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Regular and bistable steady-state superradiant phases of an atomic beam traversing
an optical cavity

Simon B. Jäger , Haonan Liu , Athreya Shankar , John Cooper, and Murray J. Holland
JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA

(Received 11 September 2020; accepted 21 December 2020; published 19 January 2021)

We investigate the different photon emission regimes created by a pre-excited and collimated atomic beam
passing through a single mode of an optical cavity. In the regime where the cavity degrees of freedom can
be adiabatically eliminated, we find that the atoms undergo superradiant emission when the collective linewidth
exceeds the transit-time broadening. We analyze the case where the atomic beam direction is slanted with respect
to the cavity axis. For this situation, we find that a phase of continuous light emission similar to steady-state
superradiance is established providing the tilt of the atomic beam is sufficiently small. However, if the atoms
travel more than half a wavelength along the cavity axis during one transit time we predict a dynamical phase
transition to a bistable superradiant regime. In this phase the atoms undergo collective spontaneous emission with
a frequency that can be either blue or red detuned from the free-space atomic resonance. We analyze the different
superradiant regimes and the quantum critical crossover boundaries. In particular we find the spectrum of the
emitted light and show that the linewidth exhibits features of a critical scaling close to the phase boundaries.
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I. INTRODUCTION

Coupling quantum particles to bosonic modes enables the
building of versatile platforms to study driven-dissipative
dynamics in various physical setups. Prominent examples
include trapped ions [1], color centers in diamonds [2], semi-
conductor systems [3], and atoms in optical cavities [4]. The
bosonic modes typically serve as common and intrinsically
lossy channels that enable strong interactions. In particu-
lar, atomic ensembles in optical cavities have been used to
investigate many-body effects that are of elementary and fun-
damental interest, such as exotic quantum phases [5–14] and
collective dissipative dynamics [15–21], but are often accom-
panied by potential technological applications [22–28].

An example of such technology is the steady-state superra-
diant laser [22,24]. This laser works in the regime where the
lifetime of cavity photons is orders of magnitude shorter than
the lifetime of the coherent dipoles. In this regime, coherences
are stored in the atoms and are robust against environmental
noise [22,24,29–33]. Besides this technological feature, this
setup has also been connected to time crystals [34–38], syn-
chronization [39–43], and dynamical phase transitions [4,44–
47]. The rich dynamics of this system is based on effective
interactions between the atoms and requires that the atoms
remain in the cavity over long timescales.

In this paper, we investigate superradiant phases that are
established and persist on timescales that are much longer than
the lifetime of any individual photon or atom in the cavity.
To show this, we consider an atomic beam that traverses an
optical cavity [see Fig. 1(a)]. A similar system has been stud-
ied in Ref. [48] for purposes of realistic quantum metrology
applications such as active optical clocks [49] and ultranarrow
linewidth lasing in the field [50,51]. The superradiant phases

that arise from such systems highlight the ability of many-
body states to store coherence on timescales exceeding the
lifetime of their constituents.

The paper is structured as follows. In Sec. II we introduce
a semiclassical treatment to describe the dynamics of the
atomic beam. In Sec. III we determine the parameter regime
where the atomic beam will undergo superradiant emission.
In Sec. IV we analyze the two occurring superradiant phases
and study in detail the crossover between the two phases. We
conclude with a discussion of the results and their implications
in Sec. V. The Appendix provides additional details of the
calculations presented in the main text.

II. MODEL

We study the dynamics of a collimated atomic beam that
passes through an optical cavity. In our model, the atomic
beam is composed of atoms that have the same identical veloc-
ity v = (vx, vz ), where vx (vz) is the longitudinal (transverse)
component perpendicular (parallel) to the cavity axis [see
Fig. 1(a)]. Each atom possesses internal degrees of freedom
that are described as a two-level system representing an opti-
cal dipole with transition frequency ωa between its excited |e〉
and ground state |g〉. We assume throughout this paper that the
atoms are pre-excited in |e〉 before they enter the cavity. Once
in the cavity, every atom interacts during its transit time τ with
a single cavity mode with linewidth κ and frequency ωc that
is on resonance, i.e., ωc = ωa. The atom-cavity coupling is
characterized by a vacuum Rabi frequency g at the maximum
of the cavity mode function η(x) [see Fig. 1(b)].

A. Parameter regime and quantum-mechanical description

We investigate the regime where the lifetime of cavity pho-
tons is much shorter than the atom transit time, i.e., κ−1 � τ ,
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FIG. 1. (a) Atoms are pre-excited and pass through a lossy opti-
cal cavity. (b) Two-level atoms resonantly exchange photons with the
cavity mode with a spatially dependent coupling gη(x).

and the Rabi splitting due to the coherent atom-cavity ex-
change is unresolvable, i.e.,

√
Ng � κ , where N is the mean

intracavity atom number. In this regime, the field mode me-
diates an all-to-all interaction between the atoms and exposes
the dipoles to quantum noise that physically arises from the
vacuum leaking through the cavity output. Consequently, we
can adiabatically eliminate the field variables and describe
the dynamics of the atomic degrees of freedom by using the
following Heisenberg-Langevin equations:

d σ̂−
j

dt
= �c

2
η(x j )σ̂

z
j Ĵ− + Ŝ−

j , (1)

d σ̂ z
j

dt
= −�cη(x j )(Ĵ

+σ̂−
j + σ̂+

j Ĵ−) + Ŝz
j , (2)

dx j

dt
= v j . (3)

These equations are presented in the reference frame rotat-
ing with frequency ωa. Here j labels the individual atoms
and σ̂−

j = |g〉 j〈e| j , σ̂+
j = (σ̂−

j )† are the annihilation and cre-
ation operators of an electronic excitation and σ̂ z

j = |e〉 j〈e| j −
|g〉 j〈g| j for atom j. The internal degrees together with the
position x j = (x j, z j ) describe the instantaneous state of each
atom. Furthermore, we have introduced the single-atom emis-
sion rate �c = g2/κ into the cavity mode and collective
operators for the atomic dipoles

Ĵ± =
∑

j

η(x j )σ̂
±
j . (4)

