – and discover an interesting contrast. For the

lower intensity, radiation appears to be completely independent of CEP, consistently agreeing with

delayed resonance times. This suggests that the semi-classical trajectory model is not applicable

here. However, for the higher intensity, we see a clear effect, where the timing of the dominant

radiation peak shifts linearly with CEP. As in earlier scans, the radiation is strongest at discrete

times (every half-cycle) especially when close to the timing of the delayed resonance (falling 10ω →

4s + 0.5 o.c.). While in previous scans, these discrete times were fixed, here they shift in the same

way as the electric field, with a slope of 0.5 cycles per π-phase shift. The consistent timing of

radiation – independent of resonance enhancement to its intensity – suggests similarity between

multiphoton- and tunnelling-initiated trajectories at this intensity. Further study at the higher

intensities will be necessary to verify this observation.

Thus, at lower intensities (3.8 × 1013 W/cm2, as well as 2.0 and 3.0 × 1013 W/cm2, not

shown), this resonant radiation appears to be fully controlled by the laser envelope independent of

the specific phase of the electric field. In contrast, at higher intensities (5.6 and 7.0×1013 W/cm2),

there is an interplay between the envelope effect (resonance time) and the field effect (trajectories

and/or time of tunnel ionization). We however also note that the Keldysh parameter, typically

used to separate multiphoton (γ > 1) from tunneling (γ < 1) behavior, falls in the multiphoton

regime for all intensities – γ = 1.7 at 3.8× 1013 W/cm2 and γ = 1.4 at 5.6× 1013 W/cm2.

In Fig. 3.17, we apply the frequency-offset prediction of [100] (Eq. (3.2)) with α = 2π for

scans of intensity and wavelength. We observe good agreement for certain features (e.g., red-shifted

radiation near 6 × 1013 W/cm2). However, the model does not well account for the majority of

blue-shifted radiation – especially that near 2× 1013 W/cm2 – which displays a clear left-opening

shape in contrast to the right-opening predictions.

3.5.1 Varying pulse envelope

In seeking to parse the effect of the field at the time of resonance versus the time of radiation,

we additionally vary the envelope of the electric field. Specifically, we steepen either the rising or
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Figure 3.16: Temporal profile of radiation within 1ω of the 9th harmonic as a function of driving
pulse CEP in atomic hydrogen for an 800 nm, 20 o.c. pulse at (top) 3.8×1013 W/cm2, and (bottom)
5.6× 1013 W/cm2. A vertical dashed line denotes the peak of the laser and horizontal dashed lines
identify the CEP shown in other scans (φ = π/2). Lines are drawn for delayed resonances as
outlined in Table 3.1.
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Figure 3.17: HHG spectra as a function of (top) peak intensity at λ = 800 nm and (bottom)
driving wavelength at I = 3.8 × 1013 W/cm2, in atomic hydrogen for a 20 o.c. pulse. We applied
a Blackman window to dipole acceleration, and results for each intensity (top) or each wavelength
(bottom) have been normalized to the maximum signal in the region between 8.75ω and 9.5ω.
Overlaid curves denote the ∆ω prediction, Eq. (3.2), for (top) delayed resonances as outlined in
Table 3.1 and (bottom) 9ω → 3p resonances delayed by 0.5 (solid black), 1.8 (dashed black), and
3.0 (dotted black) optical cycles.



87

falling half of the envelope by using higher powers of the sine function – sin4, sin6 or sin8 rather

than the standard sin2. We note that these even-integer powers retain necessary continuity and

differentiability. Varying the envelope serves also as a tool for identifying resonance delays, and

was valuable in the initial identification of the 9ω → 3p resonance and delays.

In Fig. 3.18, we plot temporal profiles for various envelopes. We note that plotting of this

discrete scan differs from other Figures, with results for each envelope appearing as an independent

horizontal bar. We first observe that the most intense (last) feature is minimally affected (timing

or intensity) by modification of the rising side of the pulse, but shifts earlier when the falling side

steepens. Likewise, the earliest feature is unaffected by the falling side (as required by causality)

but shifts later as the rising side steepens. Considering the second feature – which occurs right at

the peak of the pulse for sin2 ramp-up – we see it shifts in time similarly to the first, with a slight

increase in intensity for envelopes with steeper rise. Finally, the third feature’s (most noticeable for

the original sin2 envelope) position does not change when the back of the pulse steepens, but shifts

later (merging with the fourth) as the front of the pulse steepens. The intensity of the third feature

does not appear to change greatly, but it is difficult to distinguish from the fourth feature for both

steepest envelopes. In summary, the character of the earliest three radiation features appears to be

controlled by the rising side of the pulse, including the feature occurring a full cycle after the peak.

3.6 Deviations from predicted resonance times

In various scans above, we noted that the observed radiation features generally fit well with

predictions of delayed resonances, but that the two sometimes disagreed somewhat for parts of the

scan. Thus, we sought to further test the consistency of these delays. A simple way to do this is to

choose a particular resonance and fix the resonance time, Tr (in cycles from peak) across scans. One

would then expect that the respective radiation feature will occur along vertical lines on temporal

profile scans, thus clearly highlighting potential deviations and trends.
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Figure 3.18: Temporal profile of radiation within 1ω of the 9th harmonic for a selection of electric
field envelopes (horizontal bars) in atomic hydrogen for an 800 nm, 20 o.c. pulse at 3.8 × 1013

W/cm2. We note that the results have not been normalized. A vertical dashed line denotes the
peak of the laser. The center bar corresponds to the sine-squared envelope used elsewhere in this
thesis. In the lower panel, lines are drawn for delayed resonances as outlined in Table 3.1.
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To this end, we again consider the resonance condition

I

4ω2
cos4

(
±Trπ
Nτ

)
= Nγ − Z2(En − E0), (3.3)

as in Eq. (3.1). Here, we however fix Ei as the hydrogen atom energies but allow variation of the

Coulomb charge, Z. In order to keep Tr fixed, it is required to vary multiple parameters together.

Still, many different variations are possible within the parameter space. To constrain our investiga-

tion, we vary pairs of continuous parameters: pulse duration in cycles (Nτ ), Coulomb charge (Z),

wavelength (λ ∝ 1/ω), and intensity (I). We did not vary the envelope shape since only discrete

sin2n envelopes are viable, and excluded the CEP as a parameter since it does not affect resonance

time or – as shown previously – radiation at low peak intensities. These considerations result in six

distinct scans for each resonance (defined by fixing Nγ and En), where we scan one parameter over

a certain range while changing the second parameter accordingly to keep Tr constant, as described

in Table 3.2. The parameter range is chosen such that the HHG cut-off at IP + 3.17UP remains

consistently larger than 10ω.

3.6.1 Deviations in radiation features around 9-photon resonance to 3p state

To investigate the 9ω → 3p resonance, we consider scans in the parameter subspace defined

by Nγ = 9, En = E|3p〉 = −0.056 a.u., and Tr = 2.0 o.c., which includes our primary case of

investigation analyzed in detail above, i.e., I0 = 3.8× 1013 W/cm2, λ0 = 800 nm (ω0 = 0.057 a.u.),

Nτ,0 = 20 o.c., Z0 = 1. As mentioned above, by scanning along a variety of curves with constant Tr,

we intend to identify the stability of radiation features as well as the potential effects of the three

dimensionless parameters. In particular, all scans shown in Table 3.2 have the common signature

that z = UP
ω decreases or remains fixed along the scan, while there are different trends for IP

ω and

UP
IP

.

First, we demonstrate the importance of dimensionless parameters by considering a three-

parameter scan which keeps simultaneously constant all of: UP
ω ,

IP
ω ,

UP
IP
, and Tr for each of the

resonances. We do this by scanning Z (from 0.9 to 1.1) and fixing λ = 800
Z2 nm (ω ∝ Z2) and
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I = Z6 ∗ 3.8× 1013 W/cm2. With this variation for the TDSE in length gauge:

i
∂

∂t
ψ(~r, t) =

[
−∇

2

2
+−1

r
+ ~E(t) · ~r

]
ψ(~r, t), (3.4)

with E → E0

√
I = E0Z

3 and −1
r → −

Z
r , we get

i
∂

∂t
ψ(~r, t) =

[
−∇

2

2
+−Z

r
+ Z3 ~E0(t) · ~r

]
ψ(~r, t), (3.5)

which is equivalent to Eq. (3.4) under the transform t→ t′

Z2 and ~r → ~r′

Z :

i
∂

∂t
ψ

(
~r′

Z
,
t′

Z2

)
=

[
−∇

2

2
+−Z

2

r′
+ Z3 ~E0

(
t′

Z2

)
· ~r
′

Z

]
ψ

(
~r′

Z
,
t′

Z2

)
. (3.6)

Thus, the system has merely been rescaled (please note that the derivation is much the same in the

velocity gauge). Consistently, the results in Fig. 3.19 demonstrate that a simultaneous variation

of wavelength across 660 − 988 nm and intensities from 2.0 − 6.7 × 1013 W/cm2 along with a

variation of the Coulomb charge Z produces the same radiation (up to a factor). Beyond pure

mathematical interest, this highlights a utility of dimensionless parameters over traditional ones.

This also happens to be a fair test of the numerical stability of our code – we did not alter our grid

or other numerical parameters and yet achieved consistent observables (incl. those not shown such

as full complex spectrum through the cut-off, total ionization, and excited state population after

the pulse).

Now, we turn to scans of more practical interest for the present purpose. We begin by

considering the first three types of scans in Table 3.2. In each of these scans, two of the three

parameters Z, λ, and I are varied. This results in a change of all three dimensionless parameters,

however the trends for the dimensionless parameters are the same across the scans (UPω and UP
IP

decreasing, IP
ω increasing). Since the trends are opposite for IP

ω (increasing) and UP
ω (decreasing),

the energy (in ω) required for field-shifted ionization, IP+UP
ω , and for resonant excitation, En+UP

ω ,

at the peak of the pulse remains almost the same, up to about 0.1.

The results of the respective scans are shown in Fig. 3.20 and surprisingly show similar

radiation trends in each of these scans. To avoid implying a specific association between trends and

a particular parameter (e.g., Z or UP
ω ), we discuss the results in terms of progress along a scan or
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Figure 3.19: Temporal profile of radiation within 1ω of the 9th harmonic as a function of atomic
nuclear charge Z in a hydrogen-like atom while also varying wavelength (λ = 800

Z2 nm) and intensity
(I = Z6 ∗ 3.8× 1013 W/cm2) to keep resonance times fixed. A 20 o.c. pulse was used throughout.
For each Z the results have been normalized to a maximum of 1 for sake of comparison (note:
spectral intensity here scales roughly ∝

√
Z). A vertical dashed line denotes the peak of the laser

and a horizontal dashed line identifies the pulse parameters used as a base in this Chapter (i.e.,
Z = 1, I = 3.8 × 1013 W/cm2, λ = 800 nm). Overlaid with lines denoting resonance times for 7-
(magenta) and 8- or 9- (white) photon resonances.
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location in the associated figure, where “up” is further up on the respective plot, and corresponds

to an increase of the first scanned variable. We first observe a transition between dominance of the

outer radiation features (earlier associated with rising and falling 9ω → 3p + 0.5 o.c.) and the

inner ones (rising 9ω → 3p + 1.8 o.c. and rising 9ω → 3p + 3.0 o.c.) near the base parameters,

which are denoted by the horizontal white line in each plot. Above this point (e.g., Z > 1 for the

top panel), the outer features dominate, while the inner features dominate below it. Additionally,

the outer radiation features shift inwards significantly toward the top of the scans, tending to occur

closer to the peak of the pulse. At the same time these features decrease in magnitude, as can

be best seen in Fig. 3.21, where we show the same data as in Fig. 3.20 (top panel) but this time

un-normalized. Near the bottom of the scans, the inward trend is smaller, but still noticeable. The

inner radiation also decreases in magnitude, even more rapidly, when moving up the scan, but the

timing is more consistent. The peak of the second feature (rising 9ω → 3p + 1.8 o.c.) appears

slightly earlier in time as one moves down in the scan. Actually, the prediction for the resonance time

is best matched slightly below the base parameters. However, the un-normalized plot (cf. Fig. 3.21)

suggests that the radiation feature is indeed more widening in time than shifting. The third feature

stays well-matched with the prediction for all portions of the scans, as long as it is distinguishable.

