PAPER

Measurement of the 27Al$^+$ and 87Sr absolute optical frequencies

To cite this article: Holly Leopardi et al 2021 Metrologia 58 015017

View the article online for updates and enhancements.
Measurement of the $^{27}\text{Al}^+$ and ^{87}Sr absolute optical frequencies

Holly Leopardi1,2,3,*, Kyle Beloy1, Tobias Bothwell4$^\dag$, Samuel M Brewer1,5,2, Sarah L Bromley4,6, Jwo-Sy Chen1,7,2, Scott A Diddams1,2, Robert J Fasano1,2, Youssef S Hassan1,2, David B Hume1, Dhruv Kedar4, Colin J Kennedy1,4, David R Leibrandt1,2, Andrew D Ludlow1, William F McGrew1,2, William R Milner4, Daniele Nicolodi1,2,8, Eric Oelker1,4, Thomas E Parker1, John M Robinson4, Stefania Romisch1, Jeff A Sherman1,4, Lindsay Sonderhouse4, Jian Yao1,4, Jun Ye1,4, Xiangang Zhang1,2 and Tara M Fortier1,2,*

1 National Institute of Standards and Technology, Boulder, CO 80305, United States of America
2 Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
3 Space Dynamics Laboratory, Albuquerque, NM 87106, United States of America
4 JILA, University of Colorado, Boulder, CO 80309, United States of America
*/E-mail: holly.leopardi@colorado.edu, jeff.sherman@nist.gov and tara.fortier@nist.gov

Received 17 September 2020, revised 4 November 2020
Accepted for publication 3 December 2020
Published 21 January 2021

Abstract

We perform absolute measurement of the $^{27}\text{Al}^+$ single-ion and ^{87}Sr neutral lattice clock frequencies at the National Institute of Standards and Technology and JILA at the University of Colorado against a global ensemble of primary frequency standards. Over an eight month period multiple measurements yielded the mean optical atomic transition frequencies $\nu_{^{27}\text{Al}^+} = 1121015393207859.50(0.36)$ Hz and $\nu_{^{87}\text{Sr}} = 429228004229873.19(0.15)$ Hz, where the stated uncertainties are dominated by statistical noise and gaps in the observation interval (‘dead-time’ uncertainty).

Keywords: optical frequency comb, atomic clocks, precision metrology, optical measurement, secondary standards

(Some figures may appear in colour only in the online journal)

1. Introduction

Atoms are excellent frequency references because identical copies exist in abundance, and because atoms behave as closed systems that naturally isolate clock transition frequencies from perturbations to external fields. For this reason, in 1967, the SI (International System of Units) second was defined as 9192631770 cycles of the ground-state microwave hyperfine transition in ^{133}Cs. While the reduction of systematic uncertainties of microwave standards has enabled time to be defined with a resolution at 10^{-16}, trends in clock performance have slowed. In contrast, the performance, robustness and form-factor of optical atomic clocks have continued to progress. Optical clocks, which leverage 10^5 times higher carrier frequencies to achieve finer fractional measurement resolution, have been developed with control of systematic uncertainties at, and even below, the 10^{-18} level.
Figure 1. (a) Schematic of the frequency calibration chain connecting the optical transition frequencies of the 27Al$^+$, 87Sr, and 171Yb optical clocks to global PSFS via hybrid satellite and GPS microwave time/frequency links. The clock transition frequencies are coherently connected to LO via non-integer ratios, whereby $R_{^{27}Al^+} \sim 4$, $R_{^{171}Yb} \sim 2$ and $R_{^{87}Sr} \sim 1.1$, resulting in frequency relationships, $\nu_{\text{clock}}(j) = \nu_{\text{LO}}(j) \times R_j$ (here j refers to the clock being measured). Optical interference between the LOs and the FLFC produces difference frequencies $f_{b,j}$, which along with the FLFC pulse repetition rate, f_r, and carrier-envelope-offset frequency, f_0, are detected and compared to the frequency of a single hydrogen maser (ST-15) in the NIST timescale [AT1, post-processed version AT1E, and steered output UTC(NIST)]. Calibration against PSFS occurs via transmission of UTC(NIST) to the BIPM in Paris, France. We account for local operational shifts on the optical clock transition frequencies, A_j, as well as a gravitational redshift correction, $\delta_{GR,j}$, from the NIST and JILA laboratory altitude to the PSFS reference geopotential near sea level (see equation (3)). (b) Tabulation of the relationship, averaging intervals, and typical duty-cycles of each ratio link in this frequency calibration chain.