The summation runs over all atoms in the beam. The
effect of the shot noise that is present in this system
is apparent in the terms given by Ŝ−

j = η(x̂ j )σ̂ z
j F̂− and

Ŝz
j = −2η(x̂ j )(F̂+σ̂−

j + σ̂+
j F̂−). The term F̂− is effectively

delta-correlated on the slow timescale associated with the
dynamics of the atomic degrees of freedom. This prop-
erty is represented by the set of correlations that can
be written as 〈F̂−(t )F̂−(t ′)〉c = 0 = 〈F̂+(t )F̂−(t ′)〉c and
〈F̂−(t )F̂+(t ′)〉c = �cδ(t − t ′), F̂+ = (F̂−)†. The expecta-
tion value 〈. . .〉c is taken over the cavity degrees of freedom
and the vacuum electromagnetic modes external to the cavity.
In our treatment we have neglected spontaneous emission and
other dephasing mechanisms, since we assume that τ is much
shorter than any single-atom decoherence time. Furthermore,
we assume that the atomic motion is ballistic, which is an

approximation that is valid when optomechanical forces can
be ignored. This requires that Fτ/m � v, where we can
estimate the optomechanical force F ≈ h̄N�c∇xη(x) that is
acting on an individual atom during its transit. Here, m is the
mass of the atom and ∇x = (∂x, ∂z ) is the gradient operator.

B. Semiclassical description of the atomic degrees of freedom

We are interested in the N � 1 limit where many atoms
couple to the cavity mode at the same time. Because of the
exponentially large Hilbert-space dimension an exact solution
of the quantum-mechanical Heisenberg-Langevin equations is
intractable. Therefore we make a semiclassical approximation
where we replace the quantum operators by c numbers and
add fluctuating noise terms that account for the true quantum
noise. This can be done by writing down the Heisenberg-
Langevin equations for the Hermitian dipole components
σ̂ x

j = σ̂−
j + σ̂+

j , σ̂
y
j = i(σ̂−

j − σ̂+
j ), and σ̂ z

j , and replacing
them by their corresponding c-number variables sx

j , sy
j , and sz

j .
This results in the following stochastic differential equations
that completely characterize our model [52]:

dsx
j

dt
= �c

2
η(x j )s

z
jJx + Sx

j , (5)

dsy
j

dt
= �c

2
η(x j )s

z
jJy + Sy

j , (6)

dsz
j

dt
= −�c

2
η(x j )

(
Jxsx

j + Jysy
j

) + Sz
j , (7)

dx j

dt
= v j . (8)

The expressions

Ja =
∑

j

η(x j )s
a
j , (9)

with a ∈ {x, y} define the x and y components of the col-
lective dipole. In this semiclassical description, the cavity
vacuum noise is represented by the terms Sa

j = η(x j )sz
jFa

and Sz
j = −η(x j )(sx

jFx + sy
jFy), where Fx and Fy have zero

mean and are defined by the correlation matrix elements
〈Fa(t )Fb(t ′)〉 = �cδabδ(t − t ′) with a, b ∈ {x, y} and δi j be-
ing the Kronecker delta. In our approach, these noise terms
have been derived by using the symmetric ordering of the
operators, where we identify the symmetric ordered moment
〈σ̂ a

i σ̂ b
j + σ̂ b

j σ̂
a
i 〉/2 as the second moment 〈sa

i sb
j〉 of the classical

c-number variables. Besides the fluctuations arising from the
cavity vacuum noise (i.e., Fx and Fy), there are additional
noise source terms that arise from the effective pumping
that is introduced by atoms sporadically entering and leaving
the cavity mode. For atom j that enters in |e〉 with sz

j =
1, the uncertainty in sx

j and sy
j needs to be maximal (see

Ref. [53]). This is modeled by randomly and independently
initializing sx

j = ±1 and sy
j = ±1. With this we fulfill the

boundary conditions for the pre-excited dipoles as they enter
the cavity, i.e., 〈σ̂ x

j σ̂
x
i 〉 = 〈sx

js
x
i 〉 = δi j , 〈σ̂ y

j σ̂
y
i 〉 = 〈sy

js
y
i 〉 = δi j ,

and 〈σ̂ x
j σ̂

y
i + σ̂

y
i σ̂ x

j 〉/2 = 〈sx
js

y
i 〉 = 0.

While the microscopic description of Eqs. (5)–(8) is used
for the numerical analysis of the setup, we can also derive
a macroscopic description that allows for (semi)analytical
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results. To obtain this macroscopic description of the
atomic beam we examine the dynamics of the densities
sa(x, t ) = ∑

j sa
jδ(x − x j ) with a ∈ {x, y, z}. Using Eqs. (5)–

(8) we obtain Klimontovich-like stochastic equations [54] for
the densities,

∂sx

∂t
+ v · ∇xsx = �c

2
η(x)Jxsz + Sx, (10)

∂sy

∂t
+ v · ∇xsy = �c

2
η(x)Jysz + Sy, (11)

∂sz

∂t
+ v · ∇xsz = −�c

2
η(x)(Jxsx + Jysy) + Sz. (12)

The left-hand sides of Eqs. (10)–(12) describe the free flight
of the atoms. The first term on the right-hand side of each
equation characterizes the collective decay mediated by the
cavity field. In this density notation, the x and y components
for the collective dipole defined in Eq. (9) can be expressed as

Ja =
∫

dxη(x)sa(x, t ), (13)

where we have used
∫

dx f (x) = ∫ ∞
−∞ dx

∫ ∞
−∞ dz f (x, z) and

a ∈ {x, y}. The Sa terms in Eqs. (10)–(12) are stochastic vari-
ables that are described by Sa(x, t ) = η(x)Fasz and Sz(x, t ) =
−η(x)(Fxsx + Fysy).

