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Modern quantum science strives to understand and harness 
the rich physics underlying interacting many-particle sys-
tems. In particular, ultracold quantum gases have been 

established as ideal model systems with which to explore open 
questions in condensed matter physics ranging from understand-
ing superconductivity to realizing highly correlated states and 
exotic phases of matter1,2. It is often the interplay of interactions and 
symmetries that shapes the complex behaviour in these quantum 
many-body systems3.

The dominant interactions at ultralow temperatures in quantum 
gases occur via s-wave contact scattering, which, for identical fermi-
ons, vanishes due to the antisymmetry of fermionic wavefunctions. 
Therefore, multicomponent gases are required to realize interacting 
Fermi systems. Whereas binary mixtures are well-studied, versa-
tile platforms for quantum simulation capable of exploring a wide 
parameter space4,5, the additional freedom in choosing the number of 
spin components, N, offers unique, largely unexplored opportunities.

In alkaline-earth fermionic atoms, the complete decoupling 
between the nuclear and electronic degrees of freedom intrin-
sic to their internal ground state manifold gives rise to perfectly 
SU(N)-symmetric two-body interactions, characterized by a single 
nuclear-spin-independent scattering length a. This raises the ques-
tion of the extent to which this enlarged symmetry enriches the 
many-body behaviour, and how it affects the thermodynamic and 
statistical properties of the quantum gas as N is increased.

Although recent studies have started to investigate the intriguing 
properties of SU(N) quantum matter, most of the effort so far has 
been concentrated on the investigation of lattice-confined gases3,6–

11. Experiments probing the role of SU(N) interactions in a regime 
where a Fermi liquid description is accurate have been limited to 
non-degenerate12 or only slightly degenerate gases13–16. Here, we 
explore a deeply degenerate regime where N Fermi seas coexist and 
fundamentally modify the system’s thermodynamics (Fig. 1).

In addition to enriching the system’s quantum behaviour, SU(N) 
symmetry is an untapped resource for cooling7,17–19. It can enhance 

the collision and thermalization rate during evaporative cooling 
without inelastic spin collisions and thus provide a tool with which 
to efficiently remove entropy from the system.

In this work, we study a deeply degenerate SU(N) symmetric 87Sr 
Fermi gas with N ≤ 10. We show how the large number of nuclear 
spin states enables an unprecedented short preparation time to 
reach Fermi degeneracy with a temperature T/TF = 0.22, where 
TF is the Fermi temperature, achieved in just 0.6 s of evaporation 
with a laser-cooled sample. We use the rapid preparation and deep 
degeneracy to study the pronounced modifications introduced by 
SU(N) interactions on the thermodynamic properties of the gas20. 
In particular, we experimentally demonstrate and theoretically 
validate within a kinetic approach the effects of SU(N) interactions 
on the density profile, number fluctuations and compressibility, 
as well as the time-of-flight dynamics of the gas. Our study paves 
the way for future investigation of SU(N) interactions in regimes 
where even richer physics emerges and Fermi liquid theory 
becomes invalid. Furthermore, we introduce a Stark-shift-enabled 
spin selection technique to spin-polarize deeply degenerate gases, 
allowing efficient preparation of a low-entropy Fermi gas that is 
invaluable for further development of a quantum degenerate 3D 
lattice clock21,22. Our spin selection technique improves the stabil-
ity of state-of-the-art optical clocks, which are limited at present 
by the time spent preparing the system23–29. This is particularly rel-
evant in the context of recently proposed lattice clocks that rely on 
engineered quantum states of matter30.

Fast preparation
Our preparation scheme (Fig. 2a) begins with standard 
laser-cooling techniques developed for alkaline-earth atoms31. After 
two stages of laser cooling, roughly 107 atoms are cooled to 2 μK 
in a far-off-resonant crossed optical dipole trap (XODT) with a 
sheet-like geometry21,32. A vertically oriented round optical dipole 
trap (VODT) forms a dimple in a horizontal optical sheet potential 
that is provided by an elliptically shaped horizontal optical dipole 
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trap (HODT) (Fig. 2c). The HODT provides support against gravity 
and therefore determines the effective trap depth.