In the meantime, optical clocks are employed as secondary representations of the second (SRS) to serve a number of important globally-realized metrological functions. The international organization of measurements standards, Bureau International des Poids et Mesures (BIPM), uses all available SRS measurements to periodically refine their recommended values of optical transition frequencies and to realize milestones required by the roadmap for the redefinition of the SI second [6]. Additionally, regular reporting of SRS observations by National Metrological Institutes (NMIs) help to reduce the realized instability and uncertainty of the International Atomic Timescale (TAI). In support of these efforts, here we report the absolute optical frequencies of the single-ion 27Al$^+$ clock, and the neutral 87Sr lattice clock at NIST and JILA, with total measurement uncertainties below 4 parts in 10^{16}.

[1–4]. This 100-fold improvement in frequency uncertainty of optical clocks over microwave clocks heralds a future redefinition of the SI second based on optical transitions [5, 6].
2. Method

Figure 1 depicts the frequency calibration chain connecting the NIST 27Al$^+$, 87Sr, and 171Yb optical clocks to the global ensemble of primary- and secondary-frequency standards (PSFS). For a depiction of the stability and accuracy limitations of the various frequency calibration chain elements in figure 1, please consult figure 2. It is important to note that this work shares the experimental setup and measurement system used for remote calibration of the 171Yb optical clock to PSFS [2]. Additionally, many of the measurement days described here overlapped with those during the direct optical clock ratio measurements detailed in reference [7]. While reference [2] details the measurement of 171Yb with respect to PSFS, here we extend our analysis to the absolute frequencies of the 27Al$^+$ and 87Sr clocks and provide additional details regarding the microwave frequency counting accuracy.

2.1. Generation and transport of optical atomic clock signals

The 87Sr, 171Yb, and 27Al$^+$ [1, 3, 10] atomic clocks are based on doubly forbidden 1S$_0 \leftrightarrow ^{3}$P$_0$ electronic transitions. Laser-based frequency synthesis coherently connects the 87Sr, 171Yb, and 27Al$^+$ transition frequencies near 429 THz, 518 THz, and 1.1 PHz to local oscillators (LOs) near 194 THz, 259 THz, and 280 THz, respectively. The LOs are laser-stabilized to high-performance Fabry–Perot cavities (e.g. [11]) that are made resonant with the atomic clock transition frequencies using acousto-optic modulators as additive frequency shifters. Harmonics of the LOs are used to probe 171Yb and 27Al$^+$, where in the case of 87Sr, the LO is translated to the atomic resonance by a dedicated femtosecond laser frequency comb (FLFC) [3]. While 171Yb and 27Al$^+$ clocks are located at NIST-Boulder, the 87Sr clock is located approximately 1.5 km away at JILA, on the University of Colorado campus. The three atom-stabilized LO signals are delivered via Doppler-cancelled [12, 13] optical fiber links (50 m to 1.5 km) to an FLFC at NIST, with link instability of approximately 1×10^{-17} (τ/1 s)$^{1/2}$ [7] (see figure 2), where τ represents the averaging time. More specifically, the 194 THz LO light delivered from the JILA Sr lab is amplified and frequency doubled, at NIST, to 389 THz so as to be accessible by the FLFC that performs the optical-to-microwave division.

