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Half-minute-scale atomic coherence and 
high relative stability in a tweezer clock

Aaron W. Young1,2, William J. Eckner1,2, William R. Milner1,2, Dhruv Kedar1,2, 
Matthew A. Norcia1,2, Eric Oelker1,2, Nathan Schine1,2, Jun Ye1,2 & Adam M. Kaufman1,2 ✉

The preparation of large, low-entropy, highly coherent ensembles of identical 
quantum systems is fundamental for many studies in quantum metrology1, 
simulation2 and information3. However, the simultaneous realization of these 
properties remains a central challenge in quantum science across atomic and 
condensed-matter systems2,4–7. Here we leverage the favourable properties of 
tweezer-trapped alkaline-earth (strontium-88) atoms8–10, and introduce a hybrid 
approach to tailoring optical potentials that balances scalability, high-fidelity state 
preparation, site-resolved readout and preservation of atomic coherence. With this 
approach, we achieve trapping and optical-clock excited-state lifetimes exceeding  
40 seconds in ensembles of approximately 150 atoms. This leads to half-minute-scale 
atomic coherence on an optical-clock transition, corresponding to quality factors 
well in excess of 1016. These coherence times and atom numbers reduce the effect of 
quantum projection noise to a level that is comparable with that of leading atomic 
systems, which use optical lattices to interrogate many thousands of atoms in 
parallel11,12. The result is a relative fractional frequency stability of 5.2(3) × 10−17τ−1/2 
(where τ is the averaging time in seconds) for synchronous clock comparisons 
between sub-ensembles within the tweezer array. When further combined with the 
microscopic control and readout that are available in this system, these results pave 
the way towards long-lived engineered entanglement on an optical-clock transition13 
in tailored atom arrays.

A key requirement in quantum metrology, simulation and information 
is the control and preservation of coherence in large ensembles of effec-
tive quantum two-level systems, or qubits1–3. One way to realize these 
features is with neutral atoms4,14, which benefit from being inherently 
identical and having weak and short-range interactions in their ground 
states. This, combined with the precise motional and configurational 
control provided by tailored optical potentials, enables assembly 
of large ensembles of atomic qubits15–18 without the need for careful 
calibration of individual qubits or additional shielding from uncon-
trolled interactions with the environment. As a result, groundbreaking 
work has been done in such systems using alkali atoms, including the 
realization of controllable interactions and gates19,20, preparation of 
useful quantum resources21 and simulation of various spin models of  
interest22,23. These techniques have recently been extended to 
alkaline-earth (or alkaline-earth-like) atoms8–10,24, which further provide 
access to extremely long-lived nuclear and electronic excited states, 
as well as new schemes for Rydberg spectroscopy25.

These recent advancements have enabled the development of 
tweezer array optical clocks5,6, which leverage the flexible potentials 
provided by optical tweezer arrays to rapidly prepare and interro-
gate ensembles of many non-interacting atoms. As a result, these 
clocks can balance the pristine isolation and high duty cycles avail-
able in single-ion-based optical clocks26,27 with the large ensembles 

and resultant low quantum projection noise (QPN) available in opti-
cal lattice clocks1,11,12,28. The most stable tweezer clock demonstrated 
so far used a one-dimensional (1D) array containing five atoms, 
and consequently was limited by QPN to a stability of 4.7 × 10−16τ−1/2  
(ref. 6), about an order of magnitude worse than current state-of-the-art 
values of 3.1 × 10−17τ−1/2, reported for synchronous comparisons in a 
three-dimensional (3D) lattice clock11, and 4.8 × 10−17τ−1/2, for a com-
parison between two clocks12. Extending tweezer array clocks to large 
two-dimensional (2D) arrays helps to close this gap by increasing the 
atom number while maintaining the high duty cycles achievable in 
tweezer-based systems6.

The tweezer clock architecture also benefits from microscopic 
single-particle control through 100-nm-precision positioning of 
individual atoms. Such control can help to probe and protect against 
the mechanisms that influence quantum coherence in neutral atom 
clocks, such as interactions, tunnelling and spontaneous emission7. 
This capability, combined with a series of other advances, allows us to 
realize sub-hertz control of an optical-clock transition in a tweezer array 
of 320 traps containing a total of ~150 atoms on average (see Fig. 1a, b). 
We demonstrate the ability to load ground-state cooled atoms into shal-
low tweezers that are at a ‘magic’ wavelength for the clock transition, 
achieving excited-state lifetimes of up to 46(5) s and clock frequency 
homogeneity on the scale of tens of millihertz across all tweezers  
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(for the definition of uncertainties, see Methods sections ‘Units and 
errors’ and ‘Clock interrogation’). As a consequence, we measure a 
coherence time of 19.5(8) s for synchronous frequency comparisons 
involving the entire array, and observe evidence of atomic coherence 
out to 48(8) s for select atoms in the array, corresponding to an atomic 
quality factor of Q = 6.5(1.1) × 1016. These characteristics reduce the 
effects of QPN in the tweezer clock platform to a level that is on par with 
the state of the art11,12, yielding a relative fractional frequency stability 
of 5.2(3) × 10−17τ−1/2 for synchronous self-comparisons.

A central challenge for using tweezer array systems in quantum 
science is maintaining control while scaling to larger atom numbers, 
because the required optical power scales linearly with the system size. 
Our solution is to use several optical potentials optimized for different 
stages of the experiment, and to realize state-preserving, low-loss trans-
fer between these different potentials29. We use an ‘auxiliary’ potential 
composed of both a tweezer array and an optical lattice for initial state 
preparation and readout, and a ‘science’ potential for clock interroga-
tion, which is composed of a tweezer array that is at a magic wavelength 
for the clock transition (see Fig. 1a, c). The auxiliary potential efficiently 
generates many deep traps that allow high-fidelity ground-state cool-
ing of large ensembles of atoms. By pre-cooling the atoms, the power 
requirements on the science potential are greatly relaxed and no longer 
pose a limitation on atom number or state preparation.

To confirm that the atoms remain cold when transferring them 
between these potentials, we perform sideband thermometry9, first 
in the auxiliary potential (including the lattice) immediately after side-
band cooling, and then after adiabatically passing the atoms to the 
science potential, holding for 25 ms, and passing them back (see Meth-
ods and Extended Data Figs. 1, 3). With optimal alignment, this whole 
‘handoff’ procedure can be performed with 0.0(3)% additional atom 
loss (see Methods). As shown in Fig. 1d, before the handoff we observe 
an average phonon occupation of n = 0.07−0.07

+0.14, 0.06−0.06
+0.08 and 0.07 ± 0.06 

in the axial, first radial and second radial directions, respectively.  