The density obtainable in a magneto-optical trap (MOT) is gen-
erally limited by inelastic light-assisted collisions33 and reabsorption 
of the cooling light, which leads to an effective repulsion between 
atoms34. To increase the density inside the dimple beyond these lim-
its, we locally apply an additional laser that renders atoms inside the 
dimple region transparent to MOT light, a method that was adapted 
from bosonic 84Sr (ref. 35). The beam spatially overlaps with the 
VODT but has a slightly larger waist. This ‘transparency’ laser shifts 
the cooling light out of resonance, and a high density can then be 
reached inside the dimple, where atoms collect. Atoms in the dimple 
thermalize with atoms in a large reservoir part of the trap, which are 
continually being cooled by the MOT light.

The transparency beam has allowed the production of Bose–
Einstein condensation without further evaporation35. However, for 
fermions other complications can arise. Compared with bosonic 
strontium, 87Sr has additional hyperfine structure, creating a differ-
ent a.c. Stark shift for each nuclear sublevel. Transparency from both 
the trapping and stirring second-stage MOT lasers is also required36. 
Accordingly, we use transparency light that is blue-detuned by 
25 GHz from the 3P1–3S1 transition (Fig. 2b). This provides an 
ample shift for all nuclear spin states and keeps spontaneous scat-
tering events beyond relevant experimental timescales. The beam 
is linearly polarized and perpendicular to the magnetic quantiza-
tion field, which is applied along gravity. With this geometry, the 
smallest Stark shift still detunes the excited state by 250 linewidths. 
After 400 ms of cooling with the transparency beam, the number 
of atoms in the dimple saturates with 5 × 106 atoms (that is, about 
50% of the total atom number), a temperature of 2 μK and T/TF = 1.9 
(see Methods). Lower temperatures can be achieved by adjusting 
the MOT light; however, the phase-space density does not improve.

The very dense and almost degenerate sample can then be fur-
ther cooled via forced evaporation. Spin relaxation is absent due to 
the SU(N)-symmetric nature of 87Sr in the 1S0 ground state; however, 
over the timescale of seconds, we observe a decay of the sample that 

is well described by a three-body loss process with a three-body loss 
coefficient k3 = 4.7(1.2) × 10−30 cm6 s−1 (see Methods).

The elastic collision rate37 for a non-degenerate, balanced spin 
mixture is proportional to ð1� 1=NÞ Nnσ

I
, where nσ

I
 is the spatially 

averaged density for spin state σ. Assuming a constant total atom 
number, it is thus advantageous to have all ten spin states populated. 
We reach an initial collision rate of 1,000 s−1 with N = 10. Evaporation 
begins at a trap depth of 20 μK with radial trap frequency νr and ver-
tical trap frequency νz in the dimple of (νr, νz) = (100, 800) Hz. The 
HODT intensity is then reduced in a two-stage ramp down to a final 
trap depth of a few 100 nK with trap frequencies of (100, 200) Hz.

After 600 ms of evaporation, we reach T/TF = 0.22 with 3 × 104 
atoms per spin state. Slower evaporation leads to lower tempera-
tures, and we achieve T/TF = 0.07 with 5 × 104 atoms per spin state 
after evaporating for 2.4 s. This marks a considerable improvement 
over previous evaporation results, where evaporation stages took 
around 10 s (ref. 21), limiting the potential of Fermi-degenerate opti-
cal atomic clocks38.

We observe an approximate 1/(N − 1) scaling of the total evapo-
ration time with the number of spin states participating in evapo-
ration as shown in Fig. 2d, reflecting the reduction in collisional 
partners for smaller N. Here, each sample is prepared with the same 
atom number per spin state and T/TF, and is measured after reach-
ing T/TF = 0.12. The final atom number per spin state changes by 
roughly a factor of two as N varies.

Spin manipulation
To manipulate the spin composition of the atom sample and prepare 
a spin-polarized gas, we apply a spin-selective optical potential to the 
atoms after evaporation. Past procedures have used optical Stern–
Gerlach techniques to separate out spin states during the time of 
flight39–41, but our method, the tensor Stark shift spin selector (TenS4), 
creates a spin-selective force on the atoms from the tensor Stark shift 
of a laser while the atoms remain trapped in the XODT. Atoms with 
the same magnitude of the nuclear spin state ∣mF∣, where mF repre-
sents the projection of the total angular momentum F along the quan-
tization axis, experience a small differential force due to an applied 
magnetic field of 5 G. This magnetic field is too small to fully remove 
mF = −9/2 and −7/2. We thus conventionally remove these spins via 
optical pumping before evaporative cooling. The TenS4 beam is offset 
from the atoms such that the a.c. Stark shift varies across the atomic 
sample by hundreds of nanokelvin, which causes a spin-dependent 
modification in the combined optical and gravitational potential of 
the atoms (Fig. 2e). The TenS4 laser is blue-detuned from the 3P1, 
F = 11/2 transition by 266 MHz (Fig. 2b), where the polarizability from 
3P1, F = 11/2 cancels the polarizability from 3P1, F = 9/2 for nuclear spin 
state mF = +9/2. As a result, atoms with mF = +9/2 are unaffected by 
the TenS4 laser, whereas all other spin states are subject to a repelling 
force. A detailed experimental protocol is provided in the Methods.

