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The study of subtle interactions in atomic and molecular systems has stirred scien-

ti�c interest since the dawn of quantum mechanics. Even today, research into perturbative

long range interactions continues to push into new territory, largely driven by the experi-

mental capabilities of Rydberg state spectroscopy. However, theoretical investigations have

also made signi�cant contributions, suggesting that the motion of a charged particle in the

�eld of an anisotropic core is far more complicated than previously thought.

In this work we present a new theoretical formulation of Rydberg atoms and

molecules that con�rms the existence of previously unknown interactions, including an un-

usual pseudo-vector interaction with an \orbit-orbit" operator structure. While static long-

range multipole interactions have been studied for years, the presence of dynamic terms that

involve both position and momentum operators has been demonstrated only recently. In

contrast to the ordinary quadrupole or induced-dipole interaction terms, the existence of

this vector interaction hinges on the motion of the distant charge as it roams far beyond the

con�nes of the core. Physically, this interaction re
ects an attempt of the Rydberg electron

to \drag" the core polarization vector with it. This drag is hindered by the internal mo-

ment of inertia of the ion, and by the moment of inertia of the distant electron about the

center-of-mass .

The theoretical work described below, for high-` Rydberg states of Ne, in combi-

nation with experimental work performed elsewhere, has con�rmed for the �rst time the

existence of this vector interaction. Our analysis shows that details of the spectrum, at sub-

MHz resolution, depend strongly on the tensorial structure of this unusual interaction. Our

long range multichannel formulation has now been applied successfully to describe autoion-

ization resonances in doubly excited Rydberg states of Mg, and, most recently, to describe



iv

high-` Rydberg states of H

2

and D

2

. This work also presents the �rst complete adiabatic

calculations of the ground (�

+

=0; N

+

=0) and �rst rotationally excited (�

+

=0; N

+

=1)

state polarizabilities and hyperpolarizabilities of H

+

2

and D

+

2

. An analysis of the energy shifts

generated by the vector interaction and the relativistic retardation (or Casimir) interaction

demonstrates that they cause clearly di�erent patterns of energy level splittings that should

be experimentally observable. This theoretical work, in combination with still more sensitive

experiments that are currently underway, should reveal the quantitative nature of both of

these subtle interactions in a Rydberg molecule.
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CHAPTER 1

INTRODUCTION

The subtle in
uences of tiny interactions have frequently served as probes of new

physics and as a reminder of the complexity of nature. The discrepancy between the ob-

served and calculated perihelion of the planet Mercury, a mere di�erence of 43

00

of arc per

century, was the outstanding problem in Newtonian physics until the equations of planetary

motion were modi�ed by the general theory of relativity. The existence of the Lamb shift

in the 2S

1

2

and 2P

1

2

states of hydrogen (� 1057MHz) [1, 2] was found to originate from the

interaction between the bound electron and vacuum 
uctuations, and lead to the �rst sys-

tematic removal of logarithmic divergences from early relativistic theories and to the creation

of renormalization techniques in modern quantum �eld theory [3, 4, 5, 6, 7]. Even the spin of

an electron, while in some way a subtle atomic property, was originally discovered through

its e�ects in spectroscopy, and has had far reaching implications including the number of

electrons that can occupy a give quantum state (Pauli's exclusion principle) and of course

the basic chemical properties of atoms and molecules.

Since the �rst measurement of the Lamb shift [1, 2], a half-century ago, the abil-

ity of experiments to probe the weakest forces in nature has grown enormously. Today

the electroweak interaction and the nuclear anapole moment can be measured in table top

atomic physics experiments [8], thereby broadening the traditional scope of atomic physics

and complementing studies in high energy and nuclear physics. The �eld of Rydberg state

spectroscopy [9, 10, 11, 12, 13, 14, 15, 16, 17] has likewise grown tremendously, providing

a revealing probe of the subtle interactions between atomic and molecular ionic cores and

weakly bound Rydberg electrons. High resolution microwave spectroscopy can now resolve
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Rydberg intervals with a precision of 1 kHz [9, 10, 11], yielding precise, indirect measure-

ments of ionic core multipole moments and polarizabilities. And, as a consequence of these

improvements in resolution, experiments are close to measuring, for the �rst time, the slight

energy shifts of Rydberg states due to relativistic retardation, or \Casimir" forces [18, 19].

In recent years, new physics has been discovered in the long range interactions of

anisotropic Rydberg atoms and molecules. The work presented here not only chronicles

this new discovery, but essentially represents much of its history. To put this discovery in

perspective let us begin by reviewing some simple features of high-` Rydberg motion.

The unusual spatial nature of nonpenetrating Rydberg states provides a consider-

able degree of theoretical simpli�cation. The strong centrifugal repulsion, associated with

high-` motion, forces the Rydberg electron to roam far beyond the con�nes of the core. In

this distant region the electron primarily experiences a simple screened Coulomb attraction

toward the ion. However, it is the structure of the ionic core that makes Rydberg physics

interesting and surprisingly complicated.

In order to elucidate the importance of core structure, consider the simple case of

a distant Rydberg electron attached to a spherically symmetric ground state ion, which pos-

sesses no permanent multipole moment. Apart from the long range �

1

r

Coulomb attraction,

the charge induces dipole moments in the ion that fall o�, asymptotically, as

1

r

2

. The net

e�ect of the induced dipole interaction is to further increase the interaction potential energy

by �

�

s

2r

4

, where �

s

is the scalar dipole polarizability of the ionic core. As a result, the po-

larization interaction produces simple scalar shifts for each ` state, removing the hydrogenic

degeneracy.

The physics of a Rydberg system changes substantially when anisotropic cores

having nonzero total angular momentum are considered. The �rst important di�erence is

the presence of a quadrupole Rydberg-core interaction of the form �

Q

r

3

P

2

(cos�), where �

is the relative angle between a symmetry axis of the ion and a unit vector pointing to
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the Rydberg electron. Moreover, an additional tensor dipole polarization interaction of

the form �

�

t

2r

4

P

2

(cos�) appears that was absent in the spherically symmetric case. The

tensorial dependence of these interactions produces coupling among di�erent ionic core states

and among the various Rydberg series attached to ionization thresholds of the core, which

generally produces far richer and more complex spectra than are observed for systems with

spherically symmetric ionic cores.

Most theoretical treatments of Rydberg systems have been restricted to interactions

among charged particles and spherically symmetric closed-shell atoms or ions [20, 21, 22].

Theoretical extensions to nonpenetrating Rydberg states that involve an electron and an

open-shell, anisotropic core have remained largely unexplored. A few notable exceptions

in atomic and molecular physics are the perturbative polarization schemes of Schoenfeld

and Sturrus [23, 13, 12, 11] and the more general nonperturbative multichannel approach

of Herzberg and Jungen [24, 25, 26]. The lack of attention to anisotropic systems, and the

need to better understand the long range nature of nonrelativistic physics, is highlighted by

Zygelman's [27] recent prediction of a new nonrelativistic \orbit-orbit" type interaction in

anisotropic Rydberg systems. In a pioneering study of long range atomic forces, Zygelman

used non-Abelian gauge transformations and geometric phases to predict an e�ective long-

range potential energy, now called the \vector" interaction, with the operator structure

V

vector

= �

v

~

L

c

�

~

`

r

6

: (1.1)

Here

~

L

c

and

~

` denote the orbital momentum of the ionic core and the Rydberg electron,

respectively. The terminology \vector" interaction is somewhat misleading. The overall

operator

~

L

c

�

~

` is clearly a scalar, which conserves the total angular momentum of the

Rydberg-core system. Moreover,

~

L

c

and

~

` are pseudovectors that remain even under the

spatial inversion of the core and Rydberg electronic degrees of freedom. Interestingly, this is

the only nonzero term with odd tensorial structure in the e�ective long range potential out
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to radial order

1

r

6

. Additional odd rank tensor terms such as the dipole or octupole terms

of the Rydberg-core interaction fail to survive to this order in

1

r

, assuming, of course, the

typical situation where ionic states possess a de�nite parity.

The analysis of Zygelman provided no analytic expression for the proportionality

coe�cient �

v

, raising questions regarding not only the physical origin of this \vector" inter-

action, but also its existence since the coe�cient could vanish. A term with this operator

structure was introduced into atomic spectroscopy by Trees [28] and Racah [29], but only

on semiempirical grounds and without an explicit derivation. However, they did correctly

interpret this correction term as a polarization energy arising from second-order perturbative

e�ects.

In a move to clarify the existence of this term and provide some explanation of its

physical origin, we put forth a systematic derivation of this unusual interaction, using stan-

dard techniques in atomic and molecular physics. With the aid of high resolution Rydberg

spectra we con�rmed, for the �rst time, its existence in Rydberg states of Ne [30, 31, 10].

Our theory has not only established the existence of the vector interaction, but it has also

spawned an extension of perturbative theories that enables us to treat e�ects due to coupling

among Rydberg states, using a long range polarization methodology. The new multichannel

Hamiltonian approach to Rydberg systems has now been successfully applied to Rydberg

states of Ne [30, 31, 10], to autoionizing Rydberg states of Mg [33, 32] and, most recently,

to Rydberg states of H

2

and D

2

[34, 9, 11]. Physically, the vector term is a dynamic angular

interaction that re
ects a coupling among the orbital motion of the Rydberg electron and

the internal ionic angular momentum, mediated by the dipole portion of the electron-ion

interaction. As the Rydberg electron orbits the core, it tries to drag the core polarization

vector with it. This drag is hindered by the internal moment of inertia of the ion, and the

moment of inertia of the distant Rydberg electron.

The theoretical description of Rydberg systems developed here di�ers from the
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traditional perturbative approaches in two important ways. We abandon the use of Rayleigh-

Schr�odinger perturbation theory and approach the problem from a multichannel close-coupling

perspective that is common in modern scattering theory. The multichannel formulation

makes it possible to derive e�ective long range potentials without fully solving the com-

plete atomic or molecular Rydberg problem. This di�ers from the Rayleigh-Schr�odinger

approaches [23, 13, 12, 11] in that we do not calculate shifts from pure hydrogenic levels, but

rather systematically derive e�ective potentials and compute Rydberg states by diagonaliz-

ing an e�ective Hamiltonian. This last step provides a second important di�erence, in that

coupling among di�erent Rydberg states can be treated almost exactly. While it is true that

the long range interaction between the Rydberg electron and the ionic core can be expanded

in reciprocal powers of the Rydberg radial coordinate, Rydberg states attached to di�erent

ionization thresholds of the ionic core can still be strongly coupled to one another. Moreover,

the fact that there can be near degeneracies among these strongly coupled Rydberg states

invalidates the traditional nondegenerate perturbative approaches. This type of coupling is

easily treated, however, with the multichannel formulation presented here.

We begin in Chapter 2 with a systematic derivation of the long range adiabatic

potential between a Rydberg electron and an arbitrary anisotropic core. This derivation

serves to demonstrate how a long range potential can be derived using standard techniques

in atomic and molecular physics, and lays the groundwork for a theoretical prediction of the

vector interaction, which is presented in Chapter 4. In Chapter 3 we generalize the single

channel analysis of Chapter 2 and develop a multichannel diabatic approach to Rydberg

systems that enables a systematic treatment of channel coupling. The proper treatment of

channel coupling is essential in any modern theory that attempts to reproduce experimental

observations with spectroscopic accuracy. In chapter 4 we use Wigner-Racah recoupling

algebra to transform the potentials developed in Chapters 2 and 3 so that both their operator

structure and their anisotropic nature can be easily identi�ed. The tensor analysis also



6

enables the identi�cation of channel dependent core properties that allow us to cast the long

range potentials in a parametrized form. A systematic derivation of the vector interaction

is then presented and its physical implications are discussed.

In Chapters 5 through 7 we apply our theoretical formulation to the description

of Rydberg states in Ne, Mg, H

2

, and D

2

. The analysis of the n = 10, ` = 5; 6; 7, and 8

Rydberg states of Ne, presented in Chapter 5, represents the �rst con�rmation of the vector

interaction within a Rydberg system. We show that by including the vector interaction in

our analysis of the observed Ne Rydberg levels [10, 30, 31] a four fold reduction in the �

2

comparison can be achieved, reproducing energy splittings with an accuracy of no worse that

0:5 MHz. Moreover, a comparison of our theoretical value for �

v

and the value extracted

from the experiment provides additional evidence for the existence of this subtle interaction.

Chapter 6 continues this investigation into anisotropic interactions by considering

the doubly excited 3pnf Rydberg states of Mg where a Rydberg electron interacts with an

excited Mg

+

3p core [31, 32]. In this system the strong coupling among Rydberg states

results in irregular behavior in the n-dependence of autoionization rates, which is accurately

described by our diabatic formulation. While the coe�cient of the vector interaction is thirty

times larger for the Mg

+

3p core than for the Ne

+

core, its e�ect is much less discernible

owing to the large widths of the lower-` autoionizing resonances that were examined in the

Mg experiment.

Chapter 7 presents our most recent work on Rydberg states of the simple diatomic

molecules H

2

and D

2

. This work focuses primarily on Rydberg states attached to spherical

ionic cores, namely the (�

+

= 0;N

+

= 0) states of H

+

2

and D

+

2

, since measurements with

kHz resolution were recently performed by Jacobson [9]. These precise measurements give

a stringent test of our diabatic formulation and our ability to accurately compute core

multipole moments, polarizabilities, and hyperpolarizabilities. The �rst complete adiabatic

calculations of polarizabilities and hyperpolarizabilities for the ground (�

+

=0;N

+

=0) and
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�rst rotationally excited (�

+

=0;N

+

=1) states of H

+

2

and D

+

2

are presented. The strength

of our treatment is demonstrated by our ability to reproduce Rydberg intervals with a

accuracy of better than 0.3 MHz. We are hopeful that exact, or nonadiabatic, calculations

of the polarizabilities and hyperpolarizabilities of H

+

2

and D

+

2

will help reduce the remaining

discrepancies and provide the �rst clear signature of retardation, or a \Casimir" force, within

a Rydberg molecule.

While very little data exits with kHz resolution for H

2

Rydberg states attached to an

anisotropic core (N

+

> 0) [12, 11], we can still provide some interesting studies of the vector

interaction. One of the more revealing new predictions is that the vector hyperpolarizability

�

v

is inversely proportional to the rotational inertia of an anisotropic homonuclear diatomic

ion. This fact con�rms our physical picture of the vector interaction. As the distant Rydberg

electron revolves around the core, it tries to \drag" the core polarization vector with it.

Unfortunately, the relatively large moment of inertia of the molecule strongly resists this

drag, thereby minimizing the \torque" e�ect. As a result, the dynamic vector interaction is

tiny in molecular Rydberg states. An analysis of the energy shifts generated by the vector

interaction and by relativistic retardation interactions in Rydberg states of (�

+

=0;N

+

=1) H

2

[19] demonstrates that they produce distinct patterns of energy level splittings that should

be experimentally observable. This theoretical work, in combination with more sensitive

experiments that are currently underway, should reveal the quantitative nature of both of

these subtle interactions in Rydberg states of H

2

.



CHAPTER 2

ADIABATIC DESCRIPTION OF RYDBERG SYSTEMS

In this chapter we present an adiabatic analysis of Rydberg systems that shows

the origin of the vector interaction, and develop a multichannel formulation that generalizes

perturbative polarization models. The goal here is to use techniques that are standard in

atomic and molecular physics to derive a long range potential that describes how a slow, or

adiabatic, Rydberg electron interacts with an arbitrary anisotropic ionic core.

2.1 Adiabatic Representation

The concept of adiabaticity has been used extensively in atomic and molecular

physics. One of the earliest quantum mechanical application was the extremely useful Born-

Oppenheimer approximation, which provides much of the framework used to understand the

low vibrational states of diatomic molecules. The approximation essentially assumes that the

relative motion of the nuclei is slow compared with the motion of the molecular electrons,

and, as a consequence, the electronic properties of the system acquire a weak parametric

dependence on the internuclear separation. In other words, the slow nuclear motion leads to

an approximate separation of the nuclear and electronic degrees of freedom.

This approach can be extended to many problems in physics, provided there is at

least one \slow" degree of freedom relative to all other degrees of freedom in the system. In

Rydberg atoms and molecules it is the radial coordinate of the Rydberg electron that can

serve as the adiabatic coordinate. A Rydberg atom or molecule is a simple quantum system

involving an electron with high angular momentum (` � 5) and a relatively isolated ionic core.

The slow moving Rydberg electron can be regarded as a probe of the electrostatic properties

of the ionic core: speci�cally the permanent multipole moments and polarizabilities of the
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relevant ionic states. The large spatial separation between high-` Rydberg and core electronic

states makes Rydberg electron spin e�ects (such as exchange) negligible. (These e�ects can

be included perturbatively if they become appreciable.) The absence of exchange between

the Rydberg and the core electrons leads to the (J

c

`)K coupling scheme [35, 36]. Here the

total angular momentum J

c

of the fast core electrons is coupled with the orbital momentum

` of the slow Rydberg electron to form a resultant K, which serves as the total angular

momentum in most of the succeeding derivations.

The centrifugal repulsion associated with high-` Rydberg states forces the Rydberg

electron to roam beyond the con�nes of the core. In this distant region the radial coordinate

of the Rydberg electron becomes distinct, both spatially and dynamically, from the coordi-

nates of the ionic core. For these reasons, a useful expansion of the wave function for the

entire system is

	(r; !) =

X

i

�

i

(!) 

i

(r) (2.1)

where the f�

i

(!)g representation is an r-independent basis set and ! represents all coordi-

nates in the system except the Rydberg radial coordinate. This basis set is formed from a

complete set of ionic energy eigenstates, whose angular momenta are coupled with the orbital

functions Y

lm

of the Rydberg electron. This ansatz for the wavefunction, combined with the

Schr�odinger equation, leads to a set of coupled radial equations that are usually called the

\close-coupling equations" (without exchange) in atomic physics. The functions f 

i

(r)g in

this primitive expansion can be viewed as the radial wavefunctions for motion within the

ionic channels of the system. The potential curves that describe the radial motion of the

Rydberg electron are formed from a combination of the diagonal matrix element V

ii

(r) of

the Rydberg-core interaction potential, the repulsive centrifugal term, and the ionic thresh-

old energy E

i

in channel i. The o�-diagonal matrix elements V

ji

(r) can then be viewed as

causing Rydberg electron transitions from the i� th to the j � th Rydberg-core channel.
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The full e�ective potential matrix that enters the conventional close-coupling (CC)

equations without exchange is

V

CC

ij

(r) =

�

`

i

(`

i

+ 1)

2r

2

�

1

r

+E

i

�

�

ij

+ V

ij

(r): (2.2)

Here `

i

is the orbital momentum of the Rydberg electron in channel i. Unless stated other-

wise, matrix elements involve integrals over all coordinates (!) (and traces over all spins) in

the problem, except for the radial coordinate of the Rydberg electron. Note that we have

split o� the dominant Coulomb interaction �

1

r

so that the remaining potential matrix V

ij

(r)

can be expanded as an asymptotic series in

1

r

.

2.2 Adiabatic Close-Coupling Equations

The primitive basis set f�

i

(!)g used in the conventional close-coupling equations

is independent of the radial coordinate r of the Rydberg electron. As a consequence, this

representation does not describe the radial variation in the polarization of the ionic core

during close encounters with the Rydberg electron. That physics, however, is included in the

standard close-coupling equations through o�-diagonal channel coupling. Here we introduce

a representation that builds the predominant dynamical e�ects of the Rydberg electron into

a more useful e�ective potential. As in the molecular Born-Oppenheimer approach, these

potential curves are obtained by diagonalizing an \adiabatic Hamiltonian"

^

H

r=const

in which

derivative operators with respect to the adiabatic coordinate r are discarded. The resulting

adiabatic eigenstates �

�

(r;!) form (at every value of r) a complete orthonormal set in the

coordinates !. The adiabatic approximation is valid in our present context if the system

remains con�ned within a single adiabatic channel as the Rydberg electron roams slowly

beyond the con�nes of the core. Explicitly, the adiabatic potentials U

�

(r) and eigenstates

�

�

(r;!) are de�ned as r-dependent parametric solutions of the linear eigenvalue problem:
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^

H

r=const

�

�

(r;!) = U

�

(r)�

�

(r;!): (2.3)

In the f�

i

(!)g representation, the matrix of the adiabatic Hamiltonian operator

^

H

r=const

reduces to V

CC

(r). The adiabatic channel functions are r-dependent superpositions of the

ionic core states and the orbital functions of the Rydberg electron. They contain information

concerning the instantaneous interactions between the Rydberg electron and the core, and

provided r varies slowly, concerning the approximately conserved properties of the electron-

core system. An expansion of the total wavefunction for the system in terms of the adiabatic

channel functions

	(r; !) =

X

�

F

�

(r)�

�

(r;!); (2.4)

transforms the Schr�odinger equation into a set of coupled radial equations. These can be

written in matrix form as

"

�

1

2

�

I

d

dr

+ P (r)

�

2

� (EI � U(r))

#

F (r) = 0; (2.5)

where the derivative coupling matrix is de�ned by

P

��

(r) = h�

�

j

@

@r

�

�

i: (2.6)

Here we adopt Greek letters to label the adiabatic channels. At su�ciently large distances

r ! 1, each adiabatic channel converges to one of the ionic channels labeled by Roman

letters in the primitive close-coupling representation.