2.2. Optical-to-microwave division of atomic clock signals

When phase-locked to an atomic reference, an FLFC transfers that reference’s stability and accuracy to evenly spaced frequency modes across an optical octave of bandwidth [14]. This coherent synthesis permits simultaneous frequency comparison of multiple atomic clocks with an additive fractional instability of $<1 \times 10^{-17}$ (τ/1 s)$^{1/2}$ [7], and additive uncertainty below 1 part in 1019 [15–19]. Here, a home-built mode-locked octave-spanning Ti:sapphire FLFC [20] converts the optical clock signals to the microwave domain for comparison against microwave standards. Direct photodetection of the stable FLFC optical pulse train produces the optical mode spacing, f_o, as a microwave signal. Optical clock LO frequencies are linked to f_o and two other microwave frequencies via the following relationship:

$$\nu_{jO} = N_j f_o + f_0 + f_{bj}. \quad (1)$$

Other than N_j, an integer $\sim 10^5$, all terms on the right-hand side of equation (1) are microwave signals with frequencies near or below 1 GHz. Here, f_0 measures the optical frequency difference between a clock’s LO, ν_{jO}, and a single optical FLFC mode, $\nu_N = N \times f_o + f_0$. For the measurements performed here, the FLFC was phase locked to the 171Yb clock LO via f_{bj}. A self-referenced stabilization scheme [21–23] permits measurement and stabilization of the FLFC carrier-envelope-offset frequency, f_{bj}, and high-fidelity optical synthesis across an octave of bandwidth (550 nm to 1100 nm) with an additive instability below 1×10^{-17} for times greater than 1 s [7]. Both f_0 and f_{bj} heterodyne beat signals were stabilized to microwave references derived from a single H-maser, ST-15. In this configuration, the FLFC divides the optical reference frequency by approximately 10^5 to the microwave domain [24, 25]; the output is realized as the FLFC mode spacing, $f_o \approx$ 1 GHz. Comparison of another optical clock j to a microwave standard is achieved by measuring the beat signal f_{bj} in equation (1) with a high-resolution frequency counter (here, an Agilent 53132A 9). For consistency, all synthesizers and frequency counters used by the optical atomic clock systems and the FLFC were referenced to the same maser source, ST-15.
2.3. NIST microwave ensemble timescales

ST-15 is one of about 12 H-masers in the free-running NIST microwave ensemble timescales, AT1 and AT1E. The phase difference of ST-15 with respect to both timescales is calculated on a regular 12 minute (720 s) observation grid. AT1E is a post-processed timescale that uses the same algorithm as AT1 but can achieve slightly higher stability since members with irregular frequency deviations (e.g., due to temporary loss of environmental control) can have their statistical weight attenuated before they adversely influence the ensemble. AT1, however, is computed in realtime to realize broadcast signals. Consequently, the frequency of ST-15 is first compared against AT1E due to its higher stability, where the average frequency offset between AT1E and AT1 is separately analyzed [2].

2.4. Frequency calibration chain from NIST to PSFS

Programmed frequency offsets are applied (typically weekly) to AT1 to create UTC(NIST), a physical signal synthesized from an ensemble member clock, which is broadcast to the BIPM in Paris using a hybrid two-way satellite time and frequency transfer/GPS precise point positioning frequency transfer protocol (TWSTFT/GPSPPP) [26–28]. The link allows frequency measurement of UTC(NIST) against TAI. Finally, the rate of TAI is calibrated monthly against the ensemble PSFS. The optical systems, including the optical clocks [3, 10] and FLFC, contributed negligible type A and B uncertainties. The two largest uncertainty contributions result from dead-time uncertainty and frequency transfer uncertainty. The total type A and B uncertainties are the quadrature sum of type A and B components, respectively. The total uncertainty of the absolute frequency measurement for each optical clock is determined from the quadrature sum of type A and B contributions.