The spin purity after applying the TenS4 laser for 10 ms is mea-
sured by loading the atoms into a deep 3D optical lattice. The spin 
population for each nuclear spin state is then read out through selec-
tive π-pulse excitations on the clock transition. We measure 92% of 
the atoms in the target mF = +9/2 state, as shown in Fig. 2f, and an 
atom number of 3.3 × 104 after the TenS4 beam is applied, in rough 
agreement with one-eighth of the initial atom population of 2.5 × 105. 
The temperature of the sample increases by only ~10%. Our tech-
nique provides spin-state selectivity without optical excitation and, 
as a result, does not cause light-induced heating, overcoming issues 
typically associated with optical pumping schemes. The spin distil-
lation technique enables us to load a single spin with T/TF = 0.2 into 
a 3D optical lattice with a total preparation time under 3 s (Fig. 2a).

Characterization of SU(N)-enhanced interactions
Having prepared a high-density, deeply degenerate SU(10) gas, 
we demonstrate in the following that a nominally very weakly  

Fermions

EF

Bosons

SU(N) fermions

EF

Fig. 1 | Degenerate bosons, fermions and SU(N) fermions. Unlike 
bosons, which can occupy the same state, indistinguishable fermions 
must separate into different energy levels. SU(N) fermions, on the other 
hand, can have N particles per state. In a given level, each particle has 
(N − 1) distinct partners, as shown in the top right, and interactions are 
correspondingly enhanced.
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interacting quantum system with interaction parameter kFa ≪ 1, 
where kF is the magnitude of the Fermi wave vector, can develop 
striking interaction effects due to SU(N) enhancement. The nuclear 
spin degree of freedom substantially modifies the character of the 
gas towards an interacting multicomponent Fermi liquid with sub-
tle consequences for correlation analysis and thermometry.

To investigate this intriguing quantum system and illuminate 
the role of SU(N) symmetry, we perform measurements that 
characterize the system’s thermodynamics. A key quantity in this 
context is the isothermal compressibility κ ¼ 1

n2
∂n
∂μ

I
, where n = Nnσ 

denotes the particle density and μ the chemical potential. For 87Sr 
with a = 97aBohr, where aBohr is the atomic Bohr radius, the con-
tact interactions are repulsive and a decreased compressibility 
would be expected compared with an ideal Fermi gas with com-
pressibility κ0. For a homogeneous gas in the zero-temperature 
limit where κ0 = 3/(2NnσEF) with Fermi energy EF and Fermi 
wave vector kF ¼ ð6π2nσÞ1=3

I
, one finds to first order in kFa the 

ratio κ0/κ = 1 + (N − 1)2kFa/π (ref. 20). Therefore, the symmetric 
N-component system is effectively (N − 1)-fold more repulsive 
than a typical two-spin-component Fermi liquid42. The favourable 
scaling with number of internal levels has to be contrasted with 
the weak dependence of the compressibility on the atom number 
per spin state in a harmonically trapped gas, where kF / N1=6

σ
I

. 
All experiments reported in the following were carried out with 
spin-balanced ten-component samples. By focusing on this maxi-
mum N limit, we achieve pronounced interaction effects and can 
perform sensitive experiment–theory comparisons.