After the handoff, these occupations are n = 0.25 ± 0.12, 0.31 ± 0.13 and 
0.27 ± 0.10, correspondingly. Because we expect that heating occurs 
during both steps of the handoff, the mean of these two measurements 
serves as an estimate of the temperature of the atoms in the science 
potential. In a smaller 6 × 6 region at the centre of the array the axial 
cooling and handoff performance is vastly improved, with an average 
phonon occupation of n = 0.00−0.00

+0.06 (n = 0.06−0.06
+0.10 ) before (after) the 

handoff (see Methods and Extended Data Fig. 1).
These low temperatures enable clock operation in shallow tweezers, 

which both improves scalability and minimizes clock decoherence 
due to Raman transitions driven by the trap photons7,30. Specifically, 
in tweezers of 25Er (or 4.3 μK) depth (where Er is the recoil energy 
associated with a single 813-nm photon)—barely a quarter of the shal-
lowest depths reported in previous works6—we observe trap lifetimes 
of 160(10) s (Fig. 2a), probably limited by our vacuum. At this depth, 
we measure Fourier-limited spectroscopic features on the 1S0 ↔ 3P0 
optical-clock transition with linewidths as low as 0.62(1) Hz (full-width 
at half-maximum) averaged across all tweezers, with inhomogeneous 
broadening on the scale of tens of millihertz (Fig. 1e; see Methods).

Unlike in lattice clocks, where the effects of tunnelling can become 
limiting at depths below ~30Er along a single axis (~100Er in a 3D lattice)7, 
we observe no evidence of tunnelling or thermal hopping in tweezers 
as shallow as 6Er (see Methods). Importantly, at this depth we calcu-
late the tunnelling rate to be ~1 Hz, suggesting that disorder also has a 
key role in pinning the atoms. Although this is encouraging, at these 
depths other sources of atom loss (see Methods) begin to limit our trap 
lifetime to far below 160(10) s. A competition between these losses 
and Raman scattering leads to an optimal trap depth, with respect to 
the clock state lifetime, of ~14Er, where we measure a lifetime of 46(5) s 
(Fig. 2a). This lifetime is in good agreement with the predicted value 
of 44(6) s based on the measured ground-state trap lifetime of 96(8) s, 
and the expected contributions from trap-induced Raman scattering 
and black-body radiation7,30.
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Fig. 1 | 3D ground-state cooled strontium atoms in a 320-site 
magic-wavelength tweezer array. a, To generate large numbers of traps that 
are compatible with ground-state cooling and narrow-line spectroscopy, we 
combine a shallow ‘science’ potential at 813 nm, which is a magic wavelength 
for the clock transition, with a tightly confining ‘auxiliary’ potential at 515 nm, 
which includes both a tweezer array and a crossed-beam optical lattice to 
provide tight confinement along all spatial axes. b, Representative single-shot 
(top) and averaged (bottom) images of atoms demonstrate site-resolved 
readout of a 16 × 20 array of tweezers, with a spacing of 1.2 μm (1.5 μm) in the 
vertical (horizontal) direction. The red circles in the single-shot image denote 
the tweezer positions to guide the eye. c, In a typical experimental sequence, 
these potentials cooperate to prepare and read out 3D ground-state cooled 
atoms in traps that are compatible with narrow-line clock spectroscopy. d, To 
confirm that the atoms in the science potential are appropriately cooled, we 
perform sideband spectroscopy after cooling in the auxiliary potential (black 
points) and after adiabatically transferring the atoms to and back from the 

science potential (grey points; see main text for details). Each point in this plot 
is averaged over 20 trials and over all 320 tweezers in the array. The insets 
indicate the orientation of the probe beam relative to the traps, showing 
probes in the radial direction (left) and in the axial direction (right). e, With 
atoms trapped in the science potential, array-averaged Rabi spectroscopy of 
the 1S0 ↔ 3P0 clock transition provides Fourier-limited linewidths of 10.1(2) Hz 
and 0.62(1) Hz (full-width at half-maximum), in good agreement with the 
expected sinc lineshapes based on the known probe durations used in each 
case (solid lines). The callout (top) shows the Fourier-limited 0.6-Hz feature in 
detail, with no reduction in the maximal transfer fraction compared to the 
10-Hz case. Each point in these plots is averaged over 24 trials and over all 
tweezers. Error bars (see Methods section ‘Units and errors’) are smaller than 
the point size. We investigate the presence of inhomogeneous, trap-dependent 
shifts of the clock transition by independently fitting the centres of the spectra 
associated with each tweezer, which vary with a standard deviation of 
0.039(2) Hz (right).
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Our measured lifetimes suggest that at 15Er, the Ramsey contrast 
should decay exponentially with a time constant of 55(8) s. In prac-
tice, this decay is exacerbated by tweezer-induced frequency shifts 
associated with slight variations in the trapping wavelength between 
tweezers5,6. The result is Gaussian decay with an expected time con-
stant of 33(1) s (see Methods and Supplementary Information). In our 
measurements, the signal at each Ramsey time is a single-shot meas-
urement such that, even though atom–laser coherence decays over 
~3 s (see Methods and Extended Data Fig. 4), we can infer the atomic 
coherence from the variance of this signal, which remains high on 
much longer timescales (Fig. 2b; see Methods and Supplementary 
Information). The atomic coherence, and thus the Ramsey contrast, 
inferred from this measurement decays with a 1/e time of 19.5(8) s 
(Fig. 2b), slightly faster than the prediction based on the measured 
lifetime and dephasing. This corresponds to an effective quality factor 
of Q = 1.9(1) × 1016, which is limited by inhomogeneous broadening.