While the derivation so far is quite general, our analytical
and numerical analyses focus on a simplified cavity mode
function with a rectangular profile that is given explicitly by
the form

η(x) = cos (kcz)[
(x + w) − 
(x − w)]. (14)

Here, 
(x) is the Heaviside step function, w is a width
parameter that effectively corresponds to the cavity beam
waist, and kc = 2π/λ is the wave number with λ being
the optical wavelength. The transit time is directly related
to the cavity beam waist and the velocity vertical to the
cavity axis, i.e., τ = 2w/vx. The prescribed condition that
new atoms are introduced in state |e〉 leads to a boundary
condition sz(x = −w, z, t ) = N/(2wλ). This is derived by
assuming that the diameter of the atomic beam is much larger
than the wavelength λ. In this case we can use λ-periodic
boundary conditions in the z direction and restrict the z values
to the interval [0, λ). To describe the quantum fluctuations
of the introduced dipoles it is necessary to establish the
correct magnitudes of the second moments [53]. This results
in initializing the sx and sy components with the aid of a
simulated noise process that is defined by the following
properties: sa(x = −w, z, t ) = Wa(z, t ), with 〈Wa(z, t )〉 = 0
and 〈Wa(z, t )Wb(z′, t ′)〉 = N/(2wλ)δabδ(z − z′)δ(t − t ′)/vx,
a, b ∈ {x, y}.

In the following section we use this density description to
study the onset of superradiance.

III. ONSET OF SUPERRADIANCE

We first solve Eqs. (10)–(12) within the scope of a
mean-field approximation. That is, we assume sa ≈ 〈sa〉,
a ∈ {x, y, z} and calculate the expectation values of the indi-
vidual dipole components. For clarity, here the expectation
value 〈. . .〉 denotes an average over different initializations

and noise. By replacing the fluctuating variables sa and Ja by
their expectation values, we obtain the mean-field description

∂〈sx〉
∂t

+ v · ∇x〈sx〉 = �c

2
η(x)〈Jx〉〈sz〉, (15)

∂〈sy〉
∂t

+ v · ∇x〈sy〉 = �c

2
η(x)〈Jy〉〈sz〉, (16)

∂〈sz〉
∂t

+ v · ∇x〈sz〉 = −�c

2
η(x)[〈Jx〉〈sx〉 + 〈Jy〉〈sy〉]. (17)

Without any noise, the system will always remain in a non-
superradiant configuration 〈sx〉 = 0 = 〈sy〉, and consequently
〈Jx〉 = 0 = 〈Jy〉. In this case the atoms essentially do not in-
teract with the cavity and there is no emission of photons.
Therefore, during the transit the atoms remain in their elec-
tronic excited state, i.e.,

〈sz〉 = N

2wλ
. (18)

However, this mean-field solution is in general not stable
with respect to perturbations by the physical noise sources.
Fluctuations of the dipoles and cavity shot noise would initiate
a transient avalanche emission process and lead to collec-
tive emission by the dipoles into the cavity mode. To find
the threshold for this effect we calculate the stability of the
nonsuperradiant solution with respect to a small fluctuation
δsa = sa − 〈sa〉, a ∈ {x, y}. The equation for δsa reads

∂δsa

∂t
+ v · ∇xδsa = N�c

4wλ
η(x)δJa. (19)

Here, we have defined δJa = ∫
dxη(x)δsa and neglected

second-order terms in the fluctuations. Using the Laplace
transformation L[ f ](ν) = ∫ ∞

0 e−νt f (t )dt, we find

L[δJa] =
∫

dx
∫ ∞

0 dte−νtη(x + vt )δsa(x, 0)

1 − N�c
4wλ

∫
dx

∫ ∞
0 dte−νtη(x + vt )η(x)

, (20)

where δsa(x, 0) is the fluctuating initial condition and we have
used the notation

∫
dx f (x) = ∫ w

−w
dx

∫ λ

0 dz f (x, z) for any
function f (x) = f (x, z). We have provided more complete
details of the derivation in Appendix A. The inverse transform
back into the time domain would provide the solution for δJa.
However, what we are interested in here is the stability of this
solution; that is, whether δJa is exponentially damped or ex-
ponentially growing. This behavior can be studied directly by
using the dispersion relation, i.e., the denominator of Eq. (20),
whose roots determine the exponents in the time domain. The
dispersion relation reads

D(ν) =1 − N�c

4wλ

∫
dx

∫ ∞

0
dte−νtη(x + vt )η(x). (21)

The long-time behavior of δJa ∝ eν0t is determined by the
root ν0 of D(ν) with the largest real part. If ν0 has a negative
real part, the nonsuperradiant state is stable and ν0 determines
the decay rate of fluctuations. On the other hand, if ν0 has a
positive real part, the fluctuations will exponentially grow and
thereby seed a superradiant emission from the ensemble.

The boundary between the regime of no superradiant emis-
sion and that of superradiant emission is visible in Fig. 2 as a
solid black line. This black line has been calculated by finding
the roots ν0 of Eq. (21) with Re(ν0) = 0. As visible in Fig. 2,
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FIG. 2. The resulting phase diagram describing the light emis-
sion for different values of the Doppler shift, kcvz, and the collective
linewidth, N�c, both in units of the inverse transit time, 1/τ . For
small values of N�cτ we find no superradiant emission. For suffi-
ciently large values of N�cτ , regimes of either regular steady-state
superradiance (SSR) or bistable SSR are observed depending on the
magnitude of kcvzτ .

superradiant emission emerges when the transit-time broad-
ening 1/τ is small compared with the collective linewidth
N�c. The exact threshold between no superradiant emission
and superradiant emission depends on how many wavelengths
an atom traverses during its transit. This quantity is shown
as the x axis in Fig. 2 that represents kcvzτ = 2π (vzτ )/λ.
However, superradiance can be observed for all vz as long as
N�cτ > 20.

While in this section, we have been primarily concerned
with the difference between superradiant and no superradiant
emission, we also show in Fig. 2 two different superradiant
phases. In the next section we explain how we distinguish
between these two superradiant phases and provide a detailed
analysis for parameters that cross the transition boundary that
separates them.

IV. SUPERRADIANT PHASES

We now focus entirely on the superradiant emission
regime. In particular, we are interested in understanding the
effect of vz along the cavity axis that leads to a transverse
Doppler shift in the frequency of emitted photons. For a single
atom, the emission of photons into the direction of motion
shifts the frequency to the blue of the atomic resonance fre-
quency ωa, while emission in the opposite direction shifts the
frequency to the red. In the following section we demonstrate
that this simple single-atom picture is inadequate to describe
the collective system.