Using the frequency chain described above, the absolute frequency of optical clock \(j \), \(\nu_{\text{Clock}}(PSFS) \), as calibrated against PSFS can be expressed as a product of measurement ratios in the frequency chain described above:

\[
\frac{\nu_{\text{Clock}}}{1 \text{ Hz}} = \frac{\nu_{\text{Clock}}}{1 \text{ Hz}} \times \frac{\text{ST-15}}{\text{ST-15}} \times \frac{\text{AT1E}}{\text{AT1E}} \times \frac{\text{AT1}}{\text{AT1}} \times \frac{\text{UTC(NIST)}}{\text{UTC(NIST)}} \times \frac{\text{TAI}}{\text{TAI}} \times \frac{\text{PSFS}}{\text{PSFS}}.
\]

3. Results

We measured the optical clocks intermittently over eight months (November 2017 to June 2018). The campaign included 16 measurements of \(^{27}\text{Al}^{+} \) and 11 measurements of \(^{87}\text{Sr} \). The measurement durations ranged from \(10^{3} \) s to \(10^{5} \) s and the measurements were nearly-continuous, but were separated by periods of dead time extending from days to months. Concatenating all measurements, the total observation durations were 168 000 s and 212 000 s, for \(^{27}\text{Al}^{+} \) and \(^{87}\text{Sr} \), respectively. Table 1 summarizes the type A and B uncertainties for the reported measurements. While we discuss the limiting uncertainties here, a more detailed discussion is found in section 4.

As seen in figure 2, optical systems that leverage higher carrier frequencies, including the clocks, the FLFC and fiber optic timescales can provide stable timescales with improved stability. As seen in Table 1, the transfer uncertainty for the \(^{27}\text{Al}^{+} \) and \(^{87}\text{Sr} \) clock measurements were \(1.1 \times 10^{-16} \) and \(1.5 \times 10^{-16} \), respectively.

Table 1. Standard fractional uncertainties in the frequency comparison of the NIST \(^{27}\text{Al}^{+} \) and \(^{87}\text{Sr} \) clocks to the global ensemble PSFS. The optical systems, including the optical clocks [3, 10] and FLFC, contributed negligible type A and B uncertainties. The two largest uncertainty contributions result from dead-time uncertainty and frequency transfer uncertainty. The total type A and B uncertainties are the quadrature sum of type A and B components, respectively. The total uncertainty of the absolute frequency measurement for each optical clock is determined from the quadrature sum of type A and B contributions.

<table>
<thead>
<tr>
<th></th>
<th>(^{27}\text{Al}^{+})</th>
<th>(^{87}\text{Sr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A uncertainties (x10^{-16})</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Frequency transfer</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Measurement statistics</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Time scale</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>FLFC/optical clock</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>PSFS</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Type A total</td>
<td>2.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Type B uncertainties (x10^{-16})</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Frequency counting/synthesis</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>FLFC</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>PSFS</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Optical clock</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Gravitational redshift</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Type B total</td>
<td>3.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>3.2</td>
<td>3.6</td>
</tr>
</tbody>
</table>

As seen in figure 2, optical systems that leverage higher carrier frequencies, including the clocks, the FLFC and fiber optic timescales can provide stable timescales with improved stability. As seen in Table 1, the transfer uncertainty for the \(^{27}\text{Al}^{+} \) and \(^{87}\text{Sr} \) clock measurements were \(1.1 \times 10^{-16} \) and \(1.5 \times 10^{-16} \), respectively.
known effects for which the distribution of values are known from repeated collection of data, for example, uncertainties due to statistical effects. Type B uncertainties are effects for which the distribution of uncertainty is indirectly inferred from prior information. The total measurement uncertainties, calculated as the quadrature sum of the type A and B uncertainties in table 1, were found to be 3.2×10^{-16} and 3.6×10^{-16} for 27Al$^+$ and 87Sr, respectively. It is important to note that the lowest uncertainty attainable is set by the realized accuracy of PSFS [9], which is determined monthly by the global ensemble of independent frequency references reported by NMIs via TWSTFT/GPSPPP to Europe [35]. The PSFS uncertainty includes an appropriate weighted average of ensemble members’ statistical and type B uncertainties, as well as their corresponding dead-time and time-transfer uncertainties. For the 27Al$^+$ and 87Sr measurements here, we report the weighted mean of results averaged over Circular T month intervals. The monthly results are weighted according to the inverse-square of their estimated total uncertainties to obtain the absolute frequency results:

\[
\nu_{^{27}\text{Al}^+}(\text{PSFS}) = 1 121 015 393 207 859.50(0.36) \text{ Hz}
\]

\[
\nu_{^{87}\text{Sr}}(\text{PSFS}) = 429 228 004 229 873.19(0.15) \text{ Hz}
\]