In contrast to the primitive close-coupling representation, in which the coupling

among the ionic channels enters through the potential matrix V

CC

, the coupling among
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our adiabatic channels derives from the derivative matrix P

��

(r) that modi�es the radial

momentum operator. Thus the P -matrix accounts for all nonadiabatic or inelastic e�ects

that arise because the slow Rydberg electron is not slow enough for the core electrons to

instantaneously adjust within the time frame of Rydberg motion. For most of the regimes

discussed here, the o�-diagonal derivative couplings are small compared with the diagonal

adiabatic potentials. Under these conditions, the motion of the system remains con�ned,

to an excellent approximation, within a single adiabatic channel of the system. As we

discuss later, the analogy between the modi�ed radial momentum operator and a generalized

momentum operator that involves both the usual mechanical momentum plus an additional

term, such as an electromagnetic vector potential, [27, 37, 38] permits some of the long range

interactions to be viewed as non-Abelian gauge �elds.

2.3 Adiabatic Potentials and Post-Adiabatic Corrections

The Born-Oppenheimer approximation, which neglects the channel coupling matrix

P (r) altogether, is adequate for many purposes. To achieve higher accuracy or to treat

higher energy processes, however, it is important to include some e�ects of P (r). One

natural approach to this problem attempts to write the radial Schr�odinger equation in an

approximate single channel form

�

�

1

2

d

2

dr

2

� (E � u

�

(r; E))

�

F

�

(r) = 0; (2.7)

in which a new e�ective potential u

�

(r; E) is introduced that depends on the adiabatic

potentials fU

�

(r)g, the derivative couplings, and the energy of the system E in some simple

algebraic way.

The post-adiabatic theory of Klar and Fano[39, 40], later generalized by Aquilanti

[41], provides a means of including the perturbative e�ects of derivative coupling through an

iterative algebraic procedure. The main idea is to transform the original adiabatic equation
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Eq.(2.5) into a set of coupled single-channel equations where the new coupling arises from

terms proportional to P (r) or

d

dr

P (r). This \postadiabatic procedure" can be iterated, in

principle, which will (hopefully) reduce the coupling strength in each successive iteration.

For our purposes we use only the �rst iteration of the procedure, for which the

e�ective potential is given by

u

�

(r; E) ' U

�

(r) �

1

2

�

P

2

�

��

+ 2 (E � U

�

(r))

X

�

j P

��

j

2

U

�

(r) � U

�

(r)

: (2.8)

The perturbative condition P

2

��

(r) �j U

�

(r) � U

�

(r) j should be satis�ed at all r relevant

in the problem, which should always be the case for su�ciently high ` states of Rydberg

systems. An immediate implication of the nonadiabatic corrections is an increase in the

potential energy due to the repulsive energy-independent diagonal term �P

2

��

. Inclusion of

this term in molecular problems is often called the \adiabatic approximation" as opposed to

the strict Born-Oppenheimer approximation which neglects P (r) completely. This term is

usually written as a second derivative coupling matrix in that context, but it is equivalent to

our form as the square of the �rst-derivative coupling matrix [39]. An additional implication

is the presence of an energy-dependent contribution; its sign can vary from state to state,

but for the channel of lowest energy, it generally makes the e�ective post-adiabatic potential

u

�

(r; E) increasingly attractive as the energy increases above threshold.

The derivative couplings P

��

(r) can be computed from the radial partial derivative

of the adiabatic Hamiltonian. The diagonal derivative couplings vanish, that is P

��

(r) = 0,

since the P matrix is skew symmetric, and the o� diagonal terms are given by

P

��

(r) =

h�

�

j

@

@r

^

H

r=const

j �

�

i

U

�

(r) � U

�

(r)

; (2.9)

which can be derived from the de�ning equation, Eq.(2.3), for the adiabatic potentials and

eigenfunctions. The partial derivative of the adiabatic Hamiltonian is readily evaluated
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analytically. This form of the derivative coupling matrix clearly demonstrates the apparently

singular behavior when two channels of common symmetry are nearly degenerate (U

�

(r) �

U

�

(r)). The avoided crossing redistributes radial 
ux among the strongly coupled, nearly

degenerate channels.

2.4 Perturbative Adiabatic Diagonalization for Nondegenerate Channels

In Rydberg atoms and molecules of high orbital momentum (` � 5) the domi-

nant electrostatic interaction between the Rydberg electron and the ionic core is the dipole

moment which goes as

1

r

2

. Since a typical inner turning radius is r �

`(`+1)

2

for a Ryd-

berg electron near zero energy, all electrostatic interactions are perturbative compared to

the screened Coulomb attraction �

1

r

. The small values of the electrostatic matrix elements

V

ij

(r) compared with the ionic threshold splittings validates a perturbative diagonalization

of the V

CC

(r) matrix.

An important step in a systematic perturbative diagonalization of this matrix is

the inclusion of diagonal elements V

ii

(r) in the unperturbed Hamiltonian (see the modi�ed

iteration-perturbation formulas of Morse and Feshbach[42]). This is immediately apparent

when the long range coupling matrix is written as

V

CC

ij

(r) =

�

`

i

(`

i

+ 1)

2r

2

�

1

r

+E

i

+ V

ii

(r)

�

�

ij

+ V

ij

(r); (2.10)

where the V

ij

(r) are now purely o�-diagonal contributions. A spherical multipole expansion

of V

ij

(r) now separates the ionic core and Rydberg electron coordinates

V

ij

(r) =

1

X

k=0

h�

i

j

r

k

i

r

k+1

P

k

(cos�

ir

) j �

j

i

=

1

X

k=0

h�

i

j

r

k

i

r

k+1

C

(k)

(r̂

i

) � C

(k)

(r̂) j �

j

i (2.11)
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where the C

(k)

are renormalized spherical harmonics [43].

The perturbative diagonalization of the V

CC

(r) matrix, through second order in

V

ij

(r), produces terms involving summations over intermediate channels � with potential

energy denominators U

�

(r) � U

�

(r). These second order contributions can be classi�ed

as either degenerate or nondegenerate depending on whether an intermediate channel �

is degenerate with the physically relevant channel � at r ! 1 (i.e., U

�

= U

�

). In the

nondegenerate case (i.e., E

�

6= E

�

), this approach gives a long range potential with the

structure

u

�

(r) = E

�

�

1

r

+

`

�

(`

�

+ 1)

2r

2

+

Q

(2)

��

r

3

�

�

�

2r

4

+

Q

(4)

��

r

5

+

�

ad

�

+ �

nad

�

� 2(E �E

�

)�

�

� �

�

� �

�

2r

6

+O

�

1

r

8

�

(2.12)

where ad (or nad) denotes adiabatic (or nonadiabatic). Every term in this potential can be

written as a standard second-order perturbation sum, except for the diagonal quadrupole

Q

(2)

��

and hexadecapole Q

(4)

��

terms which are diagonal (�rst-order) matrix elements of the

ionic electric quadrupole and hexadecapole operators. Explicit expressions for these terms

as in�nite perturbation sums, over bound and continuum states of the core, can be obtained

along the lines of the derivation given by Ref.[44], although there are di�erences in notation,

in coupling scheme, and in the multipoles that were included. Each term Q

(2)

��

,Q

(4)

��

,�

�

, �

ad

�

,

�

nad

�

, �

�

, �

�

, and �

�

depends on the various quantum numbers J

�

; `

�

; and K in a relatively

complicated fashion which is di�cult to analyze:

Q

(k)

��

= h� j

N

c

X

i=1

r

k

i

P

k

(cos�

ir

) j �i; (2.13)
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�

�

=

X

� 6=�

2Q

(1)

��

Q

(1)

��

E

�

�E

�

; (2.14)

�

ad

�

=

X

� 6=�

[`

�

(`

�

+ 1)� `

�

(`

�

+ 1)]

(E

�

�E

�

)

2

Q

(1)

��

Q

(1)

��

; (2.15)

�

nad

�

=

X

� 6=�

4Q

(1)

��

Q

(1)

��

(E

�

�E

�

)

2

; (2.16)

�

�

=

X

� 6=�

8Q

(1)

��

Q

(1)

��

(E

�

�E

�

)

3

; (2.17)

�

�

=

X

� 6=�

2Q

(2)

��

Q

(2)

��

E

�

�E

�

; (2.18)

and

�

�

=

X

� 6=�

4Q

(1)

��

Q

(3)

��

E

�

�E

�

: (2.19)

In Eq. (2.13) N

c

denotes the number of ionic core electrons, while the subscript

r refers the Rydberg electron. One consequence of including nonadiabatic e�ects is the

appearance of an energy dependent term in the long range potential. This energy dependence

has generated a small controversy because di�erent treatments disagree in multiplicative

constants[21, 22]. Ref.[22] shows, however, that the energy dependent term of order

1

r

6

can

be written as an `-dependent linear combination of

1

r

7

and

1

r

8

, implying that the energy

dependent term can be regarded as a contribution of higher order than

1

r

6

.
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2.5 Degenerate Channel Contributions

The nature of the long range potential changes qualitatively when degenerate terms

are present. For instance, in Mg the 3pnf and 3pnh channels are degenerate. Second or-

der degenerate contributions appear when intermediate channels � share the same threshold

energies E

�

= E

�

, K-value and parity with the physically relevant channel � at r ! 1.

However, for simplicity we assume that (as in the Mg case cited above) the intermediate Ryd-

berg electron orbital momentum `

�

di�ers from `

�

, for all degenerate channels. A derivation

similar to that given above produces two additional contributions to the potential u

�

(r) that

originate in coupling to the degenerate channels:

u

0

�

(r) = u

�

(r) +

a

�

r

4

+

b

�

r

6

+O

�

1

r

8

�

(2.20)

where the a

�

and b

�

terms are explicitly

a

�

=

X

� 6=�

2Q

(2)

��

Q

(2)

��

`

�

(`

�

+ 1)� `

�

(`

�

+ 1)

(2.21)

and

b

�

=

X

� 6=�

4Q

(2)

��

Q

(4)

��

`

�

(`

�

+ 1)� `

�

(`

�

+ 1)

: (2.22)

Eq.(2.20) excludes one important type of degenerate channel coupling that arises

when two or more ionic states of opposite parity are degenerate and can consequently support

a permanent dipole moment. The resulting degenerate dipole-coupling of channels can be

important, e.g. in the properties of doubly-excited states of the hydrogen negative ion.

In this case a diagonalization within the degenerate channel space should be performed as

in Refs.[45, 21]. After transformationing to a representation where the long-range dipole
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coupling is diagonal, however, the e�ects of other (non-dipole) multipoles can be handled

using the present techniques.

2.6 Advantages and Disadvantages

An adiabatic analysis is not quantitatively accurate in situations where curve cross-

ings arise, because of the neglect of channel coupling. However, the qualitative insight pro-

vided by the single channel description can be a helpful tool when it comes to interpretation

of the dynamics. For a Rydberg atom or molecule, the simple form of the long range adia-

batic potential o�ers physical insight into the Rydberg-core interaction. Speci�cally, if the

core of a Rydberg system is spherically symmetric (total angular momentum zero), then

the interaction between the Rydberg electron and the many core electrons is purely scalar

and the dominant interaction is induced dipole polarization. In anisotropic systems where

the core is nonspherical (nonzero total angular momentum) the dominant interaction is the

tensor quadrupole interaction followed by scalar and tensor dipole polarization. In chapter

4 we show that a new type of interaction arises when the core is anisotropic. The new vector

interaction

V

vector

= �

v

~

L

c

�

~

`

r

6

(2.23)

couples the angular momentum of the core with the orbital momentum of the Rydberg

electron. The vector hyperpolarizability �

v

depends on the dipole moments of the core and

arises as a dynamic angular interaction due to the motion of the Rydberg electron.



CHAPTER 3

DIABATIC FORMULATION OF THE RYDBERG CHANNEL INTERACTIONS

In this chapter we present a multichannel diabatic formulation that provides an ef-

fective means of treating coupling among di�erent Rydberg-core channels. By \eliminating"

a class of channels, we use a Green's function expansion to derive an e�ective Hamiltonian

with a potential matrix that can couple di�erent � and �

0

channels. The resulting structure

resembles that of the nondegenerate long range potential developed in the previous chapter.

3.1 Diabatic Representation

In the previous chapter the description of a Rydberg system began with the choice

of a primitive representation f�

i

(!)g in the Hilbert space of the ion and of the angular

degrees of freedom of the Rydberg electron. This basis set is independent of the radial

coordinate r of the Rydberg electron. Through a diagonalization of the ionic Hamiltonian

matrix (at every value of r) we form an adiabatic representation where each eigenstate is

a superposition of the ionic core states and the orbital functions of the Rydberg electron.

These adiabatic eigenstates contain information concerning the instantaneous Rydberg-core

interaction and, provided channel coupling is weak, concerning the approximately conserved

properties of the system. Unfortunately, an adiabatic analysis that involves a single adiabatic

channel is usually only appropriate when channel coupling is weak, implying an approximate

separability of the problem. In general, an accurate description of a Rydberg system requires

the inclusion of channel coupling, either through the derivative coupling matrix elements

P

��

(r) of an adiabatic formulation or through the o�-diagonal V

ij

(r) matrix elements in our

primitive basis set expansion. Examples of this situation arise in our applications of these

methods to Rydberg states of Ne[30, 31], to doubly excited autoionizing Rydberg states of
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Mg[33], and �nally to Rydberg states of H

2

and D

2

[34].

Our theoretical description of Rydberg systems is based on the primitive f�

i

(!)g

basis set, which is often referred to as a \diabatic" representation. Adiabatic formulations

and their corresponding potential curves are useful for developing a qualitative understand-

ing of radial motion and for providing insight into perturbations and resonance structure.

Unfortunately, the derivative coupling matrix elements of an adiabatic formulation can be-

come nearly singular, when channels of common symmetry possess close avoided crossings.

Such crossings occur ubiquitously in open shell atoms with �ne structure and can lead to nu-

merical di�culties; consequently, a diabatic formulation is often preferable for quantitative

calculations.

The channel structure provided by the primitive close-coupling equations enables

physically dominant channels to be separated from those that play only a perturbative role

in the physics of a Rydberg system. Since most experiments devoted to the study of Rydberg

energy levels focus on Rydberg series that converge to speci�c ionization thresholds of the

core (typically split by �ne structure or rotational interactions in the case of molecules), the

total channel space can be partitioned into a P subspace of physically dominant channels

and a complementary Q subspace (see Figure 3.1) that is needed to describe core multipole

moments induced by the electric �eld of the Rydberg electron. In what follows, the interac-

tions among channels belonging to the P subspace are treated \exactly", while couplings to

the Q subspace are described perturbatively.

3.2 Diabatic Close-Coupling Equations

The diabatic close-coupling equations connecting all channels with speci�ed total

angular momentum K (excluding the Rydberg electron spin) and speci�ed parity � can be

written in the partitioned form
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Figure 3.1. Generic radial potentials, with electrostatic (or vibrational) and �ne-structure

(or rotational) splittings, that demonstrate the natural separation of physically dominant

channels from those that play only a perturbative role in the physics of a Rydberg system.
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0

@

 

Q

 

P

1

A

= 0; (3.1)

where V is the coupling matrix V

CC

in Eq.(2.2), and I is the identity matrix.

The number of these equations is generally in�nite and for practical reasons must

be truncated in some sensible way. The object is to derive a set of equations and an e�ective

Hamiltonian that describe the motion of a Rydberg electron within the physical channel

subspace. For this approach to be useful, the Hamiltonian must include coupling among the

channels of the physical P subspace, and incorporate e�ects of the perturbative Q subspace

channels, which manifest themselves through polarization and hyperpolarization interactions.

An equation describing the P subspace wavefunction and an e�ective Hamiltonian

can be obtained through the standard technique of channel elimination [46, 47, 48]

H

PP

 

P

= E 

P

; (3.2)

using a Green's functions [49, 50]. The energy dependence of the e�ective Hamiltonian H

PP

H

PP

= �

1

2

I

PP

d

2

dr

2

+ V

PP

+ V

PQ

G

QQ

(E)V

QP

; (3.3)

is a consequence of the channel elimination, and enters through the radial Green's function

matrix G

QQ

(E) that satis�es the equation

�

�

1

2

I

QQ

d

2

dr

2

�EI

QQ

+ V

QQ

�

G

QQ

(r; r

0

; E) = �I

QQ

�(r � r

0

); (3.4)

subject to closed-channel boundary conditions. The dominant coupling among P subspace

channels enters through the �rst order terms V

PP

, while the perturbative e�ects of the Q

subspace channels enters through the second-order terms involving the energy-dependent

Green's function. The Green's function of equation (3.4) can be written in the operator

form
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G

QQ

(r; r

0

; E) =

�

E �H

QQ

(r)

�

�1

�(r � r

0

) (3.5)

where the inverse operator

�

E �H

QQ

(r)

�

�1

is an integral operator with the boundary con-

ditions built into it [49, 50]. In the next section we use a binomial expansion of this inverse

operator to obtain an energy-independent e�ective Hamiltonian that can be used to accu-

rately describe Rydberg motion within the physical channel subspace.

3.3 Generalized Eigenvalue Problem

The form of the e�ective Hamiltonian in equation (3.3) is neither very appealing

nor useful, because of its nonlinear dependence on energy. Since we are interested in Rydberg

states that converge to speci�c ionic thresholds of the core, this nonlinear energy dependence

can be approximately removed through a binomial expansion of the Green's function and a

simple energy transformation.

Channels in the P subspace are typically split by �ne structure interactions (rota-

tional interactions in the context of Rydberg molecules) while the energy di�erence between

a channel in the P subspace and a channel in the Q subspace basically originates from elec-

trostatic interactions (vibrational interactions). The di�erence in magnitude of �ne structure

and electrostatic splittings enables us to expand the Green's function in reciprocal powers of

E�E

Q

, where E

Q

is an ionization threshold in the Q subspace. In addition to this expansion

we also replace the energy of the system E with E

P

0

+ " where E

P

0

is typically the ionic

threshold within the P channel subspace under experimental study and " is a small Rydberg

energy shift. The resulting Green's function takes the simple, analytic form

G

QQ

(r; r

0

; E) = g

QQ

(r; ")�(r � r

0

) (3.6)

where



24

g

QQ

(r; ") �

�

E �H

QQ

(r)

�

�1

=

�

(E �E

Q

)� (H

QQ

(r) �E

Q

)

�

�1

=

I

QQ

E �E

Q

+

I

QQ

E �E

Q

(H

QQ

(r) �E

Q

)

I

QQ

E �E

Q

+ � � �

=

I

QQ

E

P

0

�E

Q

+

I

QQ

E

P

0

�E

Q

(H

QQ

(r)�E

Q

)

I

QQ

E

P

0

�E

Q

�"

I

QQ

(E

P

0

�E

Q

)

2

+ � � � : (3.7)

This formally exact analytic expression for the Green's function can be obtained, alterna-

tively, through an eigenfunction expansion, for example, using the bound and continuum

states of hydrogen [49, 50]. Since we are considering high-` Rydberg states within the P

subspace, the Green's function for the Rydberg electron can only couple to high-` states of

the Q subspace. The high-` nature of this coupling suggests that only near threshold bound

and continuum states within the Q subspace will contribute to the Green's function. In this

sense, the H

QQ

(r)�E

Q

operator represents a Rydberg energy that is small compared with

the large electrostatic splittings. These arguments are supported by the fact that all dynamic

or nonadiabatic e�ects arising from terms proportional to

1

(E

P

0

�E

Q

)

2

are typically an order

of magnitude smaller than the static or adiabatic terms proportional to

1

E

P

0

�E

Q

. This will

become clear in the later chapters where numerical calculations support these arguments.

The preceding analysis enables us to cast our original close-coupling equation,

Eq.(3.2), involving an energy-dependent Hamiltonian, in the form of a generalized eigen-

system (linear in ") where the eigenvalue is the Rydberg energy "

�

H

PP

 

P

= "�

PP

 

P

: (3.8)

The energy-independent \e�ective Hamiltonian"

�

H

PP

is
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�

H

PP

= �

1

2

I

PP

d

2

dr

2

�E

P

0

I

PP

+ V

PP

+ V

PQ

g

QQ

(r; 0)V

QP

: (3.9)

(Note: the g

QQ

(r; 0) matrix in

�

H

PP

is evaluated at " = 0, since we have collected all " terms

on the right-hand side of the generalized eigenvalue equation.) The �

PP

matrix, whose

presence in the eigenvalue equation is reminiscent of an overlap matrix in a nonorthogonal

representation, is

�

PP

= I

PP

+ V

PQ

I

QQ

(E

P

0

�E

Q

)

2

V

QP

: (3.10)

As in the adiabatic formulation, a spherical expansion of the electrostatic matrix V can be

performed that separates all the core electronic and Rydberg coordinates. Such an expan-

sion for the diabatic formulation is postponed until the next chapter where we present the

recoupling theory and an e�ective parametrization of the long-range electron-core potential

energy.