Even in the absence of atom–laser coherence, we can perform a syn-
chronous clock comparison that takes advantage of this long-lived 
atomic coherence by comparing the relative phase between two 
sub-ensembles in the tweezer array5,31,32. Because readout occurs in 
a site-resolved manner, the partitioning of these ensembles can be 
chosen arbitrarily. Specifically, we choose a ‘checkerboard’ parti-
tioning that yields no net tweezer-induced frequency shift between 
the two sub-ensembles, and a ‘diagonal’ partitioning that yields a 
near-maximal frequency shift (Fig. 3a insets). At Ramsey dark times 
that exceed the atom–laser coherence time, the Ramsey phase is ran-
domized. As a result, parametric plots of the excitation fraction in the 
two sub-ensembles result in points that randomly fall along the edge of 
an ellipse, where the size of the ellipse is related to the average atomic 
coherence, and the opening angle of the ellipse is related to the net 
phase (and thus frequency) shift between sub-ensembles (Fig. 3a). 
Extracting a phase from these distributions via ellipse fitting, particu-
larly in the presence of QPN, yields biased results near zero phase or 

contrast32,33. Whereas this means that any useful measurement must 
operate away from this point, to initially identify an optimal Ramsey 
time with respect to relative stability we choose to operate in a biased 
regime with no phase offset. This is because any partitioning that yields 
a frequency shift results in a phase offset, and thus bias, that varies 
with Ramsey time, obscuring the optimal value. We characterize this 
biasing via Monte Carlo simulations (see Supplementary Information) 
which, when combined with the expected effects of QPN, are in good 
agreement with the data (Fig. 3b).

Guided by these measurements, we perform a 4.3-h-long synchro-
nous comparison between sub-ensembles at the near-optimal Ramsey 
time of 15 s. At 15 s, the diagonal partitioning results in a sufficiently 
large tweezer-induced phase shift between sub-ensembles to elimi-
nate the effects of biasing (Fig. 3b, c). This is confirmed both by the 
above-mentioned Monte Carlo simulations used to characterize bias 
and by the agreement between the data and a prediction based exclu-
sively on QPN. Specifically, we expect a tweezer-induced frequency 
offset of 7.0(1.3) mHz on the basis of previous measurements of the 
light shift6,34, and measure an offset of 7.15(18) mHz. The uncertainty in 
this measurement corresponds to a fractional frequency precision of 
4.2 × 10−19. In this unbiased condition, we compute the Allan deviation 
(see Supplementary Information), which averages down with a slope 
of 5.2(3) × 10−17τ−1/2. This is in good agreement with the expected value 
of 5.2 × 10−17τ−1/2 from QPN with no bias correction (Fig. 3c) and compa-
rable to the state-of-the-art value of 3.1 × 10−17τ−1/2 for such synchronous 
comparisons reported in leading 3D lattice clocks11. Moreover, the 
long interrogation times used here allow us to match the highest duty 
cycles achieved in our previous work of 96%6, even without performing 
repeated interrogation. As a result, although not demonstrated here, 
Dick effect noise is not expected to substantially affect the stability of 
an asynchronous comparison6.

To better understand the limitations of this system, we study atomic 
coherence within the array using the single-site observables afforded 
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Fig. 2 | Minute-scale atomic lifetime and ensemble coherence studies.  
a, To determine limits on atomic coherence, we measure the lifetime of both 
the ground (1S0; black points) and clock (3P0; black circles) states. The 
ground-state lifetimes are inferred from exponential fits to the measured 
population of atoms as a function of time, using 20 or more runs of the 
experiment and averaging over all tweezers. The clock-state lifetimes are 
inferred from two such datasets with and without repumping (see Methods). 
For ground-state atoms, the lifetime saturates to 160(10) s in deep traps, with 
additional technical sources of atom loss contributing in shallower traps 
(exponential fit to 1S0 data; dark grey). For clock-state atoms, an optimal trap 
depth arises from a competition between this atom loss, which prefers deep 
traps, and depumping via spontaneous Raman scattering of the trap light 
(theory prediction with no free parameters; light grey)7,30 (see Methods), which 
prefers shallow traps. The combination of these loss mechanisms (dashed line) 
is in good agreement with the measured clock-state lifetimes, including the 

optimum of 46(5) s at 14Er. b, For clock operation, we perform Ramsey 
spectroscopy in 15Er-deep tweezers (black points), near this optimal depth. 
Given the measured clock-state lifetime, we would expect the contrast to decay 
with an exponential time constant of 55(8) s (light-grey region). However, we 
expect tweezer-dependent light shifts to result in Gaussian decay with a time 
constant of 33(1) s at 15Er (ref. 6; see Methods and Supplementary Information). 
The combination of these two effects is denoted by the medium-grey region. 
We note that each data point corresponds to an average over all 320 tweezers in 
a single shot of the experiment. As a result, although the atom–laser coherence 
decays over 3.6(2) s (dark-grey region) (see Methods and Extended Data Fig. 4), 
the variance of the Ramsey signal decays on a timescale set by atomic 
coherence. This is clarified by the insets, which share units with the main axes 
and show detailed views of Ramsey evolution at different times. Here, it is 
possible to see the initial loss of phase coherence with the laser, followed by 
total loss of coherence (and thus variance in this signal) in the system.
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by our microscope, and look for classical correlations in the states of 
the atoms after Ramsey evolution. Specifically, we compute the g(2) 
correlator (see Supplementary Information) between atoms in differ-
ent tweezers as a function of Ramsey dark time and relative tweezer 
position Δr, which we denote as C(Δr) (Fig. 4a)35–37. After averaging over 
the phase of the laser, for two atoms 1 and 2, each with density matrix 
ρj (j = 1, 2), the correlator is equal to 2A1A2cos(ϕ1 − ϕ2), where Aj and ϕj 
are the amplitude and phase of the off-diagonal elements of the density 
matrix for atom j, ρ A= ej j

ϕ
eg,

i j. This quantity serves as a site-resolved 
measure of tweezer-induced clock transition shifts35–37 (see Supple-
mentary Information), revealing that along the forward diagonal of 
the array, where frequency offsets between tweezers—and thus clock 
frequency offsets—are maximal, the atoms become uncorrelated and 
eventually develop negative correlations. Along the anti-diagonal, 
where there is no frequency offset between tweezers, positive correla-
tions persist over much longer timescales. We further observe the 
development of fringes in the correlator along the more tightly spaced 
axis of the array, which we hypothesize are the result of overlaps 
between tweezers (see Supplementary Information).