Experimentally, we access the compressibility of the gas by mea-
suring its local density fluctuations. Fluctuations, either thermal 
or quantum, are the drivers of phase transitions, and are sensitive 
to the underlying phase of matter, its quasi-particles and interac-
tions. The fluctuation–dissipation theorem states that the thermally 
driven fluctuations of a thermodynamic variable are fundamentally 
related to the conjugate external force through the susceptibility43. 
Considering a small subvolume of the gas cloud containing on 
average ~N

I
 atoms, the corresponding generalized force is the local 

chemical potential μ. The relative number fluctuations η ¼ Δ~N
2
=~N

I
 

are therefore related to the susceptibility ∂~N=∂μ
I

 via η = nkBTκ, 
where kB is the Boltzmann constant. Although the equation of state 
of a classical ideal gas dictates that η = 1, a value of η = 3/2T/TF 
would be expected for a deeply degenerate ideal Fermi gas. These 
sub-Poissonian fluctuations reflect the degeneracy pressure in the 
gas. Combined with the compressibility reduction due to repulsive 
interactions, it would be expected, to first order in temperature and 
interactions (see Methods), that:

η ¼ 3
2

T=TF

1þ 2
π ðkFaÞðN � 1Þ ;

which suggests that even in the kFa ≪ 1 limit the interaction effects 
become non-negligible due to the (N − 1)-fold SU(N) enhancement.

Our density fluctuation measurements are performed on 
expanded gas clouds. After abruptly turning off the harmonic con-
finement (νr = 130 Hz, νz = 240 Hz) the quantum degenerate sample 
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that contains in total 10 × 59,000 atoms such that kFa = 0.07 freely 
expands over 11.5 ms. We then obtain line-of-sight integrated density 
profiles via absorption imaging. Following the protocol described in 
refs. 44,45, we run this experiment in a repeated fashion so that for each 
projected subregion of the cloud containing ~N

I
 atoms we can measure 

the statistical variance Δ~N
2

I
. Figure 3 shows the results obtained from 

400 individual images together with a calibration line derived from 
noise measurements on a thermal gas. Pronounced noise suppression 
down to about 25% of thermal noise in the centre of the sample indi-
cates that the gas is deeply in the quantum regime.

To quantitatively interpret the noise data beyond first order 
and decouple Pauli suppression and SU(N)-enhanced interaction 
contributions, we calculate the expected line-of-sight integrated 
number fluctuations based on a kinetic approach46,47, using the col-
lisional Boltzmann–Vlasov equation with a mean-field interaction 
term. The Boltzmann–Vlasov equation describes the evolution of 
the semi-classical phase-space distribution f(r, p) with position r 
and momentum p:

∂t þ
p
m

 ∇r � ∇r UðrÞ þ VMFðrÞ½   ∇p

� �
f ¼ Icðf Þ : ð1Þ

The phase-space distribution evolves due to ballistic motion 
(second term), forces from the harmonic trapping potential 
U ¼ m=2

P
ið2πνiÞ

2r2i
I

, mean-field interactions with strength 
VMF = g(N − 1)n where g ¼ 4πℏ2a=m

I
, and collisions that are 

described by the integral Ic(f) (see Methods)47,48. Solving the 
Boltzmann–Vlasov equation in equilibrium and for finite tempera-
ture allows us to obtain the real-space density, n, from which we can 
compute the compressibility and thus the number fluctuations in 
trap and after time of flight. By fitting this model to the observed 
fluctuations, we extract T/TF = 0.16 ± 0.01. At these low tempera-
tures, Ic(f) plays no role.
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Fig. 3 | Local density fluctuations of an SU(N) degenerate gas. Density 
fluctuations after 11.5 ms time of flight for a degenerate cloud with N = 10 
nuclear spin states. The data are fitted using an SU(N) interacting model 
to extract T/TF = 0.16, with shading representing a 2σ uncertainty of 
±0.02 T/TF. Fitting the data instead to a non-interacting ideal Fermi gas 
gives T/TF = 0.13, showing an interaction-induced suppression of ~20%. 
The difference between the interacting and non-interacting fits is much 
less than the scatter in the data, highlighting the indistinguishability 
between interacting and non-interacting systems when measuring 
density fluctuations alone at the given signal-to-noise ratio. The total 
density fluctuations are 25% of that of the thermal gas. A thermal cloud 
reproduces Poisson statistics with Δ~N

2
=~N ¼ 1

I
. Each data point is obtained 

by looking at the atom number variation and mean in a subregion of the 
cloud for a series of images.
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To illustrate the interaction-induced compressibility change, 
we also fit a non-interacting model to the noise data, which gives 
an apparent T/TF = 0.13 ± 0.01, indicating a compressibility reduc-
tion of ~20% due to interactions. More precisely, we find that the 
compressibility in the centre of the trap is reduced by 18% com-
pared with a non-interacting gas at the same density and tempera-
ture. This percentage is comparable to the ratio of 21% between the 
interaction energy in a small volume V at the centre of the cloud, 
g=2 ðN � 1Þn2σV
I