The interaction terms within the e�ective Hamiltonian and the � matrices are clas-

si�ed as permanent electric multipole , and induced \static" and \dynamic" polarization

interactions (sometimes referred to as polarization and hyperpolarization). The static and

dynamic polarization interactions comprise all second-order contributions, and are distin-

guished from one another by their dependence on information regarding the motion of the

Rydberg electron. Speci�cally, dynamic terms involve either radial or angular kinetic energy

operators of the Rydberg electron, while static terms depend solely upon the electrostatic

interaction between the Rydberg electron and the ionic core. The dynamic terms can be

viewed as representing coupling due to the motion of the Rydberg electron.

In principle, the expansion of the Green's function can be carried out to higher-

order in ". Unfortunately, such an expansion only complicates the description of Rydberg

electron motion by introducing higher-order nonlinear energy dependence with no signi�cant

improvement in energy level nor wavefunction information. Another point deserving atten-

tion is the connection between our approach and that of others like W.G. Sturrus [12, 11]
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and W.G. Schoenfeld [23]. While our derivation di�ers from their theoretical analysis, the

�nal e�ective Hamiltonians exhibit similarities. The notable di�erence between our approach

and that of Sturrus is our nonperturbative inclusion of coupling among channels, and con-

sequently among di�erent Rydberg series. In the approach of Sturrus, the e�ect of the core

on the positions of Rydberg levels is incorporated through diagonal matrix elements of the

e�ective Hamiltonian within a hydrogenic basis; this is tantamount to traditional second-

order Rayleigh-Schr�odinger perturbation theory. The coupling among di�erent n` states is

included perturbatively, which breaks down when there are near-degeneracies among Ryd-

berg states. In our formulation the coupling among Rydberg levels converging to thresholds

within our physical channel subspace is treated to all orders by diagonalizing the generalized

eigensystem. Sturrus' evaluation of dynamic corrections relies upon the approximation that

" can be replaced with the e�ective radial hydrogenic Hamiltonian "! �

1

2

d

2

dr

2

+

`(`+1)

2r

2

�

1

r

.

By collecting all terms involving " on the right hand side of our coupled equations, no such

approximation is needed and all coupling among channels can be e�ectively included. This

permits a more realistic description of Rydberg electron motion in the presence of an arbi-

trary ionic core. It might be noted that this type of rearrangement and energy linearization

can also be applied to the post-adiabatic formulation of Klar and Fano [39, 40].

3.4 Autoionization Rates

In anticipation of Chapter 6, where we discuss autoionization in doubly excited

Rydberg systems, we present a �nal section on the calculation of autoionization rates. The

excited electrons in a doubly excited Rydberg system may exchange energy through their

electron-electron interaction, forcing one or more core electrons to drop into a lower state,

while ejecting the remaining electron into the continuum. (This does not involve the emission

of electromagnetic radiation.) The total initial state wavefunction for the Rydberg system

involves both j 

P

i and j 

Q

i, components of the wavefunction distributed among all channels.

Although j 

P

i represents the dominant portion of the total wavefunction, the perturbative
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contribution j 

Q

i should be included for consistency and to ensure complete convergence in

the calculation of decay rates.

The rate for a perturbative transition from the initial state j i to a �nal energy

normalized state j�i, associated with a channel energetically below the P subspace, is given

by the \Fermi Golden Rule"

� = 2� j h� j V j  i j

2

; (3.11)

where V is the electrostatic interaction minus the screening

1

r

>

potential. Expressing j i in

terms of P and Q subspace components this rate can be written as

� = 2� j h� j T

QP

j  

P

i j

2

; (3.12)

where the transition matrix T

QP

is

T

QP

= V

QP

+ V

QQ

g

QQ

V

QP

: (3.13)

This �nal expression for the autoionization rate � shows that once j  

P

i is known, the

perturbative e�ects of j 

Q

i can be included through use of the Green's function developed

in the previous section.

3.5 Advantages

The primary advantage of a diabatic formulation over an adiabatic formulation is

the ease with which channel coupling can be included. For many systems, channel cou-

pling is essential for accuracy. The polarization models introduced by Sturrus [11, 12] and

Schoenfeld [23] are attractive from a physical standpoint, but they have di�culty achieving

the spectroscopic accuracy needed to compare theory with experiment. On the other hand,
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the fact that electric multipole and induced polarization interactions are involved in these

theories o�ers a simple physical picture of Rydberg and core electron interaction. The devel-

opments presented in the next chapter enable us to recast our multichannel theory in terms

of multipole and polarization properties of the ionic core. However, our retention of channel

coupling allows us to utilize both the physical insight of polarization interactions and the

spectroscopic accuracy of a multichannel approach.



CHAPTER 4

RECOUPLING AND PARAMETRIZATION

In this chapter we disentangle the operator structure and the anisotropic nature of

the long range potentials developed in the two previous chapters. The analysis presented

here enables us to systematically derive, for the �rst time, the complete vector interaction,

and to explain its physical origin and implications.

4.1 Motivation

The forms of the e�ective adiabatic potential developed in Chapter 2 and the e�ec-

tive diabatic Hamiltonian developed in Chapter 3 are simple from an algebraic standpoint,

but each term in them depends on the various quantum numbers J

c

, `, and K in a relatively

complicated fashion that is di�cult to analyze. The objective in this chapter is to reveal

the operator structure and to clarify the dependence of each interaction term on the various

core and Rydberg quantum numbers. Once this recoupling is accomplished the concept of

parametrization, which is the identi�cation of channel dependent core properties, can be

developed.

Each term within the adiabatic potential and diabatic Hamiltonian can be written

in terms of spherical tensor operators that act on states of the core and the Rydberg elec-

tron. Using standard Wigner-Racah recoupling algebra these terms can be recoupled so that

information pertaining to the core is separated from information pertaining to the Rydberg

electron. As an example, the adiabatic dipole polarizability �

�

in Eq.(2.14) is proportional

to the expectation value, in j�i, of
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(r

(1)

c

� r

(1)

r

)P (r

0

(1)

c

� r

0

(1)

r

) (4.1)

where P is a weighted (scalar) projection operator. This expression can be recoupled into

X

k

(�1)

k

h

r

(1)

c


 P

c

r

0

(1)

c

i

(k)

�

h

r

(1)

r


 P

r

r

0

(1)

r

i

(k)

; (4.2)

where factors appear with net multipole moment k acting on the core and Rydberg electron,

respectively. The validity of this derivation relies on the fact that the in�nite summation

over intermediate states � is itself a \scalar" object that contributes no multipolarity to any

term. The expectation value in j�i of this expression can be written as

�

�

= �

�

s

+ �

�

t

A

(2)

��

(4.3)

where �

�

s

and �

�

t

are the scalar and tensor dipole polarizabilities of the core in the adiabatic

channel �, and A

(2)

��

is an angular coupling factor, which is the mean value of a second-rank

tensorial operator.

In the next few sections we demonstrate how a similar analysis can be extended

to all interaction terms in the adiabatic potential and the diabatic Hamiltonian. Just as

the Wigner-Eckart theorem enables the factorization of angular matrix elements into purely

geometric and dynamic contributions, the tensorial analysis presented here enables a factor-

ization of the bulk ionic properties of the core from the dynamic coupling of the Rydberg and

core electronic interaction. Moreover, the scalar and tensor parameters, which represent bulk

properties of the ionic core, can be computed from �rst principles, and indirectly extracted

from experimental Rydberg spectra, thereby providing an important test of theoretical core

wavefunction information.
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4.2 Recoupling of Spherical Tensor Operators

Spherical tensor operators and the Wigner-Racah algebra used to manipulate them

play a central role in atomic and molecular physics. A spherical tensor operator of rank k

is de�ned to be a set of 2k + 1 functions T

(k)

q

with components q = �k;�k + 1; � � � ; k � 1; k

that transform under a coordinate frame rotation as

RT

(k)

q

R

�1

=

X

p

T

(k)

p

D

k

pq

(R) (4.4)

where the expansion coe�cients are the Wigner rotation matrix elements D

k

pq

(R) and R is

a set of Euler angles.

The primary reason for introducing spherical tensor operators is that they greatly

simplify the evaluation of angular matrix elements through the use of the Wigner-Eckart

theorem. The Wigner-Eckart theorem disentangles matrix elements into a product of two

factors; one that is purely geometric, expressing the symmetry and selection rules of the

system, and another that contains the dynamics. The Wigner-Eckart theorem reads:

h
jm j T

(k)

q

j 


0

j

0

m

0

i = (�1)

j�m

0

@

j k j

0

�m q m

0

1

A

h
j k T

(k)

k 


0

j

0

i; (4.5)

where the phase and normalization conventions are those of Refs.[43, 51, 52]. Since the

reduced matrix element does not depend of the magnetic quantum numbers m, m

0

, and q

it can be found once and for all by evaluating the full matrix element for a speci�c set of

fm;m

0

; qg, provided the matrix element is nonzero.

A key spherical tensor operator for our analysis is the renormalized spherical har-

monic C

(k)

q

C

(k)

q

=

�

4�

2k + 1

�

1

2

Y

k;q

(�; �) (4.6)
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where Y

k;q

(�; �) is the standard spherical harmonic function. The reduced matrix element

of C

(k)

q

is [43]

h` k C

(k)

k `

0

i = (�1)

`

[(2l + 1)(2`

0

+ 1)]

1

2

0

@

` k `

0

0 0 0

1

A

: (4.7)

Moreover, the spherical harmonic addition theorem, which is used in the spherical expansion

of

1

r

ij

, is written in this notation as

P

k

(cos�

ij

) = C

(k)

(r̂

i

) � C

(k)

(r̂

j

)

�

X

q

(�1)

q

C

(k)

q

(r̂

i

)C

(k)

�q

(r̂

j

); (4.8)

as de�ned in Ref.[43].

4.2.1 Recoupling of First-Order Terms The general form of all �rst-order

terms in our perturbative expansion of the Rydberg-core interaction potential is

W

1

(k) = A

(k)

c

�B

(k)

r

(4.9)

where A

(k)

c

and B

(k)

r

are spherical operators of rank k that act on the core and the Rydberg

electron respectively. As is clearly seen these �rst-order operators are already written in a

factorized form, making the evaluation of matrix elements rather trivial. The angular matrix

element of this operator expression is [43]

W

1

(k)

��

0

= h� j A

(k)

c

�B

(k)

r

j �

0

i = h
(J

c

`)KM j A

(k)

c

� B

(k)

r

j 


0

(J

0

c

`

0

)K

0

M

0

i

= �

K;K

0

�

M;M

0

(�1)

J

0

c

+`+K

8

<

:

J

c

` K

`

0

J

0

c

k

9

=

;

h
J

c

k A

(k)

c

k 


0

J

0

c

ih` k B

(k)

r

k `

0

i:



33

(4.10)

4.2.2 Recoupling of Second-Order Terms The general form of all second-

order terms in our perturbative expansion of the Rydberg-core interaction is

W

2

(k; k

0

) = (T

(k)

c

� T

(k)

r

)S

(0)

(T

(k

0

)

c

� T

(k

0

)

r

) (4.11)

where S

(0)

is a weighted scalar projection operator that includes the energy denominators,

e.g. of Eqs.(2.14) through (2.19). For a Rydberg system, this scalar operator can be written

as a summation of projection operators, where each projection operator is product of two

operators: one that projects onto the angular states of the Rydberg electron, and another

that involves the energy denominators and projections onto the states of the core,

S

(0)

= P

r

P

c

: (4.12)

Then W

2

(k; k

0

) can be rewritten as

W

2

(k; k

0

) =

h

T

(k)

c

� (T

(k)

r

P

r

)

i h

(P

c

T

(k

0

)

c

) � T

(k

0

)

r

i

� (A

(k)

c

� B

(k)

r

)(C

(k

0

)

c

�D

(k

0

)

r

): (4.13)

or in tensorial coupling notation as [53, 43, 51]

W

2

(k; k

0

) = (�1)

k+k

0

[(2k + 1)(2k

0

+ 1)]

1

2

�

h

A

(k)

c


B

(k)

r

i

(0)




h

C

(k

0

)

c


D

(k

0

)

r

i

(0)

�

(0)

0

:(4.14)

Finally, a recoupling of the tensor products leads to the following form for the matrix element

W

2

(k; k

0

)

��

0

= h
(J

c

`)KM jW

2

(k; k

0

) j 


0

(J

0

c
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0

)K

0

M

0

i
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4.2.3 Unit Tensor Notation In this subsection we introduce a unit tensor

notation that allows us to write both W

1

(k)

��

0

and W

2

(k; k

0

)

��

0

in terms of a common set

of unit tensor operators. Let us de�ne X

(k)

and Y

(k)

as \unit tensor operators" (spatial) of

rank k that act on the ionic core and the Rydberg electron, respectively, such that

hX

(k)

� Y

(k)

i

��
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= h(J
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`)K j X
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� �
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=
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(4.16)

with the reduced matrix elements [54]

hJ

c

k X

(k)

k J

0

c

i =

8

<

:

1; if �(J

c

; k; J

0

c

)

0; otherwise

9

=

;

(4.17)

and

h` k Y

(k)

k `

0

i =

8

<

:

1; if �(`; k; `

0

)

0; otherwise

9

=

;

: (4.18)

Here �(x; y; z) denotes the condition of triangularity among the quantum numbers fx; y; zg,

i.e. � =\true" if j x� y j� z � x+ y, and if x+ y + z =integer.
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In this notation the �rst-order terms W

1

(k)

��

0

in our perturbative expansion of

the Rydberg-core interaction become

W
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(k)

��

0

= h
J

c

k A

(k)
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: (4.19)

Likewise, the second-order terms W
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i

��

0

: (4.20)

The unit tensor notation helps elucidate the separation of each interaction into a product

of three factors: one factor that depends on properties of the ionic core, another term

that relates only to the Rydberg electron, and �nally a simple angular factor that couples

the angular momentum properties of the core with the orbital angular momentum of the

Rydberg electron. It is important to note that no approximation has been introduced as

a result of the tensorial analysis presented here. In the following sections we show that in

special circumstances these unit tensor operators can be replaced with angular momentum

operators that generate the same coupling.

4.3 Parametrization of Interactions

At this stage all �rst and second-order interaction terms in the e�ective adiabatic

potential and diabatic Hamiltonian have been recoupled which factors out information per-

taining to the ionic core from information relating to the Rydberg electron. However, the

matrix elements that depend on core wavefunction information are still channel dependent.

The channel dependence of these interactions is not strictly a problem, since in more tradi-

tional approaches like multichannel quantum defect theory and R-matrix methods [55, 56],
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a multichannel reactance-matrix or scattering-matrix is formed that provides essentially the

same information. Unfortunately, it is di�cult to extract physical insight from large basis

set and R-matrix calculations.

The tensorial analysis of the preceding section facilitates a parametrization of each

interaction. Speci�cally, the ionic core properties of the �rst-order terms in our perturbative

expansion of the Rydberg-core interaction are simply the permanent multipole moments of

the ionic core. Similarly, the ionic properties of the second-order interaction terms can be

identi�ed as the channel dependent polarizabilities and hyperpolarizabilities that characterize

the multipole moments of the core induced by the Rydberg electron.

For some systems, further approximations make it possible to approximately remove

the channel dependence of each parameter. In atoms with low-Z atomic nuclear charge,

the spin-orbit interaction is small compared with electrostatic interactions. Therefore the

total orbital angular momentum L

c

and the total spin S

c

of the core are approximately

good quantum numbers. For such light systems each parameter can be replaced with an

LS�coupled version so that channel dependence arises only from the simple angular coupling

factor.

4.4 Tensor Analysis of Adiabatic Potential

In the adiabatic theory of chapter 2 we developed both nondegenerate and degener-

ate contributions to the long range adiabatic potential that describes the interaction of a slow

charge with an aribitrary anisotropic core. Each term in the adiabatic potential depends on

quantum numbers of both the ionic core and the Rydberg electron in a rather complicated

way. To clarify the dependence of each term on J

c

, `, and K, and to reveal the operator

structure of the full potential, we apply the tensor recoupling theory of the previous sections

so that each term takes the form
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X

k

(�1)
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c

k
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(k)

� Y

(k)

i

�

; (4.21)

where X

(k)

and Y

(k)

are the unit tensor operators de�ned in subsection 4.2.3 that operate on

the core and the Rydberg electron, respectively. Next, because of the single channel nature

of the adiabatic potential we follow the spirit of the Fano-Macek [53] treatment of alignment

and orientation and replace the tensorial structure by coupled angular-momentum operators

of the same rank. Each such replacement introduces a compensating ratio of reduced matrix

elements
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; (4.22)

where the choice of the J

(k)

c

� `

(k)

operator representation is motivated by the fact that

adiabatic potentials involve speci�c values of J

c

and `

�

. In general, the choice of a particular

operator representation depends on whether the formulation is adiabatic or diabatic. In

our diabatic formulation the \unit tensor operator" notation is appropriate, and only under

special circumstances, as in the case of low-Z atomic systems, can the unit operators be

replaced with simpler angular momentum operators of the same rank that generate the

same coupling among the Rydberg channels and re
ect the basic symmetry properties of the

system.

4.4.1 Nondegenerate Channel Contributions Keeping powers of

1

r

up to

radial order

1

r

6

and grouping terms of the same tensorial structure allows us to present the

nondegenerate long-range adiabatic potential in a form that better displays its anisotropic

nature
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Here the terms C

n�

k(a;b)

, corresponding to even tensorial rank k, of radial order

�

1

r

�

n

, and

formed from the electric a-multipole and b-multipole moment contributions from

1

r

ij

, are

given by
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where C

(a)

(r̂

i

) are renormalized spherical harmonics. Terms that share the same tensorial

rank and power of

1

r

but di�er in multipole dependence are combined additively into a single

net coe�cient:
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The matrix elements hJ
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Ref.[43, 51], and explicit expressions for particular �

n

k

(a; b) 's with even k in Eq. (4.24) are

given by

�

3

k

(2; 0) = �

5

k

(4; 0) = 1; (4.27)
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and
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In contrast to the long-range potential presented in Eq.(2.12), the operator form

of the anisotropic potential in Eq.(4.23) possesses a very simple dependence on the various

quantum numbers J

c

; `, and K. Along with the factorization of the orbital angular momen-

tum ` of the Rydberg electron from information pertaining to the ionic core, all terms of

the same even tensorial rank k share the same `-dependence. In addition, all dependence on

K appears in a single 6 � j symbol originating from the matrix element hJ

(k)

c

� `

(k)

i

�

, and

accounts for the splitting of the j K + J

c

j � j K � J

c

j +1 number of ` levels of common

K. Unfortunately, the terms C

n�

k(a

1

;b

1

)

; C

n�

k(a

2

;b

2

)

; � � � that make up C

n�

k[(a

1

;b

1

);(a

2

;b

2

);���]

are not

distinguishable from one another since they share the same tensorial rank, power of

1

r

, and

`-dependence.

The angular momentum representation of the nondegenerate long-range potential

in Eq.(4.23) immediately shows the appearance of a vector contribution whose structure is
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similar to a term predicted by Zygelman[27]. And, as noted in the Introduction, a term of

this tensorial structure was introduced into atomic spectroscopy by Trees [28] and Racah

[29], but on purely semiempirical grounds, with no explicit derivation or formal justi�cation.

As a complement and extension of the work of Zygelman, we provide an explicit expression

for the coe�cient of this unusual interaction and interpret its physical origin. The term

C

6�

1(1;1)

is the only one, out to radial order

1

r

6

, with odd tensorial rank k (k = 1)
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The existence of this term has been controversial [10, 11] since a simple parity argument

might seem to negate the existence of any odd-rank tensor interaction in the long-range

potential. The parity argument, however, fails since the \vector" interaction is an even

parity pseudovector in the ionic core degrees of freedom. Surprisingly, this interaction would

vanish if it were not for the `

�

(`

�

+ 1) factor in the summation for �

ad

�

, which allows the

vector coe�cient C

6�

1(1;1)

to survive.

Next we demonstrate that the untransformed potential, in Eq.(2.12), cannot sup-

port odd tensorial contributions, such as J

(1)

c

�`

(1)

, without such an additional ` dependence.

The `

�

summation can be evaluated explicitly
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Since each contribution to our long-range potentials involves a and b multipole moments

that add up to an even number the tensorial rank k must be even in this case.

However, if there is an addition `

�

dependence, such as `

�

(`

�

+ 1) in �

ad

�

, the

summation becomes

X

`

�

(�1)

`

�

`

�

(`

�

+ 1)(2`

�

+ 1)

0

@

`

�

1 `

�

0 0 0

1

A

0

@

`

�

1 `

�

0 0 0

1

A

8

<

:

1 1 1

`

�

`

�

`

�

9

=

;

= (�1)

`

�

+1

�

2

3

`

�

(`

�

+ 1)

(2`

�

+ 1)

�

1

2

(4.34)

which is nonzero for Rydberg states with `

�

6= 0. Thus it is the centrifugal energy of the

Rydberg electron, or angular motion, that generates the vector interaction.