A. Regular steady-state superradiance and bistable
steady-state superradiance

To study the regimes of coherent emission, we numeri-
cally integrate the stochastic differential equations (5)–(8) for
various parameters. In general, we observe that, for small ve-
locities vz, the atomic beam undergoes superradiant emission

FIG. 3. The spectrum S(ω), defined in Eq. (22), as a function of
the frequency ω in units of 1/τ (a) in the SSR phase for kcvzτ =
2π × 0.3 and (b) in the bistable SSR phase kcvzτ = 2π × 0.8. For
the simulation we used N�cτ = 30, N = 800, and a total integration
time of t0 + T = tsim = 2000τ . The spectra are calculated using 500
independent initializations and after a time t0 = 10τ (after which
the system is well described as being in the steady state). The two
insets in panel (b) show the averaged spectrum of the trajectories that
correspond to a negative frequency ωτ ≈ −4.46 (238 trajectories)
and positive frequency ωτ ≈ 4.46 (262 trajectories).

that is still resonant with the bare atomic resonance frequency.
This finding highlights the many-body character of the super-
radiant atomic beam since one might expect a Doppler-shifted
frequency for the single-atom case. To demonstrate this be-
havior, we show the spectrum [see Fig. 3(a)]

S(ω) ∝
∣∣∣∣
∫ T

0
dteiωt 〈J∗(t + t0)J (t0)〉

∣∣∣∣, (22)

where t0 � τ is a sufficiently large time after which
the system has evolved to a stationary state, and
J (t ) = [Jx(t ) − iJy(t )]/2. The time T is the integration
time after t0 (see caption of Fig. 3). For kcvzτ = 2π × 0.3,
i.e., when each atom traverses 0.3 wavelengths along the
cavity axis during the transit time, the spectrum shows a
narrow Lorentzian peak at ω = 0 corresponding to continuous
superradiant emission with central frequency ωa. We label this
phase as SSR due to the similarities with regular steady-state
superradiance (Fig. 2). While this behavior remains stable
at first as vz is increased, once a critical velocity is reached
we observe a threshold beyond which a qualitatively different
behavior emerges. As an example, we show S(ω) for
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FIG. 4. The phase difference �ϕ(t ), defined in Eq. (23), as a
function of time in units of τ for N = 800. The time window is
defined by t0 = 10τ and t1 = 1700τ , and the total simulation time
is tsim = 2000τ . For the simulations we used 500 trajectories and the
parameters kcvzτ = 2π × 0.8 and N�cτ = 30.

kcvzτ = 2π × 0.8 in Fig. 3(b), corresponding to each atom
traversing 0.8 wavelengths along the cavity axis. In this case,
the spectrum exhibits two narrow Lorentzian peaks that are
symmetrically shifted from the resonance frequency of the
atoms. While the form of the spectrum suggests simultaneous
emission with both frequencies, we find that the atomic
beam will randomly undergo superradiant emission with
either the red- or the blue-detuned frequency. The random
choice is seeded by the first emission with probability of
0.5 for each of the two possibilities. Subsequently collective
spontaneous emission events will amplify the light field with
that frequency.

To further demonstrate this behavior, we illustrate in
the left (right) inset of Fig. 3(b) the emission spectrum
corresponding to trajectories that emit with red-detuned (blue-
detuned) frequencies. Since we have a finite number of
initializations we may observe a slight imbalance of red-
detuned frequencies with respect to blue-detuned frequencies
in each trial batch. This imbalance can be seen as different
heights in the spectrum shown in Fig. 3(b). In the insets
we see only one peak supporting our claim that superradiant
emission appears for the shown parameters only on one side-
band. Because of the bistable nature of the superradiant peaks,
this is reminiscent of optical bistability of intensity solutions
[55], and consequently we refer to this phase as bistable SSR
(Fig. 2).

This bistable behavior is best visible in the dynamics of the
phase

�ϕ(t ) = arg

(∫ t1

t0

dt ′
0

〈J∗(t + t ′
0)J (t ′

0)〉
t1 − t0

)
, (23)

where arg(. . .) denotes the argument and t0 and t1 are the
initial and final times of an averaging window. We show the
dynamics of the phase �ϕ in Fig. 4 with 500 initializations

and for the same parameters as in Fig. 3(b), N�cτ = 30 and
kcvzτ = 2π × 0.8. Most of the 500 trajectories remain on
straight lines with a constant slope. This slope corresponds
to the two frequencies that are visible in Fig. 3(b). However,
some of the trajectories jump between the two slopes, signify-
ing clearly the bistable nature of the frequency solutions.

To understand further properties of the two superradiant
phases and to provide insight that is evident from an analytic
treatment, we now develop a mean-field theoretic description.

B. Intensity and emission frequency

Both superradiant phases can be classified by a nonvan-
ishing collective dipole with a constant length. However, in
one phase the collective dipole oscillates with a nonvanishing
frequency ω (bistable SSR) while in the other regime the
phase of the collective dipole remains almost constant (regular
SSR).

To analyze this behavior we solve the mean-field equations

∂〈s〉
∂t

+ v · ∇x〈s〉 = �c

2
η(x)〈sz〉〈J〉, (24)

∂〈sz〉
∂t

+ v · ∇x〈sz〉 = −�cη(x)[〈J∗〉〈s〉 + 〈s∗〉〈J〉], (25)

that are presented in the form above for the complex dipole
s = (sx − isy)/2 with J = ∫

dxs. From Eqs. (24) and (25) one
can verify that(

∂

∂t
+ v · ∇x

)
[〈sz〉2 + 4|〈s〉|2] = 0. (26)

This equation highlights that, in our model, the length of the
Bloch vector is conserved. This is a consequence of the form
of Eqs. (24) and (25) that describe collective emission as Rabi
oscillations with a self-consistent Rabi frequency ∝〈J〉. As a
result we can use spherical coordinates to describe the dipole
densities. Together with the boundary conditions, we therefore
parametrize the spin variables by the following geometrical
quantities:

〈s〉 = N

4wλ
e−iφ(x,t ) sin [K (x, t )], (27)

〈sz〉 = N

2wλ
cos [K (x, t )], (28)

with space- and time-dependent angles φ(x, t ) and K (x, t ).
While this description is always valid we now focus on the

stationary properties of the atomic beam that are realized after
a sufficiently long time t . In both regular SSR and bistable
SSR, we anticipate a behavior for φ(x, t ) according to