Other identified resonance delays do not appear to play a role, nor do resonances not previously

associated match the shape of radiation curves. From these results, we can again definitively state

that radiation behavior depends not on traditional parameters (I, λ, Z) but rather on an alternate

set such as the dimensionless parameters of Table 3.2. Despite very different traditional parameter

changes across the three scans, radiation looks much the same for each scan. Unfortunately, we

cannot tease out which dimensionless parameter(s) predict behavior – UP
ω ,

UP
IP
, and IP

ω have similar

trends for all three scans. Further, the Z − I scan has the widest range for each parameter,

consistent with the impression of Fig. 3.20). Thus, the loss of agreement with resonance predictions

may be attributed to: perturbative behavior (decreasing UP
ω ), greater multiphoton dominance over

tunneling (decreasing UP
IP

), more photons involved in field-free interactions (increasing IP
ω ), or some

combination.
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Figure 3.20: Temporal profile of radiation within 1ω of the 9th harmonic for scans of: (top) atomic
nuclear charge Z and wavelength λ, (middle) Z and intensity I, and (bottom) λ and I. For all
scans, the 9ω → 3p resonance time is kept fixed. A 20 o.c. pulse was used throughout. For each
element of the scan (i.e., horizontal slice), the results have been normalized to a maximum of 1 for
sake of comparison. A vertical dashed line denotes the peak of the laser and a horizontal dashed
line identifies the pulse parameters used as a base in this Chapter (i.e., Z = 1, I = 3.8 × 1013

W/cm2, λ = 800 nm). Lines are drawn for delayed resonances as outlined in Table 3.1.
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Figure 3.21: Same as top panel of Fig. 3.20, but with no normalization for each Z and on a
logarithmic scale. Unscaled versions for other panels show similar trends, except with an overall
≈ I4 scaling of the radiation magnitude.
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For the remainder of the scans, the primary scanned variable is pulse duration in optical

cycles, with I, λ, or Z adjusted to keep Tr = 2. For these scans the set of three dimensionless

parameters vary differently (see Table 3.2), though IP+UP
ω and En+UP

ω do have similar trends.

Additionally, it is worth considering Nτ itself as a meaningful dimensionless parameter describing

the (inverse) spectral bandwidth and the inter-cycle envelope stability.

In Fig. 3.22, there is a similar transition in dominance of the features across the base pa-

rameters that we have noticed in the first three scans. The outer (inner) radiation dominates at

the top (bottom) of the scans. In this case, the absolute intensity of the outer features increases

up the scan, while the inner ones decrease (cf. un-normalized plot Fig. 3.23). The peaks of the

outer features (rising and falling 9ω → 3p + 0.5 o.c.) show a clear ‘V’-like trend away from the

peak of the pulse. This follows the shape of the lower-intensity resonance lines such as 9ω → 4p,

possibly suggesting that the 3p state shifts slightly less than UP and the scans are highlighting this

deviation. On the other hand, the results in Fig. 3.23 de-emphasize the shifting of the peaks and

again more clearly show that the outer features widen away from the prediction. The timing of

the second radiation feature (rising 9ω → 3p + 1.8 o.c.) appears consistent with the prediction

– constant. The third feature (rising 9ω → 3p + 3.0 o.c.) – which dominates the radiation for

shorter-than-base pulses – is more complicated, with the peak appearing to oscillate slightly earlier

and later (overall slightly earlier than prediction). At the bottom of the scans, radiation diverges

from the 9ω → 3p resonances and appears to correspond to other resonances (namely, 10ω → 4s,

10ω → 3s and/or 9ω → 2p). For the three scans, we contrast the similarity of radiation structures

to the differences in trends of the dimensionless parameters UP
ω ,

UP
IP
, and IP

ω . Therefore, it seems

likely that the effects are a result of increasing pulse duration itself (potentially via extending dura-

tions of resonance) and altering the resonances occurring during the pulse (for which IP+UP
ω serves

as a proxy).

Continuing the discussion of the first three scans, we note that values of IP
ω ≈ 9.3 found

at the top of Fig. 3.20 do not appear to disrupt resonant behavior near the bottom of the upper

panels in Fig. 3.22. However, low values of UP
ω (/ 1) and UP

IP
(/ 0.1) are not included in these latter
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scans, so we may make no further conclusions to their roles. Overall, the two trios of scans seem

to explore somewhat orthogonal spaces.

When varying more than two parameters simultaneously, it is possible to construct scans

with other trends of dimensionless parameters (e.g., keeping UP
IP

constant while varying UP
ω and

IP
ω ), and we recommend this for future investigation.

3.7 Short and long pulses

In prior results, we have focused on pulses with durations near 20 cycles. It is valuable now

to briefly discuss effects when the driving pulse has either much shorter or much longer duration.

For short pulses, the envelope variation may be significant even within a single cycle, and the

“average” energy UP (t) becomes less sensible. On the other hand for long pulses, the relative

intensity stability means both that resonances occur over longer stretches of the pulse and that the

envelope does not vary significantly over the period between resonance and radiation.

For a 4-cycle pulse of 3.8× 1013 W/cm2, we perform a scan of CEP (Fig. 3.24). We observe

radiation at CEP-dependent times, suggesting trajectory-like behavior as seen only at the higher

intensity in Sec. 3.16. However, this radiation shows no enhancement when it coincides with

predicted radiation times. Instead, radiation is strongest just at and after the peak of the pulse, as

expected for “normal HHG.”

In Fig. 3.25, we extend the scan of Fig. 3.6 through 50 o.c.. For pulses longer than about 30

o.c., the radiation predictions begin to break down. First, the majority of radiation occurs within

the first two cycles after the laser peak, not matching any of the previously-identified resonance

delays. Secondly, the earliest radiation feature begins to shift earlier than the rising 9ω → 3p +

0.5 o.c. delayed resonance. Agreement with other resonances would require large delays (greater

than 3 cycles) and initial investigations find poor agreement.
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Figure 3.22: Temporal profile of radiation within 1ω of the 9th harmonic for scans of pulse duration,
Nτ , in optical cycles and (top) atomic nuclear charge Z, (middle) wavelength λ, and (bottom)
intensity I. For all scans, the 9ω → 3p resonance time is kept fixed. For each element of the scan
(i.e., horizontal slice), the results have been normalized to a maximum of 1 for sake of comparison.
A vertical dashed line denotes the peak of the laser and a horizontal dashed line identifies the pulse
parameters used as a base in this Chapter (i.e., Z = 1, Nτ = 20 o.c., I = 3.8×1013 W/cm2, λ = 800
nm). Lines are drawn for delayed resonances as outlined in Table 3.1.
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Figure 3.23: Same as middle panel of Fig. 3.22, but with no normalization for each Nτ and on a
logarithmic scale. Unscaled versions for other panels show similar trends, except with an overall
≈ I4 scaling of the radiation magnitude.

Figure 3.24: Temporal profile of radiation within 1ω of the 9th harmonic as a function of driving
pulse CEP in atomic hydrogen for an 800 nm, 4 o.c. pulse at 3.8× 1013 W/cm2. A vertical dashed
line denotes the peak of the laser. Lines are drawn for delayed resonances as outlined in Table 3.1.
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Figure 3.25: Same as Fig. 3.5, but extending to durations up to 50 o.c..
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3.8 Appearance in other parameter regimes

While the appearance of this resonance-enhanced behavior requires a great deal of further

study within the relatively narrow parameter space described above, we would emphasize that the

effects are not limited to hydrogen or near-IR lasers. To that end, we present preliminary results

for atomic hydrogen driven by a mid-infrared (1600 nm) laser and helium atoms driven by a laser

on the edge close to the UV regime (400 nm). We also recall that Camp et al.’s investigation [100]

was for argon atoms driven by a near-IR laser.

3.8.1 400 nm helium

For helium, we perform simulations using the SAE potential presented in Ch. 2, and select

a laser with similar dimensionless parameters to that of the 3.8 × 1013 W/cm2 hydrogen results

above. Namely, we select a wavelength of 400 nm such that UP /ω = 8.1 (vs. 8.8 above), and an

intensity 3.3×1014 W/cm2 such that energy in units of ω remains similar for the HHG cut-off (13.1ω

vs. 13.4ω) and the ponderomotive energy (1.6ω vs. 1.5ω), as well as a similar Keldysh parameter

(γ = 1.6 vs. 1.7). We retain the same number of cycles, i.e., 20. The most notable features of the

resultant spectrum (Fig. 3.26) are a peak below 7ω (broader and weaker than for hydrogen) and

a 9ω radiation suppressed relative to both nearby frequencies and neighboring harmonics, just like

in hydrogen. Varying driving laser intensity around 3.3× 1014 W/cm2 and wavelength around 400

nm, we again see (Fig. 3.27) a clear region where radiation below and above 9ω dominates that

at the harmonic frequency. In Fig. 3.28, we show temporal profiles for scans of (top) duration,

(middle) peak intensity, and (bottom) driving wavelength. The structures appear consistent with

those found for hydrogen atoms (Figs. 3.5-3.8).

3.8.2 1600 nm hydrogen

HHG driven by mid-infrared pulses has received growing interest in recent years [103–105].

Due to the scaling of the HHG cut-off (IP+3.17 I
4ω2 ) and lower probabilities of ionization (i.e., higher
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Figure 3.26: High harmonic spectrum generated in helium, exhibiting a rich structure in the near-
threshold region of the spectrum between harmonics 5 and 12. The helium ionization threshold of
0.94 a.u. = 8.1ω, where ω = 0.114 a.u. corresponds to the central driver wavelength of 400 nm.
Other laser parameters: sin2 pulse of 20 optical cycles with peak intensity of 3.3 × 1014 W/cm2.
Note that the intensity of the spectrum is scaled by the signal at the fundamental frequency. (cf.
hydrogen results in Fig. 3.1).
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Figure 3.27: HHG spectra as (top) a function of driving wavelength at I = 3.3× 1014 W/cm2 and
(bottom) a function of peak intensity at λ = 400 nm. Nτ = 20 o.c. for both panels. Results for
each wavelength (top) or each intensity (bottom) have been normalized to the maximum signal
in the region between 8.75ω and 9.5ω. Red dashed lines denote field-free excited state transition
energies. (cf. hydrogen results in Fig. 3.2 and Fig. 3.3).
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Figure 3.28: Temporal profile of radiation within 1ω of the 9th harmonic as a function of (top)
pulse duration, (middle) peak intensity, and (bottom) driving wavelength. All in helium atom for
a pulse of (unless specified) 20 o.c., 400 nm, and 3.3× 1014 W/cm2. For each element of the scans
(i.e., horizontal slice), the result has been normalized to a maximum of 1. A vertical dashed line
denotes the peak of the laser and a horizontal dashed line identifies the base pulse parameters.



105

saturation intensities), longer driving wavelengths allow for production of bright high-harmonic

supercontinua extending into keV energies [31]. Much of the research on mid-IR HHG focuses on

high driving laser intensities and the resulting ultrahigh harmonics. Here, we seek to investigate

the near-threshold response, where low photon energies and large UP mean that many states cross

through resonance.

In the case of a 1600 nm laser, the field-free 1s→ 3p transition energy is nearly resonant with

the 13th harmonic (E1s→3p = 13.16ω), and radiation at this energy is consistently more intense

than other harmonics (excl. ω and 3ω). In Fig. 3.29, we show full (top panel) and near-threshold

(bottom panel) HHG spectra for two driving intensities. Above IP , the majority of radiation peaks

do not clearly correspond to odd harmonics. Below Ip, harmonic radiation is dominant, but other

structures are also present, similar to those found with 800 nm pulses.