The coherence of a given atom, |ρeg|, may be defined with respect 
to a partner atom, or an ensemble of atoms, which serves as a phase 

reference32,36,38. If the atom and reference are at the same frequency, any 
excess decay of correlations between the atom and reference compared 
to the decay of the reference can be attributed to loss of single-atom 
coherence (see Supplementary Information); if the frequencies are dif-
ferent, the signal falls more rapidly owing to the evolving phase differ-
ence and constitutes a lower bound on the single-atom coherence time. 
Hence, we can compare the average correlations between one atom and 
the total spin projection of the remaining array, CA, with the measured 
Ramsey contrast (Fig. 4b). By applying this procedure to the atoms in 
the central 4 × 4 sites, which have a clock frequency similar to that of 
the array mean, we infer a single-atom 1/e coherence time of 48(8) s and 
a resulting atomic oscillator quality factor of Q = 6.5(1.1) × 1016 (Fig. 4c). 
This is comparable to the expected value of 55(8) s, and corresponds to 
the useable timescale for frequency comparison measurements (as in 
Fig. 3) that we would expect if all tweezers were at the same wavelength, 
as might be achieved with the use of a spatial light modulator.

To extend this argument to each atom in the array, particularly to 
those with clock frequencies that differ substantially from the ensem-
ble mean, we can simply choose a phase reference that has a similar 
frequency to the atom under measurement. Specifically, we consider 
2 × 2 sub-ensembles of the array, for which we expect tweezer-induced 
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Fig. 3 | Resolving millihertz shifts of an optical transition. a, We perform  
a synchronous clock comparison by partitioning the array into two 
sub-ensembles (insets, red and blue) and creating a parametric plot of the 3P0 
excited-state fraction in the blue ensemble (Pb) versus in the red ensemble  
(Pr), where each point corresponds to a single shot of the experiment (in this 
case at a 15-s interrogation time in 15Er-deep tweezers). In the checkerboard 
(left) partitioning there is no mean frequency shift between the two 
sub-ensembles, whereas in the diagonal (right) case we expect a shift of 
7.0(1.3) mHz (see Methods and Supplementary Information). The relative 
frequency between the sub-ensembles can be extracted via ellipse fitting  
(red lines), which in the diagonal case yields 7.15(18) mHz. We note that such fits 
are biased near zero phase shift, as is evident in the fit to the checkerboard 
ensemble, which returns an artificially large phase shift. b, To identify an 
optimal Ramsey dark time, we compute the fractional frequency uncertainty 
between the sub-ensembles as a function of Ramsey time at fixed total 
averaging time (see Supplementary Information). The black points (grey point) 
correspond(s) to 13 min (4.3 h) of averaging and are extracted from the 

checkerboard partitioning. We note that, owing to biasing, these values are not 
representative of a true stability. This is made clear by the dashed curves, which 
correspond to the expected QPN, and the solid grey curves, which include an 
additional correction factor calculated via Monte Carlo simulations to  
account for the biased fits (shaded regions denote 1-s.d. confidence interval) 
(see Supplementary Information). At interrogation times of 15 s, the diagonally 
separated sub-ensembles have a sufficient phase shift to remove the bias in the 
fits. This condition (red star) shows the fractional frequency uncertainty of  
the full 4.3-h-long measurement, with a value of 4.2 × 10−19. This is in good 
agreement with the expected QPN limit with no bias correction (red curve).  
c, We can further compute an Allan deviation associated with this 
measurement (black points), which averages down with a slope of 
5.2(3) × 10−17τ−1/2 (black dashed line). This is in good agreement with the 
expected value of 5.2 × 10−17τ−1/2 from the QPN (red line). The red star is 
duplicated here as a point of comparison (we note that this point is not strictly 
an Allan deviation, and is extracted via jackknifing) (see Supplementary 
Information).
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dephasing to be suppressed to a timescale of several hundred seconds. 
In this case, the sub-ensemble-averaged single-atom coherence can 
be written in terms of the average of the pairwise correlators (see Sup-
plementary Information). With reasonable assumptions (see Supple-
mentary Information), the square root of this quantity averaged across 
all such sub-ensembles contained in the array, C2×2, provides a lower 
bound on the average atomic coherence ρ| |eg

 of all ~150 atoms in the 
array. This bound has a measured 1/e lifetime of 33(2) s (Fig. 4c).

These coherence times and atom numbers have advanced the state of 
the art in atomic coherence at optical frequencies, and pushed tweezer 
clocks to an improved regime of relative stability. This is accomplished 

via a recipe for creating tailored optical potentials that results in a 
substantial increase in accessible sample sizes to hundreds of tweezers 
in this work, and presents a clear path towards scaling to more than a 
thousand tweezers (see Methods and Supplementary Information).

The advances in this work are, in part, guided by groundbreaking 
studies in optical lattice clocks7, and might also illuminate new paths 
forward for these lattice systems that benefit from greater atom num-
ber than tweezer clocks. Although the elimination of tunnelling in this 
study is partially due to increased trap separation in comparison to lat-
tice clocks, a far greater effect is the presence of disorder. Specifically, 
as is well known in tweezer systems39,40, tweezer-to-tweezer disorder is 
hard to suppress on the energy scale of the tunnelling. Whereas this is 
a challenge for their use in Hubbard physics, here it serves to suppress 
tunnelling and prolong atomic coherence. This suggests that, in the 
context of lattice clocks, the use of a weak disordering potential super-
imposed on a standard optical lattice clock could enhance coherence 
time, which might be an alternative solution to directly modulating 
the tunnelling7. This highlights another important role for the tweezer 
clock: it serves as a clean, versatile platform for studying neutral-atom 
optical clocks and the mechanisms that influence their performance. In 
future accuracy studies (see Methods), the lack of interactions and itin-
erance in this system will ease dissection of coupled systematic effects.