4.4.2 Degenerate Channel Contributions The nature of the long range

adiabatic potential changes qualitatively when second order degenerate contributions appear

from intermediate channels � that share the same ionization thresholds, K-value and parity

with the physically relevant channel � at r !1. For example, the 3pnf and 3pnh channels

in Mg are degenerate. However, as detailed in section 2.5, we assume that the intermediate

Rydberg electron orbital momentum `

�

di�ers from `

�

, for all degenerate channels. The

additional degenerate contributions to the long range adiabatic potential can be analyzed,

as in the preceding subsection, to reveal their tensorial structure, which can then be replaced

with coupled angular momentum operators of the same rank. Keeping powers of

1

r

up to

radial order

1

r

6

and grouping terms of the same tensorial rank allows us to present these

terms in the long range adiabatic potential that derive from the degenerate channels. The

resulting degenerate terms, which are understood to be added to the nondegenerate potential

of Eq.(2.12), are:
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Since the degenerate contributions arise within the context of a single channel adiabatic

analysis of Rydberg motion, these terms do not appear in the more general multichannel

Hamiltonian treatment of Chapter 3, and are, therefore, not included in the numerical studies

presented in Chapters 5 through 7. Here the terms D

n�

k(a;b)

corresponding to tensorial rank

k, of radial order

�

1

r

�

n

, and with electric a-multipole and b-multipole moment contributions

are given by
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where the �

n

��

(a; b)'s are

�

3

��

(2; 0) = �
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(4; 0) = 1; (4.37)
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�

6

��

(2; 4) = 2�

4
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Like the terms in the nondegenerate case these degenerate coe�cients D

n�

k(a;b)

ex-

hibit a factorization of ionic core and the Rydberg information. These degenerate coe�cients

depend on quadrupole and/or hexadecapole moments of the ionic core, but like the vector

term, they also depend of the orbital momentum of the Rydberg electron. The additional

`

�

dependence generates odd tensorial terms with ranks 3 and 5. However, the combination

of quadrupole and hexadecapole moments and the reciprocal `-dependence of the �

4

��

(2; 2)

term suggests that these degenerate contribution are generally small, but they cannot be

neglected if a single channel adiabatic analyis is used to interpret experimental Rydberg

energy distributions.

4.5 Tensor Analysis of Diabatic Hamiltonian

Generally, the coupling of nearly degenerate Rydberg states attached to di�erent

ionization thresholds of a ionic core results in complex perturbed spectra, which are di�cult

to treat using a single channel adiabatic formulation. For this reason, the diabatic formu-

lation of Chapter 3 is more robust than the adiabatic approach of Chapter 2 for explicit

calculations and for the achievement of spectroscopic accuracy. As with the adiabatic the-

ory we perform a spherical expansion of each term in the diabatic Hamiltonian in powers

of

1

r

, and then disentangle all core and Rydberg information through the use of the tensor

recoupling techniques presented in section 4.2. However, instead of transforming to an an-

gular momentum operator representation, we retain the unit tensor notation introduced in

subsection 4.2.3 so that coupling among the Rydberg-core channels can be properly treated.

Furthermore, we treat here the special case of low-Z atomic Rydberg systems. Later in

Chapter 7 we present a diabatic formulation for Rydberg states of H

2

and D

2

that assumes

no special circumstances and that displays the channel dependence of the core polarizabilities

and hyperpolarizabilities.
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4.5.1 High ` States of Low Z Atoms In low-Z atomic systems where the

spin-orbit interaction is small relative to electrostatic interactions, the total orbital angular

momentum L

c

and the total spin S

c

of the core are approximately good quantum numbers.

In these systems, the e�ective diabatic Hamiltonian that describes high-` Rydberg states

takes the parametrized form
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where p

r
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d

dr

and where �E
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0

. Similarly, the matrix �

��

0

that appears on

the right-hand side of the generalized eigensystem is given by

�

��

0

= �

��

0

+ 2

 

�

s

�

��

0

+ �

t

A

(2)

��

0

r

4

!

: (4.41)

(Note: the e�ective operators

�

H and � act on the reduced radial wavefunction  

�

= r	

�

within the P subspace.) The indices � and �

0

refer to channels within the P subspace.

Here we adopt the convention in which �

s

and �

t

are the standard scalar and tensor

dipole polarizabilities, Q is the quadrupole moment, and �

s

and �

t

are higher-order scalar

and tensor hyperpolarizabilities of the ionic core. Explicit expressions for all terms, including

the angular factors such as A

(2)

��

0

and B

(2)

��

0

, are given in Appendix A.

The �

s

, �

v

, and �

t

terms that involve

1

r

6

in Eq.(4.40) represent nonadiabatic scalar,

vector, and tensor induced-polarization corrections due to the angular motion of the Rydberg
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electron, while the �

s

and �

t

terms that involve

1

r

4

and

1

r

5

represent scalar and tensor

nonadiabatic corrections that are associated with the radial motion of the Rydberg electron.

The proportionality coe�cient �

v

(vector hyperpolarizability) of the vector interaction

~

L

c

�

~

`

deserves special attention. This vector hyperpolarizability depends on the dipole moments

of the ionic core and its existence hinges on the centrifugal repulsion experienced by the

Rydberg electron. Physically, the vector interaction describes a coupling among the orbital

motion of the Rydberg electron and the internal angular momentum of the ionic core, which

is mediated by the dipole portion of the Rydberg-core interaction. As the distant Rydberg

electron orbits the core, it tries to \drag" the core polarization vector with it. However,

this drag is hindered by the internal moment of inertia of the core, and by the moment of

inertia of the Rydberg electron. Stated another way, this interaction re
ects the inability

of the ionic core to instantaneously adjust to the angular motion of the Rydberg electron.

The vector nature and the

1

r

6

behavior of the interaction are independent of representation.

However, the core angular momentum operator which appears in

~

L

c

�

~

`, does depend on the

choice of representation. Speci�cally, in an adiabatic representation the core operator is

~

J

c

, while in a diabatic representation the operator is

~

L

c

. This arti�cial dependence arises

because of the di�erence in the channel coupling appropriate for these representations.

The combination of r-dependence and tensorial structure provide a great deal of

insight into the distribution of Rydberg levels. The Coulomb interaction is the dominant

term and accounts for the nearly hydrogenic nature of Rydberg systems. Provided the ionic

core is nonspherical, the quadrupole interaction, which is the dominant anisotropic term,

follows in importance and has the e�ect of spreading Rydberg levels. Scalar quantities like

�

s

produce simple shifts of di�erent `-levels, while higher order tensor terms like �

t

cause

additional spreading, although to a lesser degree than the quadrupole term. The vector term

has the e�ect of further splitting levels that share the same symmetry, but di�er in their `

dependence. Moreover, the operator

~

L

c

�

~

` has the e�ect of splitting levels that are degenerate
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in the quantum number associated with the projection of

~

` onto

~

L

c

.

The operator structure of the e�ective Hamiltonian and � matrices, and the cou-

pling among P subspace channels that they describe, improves signi�cantly over earlier per-

turbative formulations. The perturbations among Rydberg levels and the resulting complex

spectra can be easily understood and described within this coupled-channel framework. For

instance, the wave function of a Rydberg electron may be thought of as distributed among

the various channels (paths). The combination of amplitudes from the various channels can

result in interference and, consequently, complex spectra. The degree to which this takes

place depends on the coupling among channels and whether the channels support strongly

overlapping series converging to the various thresholds.

4.6 Qualitative Interpretation of the Vector Interaction

One of the most di�cult challenges of our analysis has been to provide a qualitative

interpretation of the new vector interaction term in the potential energy. In this section we

present a qualitative discussion of this interaction from four perspectives: �rst by analytically

rearranging the operator structure of the adiabatic �

ad

�

term, then by considering a two

electron example from both a classical and quantum mechanical perspective [31], and �nally

from the non-Abelian gauge perspective of Zygelman[27].

4.6.1 Analytic Recoupling Analysis In the adiabatic formulation of Chap-

ter 2, only the radial coordinate of the Rydberg electron was treated adiabatically. For this

reason, e�ects arising from Rydberg angular motion can be considered as nonadiabatic. As

mentioned in Chapter 2, the vector interaction originated from the radially-adiabatic �

ad

�

term. Here we show that this term can be directly recast in an analytic form in which a cross

product of the ionic core electric dipole operators appear as a projection onto the orbital

momentum of the Rydberg electron. This cross product suggests that torques are present

in the dynamics of the nonadiabatic Rydberg-core interaction. In order to see how torques

can arise in a Rydberg system, we begin by writing �

ad

�

as
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�

ad

�

=

X

� 6=�

[`

�

(`

�

+ 1)� `

�

(`

�

+ 1)]

(E

�

�E

�

)

2

Q

(1)

��

Q

(1)

��

=

X

� 6=�

h� j

h

r̂

r

;

~

`

2

i

� ~r

c

j �ih� j r̂

0

r

� ~r

0

c

j �i

(E

�

�E

�

)

2

: (4.42)

The commutator of r̂

r

and

~

`

2

is [51]

h

r̂

r

;

~

`

2

i

= i(

~

`� r̂

r

� r̂

r

�

~

`); (4.43)

and with a little tensor recoupling the term with a vector structure in �

ad

�

is seen to be

proportional to

�h

r̂

r

;

~

`

2

i

� P

r

r̂

0

r

�

� (~r

c

� P

c

~r

0

c

) (4.44)

Using

h

r̂

r

;

~

`

2

i

� P

r

r̂

0

r

= �2i(r̂

r

� P

r

r̂

0

r

)

~

`+ 2ir̂

r

(

~

` � P

r

r̂

0

r

)� 2r̂

r

� P

r

r̂

0

r

(4.45)

we see the appearance of a

1

r

6

vector interaction that is proportional to

�

~

` � (~r

c

� P

c

~r

0

c

) (4.46)

The existence of this vector interaction hinges on the presence of the centrifugal `

�

(`

�

+ 1)

term within �

ad

�

, which again supports our conclusion that the vector interaction results from

the angular motion of the Rydberg electron. In addition, the vector cross product on the

right hand side of Eq.(4.43) suggests that the Rydberg electron exerts a torque on the ionic



48

core as the Rydberg electron attempts to \drag" the polarization vector of the spinning core.

This idea of the Rydberg electron torquing the core will be more fully explored in chapter

6 where the concept of orbital planes is introduced, and the relative orientation of the core

and Rydberg orbital planes is studied within the adiabatic representation [57, 58].

4.6.2 A Two-Electron Example Treated Classically Next we turn to a

classical example with two nonoverlapping coplanar electrons that move in the �eld of a

Z = 2 charged nucleus as shown in Figure 4.1. The inner electron is initially in a circular

Bohr orbit with n

1

= 2 and `

1

= 1, while the outer electron is started in a circular orbit

with n

2

= 7 and `

2

= 6. The zeroth-order Hamiltonian for this system then looks like:

H

0

=

1

2

�!

p

1

2

+

1

2

�!

p

2

2

�

2

r

1

�

1

r

2

: (4.47)

We assume here that r

2

>> r

1

, so that the inner electron (r

1

� 2) fully screens the outer

electron (r

2

� 49), and the leading order perturbation to H

0

is the dipole component of the

electron-electron interaction:

V =

r

1

cos �

12

r

2

2

: (4.48)

In order to �nd the energy shift of the system due to the perturbative dipole

interaction V , we propagate classical trajectories for the Hamiltonian H

0

+ R(t)V , where

R(t) is an adiabatic \ramp-on" that is zero at time t = 0 and becomes unity after many

orbit periods of the outer electron. (This method of evaluating perturbation energies in

conjunction with classical mechanics has been used successfully in a di�erent context by

Hooker [59].) Figure 4.2 shows that the resulting perturbation in the energy of the system

has opposite sign for the two geometries of Figure 4.1. In particular, the energy shift is

negative when the two angular momenta

�!

`

1

and

�!

`

2

are parallel (left-hand case in Figure

4.1, while the energy shift has nearly the same magnitude but is positive when these angular
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momenta are antiparallel (right-hand case in Figure 4.1).

4.6.3 Two-Electron Example Treated Using QuantumMechanics The

same system just considered classically possesses a simple quantum mechanical description.

One quantitative di�erence between this example of a one-electron ionic core in the n

1

= 2

state of He

+

and the cases formulated in Chapters 2 and 3, is that a one-electron hydrogenic

ion possesses the unusual \accidental degeneracy" (when �ne structure is neglected) of the

2s and 2p substates. It is well known that this degeneracy magni�es the e�ect of the dipole

interaction between a distant electron and the hydrogenic ion, which is one reason we have

chosen this example. At the same time, this system can be treated simply using 2x2 matrices

in an LS-coupled representation. In the following, we let r stand for r

2

, the distance of the

outer electron from the nucleus, while ` is the orbital angular momentum of that outer

electron. The leading order term at r !1 in the potential accordingly contributes in order

r

�2

, i.e. on a par with the centrifugal term in the Rydberg electron Hamiltonian.

The quantum mechanical channel describing this 2pn` two electron atom thus has

the following character. When the angular momenta of the inner (`

1

= 1) and outer electron

(` = 6) are \parallel", the zeroth-order state can be written as j(2p; n ` = 6)L = 7i, i.e. as

an eigenstate of

�!

L

2

= L(L+1) with L = 7. The dominant channel that couples to this state

is the channel j(2s; n `+ 1 = 7)L = 7i. The correction to the long-range Coulomb potential

of the outermost electron is therefore a dipolar /

1

r

2

potential for this example, whose

coe�cient is obtained by diagonalization of the combined centrifugal and dipole-interaction

potentials. Through dipolar order, neglecting terms of radial order

1

r

3

, the e�ective potential

appropriate for parallel angular momenta is the smaller eigenvalue of:

V

eff

(r) = �

1

r

+

0

B

B

@

`(`+1)

2r

2

d

r

2

d

r

2

(`+1)(`+2)

2r

2

1

C

C

A

:

Here d is a matrix element of the core electric dipole operator between the two coupled

channels, d = h2pjr

1

j2sih(1`)L = `+ 1j cos �

12

j(0; `+ 1)L = `+ 1i = �

q

21

20

: The analogous
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e�ective potential relevant for antiparallel angular momenta of the core and the Rydberg

electron is the larger eigenvalue of:

V

eff

(r) = �

1

r

+

0

B

B

@

`(`+1)

2r

2

d

0

r

2

d

0

r

2

(`�1)`

2r

2

1

C

C

A

;

where d

0

= h2pjr

1

j2sih(1`)L = ` � 1j cos �

12

j(0; ` � 1)L = ` � 1i =

q

27

22

: The resulting

eigenvalues give e�ective potentials for the outer (` = 6) electron:

V

eff

""

(r) = �

1

r

+

`(`+ 1)

2r

2

�

0:147

r

2

;

V

eff

"#

(r) = �

1

r

+

`(`+ 1)

2r

2

+

0:198

r

2

:

The last term in each potential gives the e�ect of the perturbation. The quantum

mechanical estimate of the perturbation energy is obtained by averaging the last term in the

above two potentials over the radial n = 7; ` = 6 orbital, which gives:�

QM

""

= �6:6�10

�5

a:u:;

and �

QM

"#

= 8:9 � 10

�5

a:u: These quantum mechanical energy shifts for this example are

within about a factor of two of the classically-estimated energy shifts, con�rming that the

basic classical picture presented above is qualitatively correct. Interestingly, the quantum

mechanical interpretation for this prototype two-electron example shows that the di�erent

sign of the energy perturbation for parallel and antiparallel angular momenta is a consequence

of di�erential level repulsion. The state 2pn`[L = `+ 1]; with parallel angular momenta, is

pushed down in energy by its interaction with the higher-lying 2sn

0

(`+ 1)[L = `+ 1] state,

whereas the state 2pn`[L = `�1]; with antiparallel angular momenta, is pushed up in energy

by the lower 2sn

0

(` � 1)[L = ` � 1] state. This qualitative interpretation remains similar

when the ionic s and p levels are not degenerate, except that the di�erential level repulsion

then causes the `-dependence in the potential to begin at the r

�6

level rather than the r

�2

level.
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Figure 4.1. Classical orbits of a Rydberg electron around a core consisting of an electron

with angular momentum circling about a nucleus. The interaction energy associated with

the vector interaction term has opposite sign depending on whether the angular momenta

are parallel (left) or antiparallel (right).
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Figure 4.2. Resulting perturbation in the energies of the parallel and antiparallel classical

orbits versus time.
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4.7 Non-Abelian Gauge Formulation

Zygelman [27] was the �rst to predict the existence of the vector interaction and

to estimate the magnitude of the proportionality constant. In an original and pioneering

approach, Zygelman used ideas of non-Abelian gauge �elds and geometric phases to study

long range atomic forces. Extending the work of Berry [60], Wilczek and Zee[61], Moody

[62] and Jackiw [63] Zygelman realized that the derivative coupling matrix P (r) within

an adiabatic representation resembles an electromagnetic vector potential or a non-Abelian

gauge �eld,

"

�

1

2

�

I

d

dr

+ P (r)

�

2

� (EI � U(r))

#

F (r) = 0:

As in the classical dynamics of charged particles in electromagnetic �elds, [27, 37, 38], a

gauge transformation can in principle be found that gauges away the derivative coupling

matrix. However, if the channel space is �nite or truncated the derivative coupling can be

only approximately gauged away, leaving, as in our formulation, an e�ective potential. It was

within this framework that Zygelman �rst suggested that a vector interaction involving

~

L

c

�

~

`

does exist as a long range interaction between a charge and an anisotropic system. However,

an explicit expression for the coe�cient of proportionality was not provided, leaving questions

regarding the physical origin of this interaction and to some extent even the fundamental

reality of this term, since the coe�cient could be zero.



CHAPTER 5

RYDBERG STATES OF NEON

In this Chapter we present the �rst experimental and theoretical con�rmation of

the vector interaction in a Rydberg system. The analysis presented here both establishes the

importance of this subtle interaction and demonstrates the utility of an e�ective Hamiltonian

approach.

5.1 Application to Neon

The importance of the vector interaction and the channel coupling provided by the

e�ective Hamiltonian approach have been demonstrated in the n = 10 Rydberg states of Ne

with orbital angular momenta of ` = 5; 6; 7 and 8. These states have been studied in recent

experiments by Ward et al [10], and interpreted by our theoretical analysis[30]. The most

important aspect of this analysis is the capability of our parametrized long-range potential

to describe the Rydberg energy levels that are attached to the lowest ionization threshold

of the Ne

+

ionic core. The theoretical computation of Rydberg energies is accomplished by

diagonalization of the multichannel Hamiltonian

H

��

0

=

�

�

1

2

d

2

dr

2

+

`

�

(`

�

+ 1)

2r

2

�

1

r

+E

�

�

�

s

2r

4

�

�

s

r

6

�

�

��

0

�

�

Q

r

3

+

�

t

2r

4

+

�

t

r

6

�

A

(2)

��

0

+

�

v

r

6

h

~

L

c

�

~

`i

��

0

; (5.1)

followed by a minimization of the weighted �

2

function (involving di�erences between the

observed and computed energy levels) with respect to the parameters �

s

, �

t

, �

v

, � � �. This

version of the e�ective Hamiltonian can be easily derived from our more general diabatic
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Hamiltonian by treating ", in the Green's functions expansion, as a hydrogenic Hamiltonian.

We do this here so that the diagonal elements of our multichannel Hamiltonian exactly

correspond with the perturbative Hamiltonian used in the Ward analysis [10]. It is worth

noting that there is nothing ad-hoc in the parametrized theory. Analytic expressions for

each parameter are given in Refs.[30, 31] and in Appendix A, and each can be computed

from �rst principles. In fact, ab initio calculations of �

s

, �

t

, �

v

, � � � using multicon�guration

Hartree-Fock atomic wavefunctions, presented in the next section, con�rm the analysis and

the interpretation presented here.

The experimentally observed spin splittings were resolved only partially in the Ward

et al experiment and were analyzed by the experimental group to extract spinless transition

frequencies. We neglect all spin-orbit terms in the Rydberg electron Hamiltonian, and all

Rydberg electron exchange interactions. The dominant perturbative e�ects that must be

added to our computed Rydberg levels are the relativistic \mass correction" arising from

the p

4

term in the kinetic energy of the Rydberg electron, and the magnetic interaction

between the Rydberg electron and the ionic core given by

H

mag

= �

g

J

2

�

2

~

J

c

�

~

`

r

3

; (5.2)

where � is the �ne-structure constant and g

J

is the g factor of the ionic core.

The results of our analysis are summarized by Tables 5.1 and 5.2. Table 5.1 com-

pares the various �tted parameters for Ne

+

with those obtained in a �t carried out by Ward

et al [10]. Our analysis, which nonperturbatively includes coupling between Rydberg se-

ries attached to di�erent ionization thresholds, improves the �

2

by nearly 80% over the �t

performed by Ward et al.. The fact that the �

2

per degree of freedom (per parameter) is

now approximately one is a strong indication that the anisotropic multichannel Hamiltonian

correctly accounts for the energetics of these Rydberg levels. Moreover, it also suggests that

our nonperturbative treatment of channel coupling is an improvement on the perturbative
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description of Rydberg levels used by Ward et al, since our �t and their �t were based on

the same Hamiltonian, apart from the vector contribution to the potential energy. Our com-

puted levels are compared in Table 5.2 with those of Ref. [10], for the n = 10 Rydberg states

of Ne with ` = 5; 6; 7 and 8. These parameters reproduce all observed energy levels to 0:5

MHz or better.