φ(x, t ) = ωt + ψ (x), (29)

where ω is the frequency of the emitted light and ψ is a
position-dependent but time-independent phase. Assuming K
is not explicitly time dependent, we obtain the following cou-
pled differential equations for ψ and K :

ω + v · ∇xψ = −�cη(x)|〈J〉| sin (ψ ) cot (K ), (30)

v · ∇xK = �cη(x)|〈J〉| cos (ψ ). (31)

These equations can be solved together with the two equations
emerging from the real and imaginary parts of

∫
dx〈s〉eiωt =
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FIG. 5. The collective dipole 〈J∗J〉/N2, panels (a)–(c), and the
frequency of the light ω in units of 1/τ , panels (b)–(d), as functions
of kcvzτ . Panels (a), (b) and (c), (d) show results for N�cτ = 20
and N�cτ = 30, respectively. The circles and stars correspond to
numerical simulations of Eqs. (5)–(8), and the solid lines represent
analytical solutions for N → ∞. The vertical gray dashed lines show
the transition from regular SSR to bistable SSR. The numerical
values of ω from the simulations in panels (b) and (d) have been
calculated by fitting g1(t ) [Eq. (37)] to cos(ωt + φ0 )e−�t/2 and t0 =
10τ . Here, ω, �, and φ0 are fitting parameters. The simulations are
performed with N = 800, an integration time of tsim = 100τ , and 400
initializations.

|〈J〉|. The solution of all four equations result in a value for the
length of the collective dipole |〈J〉|, the emission frequency
ω, and the functions K (x) and ψ (x). We have derived these
equations, without loss of generality, under the assumption
that 〈J (t = 0)〉 = 〈Jx(t = 0)〉/2 points in the x direction at
t = 0. This is equivalent to the assumption 〈J〉 = |〈J〉|e−iωt .
The complexity in solving Eqs. (30) and (31) is tremendously
simplified in the case where ω = 0 (regular SSR phase) be-
cause we directly obtain the result ψ = 0. We report the
solution of this equation for the case ω = 0 in Appendix B.
However, for the general case we have to solve the coupled
partial differential equations.

We show the mean-field results for ω and |〈J〉| across the
regular SSR to bistable SSR transition and compare them with
the results of a numerical integration of Eqs. (5)–(8). The
results are calculated for N�cτ = 20 visible in Figs. 5(a) and
5(b), close to the nonsuperradiant regime, and for N�cτ = 30
shown in Figs. 5(c) and 5(d), well inside of the superradiant
regime. In Fig. 5, we illustrate 〈J∗J〉/N2 and the emission
frequency ω as a function of kcvzτ . The mean-field theory
predicts a nonanalytical behavior of both 〈J∗J〉/N2 and ω at a
threshold value of kcvzτ = π . It shows a kink-like local mini-
mum for 〈J∗J〉/N2 and a bifurcation of ω at the threshold that
is in agreement with the simulations. In general we find that
the nonanalyticities are smoothed out by noise and finite-size

effects. The rather large discrepancies between the mean-field
results and the simulations in Fig. 5(a) are likely due to these
effects that are more pronounced close to a tri-critical point
where regular SSR, bistable SSR, and the nonsuperradiant
emission phases meet (tri-critical point is at N�cτ = 2π2 and
kcvzτ = π ). For the large-kcvzτ limit we obtain the asymptotic
result ω ≈ kcvz. The behavior of ω close to the transition is
reminiscent of a second-order phase transition that is here
observed in a highly dissipative setting where neither individ-
ual atoms nor individual photons remain in the cavity on a
timescale longer than τ . We remark that, in both superradiant
phases, we have broken a U(1) symmetry resulting in a well-
defined value for the phase of J and corresponding physically
to the generation of near-monochromatic light. In the bistable
SSR phase we also have a broken time-translation symmetry,
which is evident in Eq. (29) for ω �= 0.

As we have pointed out in the previous section, the system
can jump between the two bistable frequencies ±ω. We now
analyze the statistical properties of this effect in more detail
using the result of the numerical integration of Eqs. (5)–(8).

C. Mode-hopping probability

To quantitatively analyze the statistical properties of the
mode hopping, we calculate the probability for the occurrence
of a jump from the negative to the positive frequency. To do
this, we begin by evaluating �ϕ(t ) according to Eq. (23).
Then, we divide the time interval [0, tmax] of every trajectory
of �ϕ(t ) into M equal interval time bins [(m − 1)�t, m�t]
with m = 1, . . . , M and �t = tmax/M. Within each time bin
we calculate an average frequency

ω(m) = 1

�t

∫ m�t

(m−1)�t
dt ′ d�ϕ(t ′)

dt ′ . (32)

From the average frequencies, we can now accumulate
statistics on the number of frequency jumps that occur by eval-
uating whether ω(m)ω(m + 1) < 0 for m = 1, . . . , M − 1.
By counting the total number of jumps from all trajectories,
Njump, and dividing by the maximum number of jumps possi-
ble, Ntotal = (M − 1)T , where T is the number of trajectories,
we get

Pjump = Njump

Ntotal
(33)

for the probability of a mode hop.
The jump probability is shown in Figs. 6(a) and 6(b) for

various values of kcvzτ across the phase transition from reg-
ular SSR to bistable SSR and for N�cτ = 20 [Fig. 6(a)] and
N�cτ = 30 [Fig. 6(b)], respectively. The simulations are the
same as those shown in Fig. 5. We see that Pjump is close to
Pjump ≈ 0.5 for both values of N�cτ well inside the regular
SSR phase. This can be explained by the fact that �ϕ diffuses.
In this case, after every time bin, the total phase gains with
probability 0.5 a positive or negative increment. Beyond the
transition point, kcvzτ = π , we observe a decrease of this
jump probability in both cases. For N�cτ = 30 [Fig. 6(b)],
we observe that the jump probability drops to a value very
close to Pjump ≈ 0. This emphasizes that the switch between a
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FIG. 6. The jump probability Pjump, defined in Eq. (33), for dif-
ferent values of kcvzτ for (a) N�cτ = 20 and (b) N�cτ = 30. For the
simulations we used tsim = 100τ , N = 800, and T = 400 and started
the analysis after t0 = 10τ , after which, to good approximation, the
system had reached the stationary state. The value of �ϕ(t ) for each
trajectory is calculated according to Eq. (23) without the time average
for t1 → t0. According to the definitions given in the text prior to
Eq. (33), we have used tmax = 90τ that we split into M = 20 bins.
The gray dashed vertical line shows the threshold between the regular
SSR and the bistable SSR phases, i.e., kcvzτ = π .