Fig. 3.30 demonstrates the complex temporal structure of the 13th and 17th harmonics

as a function of peak intensity. We note that many field-shifted resonances occur in this range –

overlaying resonance conditions would cover nearly half of the Figure pixels within 3 o.c. of the peak.

For most intensities (above about 1013 W/cm2), dominant radiation occurs within about two cycles

of the peak of the pulse. The specific timing, however, is highly dependent on driving intensity,

with few consistent trends. Radiation does seem to occur most often centered at 0.5, 1.0, 1.5, and

2.0 cycles – as would be expected for trajectory-driven HHG (see Sec. 3.5) – though we do not

observe patterns as to which of these times will show the strongest radiation.

Considering the lowest intensities, 13th harmonic radiation shows cleaner structure, and

we investigate this in Fig. 3.31. Here, the majority of radiation occurs before the peak of the

pulse, following the shape of various rising-side resonances (esp. 17ω → 5p (or 5f) and 16ω →

3s (or 3d)). Additional weaker (and later) structures show similar trends, suggesting the role of

multiple resonances and/or delays.
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Figure 3.29: High harmonic spectra generated in atomic hydrogen. (top) Broad plateau extending
to cut-offs (near 27 and 67ω, denoted by dashed lines) with many peaks appearing offset from
Nω; (bottom) near-threshold region exhibiting a rich structure. The hydrogen ionization threshold
of 0.5 a.u. = 17.5ω, where ω = 0.028 a.u. corresponds to the central driver wavelength of 1600
nm. Other laser parameters: sin2 pulse of 10 optical cycles with peak intensities of 0.75 × 1013

and 4.95 × 1013 W/cm2. Note that the intensity of the spectra are scaled by the signal at the
fundamental frequency.
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Figure 3.30: Temporal profile of radiation within 1ω of the (top) 13th and (bottom) 17th harmonics
as a function of driving pulse intensity in atomic hydrogen for a 1600 nm, 10 o.c. pulse. For each
intensity the results have been normalized to a maximum of 1 for sake of comparison. A vertical
dashed line denotes the peak of the laser and horizontal dashed lines identify the intensities in
Fig. 3.29.
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Figure 3.31: Temporal profile of radiation within 1ω of the 13th harmonic as a function of driving
pulse intensity in atomic hydrogen for a 1600 nm, 10 o.c. pulse. For each intensity the results
have been normalized to a maximum of 1 for sake of comparison. A vertical dashed line denotes
the peak of the laser and a horizontal dashed line identifies the lower intensity in Fig. 3.29 (i.e.,
0.75 × 1013 W/cm2). Panels show identical radiation data, but the lower is overlaid with lines
denoting resonance times for 12 − 14ω (white) and > 14ω (magenta) resonances (there are no
excluded resonances with a smaller or larger number of photons involved for these parameters) for
2s− 6p.
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3.9 Summary

To summarize, we have investigated the near-threshold region of HHG and identified resonance-

enhanced radiation associated with states shifting during the pulse. For one particular case – hy-

drogen driven by an 800 nm, 20 o.c. sine-squared pulse of 3.8× 1013 W/cm2 – we have thoroughly

demonstrated the process of identifying the responsible resonance (9ω → 3p) and three associated

delays between the time when 3p shifts into resonance and the appearance of radiation. The timing

of this radiation remains consistent with predictions within an appreciable variation within the

parameter space. In other regimes – including more intense driving lasers, weak mid-IR pulses, and

helium driven by 400 nm pulses – we have identified similar structures, demonstrating the general

importance of this effect.

While certain features show agreement with an explanation based on semi-classical trajec-

tories, others cannot be thus explained. In particular, we demonstrate a lack of expected CEP

dependence – present at higher intensities and for shorter pulses – and spectral signatures which

do not match the predicted shape. Through multi-parameter scans, in which the resonance time

is kept fixed, we explore the consistency of the 9ω → 3p resonance enhancement. We hypothesize

that breakdown of resonance predictions are associated with low values of UP
ω (/ 1) and UP

IP
(/ 0.1),

and that the pulse duration Nτ may play an important role in the timing of radiation (beyond its

impact on the resonance condition).

3.9.1 Future prospects

Resonantly-enhanced near-threshold HHG offers a rich field for further investigation. In this

Chapter, we have focused our attention on a particular feature – enhancement via the 9ω → 3p

resonance – and noted that radiation occurs at multiple distinct delays after the resonance, unlike

for other regimes investigated. If similar multiply-delayed resonance features could be identified

(e.g., in helium or with mid-IR pulses), comparison could provide answers to some remaining

questions:
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• Do multiple delays appear at consistent delay intervals? (e.g., 0.5 + 1.25n o.c.)

• What parameters determine when multiple delays will generate significant radiation, versus

the seemingly more common case of a single delay?

• Do falling-side resonances ever produce significant radiation at second and greater delays?

(For this, we recommend investigation with longer pulses.)

There is of course, another crucial remaining question: If, as we suggest, no trajectory model

is applicable at this and lower intensities, what is the mechanism of radiation? What determines

the delay between resonance and radiation? Are signatures of resonance enhancement present (but

perhaps less dominant) in other domains, such as:

• radiation at higher harmonics,

• from pulses with higher driving intensities, perhaps including cases where tunnel ionization

is expected to play a larger role,

• in more complex systems such as molecules or atoms where multiple orbitals contribute

(e.g., the 2s and 2p states of neon).

Some tools of investigation that we did not significantly pursue, but that may hold promise:

• driving lasers with more (and more continuous) variation of envelope, such as flat-top or

supersine envelopes, such that resonance delays may place radiation within flatter regions

of the envelope,

• “spectral profile” plots where radiation is windowed to some particular region for parameter

scans,

• Floquet analysis or use of numerical basis codes, to investigate deviation from the UP (t)

approximation for state shifting,

• generalized semi-classical trajectory models (cf. [41]) with multiphoton ionization condi-

tions considering the actual predicted photon energies or states,
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• tuning of state energies separate from ionization potential, through manual modification of

potential parameters (see Sec. 2.2.5),

• and simulations of the response when starting in an excited or superposition state.



Chapter 4

Interpolation and Macroscopic Response

We develop a macroscopic description of high-order harmonic (HHG) radiation resulting

from the interaction of atomic systems with an intense laser pulse using ab-initio solutions of

the time-dependent Schrödinger equation (TDSE). After providing some background in Sec. 4.1, in

Sec. 4.2 we show that for this highly nonlinear process, interpolation can been performed across laser

intensity for a given wavelength, limiting the number of full time-dependent Schrödinger equation

calculations to about one hundred. The impact of the phase of the driving laser on radiation

is explored on the single-atom level in Sec. 4.2.2 and for macroscopic targets in Sec. 4.5. We

summarize the macroscopic harmonic signal computation, which is based on the approach in [106],

in Sec. 4.3. We consider the application of this efficient method for distributions of hydrogen atoms

on a lattice grid (Sec. 4.3.1) and in a gas jet (Sec. 4.4) to demonstrate the successful application

of the TDSE interpolation method to the thin medium or low gas density regimes that are free

from longitudinal phase-matching effects. By comparing the results of the present method with

theoretical predictions and against previous results, it is shown that the method based on the

interpolation of ab-initio TDSE solutions leads to reliable macroscopic results. The significantly

reduced computational time as compared to more sophisticated methods opens a path toward the

extension of macroscopic high harmonic calculations based on ab-initio microscopic results to more

complex targets and interactions. In Sec. 4.4.2, we demonstrate this via investigations of the near-

threshold regime of the spectra that show that the degree of coherence of the off-harmonic radiation

generated during the pulse is much lower than that of the harmonics. On the other hand, the weak
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non-harmonic radiation extends to larger divergence angles than the harmonic signals providing

the option for separation of the different signals in this part of the spectrum. Connecting to Ch. 3,

we show in Sec. 4.4.3 that the resonance-enhanced radiation is in fact the portion of off-harmonic

radiation that survives macroscopic propagation, though at relatively weaker intensity than the

harmonic radiation. The general applicability of this method is shown for a variety of driving

wavelengths and targets in Sec. 4.6.

4.1 Background

Proper theoretical analysis of HHG experiments requires consideration of macroscopic as-

pects, i.e., the coherent build-up of the (microscopic) high harmonic signals from many atoms in

the generating medium. It has been shown (e.g., [14, 107]) that efficient harmonic emission depends

on several macroscopic parameters of the experiment, e.g., beam shape, gas pressure, etc.. The

propagation of the emitted radiation in the medium is described by Maxwell’s equations. Thus,

an exact description of the HHG process requires solution of Maxwell’s equations coupled with the

solution of the TDSE for each of the atoms at the microscopic level. Due to the large number

of atoms in the medium and, hence, the large number of TDSEs to be solved, this task requires

formidable computer resources (see [108–111] for further discussion). In view of the computational

demands, the application range of these methods is very limited and theoretical analysis of most

HHG experiments cannot be realized at this level.

Therefore, a number of models have been proposed and applied in the past to reduce the

complexity of the problem (e.g., [106, 109–126]) and enable a broader investigation of the parameter

space, incl. by research groups with restricted computational resources. One of these efficient ap-

proaches is based on computation of the macroscopic harmonic yield as a superposition of the fields

of pointlike emitters in the medium via the discrete dipole approximation (DDA), instead of the

numerical solution of the wave equation [106]. Along with an extension of the strong-field approxi-

mation (SFA+) to obtain the single-atom high harmonic spectra [53], this SFA-DDA approximation

of the macroscopic harmonic build-up has been successfully applied to match experimental data
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and analyze various aspects of high-harmonic generation, such as generation of bright harmonics in

the keV X-ray regime [31], prediction and application of attosecond vortices from HHG [37, 127],

as well as generation and application of circularly polarized harmonics [38, 103, 128]. The use of

the strong-field approximation or other approximate theories at the single-atom level allows for

an efficient calculation of the macroscopic harmonic yield. Although the SFA+ model provides

accurate predictions for the plateau and cut-off region of the spectrum, the application of these

approximative methods on the microscopic level are limited. For example, they cannot be applied

for an analysis of the signal in the below- and near-threshold region of the high harmonic spectrum.

This part of the spectrum, which has gained an upsurge in interest recently (e.g., [39, 95–101, 129]),

is influenced by the excited state structure of the target atom, which is usually not well reproduced

in approximate single-atom theories. We note that excited states play a role in the control and

resonant enhancement of harmonics (see Ch. 3 and [130–135]). The limitation of approximative

microscopic calculations is perhaps even more obvious with more complex targets, like molecules

or nanosystems, which have recently attracted a lot of attention in experiment.

There is a gap in the theoretical analysis of HHG between full ab-initio Maxwell-Schrödinger

simulations, which nowadays cannot be applied to most of the experimental conditions, and those

methods based on approximative calculations, which are often limited in the accurate description of

microscopic interactions. It is therefore important to develop macroscopic HHG calculations which

include ab-initio microscopic calculations in an efficient way. Such methods will enable extension of

macroscopic HHG studies to the analysis of the impact of more complex interactions on the spectra

as well as to molecules and nanosystems.

As mentioned above, the impact of excitation on the generated near-threshold part of the

spectrum is one of these more complex interactions. A TDSE result for the radiation spectrum

generated in atomic hydrogen is shown in Fig. 4.1. The field-free ionization threshold corresponds

to 8.77ω, where ω is the frequency of the laser pulse, and one can see the typical rich structure

in the below- and near-threshold region of the spectrum. In the numerical TDSE solutions at the

single-atom level, the strength of the signal in between the harmonics – which we denote as off-
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Figure 4.1: Example of single-atom high harmonic spectrum generated in atomic hydrogen, ob-
tained via numerical solution of the time-dependent Schrödinger equation, exhibiting a rich struc-
ture in the near-threshold region of the spectrum between harmonics 5 and 12. The hydrogen
ionization threshold of 0.5 a.u. = 8.77ω, where ω = 0.057 a.u. corresponds to the central driver
wavelength of 800 nm. Other laser parameters: sin2 pulse of 20 optical cycles with peak intensity of
7× 1013 W/cm2. Note that the intensity of the spectrum (as well as other spectra in this Chapter)
is scaled by the signal at the fundamental frequency.
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harmonic radiation – appears to be as strong as the harmonic signals. Meanwhile, in experiment,

off-harmonic radiation is usually much suppressed, typically showing up as weak shoulders at the

side of a strong harmonic emission (e.g., [96]). Since the radiation is generated during the pulse

and may therefore contain relevant information about ultrashort laser-induced electron dynamics

in excited states, it is interesting to analyze at what strength it occurs in the macroscopic response

and if it can be separated from the harmonic signals.