, and the total energy of a non-interacting Fermi 
gas at the same density, 3/5EFnσV. Clearly, without prior knowledge 
of the interaction parameter, one cannot distinguish between a 
colder or more repulsively interacting system. Having a full ther-
modynamic description at hand, as discussed in more detail later, 
we also perform global profile fits of the acquired images (see 
Fig. 5) to numerically calculated density distributions and find 
T/TF = 0.17 ± 0.01, which is in good agreement with the temperature 
derived from density noise measurements. We want to emphasize 
again that even though the two underlying physical mechanisms 
that lead to the observed suppression of density fluctuations are 
fundamentally different, it is impossible to distinguish these two 
contributions by performing density noise measurements alone at 
the given signal-to-noise ratio.

To unambiguously distinguish between temperature and inter-
action effects, we study the expansion dynamics of the cloud after 
being released from the trap. In addition to the kinetic energy of 
the gas, interactions provide a release energy that is mapped to 

momentum after a long time of flight. As the mean-field energy 
preferentially pushes atoms along the direction of the largest density 
gradient, this conversion produces an anisotropic distribution after 
a long time of flight (see Fig. 4a–c). The expansion can be described 
via scaling solutions of the time-dependent Boltzmann–Vlasov 
equation (see Methods)49–52. Unlike in trap, the effect of interactions 
on the density after expansion cannot be partly captured by a lower 
temperature, and result in a non-unity aspect ratio at long times. 
This is in stark contrast to the expansion behaviour of an ideal 
Fermi gas where expansion is purely ballistic and after a long time 
of flight reflects the isotropic momentum distribution even if the 
confining potential is anisotropic.

Figure 4d displays the aspect ratio of a SU(10) atom cloud mea-
sured after variable expansion times ttof out of a harmonic trap with 
νr = 125 Hz and νz = 800 Hz. The sample contains 50,000 atoms per 
spin component at T/TF = 0.16. Initially, the atom cloud reproduces 
the trap’s asymmetry. As νr,zttof becomes larger than 1, the spatial den-
sity distribution is determined more and more by the momentum 
distribution in the gas. Observing an inversion of the aspect ratio 
beyond 1 is an unambiguous signature of the interactions modify-
ing the isotropic momentum distribution during time of flight53.

To further explore this behaviour, we present in Fig. 4e measure-
ments of the expanded cloud aspect ratio (ttof = 15.5 ms) as a func-
tion of the confinement asymmetry for a ten-component gas and a 
spin-polarized gas, both at T/TF = 0.16. In the non-interacting case 
N = 1 (blue data points), the aspect ratio is always 1 as expected in 
the long time-of-flight limit. Finally, we show in Fig. 4f the depen-
dence of the observed cloud aspect ratio on T/TF for a fixed ini-
tial confinement with νr = 130 Hz and νz = 725 Hz and unchanged 
ttof = 15.5 ms. Atomic interactions include a mean-field term ∝a and 
a collision integral Ic(f) ∝ a2; see equation (1). The latter, however, 
is only relevant in the presence of high collision rates and its pro-
nounced effect is observed when the gas is relatively hot (Fig. 4f). 
In comparison, the interaction energy and kinetic energy become 
comparable at low temperatures, and the collisional rate is sup-
pressed by Fermi statistics.

All measurements are well reproduced by our quantitative model 
(see Methods). To emphasize the role of N in modifying the dynam-
ics, we also plot in Fig. 4d–f the behaviour expected for N = 1, 4, 7, 
10 spin states using the validated theoretical model. As aspect ratio 
measurements via Gaussian fits are fairly immune to most imaging 
artifacts, they can be exploited to perform precise thermometry of 
the interacting Fermi gas.