Figure 3 compares these values to previously reported results where all results are depicted as offset in hertz from the current BIPM recommended values, $\nu_{^{27}\text{Al}^+}^{\text{BIPM}17} = 1 121 015 393 207 857.3(2.1) \text{ Hz}$ and $\nu_{^{87}\text{Sr}}^{\text{BIPM}17} = 429 228 004 229 873.0(0.17) \text{ Hz}$. By comparing our current results to the 2017 recommended frequency standard values, we find agreement within 1.02σ and 0.83σ for the 27Al$^+$ and 87Sr values, respectively, where σ is the standard uncertainty. While the 87Sr clock has a rich history of measurement by many other NMIs [6], the only previous absolute frequency determination of 27Al$^+$ was obtained in 2008 [36]. The second evaluation of 27Al$^+$ in 2009 was made via optical ratio measurement against 199Hg$^+$, which accounts for the smaller measurement uncertainty. Comparing our absolute frequency results from 2008 27Al$^+$ to the one made here yields a 2.7σ discrepancy.

The highest accuracy absolute measurement of 87Sr (1.5 parts in 1016) has recently been realized by the Physikalisch-Technische Bundesanstalt (PTB) group in Germany by averaging data taken from 2017 to 2019 [31]. We find agreement between this result and our own to within 1.25σ. Also shown in figure 3, depicted as empty circles, are the calculated absolute frequencies of 27Al$^+$, $\nu_{^{27}\text{Al}}^{\text{Yb}(\text{PSFS})} =$...
Two parameters must be calculated to connect each clock’s laboratory LO laser frequency to the ideal atomic transition frequency (i.e., perturbation-free, at rest, in a 0 K thermal environment). The first is a ratio, R_j, which translates clock j’s LO to its atomic transition frequency as realized in the laboratory. The second parameter, A_j accounts for known perturbations and field shifts that cause the transition frequency to deviate from ideal conditions. The ratio, R_j, includes frequency multiplication stages (in this work the laser LOs are infrared, whereas the atomic transition frequencies are visible or ultraviolet), as well as additive shifts from the Doppler-cancelled fiber links and feedback loops. For 27Al$^+$ and 87Sr, R_j are non-integers near 4 and 1.1, respectively. A_j is generally a time-dependent parameter, resulting in a fractional frequency shift ranging from (1 to 5) × 10^{-15} for each clock. For this work, the optical clocks were operated with control of these field-related shifts all with uncertainties below 5 × 10^{-18}. Details pertaining to the measurement of the atomic transition shifts can be found in references [1–3].

4.2. Geopotential uncertainty

The optical clocks and measurement system were operated roughly 1647 m above sea level, whereas PSFS is defined at a reference geopotential coincident with Earth’s rotating geoid. Together with the terms R_j and A_j described above, a correction for the gravitational redshift $\delta_{GRj} = g \times \Delta h/c^2$ is required to connect the measured LO laser frequencies to PSFS-referenced measurements of the ideal atomic clock transition frequencies. Here c is the speed of light, g is the gravitational acceleration due to the earth’s potential, and Δh is the altitude difference between two reference planes. For an altitude correction from Boulder altitude to sea level, $\delta_{GRj} \approx 1.8 \times 10^{-13}$. As a result, clock absolute frequencies can be expressed as,

$$\nu_{\text{Clock}}(\text{PSFS}) = (R_j \times \nu_{\text{LO}} + A_j)(1 + \delta_{GRj}).$$

Here, time dilation due to the gravitational redshift was treated separately from the clock operational shifts A_j because it is common to each clock at the 10^{-16} level. This is in contrast to the clock systematic shifts, which are clock dependent. While geopotential measurements have been made locally with uncertainties in relative altitude between clocks at NIST and JILA below 1 cm [7, 37], or near parts in 10^{18}, uncertainties in coastal leveling accumulate to about 1 m at our laboratories, meaning that δ_{GRj} contributes uncertainty at 0.6 × 10^{-16} [38].