negative and a positive frequency becomes very improbable.
While we also see a decrease of the jump probability for
N�cτ = 20 [Fig. 6(a)], after the transition point, a jump is
still much more likely than for N�cτ = 30. Moreover, we
observe that the jump probability shows a local minimum very
close to the local maximum of the amplitude of the collective
dipole [see Fig. 5(a)]. Therefore we propose that the reason for
this effect is the more pronounced contribution of noise with
respect to the mean value of the collective dipole. For the same
reason we expect that the jump probability will decrease in the
bistable SSR phase for larger atom number N since the ratio
of noise to the mean value of the collective dipole is further
reduced.

While deep in the regular SSR phase we have observed a
diffusive behavior of the phase �ϕ, we have also seen a bal-
listic behavior inside of the bistable SSR phase [see Eq. (29)

and Fig. 5(d)]. This dynamical phase transition is highlighted
in the linewidth of the collectively emitted light, as we show
now.

D. The linewidth

Well inside the regular SSR phase we may assume that
the system has a macroscopic collective dipole with some
arbitrary phase ϕ in the x-y plane. In that case we can rotate
into a frame such that J‖ ∼ N and J⊥ ∼ √

N , where ‖ and ⊥
denote the new x and y axes. The direction corresponding to J‖
is the direction of the collective dipole while the perpendicular
direction J⊥ is solely dominated by fluctuations. The dynam-
ics of the dipole component in the perpendicular direction can
be derived from Eqs. (10)–(12) as

∂s⊥
∂t

+ v · ∇xs⊥ ≈ �c

2
η(x)J⊥sz,st + S⊥, (34)

where we have dropped second-order terms in the fluctuations
and noise and are therefore able to substitute the mean-field
solution for sz that reads

sz,st = N

2wλ
cos [K (x)]. (35)

Here, K is the solution of Eq. (31) for ω = 0 =
ψ in the SSR phase. Equation (34) includes cav-
ity noise described by the quantity S⊥(x, t ) = η(x)F⊥sz

with 〈F⊥(t )〉 = 0 and 〈F⊥(t )F⊥(t ′)〉 = �cδ(t − t ′). Be-
sides the cavity noise, it also includes the noisy bound-
ary condition that arises from the introduction of new
atoms s⊥(x = −w, z, t ) = W⊥(z, t ), with 〈W⊥(z, t )〉 = 0 and
〈W⊥(z, t )W⊥(z′, t ′)〉 = N/(2wλ)δ(z − z′)δ(t − t ′)/vx.

We can integrate Eq. (34) to obtain an analytical result for
J⊥ (see Appendix C). Using dϕ/dt ≈ J−1

‖,stdJ⊥/dt , where J‖,st

is the length of the collective dipole, we can then derive an
expression for the phase ϕ(t ). Arguing that the origin of a
finite linewidth in the regular SSR phase is phase diffusion,
we can calculate the linewidth using

� = lim
t→∞

〈�ϕ(t )2〉
t

, (36)

where we defined �ϕ(t ) = ϕ(t ) − ϕ(0).
To show that this description is valid we have integrated

numerically Eqs. (5)–(8), calculated the real part of the nor-
malized g1 function

g1(t ) = Re(〈J∗(t + t0)J (t0)〉)

〈|J (t0)|2〉 , (37)

and fit to cos(ωt + φ0)e−�t/2 where ω, �, and φ0 are fitting
parameters. In this fit ω is the emission frequency reported in
Fig. 5 and � is the linewidth, visible as circles and stars in
Fig. 7 for N�cτ = 20 [Fig. 7(a)] and N�cτ = 30 [Fig. 7(b)].
The solid lines in Fig. 7 are the calculated linewidth from
Eq. (36). These curves are in good agreement with the sim-
ulations well inside of the regular SSR phase, but predict a
diverging linewidth at the critical point.

The origin of this divergence in the analytical result is
the breakdown of the phase diffusion argument. As we show
in Appendix C, this divergence occurs at kcvzτ = π that we
identify as the threshold between the regular SSR and bistable
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FIG. 7. The linewidth � in units 1/(Nτ ) as functions of kcvzτ

for (a) N�cτ = 20 and (b) N�cτ = 30. The circles and stars cor-
respond to numerical simulations, and the solid lines represent the
result of Eq. (36) for N → ∞. The vertical gray dashed lines show
the transition from regular SSR to bistable SSR. The values of �

have been calculated by fitting g1 [Eq. (37)] with cos(ωt + φ0)e−�t/2

and t0 = 10τ . The simulations are performed with N = 800, 400
trajectories, and an integration time of tsim = 100τ .

SSR phases. This phase boundary is shown in Figs. 2 and
5–7 as the vertical dashed lines. At this critical point, we
also expect that the numerical result of the linewidth when
expressed in units of 1/(Nτ ) diverges in the large-N limit.

To support this claim, we plot � in units of 1/τ for dif-
ferent values of N in a log-log plot to illustrate the scaling
of � with the number of atoms, �τ ∝ Nα (Fig. 8). We show
the scaling well inside the regular SSR phase for kcvzτ =
π/2 (green crosses), well inside the bistable SSR phase for
kcvzτ = 3π/2 (red stars), and at the theoretically predicted
threshold kcvzτ = π (blue circles). The values of the expo-
nent α governing the scaling relation �τ ∝ Nα in the three
regimes are extracted using a linear fit and are reported in the
caption of Fig. 8. For parameters well inside of the regular
SSR or bistable SSR phases we obtain an exponent α ≈ −1.
This implies that for given values of kcvzτ and N�cτ , � in
units of 1/(Nτ ) is a constant ∝�c. This claim is consistent
with our theoretical description and also shows that the collec-
tive dipole remains stable on timescales that exceed the transit
time τ by orders of magnitude.