Our work here lays a firm foundation for engineering entanglement 
on an optical-clock transition13,41. The large 2D arrays and tight spacings 
used here are key for future studies involving limited-range Rydberg 
interactions, providing access to larger samples with higher connectiv-
ity, stronger interactions and correspondingly greater entanglement. 
Furthermore, incremental upgrades to our existing setup (see Methods 
and Supplementary Information) will improve purity in state prepa-
ration by reducing imaging losses6,8,9,42 and allowing higher-fidelity 
clock rotations, which will be key to implementing protocols to gen-
erate entanglement13,21,43. Although many-body entanglement scales 
exponentially poorly with single-particle decoherence, the coherence 
times reported here establish the prospect of a metrologically useful 
entangled optical clock operating with tens of atoms and seconds-long 
interrogation times. Our use of 88Sr, which has a clock linewidth that 
is tunable with a magnetic field, also establishes longer-term direc-
tions for quantum metrology that are not fundamentally limited by 
spontaneous emission44. The microscopic control available in this 
system further opens the possibility of probing and verifying entan-
glement with microscopic observables and, in the context of quantum 
simulation, implementing various 2D spin models of interest45–47. For 
quantum information applications, such a system can also be used to 
perform Rydberg-mediated quantum gates on long-lived spin or optical 
qubits19,20,24, or to prepare cluster states in a highly parallelized way for 
use in measurement-based quantum computing48.
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Methods

Hybrid potentials
Our science potential is a 2D tweezer array operating at 813 nm, a magic 
wavelength for the clock transition6, whereas the auxiliary potential 
operates at 515 nm, where a magic-trapping condition can be achieved 
for the 1S0 ↔ 3P1 cooling transition at 689 nm via tuning of a magnetic 
field9. The power requirements at 813 nm are more demanding com-
pared to 515 nm, owing to the roughly three times lower polarizability, 
a larger diffraction-limited spot size and a reduction in available laser 
power at this wavelength. However, critically, because the science 
potential is only used for the clock-interrogation stage, where shallow 
traps are preferable, these power constraints do not impose a limitation 
on atom number or state preparation.

The auxiliary potential includes a 2D tweezer array and a crossed- 
beam optical lattice, which provides additional confinement along 
the weakly confined ‘axial’ axis of the tweezers. Because the required  
confinement is the same in all axes for 3D ground-state cooling, this 
axial lattice greatly reduces the power requirements on the auxiliary 
tweezers. In our apparatus, with a numerical aperture of NA ≈ 0.68, 
this corresponds to a ~30-fold reduction in required optical power 
per tweezer. As a result, at modest optical power, we can create 
near-spherical traps with trap frequencies of roughly 90 kHz in all 
axes. By including various losses in our system and using ~4 W of total 
optical power, we create 320 such traps in a 16 × 20 array (see Fig. 1b, d).

Although the tweezers, and thus the radial trap frequencies, can be 
balanced across the entire array, there is substantial inhomogeneous 
broadening of the axial trap frequencies. This is due to the relatively 
small 25-μm waists of the lattice beams, which are comparable to the 
extent of the tweezer array (Extended Data Fig. 1). As mentioned in the 
main text, the axial cooling and handoff performance is vastly improved 
in a 6 × 6 region at the centre of the array, with an average phonon occu-
pation of n = 0.00−0.00

+0.06 (n = 0.06−0.06
+0.10 ), compared to the array average 

of n = 0.07−0.07
+0.14  (n = 0.25 ± 0.12 ) before (after) the handoff. Owing to 

the modest power requirements of the lattice, the lattice waist could 
easily be increased in the future without sacrificing axial trap frequency, 
suggesting that this enhanced performance could be achieved across 
the entire array.

Tweezer arrays. To prepare our 2D tweezer arrays, we image two 
orthogonal acousto-optic deflectors (AODs) onto each other in a 4f 
configuration. Two such systems at 515 nm and 813 nm are combined 
on a dichroic mirror and projected via the same high-NA objective 
lens, which has diffraction-limited performance between 461 nm and 
950 nm. The relevant parameters for the 515-nm and 813-nm tweezers 
are collected in Extended Data Table 1.

We space the two axes of our array differently, with spacings of 1.5 μm 
and 1.2 μm along the two orthogonal axes of the array, corresponding 
to offsets of ~5 MHz (~3 MHz) between adjacent 515-nm (813-nm) twee-
zers. This keeps nearby tweezers at different optical frequencies, so 
that any interference is time-averaged away and can be compensated 
for by trap balancing. For equally spaced tweezers, we observed d.c. 
interference fringes that cannot be removed owing to a lack of access 
to the appropriate degrees of freedom in trap balancing.

To balance the depths of individual tweezers, we split off a small 
fraction of the light before the objective, and measure the integrated 
intensity per tweezer using a CMOS camera. By adjusting the relative 
power in the different radio frequency (RF) tones applied to the crossed 
AODs, it is possible to balance the total optical power in each spot to 
within 5% of the mean, as measured on the camera. The main limitation 
on this balancing is a lack of fully independent control over each spot; 
each of the 16 + 20 = 36 RF tones has independent phase and amplitude 
control, however the relative phases are more or less fully constrained 
to avoid large voltage spikes that can cause intermodulation due to 
nonlinearities in the electronics that drive the tweezer system. As a 

result, we have only 36 degrees of freedom for balancing a tweezer 
array of 16 × 20 = 320 spots. Although it is possible to explicitly bal-
ance the tweezer powers at the atoms (for example, via light shifts or 
measurements of the trap frequency), we have not yet found this to be 
necessary, because the variations in trap depth are currently dominated 
by this lack of independent control.

Tweezer RF source. To supply the AODs used to generate our tweezers 
with appropriate RF signals, we use a custom field-programmable gate 
array (FPGA)-based frequency synthesizer. Specifically, the FPGA runs 
512 direct digital synthesis cores, which are interleaved to generate 
256 outputs with independently tunable frequency, phase and ampli-
tude. These outputs control four separate 16-bit digital-to-analogue 
converters (DACs), which each drive one of the four AODs used in our 
system. This corresponds to 64 independent RF tones per AOD, where 
each tone has 36 bits of frequency resolution, 12 bits of phase resolu-
tion and 10 bits of amplitude resolution. We concurrently generate 
a set of four data points for each tone at a rate of 153.6 MHz, result-
ing in an overall sample rate of 614.4 million samples per second. This 
corresponds to a maximum usable frequency of ~250 MHz (here we 
operate in the range 100–200 MHz); however, the DACs interpolate 
between these points by a factor of 4, resulting in an overall sample 
rate of 2,457.6 million samples per second, which allows easy filtering 
of harmonics on each output. These outputs are amplified using two 
stages of linear RF amplifiers, with the final stage being a high-power 
(10 W) amplifier that delivers ~2 W (~5 W) of total RF power to each of 
the 515-nm (813-nm) AODs.