Beyond their directly visible manifestation through cloud 
ellipticity, interaction-modified expansion dynamics can also 
be identified by carefully inspecting high-signal-to-noise-ratio 
absorption images. Figure 5 illustrates that a presumably round 
line-of-sight integrated density profile n(x, z) still contains a sys-
tematic interaction signature. After ttof = 11.5 ms, we observe den-
sity profiles that at first sight appear circularly symmetric (first 
row) for the experimental data (first column), the non-interacting 
(second column) and the interacting models (third column). 
Interactions are revealed in the transpose anisotropy of the den-
sity distribution, defined as n(x, z) − n(z, x), shown in the second 
row. Both the experimental data and the interacting model exhibit 
pronounced lobes that are not visible in the non-interacting 
case. Finally, a one-dimensional measure of this anisotropy can 
be defined by integrating over one of the axes (∫dz(n(x, z) − n(z, 
x))) as shown in the third row. In the integrated transpose anisot-
ropy, we observe peaks symmetric to the centre of the cloud, the 
heights of which are sensitive to T/TF for the experimental data 
and the interacting model, whereas in the non-interacting case 
this anisotropy is considerably reduced, inverted and insensitive 
to temperature. Thus, the anisotropy reveals the interacting nature 
of the Fermi gas in a single absorption image and can serve as a 
precise temperature probe.
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Fig. 5 | interaction signatures. a–c, Line-of-sight integrated atomic density 
n(x, z) after time-of-flight for a single shot of the experimental data (a), 
non-interacting theory (b) and interacting theory (c), respectively. The 
colour scales represent the numbers of atoms per 1.37 μm2. Images are 
shown with an initial trap asymmetry of νz/νr = 1.8 and T/TF = 0.17. d–f, The 
corresponding anisotropy of the cloud, defined as n(x, z) − n(z, x); lobes are 
clearly visible for clouds with interactions. To improve the signal-to-noise 
ratio, the experimental image is first symmetrized by reflection along 
the x and z axes. g–i, If the anisotropy is integrated along one direction, 
peaks symmetric to the centre of the gas that are sensitive to temperature 
appear for both the experimental data (g) and the interacting distribution 
(i), whereas the non-interacting signal (h) shows a different signature 
that displays only weak temperature dependence. The red lines show the 
integrated anisotropy of the images in (d–f), whereas the dashed blue lines 
in h and i show the integrated profile for a temperature that is 50% higher.
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Conclusions
We have demonstrated that SU(N) symmetry substantially 
enhances interaction dynamics in a quantum degenerate Fermi gas. 
This allows us to reach ultralow temperatures in short timescales. 
Creating a spin-polarized degenerate sample with a total preparation 
time under 3 s is important for the realization of atomic clocks prob-
ing engineered quantum states of matter30. The many-body problem 
for the dilute repulsively interacting Fermi gas can be solved exactly, 
and we have shown with high precision how the additional spin 
degree of freedom systematically modifies thermodynamic proper-
ties in the bulk gas. This opens a path to future quantum simulators 
capable of systematically exploring SU(N)-symmetric Fermi sys-
tems in periodic potentials.
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Methods
Transparency laser. The transparency light is derived from an extended cavity 
diode laser that is filtered by a volume Bragg grating. Owing to amplified 
spontaneous emission, we see a lifetime in the dimple of 5 s. The beam is 
linearly polarized along x, and a small magnetic field is applied along z. To 
separately extract the number of atoms in the dimple and reservoir, the HODT 
is extinguished. Atoms in the dimple are guided by the VODT which has a 
small angle with respect to gravity, whereas atoms in the reservoir undergo free 
expansion. This spatially separates the atoms in the dimple and the reservoir, and 
atom numbers can be respectively counted through absorption imaging. T/TF 
is then extracted for atoms in the dimple by calculating TF and measuring the 
temperature, which is determined by fitting the reservoir and dimple atoms to a 
Gaussian fit after extinguishing the XODT after the long time of flight.

Three-body loss. To determine k3, we load a thermal gas with T = 1.45 μK into 
the dimple part of the recompressed dipole trap. Starting from an initial central 
density of n = 3.9 × 1014 cm−3, we measure over the next 10 s a decay of the total 
atom number ~NðtÞ

I
 as a function of the holding time t. The observed atom loss is 

modelled as

~NðtÞ ¼ ~Nð0Þ � k3

Z t

0
dτ
Z

n3ðr; τÞdV ; ð2Þ

where n(r, t) is the atomic density at position r and time t. We find 
k3 = 4.7(1.2) × 10−30 cm6 s−1. This is a factor of 2 larger than the recent  
lattice-based three-body measurement that showed agreement with a universal 
van der Waals model10. Discrepancies in three-body loss between bulk gas 
measurements and predictions have been seen before54,55, demonstrating 
the challenge in accounting for inhomogeneous density profiles. Under our 
experimental conditions, single- and two-body contributions are expected to be 
negligible over a time interval of 10 s and, using a corresponding model, we find 
them to be statistically insignificant.