In this Chapter we present a macroscopic calculation that includes complex effects such as

excitation via TDSE calculations (or other ab-initio methods). To this end, we determine the

macroscopic harmonic yield as a superposition of fields of point-like emitters using TDSE results at

the single-atom level. To keep the overall calculation efficient, we consider interpolation of ab-initio

TDSE calculations across intensity. Having in mind that HHG is a highly nonlinear process as a

function of intensity, we thoroughly show that a simple interpolation is indeed sufficient to keep

the number of actual TDSE calculations to a computationally feasible range of about one hundred

for the performance of a macroscopic simulation. Additionally, we demonstrate the accuracy of

a simple approximation of the carrier-envelope phase effect on HHG results. The reliability of

the macroscopic results is demonstrated by comparison with theoretical predictions for a lattice

grid and previous results for the near-threshold regime of HHG in a gas jet under loose focusing

conditions.

4.2 Interpolation

We obtain the microscopic HHG spectra as discussed in Sec. 1.4.3.3, evaluating the dipole

acceleration a(t) using the Ehrenfest theorem

a(t) =

〈
− ∂

∂z
V (r)

〉
, (4.1)

where V (r) is the atomic interaction potential. For hydrogen, this is simply −1
r and az(t) = − z

r3 .

For other atoms, we consider the derivative of the full potential VSAE . The complex harmonic

response a(ω) is then obtained by taking the Fourier transform of the (un-windowed) dipole accel-
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eration,

a(ω) =

∫ T

0
a(t)e−iωtdt. (4.2)

and the harmonic spectrum P (ω) = |a(ω)|2.

We note that the interpolation scheme and macroscopic calculation discussed below do not

depend on the particular microscopic solver used – all that is needed is the final a(t) or a(ω).

Thus, the interpolation method can be applied with any preferred TDSE solver or any other ab-

initio method. This opens the door for exploration of molecular and multielectron systems whose

calculations are computationally prohibitive in combination with other macroscopic methods.

4.2.1 Interpolation across intensity

Interpolation of the TDSE solutions can be accomplished either for a(t) in the time domain

or for a(ω) in the frequency domain. Interpolation in the time domain has the advantage that the

dipole acceleration a(t) is purely real. Furthermore, any numerical calculation of the HHG spectra

requires the determination of the dipole acceleration from a numerical simulation. For interpolation

in the frequency domain, each numerically determined data a(t) must be Fourier transformed before

the interpolation can be performed. On the other hand, the information content of the harmonic

signal is more efficiently stored in the frequency domain, since one may truncate the spectrum

P (ω) a few harmonics after the HHG cut-off. Depending on pulse duration and numerical time

step, this may decrease memory requirements by more than a factor of 10. Additionally, Fourier

transformation is usually computationally more expensive than interpolation, so if results are only

desired in a single domain (e.g., only spectra are considered), it is most efficient to interpolate in

the desired domain.

The procedure for interpolation used is the same in the time and frequency domains. The

dipole acceleration a(t) (or a(ω)) is numerically calculated for a set of peak intensities over a desired

sampling range. For a given point in time (or frequency), the dipole acceleration (or complex

spectrum) is interpolated across intensities using cubic splines with not-a-knot end conditions. The

impact of the end conditions is minimized by ensuring that relevant intensities are well-contained
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within the sampling range. The full dipole acceleration (complex spectrum) is then reconstructed

from these slices. If required, transformation into the frequency (time) domain is completed after

interpolation.

In order to evaluate the success of the interpolation procedure, we have numerically solved

the TDSE for a hydrogen atom at a randomly chosen peak intensity of 9.1431 × 1013 W/cm2

driven by a 20-cycle laser pulse at 800 nm. In Fig. 4.2, we show results of the interpolation for (a)

high harmonic spectrum P (ω), (b) dipole acceleration a(t), and (c) error in harmonic phase Φ(ω).

All features of both high harmonic spectrum and dipole acceleration in the exact calculation are

reproduced in the interpolated results. The maximum absolute errors for these specific calculations

are below 5 × 10−6 for the dipole acceleration and below 5 × 10−7 for the harmonic yield. In test

calculations we have found similar results for other driver wavelengths, peak intensities, and pulse

durations.

In the present work, we have chosen to evaluate exact TDSE results for a sample set of peak

intensities that are equally spaced on a linear scale, though other spacing (e.g., logarithmic or

Chebyshev) may be preferable in some cases. Results of test calculations suggest that Chebyshev

sampling has benefits especially in other integration schemes than Monte Carlo, potentially requir-

ing 2-3 times fewer sample points. On the other hand, it does limit the re-usability of the sample

calculations for other macroscopic peak intensities.

In Fig. 4.3, we present the maximum absolute error in high harmonic spectra obtained via

interpolation for two different peak intensities (other parameters as in Fig. 4.2) as a function of

the sample spacing dI over the range from 1× 1012 W/cm2 to 2× 1013 W/cm2. As expected for a

cubic interpolation, the error roughly scales as O(dI4) for sufficiently small dI. For larger dI, the

error varies more strongly, and the error is largest when the nearest sampled intensity is far (more

than 2× 1012 W/cm2) from the target intensity. These features are consistent for all wavelengths

tested in the range of 270 − 1600 nm. This result is of particular interest for the long wavelength

regime in view of the unfavorable scaling of computation times for HHG calculations with increase

of the wavelength.
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Figure 4.2: (a) Comparisons of results of interpolation (dashed lines) and exact numerical results
(solid lines) for high harmonic spectrum and (b) for dipole acceleration, and (c) error in harmonic
phase, generated by a sin2 pulse of 20 optical cycles at wavelength of 800 nm and peak intensity of
9.1431×1013 W/cm2. Interpolation performed on data with intensities of 0.1, 0.2, 0.3, ..., 10.0×1013

W/cm2. ((a) taken from [6].)
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Figure 4.3: Trend of maximum absolute error in interpolated high harmonic spectrum (as com-
pared to numerical TDSE result) as a function of the intensity sampling spacing dI (i.e., sampled
intensities dI, 2dI, . . . ,∼ 1014 W/cm2). Shown are exemplary results at peak intensities 3.97×1013

W/cm2 (blue circles with dashed line) and 9.14× 1013 W/cm2 (red circles with dotted line). Other
laser parameters as in Fig. 4.2. Note that at sufficiently small intensity spacings, the error roughly
drops as O(dI4) (black dashed lines).
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While the choice of intensity sampling spacing depends on the desired accuracy, for 800 nm

we have found dI = 1012 W/cm2 to be fully sufficient. In general, from our test calculations at

other wavelengths, we have found that the spacing required relates roughly to the maximum extent

of the harmonic spectra, i.e., 3.17UP /ω ∝ I/ω3. Thus, as a rule of thumb the sampling spacing for

the cubic interpolation should be (in W/cm2):

dI ≈
( ω

0.057

)3
× 1012 =

(
800

λ

)3

× 1012 (4.3)

where ω is in a.u., while λ is in nm.

While our primary focus in this Chapter is to use the interpolation method to facilitate

macroscopic HHG calculations, we note that the success of the interpolation method is interesting

in itself since HHG is a highly nonlinear process and depends strongly on intensity. As we have

shown, cubic interpolation produces quantitatively good agreement with exact spectra at moderate

intensity sampling (and qualitatively indistinguishable spectra can be generated with coarser sam-

pling). While perhaps not surprising from the numeric side, the implication that the results of such

a highly nonlinear process can be distilled to order-100 samples for description of the whole range of

relevant intensities (with saturation of ionization well before 1015 W/cm2) is not a-priori obvious.

In view of the success, it is likely that a similar technique can be applied for the dependence of

HHG spectra on other parameters as well.

4.2.2 Variation of CEP

In addition to different driving intensities, it is important to consider the effects of variation

of the carrier-to-envelope phase (CEP), φ, on the spectrum. Especially in short pulses, CEP is a

parameter that controls many strong-field applications such as isolated attosecond pulse generation

[136], laser-driven electron dynamics in atoms, molecules, and nanostructures [137–140], or gener-

ation of relativistic electron beams [141]. For long pulses, the impact on the microscopic spectral

intensity is minimal (Fig. 4.4), but the spectral phase effects cannot be discounted in macroscopic

summation.



122

Before proceeding, we provide a note on interpreting phase plots. Plots of phase tend to

include large spikes that have little physical significance. The first reason is that phase has little

meaning when the magnitude is small: +10−4 and −10−4 are much the same when features of

interest are on the scale of ±1. Secondly, phase is defined modulo 2π, and smoothing out 2π

jumps is not always straightforward or useful. The simplest choice of “unwrapping” phase by

minimizing the difference between adjacent points leads to spectral phases spanning hundreds of

radians, obscuring most features. On the other hand, restricting phases to [0, 2π) can appear to

break larger trends. For this reason, we select CEPs within a specific range that allows simpler

presentation of spectral phase without manual addition of 2π’s. The results are consistent for larger

CEP.

In SFA, the spectral phase is given by:

Φ(ω, φ) = Φ(ω, φ = 0) + φH(ω) (4.4)

where H(ω) is the harmonic number rounded to the nearest odd integer [106]. In Fig. 4.5, we show

exact TDSE results for the phase difference

∆Φ/φ =
(
Φ(ω, φ)− Φ(ω, φ = 0)

)
/φ (4.5)

compared to the SFA prediction ∆Φ/φ = H(ω). For both intensities, we see a factor between CEP

and spectral phase which does not depend on CEP (i.e., the scaled lines in Fig. 4.5 overlap):

∆Φ/φ = f(ω) (4.6)

for some function f(x). For the lower intensity, there is good agreement with fSFA(ω) = H(ω).

For the higher intensity, H(ω) approximates the true dependence, but the specifics are more com-

plicated.

While not further investigated in this thesis, we do present results for a short (4 o.c.) pulse

at the lower intensity (Fig. 4.6). The spectral intensity differences are larger, but mostly not

impacting the harmonics themselves. The spectral phase varies more dramatically (especially in

the near-threshold 6− 10ω region of interest), and in places does depend on the particular CEP in
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Figure 4.4: Spectra for a selection of sample CEPs, generated by a sin2 pulse of 20 optical cycles
at wavelength of 800 nm and peak intensity of (top) 3.8 × 1013 W/cm2 and (bottom) 7.0 × 1013

W/cm2.
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Figure 4.5: Spectral phase difference for a selection of sample CEPs, generated by a sin2 pulse of 20
optical cycles at wavelength of 800 nm and peak intensity of (top) 3.8× 1013 W/cm2 and (bottom)
7.0× 1013 W/cm2. (Top panel taken from [6].)
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a way not seen for longer pulses. Still, for the majority of the spectrum, the CEP effects are similar

to those for longer pulses – the radiation intensity is unaffected and the SFA approximation to the

phase is good. We note parenthetically that the driving laser field was not frequency-corrected [85],

leading to the harmonic blue-shift.

In Sec. 4.5, we will investigate the impact of the spatial CEP variation on the macroscopic

radiation using the ∆Φ/φ = H(ω) approximation. With the addition of Gouy phase, the effects

are small and smooth enough that we predict the true dependence would not significantly affect

results for long pulses. For highly-focused pulses where an additional focal phase [142, 143] becomes

significant (see Sec. 4.5), we expect the same approximation to hold, but recommend future study

involve consideration of interpolation across CEP. More careful treatment will also be needed for

circularly and elliptically polarized laser pulses, as well as when multiple pulses contribute to HHG.