In order to determine the importance of the vector interaction, it is instructive to

repeat the same least-squares �tting analysis described in the previous paragraph, but with

the constraint that the vector hyperpolarizability �

v

must vanish. Table 5.1 lists the various

�tted parameters obtained from this analysis without the vector interaction. The greatest

change among the parameters occurs in the Ne

+

2

P

3

2

gyromagnetic ratio g

J

, which changes

from 1:342 to 1:307. The tensorial structure of the gyromagnetic term is similar to that of

the vector interaction and it is plausible that the resulting �t modi�es g

J

to \mock up" the

e�ects omitted by setting �

v

equal to zero. However, since both the radial dependence of

these two interactions are di�erent, a change in g

J

can only approximately compensate for

the omission of �

v

from our nonlinear �t. Note that the LS coupling value of g

J

is precisely

4

3

, but the e�ects spin-orbit coupling can change this value from this limiting LS-coupled

value. (An independent, linear Zeeman e�ect measurement could easily test the �tted g

J

value.)

The Rydberg levels computed without the vector interaction are given in Table 5.2.

The largest discrepancies among the computed and observed levels appear in the lower `

states, where the largest deviation is �1:43 MHz in (

3

2

)10H

9

2

. A clear di�erence is apparent,

though, between this analysis and that obtained with the vector hyperpolarizability included.

The new least-squares �t obtained without the vector interaction results in �

2

= 27:5, a �

2

per degree of freedom approximately four times worse than the �

2

for the �t including the

vector interaction. We interpret this as strong evidence that the existence of the vector

interaction has been con�rmed in the Ward et al experiment on Ne Rydberg states.
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Table 5.1. Comparison of �tted (experimental) and theoretical parameters for Ne

+

. L refers

to length form and V refers to velocity form. The value of g

J

in column 4 is based on pure

LS-coupling

�

. The values labelled \present" are from our earlier work (Clark et al. 1996),

as are the unlabelled theoretical values for �

s

, �

t

, and �

v

.

Present Fit Present Fit Ward et :al : Theoretical

without �

v

�t

Q -0.204020(5) -0.204001(11) -0.20403(5) -0.1964 [66]

-0.2032(5) [66]

-0.2117 [10]

�

s

1.3018(2) 1.3011(6) 1.3028(13) 1.23 (L)

1.19 (V)

1.27 [65]

�

t

-0.0259(3) -0.0261(3) -0.026(5) -0.0374 (L)

-0.0396 (V)

-0.035 [10]

�

v

0.059(2) `0' 0.045(29) 0.0678 (L)

0.0719 (V)

�

s

-0.10(1) -0.10(1) -0.29(24) -1.44 [67]

�

t

0.274(5) 0.264(3) 0.5(5)

g

J

1.342(12) 1.307(24) 1.354(21)

4

3

*

�

2

7.1 27.5 35.7
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Table 5.2. Comparison of calculated (with and without �

v

, see Clark et al. (1996)) and

experimentally observed (Ward et al. 1996) energies (MHz) of n = 10 Rydberg neon with

J

c

=

3

2

and ` = 5; 6; 7, and 8. �E = E

obs

�E

calc

.

States E

obs

(MHz) [7] E

calc

�E E

�

v

=0

calc

�E

�

v

=0

H

9

2

-145.58(77) -145.63 0.05 -144.15 -1.43

H

11

2

2142.67(10) 2142.60 0.07 2142.81 -0.14

H

13

2

-6022.24(19) -6022.02 0.22 -6022.66 0.42

I

9

2

-5267.15(35) -5267.38 0.23 -5266.64 -0.51

I

11

2

-356.30(24) -356.18 -0.12 -355.91 -0.39

I

13

2

800.52(5) 800.50 0.02 800.55 -0.03

I

15

2

-4131.36(15) -4131.35 -0.01 -4131.10 -0.26

K

11

2

-3838.06(35) -3838.50 0.44 -3838.26 0.20

K

13

2

-646.41(8) -646.37 -0.04 -646.36 -0.05

K

15

2

`0' `0' `0' `0' `0'

K

17

2

-3205.01(16) -3204.97 -0.04 -3204.68 -0.33

L

13

2

-3073.14(35) -3073.64 0.50 -3073.56 0.42

L

15

2

-883.09(8) -883.04 -0.05 -883.08 -0.01

L

17

2

-494.04(5) -494.04 0.00 -494.05 0.01

L

19

2

-2693.41(18) -2693.38 -0.03 -2693.14 -0.27
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To complement our analysis of this Rydberg system we present ab initio theoretical

values for �

s

, �

t

, and �

v

, in Table 5.1 for comparison with other theoretical and experimen-

tal results. Our theoretical results are presented in both the length and velocity forms of

the electric dipole matrix elements. The details of these calculations are presented in the

next section. In view of the di�culty of the ab initio calculation of such parameters for a

many-electron ion, the calculated values for Ne

+

are in reasonably good agreement, both

in magnitude and in sign, with the values extracted from the measurements of Ward et al

[10]. This agreement strengthens the argument that the vector interaction does exist and

has experimental implications in certain features of Rydberg spectra.

As another demonstration of the importance of channel coupling in the Rydberg

states of Ne, we display in Figures 5.1 and 5.2 two sets of adiabatic potentials for Ne, which

exhibit clear qualitative di�erences. In Figure 5.1 the adiabatic potentials correspond to

K

�

=

9

2

�

and are labeled from top to bottom with (J

c

; `) = (

1

2

; 5), (

3

2

; 5), and (

3

2

; 3). The

absence of avoided crossings and the smoothly decaying behavior of the derivative couplings

suggest that an adiabatic analysis is justi�able in this case. However, Figure 5.2 demonstrates

that adiabatic potentials for di�erent symmetries can di�er in a crucial manner. In Figure 5.2

the adiabatic potentials corresponding toK

�

=

11

2

�

and are labeled from top to bottom with

(J

c

; `) = (

1

2

; 5), (

3

2

; 7), and (

3

2

; 5). In this case, the presence of a close avoided crossing and

a corresponding sharp derivative coupling indicate that a simple adiabatic analysis cannot

account for the strong coupling among the nearly degenerate channels. For these reasons,

the e�ective diabatic Hamiltonian approach is preferable, as has been demonstrated in this

section.

It should be noted, though, that an adiabatic analysis can be very useful for de-

veloping a qualitative understanding of simple and complex spectra. For example, the wave

function of a Rydberg electron moving in the presence of these potentials will be distributed

among the various channels (paths). The coherent superposition of amplitudes from the
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various paths can lead to interference that results in complex spectra. The extent to which

such perturbations in
uence the spectrum depends on the coupling between channels, and

on whether the Rydberg series converging to the various ionization thresholds overlap ex-

tensively.

5.2 First Calculation of the Vector Hyperpolarizability �

v

In this section we discuss the calculation of the reduced dipole matrix elements nec-

essary to evaluate the vector hyperpolarizability �

v

, the standard dipole scalar polarizability

�

s

, and the second-rank tensor polarizability �

t

of Ne

+

. The theoretical values for �

s

, �

t

,

and �

v

are presented in both length and velocity form in Table 5.1 for comparison with

other theoretical and experimental results. Reduced dipole matrix elements are calculated

for the ground state (2s

2

2p

5 2

P

o

) of Ne

+

. The dipole operator r

(1)

C

(1)

q

connects states of

the opposite parity which di�er by at most one orbital, and such that �L

c

= 0;�1 (except

for L

c

= 0 to L

c

= 0 transitions) and �S

c

= 0. Thus only the

2

S,

2

P , and

2

D �nal states

are needed, which are generated from the ground state by 2s ! np, 2p ! ns and 2p ! nd

substitutions. Excitations of the 1s core are ignored since these give negligible contribu-

tions to reduced dipole matrix elements. These �nal states of Ne

+

are represented by 2s2p

6

,

2s2p

5

np, 2s

2

2p

4

ns and 2s

2

2p

4

nd con�gurations, which can be constructed (including the

ground state 2s

2

2p

5

) from a product of Ne

2+

states 2s2p

5

or 2s

2

2p

4

, and an outer s, p or d

electron. These Ne

2+

con�gurations are referred to as physical target states.

The summations over bound and continuum states of Ne

+

are accomplished us-

ing the eigenchannel R-matrix method [55]. This allows us to construct a complete set of

orthogonal basis functions, vanishing at the boundary of the R-matrix sphere of radius r

0

.

Such functions represent a bound spectrum and a discretized continuum of Ne

+

. The tar-

get states of Ne

2+

are calculated using the multicon�guration Hartree-Fock approximation

[68], in which both spectroscopic and correlation orbitals are included. First, spectroscopic
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Figure 5.1. Adiabatic potential curves and derivative couplings for Rydberg Ne. The

adiabatic potentials correspond to K
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and are labeled from top to bottom with

(J

c

; `) = (
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2
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2
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; 3). The derivative couplings P
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(r)=30 are given by the

broken lines: P
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(r), dashed; P

middle;bottom

(r), dotted; and P

top;bottom

(r), dot-dashed
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Figure 5.2. Adiabatic potential curves and derivative couplings for Rydberg Ne. The
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ken lines: P

top;middle

(r), dashed; P

middle;bottom

(r), dotted; and P

top;bottom

(r), dot-dashed.
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orbitals 1s, 2s and 2p are optimized on a single 2s

2

2p

4

con�guration. Then, a correla-

tion 3d orbital is optimized on 2s2p

5 3

P

o

, whose CI expansion includes the main perturber

2s

2

2p

3

3d

3

P

o

. Finally, 3s and 3p correlation orbitals are optimized on 2s

2

2p

4 3

P , where

singly- and doubly-excited con�gurations allowed by parity and spin-angular momentum

coupling rules are included.

We then set up an initial CI expansion for each LS-term in the 2s

2

2p

4

and 2s2p

5

con�guration, including all allowed (by parity and LS-symmetry conservation rules) singly-

and doubly-excited con�gurations of 2s, 2p, 3s, 3p and 3d orbitals. After diagonalizing a

Hamiltonian, this initial CI set is condensed; from each eigenvector representing a physical

target state, we delete those con�gurations whose weight is less than 0.0005. In the �nal step,

extra con�gurations representing the target polarization are added. These are constructed

from single-electron excitations from 2s

2

2p

4

and 2s2p

5

, involving a change in the parity as

2s ! 2p, 2p ! 3s and 2p ! 3d. Table 5.3 shows energies and dominant con�gurations

for each physical target state in the condensed basis. Comparing with experiment [69],

our relative energies are accurate to at least 5%. As in previous eigenchannel R-matrix

calculations [55], a discretized basis of outer-electron orbitals ns, np, nd, nf and ng is used.

These are determined inside the R-matrix sphere of radius r

0

= 7 Bohr radii. The size of r

0

is chosen to contain all physical target states and the ground state of Ne

+

, and to ensure an

exponential decay of rP

nl

(r), where P

nl

(r) are the ground-state radial functions. A set of

radial basis functions for the outermost electron is obtained from a Hartree equation

�

�

1

2

d

2

dr

2

+

l(l + 1)

2r

2

�

Z

r

+ V

H

(r)

�

P

nl

(r) = E

nl

P

nl

(r) +

X

n

0

�

nn

0

P

n

0

l

(r);

where

V

H

(r) =

X

n

0

q

n

0

l

�

Z

r

0

1

r

P

2

n

0

l

(s)ds+

Z

1

r

r

2

s

2

P

2

n

0

l

(s)ds

�

:
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Here, q

n

0

l

are occupation numbers of spectroscopic orbitals representing the 2s

2

2p

4

target,

and �

nn

0

are Lagrange multipliers needed to orthogonalize the outer-electron and target

orbitals (including the correlation orbitals).

All new \box" orbitals are forced to vanish at the R-matrix surface. These con-

stitute a complete orthogonal basis, representing an electron outside the residual Ne

2+

ion.

Those orbitals, which have positive energies E

nl

> �

Z

eff

r

0

+

l(l+1)

2r

2

0

not only describe bound

states but also represent a discretized continuum of the Ne

+

spectrum. The ground state of

Ne

+

is constructed from an antisymmetrized product of the target states and outer-electron

orbitals. The energies and atomic wave functions of Ne

+

are just eigenvalues and eigenvec-

tors, respectively, of the Hamiltonian. The ionization energy of Ne

+

(2s

2

2p

5 2

P

o

) obtained

in this calculation is 334460 cm

�1

, whereas the experimental value is 331350 cm

�1

. The ac-

curacy can be tested more thoroughly by analyzing errors in the whole calculated Rydberg

series, instead of a singel level. The theoretical and experimental e�ective quantum numbers

of a 2p electron in 2s

2

2p

5 2

P

o

are 0.573 and 0.572, respectively, giving a di�erence of 0.001

in the quantum defect.

The �nal

2

S,

2

P and

2

D states are constructed in the same way as the ground state.

However, a similar estimate of errors can only be made for the lowest eigenstates whose

atomic wave functions �t inside 7 Bohr radii and thus represent physical states of Ne

+

. For

the lowest, even-parity state 2s2p

6 2

S we obtain an excitation energy of 215953 cm

�1

, whereas

the experimental energy is 217050 cm

�1

. The corresponding error in the quantum defect is

only 0.01, well within the range of errors expected for such a strongly correlated state. Note

that 2s2p

6 2

S is correlated predominantly with a 2s

2

2p

4

3d

2

S perturber, which contributes

nearly 25% of the CI expansion. No similar error analysis can be carried out for higher

excited states, of course, since those no longer �t within the R-matrix box. Our �nal results

are obtained with 11 orbitals for each angular momentum l. However, a di�erent number of

the box orbitals was initially used to test convergence of the dipole scalar polarizability. For
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Table 5.3. Theoretical and experimental energies Ref.[24] in cm

�1

(upper and lower entry in

�rst column, respectively) of some Ne

2+

states, relative to the ground state 2s

2

2p

4 3

P , and

shortened CI expansions for each of these states.

Energy Composition

0.0 2s

2

2p

4 3

P 2s2p

4

(

2

D)3d

3

P 2s2p

4

(

2

P )3d

3

P

0.0 0.98605 0.00410 0.00160

25559 2s

2

2p

4 1

D 2s2p

4

(

2

P )3d

1

D 2s

2

2p

2

(

1

D)3p

2

(

3

P )

1

D

25521 0.98406 0.00672 0.00176

53096 2s

2

2p

4 1

S 2p

6 1

S 2s

2

2p

2

(

1

S)3d

2

(

1

S)

1

S

55427 0.95453 0.03386 0.00303

203471 2s2p

5 3

P 2s

2

2p

3

(

2

D)3d

3

P 2s

2

2p

3

(

2

P )3d

3

P

204589 0.97417 0.01000 0.00397

291435 2s2p

5 1

P 2s

2

2p

3

(

2

D)3d

1

P 2s

2

2p

3

(

2

P )3d

1

P

289159 0.96629 0.01300 0.00314
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the

2

S and

2

P symmetries, whose calculations consume the least CPU-time and memory, we

increased the number of box states to 13. This changed the scalar polarizability by about 2%.

We also tested the importance of g-waves, since these, along with f -waves, were neglected in

earlier theoretical calculations [65]. The g-waves were found to contribute about 3% to the

scalar dipole polarizability, and even greater e�ects are expected from f -waves. Therefore,

these are kept in the present calculations.

Our �nal value of the scalar polarizability is 1.23 a.u. in length form and 1.19

a.u. in velocity form, which should agree if the wavefunctions are exact eigenfunctions of

the Hamiltonian. The scalar polarizability in length form di�ers by about 6% from the

experimental results and by about 3% with other theoretical results (see Table 5.1). In

velocity form, the scalar polarizability di�ers by about 9% with experimental results and

by about 6% with theoretical results. The slightly better results obtained in Ref.[65] can

be attributed to the implicit summation over Rydberg series and continuua, whereas our

method uses a CI expansion which in general converges more slowly.



CHAPTER 6

AUTOIONIZING RYDBERG STATES OF MAGNESIUM

In this chapter we continue our investigation of anisotropic interactions by consid-

ering the doubly-excited, autoionizing 3pnf states of Mg. Here a Rydberg electron interacts

with an excited Mg

+

3p ionic core. In this system, strong coupling among Rydberg states

results in irregular behavior in the autoionization rates; we show that the irregularity is accu-

rately described by the e�ective diabatic Hamiltonian formulation. As discussed in Chapter

4 we explore further the idea that the electric dipole moment of the ionic core experiences a

torque as the distant Rydberg electron \revolves" around the core.

6.1 Modi�cation for Low ` Rydberg States

In most circumstances, an accurate description of low-` Rydberg states is di�cult

to achieve using a long-range adiabatic potential or an e�ective Hamiltonian. The di�culty

arises because the short-range physics is described inadequately. However, there are special

symmetries of Rydberg systems that are amenable to the methods we have developed. The

3p

1

2

nf

7

2

(J = 4), 3p

3

2

nf

7

2

(J = 4), and 3p

3

2

nf

9

2

(J = 4) Rydberg states of Mg, with n � 9, fall

into this latter category [32]. For these symmetries an f Rydberg electron can only couple

to other f and h states, which means that the Rydberg-core interaction can still be treated

perturbatively.

For f and g Rydberg states the inner classical turning point ranges from 6�10a:u:.

Exchange can still be reasonably neglected, but the asymptotic expansion of the Rydberg-

core interaction in powers of

1

r

becomes problematic when r becomes comparable to the

physical size of the ionic core. In order to treat this small r region better it is preferable to

expand in r

<

= minfr; r

i

g and r

>

= maxfr; r

i

g, where r

i

is the radial position of a core
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electron.

An analysis identical to that given in Chapters 3 and 4 for the diabatic Hamiltonian

can be carried out for this case, with the simple modi�cation that we perform a spherical

expansion in r

<

and r

>

. This expansion necessarily makes all electric multipole moments

and induced polarizabilities radially-dependent, but this dependence rapidly falls o� for

r > 10a:u:. The e�ective diabatic Hamiltonian for low-` states of low-Z atoms is

�

H

��

0

=

�

�

1

2

d

2

dr

2

+

`

�

(`

�

+ 1)

2r

2

+

C

c

(r)

r

+�E

��

0

�

�

s

(r)

2r

4

�

�

s

(r)

r

6

�

�

��

0

�

�

Q(r)

r

3

+

�

t

(r)

2r

4

+

�

t

(r)

r

6

�

A

(2)

��

0

+

 

�

s

(r)B

(0)

��

0

+ �

t

(r)B

(2)

��

0

r

6

!

+

�

v

(r)

r

6

h

~

L

c

�

~

`i

��

0

� 2

 

�

s

(r)�

��

0

+ �

t

(r)A

(2)

��

0

r

5

!

+ p

r

 

�

s

(r)�

��

0

+ �

t

(r)A

(2)

��

0

r

4

!

p

r

; (6.1)

where �E

��

0

� E

�

�E

�

0

. Similarly, the matrix �

��

0

is

�

��

0

= �

��

0

+ 2

 

�

s

(r)�

��

0

+ �

t

(r)A

(2)

��

0

r

4

!

: (6.2)

The additional term C

c

(r) represents the partially screened Coulomb charge seen by the

Rydberg electron as a function of the radial coordinate. These channel independent radial

parameters converge to zero in the limit r ! 0, except for C

c

(r) which converges to �Z.

In the asymptotic limit r !1 each radial parameter converges to its appropriate constant

value, as in Eqs.(4.40) and (4.41). For example, lim

r!1

�

s

(r) = �

s

, and lim

r!1

C

c

(r) = �1.

In addition, when r becomes much larger than the physical extent of the ionic core, r

>

coincides with the radial coordinate of the Rydberg electron, and the radial parameters
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Table 6.1: e�Mg

++

model potential parameters.

` �

`

1

�

`

2

�

`

3

r

`

c

Mg

++

0 4.51367 11.81954 2.97141 1.447764

�

d

= 0:49 1 4.71475 10.71581 2.59888 1.71333

� 2 2.99158 7.69976 4.38828 1.730930

Ref.[71]

assume their constant asymptotic values. Analytic expressions for these radial parameters

are given in Appendix A.

6.2 Radial Dependence of Core Parameters

The accurate calculation of electronic properties for a many-electron ion is generally

very di�cult. Fortunately, Mg

+

is an alkaline-earth ion, for which simple and e�ective model

potentials [70, 56, 71] can be utilized. The model potential V (r) describing the interaction

between a valence electron and a closed-shell ionic core is chosen to have the analytic form

V (r) = �

1

r

�

2 + (Z � 2)exp(��

`

1

r) + �

`

2

r exp(��

`

3

r)

�

�

�

d

2r

4

"

1� exp

 

�

�

r

r

`

c

�

6

!#

; (6.3)

where Z is the nuclear charge and �

d

is the scalar dipole polarizability of the doubly charged

positive ion [70, 56, 71]. The parameters �

`

i

and r

`

c

are empirically �tted to obtain agreement

between the energy eigenvalues of the one-electron model Hamiltonian and the experimental

energy levels of the alkaline-earth ion. The values of the parameters for the interaction of

Mg

++

and a valence electron are given in Table 6.1. As noted in Ref.[70, 56] the ` dependence

of these parameters makes the model potential formally a nonlocal potential, although in a

trivial way.