4.3. Frequency counter measurement uncertainties

We used commercial (Δ-type) frequency counters to measure all microwave beatnote frequencies generated by the interference between clock LOs and the FLFC. The timebases of all counters were referenced to 10 MHz maser signals from a single distribution amplifier. Tests were performed throughout the campaign, where each counter measured the same 10 MHz source as its timebase reference. From measurements averaged over 10^5 s, all counters used in our measurements revealed systematic biases of magnitude $\delta \epsilon \leq 3 \times 10^{-12}(\tau_g/1 \text{ s})^{-1}$, where $\tau_g > 1$ s is the counter ‘gating’ interval. From the same measurements we also discerned that the counters contributed a measurement instability of $<10^{-11}\tau^{-1/2}$, yielding greater than 11 digits of frequency resolution at $\tau_g = 1$ s.

For signals that are additive offsets to optical frequencies (f_0 and f_b), counter biases contribute a fractional error to the optical clock frequencies of

$$\sigma_{yc} = \delta \epsilon \times \frac{f_{\text{input}}}{\nu_{LOj}},$$

where f_{input} is measured directly by the counter and ν_{LOj} is an optical LO frequency; favorably, these form a small ratio. Conservatively, assuming the largest observed counter offset $\delta \epsilon \approx 3 \times 10^{-12}$, $f_{\text{input}} = f_{b} = 640$ MHz (the highest frequency employed), and $\nu_{LOj} = 194$ THz, the resulting error is bounded by $\sigma_{yc} \approx 1 \times 10^{-17}$.

Counter errors on the FLFC pulse repetition rate f_r afford no such microwave-to-optical suppression on the ratio. Counter biases contribute a fractional error to optical clock frequencies,

$$\sigma_{yc} = \delta \epsilon \times \frac{f_{\text{input}}}{f_r} \approx \delta \epsilon \times \frac{N_j f_r}{\nu_{LOj}},$$

where in the last expression we set $f_{\text{input}} = f_r$ and recall that $N_j > 10^5$.

To minimize the counter errors for $f_r = 1$ GHz − Δ, where $\Delta < 400$ kHz, the repetition rate was mixed with a 1 GHz signal synthesized via multiplication of ST-15 by 200 permitting counting of a frequency <1 MHz. The difference frequency, Δ, was input into an ST-15-referenced counter whose fractional error was evaluated to be $\delta \epsilon \approx 2 \times 10^{-13}$, the lowest measured offset for any of our counters. Since the counter bias scales inversely with τ_g, we reduce the bias’s effect on determination of f_r by operating with $\tau_g = 10$ s. This operating configuration suppresses the counting error for a 194 THz carrier to below 1 part in 10^{17}. Frequency multiplication errors of the ST-15 10 MHz signals to 1 GHz bounded additional offsets at $< 3 \times 10^{-17}$.

A secondary check of the additive counter biases was obtained using a software defined radio (SDR)-based counter [39] that measured f_r in parallel with the Δ-type counter.
The SDR measures the evolving phase difference of the input signal with respect to the reference to produce a zero dead-time frequency measurement once per second with a software acquisition rate of 1 MHz and a 50 Hz equivalent noise bandwidth achieved using a software digital filter. To do this, the SDR operates in two-channel differential mode whereby \(A \) is input into one digitizer channel and the 10 MHz ST-15 reference is input into a second digitizer and also stabilizes the digitizers’ 100 MHz sampling/logic clock. Residual analysis showed the SDR counter contributed fractional offsets of \(\sigma_{\text{SDF}} < 1 \times 10^{-17} \) on a \(f_r \) of 1 GHz (dominated by a turn-on transient). The SDR data was gated asynchronously with that of the \(A \)-type counter, providing an independent measurement of \(f_r \), and with agreement realized to within the statistical noise. The total type B fractional uncertainty including contributions from microwave synthesis and counting were found to contribute \(3 \times 10^{-17} \) toward absolute optical frequency measurements. The largest contributor was found to be frequency multiplication of ST-15 to 1 GHz as determined via residual phase measurement using the SDR.