Axial lattice. To form the axial lattice, 515-nm light of ~300 mW is split 
in an interferometer that creates two parallel beams with variable spac-
ing and controllable relative phase. These two beams are focused onto 
the atoms with a 30-mm achromatic doublet, so that each beam has a 
Gaussian 1/e2 radius of 25 μm at the atoms. These beams interfere to 
form a standing wave with wavevector normal to the tweezer plane. 
For the chosen beam spacing of 1.6 cm at the lens, the resulting lattice 
potential has a period of λl ≈ 1 μm. We can flatten this potential relative 
to the tweezer array at the λl/10 level (see Extended Data Fig. 2 and Sup-
plementary Information).

Experimental procedure
Our procedure for loading, ground-state cooling and imaging bos-
onic strontium-88 (88Sr) atoms in 515-nm optical tweezers is described 
in ref. 9 (see Extended Data Fig. 3). Power-hungry operations such as  
initial loading and imaging are performed exclusively in these tweezers. 
We have observed that loading can be performed in even shallower  
tweezers with the aid of the axial lattice; however, this results in an 
additional background of atoms that populate other layers of the  
lattice. To avoid this, we opt to load directly into the tweezers to ensure 
loading of a single atom plane.

In this work, the axial lattice is used primarily for improved sideband 
cooling8,9,49–51 in the axial direction. It is ramped on and off over 5 ms, 
and is shuttered for all stages of the experiment except for when per-
forming sideband cooling. To shrink the size of the atomic wave packet 
and prevent loading of adjacent lattice fringes, we perform 5 ms of 
unresolved axial and resolved radial sideband cooling in the tweezers 
before ramping on the axial lattice. The improved axial confinement 
with the lattice on creates nearly isotropic traps with ~90 kHz trap 
frequencies along all axes, and further cooling in this hybrid potential 
brings most of the atoms (81 %−22

+17 ) to the 3D motional ground state. 
Because the polarization of the axial lattice is aligned to that of the 
515-nm tweezers, we maintain the same ‘magic field’ conditions 
throughout this sequence9.

To hand atoms between the two sets of tweezers, we ramp on the 
813-nm tweezers in 5 ms with the 515-nm tweezers maintained at full 
depth, and then ramp the 515-nm tweezers off (see Extended Data 



Fig. 3). The intensity servo for our 515-nm tweezers takes a few milli-
seconds to stabilize after being turned back on, which can heat atoms 
out of the 813-nm tweezers. To avoid this, while the 515-nm tweezers 
are nominally switched off we also move them away from the atoms 
with the AODs used to project them, and then shutter the 515-nm beam 
path. To reintroduce the 515-nm tweezers, we turn on the beam and 
let the intensity servo settle to low power, un-shutter the beam path, 
and finally move the tweezers back to overlap with the 813-nm array. 
By shuttering the beam, we ensure that there are no light shifts of the 
clock transition due to stray 515-nm light while the atoms are in the 
813-nm tweezers. We note that although the handoff procedure can be 
performed with 0.0(3)% atom loss, for all clock data discussed in the 
main text this alignment was imperfect, resulting in an additional ~4% 
atom loss when handing atoms to and back from the science potential. 
Here, we choose not to correct this loss because it is inconsequential for 
clock performance; however, more careful and consistent calibration 
will be necessary for future works that are more sensitive to state purity.

Clock interrogation. After loading ground-state cooled atoms into 
the science potential, we can interrogate the clock transition. As in 
our previous work6, we apply a magnetic field of 22 G to mix the 3P1 
state into the 3P0 state, which opens the doubly forbidden 1S0 ↔ 3P0 
transition at 698 nm (ref. 52), at which point this transition can be driven 
optically. To avoid fluctuations in clock Rabi frequency due to intensity 
fluctuations, we opt to ramp up the clock laser intensity with the laser 
detuned from resonance by 125 kHz. Once the laser intensity servo 
settles, we can jump the detuning to near resonance for a variable 
time to excite atoms to the 3P0 state. To detect the population excited 
to 3P0 we apply a ‘blow-away’ pulse of 461-nm light resonant with the 
1S0 ↔ 1P1 transition to remove atoms that were in the ground state. To 
return clock-state atoms to the ground state for readout, we drive the 
3P0 ↔ 3S1 transition at 679 nm and the 3P2 ↔ 3S1 transition at 707 nm (see 
section ‘Repumping’ for additional details). The 3S1 state decays to 
the whole 3PJ manifold, such that eventually all clock-state atoms are 
pumped into the shorter-lived 3P1 state and decay back to the ground 
state, where they can be read out during imaging. With this protocol 
we observe no reduction in 3P0 maximal transfer fraction when using 
Rabi frequencies between 2π × 7 Hz and 2π × 0.4 Hz averaged across 
all ~150 atoms in the array (Fig. 1e).

All Rabi spectroscopy is performed in 25Er-deep tweezers, corre-
sponding to 58 μW of optical power per tweezer, as measured at the 
atoms. These shallow traps are the primary limit on the achievable 
transfer fraction for all Rabi frequencies used in this work. Specifi-
cally, these depths result in a relatively high Lamb–Dicke parameter of 
η = 0.83, and thus increased sensitivity to residual motional excitation 
(see Supplementary Information). However, the benefit of using such 
shallow traps is that clock frequency shifts arising from spatial varia-
tion of the tweezer wavelengths should be bounded to below 50 mHz 
across the entire array, resulting in reduced dephasing6. To confirm 
this, we fitted the spectrum of each tweezer to extract its centre value, 
and measured a standard deviation in these trap-dependent clock 
frequencies of 39(2) mHz (Fig. 1e).

For Ramsey spectroscopy, we use a π/2-pulse time of ~50 ms for all 
relevant data. At short times, the frequency of the Ramsey fringes is 
set by the differential light shift imposed by the probe beam on the 1S0 
and 3P0 states. At longer times, the loss of atom–laser coherence man-
ifests as a randomized phase of the second π/2 pulse in the Ramsey 
sequence. This obscures Ramsey oscillations but preserves the prob-
ability of large excursions due to the persistence of atomic coherence, 
where atomic coherence is defined as the magnitude of the off-diagonal 
elements in the average single-particle density matrix, ρ| |eg

.