The core wavefunctions are computed by diagonalizing the model Hamiltonian in

a �nite basis set of radial Sturmian functions (see Appendix C)
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S

(�)

n`

(r) =

�

(n� `� 1)!

(n+ `)!

�

1=2

e

��r=2

(�r)

`+1

L

(2`+1)

n�`�1

(�r); (6.4)

where the L

(2`+1)

n�`�1

(�r) are associated Laguerre polynomials de�ned by

L

(k)

n

(x) =

n

X

�=0

0

@

n+ k

n� �

1

A

(�x)

�

�!

; (6.5)

and � is a parameter chosen to enhance convergence. Expanding each desired radial wave-

function as a linear combination of these Sturmians, the radial Schr�odinger equation becomes

a generalized eigenvalue problem

H

model

 = EO : (6.6)

H

model

and O are matrices of the model Hamiltonian and overlap operators, calculated in the

Sturmian basis [110]. The asymptotic permanent multipole moments, polarizabilities, and

hyperpolarizabilities for the Mg

+

(3p) ionic core computed with this wavefunction information

are presented in Table 6.2.

A comparison with our earlier work on the Ne

+

ion reveals that the Mg

+

3p ionic

parameters are from one to two orders of magnitude larger. In particular, the vector hyper-

polarizability �

v

is 1:885a:u: for the Mg

+

(3p) , as opposed to 0:059(2)a:u: for the ground state

Ne

+

ionic core [30, 31]. Unfortunately, as we will demonstrate later, the large autoionization

widths of the 3pnf Rydberg states obscure the importance of this subtle interaction.

The channel independent radial parameters are also computed with this wavefunc-

tion information and are presented in Figure 6.1. In order to emphasize their radial variation,

we have multiplied each parameter by a suitable constant. They converge rapidly to their

asymptotic values, i.e. reasonably well by r � 10 a.u.. Nevertheless, the variations for r < 10

a.u. are su�ciently strong to shift the 3pnf Rydberg levels of magnesium with n � 10 by

a few wavenumbers. For states with higher ` values, the centrifugal barrier excludes the
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Table 6.2: Mg

+

3p ionic core parameters.

Parameters Calculated

(a.u.)

C

c

-1

Q 2.752

�

s

31.514

�

t

1.531

�

s

677.205

�

t

-583.541

�

s

84.418

�

v

1.885

�

t

-34.144
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Rydberg electron from the small radial region where these short range variations play an im-

portant role. These calculations were accurately converged, to 0:001a:u: for each parameter,

with 100 radial Sturmian functions per channel.

6.3 Rydberg Levels and Rates: Mg 3pnf

The interactions among Rydberg channels generally increase in importance as the

ionic core becomes larger and more polarizable. In this case the 3pnf Rydberg states of

magnesium would appear ideal for the study of anisotropic interactions like

~

L

c

�

~

`

r

6

. However,

the small energy shifts generated by this vector interaction are di�cult to observe in these

states, because of the large autoionization widths. This could, in principle, be partially

resolved by studying high ` states of a given n so that the decay rate is dominated by

radiative decay, which is independent of n and ` [72]. In fact, this is preferable provided the

natural linewidth for the 3p state is smaller than the splittings and energy shifts caused by

the anisotropic terms.

Fortunately, the 3pnf states of Mg are still interesting, since strong coupling arises

from the quadrupole interaction. This coupling gives rise to irregular behavior in the posi-

tions and the decay widths of the autoionization resonances, which can be clearly seen in the

recent experiments of Lyons et:al: [32]. In fact, the coupling is strong enough that traditional

perturbative treatments of Rydberg states are unable to account for the observed e�ects.

We compute the magnesium 3pnf Rydberg energy levels and the corresponding

wavefunction information by diagonalizing the generalized eigenvalue equation, Eq.(3.8),

with the computed radial functions shown in Figure 6.1. Once again we use a radial Sturmian

basis for convenience. The autoionization rates (widths) are computed using the T -matrix

formulation developed in Section 3.12. Since we exclusively consider Rydberg states with

total angular momentum J = 4, only g �nal states contribute to these calculated rates.

The �ne structure splitting between the Mg

+

3p

1

2

and 3p

3

2

ionization thresholds

was taken to be 91:57cm

�1

[73, 74]. The Rydberg energy levels, rates, and quantum defects
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for the Mg 3p

1

2

nf

7

2

(J = 4), 3p

3

2

nf

7

2

(J = 4), and 3p

3

2

nf

9

2

(J = 4) resonances are presented

in Tables 6.3 through 6.5. The agreement between our computed and the measured levels is

good to about 1cm

�1

. Since the measured rates have uncertainties of 20% and range from 5

to 10cm

�1

, depending on the symmetry, this agreement between our theory and experiment

is reasonably good. The theoretical errors are primarily due to the neglect of exchange,

which is of borderline importance for f states, and the use of a model potential to compute

electronic properties of the Mg

+

3p ion.

The irregular behavior of the 3p

1

2

14f

7

2

and 3p

1

2

18f

7

2

states, and of the 3p

3

2

14f

7

2

and

3p

3

2

17f

7

2

states is clearly seen in the n-dependence of their autoionization rates. To better

visualize the distribution of these rates, we plot them as functions of the principal quantum

number n in Figures 6.2 through 6.4, respectively. The principal quantum number n and

the e�ective quantum number n

�

are related by the quantum defect (QD) � (n

�

= n� �).

Apart from the occasional perturbation, the general decrease of these rates with

increasing n is consistent with the

1

n

3

trend when n� ` [72]. The irregular behavior is caused

by strong channel coupling, which is primarily due to the quadrupole interaction, and by the

near degeneracies of the Rydberg levels in di�erent channels, such as the 3p

1

2

14f

7

2

and the

3p

3

2

13f

K

states. For comparison, we also present in Figures 6.2 through 6.4, the results of an

R-matrix, multichannel quantum defect theory (MQDT) calculation, which agrees well with

the e�ective Hamiltonian approach. The R-matrix results were based on reaction matrices

calculated (inside a reaction volume of 20a:u:) in an earlier study [75].

This comparison between the e�ective Hamiltonian approach and the more tradi-

tional and well tested R-matrix method is revealing. In general the positions and widths

computed using

�

H

PP

agree better with experiment. This may not be surprising since R-

matrix methods restrict the coordinate space to a reaction volume that may not necessarily

be large enough to describe the spatial distribution of high n` Rydberg states. The Hamil-

tonian approach simply requires an increase in the number of radial Sturmian functions per
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Table 6.3: Mg 3p

1

2

nf

7

2

J = 4 energies (cm

�1

), widths (cm

�1

), and quantum defects.

n E E � � QD QD

expt. theory expt. theory expt. theory

[32] [32] [32]

9 95967.83 95969.94 6.48 8.326 0.053 0.0457

10 96231.89 96231.30 5.60 6.534 0.042 0.0449

11 96424.39 96424.35 4.90 5.193 0.044 0.0441

12 96571.94 96571.01 3.69 4.223 0.036 0.0431

13 96686.31 96685.11 3.43 3.597 0.030 0.0411

14 96778.00 96776.80 4.95 3.627 0.009 0.0235

15 96848.72 96847.71 1.62 1.805 0.033 0.0480

16 96907.94 96907.48 1.55 1.709 0.037 0.0451

17 96957.11 96956.93 1.38 1.559 0.039 0.0430

18 96999.49 96999.07 3.60 1.798 0.010 0.0212

19 97033.17 97033.09 0.73 0.972 0.044 0.0466

Table 6.4: Mg 3p

3

2

nf

7

2

J = 4 energies (cm

�1

), widths (cm

�1

), and quantum defects.

n E E � � QD QD

expt. theory expt. theory expt. theory

[32] [32] [32]

9 96050.34 96052.63 3.63 3.898 0.082 0.0746

10 96314.82 96315.89 2.54 2.504 0.081 0.0761

11 96509.75 96510.33 1.19 1.636 0.081 0.0774

12 96658.25 96657.90 0.54 0.969 0.076 0.0794

13 96771.41 96771.34 0.00150 0.093 0.0938

14 96865.43 96864.23 1.48 1.114 0.060 0.0748

15 96938.06 96937.32 0.95 0.639 0.066 0.0779

16 96996.76 96996.41 0.37 0.000619 0.087 0.0938

17 97046.97 97046.97 1.19 0.505 0.076 0.0769

18 97088.3 97087.75 0.59 0.0159 0.082 0.0974

19 97123.63 0.66 0.295 0.0785
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Table 6.5: Mg 3p

3

2

nf

9

2

J = 4 energies (cm

�1

), widths (cm

�1

), and quantum defects.

n E E � � QD QD

expt. theory expt. theory expt. theory

[32] [32] [32]

9 96065.66 96067.23 11.53 12.212 0.032 0.0269

10 96326.73 96326.72 9.25 9.053 0.027 0.0275

11 96518.26 96518.61 6.28 6.882 0.030 0.0279

12 96665.55 96664.49 5.26 5.349 0.020 0.0282

13 96778.31 96777.98 5.05 3.932 0.025 0.0282

14 96869.47 96867.96 3.07 3.405 0.010 0.0286

15 96941.58 96940.54 2.13 2.781 0.012 0.0288

16 97000.40 96999.93 2.64 2.264 0.020 0.0288

17 97049.01 97049.13 1.73 1.921 0.031 0.0290

18 97090.85 97090.35 2.15 1.615 0.015 0.0291

19 97125.22 2.36 1.382 0.0292
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(J = 4) autoionization rates as a function of the principal

quantum number n. The circled data points with error bars are experimental results [32].
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channel to treat higher n` states.

6.4 Adiabatic Torquing of Orbital Planes

In this section we more fully explore the idea that the ionic core of a Rydberg

system experiences a torque from the distant, slow moving Rydberg electron. Here we

turn to an adiabatic analysis to study how the orbital planes of the ionic core and the

Rydberg electron orient themselves as the Rydberg electron adiabatically changes its radial

position. Explicitly, the adiabatic potentials U

�

(r) and eigenstates �

�

(r; 
) are de�ned as

the r-dependent solutions of the generalized eigenvalue problem:

�

H

PP

r=const

�

�

(r; 
) = U

�

(r)�

PP

r=cont

�

�

(r; 
): (6.7)

The adiabatic channel functions f�

�

(r; 
)g are superpositions of the ionic core states and

the orbital functions of the Rydberg electron; they contain information relating to the in-

stantaneous interactions between the ionic core and the distant electron.

TheK

�

=

7

2

�

andK

�

=

9

2

�

adiabatic potentials for Rydberg Mg, shown in Figures

6.5 and 6.6, exhibit very broad and smooth avoided crossings, and derivative couplings with

similar qualitative behavior. In order to �t the potential curves and the couplings in the same

�gure we have divided the derivative couplings by a factor of twenty. The large magnitude

of these couplings once again suggests that a diabatic treatment, where the coupling is still

relatively small, is preferable. As a result of this coupling, Rydberg states attached to these

potential curves should strongly interfere with one another and produce irregular behavior in

the positions and decay widths of the autoionization resonances, as described in the previous

section.

The orbital angular momentum of the Rydberg electron and that of the ionic core

can be viewed as de�ning orbital planes as in classical mechanics. Here we investigate how

the orientation of these orbital planes, or the projection of the Rydberg orbital momentum
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(r), dot-dashed.



83

onto the core orbital momentum, varies in a radial adiabatic analysis of Rydberg Mg. The

matrix element of interest is:

h

~

L

c

�

~

`i

�

= h�

�

j

~

L

c

�

~

` j �

�

i; (6.8)

which varies with r for each of the K

�

=

7

2

�

and K

�

=

9

2

�

channels of Rydberg Mg.

In Figure 6.7 we plot h

~

L

c

�

~

`i

�

versus r for the three adiabatic channels (J

c

; `) =

(

1

2

; 3), (

3

2

; 3), and (

3

2

; 5) of K

�

=

7

2

�

Mg. In the isolated channel (J

c

; `) = (

3

2

; 5) the relative

orientation of

~

` and

~

L

c

exhibits very little variation with r. In contrast, the orientation

of these two vectors shows a dramatic variation in the (J

c

; `) = (

1

2

; 3) and (J

c

; `) = (

3

2

; 3)

channels. In these cases the variation re
ects the presence of an avoided crossing that can

be attributed to the strong coupling between these two channels. One channel of particular

interest is (J

c

; `) = (

1

2

; 3) where the relative orientation 
ips, or changes sign. We attribute

this type of variation in orientation to the anisotropic interactions and to the spin-orbit

coupling within the system, since without the additional spin angular momentum

~

L

c

�

~

`

would be conserved.

In Figure 6.8 we show another example where anisotropic interactions in combina-

tion with core spin-orbit coupling produce interesting e�ects. Here we plot h

~

L

c

�

~

`i

�

versus r,

but for the three adiabatic channels (J

c

; `) = (

1

2

; 5), (

3

2

; 3), and (

3

2

; 5) of K

�

=

9

2

�

Mg. Once

again, the isolated channel (J

c

; `) = (

3

2

; 3) shows very little e�ect from the radial variation.

However, the two remaining channels exhibit a crossing, but no sign reversals. For large

radial distances the relative orientation of the core and Rydberg angular momenta remains

relatively �xed. As the Rydberg electron approaches the ionic core their electrostatic inter-

action increases, causing the relative orientation of the two orbital planes to change, provided

the core is anisotropic.

In these two examples, the orbital plane of the ionic core undergoes the largest re-

orientation. This can be understood by realizing that total angular momentum is conserved,
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and, therefore, only the much smaller angular momentum associated with the ionic core can

exhibit a sign change. In this sense, we can view the orbit of the ionic core as being \
ipped"

by the approaching Rydberg electron.



CHAPTER 7

RYDBERG STATES OF THE HYDROGEN DIATOMIC MOLECULE

In this chapter we present our study on Rydberg states of H

2

and D

2

. The recent

high resolution measurements of Rydberg intervals in ground rovibrational state H

2

and D

2

[9] contain interesting physics for several reasons. The simplicity of the H

+

2

and D

+

2

ionic

cores enables theory to compute all of the electric multipole and the induced polarization

interactions with enough precision to be competitive with the best experimental measure-

ments. Moreover, these measurements are tantalizingly close to resolving, for the �rst time,

the slight energy shifts of Rydberg states due to relativistic retardation. The tiny interac-

tion associated with retardation in this context is sometimes called a \Casimir force" [9, 19].

Excitement generated by this experimental progress has renewed theoretical interest in Ry-

dberg state physics and in precise calculations of H

+

2

and D

+

2

ionic properties. This chapter

develops the most extensive, complete adiabatic treatment of H

+

2

and D

+

2

ion properties

presented to date. The resulting comparison with experiment gives a stringent test of our

diabatic formulation of the Rydberg states physics.

7.1 Molecular Hamiltonian in Jacobi Coordinates

We begin by developing a general theory of the interactions in the generalized

hydrogen Rydberg molecule. Much other work on molecular Rydberg systems has of course

been done elsewhere [76, 77, 78, 79, 80, 81, 82, 11, 83, 84]. The primary reason for presenting

this development here is to detail the di�erences among various approximations currently

being used, and to clarify the advances our treatment contributes to the �eld of Rydberg

state physics.

The formulation of a many-body problem in terms of relative coordinates gives
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rise to an expression for the kinetic energy of the system that involves scalar products of

momentum operators associated with di�erent pairs of constituent particles; such terms have

been referred to as \mass polarization" [86, 87, 88]. In almost all atoms and small molecules

the mass polarization can be treated as a perturbation. However, it is desirable to absorb

the perturbative e�ects of mass polarization into an e�ective Hamiltonian that describes how

the Rydberg electron interacts with the ionic core. One way of doing this is through the use

of Jacobi coordinates [89, 90, 11] where the position of each successive particle is de�ned

relative to the center of mass of the previous subsystem.

7.1.1 Transformation Rydberg states of the generalized hydrogen diatomic

molecule consist of two nuclei with charges Z

a

e and Z

b

e, a core electron, and a Rydberg

electron. The laboratory positions of each particle, respectively, are de�ned as ~r

a

, ~r

b

, ~r

i

, and

~r

Ryd

relative to a common origin. The transformation from f~r

a

; ~r

b

; ~r

i

; ~r

Ryd

g to the Jacobi

coordinates f

~

R

cm

;

~

R;~r

e

; ~rg is advantageous, in that no mass polarization terms arise in the

kinetic energy operator. The center of mass of the entire molecule is de�ned by

~

R

cm

=

M

a

~r

a

+M

b

~r

b

+m

e

~r

i

+m

e

~r

Ryd

M

a

+M

b

+ 2m

e

: (7.1)

The relative position of the two nuclei is

~

R = ~r

a

� ~r

b

: (7.2)

The position of the core electron relative to the center of mass of the nuclei is

~r

e

= ~r

i

�

M

a

~r

a

+M

b

~r

b

M

a

+M

b

; (7.3)

and
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~r = ~r

Ryd

�

M

a

~r

a

+M

b

~r

b

+m

e

~r

i

M

a

+M

b

+m

e

(7.4)

is the position of the Rydberg electron relative to the center of mass of the molecular ion.

7.1.2 Kinetic and Potential Operators In Jacobi coordinates the kinetic

(T) and potential (V) operators of a generalized hydrogen diatomic molecule are given by

T =

1

2(M

a

+M

b

+ 2m

e

)

~

P

2

cm

+

M

a

+M

b

2M

a

M

b

~

P

2

R

+

M

a

+M

b

+m

e

2m

e

(M

a

+M

b

)

~

P

2

e

+

M

a

+M

b

+ 2m

e

2m

e

(M

a

+M

b

+m

e

)

~

P

2

r

; (7.5)

and

V =

Z

a

Z

b

e

2

R

�

Z

a

e

2

j ~r

e

� �

a

~

R j

�

Z

b

e

2

j ~r

e

+ �

b

~

R j

�

Z

a

e

2

j ~r � �

a

~

R+ �~r

e

j

�

Z

b

e

2

j ~r + �

b

~

R+ �~r

e

j

+

e

2

j ~r � ~r

e

+ �~r

e

j

: (7.6)

The mass factors in the potential energy, which would normally be associated with mass

polarization when non-Jacobian type coordinates are use, are

�

a

�

M

b

M

a

+M

b

; �

b

�

M

a

M

b

+M

a

; � �

m

e

M

a

+M

b

+m

e

: (7.7)

Here �

a

and �

b

depend only on the masses of the two nuclei, while � also depends on the

mass of the electron.

7.1.3 Molecular Ion and Rydberg Hamiltonians Since we are interested

in high-` Rydberg states of H

2

and D

2

, the full molecular Hamiltonian can be decomposed

into largely separate molecular ion and Rydberg electron Hamiltonians:
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H = T + V = H

core

+H

Rydberg

: (7.8)

All terms relating to the Rydberg electron, including the electron-ion interaction, are in-

cluded in the latter. The Hamiltonian for the molecular ion is

H

core

�

M

a

+M

b

2M

a

M

b

~

P

2

R

+

Z

a

Z

b

e

2

R

+

M

a

+M

b

+m

e

2m

e

(M

a

+M

b

)

~

P

2

e

�

Z

a

e

2

j ~r

e

� �

a

~

R j

�

Z

b

e

2

j ~r

e

+ �

b

~

R j

; (7.9)

and the Hamiltonian for the Rydberg electron is

H

Rydberg

�

M

a

+M

b

+ 2m

e

2m

e

(M

a

+M

b

+m

e

)

~

P

2

r

+

e

2

j ~r � ~r

e

+ �~r

e

j

�

Z

a

e

2

j ~r � �

a

~

R+ �~r

e

j

�

Z

b

e

2

j ~r + �

b

~

R + �~r

e

j

: (7.10)

Here it is important to note that H

core

is the Hamiltonian for a free molecular ion, indepen-

dent of any Rydberg coordinate. However, H

Rydberg

is coupled to the molecular ion through

its dependence on the internuclear separation

~

R and the position ~r

e

of the molecular electron.

These two Hamiltonians do not commute, of course.