TenS4 laser. The TenS4 laser overlaps with the VODT and the transparency  
beam, and has a 30 μm waist with a peak intensity of 0.15 kW cm−2. The beam  
is linearly polarized along y, and along this axis a small magnetic field of 5 G is  
also applied, producing a small differential force between mF states of opposite 
signs. Owing to our relatively small magnetic field and optical power, the  
TenS4 beam does not provide enough force to completely remove all other  
nuclear spin states. Consequently, we conventionally remove atoms with 
mF = −9/2 and mF = −7/2 before evaporation using optical pumping to aid with 
spin selectivity. To ensure that we are not addressing a molecular resonance, 
photoassociation spectra were measured at a variety of detunings from the 
3P1, F = 11/2 resonance. A low-finesse cavity is also used to filter out amplified 
spontaneous emission from the extended cavity diode laser that produces 
substantial on-resonant scattering.

Model. Our system is well described by the Hamiltonian

H ¼
P

σ

R
d3r ψ̂y

σðrÞ � ∇2

2m þ UðrÞ
 

ψ̂σðrÞ

þ g
2

P
σ;σ0
R
d3r ψ̂ y

σðrÞψ̂
y
σ0 ðrÞψ̂σ0 ðrÞψ̂σðrÞ

ð3Þ

where ψ̂σðrÞ ðψ̂ y
σðrÞÞ

I
 annihilates (creates) a fermion of spin σ at point r. The 

fermions are confined by a harmonic trapping potential U ¼ m=2
P

ið2πνiÞ
2x2i

I
 and 

interact via SU(N)-symmetric s-wave contact interactions of strength g, given in 
terms of a and m.

Kinetic approach. To study the collective behaviour of the quantum gas, we use 
a kinetic approach46,47 considering the semi-classical phase-space distribution 
f σ;σ0 ðr; pÞ
I

 defined as

f σ;σ0 ðr; pÞ ¼
Z

d3r0eipr
0 hψ̂ y

σðrþ r0Þψ̂σ0 ðr� r0Þi ð4Þ

in terms of the fermionic creation/annihilation operators. The real-space atomic 
density is then given by nσ(r) = ∫d3p fσ,σ(r, p).

We will further assume that the Wigner function is purely diagonal in the 
spin indices (that is, we will neglect any off-diagonal contributions) and as the 
experiment prepares an equal number of atoms in each spin state, that the diagonal 
terms are all equal: f σ;σ0 ¼ δσ;σ0 f

I
.

Finally, we will treat the interparticle interaction in the mean-field 
approximation assuming an interaction energy

VMF ¼ gðN � 1ÞnðrÞ ð5Þ

which is directly proportional to the real-space density n(r), g and N − 1.
With these approximations, the collisional Boltzmann–Vlasov equation reads 

as in equation (1) in the main text.

Relaxation time approximation. Instead of a detailed treatment of the collisions 
between particles, we employ the relaxation time approximation48, which 
approximates

Ic½f  ¼ � f � f le
τ

; ð6Þ

where f approaches the local equilibrium state fle over a characteristic relaxation 
time τ.

We follow refs. 56,57 and approximate the relaxation time as

ð2πντÞ�1 ¼ ðN � 1Þ 4

5 31=3π
~N
1=3 a

aho

� �2

FQðT=TFÞ ; ð7Þ

where FQ(T/TF) is a universal function of T/TF, as defined in ref. 56, and aho is the 
harmonic oscillator length. FQ vanishes as (T/TF)2 at low temperatures, a signature 
of Fermi statistics, is of order 1 in the intermediate temperature regime and 
vanishes as (T/TF)−1 at higher temperatures.