4.3 Macroscopic summation

To determine the macroscopic radiation signal at a far-field detector, we consider the thin

medium or low gas density regimes that are free from longitudinal phase-matching effects. We

define the arrangement and coordinates as follows: The driving laser propagates in the ẑ direction,

has linear polarization ŷ, and we consider only radiation polarized in this direction. The far-field

detector is an arc in the xz-plane with its position defined by the angle θ from ẑ (propagation)

to x̂. We then follow the approach used in [106], in which the macroscopic yield is obtained as

the superposition of the fields generated at different points in the medium. This approximation

to the full Maxwell solution relies on the dipole approximation and the assumption that generated

radiation does not interact with the medium.

The spectral distribution of the total radiation generated by a number of atoms, located at

rj (j = 1, 2, 3, ...), is given by [106]:

E(rd, ω) =
1

c2|rd|
e−i

ω
c
|rd|
∑
j

aj(ω)e−i
ω
c

[rj ·(r̂d−ẑ)]ŷ , (4.7)

where aj(ω) is the dipole acceleration in frequency domain of a single atom responding to the driving
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Figure 4.6: (top) Spectrum and (bottom) spectral phase difference for a selection of sample CEPs,
generated by a short sin2 pulse of 4 optical cycles at wavelength of 800 nm and peak intensity of
3.8× 1013 W/cm2.
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laser pulse. Since this is calculated without considering the delay of the driving laser reaching the

radiator, (rj · ẑ)/c, the corresponding additional phase is added. Furthermore, it has been assumed

that the relative location of the detector, denoted by rd, is far away from the individual atoms, i.e.,

|rj | � |rd| and, hence, |rd − rj | ≈ |rd| − rj · r̂d and 1
|rd−rj | ≈

1
|rd| . Since the prefactor in Eq. (4.7)

universally scales the results, we drop it from the computations. As usual, radiation is reported as

spectral intensities, |E(rd, ω)|2.

We approximately include the effect of the Gouy phase ζ(z) = − atan(z/z0) [144], on Hth-

harmonic radiation as an additional phase H(ω)ζ(z), where z0 is the Rayleigh range, as in [106]. As

shown in the previous section, for 20 o.c. pulses this approximation holds well. Additionally, for the

loose focusing geometry used below, ζ ranges up to ≈ ±0.2 rad within the gas jet, and the effect on

near-threshold harmonics – the main focus of the applications below – is minimal. Specifically, as

seen in Sec. 4.2.2, the CEP effect is mostly restricted to a consistent additional phase scaling with

harmonic number. This has the effect of adding a phase mismatch for higher harmonics, leading

to suppression. Centering the gas jet off the laser focus allows for better phase matching when

the Gouy and intrinsic phases compensate [106]. In Sec. 4.5, we discuss more closely the effects of

Gouy phase as well as another phase term related to highly-focused laser pulses.

Using rd = rd (cos(θd)ẑ + sin(θd)x̂) and rj = rj (cos(θj)ẑ + sin(θj)x̂)+yj ŷ, Eq. (4.7) can then

also be written as:

E(θd, ω) =
∑
j

aj(ω)e−i
ω
c
rj [cos(θj)−cos(θd−θj)]ŷ. (4.8)

The sum in Eq. (4.7) or (4.8) can be efficiently performed if the number of atoms does not become

too large. However, in a typical high-harmonic gas jet experiment, even at low-pressure densities,

the number of atoms is typically of the order of 1012 or larger. To simplify the computation in these

cases, it has been proposed [106] to perform the sum using Monte Carlo sampling, and further to

split the interaction volume into discrete cells, each containing a number of radiating atoms. The

atoms in the cell approximately interact with the same external field if the number of atoms in the

cell is large enough to approximate their density by a continuous distribution and the size of the
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cells is small enough to approximately have a uniform intensity distribution within the cell. The

total field at the detector is then given by [106]:

E(θd, ω) =
∑
j

nj aj(ω)e−i
ω
c
rj ·[(cos(θd)−1)ẑ+sin(θd)x̂]

× e−
1
2
ω2

c2
σ2(1−cos(θd))ŷ , (4.9)

where the sum goes over the number of cells in the interaction volume, nj = ρ(rj) is the gas

density at the center of the cell and the last term is a form factor that takes into account intra-cell

interference assuming a Gaussian charge distribution in the cell. Note that the use of cells does not

impact the radiation detected along the laser axis (θd = 0).

4.3.1 Test case: Lattice grid

As a first test, we consider a set of hydrogen atoms placed in a regular lattice grid and verify

that the angle-resolved far-field radiation spectra exhibit the expected interference pattern. To this

end, we apply the TDSE interpolation method to a simple test model in which hydrogen atoms,

initially in the ground state, are distributed uniformly on a lattice with a separation of 300 nm

(typical atomic spacings in optical lattices are in the range of 256 nm - 700 nm [145, 146]). We have

considered a driving laser with a central wavelength of 800 nm (ω = 0.057 a.u.), a peak intensity of

9×1013 W/cm2, and a sin2 envelope of 20 cycles full width. The spatial profile of the laser is chosen

to be a Gaussian beam with a beam waist of 30 µm (Rayleigh range z0 ≈ 3500 µm). One hundred

separate TDSE calculations were performed at peak intensities in the range 0.01× 1014 W/cm2 to

1.00× 1014 W/cm2 in steps of 1012 W/cm2 and the interpolation of the results is completed in the

frequency domain to reduce memory requirements. Given the small number of radiators here, we

sum over all atoms, without using Monte Carlo sampling or finite cells.

Considering a regular lattice geometry with atoms arranged along and perpendicular to the
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Figure 4.7: Angle-resolved macroscopic high harmonic spectra from uniformly-separated hydrogen
atoms in different configurations: (a) row of 100 atoms along the propagation direction, (b) row of
100 atoms perpendicular to the propagation direction, and (c) lattice grid of 100 × 100 atoms in
the plane spanned by the combination of (a) and (b). A Gaussian beam (beam waist 30 µm) with
20-cycle duration at 800 nm and 9 × 1013 W/cm2 and an atom separation of L = 300 nm were
considered. The red and white lines represent the constructive interference conditions for atoms
located along and perpendicular to the propagation direction, respectively (see Eqs. (4.11) and
(4.10)).
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Figure 4.8: Comparison of spectra taken from the results in Fig. 4.7(c) along θd = 0.65 rad (blue
solid line) and in forward direction (θd = 0 rad, black dashed line).
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laser propagation direction, radiation from the atoms is expected to add up constructively if

θd = arcsin

(
n
λem
L

)
and (4.10)

θd = 2 arcsin

(√
m

2

λem
L

)
, (4.11)

where n andm are integer numbers, L denotes the separation of the atoms and λem is the wavelength

of the emitted radiation. The first (second) condition arises from the interference in emission from

atoms perpendicular to (along) the laser polarization direction, and can be derived from Eq. (4.8).

Thus, we expect the process of high-order harmonic generation from uniformly spaced,

independently-responding atoms to produce a particular pattern in the angle-resolved spectrum.

To test the TDSE interpolation method, we have performed macroscopic calculations for 104 hy-

drogen atoms on a 100 × 100 lattice. The results in Fig. 4.7(c) show the complete spectrum in

the forward direction (at θd = 0) and a pattern of bright spots at other angles. As expected from

the constructive interference conditions, the number of bright spots in a given detector angle range

increases as the (harmonic) frequency of the emitted radiation increases (i.e., the wavelength λem

decreases) and the spectra show the expected symmetries about θd = 0,±π/2. Indeed, the bright

spots occur at the vertices of curves representing the two interference conditions. To illustrate

this, we show in the other panels of Fig. 4.7 the spectra resulting from configurations in which 100

atoms are positioned in a row either along (panel (a)) or perpendicular to (panel (b)) the laser

propagation direction. Furthermore, the curves representing the respective interference conditions

are plotted in each spectrum. It is seen that the numerical results indeed agree with the predictions

based on the constructive interference conditions.

While these calculations primarily serve as a test case for the macroscopic TDSE interpolation

method, we may note that optical lattices are used as platforms in ultracold atom physics to simulate

quantum many-body problems (for reviews, see [147–151]). Recently, ultracold atoms have been

exposed to the field of an ultrashort laser pulse to observe the response of 87Rb atoms to strong

fields [152], which may initiate more combined research in these fields in the future. Here, we note

that the spatial separation of the bright spots in the angle-resolved spectrum generated from atoms
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in a lattice potentially allows for the selection of radiation at specific higher harmonics. This is

illustrated in Fig. 4.8 in which we compare the spectrum at θd = 0.65 rad (blue solid line) with

that in the forward direction (black dashed line). In the off-axis spectrum, only the fundamental

exceeds 0.1% of the 13th harmonic’s intensity while the rest of the spectrum is strongly suppressed.

4.4 Atomic hydrogen gas jet

In a common experimental HHG set-up, a large number of atoms in a gas jet contribute to

the macroscopic signal. For this section, we therefore consider a gas jet of hydrogen atoms with

a density of 1018 cm−3. The gas jet is modeled as a cylinder aligned perpendicular to the laser

propagation; the width is given by a Gaussian distribution with σ = 500 µm and is centered at the

laser focus. We use the strategy to split the interaction volume in cells and utilize Monte Carlo

methods for the sampling of the cell locations, discarding locations where the intensity is below a

given cut-off (here, I(rj) < 0.032Ipeak) as the corresponding generated radiation does not contribute

significantly to the total radiation. We have considered macroscopic high-harmonic generation from

hydrogen atoms generated by a 20-cycle sin2 pulse at 800 nm, with a variety of peak intensities

up to 9× 1013 W/cm2. As above, the spatial profile of the laser is chosen to be a Gaussian beam

with a beam waist of 30 µm (z0 ≈ 3500 µm). One hundred microscopic TDSE calculations were

performed at intensities in the range 0.01×1014 W/cm2 to 1×1014 W/cm2 in steps of 1012 W/cm2.

We note the need for single-atom calculations above the highest intensity of the macroscopic lasers

considered, to allow for accurate interpolation.

4.4.1 Convergence

For the case of a gas jet, we find similar convergence behavior to the SFA+ calculations in

Ref. [106]: the off-axis harmonic radiation appears to converge faster for larger cells (Fig. 4.9),

and the results appear to be converged for 105 radiators regardless of cell size (Fig. 4.10). In

general, we observe that good on-axis convergence requires a larger number of cells than required

for angular convergence, at least for the near-threshold harmonics of interest in this thesis. Thus,
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cell size – which has no effect for on-axis radiation – does not noticeably impact the speed of overall

convergence, and we use point-like radiators for all calculations. We note that the convergence in the

calculations of the response using 105 cells has been achieved from 100 actual TDSE calculations at

sample intensities. Since the macroscopic calculations are relatively computationally inexpensive,

results of this Chapter consist of calculations with 5× 105 atomic radiators unless specified.

We must emphasize that the required number of cells is not universal, and may vary greatly

for other lasers or targets. We have found that both interaction of UV laser light with helium

and mid-IR lasers with hydrogen require on the order of 107 cells to achieve the same levels of

convergence as above (see Sec. 4.6). More rapid or complex CEP variation also requires more

cells for convergence (Sec. 4.5). Preliminary studies suggest alternative cell placement (e.g., quasi-

random sampling) may improve convergence somewhat.

4.4.2 Near-threshold harmonics

As discussed at the outset of this Chapter, approximate single-atom methods, such as the

strong-field approximation and its extensions, provide good quantitative predictions for the high-

order harmonics. On the other hand, in the region near and below the ionization threshold, single-

atom TDSE results and experimental data often include a structure besides the harmonic peaks,

which often cannot be reproduced by approximate methods due to the incomplete description of

the atomic excited state structure.