At the critical point kcvzτ = π the phase diffusion ar-
gument anticipates a diverging linewidth. Our numerical
simulations here show that there exists a critical scaling with

FIG. 8. The linewidth � in units of 1/τ as a function of the
intracavity atom number N for N�cτ = 30. The blue circles, green
crosses, and red stars correspond to different values of kcvzτ (see
legend) at the threshold, in the SSR phase, and in the bistable SSR
phase. The blue dashed, green dashed-dotted, and red dotted lines are
linear fits according to �τ ∝ Nα with α = −0.30, α = −1.03, and
α = −1.06, respectively. For every N we average over 4.8 × 105/N
trajectories with a simulation time tsim = 100τ . Every point is calcu-
lated by using the fit as described in the caption of Fig. 7.

an exponent α ≈ −0.3. Therefore, even at the critical point,
� beats the Fourier limit set by 1/τ . In units of 1/(Nτ )
the linewidth scales as N1+α ≈ N0.7 → ∞, supporting our
theoretical prediction of a diverging linewidth using the phase
diffusion model. This divergence is reminiscent of the quan-
tum critical region [56] that occurs at finite temperature in an
equilibrium quantum phase transition where scaling laws pro-
vide the potential for extreme sensitivity to model parameters.

Our analytical theory can also give some insight to the
relaxation dynamics at the threshold. Here, we find that

〈�ϕ(t )2〉 ∝ t3

N
, (38)

in comparison to t/N inside of the SSR phase. For further
details we refer to Appendix D. The superdiffusive behavior
at the threshold would result in a relaxation timescale ∝N1/3.
This result is comparable with the timescale ∝N0.3, which is
given by the inverse of the linewidth at the threshold.

V. DISCUSSION AND CONCLUSION

A bifurcation in the emission spectrum and a critical
scaling of the linewidth has also been reported for a syn-
chronization transition of two atomic ensembles coupled to
a lossy cavity [41,43]. Although the observed features may
appear to be remarkably similar, we want to emphasize that
the dynamical phase transition discussed here is quite differ-
ent. In our model, the emission in the regular SSR and bistable
SSR phases always appear with a monochromatic but possibly
bistable frequency. On the other hand, the unsynchronized
phase in Refs. [41,43] shows a beating of two frequencies
that results from simultaneous output. Moreover, the synchro-
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nization transition in Refs. [41,43] appears if the collective
linewidth becomes comparable to the frequency splitting of
the two ensembles. Here, however, the transition between reg-
ular SSR and bistable SSR occurs if the atoms travel exactly
half a wavelength during τ , i.e., kcvzτ = π , independent of
N�c. Therefore, the transition from regular SSR to bistable
SSR results from the dipole accumulating a phase when it
travels through the cavity mode function.

We emphasize that the regular SSR and bistable SSR
phases rely on the continuous driving and dissipation of quan-
tum matter, here realized by a beam of pre-excited atoms.
We provide the tools to analyze such systems and believe
that this work will be useful as one of the first stepping
stones towards future investigations of collective effects in
atomic beams. For the experimental realization of such sys-
tems one requires a continuous and dense beam of atoms
with a narrow transition that couples to a single cavity mode.
The transition between the superradiant phases occurs when
N�cτ > 20, which is achievable by state-of-the-art cavity se-
tups [32,33,57–59] combined with high-phase-space density
atomic beams [60].

Future work could investigate the regular SSR and bistable
SSR phases in presence of more than just a single velocity.
This includes more sophisticated models where, for instance,
the velocity distribution is broadened. Moreover, we ex-
pect that the system is very sensitive to perturbations at the
boundary between the regular SSR and bistable SSR phases.
Therefore, it will be interesting to investigate the potential of
this system, in particular in the vicinity of the critical region,
for metrological applications.
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APPENDIX A: DERIVATION OF THE DISPERSION
FUNCTION

In this section we will describe how we can derive Eq. (20)
from Eq. (19). For this we define the operator

L0 f (x) = −v · ∇x f (x), (A1)

with a function f (x) = f (x, z). With this definition, we use
the Laplace transformation on Eq. (20) and obtain

[ν − L0]L[δsa] − δsa(x, 0) = N�c

4wλ
η(x)L[δJa]. (A2)

We solve this for L[δsa] where we obtain

L[δsa] = [ν − L0]−1δsa(x, 0) + N�c

4wλ
L[δJa][ν − L0]−1η,

(A3)

where we have relied on the fact that L[δJa] does not depend
on x. We can now multiply this equation by η and integrate
over x to obtain

L[δJa] = J1 + J2, (A4)

with

J1 =
∫

dxη(x)[ν − L0]−1δsa(x, 0), (A5)

J2 =
∫

dxη(x)
N�c

4wλ
L[δJa][ν − L0]−1η. (A6)

We solve the equation for L[δJa] and the final result reads

L[δJa] = J1

1 − N�c
4wλ

∫
dxη(x)[ν − L0]−1η(x)

. (A7)

Using now the relations

[ν − L0]−1 =
∫ ∞

0
dte−νt eL0t , (A8)

eL0t f (x) = f (x − vt ), (A9)

and after a substitution x �→ x + vt we obtain the result in
Eq. (20).

APPENDIX B: THE DIPOLE DENSITY IN THE REGULAR
STEADY-STATE SUPERRADIANCE PHASE

The purpose of this section is to present the analytical result
of the coupled Eqs. (30) and (31) in the regular SSR phase
where ω = 0. In this case Eq. (30) can be directly solved using
ψ = 0 and this results in the partial differential equation

v · ∇xK = �cη(x)|〈J〉|. (B1)

The solution of this equation is straightforward and reads

K (x − w, z) = �cJ‖,st sin
(

vz

2vx
kcx

)
cos

(
kc

[
z − vz

2vx
x
])

kcvz
, (B2)

where we have used

J‖,st = 2|〈J〉|

=
∫

dxη(x)
N

2wλ
sin [K (x)]

= N
1 − J0

(
�cJ‖,stτ

2
sin ( kcvzτ

2 )
kcvzτ

2

)
�cJ‖,stτ

2

. (B3)

Solving this implicit equation for J‖,st and using the result in
Eq. (B2) allows us to describe the dipole density in the regular
SSR phase.