5. Conclusions

We described the methods and frequency calibration chain used in the measurements of the absolute transition frequencies of the \(^{87}\text{Sr} \) and \(^{27}\text{Al}^+ \) optical clocks at NIST, Boulder. While measurements obtained against PSFS permit a lower total uncertainty compared to those using a single, local \(^{133}\text{Cs} \) primary standard, there are two significant drawbacks related to higher statistical (type A) uncertainties. First, the longer measurement duration required to average down the frequency instability in the TWSTFT/GPSPPP transfer links yielded a transfer uncertainty near 1 part in \(10^{16} \). Second, calibration against PSFS necessitates averaging over a Circular \(T \) month, whereby low optical measurement duty cycle yields an extra statistical ‘dead-time’ noise equivalent to an uncertainty near \(2.5 \times 10^{-16} \) for both optical clocks. Despite these limiting sources of uncertainty, periodic evaluation over an eight month period yielded a total fractional measurement uncertainty of \(3.6 \times 10^{-16} \) and \(3.2 \times 10^{-16} \) for the \(^{87}\text{Sr} \) and \(^{27}\text{Al}^+ \) clocks, respectively. While our realized measurement uncertainty is close to the accuracy limit of primary atomic standards and represents an important step toward redefinition of the SI second [6], uncertainties due to coastal leveling and microwave time/frequency transfer between distantly located clocks represent a significant hurdle for realizing improved timing uncertainty below parts in \(10^{16} \) even as the SI second moves toward redefinition to optical atomic time.

Acknowledgments

The authors acknowledge NIST for funding this project. H Leopardi acknowledges funding from the National Defense Science and Engineering Graduate (NDSEG) Fellowship (32 CFR 168a). We would like to thank N Nardelli, C Oates and R Brown for careful reading of the manuscript and V Zhang for helpful conversations regarding TWSTFT/GPSPPP instability and noise. A Ludlow acknowledges funding from the National Aeronautics and Space Administration (NASA) and The Defense Advanced Research Projects Agency (DARPA). C J Kennedy and E Oelker acknowledge support from NRC Fellowship. The work at JILA is supported by DARPA, NIST, and NSF PHY-1734006.

References

[8] Panfilo G and Parker T E 2010 A theoretical and experimental analysis of frequency transfer uncertainty, including frequency transfer into TAI Metrologia 47 552–60
[14] Fortier T and Baumann E 2019 20 years of developments in optical frequency comb technology and applications Commun. Phys. 2 1–16

[28] Jiang Z and Petit G 2009 Combination of TWSTFT and GNSS for accurate UTC time transfer Metrologia 46 305–14

[31] Schwarz R et al 2020 Long term measurement of the 87Sr clock frequency at the limit of primary Cs clocks Phys. Rev. Research 2 033242

[32] Nemitz N, Gotth T, Nakagawa F, Ito H, Hanado Y, Ido T and Hachisu H 2020 Absolute frequency of 87Sr at 1.8×10^{-16} uncertainty by reference to remote primary frequency standards Metrologia Accepted

[33] Petit G and Defraigne P 2016 The performance of GPS time and frequency transfer: comment on ‘a detailed comparison of two continuous GPS carrier-phase time transfer techniques’ Metrologia 53 1003–8

[36] Rosenband T et al 2008 Frequency ratio of Al$^+$ and Hg$^+$ single-ion optical clocks; metrology at the 17th decimal place Science 319 1808–12

[37] Westrum V 2019 Geodetic survey of NIST and JILA clock laboratories NOAA Technical Memorandum NOS NGS 77

[38] Pavlis N K and Weiss M A 2017 A re-evaluation of the relativistic redshift on frequency standards at NIST, Boulder, Colorado, USA Metrologia 54 535–48