In Fig. 4.11 we compare results of (a) microscopic single-atom TDSE and (b) macroscopic

TDSE interpolation calculations as a function of peak intensity for on-axis emission. In the results it

is seen that at the single-atom level there is strong radiation emission at near-threshold frequencies

in between the harmonics (the field-free ionization energy is at 8.77ω). The relative strength of the

harmonic and off-harmonic radiation emission strongly fluctuates as a function of peak intensity. As

examples, we present spectra at two different peak intensities ((c) 3.8× 1013 W/cm2, (d) 7.0× 1013

W/cm2) on the right of Fig. 4.11. While at the higher intensity (panel (d)) there is a strong single-

atom 9th harmonic emission (black dashed line), the emission at the same harmonic is suppressed
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Figure 4.9: Angle-resolved macroscopic radiation spectrum for a gas jet of hydrogen atoms driven
by an 800 nm laser with peak intensity 7.0× 1013 W/cm2 for different numbers of cells (rows) and
cell sizes (columns): (top) 103 cells, (middle) 104 cells, and (bottom) 105 cells. (left) point-like
radiators, (middle) 3 µm cells, and (right) 5 µm cells.
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Figure 4.10: Convergence of macroscopic on-axis radiation with number of cells (cell width has no
effect), generated by a sin2 pulse of 20 optical cycles at wavelength of 800 nm and peak intensity of
(top) 3.8×1013 W/cm2 and (bottom) 7.0×1013 W/cm2. Vertical dashed lines denote the ionization
potential (left line) and HHG cut-off (right line).
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Figure 4.11: Comparison of single-atom TDSE results and macroscopic TDSE interpolation results
for high harmonic generation in hydrogen atoms. On the left, the (a) single-atom and (b) macro-
scopic on-axis spectrum is shown as a function of peak intensity. The spectra on the right show
the comparison (single atom: black dashed line, macroscopic: red solid line) at peak intensities (c)
I0 = 3.8× 1013 W/cm2 and (d) I0 = 7.0× 1013 W/cm2.
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(as compared to radiation emitted at frequencies just below the 9th harmonic) at the lower intensity

(panel (c)). In general, in the near-threshold regime, the magnitude of the off-harmonic radiation

yield is comparable to that of the harmonic radiation.

In contrast, the macroscopic results (panel b) show emission spectra with a much clearer

structure; the harmonics are strongly enhanced as compared to radiation emission at other fre-

quencies at all intensities. This is also evident in the macroscopic responses at the two selected

peak intensities. The radiation signal in between the harmonics is suppressed by 1-2 orders of mag-

nitude as compared to the harmonic emission. For example, the feature close to the 9th harmonic

appears as a shoulder to the harmonic. Thus, in the macroscopic spectra the high harmonic peaks

in the near-threshold region become as prominent as those in the rest of the spectrum, throughout

the plateau to the cut-off, similar to typical observations of high-harmonic spectra in experiment

(see, e.g., [96]).

The origin of the suppression of the off-harmonic radiation is related to the differences in

the coherent build-up of the distinct parts of the spectrum. This can be seen from Fig. 4.12 in

which we present a comparison of calculations where the interpolated single-atom TDSE results

are either added up coherently (solid red line, as Eq. (4.8)) or incoherently (dashed blue line, with

P (ω) =
∑

j |aj(ω)|2). It can be clearly seen that it is the lack of coherence of the radiation at

non-harmonic frequencies that is the primary reason for the strong suppression in the macroscopic

result.

Although in the on-axis spectra the off-harmonic near-threshold radiation is strongly sup-

pressed, this part of the emitted radiation can be separated from the harmonics since it has a

different angular character than the harmonic radiation (cf. Fig. 4.13). The high-harmonic lines

show the expected on-axis emission, which becomes more focused in the forward direction for higher

harmonic numbers. In contrast, the off-harmonic emission extends to larger divergence angles and,

around some harmonics, forms halo-like patterns in the angle-resolved macroscopic spectrum. Such

spatial-spectral characteristics of off-harmonic structures in the low- and high-energy part of the

spectrum are in agreement with previous observations [95, 96, 153–157], showing that the present
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Figure 4.12: Comparison of macroscopic calculations in which the single-atom TDSE results are
added coherently (solid red line) and incoherently (dot-dashed blue line) for high-order harmonic
generation at I0 = 3.8× 1013 W/cm2.

Figure 4.13: Angle-resolved near-threshold part of the macroscopic radiation spectrum for a gas
jet of hydrogen atoms driven by an 800 nm laser with peak intensity 3.8× 1013 W/cm2.
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efficient interpolation method leads to similar results and conclusions as previous sometimes more

sophisticated simulations.

In Fig. 4.14, we show wavelet analysis (see Sec. 1.5.3) for the radiation (a) on-axis and (b)

at 5 mrad off-axis. The on-axis radiation is dominated by consecutive odd harmonics, which – as

expected – are emitted at times symmetrically about the center of the pulse. On the other hand, the

off-axis wavelet, which primarily contains the non-harmonic emission, shows a different and more

complex time dependence. In particular, we note that several off-harmonic features appear first

near the peak of the pulse and shift downward in energy at the trailing edge. The curvature of the

shift roughly scales with the field-shifted energy of the excited states, and the wavelet results thus

suggest that the off-axis radiation in the near-threshold part of the radiation spectra are related to

the resonance features, discussed in Ch. 3.

4.4.3 Appearance of resonance features in macroscopic response

We note that the results presented in Figs. 4.11 to 4.13 have been obtained for propagation

of the wavefunction until the end of the driving laser pulse. Thus, the radiation discussed above,

including the off-harmonic spectral features, has been generated during the interaction between

the laser pulse and the hydrogen atom. It is therefore unlikely that the structures can be related

to free induction decay following coherent excitation in the atom. Instead, as discussed in Ch. 3,

we understand these features to be the result of field-shifted resonances enhancing HHG emission.

By inverse Fourier transforming the macroscopic E(ω), we are able to perform the same sorts of

analysis for macroscopic results as seen in Ch. 3 for microscopic results. Given the interpolation

requirement of scanning intensity for any given laser parameters, it is not currently feasible to

perform macroscopic scans across other parameters (e.g., λ,Nτ , Z). In the future, interpolation

across multiple laser parameters may enable efficient exploration of the broader space.

In Fig. 4.15, results for radiation near 9ω as a function of intensity are given for microscopic

(as Fig. 3.10) and macroscopic calculations. While the majority of off-harmonic radiation is strongly

suppressed, some features survive macroscopic summation. In particular, macroscopic spectra near
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Figure 4.14: Wavelet analysis of the macroscopic radiation for a gas jet of hydrogen atoms driven by
an 800 nm laser with peak intensity 7× 1013 W/cm2 at detection angles (a) θ = 0 mrad (on-axis),
and (b) θ = 5 mrad. The shifted energy of the 2p, 3p, and 4p states relative to the 1s (ground)
state are denoted by red lines, while the region containing the higher Rydberg states (shifted 5p to
threshold) are shaded in red. Wavelet parameter Ω0 = 54.
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2.0×1013 W/cm2 display similar radiation peaks splitting off 9ω and broad radiation in the region of

field-free Rydberg energies, as seen in microscopic results. While the intensity of these macroscopic

features is less than the on-harmonic radiation, it is still significant.

In Fig. 4.16, we consider temporal profiles as outlined in Sec. 1.5.1, again comparing micro-

scopic and macroscopic radiation. The macroscopic signatures of resonantly-enhanced harmonic

emission are quite prominent, with a few key differences. Firstly, radiation just after the peak of

the pulse is consistently of similar strength to the strongest distinguishable resonance features. Sec-

ond, resonantly-enhanced radiation occurs for intensities somewhat above the intensities predicted.

Both features are explained by the range of intensities contributing to any given macroscopic result.

“Normal HHG” occurring just after the peak appears consistently for wider intensity ranges than

does resonantly-enhanced emission (since resonances move). And, only a small minority of atoms

interact with the peak intensity; the signal is thus dominated by atoms interacting with a slightly

weaker field. This also leads to a broadening (in time and driving intensity) of resonance features

– for a given peak intensity, different portions of the gas jet will shift into resonance at different

relative times. As a result of resonant enhancement, radiation near 9ω spans varying temporal

ranges according to the driving intensity. Therefore, understanding resonant effects will be crucial

to sculpting UV pulses.

4.5 Effects of macroscopic phase1

Nonlinear processes in ultrafast light-matter interaction are induced at high laser peak in-

tensities and thus require the application of focused short-pulsed lasers with a broad frequency

bandwidth. In contrast to above assumptions of a monochromatic Gaussian beam which experi-

ences a Gouy π-phase shift across the focus [144], broadband pulses have a different spatial phase

dependence. This more general phase distribution has been derived and studied by Porras and

co-workers [142, 143]. The exact distribution depends on the so-called Porras factor, which needs

to be determined for a given laser system. It creates a spatially-dependent CEP. The impact of

1 Some results of this Section are also presented in a submitted manuscript [6].
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Figure 4.15: Comparison of (top) single-atom results and (bottom) on-axis macroscopic TDSE
interpolation results for near-threshold HHG spectra as a function of peak intensity for an 800 nm,
20 o.c. pulse interacting with atomic hydrogen. Results for each intensity have been normalized
to the maximum signal in the region between 8.75ω and 9.5ω. Horizontal red dashed lines denote
field-free excited state transition energies and vertical dashed lines identify intensities selected in
Sec. 3.4: 2.0× 1013, 3.0× 1013, 3.8× 1013, 5.6× 1013, and 7.0× 1013 W/cm2.
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Figure 4.16: Comparison of (top) single-atom results and (bottom) on-axis macroscopic TDSE
interpolation results for temporal profile of radiation within 1ω of the 9th harmonic as a function
of driving pulse intensity in hydrogen for an 800 nm, 20 o.c. pulse. For each intensity, the results
have been normalized to a maximum of 1 for sake of comparison. A vertical dashed line denotes
the peak of the laser and horizontal dashed lines identify intensities selected in Sec. 3.4: 2.0× 1013,
3.0 × 1013, 3.8 × 1013, 5.6 × 1013, and 7.0 × 1013 W/cm2. Lines are drawn for delayed resonances
as outlined in Table 3.1.
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the focal phase on electron backscattering at nanoscale metal tips [158] and photoelectron spectra

[159] in few-cycle laser pulses has been demonstrated recently.

Since in HHG the coherent addition of radiation controls the results of macroscopic summa-

tion (cf. Fig. 4.12), one can expect to observe traces of the phase distribution in the radiation. We

present macroscopic high harmonic generation results that indicate significant differences in the

angular resolution of the emitted harmonics, depending on the spatial phase distribution across the

focus. Specifically, our results show a distinct interference pattern in the angular distribution for

focal phase distributions with negative Porras factors.

The general form of the spatial phase distribution for broadband laser pulses is given by

[142, 143]:

∆ΦF (z, r) = − arctan

(
z

z0

)
+ g0

[
1− 2

(
r

w(z)

)2
]

z
z0

+ z0
z

(4.12)

where

g0 =
dZR(ω)

dω
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ω0

ω0

ZR(ω0)
(4.13)

is the Porras factor and

ZR(ω) =
ωW 2(ω)

2c
(4.14)

is the frequency-dependent Rayleigh range (z0 ≡ ZR(ω0)), z and r are the positions along and trans-

verse to the propagation of the laser, ω0 is the central frequency of the laser, w(z) = W0

√
1 + ( zz0 )2 is

the beam radius of the center frequency, W (ω) is the frequency-dependent input waist, W0 = W (ω0)

is the central frequency beam waist at the focus, and c is the speed of light. The first term in

Eq. (4.12) is the Gouy phase for monochromatic beams, which gives a longitudinal phase depen-

dence along the laser propagation direction, while in the transverse direction the Gouy phase is

constant. The second term scales with the Porras factor g0 and describes the difference to the Gouy

phase for beams with a frequency bandwidth.