Repumping. Our clock-state lifetime measurements can be confound-
ed by the presence of atoms pumped into the 3P2 state owing to Raman 
scattering of the trap light. These atoms are not distinguished from 

clock-state atoms during our normal blow-away measurement, and can 
lead to an artificially long inferred lifetime. To avoid this, we add an ad-
ditional repumping step that depletes 3P2 atoms before the blow-away 
by driving the 3P2 ↔ 3S1 transition at 707 nm. We note that because 3S1 
decays to 3P0 with a branching ratio of ~1/9, this measurement alone is 
insufficient to accurately determine the population in 3P0. As a result, 
we repeat the above measurement without repumping to measure the 
total 3P0 + 3P2 population. On the basis of these two measurements, we 
infer the true population in 3P0, which appears in Fig. 2a.

Trap lifetime
Deep traps. We expect our trap lifetimes, particularly in deeper traps, to 
be limited by collisions with residual background gas. These collisions 
are substantially more energetic than the trap depths that we have ac-
cess to, resulting in a vacuum lifetime that is effectively independent 
of trap depth53. This is confirmed via the procedure described in ref. 
54, assuming that the main collision partners are room-temperature 
Σ-state H2 molecules interacting via Van der Waals forces.

Based on this model, we expect clock-state atoms to have reduced 
trap lifetimes τ compared to ground-state atoms owing to their larger 
C6 coefficient and thus larger scattering cross-section σ, because in 
this case τ σ C∝ 1/ ∝ 6

−2/5. Using the known C6 coefficients for collisions 
between H2 and 88Sr (ref. 55), we calculate that the ratio between the 
ground- and clock-state trap lifetime (τg and τe, respectively) is 
τg/τe = 1.10, which agrees with results from ref. 30.

We estimate that the fractional frequency shifts due to these back-
ground collisions56,57 are below the 10−19 level, suggesting that this is 
not a likely explanation for the increased decoherence rate reported 
in the main text.

Shallow traps. The source of the dramatic reduction of trap lifetime in 
shallow traps remains unknown; however, based on the above analysis, 
we rule out the effect of collisions with background gas. Other potential 
sources could include tunnelling, or heating induced by parametric 
modulation, pointing noise or scattered light.

For 6Er-deep tweezers with 1.2 μm spacing, we calculate a tunnel-
ling rate of ~1 Hz between adjacent tweezers via exact diagonalization 
in one dimension. For image pairs in the experiment, we expect this 
tunnelling to manifest as correlated nearest-neighbour atom–vacancy 
and vacancy–atom events, where an atom tunnels from one site to an 
empty adjacent site, or pairs of atom–vacancy events, where an atom 
tunnels onto an occupied adjacent site, and both atoms are lost because 
of light-assisted collisions. We do not observe an excess of such events 
beyond what is expected owing to loss and imaging infidelity at any 
depth or hold time used in this work. This suggests that disorder, which 
we know is present on the scale of >10−2 in trap depth, plays a critical 
role in pinning the atoms. Given the relevant tunnelling energies, this 
is not unexpected, because even in our shallowest traps disorder on the 
scale of 10−4 in trap depth is sufficient to freeze out tunnelling. Similar 
calculations suggest that the effect of loss due to Zener tunnelling along 
the gravitational axis is negligible at all depths explored in this work.

Atom loss can also arise from heating caused by a variety of mecha-
nisms, including intensity and pointing noise from the trap laser, and 
scattered light. Intensity noise manifests as parametric modulation of 
the trap frequency, which, assuming a flat noise spectrum, results in 
exponential heating (measured in phonon number) with a time constant 
proportional to f t

2, where ft is the trap frequency. Similarly, pointing 
noise with a flat spectrum results in linear heating with a rate propor-
tional to f t

3 (refs. 58,59). For comparison, the number of bound states, 
N, in a tweezer scales roughly as N U f∝ ∝ t, where U is the trap depth. 
As such, assuming a flat noise spectrum, both these sources of loss 
should improve with reduced trap depth.

Whereas the intensity noise of our trapping laser is suppressed below 
10 kHz via a servo, and is otherwise relatively flat over the frequen-
cies relevant for heating, we do not expect this to be true for pointing 
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noise. In this case there is increased noise at lower frequencies due 
to mechanical resonances and acoustic noise, and there is no con-
venient way of removing such noise with a servo. As a result, pointing 
noise probably contributes to our reduced lifetimes at and below trap 
depths of 15Er (corresponding to trap frequencies of 6.8 kHz). Other 
sources of trap-independent heating, such as scattered background 
light, can also begin to dominate as the traps become very shallow and 
N becomes small.

Clock-state lifetime and coherence
The 3P0 clock-state lifetime is primarily limited by the loss processes 
described above, as well as by scattering of black-body radiation and 
the trapping light. Because we directly measure the 3P0 population, as 
described in the main text, we are sensitive to all processes that remove 
population from this state, including transitions to the metastable 3P2 
state. Raman scattering of the trap light can drive such transitions, 
with dominant contributions from 3P0 ↔ 3P1 and 3P0 ↔ 3P2. For π-polarized 
trap light, these processes occur with rates of E4.98 × 10 s−4

r
−1 −1  and 

E2.84 × 10 s−4
r
−1 −1 , respectively30. We note that whereas the ratio of 

these two scattering processes is polarization-dependent, their sum, 
with a value of Γ E= 7.82 × 10 s12

R −4
r
−1 −1 , is conserved. All population 

driven into 3P1 can be assumed to immediately decay into the ground 
state, whereas processes that return population in 3P2 to the 3P0 state 
are negligible. As such, to a good approximation, Γ 12

R  can be treated as 
the total rate at which the population in 3P0 is depleted because of 
Raman scattering.