7.1.4 Spherical Expansion of the Rydberg Hamiltonian As in atomic

Rydberg systems, the large value of the Rydberg radial coordinate facilitates a perturbative

expansion of all electrostatic interactions between the Rydberg electron and the molecu-

lar ion. After an expansion of the Rydberg-core interaction into spherical multipoles, the

Rydberg Hamiltonian simpli�es to
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H

Rydberg

�

1

2

M

a

+M

b

+ 2m

e

m

e

(M

a

+M

b

+m

e

)

~

P

2

r

+ e

2

1� Z

a

� Z

b

r

+e

2

X

k>0

h

N

k

r

k

e

C

(k)

(r̂

e

)�M

k

R

k

C

(k)

(

^

R)

i

�

C

(k)

(r̂)

r

k+1

(7.11)

where the mass factors are

N

k

� (1� �)

k

� (�1)

k

(Z

a

+ Z

b

)�

k

; (7.12)

and

M

k

� Z

a

�

k

a

+ (�1)

k

Z

b

�

k

b

: (7.13)

For Rydberg states of H

2

this Hamiltonian (in atomic units based on the bare, not reduced,

electron mass) becomes

H

Rydberg

� �

1

2

2M

p

+ 2

2M

p

+ 1

~

r

2

r

�

1

r

+

X

k>0

h

N

k

r

k

e

C

(k)

(r̂

e

)�M

k

R

k

C

(k)

(

^

R)

i

�

C

(k)

(r̂)

r

k+1

: (7.14)

Here M

p

is the proton mass and m

e

= 1. For this case, N

k

and M

k

reduce to the simple

expressions

N

k

� (1� �)

k

� 2(�1)

k

�

k

; (7.15)

and
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M

k

�

�

1

2

�

k

�

1 + (�1)

k

�

: (7.16)

To treat Rydberg states of D

2

we need only change the masses in the molecular ion and

Rydberg Hamiltonians. The nuclear mass factor M

k

is nonzero only when k is even.

7.2 Close-Coupling Representation

The theoretical description of a Rydberg diatomic molecule is essentially the same

as that for a Rydberg atom, except for the additional vibrational (�

+

) and rotational (N

+

)

structure. The wavefunction for the entire molecular system can be expanded in a primitive

representation f�

i

(!)g constructed from the energy eigenstates of the molecular ion and the

angular functions of the Rydberg electron

	(r; !) =

X

i

�

i

(!) 

i

(r) (7.17)

where ! represents all coordinates in the molecular system except the Rydberg radial posi-

tion. Since we are still considering nonpenetrating, high-` Rydberg states, for which electron

spin e�ects (such as exchange) are negligible, the appropriate coupling scheme is still (N

+

`)K

coupling [35, 36], when molecular hyper�ne and spin-rotation splittings can be neglected.

The rotational structure of the molecular ion plays a role analogous to the �ne

structure of the atomic ions considered ealier. The close-coupling equations once again

provide a useful channel structure that facilitates the separation of physically dominant

channels from those that play only a perturbative role in the description of a Rydberg

molecule. Following the spirit of Chapter 3, we use the standard technique of channel

elimination [46] and a Green's function expansion [49, 50] to derive a long-range e�ective

diabatic Hamiltonian that describes how the distant Rydberg electron interacts with the

molecular ion. A tensorial analysis similar to that described in Chapter 4 for Eq.(4.40)

generates an e�ective Hamiltonian with operator structure
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+
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�
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�
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+
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+
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5

+

�
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+ �
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�
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6
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�

~
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+ �
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4

!

d
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(7.18)

where E

�

0

is the lowest ionization threshold in the physical channel subspace, and �

m

=

2M

p

+1

2M

p

+2

is the reduced mass of the Rydberg electron relative to the ion. Likewise, the �

��

0

matrix in Eq.(4.41) is given by

�

��

0

= �

��

0

+ 2

 

�

s

�

��

0

+ �

t

P

(2)

��

0

r

4

!

: (7.19)

Here we adopt the convention in which �

s

and �

t

are the standard scalar and

tensor induced dipole polarizabilities, Q and � are the permanent electric quadrupole and

hexadecapole moments, and �

s

, �

t

, and �

h

are higher-order scalar, second-rank tensor, and

fourth-rank tensor induced hyperpolarizabilities of the ionic core. Explicit expressions for

all terms, including the angular factors h

~

N

+

�

~

`i

��

0

, P

(2)

��

0

, and P

(4)

��

0

are given in Appendix B.

As in the atomic case, the � terms represent nonadiabatic e�ects arising from the

radial and angular motion of the Rydberg electron. Here the vector interaction involving

�

v

couples the total angular momentum N

+

of the molecular ion with the orbital angular

momentum ` of the Rydberg electron. Interestingly, since the rovibrational states necessarily

involve both the massive nuclei and the molecular electron, e�ects arising from the vector

interaction will be much smaller in molecular systems than in atomic systems. In essence,
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it is more di�cult for a Rydberg electron to \drag" the polarization vector of a massive

spinning molecular ion, as opposed to the polarization vector of an atomic ion that involves

much lighter electrons. We will return to this point in a couple of sections.

7.3 Levels of Approximation

In order to compute Rydberg state properties of diatomic hydrogen in our for-

mulation, we must determine the permanent electric multipole moments and the induced

polarizabilities and hyperpolarizabilities of the molecular ion. The calculation of ionic core

properties is a di�cult task, but fortunately there are a number of familiar molecular ap-

proximations that can be utilized. These approximations make use of the fact that massive

nuclei move far more slowly than the molecular electrons.

The wavefunction 	

ion

for the molecular ion can be expanded in products of rovi-

brational and electronic wavefunctions

	

ion

(

~

R; ~r

e

) =

X

j

F

j

(

~

R)�

j

(

~

R; ~r

e

); (7.20)

where the electronic wavefunction �

j

(

~

R; ~r

e

) satis�es the equation
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~
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�

1

j ~r

e

+
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~
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!

�

j

(

~

R; ~r

e

) = E

e

j

(R)�

j

(

~

R; ~r

e

): (7.21)

An equation for the rovibrational wavefunction F

i

(

~

R) of the nuclei is obtained after projecting

out the electronic states in the full molecular ion Schr�odinger equation

�

�

1

M

p

~

r

2

R

+

1

R

+E

e

i

(R)

�

F

i

(

~

R)� 2

1

M

p

X

j

h

h�

i

j

~

r

R

j �

j

i �

~

r

R

i

F

j

(

~

R)

�

1

M

p

X

j

h

h�

i

j

~

r

2

R

j �

j

i

i

F

j

(

~

R) = E

core

F

i

(

~

R): (7.22)
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Various methods can be used to solve these equation, ranging from the Born-Oppenheimer

approximation to exact, nonadiabatic methods which treat all coordinates including the

internuclear separation R on an equal basis [78, 79, 80, 81, 82, 91, 92, 93, 94, 95, 96, 97, 85].

For clarity, let us review the two most familiar approximate methods that provide solutions

for the rovibrational equation: the Born-Oppenheimer approximation and the adiabatic-

nuclei approximation.

7.3.1 Born-Oppenheimer Approximation In the Born-Oppenheimer ap-

proximation the nuclei are assumed initially to be in�nitely massive. The relative separation

between the nuclei then becomes a constant parameter. The nuclear momentum operator

�i

~

r

R

is set to zero in this initial step, in Eq.(7.22) leaving

�

�

1

M

p

~

r

2

R

+

1

R

+E

e

i

(R)

�

F

BO

i

(

~

R) = E

BO

core

F

BO

i

(

~

R) (7.23)

as the nuclear rovibrational equation, which contains no coupling among di�erent rovibra-

tional states. The extremely useful Born-Oppenheimer approximation has provided much of

the framework used today to understand the low vibrational states of diatomic molecules.

However, this approximation must be greatly improved upon to account for modern, high-

resolution Rydberg state spectroscopy, which can probe the �ne details of the interactions

among electronic, vibrational, and rotational degrees of freedom.

7.3.2 Adiabatic Nuclei Approximation The adiabatic-nuclei approxima-

tion assumes that the distance between the nuclei varies slowly, but is not entirely negligible

compared to the motion of the molecular electrons. In this case Eq.(7.22) reduces to

�

�

1

M

p

~

r

2

R

+

1

R

+E

e

i

(R)�

1

M

p

h�

i

j

~

r

2

R

j �

i

i

�

F

AD

i

(

~

R) = E

AD

core

F

AD

i

(

~

R) (7.24)

where the diagonal matrix elements involving

~

r

R

vanish, since the matrix is skew-symmetric,

but the matrix elements involving

~

r

2

R

survive as corrections due to the relative motion of
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the nuclei. While coupling among di�erent rovibrational states is not included at this level of

approximation, the energy levels of low rovibrational states are generally accurate to about

�ve signi�cant �gures [91, 85]. As we will demonstrate later in this chapter, the adiabatic-

nuclei approximation can account for most the physics observed in the recent high-resolution

experimental studies of H

2

and D

2

[9].

In our studies of Rydberg states of H

2

and D

2

the rovibrational state of the molec-

ular ion in the physical channel subspace is usually either the ground state or the �rst

rotationally excited state. By the Frank-Condon principle, only excited states that signi�-

cantly overlap with these low lying states, which have near zero nuclear kinetic energy, will

contribute to the matrix elements in the summations for the polarizabilities and hyperpo-

larizabilities [77, 36]. For this reason, the adiabatic-nuclei approximation can be used to

accurately compute low rovibrational induced polarizabilities and hyperpolarizabilities of

H

+

2

and D

+

2

.

7.4 Core States of H

+

2

and D

+

2

All of our calculations for the H

+

2

and D

+

2

ions are performed using the adiabatic-

nuclei approximation. These adiabatic calculations of the induced polarizabilities and hy-

perpolarizabilities, which involve complete summations over rovibrational states of these

molecular ions, are the �rst of their kind. In almost all previous calculations of these quan-

tities, a \completeness" approximation has been used [98, 99, 100, 101, 19].

7.4.1 Calculation of Electronic States The solution of the electronic equa-

tion Eq.(7.21) is most easily performed in prolate spheroidal coordinates (see Appendix D)

where the partial di�erential equation breaks into three separate equations whose solutions

are linked only through separation constants. In prolate spheroidal coordinates the electronic

Hamiltonian (using atomic units with the bare electron mass) is [78, 79, 80, 81, 82, 77]



97

H

elec

= �

2

R

2

(�

2

� �

2

)

�

@

@�

(�

2

� 1)

@

@�

+

@

@�

(1� �

2

)

@

@�

+

(�

2

� �

2

)

(�

2

� 1)(1� �

2

)

@

2

@�

2

�

�

4�

R

1

�

2

� �

2

: (7.25)

After electronic wavefunction is expanded as a product

�(R; ~r

e

) = L(R; �)M(R; �)N(�); (7.26)

the electronic equation separates into

�
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L(R; �) = 0 (7.27)
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2

�

M(R; �) = 0 (7.28)

�i

@

@�

N(�) = �N(�) (7.29)

where � and A are separation constants and E is the electronic energy of the system. Note

that A is a function of � and E.

The azimuthal equation can be solved analytically, with the result

N(�) =

1

p

2�

e

i��

(7.30)

where � = 0;�1;�2; � � �. Some of the symmetry properties of the hydrogen diatomic

molecular ion are immediately apparent from these equations. Since � only appears in the
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form �

2

there is a double degeneracy for all nonzero � states, which is consistent with the

azimuthal-symmetry of the electronic Hamiltonian about the internuclear axis. Furthermore,

for homonuclear diatomic ions, where Z

a

= Z

b

, the Z

a

� Z

b

term in the angular M(R; �)

equation vanishes and the angular equation becomes invariant under re
ection (� ! ��).

This invariance translates into angular eigenfunctions that possess either gerade (even) or

ungerade (odd) symmetry for each value of the separation constant A.

Solution of the pair of radial L(R; �) and angular N(R; �) equations requires a little

more e�ort since they are coupled through the separation constant A and the electronic

energy E. While there are many ways of solving these equations [78, 79, 80, 81, 82], an

e�cient and accurate method is to solve each equation using a �nite element method (see

Appendix E), and iterate the solutions until A and E converge to some desired precision,

which in our calculations is ten digits.

7.4.2 Calculation of Rovibrational States The rovibrational states of the

molecular ion are obtained by solving the adiabatic-nuclei equation Eq.(7.24), with the elec-

tronic energies E

e

i

(R), which depend on the internuclear separation R, and the adiabatic

corrections arising from the

~

r

2

R

nuclear operator. A �nite element method (see Appendix

E) is used to solve these equations. The energy eigenvalues obtained are converged to ten

digits, while the core electric multipole moments and the induced polarizabilities and hy-

perpolarizabilities are converged to only about �ve digits. (Variational eigenfunctions are

typically accurate to only half as many digits as the quantity that is variational, which is

the energy in this case.)

7.4.3 Core Parameters and the Vector Hyperpolarizability Until this

study, no complete adiabatic calculation of any polarizability or hyperpolarizability had been

performed for H

+

2

or D

+

2

. The best previous calculations were based on what is loosely called

a \clamped nuclei" approximation [98, 99, 100, 101, 19] that neglects the small rovibrational

splittings in the energy denominators of the induced polarizabilities and hyperpolarizabilities.
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A closure relationship for the rovibrational states can then be used to eliminate the sum-

mations over intermediate rovibrational quantum numbers, thereby leaving simple (purely

electronic) polarizabilities and hyperpolarizabilities. As with the Born-Oppenheimer approx-

imation, the \clamped nuclei" approximation is unacceptable in the present context, owing

to the high resolution attained in Rydberg state spectroscopy.

A few \exact", or nonadiabatic calculations of the permanent electric multipole mo-

ments have been performed by Bishop and Moss[102, 93]. However, the �rst nonadiabatic

calculation of the ground state dipole polarizability �

s

= 3:1682 of H

+

2

has been completed

only very recently by Shertzer [103]. This value is still unpublished and should be regarded

as preliminary as of this writing. Nevertheless, the new value agrees well with the indirect

measurement �

s

= 3:1682(7) of Ref.[9]. Thus far, Shertzer's method has only been employed

to compute the dipole polarizabilities of the ground rovibrational states of H

+

2

and D

+

2

. An

extension of Shertzer's method to other ground state or excited rovibrational state polar-

izabilities and hyperpolarizabilities is likely to be technically di�cult, and results are not

expected to emerge for some time. For now, our calculation is the most complete treatment

of the multipole and induced polarization interactions in H

2

and D

2

. It is also the �rst

calculation of the vector hyperpolarizability for a molecular system.

Table 7.1 shows our adiabatic calculation of the ground rovibrational state polar-

izabilities and hyperpolarizabilities for H

+

2

and D

+

2

. These results were obtained by solving

the electronic and rovibrational equations using the adiabatic-nuclei approximation. Sum-

mations were included over numerous rovibrational states of the molecular ions, until it

appeared the series had converged. A total of 180 electronic states of H

+

2

and D

+

2

were

computed out to R = 8a:u: to ten digit accuracy. For each electronic potential and each

rotational state, 200 rovibrational wavefunctions were computed using the adiabatic-nuclei

approximation, also to ten digit accuracy.

Any residual errors in our scalar dipole polarizabilities �

s

for H

+

2

and D

+

2

, should
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be caused by e�ects of nonadiabatic nuclear motion. In fact, the 0:046 percent di�erence

between the exact and the adiabatic dipole polarizabilities is consistent with the estimates of

Bishop [102] and Moss [93] who predicted a 0:043 percent di�erence between the exact and

adiabatic quadrupole moments of (�

+

= 0; N

+

= 1) H

+

2

. While there are slight di�erences

between the adiabatic calculations and the measured polarizabilities, the adiabatic calcu-

lations represent a signi�cant improvement on the \clamped nuclei" approximation which

predicts a scalar dipole polarizability �

s

= 3:1730, with a �0:15 percent di�erence relative

to the exact calculation of Shertzer [103].

In the future we hope to study Rydberg states attached to the anisotropic (�

+

=

0; N

+

=1) H

+

2

ion. With this in mind, we present the �rst complete adiabatic calculation

of the permanent electric multipole moments, polarizabilities and hyperpolarizabilities for

this ion in Table 7.2. To our initial surprise, the vector hyperpolarizability �

v

is an order

of magnitude smaller for the (�

+

= 0; N

+

= 1) H

+

2

ion than for the Ne

+

ion studied in

Chapter 5. Moreover, �

v

is three orders of magnitude smaller than �

s

and �

t

. Since the H

+

2

molecular ion is generally more polarizable than the Ne

+

ion, we initially expected the vector

hyperpolarizability to be much larger, and to play a more signi�cant role in the physics of

H

2

Rydberg states. A study of this unexpected result has helped to elucidate the qualitative

meaning of the vector interaction.

The explanation lies in the rotational structure of the molecular ion. The adiabatic-

nuclei de�nition of the vector hyperpolarizability given in Appendix B is

�
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Table 7.1. Theoretical and experimental [9] parameters (atomic units) for ground state H

+

2

and D

+

2

. The theoretical values were computed using a complete summation over adiabatic

rovibrational states method, without making the usual \completeness approximation".

H

+

2

�

s

�

s

�

s

Adiabatic Theory 3.1667 1.6938 12.5601

Experiment [9] 3.1681(7)

Nonadiabatic [103] 3.1682(4)

Clamped Nuclei Approx. [85] 3.1730

D

+

2

�

s

�

s

�

s

Adiabatic Theory 3.0708 1.5930 11.8807

Experiment [9] 3.0712(7)

Nonadiabatic [103] 3.0714(4)

Clamped Nuclei Approx. [9] 3.0739
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Using the \clamped nuclei" approximation we can binomially expand the energy factor in

powers of the vibrational and rotational energy splittings, which are far smaller than the

electronic energy di�erences. Speci�cally,
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where �E

�

0

�

� E

�

0

� E

�

. The electronic (el) and vibrational (vib) energy di�erences in

this expression contribute nothing to �

v

, at this level of approximation, since the summation

over the rotational momenta N

+

�

vanishes. The rotational energy di�erence on the other

hand survives, and provides our desired approximation to leading order. If we replace the

rotational energy di�erence with

�E

rot

�

0

�

=

[N

+

(N

+

+ 1)�N

+

�

(N

+

�

+ 1)]

2I

; (7.33)

where I is the moment of inertia of the diatomic ion, then the vector hyperpolarizability can

be expressed in the form

�

v

�

=

�

k

v

�

+ �

?

v

�

2I

: (7.34)

Here �

k

v

�

and �

?

v

�

are parallel and perpendicular electronic hyperpolarizabilities that involve

cubed energy denominators. Explicitly

�

k

v

�

=

Z

d

~

RF

�

�

(

~

R) �

k

v

(R) F

�

(

~

R); (7.35)
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and

�

?

v

�

=

Z

d

~

RF

�

�

(

~

R) �

?

v

(R) F

�

(

~

R); (7.36)

where F

�

(

~

R) is an adiabatic rovibrational wavefunction. The radial �

k

v

(R) and �

?

v

(R) factors

depend only on electronic properties of the molecular ion:

�

k

v

(R) = �2N

2

1

X

�

D

�

X;�0
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X;�0

(E

X

�E
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and

�

?

v

(R) = �2N

2

1

X

�

D

�

X;�1

D

X;�1

(E

X

�E

�1

)

3

; (7.38)

where N

1

is the electronic mass factor de�ned in Eq.(7.15), and where the electronic dipole

matrix element is de�ned as

D

X;��

(R) �

Z

d~r

e

�

�

X

(R;~r

e

)r

e

C

(1)

��

(r̂

e

)�

��

(R;~r

e

): (7.39)

The subscipts X (��) denote the electronic ground (excited) states of H

+

2

, and both E

X

and

E

��

depend on the internuclear separation R.

The dependence of the �

v

�

expression on the moment of inertia of the molecular

ion immediately explains why �

v

is approximately one-thousand times smaller than the �

s

and �

t

hyperpolarizabilities. Moreover, the fact that there is a moment of inertia in this

expression for �

v

con�rms our physical picture of the vector interaction. The origin of

the vector interaction is qualitatively di�erent from that of the static polarizabilities. The

vector interaction describes how the motion of the Rydberg electron couples with dynamics

of the molecular ion. As the distant Rydberg electron revolves around the core, it tries to
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\drag" the core polarization vector with it. The comparatively enormous moment of inertia

of the molecule resists this drag strongly, thereby minimizing the e�ect of this \torque".

Consequently the dynamic vector interaction is miniscule in molecular Rydberg states.

7.5 Rydberg States of H

2

and D

2

We turn now to the n = 9 and 10 Rydberg states of (�

+

=0; N

+

=0) H

2

and D

2

,

which have recently been studied experimentally by Jacobson et al [9]. In anticipation of new

experimental studies of high-` Rydberg states attached to the anisotropic (�

+

=0; N

+

=1)

H

+

2

molecular ion [104], we also present a quantitative investigation of the vector interaction

that helps to elucidate its qualitative nature. These results are compared with theoretical

calculations of the energy shifts generated by relativistic retardation (Casimir) [19] carried

out elsewhere.

7.5.1 Ryberg States of (�

+

= 0; N

+

= 0) H

2

and D

2

The experimentally

observed spin splittings in the high-`, n = 9 and 10 Rydberg states of (�

+

= 0; N

+

= 0)

H

2

and D

2

were analyzed by the experimental group to extract spinless Rydberg transition

frequencies [9, 11, 105]. For these N

+

=0 Rydberg states the hyper�ne interaction produces

an overall scalar shift that makes no contribution to any of the observed Rydberg intervals.

Exchange energies were determined to be less than 0:01 MHz for these high-` Rydberg states.

Moreover, re�nements made by Jacobson et al have improved the signal to noise ratio by a

factor of 15 compared with earlier experiments on H

2

[11].