Fig. 4.17 shows a comparison of the spatial phase profile for (a) g0 = 0 (Gouy phase) and

(b) g0 = −2. We have focused on situations with negative Porras factor, which correspond to

the geometry of laser systems based on hollow-core fiber-compressors [159]. The specific value of
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Figure 4.17: Spatial distribution of carrier-envelope phase in a focused broadband Gaussian laser
pulse: (a) Gouy phase (g0 = 0) and (b) focal phase with g0 = −2. For the latter, reference lines
are drawn showing (magenta) position where laser intensity falls below 1% of peak, (cyan) position
where gas density ρ falls below 10% of peak for a gas width of 0.23z0, and (white) estimates of the
effective slit locations based on interference patterns (0.925 times the transverse node separation
near z = 0 in Eq. (4.12)). (Taken from [6].)
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g0 = −2, chosen in the majority of our studies, has been reported in a recent measurement [158].

For negative values of g0, the 2nd focal phase term has the same sign as the Gouy phase on-axis,

but changes sign at certain radial distances, which depend on g0 and z. This implies that for the

total focal phase at each off-center position along the propagation distance there are two points in

the radial direction, symmetric over r = 0, with ∆ΦF = 0. Furthermore, these points are in-phase

with all the central points at z = 0 and for the location of the points limz→0 rzero(g0, z) = W0/
√

2.

One may therefore expect that such a focal phase distribution imprints an interference structure

onto the angular distribution of the harmonic signals transverse to the propagation direction.

In Fig. 4.18, we present simulated angle-resolved macroscopic high harmonic spectra gener-

ated by a driving laser with a central wavelength of 800 nm (ω0 = 0.057 a.u.), a peak intensity

of 7 × 1013 W/cm2, and a sin2-envelope of 20 cycles full width. The spatial profile of the laser

has been chosen to be a Gaussian beam with a beam waist of 30 µm (z0 ≈ 3500 µm). We have

assumed a gas jet with a Gaussian density distribution along z, centered about z = 0 and with a

width of σz = 800 µm ≈ 0.23z0, and constant density along x (the radial direction). Results have

been obtained assuming focal phase distributions with (a) g0 = 0 (Gouy phase distribution) and

(b) g0 = −2. In the present simulations, 107 single-atom results have been used to obtain each

converged macroscopic HHG spectrum.

The comparison reveals a significant difference in the angular distribution of the below-

threshold harmonic lines for the two phase distributions. The spectrum obtained with negative

Porras factor clearly exhibits the expected interference pattern in the harmonic lines, while there is

no such signature in the spectrum calculated for the Gouy phase distribution. The position of the

side maxima in the interference pattern can be roughly approximated by the double-slit formula

(i.e., Eq. (4.10)):

θd(λem) = arcsin

(
n
λem
L

)
, (4.15)

where n is an integer, L denotes the separation of the slits perpendicular to the laser propagation

direction and λem is the wavelength of the emitted radiation. The white lines in Fig. 4.18 show
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Figure 4.18: Comparison of simulated angle-resolved macroscopic high harmonic spectra using (a)
Gouy phase (g0 = 0) and (b) focal phase with g0 = −2. Lines denote peaks of a double-slit pattern
with slit separation of 0.925

√
2W0 ≈ 39µm in the direction perpendicular to the laser propagation.

Laser and gas jet parameters are given in the text. (Taken from [6].)
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predictions for the side maxima, fitted to match the numerical data using L = 0.925L0. This

effective slit separation is slightly smaller than the distance between the two radial positions L0 =

√
2W0 for ∆ΦF = 0 near z = 0. We further note that the off-harmonic radiation at energies in

between the harmonics does not show an interference pattern. This is due to the incoherent nature

of this radiation, which results from fluorescence due to resonant excitation of the hydrogen atom

[160].

A key factor for the occurrence of the interference effect is that for nonzero g0-values the

phase shift equals zero at radial positions in the focus with z 6= 0. This raises the question of how

the interference pattern depends on parameters of the set-up. Results of those studies are presented

in Fig. 4.19. In the plots, we show how the positions of the first minimum (circles) and the first

maximum (squares) in the interference pattern of the 7th harmonic depend on (a) the width of the

central gas jet σz, (b) the Porras factor g0, and (c) the beam waist W0. Other parameters are kept

the same as in Fig. 4.18.

The positions of the first two extrema remain almost unchanged for variations of the central

gas jet width and the Porras factor. We note that an increase of the gas jet width leads to a

decrease in the contrast between the maxima and minima in the interference pattern until for

even larger jet widths, i.e., σz > 0.5z0, the pattern visually disappears. This is likely due to the

enhanced impact of out-of-phase contributions from locations in between the nodal points which

tend to destructively interfere with the contributions from points with ∆ΦF = 0. Within the limits

for the jet widths established in Fig. 4.19(a), the position of the nodal points does not change

significantly along the propagation axis. This explains the stability of the extrema over the range

of jet widths. The Porras factor g0 controls the convexity (concavity) of the curve along which the

nodal points appear as a function of z. However, near the center of the focus, the change is not

significant enough to impact the position of the extrema in the interference patterns for σz ≈ 0.23z0

(cf. Fig. 4.19(b)). On the other hand, for a variation of the laser beam width W0 (Fig. 4.19(c)), the

locations of the interference maxima approximately scale with W
−1/2
0 , as expected for the simplified

interpretation based on the double-slit interference pattern. Small variations from the trend are
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Figure 4.19: Position of first minimum (circles) and first maximum (squares) in the interference of
the 7th harmonic as a function of the (a) width of the central gas jet σz, (b) g0, and (c) W0. Other
parameters are kept the same as in Fig. 4.18. The line in the bottom panel shows the prediction for
the first side maximum based on the double-slit formula with estimated slit separation of 0.925L0.
(Taken from [6].)
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seen at the smallest values of W0. Since z0 ∝ W 2
0 , this can be understood again as likely due to

out-of-phase contributions from the relatively wide gas jet.

In Fig. 4.20, we demonstrate the suppression of higher harmonic radiation on-axis as a result

of the macroscopic phase. As before, the single-atom response (black) has relatively equal inten-

sity for harmonics through the cut-off, as well as for the off-harmonic radiation. Including only

intensity variation and geometric phase, the macroscopic result for a (non-physical) laser with no

spatial phase variation (purple) strongly suppresses most off-harmonic radiation, and decreases the

intensity of the highest harmonics (> 15ω) relative to the plateau. Including the Gouy phase of a

monochromatic Gaussian laser (red), radiation is suppressed proportional to the harmonic order,

but the structure of the off-harmonic radiation does not greatly differ. When the additional focal

phase is included (green), on-axis radiation is further suppressed for higher harmonics, resulting

in radiation at the cut-off 10 orders of magnitude weaker relative to the fundamental than that

present in the single-atom response. When present, this additional focal phase must be considered

in phase-matching.

Within the numerics of our macroscopic simulations, the focal phase is also significant.

Fig. 4.21 demonstrates the increased convergence requirements when including the focal phase

(bottom Panel) as compared to calculations with only the Gouy phase (top Panel). The focal

phase requires orders of magnitude more cells for convergence, especially for harmonics above the

threshold. We attribute this to a combination of lower radiation intensity – requiring more cells to

bring the noise floor below regions of interest – and more rapid phase variation within the gas jet

– requiring more cells to well-sample the phase structure.

4.6 Other investigations

In addition to our core focus of hydrogen driven by an 800 nm laser pulse, we investigated

other wavelengths and targets, with parameters summarized in Table 4.1 (for example chosen

intensities).
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Figure 4.20: Comparison of single-atom results (black dotted) and macroscopic TDSE interpolation
results for different driving laser CEP profiles: constant phase (purple), Gouy phase (red), focal
phase with g0 = −2 (green). For a gas jet of hydrogen atoms driven by an 800 nm laser with peak
intensity 7.0× 1013 W/cm2.

Parameter

Target atom Hydrogen Hydrogen Helium
Wavelength (nm) 800 1600 400
Intensity (W/cm2) 3.8× 1013 8.8× 1013 3.3× 1014

Duration (o.c.) 20 10 20
IP (a.u.) 0.50 0.50 0.94
IP /ω 8.8 17.6 8.1
UP /ω 1.5 27.1 1.6
Keldysh γ 1.7 0.57 1.6

Table 4.1: Comparison of parameters for hydrogen driven by near-IR and mid-IR lasers and for
helium driven by a 400 nm pulse. A single example intensity is chosen from the range of each
set. We note that the similarity of dimensionless parameters for the 800 and 400 nm cases was by
design.
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Figure 4.21: Convergence of macroscopic on-axis radiation with number of cells for (top) Gouy
phase and (bottom) focal phase with g0 = −2, generated by a sin2 pulse of 20 optical cycles
at wavelength of 800 nm and peak intensity of 7.0 × 1013 W/cm2. Vertical dashed lines denote
the ionization potential (left line) and HHG cut-off (right line). Note different cell numbers than
Fig. 4.10.
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4.6.1 Hydrogen at 1600 nm

HHG driven by mid-infrared pulses has received growing interest in recent years [103–105].

Due to the scaling of the HHG cut-off (IP+3.17 I
4ω2 ) and lower probabilities of ionization (i.e., higher

saturation intensities), longer driving wavelengths allow for production of bright high-harmonic

supercontinua extending into keV energies [31]. Much of the research on mid-IR HHG focuses on

high driving laser intensities and the resulting ultrahigh harmonics. Here, we seek to investigate

the near-threshold response, where low photon energies and large UP mean that many states cross

through resonance. As previously mentioned, this spectral region cannot be approximated with

the same approximation methods often used for plateau harmonics. Meanwhile, TDSE calculations

become significantly more computationally expensive due to scaling of pulse duration (∝ λ) and

quiver radius (∝ λ2) as well as generally higher convergence requirements due to the relatively low

intensity of the HHG signal relative to the fundamental. Efficient interpolation and macroscopic

summation is thus of especial importance at longer wavelengths.

As mentioned above, we have found that longer wavelengths require finer intensity sampling

to achieve commensurate convergence, and furthermore that macroscopic summation requires more

cells. Therefore, the results of this Section comprise 1, 000 microscopic TDSE simulations at inten-

sity sampling of dI = 1011 W/cm2, and 107 macroscopic cells. We note that improvements to the

method will be needed in order to expand 1600 nm investigations to inclusion of focal phase – the

compounded convergence requirements exceed current limits of feasibility.

In Fig. 4.22, we present a comparison of a microscopic spectrum (dot-dashed black line) and

calculations where the interpolated single-atom TDSE results are either added up coherently (solid

red line, as Eq. (4.8)) or incoherently (dashed blue line, with P (ω) =
∑

j |aj(ω)|2). As for 800

nm, the lack of coherence of the radiation strongly suppresses radiation in the macroscopic result.

Unlike for the lower wavelength, the overall relative intensity of the plateau is greatly reduced, by

about six orders of magnitude compared to the microscopic signal. Additionally, the suppression

does not clearly select odd-harmonic radiation ((2n+ 1)ω, denoted by vertical gridlines) compared
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to peaks at other energies, except for radiation above the effective cut-off near 85ω (compared to

microscopic prediction of 104ω). It thus appears that coherence is poor for all radiation in the

plateau, compared to the on- vs. off-harmonic coherence differences seen at lower wavelengths.

This is further supported by Fig. 4.23, where spectra resolved by angle (top) and scanning peak

intensity (bottom) show similar lack of harmonic selectivity.

4.6.2 Helium at 400 nm

While atomic hydrogen serves as a straightforward and common target in theory, it is im-

portant to also consider how investigations may be extended to experimentally-accessible targets.

Helium is a natural next step as both a common and useful HHG target [31] and the next simplest

atom for simulations. In fact, the lack of inner orbitals is beneficial to both purposes – eliminating

re-absorption of high-energy radiation and avoiding extra steps needed to address non-physical

transitions to lower occupied states (see Sec. 2.2.3). In our calculations, we have used the helium

SAE potential developed in this thesis (see Ch. 2).