APPENDIX C: DERIVATION OF THE PHASE
DIFFUSION MODEL

In this section, we integrate Eq. (34) to obtain an analytical
result for J⊥. This result is used to calculate the linewidth
using Eq. (36). Furthermore we use this analytical result to
calculate the threshold between the regular SSR and bistable
SSR phases.

Using the Laplace transform on Eq. (34) we obtain

[ν − L0]L[s⊥] − s⊥(x, 0) = �c

2
ηsz,stL[J⊥] + L[S⊥]. (C1)

Here we have used the fact that sz,st is time independent and
have included the definition in Eq. (A1). The initial condition
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s⊥(x, 0) arises from the noisy boundary condition that repre-
sents atoms entering the cavity. It is given by

s⊥(x, 0) = W⊥(z − vzt0(x),−t0(x)), (C2)

where t0(x) = (w + x)/vx. Solving now Eq. (C1) for L[s⊥] we
find

L[s⊥] = [ν − L0]−1

[
s⊥(x, 0) + �c

2
ηsz,stL[J⊥] + L[S⊥]

]
.

(C3)

Multiplying by η(x) and integrating over the space variable
x, we find an equation for L[J⊥]. We solve this equation for
L[J⊥] and find the result

L[J⊥] = L[JW⊥ ] + 2 1−D⊥(ν)
�c

L[S⊥]

D⊥(ν)
, (C4)

where

JW⊥ (t ) =
∫

dxη(x + vt )W⊥(z − vzt0(x),−t0(x)) (C5)

arises from the initial projection noise. In this derivation, we
have used Eqs. (A8) and (A9) and the change of variables
given by x �→ x + vt .

The function D⊥(ν) is the dispersion relation of the Gold-
stone mode of the collective dipole, which reads

D⊥(ν) =1 − N�c

4wλ

∫
dx

∫ ∞

0
dte−νtη(x + vt )η cos (K ).

(C6)

In the regular SSR phase, we can use Eq. (B1) to rewrite
D⊥(ν) as

D⊥(ν) =1 −
∫ ∞

0 dte−νt
∫

dxη(x + vt )v · ∇xs‖,st

J‖,st
,

where

s‖,st = N

2wλ
sin [K (x)], (C7)

and J‖,st = ∫
dxη(x)s‖,st has been calculated in Eq. (B3).

Applying Gauss’s theorem and using the fact that the atoms
enter in the excited state and that the mode function vanishes
at infinity, we get

D⊥(ν) = 1 +
∫ ∞

0 dte−νt
∫

dx d
dt η(x + vt )s‖,st

J‖,st
.

After another partial integration, we obtain the final form

D⊥(ν) = ν

∫ ∞
0 e−νt dt

∫
dxη(x + vt )s‖,st (x)

J‖,st
. (C8)

The zeros of Eq. (C8) can be used to describe the dynamics
of J⊥. In what follows we assume that ν0 = 0 is the solution
with the largest real part. With this we can argue that the
pole at ν = 0 in Eq. (C4) dictates the long-time behavior
of J⊥. To describe this long-time behavior we can use the
approximation

L[J⊥] ≈ L[JW⊥ ] + 2
�c

L[S⊥]

C0ν
, (C9)

where

C0 = lim
ν→0

D⊥(ν)

ν
=

∫ ∞
0 dt

∫
dxη(x + vt )s‖,st (x)

J‖,st
. (C10)

By inverting the Laplace transform we find now

J⊥ ≈
∫ t

0 dt ′[A1(t ′) + A2(t ′)]
C0

, (C11)

with

A1(t ′) =
∫

dxη(x + vt ′)W⊥(z − vzt0(x),−t0(x)), (C12)

A2(t ′) = 2S⊥(t ′)
�c

. (C13)

Equation (C11) describes diffusive dynamics perpendicu-
lar to the direction of the collective dipole with length J‖,st

that results in phase diffusion. Integrating

dϕ

dt
≈ 1

J‖,st

dJ⊥
dt

, (C14)

we obtain

�ϕ(t ) = ϕ(t ) − ϕ(0) ≈
∫ t

0 dt ′[A1(t ′) + A2(t ′)]
C0J‖,st

. (C15)

This result can now be used in Eq. (36) to calculate the
linewidth.

The diffusive behavior of the phase is a direct result of
Eq. (C9) where we have assumed that ν0 = 0 is a zero of
first order of D⊥(ν). However, it breaks down if C0 = 0,
which indicates that ν0 = 0 is a zero of D⊥(ν) of higher order
than first. This can be used to identify the threshold between
the regular SSR and bistable SSR phases. We can solve the
integrals in Eq. (C10) and find

C0J‖,st =
∫ ∞

0
dt

∫
dxη(x + vt )s‖,st = cos

(
kcvzτ

2

)
R,

(C16)

with

R = 2N
∫ 1

0
du

sin
( kcvzτ [1−u]

2

)
J1

(
�cJ‖,st sin ( kcvzτu

2 )
kcvz

)
kcvz

, (C17)

where Jn denotes the Bessel function of order n. For this
expression we have used the analytical result of K given
by Eq. (B2). For kcvzτ = π , we obtain cos(π/2) = 0, hence
C0 = 0, and the phase diffusion argument breaks down.
Therefore kcvzτ = π is the threshold between regular SSR
and bistable SSR.

APPENDIX D: SUPERDIFFUSIVE BEHAVIOR AT THE
THRESHOLD

In this section we derive the result in Eq. (38) by using
the phase diffusion argument. At the threshold we find that
ν = 0 is a zero of order two of D⊥(ν). Using this we can
approximate

L[J⊥] ≈ L[JW⊥ ] + 2
�c

L[S⊥]

C1ν2
,
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where

C1 = lim
ν→0

D⊥(ν)

ν2
. (D1)

This can be used to establish

J⊥ ≈
∫ t

0 dt ′ ∫ t ′

0 dt ′′[A1(t ′′) + A2(t ′′)]
C1

, (D2)

where we have used Eqs. (C12) and (C13). Dividing this
equation by J‖,st leads to the following equation for the phase:

�ϕ(t ) ≈
∫ t

0 dt ′ ∫ t ′

0 dt ′′[A1(t ′′) + A2(t ′′)]
C1J‖,st

. (D3)

With this one can verify Eq. (38).
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