The e�ective diabatic Hamiltonian in Eq.(7.18) includes all permanent multipole

and induced polarization interactions out to radial order

�

1

r

�

6

and out to second-order in the

Green's function energy expansion. Since these expansions are �nite in extent, care must be

taken to ensure that high-order terms contribute a negligible amount to the Rydberg energy

intervals under study. Table 7.3 displays the �rst order energy shifts (MHz) of the n = 10,

` = 5; 6; 7; 8 and 9 hydrogenic states arising from various perturbative

1

r

interactions. The

proportionality coe�cient is taken to be 1a:u: so that these results can be easily rescaled by
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Table 7.2. Theoretical and experimental [11] parameters (atomic units) for (v

+

= 0; N

+

= 1)

H

+

2

. These parameters are de�ned in Appendix B and the long range potential is given in

Eq.(7.18). The theoretical values were computed using a complete summation over adiabatic

rovibrational states method, without making the usual \completeness approximation".

H

+

2

Q � �

h

Adiabatic Theory 1.64285 2.01966 0

Experiment [11] 1.64323(30)

�

s

�

s

�

s

Adiabatic Theory 3.17627 1.70230 12.61887

Experiment [11] 3.1787(34)

Clamped Nuclei Approx. [85] 3.1826

�

t

�

t

�

t

Adiabatic Theory 2.67900 2.07061 16.96614

Experiment [11] 2.678(24)

Clamped Nuclei Approx. [85] 2.6863

�

v

Adiabatic Theory 0.0048231
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the actual coe�cients for any Rydberg system. Since our calculation of ionic core properties

extends only to inverse radial powers of

1

r

6

, we can accurately predict Rydberg level intervals

for `-states for which higher-order

1

r

7

and

1

r

8

interactions are negligible. Experimental �ts

performed by Jacobson et al indicate that the coe�cient of the scalar

1

r

7

hyperpolarization

interaction is approximately 20a:u:. On this basis, Table 7.3 indicates that contributions

from this

1

r

7

interaction and higher-order terms will be negligible for states with `�6.

Using the theoretical core parameters from Table 7.1, we compute the n = 9 and 10

Rydberg intervals (and ` > 5) for the ground rovibrational state of H

+

2

and D

+

2

. The results

of these calculations are presented in Table 7.4. The agreement between our calculations and

the measured intervals is very good, considering the fact that we apply the adiabatic-nuclei

approximation to compute all the induced polarizabilities and hyperpolarizabilities. While

we do not explicitly compare with the predictions of a \clamped nuclei" calculation in Table

7.4, it is important to know that the error in the polarizabilities and hyperpolarizabilities

predicts Rydberg intervals that are larger than the measured intervals by approximately 2

MHz for the I �K transitions. Our calculations reproduce the experimental intervals with

an accuracy of 0:3 MHz or better. While this accuracy is still not quite high enough to

extract energy shifts due to relativistic retardation from these experiments, it suggests that

further improvements in the calculations of the polarizabilities and hyperpolarizabilities of

ground state H

+

2

and D

+

2

may clear up the remaining discrepancies, and hopefully improve

our quantitative understanding of the non-retardation physics to the desired level.

7.5.2 Analysis of the Vector Interaction and Relativistic Retardation

in the n = 10 Rydberg States of (�

+

= 0; N

+

= 1) H

2

Since the �rst prediction of

the vector interaction one of the most interesting questions in Rydberg state physics has

been: what qualitative e�ect on the spectrum does the vector interaction generate? In order

to better understand the nature of this unusual interaction, we compare the relative energy

shifts generated by this term with those generated by the more typical even-rank tensorial
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Table 7.3. Comparison of the n = 10, ` = 5; 6; 7; 8 and 9 energy shifts (MHz) for various

powers of

1

r

. Here the proportionality coe�cient is taken to be 1.

Radial Dependence ` Energy Shift (MHz)

1

r

3

5 39876.87212000

6 24101.40622637

7 15665.91404714

8 10751.11748333

9 7695.53672491

1

r

4

5 1840.47102092

6 753.71670381

7 345.92606584

8 172.01787973

9 90.53572618

1

r

5

5 100.05735312

6 27.38796162

7 8.74266696

8 3.07174785

9 1.13169658

1

r

6

5 6.14464134

6 1.10525641

7 0.24316214

8 0.05985970

9 0.01508929

1

r

7

5 0.42749565

6 0.04917661

7 0.00735501

8 0.00126020

9 0.00021556

1

r

8

5 0.03447231

6 0.00243449

7 0.00024249

8 0.00002864

9 0.00000332
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Table 7.4. Comparison of computed and measured [9] n = 10, (v

+

= 0; N

+

= 0) Rydberg

intervals for H

2

and D

2

(all results in MHz).

H

2

Interval �E

obs

�E

theory

theory-obs

9I � 9K 864.563(5) 864.683 0.120

9K � 9L 370.696(16) 370.931 0.235

10I � 10K 630.795(15) 630.731 -0.064

10K � 10L 274.072(20) 274.219 0.147

10L� 10M 129.673(20) 129.794 0.121

D

2

Interval �E

obs

�E

theory

theory-obs

9I � 9K 873.27(5) 873.445 0.175

9K � 9L 359.58(7) 359.895 0.315

10I � 10K 638.01(4) 638.100 0.090

10K � 10L 273.07(7) 273.065 -0.005

10L� 10M 129.436(14) 129.491 0.055
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interaction terms, of second rank (quadrupole and tensor-polarizability) and fourth rank

(hexadecapole).

Figure 7.1 displays the pattern of relative energy shifts generated by the operators

in our e�ective long range potential, namely h

~

N

+

�

~

`i

��

, P

(2)

��

, and P

(4)

��

, as functions of the

total angular momentum N of the system. Here the rotational angular momentum of the

ionic core is taken to be N

+

= 2 and the orbital momentum of the Rydberg electron is �xed

at ` = 6. Each di�erent rank operator expression produces a characteristic pattern of energy

level splittings that can be observed experimentally. Speci�cally, the vector term produces

a simple pattern known as the Land�e interval rule in spectroscopy [86], with the splitting

E

N

� E

N�1

proportional to N . The lowest N state has the most negative shift, assuming

the coe�cient is positive, and each higher N state rises, which is qualitatively di�erent from

the patterns produced by the quadrupole and hexadecapole terms. In the quadrupole case

we see a pattern where starting with the N = 4 state, which is positive, the next level N = 5

moves down just below zero, the next level N = 6 moves further down, and then the levels

proceed back up to the N = 7 state, and �nally up to the N = 8 state, which is positive. In

the hexadecapole case the pattern alternates with four sign changes.

A comparison of the energy shifts produced by the vector interaction and by rel-

ativistic retardation is also revealing. Figure 7.2 compares the shifts generated by the

vector interaction with the predicted Casimir shifts for the n = 10 Rydberg states of

(�

+

= 0; N

+

= 1) H

2

[19]. Here the molecular core is an anisotropic (N

+

= 1) core and

we consider three cases: ` = N , ` = N + 1, and ` = N � 1. When the Rydberg orbital

momentum ` is the same as the total angular momentum N of the system, or greater by one

unit of angular momentum, we see that the vector shifts are negative, while the relativistic

shifts are positive. In these two cases, a polarization model that does not include the vector

interaction would predict Rydberg energy splittings that are slightly too large compared

with experimental observations. When ` = N

+

�1 both the vector and relativistic shifts are
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erators versus the total angular momentum N . Here N
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= 2 and L = 6.



111

positive, implying that neglect of the vector interaction would generate splittings that are

too small.

Figure 7.3 also contrasts the tensorial structure of the vector and Casimir interac-

tions. The N dependence of these two interactions is shown for the n = 10, �xed-` Rydberg

states of (�

+

=0; N

+

=1) H

2

. The distinct pattern of these energy shifts is similar to the

shifts discussed earlier in Figure 7.1. These distinct tensorial patterns should stand out

clearly in an experiment.

One additional feature to note is the more rapid decrease in the shifts with increas-

ing ` produced by the vector interaction, as compared with those arising from retardation.

The origin of this di�erence lies in their respective radial-dependences, which go as

1

r

6

and

1

r

5

. Figure 7.4 displays this rapid decrease in the magnitudes of the vector energy shifts most

clearly. Shifts due to the vector interaction dominate in the lower ` states, while the Casimir

shifts dominate in higher ` states. Experimentalists aiming for an unambiguous con�rma-

tion of relativistic retardation in Rydberg atoms and molecules are advised, based on Figure

7.4, to focus on high ` > 6 states. It would also greatly improve our understanding of the

nonrelativistic e�ects to have measurements of far more energy splittings. The dependences

on ` and N provide the most detailed information.
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CHAPTER 8

SUMMARY AND REMARKS

In this dissertation, we have developed a new multichannel description of Ryd-

berg state physics that combines the simplicity of long range e�ective potentials with the

multichannel structure of modern scattering theory. At the same time, we have presented

systematic adiabatic (and diabatic) derivations of an unusual vector interaction that has

intrigued the Rydberg physics community in recent years. Our work demonstrates that the

vector interaction describes a coupling among the orbital motion of the Rydberg electron

and the internal ionic angular momentum, mediated by the dipole portion of the electron-ion

Coulomb force. As the distant Rydberg electron revolves around the core, it tends to \drag"

the core polarization vector with it. This drag is hindered by the internal moment of inertia

of the ion, and by the moment of inertia of the distant electron (or other charged particle)

about the center-of-mass. Stated another way, this interaction re
ects the inability of the

ionic core to instantaneously adjust to the angular motion of the Rydberg electron.

Our analysis of the n = 10 Rydberg states of Ne with orbital angular momenta of

` = 5; 6; 7, and 8 con�rmed, for the �rst time, the existence of an interaction term contain-

ing a pseudovector structure. We showed that this pseudovector interaction, in combination

with an e�ective multichannel Hamiltonian, can reproduce observed Rydberg energy inter-

vals in the n = 10 range to sub-MHz resolution. Moreover, a �

2

comparison demonstrated

that our description of Rydberg state physics improves on previously-developed perturbative

polarization models. Ab initio calculations of theoretical values for �

s

; �

t

; �

v

; � � � using mul-

ticon�guration Hartree-Fock atomic wavefunctions con�rm that the vector interaction exists

and has experimental implications for Rydberg spectra with a distinct pattern of induced
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energy splittings.

Our e�ective Hamiltonian approach was subsequently applied with success in our

study of doubly excited, autoionizing 3pnf Rydberg states of Mg. The strong coupling

among Rydberg states results in an irregular n-dependence of the autoionization rates, which

was clearly seen in recent experiments and accurately described by our diabatic Hamiltonian

approach. We also investigated variations of the relative orientation of the Rydberg and ionic

core angular momenta in a radial adiabatic analysis of Rydberg Mg. The relative orientation

of these angular momenta shows dramatic variations in strongly coupled channels, including

a \
ip", or sign change, in their mutual projection as the Rydberg electron distance from

the nucleus changes. We attribute these variations in orientation to the combined e�ects of

anisotropic interactions and the spin-orbit coupling within Mg

+

.

Rydberg states of the simple diatomic molecules H

2

and D

2

served as a stringent

test of our ability to compute ionic core properties, and to accurately describe Rydberg state

physics. The theory and calculations presented are the most extensive, complete adiabatic

treatment of H

+

2

and D

+

2

ion properties that has been presented to date. Our calculation

of the permanent multipole moments and induced polarizabilities and hyperpolarizabilities

for the �rst rotationally excited state of H

+

2

also provided a novel twist that has helped to

elucidate the qualitative meaning of the vector interaction. In addition to being the �rst

calculation of the vector hyperpolarizability for a molecule, the extremely small magnitude

of the coe�cient, one-thousand times smaller than other induced hyperpolarizabilities of H

+

2

,

proved to be enlightening. This analysis shows that the vector hyperpolarizability is inversely

proportional to the moment of inertia of the diatomic ion. This connection con�rms our

physical picture of the vector interaction. As the distant Rydberg electron revolves around

the core, it tries to \torque" the entire molecular ion. The relatively enormous rotational

inertia strongly resists this drag, thereby making the dynamic vector interaction miniscule

in Rydberg states of diatomic molecules. When the drag occurs more freely, as in an atomic
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ion whose electrons have a very small moment of inertia, the energy associated with the drag

shifts Rydberg levels more noticeably.

The n = 9 and 10 Rydberg energy intervals with ` > 5 computed for the ground

rovibrational states of H

+

2

and D

+

2

reproduce the experimental intervals with an accuracy of

0:3 MHz or better, a signi�cant improvement on earlier calculations based on the \clamped

nuclei" approximation. These adiabatic-nuclei calculations are not quite accurate enough

yet to extract energy shifts due to relativistic retardation from these experiments. Future

work will focus on computing higher order

1

r

7

and

1

r

8

hyperpolarization interactions and

treating nuclear motion at a nonadiabatic level. An analysis of the energy shifts produced

by the vector interaction and relativistic retardation demonstrate that these interactions

generate clearly distinct patterns of energy level splittings, whose characteristic tensorial

structure should stand out in an experiment. Experimentalists aiming for an unambiguous

con�rmation of relativistic retardation in Rydberg atoms and molecules should probably

focus on high-` Rydberg sates with ` > 6. Moreover, we suggest that future experimental

studies attempt to resolve far more energy level splittings, to permit the extraction of yet

more information from the ` and N dependences of the Rydberg splittings.
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APPENDIX A

PARAMETERS FOR HIGH-` RYDBERG STATES OF LOW-Z ATOMS

Here we give explicit expressions for all radial parameters used in Eqs.(6.1) and

(6.2). The constant versions of these radial parameters, those used in Eqs.(4.40) and (4.41),

are obtained by taking the limit r !1, or by replacing r

>

with the radial coordinate r of

the Rydberg electron. The summations over i and j in each expression refer to summations

over all core electrons. r

<

= minfr

i

; rg and r

>

= maxfr

i

; rg, where r refers to the Rydberg

electron. The summations over 


�

denote summations over all bound, and integrals over all

continuum states of the core that are not degenerate with E

�

0

.

The net Coulomb charge seen by the Rydberg electron as a function of the radial distance is
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The quadrupole moment of the ionic core is
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The scalar dipole polarizability of the ionic core is
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The second-rank tensor dipole polarizability of the ionic core is
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The scalar hyperpolarizability is
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The tensor hyperpolarizability is
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The scalar nonadiabatic dipole polarizability is

�

s

(r) =

r

4

6(2L

c

+ 1)

X




�

;L

�

(�1)

L

c

+L

�

(E

�

0

�E

�

)

2

h


c

L

c

k

N

c

X

i=1

r

<

r

2

>

C

(1)

(r̂

i

) k 


�

L

�

i

h


�

L

�

k

N

c

X

j=1

r

<

r

2

>

C

(1)

(r̂

j

) k 


c

L

c

i: (A.12)

The tensor nonadiabatic dipole polarizability is
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The vector dipole hyperpolarizability is
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The angular factors are given by
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APPENDIX B

CHANNEL PARAMETERS FOR RYDBERG STATES OF H

2

AND D

2

In this appendix we give explicit expressions for all permanent multipole moments

and induced polarizabilities and hyperpolarizabilities used in Eqs.(7.18) and (7.19). The sum-

mations over � denote summations over all bound and continuum states 	

�

of the molecular

ions that are not degenerate with E

�

0

. These expressions are formulated speci�cally for

molecular ion wavefunctions computed using the adiabatic nuclei approximation.

The k-th permanent multipole moment of the molecular ion is
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where the nuclear mass term M
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and the electronic mass term N
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are de�ned in Chapter 7.
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The second-rank tensor dipole polarizability of the molecular ion is
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(B.3)

The scalar hyperpolarizability is
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The second-rank tensor hyperpolarizability is
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The fourth-rank tensor hyperpolarizability is
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The scalar nonadiabatic dipole polarizability is
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The second-rank nonadiabatic dipole polarizability is
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The vector hyperpolarizability of the molecular ion is
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The angular coupling factors are
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APPENDIX C

STURMIAN BASIS

The Sturmian Basis is extremely useful in almost any problem involving Coulomb-

like potentials. The Sturmian functions S

(k)

n`

(r) satisfy the ordinary di�erential equation

[110]

�

�

1

2

d
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dr

2

+
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2

+

k

2

2

�

S

(k)

n`

(r) =

nk

r

S

(k)

n`

(r) (C.1)

where k is a constant that can be chosen to adjust the spatial extent of the Sturmian

functions. Provided k is not n-dependent the Sturmians form a L

2

representation.

The Sturmian functions are given explicitly by

S

(k)

n`

(r) = N(2kr)

`+1

e

�kr

L

(2`+1)

n�`�1

(2kr) (C.2)

where the L

(2`+1)

n�`�1

(2kr) are Laguerre functions. To determine the normalization constant N

and establish the completeness of the Sturmian functions it is useful to state some of the

properties of Laguerre functions. The normalization of the Laguerre functions fL

(�)

n

(x)g

[111, 112] is given by
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and their orthogonality is given by
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From the normalization condition for the Laguerre functions it is easy to show that

the Sturmian normalization constant is

N =

�

k(n� `� 1)!

n(n+ `)!

�

1

2

(C.5)

so that
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1

0

drS
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(r)S
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n`

(r) = 1: (C.6)

In order to show that the Sturmian functions form a complete orthonormal set, as

de�ned by Sturm-Liousville Theory [111, 113], we need to �nd a weight function such that
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dr�(r)S
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(r) = 0: (C.7)

Using the orthogonality condition for Laguerre functions it is easy to show that the Sturmian

weight function is given by

�(r) =

n

kr

: (C.8)

The the formal completeness relation for the Sturmian functions is
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APPENDIX D

PROLATE SPHEROIDAL COORDINATES

The prolate spheroidal coordinates are particularly useful in the description of two

center problems [77, 111]. Let the two centers be located at distances r

a

and r

b

from a

common origin. The orthogonal prolate spheroidal coordinates are de�ned in terms of a

radial coordinates �

� �

r

a

+ r

b

R

with 1 � � <1; (D.1)

an angular coordinate �

� �

r

a

� r

b

R

with � 1 � � � 1; (D.2)

and an azimuthal coordinate �

� with 0 � � � 2�: (D.3)

The di�erential volume elements is
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The Laplacian is
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The use of prolate spheroidal coordinates in the generalized hydrogen molecular ion facili-

tates the separation of the electronic Schr�odinger equation into three equations coupled by

separation constants.



APPENDIX E

FINITE ELEMENT METHOD

The method of �nite elements belongs to a class of numerical techniques used to

solve ordinary and partial di�erential equations. In general, the method transforms a set of

coupled di�erential equations into a variational, generalized eigenvalue problem. Depending

on how the problem is formulated, a discrete set of bound and continuum energy eigenstates

can be obtained, or by chosing the eigenvalue to be the log-derivative of the wavefunction at

the boundary of the system, continuous energy eigenstates can be obtained. Here the �nite

element method for a one-dimensional Schr�odinger equation with a restricted con�guration

space is developed, corresponding to the �rst case where discrete bound and continuum

states are desired.

The Schr�odinger equation for an arbitray potential V (r), for 0 � r < 1, is, in

atomic units,

�
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 (r) = 0: (E.1)

Let us de�ne an integral S
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Integrating by parts this becomes
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Now for most problems of interest lim

r!0

 (r) = 0. However, let us impose the

condition that lim

r!1

d (r)

dr

= 0 so that the surface term, obtained from the integration by

parts, vanishes. This �nal boundary condition is appropriate for bound states, but discretizes

all continuum states (Pseudo States).

Let us now de�ne an action A

A �
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2

�

d (r)

dr
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+  (r) (V (r) �E) (r): (E.4)

Then by the Euler-Lagrange equation
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vanishes since the last expression is just the original Schr�odinger equation. Thus �S = 0 and

S is a variational equation.

The power of the �nite element method is derived by chosing a basis set that

provides both computational accuracy and e�ciency. Imagine that the interval 0 � r < 1

is broken intoM sectors and that in each sector we expand the wavefunction  (r) in a basis.

Let us choose the basis to be six polynomials ff

i

(r)g with the constraints that one is nonzero

at any boundary and another has a nonzero derivative at any boundary in a given sector as

show in Figure E.1. That is, let us expand the wavefunction as

 (r) =

M

X

m=1

6

X

i=1

c

m

i

f

(m)

i

(r); (E.6)

where the ff

(m)

i

(r)g is a set of six polynomials de�ned within the m-th sector boundaries.

Since �S = 0

@S
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m
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= 0; (E.7)
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Figure E.1: Polynomial basis set used in �nite element method.
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where the fc

m

i

g are interpreted as variational parameters. Substituting the  (r) expansion,

Eq.[E.6], into the expression for S, Eq.[E.2], and using this partial derivative expression we

�nd the generalized eigenvalue equation
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Since we have chosen to partition the con�gurations space, in addition to expanding the

wavefunction in a discrete basis, the wavefunction and its derivative must be forced to

be continuous across each sector boundary. As a result, not all of the c

m

i

coe�cients are

independent. However, the nature of the polynomial basis set ensures that in any sector only

the �rst two coe�cients are coupled to the previous sector, and the last two coe�cients are

coupled to the next sector.

The wavefunction and its derivative in the m th sector are
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Continuity of the wave function between sectors m and m+ 1, at the boundary coordinate
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, is given by
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and the continuity of the derivative of the wavefunction across the boundary is
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From these equations and the choice of our polynomial basis, the relationship among the

sector coe�cients is
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