Given the higher ionization potential of helium, we chose a lower wavelength (400 nm) and

higher intensities (by a factor of about 8). This results in similar dimensionless parameters as for

hydrogen driven by 800 nm lasers, as seen in Table 4.1. Interpolation and macroscopic summation

are performed in the same manner as for hydrogen, with the same gas jet and laser shape parameters.

While the 400 nm interpolation appears to be converged at higher intensity spacing (≈ 8 × 1012

W/cm2, consistent with our rule of thumb), for the macroscopic simulations we use the same spacing

as for hydrogen, i.e., dI = 1012 W/cm2 – the TDSE calculations had already been completed for

the finer spacing and the later steps are not significantly impacted by including more points for

interpolation.

Overall, we observe similar features for helium driven by 400 nm lasers as previously observed

in the hydrogen results at 800 nm. In Fig. 4.24, on-axis radiation is suppressed between harmonics

by coherent macroscopic summation, but significant off-harmonic peaks do remain. These features

again show, in Fig. 4.25, wider angular dependence than harmonic radiation.
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Figure 4.22: Comparison of (dot-dash black) single-atom results versus (dashed blue) incoherent
and (solid red) coherent macroscopic summation, for HHG in a gas jet of hydrogen atoms driven
by a 1600 nm laser pulse of 10 optical cycles with peak intensity 8.8× 1013 W/cm2. Note that the
intensity of the spectra are scaled by the signal at the fundamental frequency.
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Figure 4.23: Macroscopic radiation spectra for a gas jet of hydrogen atoms driven by a 1600 nm
laser. (top) Angle-resolved spectrum for a peak intensity of 8.8× 1013 W/cm2. (bottom) On-axis
spectra shown as a function of peak intensity.
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Figure 4.24: Comparison of single-atom TDSE results and macroscopic TDSE interpolation results
for high harmonic generation in helium atoms. On the left, the (a) single-atom and (b) macroscopic
on-axis spectrum is shown as a function of peak intensity. The spectra on the right show the
comparison (single atom: black dashed line, macroscopic: red solid line) at peak intensities (c)
I0 = 3.3× 1014 W/cm2 and (d) I0 = 8.0× 1013 W/cm2. (cf. hydrogen results in Fig. 4.11)
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Figure 4.25: Angle-resolved near-threshold part of the macroscopic radiation spectrum for a gas
jet of helium atoms driven by a 400 nm laser with peak intensity 3.3× 1014 W/cm2. (cf. hydrogen
results in Fig. 4.13)
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One difference appears in the spectrum near 9ω, Fig. 4.26. The spectrum for helium has some

similar off-harmonic structures as a function of intensity in microscopic simulations (top panel).

Unlike in hydrogen, however, one of these features remains dominant after macroscopic summation

(bottom panel). The temporal profile intensity scans (Fig. 4.27) suggest that the same mechanism

is responsible as discussed for hydrogen in Ch. 3.

4.7 Summary

To summarize, we have introduced an efficient method of generating accurate microscopic

single-atom radiation data at arbitrary intensities, based on the results of a relatively small number

of actual time-dependent Schrödinger equation calculations. We have shown that this interpolation

scheme produces spectra matching ab-initio calculations across the entire high-order harmonic

spectra, including the near-threshold regime as well as the entire plateau up to the cut-off. In

the present applications, the error is found to scale with the fourth order of the intensity spacing

of the initial TDSE calculations, as expected from the cubic spline method used. While we have

focused on usage of the method for the hydrogen atom, it can be extended to other targets (e.g.,

more complex atoms, molecules, solids) as well as other calculation methods (e.g., time-dependent

density functional theory).

We have then applied the interpolation method to compute the radiation response of macro-

scopic targets. Using a previously tested method for summing the response of microscopic radiators,

we incorporated the efficiently-generated microscopic ab-initio results. This eliminates the limita-

tions of approximative methods in the low-energy portion of the spectrum, near and below the

ionization threshold. To demonstrate the reliability in using the interpolation method for accurate

macroscopic HHG simulations, we have used the distribution of atoms on a uniform lattice and

in a gas jet as test cases. We have shown that angle-resolved macroscopic radiation spectra can

be achieved based on just one hundred ab-initio TDSE calculations. For the uniform lattice, it is

shown that the numerical results match the analytical predictions for diffraction patterns.

We have used the TDSE interpolation method to explore features of near-threshold radiation
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Figure 4.26: Comparison of (top) single-atom results and (bottom) on-axis macroscopic TDSE
interpolation results for near-threshold HHG spectra as a function of peak intensity for a 400 nm,
20 o.c. pulse interacting with helium. Results for each intensity have been normalized to the
maximum signal in the region between 8.75ω and 9.5ω. Red dashed lines denote field-free excited
state transition energies, and vertical lines identify select intensities: 2.4 × 1014, 3.3 × 1014, and
8.0× 1014 W/cm2. (cf. hydrogen results in Fig. 4.15)
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Figure 4.27: Comparison of (top) single-atom results and (bottom) on-axis macroscopic TDSE
interpolation results for temporal profile of radiation within 1ω of the 9th harmonic as a function
of driving pulse intensity in helium for a 400 nm, 20 o.c. pulse. For each intensity, the results have
been normalized to a maximum of 1 for sake of comparison. A vertical dashed line denotes the
peak of the laser and horizontal dashed lines identify select intensities: 2.4× 1014, 3.3× 1014, and
8.0× 1014 W/cm2. (cf. hydrogen results in Fig. 4.16)
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in the macroscopic response. Most of the off-harmonic radiation features, which are present at the

same strength as harmonic emission in typical single-atom calculations, are strongly suppressed in

the coherent build-up of the macroscopic signals. The overall macroscopic spectra closely resemble

those obtained in experiments, showing a strong emission at the odd harmonics of the driving laser

frequency and a few features such as weak shoulders close to the harmonics in the near-threshold

region of the spectrum (incl. the off-harmonic red- and blue-shifted structures studied in Ch. 3

– shown to arise from resonant enhancement via a Stark-shifted excited state). We have further

demonstrated that these weak features have a different, i.e., wider, angular spread than the odd-

harmonic radiation, in agreement with previous experimental and theoretical studies. The temporal

and angular dependence both may be useful tools for tailoring pulses.

Investigating an additional focal phase term for highly-focused lasers, we find it has a large

impact on both the angular structure of harmonic radiation and its intensity. Specifically, we have

identified interference patterns in the angular distributions of below- and near-threshold harmonics.

The interference effects are found in case of a spatial phase distribution for broadband Gaussian

pulses with a negative Porras factor, while they are not present for the monochromatic Gouy phase

distribution. Our analysis indicates that the interferences are due to off-center contributions that

are in-phase with those at the central points in the focus.

Finally, we have briefly explored radiation in two other parameter regimes: hydrogen driven

at longer-wavelengths of a mid-infrared laser, and helium driven by a shorter wavelength laser. For

helium driven by 400 nm laser light, we see behavior consistent with that observed for hydrogen

at 800 nm. Future work should in particular investigate intensities near 2 × 1014 W/cm2, where

off-harmonic radiation remains stronger than 9ω radiation after macroscopic summation. For the

mid-IR results, efficient methods are crucial for overcoming the increasing computational complexity

and costs. At this wavelength, macroscopic radiation in the HHG plateau is strongly suppressed

relative to the microscopic signal, and does not demonstrate the selectivity to odd harmonics found

at lower wavelengths.

Overall, the results obtained for the near-threshold region are in agreement with previous
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results based on more sophisticated calculations, showing the reliability of the present method for

efficiently exploring a parameter regime rich with complex features.



Chapter 5

Summary and Perspectives

This thesis investigated near-threshold high-order harmonic generation (HHG) through a

variety of theoretical techniques. In Chapter 1, we provided background including a simple model

of HHG ignoring the effects of target characteristics, numerical techniques for ab-initio simulation

of the time-dependent Schrödinger equation (TDSE) for a single electron in an atomic potential

and the electric field of a laser pulse, and strategies to analyze radiation data.

Next, in Chapter 2 we presented single-active-electron (SAE) potentials for atoms, ions, and

molecules. We demonstrated the utility of these potentials for HHG as well as nonlinear polarization

and ionization studies. Good agreement has been shown between results from separate SAE-TDSE

and time-dependent density functional theory (TDDFT) simulations for the full HHG spectrum,

driven by intense lasers across a variety of wavelengths. This comparison serves to dispute a

long-standing misconception in the field, and provide a foundation for investigation of impacts

of electron correlation on HHG. Additionally, we outlined a strategy to resolve a limitation of

SAE-TDSE simulations in atoms where multiple orbitals may respond to the driving laser.

In Chapter 3, we investigated resonance enhancement of near-threshold HHG. We identified

similar resonance effects in broad parameter regimes, including hydrogen driven by near- and mid-

infrared pulses, as well as helium with 400 nm lasers. The behavior that may be explicable through

semi-classical trajectory models (generally at higher intensity) has been differentiated from features

that are not consistent with these models. We interpreted results through field-shifted resonance

conditions and dimensionless parameters, outlining two possible regimes where the effect breaks
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down: first, when a large number of resonances contribute, resulting in noisier signals and second,

when perturbative and/or strongly multiphoton behavior becomes more dominant (small UP /ω

and UP /IP , respectively).

Finally, in Chapter 4 we introduced a method to combine efficient macroscopic simulation

with ab-initio atomic methods. Specifically, we demonstrated that the intensity and CEP depen-

dence of HHG across a wide range of parameters can be efficiently and accurately approximated

through simple interpolation. Macroscopic summation then proceeds via the Discrete Dipole Ap-

proximation – a method with a proven track record in simulation of higher harmonics within the

strong-field approximation – requiring only hundreds of numerical TDSE simulations. With this

TDSE-DDA method, we showed that near the ionization threshold, off-harmonic radiation features

are suppressed relative to harmonic radiation, but do remain at significant intensity and with a

wider angular spread. Using the SAE potentials developed in this thesis, we demonstrated similar

structures in helium driven by a 400 nm laser. The TDSE-DDA method can also be extended to

mid-infrared lasers, where initial investigation showed dramatic suppression of HHG across driving

intensities due to poor coherence – at least at the chosen set of laser and gas parameters. Finally,

we considered an additional spatial phase term present in highly-focused lasers, resulting in a clear

interference structure in the angular dependence of HHG.

Each of these investigations may serve as foundation for future work on understanding HHG.

Therefore, we placed an emphasis throughout on explanations of process, obstacles to overcome,

and future directions. For SAE potentials, there are two clear directions for the future: further

careful comparison of SAE-TDSE and TDDFT results to identify dynamic multielectron effects;

and, development and use of additional molecular potentials. With resonance HHG, we have iden-

tified similar effects in broad parameter regimes, but placed the majority of our focus on a feature

– the impact of the hydrogen 9ω → 3p resonance on radiation near the ninth harmonic – with

the distinction of producing radiation at multiple delays from the resonance. Further investigation

could seek similar cases to illuminate the mechanism, further investigate the parameter boundaries

between forms of HHG (trajectory-like resonance-enhanced, other resonance-enhanced, “normal”),
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or turn to applications such as pulse-shaping or spectroscopy. With the TDSE-DDA method we

have presented an efficient tool which may easily be extended to a large variety of investigations.

These include observations of interesting effects in HHG from mid-IR pulses and those with addi-

tional focal phase terms, which certainly require further attention. Variations of target parameters

such as gas composition, lattice construction, or location relative to the laser focus may reveal novel

effects in the near-threshold regime. Extensions to more exotic single-radiator simulations (e.g.,

molecular targets or bi-elliptical driving fields) hold a great deal of promise. Finally, we have only

just begun to understand the combinations of these three topics, with the helium resonance effects

already showing particular promise in macroscopic simulations.
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[6] R. Reiff, J. Venzke, A. Jaroń-Becker, and A. Becker, Interference effects in high harmonic
generation induced by focal phase distribution, submitted to Optics Letters (2021).

[7] H. Hertz, Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung, An-
nalen der Physik 267, 983–1000 (1887).
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