Equilibrium solution. Solving the Boltzman–Vlasov equation in equilibrium, we 
obtain

f ðr; pÞ ¼ 1

eβ
p2

2mþUðrÞþgðN�1ÞnðrÞ�μ
� �

þ 1
; ð8Þ

which has to be solved self-consistently, as it depends on nðrÞ ¼
R d3p

ð2π_Þ3 f ðr; pÞ
I

.
In practice, we solve f(r, p) iteratively in steps i. We start by ignoring the 

interaction term, and determine μ0 from 
R d3rd3p

ð2π_Þ3 f ðr; pÞ ¼ Nσ

I

 where Nσ is the 
number of atoms per spin species that defines f0. Having fi−1, we compute the 
density ni and the corresponding interaction energy VMF,i. This defines f(μi, 
VMF,i) from which we determine μi via normalization. We then set fi = αf(μi, 
VMF,i) + (1 − α)fi−1 with α = 0.9. Iterating this procedure leads to convergence in 
5–10 iterations for the parameters we consider.

Number fluctuations. We can compute the expected number fluctuations 
directly from the obtained density profiles. The fluctuation–dissipation theorem 
describes how the number fluctuations of the gas are related to the isothermal 
compressibility: Δ~N

2
=~N ¼ nkBTκ

I
, where the isothermal compressibility κ ¼ 1

n2
∂n
∂μ

I
.

In the harmonic trap the chemical potential varies as μ(r) = μ − U(r). Thus, the 
derivative with respect to μ can be replaced by a derivative with respect to one of 
the spatial directions as ∂n∂μ ¼ �1

mð2πνiÞ2ri
∂n
∂ri

I

, which we can directly evaluate based on 
the computed density profiles.

Dynamics. To obtain the dynamics we use the scaling factor method48–52 with the 
ansatz

f ðr; p; tÞ ¼ 1
Q

jðλjθ
1=2
j Þ

f 0
ri
λi
;
1

θ1=2i

ðpi �m _λ=λiriÞ
 !

ð9Þ

for the out-of-equilibrium distribution function of the gas, where i = x, y, z labels 
the spatial directions.

Following48, we take the moments of ri pi and p2i
I

 to obtain a closed set of 
differential equations for the scaling parameters λi and θi:

₠λi þ ð2πνiÞ2λi � ð2πνiÞ2 θi
λi

þð2πνiÞ2ξi θi
λi
� 1

λi
Q

j
λj

 
¼ 0 ;

ð10Þ

and

_θi þ 2
_λi
λi
θi ¼ � θi � θ

� �
=τ ; ð11Þ

where ξi ¼ g=2ðN�1Þ<n>
g=2ðN�1Þ<n>þ< p2i >=m

I

 accounts for the mean-field interaction with 
< � � � >
I

 being phase-space averages with respect to the equilibrium distribution, 
dotted variables refer to their time derivatives and θ ¼ 1=3

P
iθi

I
.

Time of flight. To study the expansion after switching off the trap, the second 
term in equation (10) is set to 0, and the nonlinear coupled differential equations 
are solved for the scaling parameters, which, when plugged into the scaling ansatz, 
yield the phase-space distribution after time of flight.

For the non-interacting case, the equations for the expansion can be solved 
explicitly. In the collisionless regime, θi ¼ λ�2

i
I

 and the equation for λi can be solved 

to obtain λð0Þi ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2πνiÞ2t2

q

I

. Using the non-interacting value of the initial 
root mean square radii, <x2i > 0ðt ¼ 0Þ ¼ kBT

mð2πνiÞ2

I

, we obtain after time of flight 
<x2i > 0ðtÞ ¼ kBT

m
1þð2πνiÞ2 t2

ð2πνiÞ2

I

, such that the ratio of different directions approaches 1, 
and the cloud becomes isotropic.

Virial expansion for the number fluctuations. An alternative approach to derive 
the thermodynamic quantities is provided by virial expansions of the partition 
function of the interacting many-body system58–60.
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As we are interested in the number fluctuations, and thus κ, we start from 
the expression for the chemical potential of a homogeneous Fermi gas at low 
temperature and weak interactions61, adapted to the SU(N) case

μðn;T; aÞ ¼ EF 1� π2
12 ðT=TFÞ2 þ 4

3π ðN � 1ÞkFa


þ 4ð11�2ln ð2ÞÞ
15π2 ðkFaÞ2ðN � 1Þ

i
þ CT2a2 ;

ð12Þ

where C is a constant independent of n. We can then evaluate the compressibility 
from the dependence of n on the Fermi parameters.

For simplicity we only keep terms up to first order, to obtain for Δ~N
2
=~N

I
 the 

equation presented in the main text.
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