Black-body radiation can off-resonantly drive transitions to the 
3D1 state, which decays to the 3PJ manifold with branching ratios  
of R = 59.65%J

D , 38.52% and 1.82% for the J = 0, 1 and 2 states, respec-
tively30. The dominant mechanism by which black-body radiation 
contributes to the decay of the 3P0 state is via population that 
branches from 3D1 into 3P1 and subsequently decays into the ground 
state. This process occurs at a rate of 2.23 × 10−3 s−1 (ref. 31) at room 
temperature, which we call Γ 1

BBR (BBR, black-body radiation). The 
sum of these effects with the rate at which 3P0 state atoms are lost 
from the tweezers, Γ e

t , is in good agreement with our measured 3P0 
decay rate, Γ Γ Γ Γ= + +e e

t
12
R

1
BBR (theory curve in Fig. 2a).

Given these decay rates, we can compute an expected Ramsey 
coherence time. Owing to the use of magic-wavelength traps, Ray-
leigh scattering of the trap light does not cause decoherence30. As a 
result, trap-induced scattering contributes only to decay of Ramsey 
contrast through the Raman scattering processes described above 
that remove population from the 3P0 state. Unlike Rayleigh scatter-
ing of the trap light, black-body processes that drive population out 
of and back into the 3P0 state (predominantly via 3D1) can serve as an 
extra source of decoherence that is not directly reflected in the 3P0 
lifetime measurement. Including all these effects, the inferred Ramsey 
coherence time is:

 






τ
Γ Γ Γ Γ

=
2

+ + + 1 +
,

(1)R

Re
t

g
t

12
R

1
BBR 0

D

1
D

where Γ g
t  is the ground-state atom loss rate. All of these relevant rates 

are summarized in Extended Data Table 2. We note that because of the 
use of 88Sr in this work, and given the strength of the magnetic fields 
used, the effects of spontaneous emission from the clock state are 
negligible in this analysis.

Clock accuracy
While a full accuracy evaluation is beyond the scope of this work, the 
prospects for using the tweezer platform as an absolute frequency 
reference are fairly good. Many of the dominant systematic effects 
in tweezer clocks are shared with optical lattice clocks6, which have 
accuracies that are currently known at the 10−18 level60. These effects 

are discussed in ref. 6, including benefits and drawbacks associated 
with our use of a bosonic isotope of strontium (88Sr).

The main additional complication in tweezer clocks is the shape of 
the tweezer potential itself. This yields modified expressions for the 
light shift5,61 (see Supplementary Information) and can result in spatially 
nonuniform polarization50,51, which further complicates these calcu-
lations. Our work provides a path towards minimizing these effects 
by operating with optical traps that are shallower than in any other 
platform. Furthermore, the ability to independently vary the depth 
of the traps opens up the possibility of performing measurements 
of the atomic polarizability and hyperpolarizability via synchronous 
comparisons that take advantage of the high stability demonstrated 
in this work. Such measurements are, in principle, only limited by QPN 
and thus can reach arbitrary precision with sufficient averaging time. 
Based on practical considerations, the prospects are good for charac-
terizing these effects at the 10−19 level, which would further reduce any 
inaccuracy imposed by the tweezers.

The new scheme for atom preparation presented here does not have 
any impact on accuracy, given that the auxiliary potential can be fully 
extinguished during clock operation. In the case of an asynchronous 
comparison, the fast state preparation, long lifetimes and potential 
for repeated interrogation of the same atomic ensemble in tweezer 
clocks5,6,42 lead to high duty cycles and thus reduced sensitivity to Dick 
effect noise in comparison to lattice clocks6.

Although the above characteristics are promising, there are a few 
additional technical considerations that could limit the accuracy of 
current tweezer clocks. Whereas in optical lattice clocks, the lattice  
mirrors serve as a convenient and robust reference for the atom posi-
tions, such a reference does not exist in tweezer clocks owing to sen-
sitivity to drifts in the entire tweezer rail (see below). This results in 
uncompensated Doppler shifts that can limit the atom–laser coherence 
time, and potentially accuracy, but could be addressed in our current 
apparatus by taking care to minimize air currents and vibrations in the 
tweezer system. So far, tweezer clocks have also suffered from inhomo-
geneous broadening due to slight variations in the optical wavelength 
of different tweezers5,6, as characterized carefully in this work. This is 
the result of RF offsets imposed by the acousto-optic deflectors used 
to generate the tweezer arrays, and could readily be addressed with 
alternative technologies, such as spatial light modulators, that do not 
result in such shifts.

Atom–laser coherence
As a conservative measurement of our atom–laser coherence, we fit the 
measured Ramsey fringes with frequency as a fixed parameter, which 
yields a lifetime of 3.6(2) s (Extended Data Fig. 4). This is consistent 
with the value of 3.4(4) s measured in our previous work6.

Our 698-nm clock light comes from a laser that is injection-locked 
with light stabilized to a cryogenic silicon reference cavity12. The out-
put of this injection lock travels through a 50-m-long noise-cancelled 
fibre. For the Rabi spectroscopy presented here, the clock path further  
included ~4 m of fibre and ~50 cm of free-space path, which were 
un-cancelled and added phase noise to our clock light. For all remain-
ing data, phase noise cancellation was performed using a reference 
mirror attached to the objective mount, which, to first order, sets the 
position of the tweezer array. This left only ~2 m of un-cancelled fibre 
in the path, but did not noticeably improve the atom–laser coherence 
of the system. This suggests that the atom–laser coherence could be 
limited by drifts of the position of the tweezer array relative to the objec-
tive due to air currents in the tweezer rail, or by other uncharacterized 
sources of noise in our fibre noise-cancellation system. We hope to 
address this shortcoming of the tweezer platform in future upgrades.

Limitations and scaling
The number of traps in this work is limited by thermal lensing in the 
optical rail used to project the deep 515-nm tweezers, which limits 



the usable optical power in the rail to ~1.5 W. Given the optical power 
available at 515 and 813 nm, and the RF bandwidth of the AODs used 
in the tweezer rail, such a system could readily be scaled to more than 
1,000 traps through more careful material selection and optical design. 
Moreover, the approach to scaling laid out here is generally applicable 
to other endeavours in quantum science, where it is useful to reduce 
the effects of scattering by using a far-detuned science potential while 
using a less far-detuned potential for fast, power-hungry stages of the 
experiment, which can alleviate constraints on atom number and/or 
laser power.

In our current apparatus, this scaling comes at the cost of relatively 
high atom loss incurred when imaging in 515-nm potentials8,9 com-
pared to the performance possible in 813-nm tweezers6,42. Although 
this is not an important issue for clock performance, it is relevant for 
gate- or many-body-based protocols for generating entanglement, 
where state purity can be critical. This could be addressed by imaging 
in a deep 813-nm 3D lattice, which can create tightly confining poten-
tials more efficiently than a tweezer array. Such an approach would 
have the added benefit of improving our Lamb–Dicke parameter for 
clock spectroscopy. Given the imaging performance6,42 and confine-
ment available in such a potential, single-qubit rotations on the clock 
transition could reach fidelities in excess of 99.9% (see Supplemen-
tary Information). In this case, a 515-nm tweezer array and axial lattice 
would still be required to perform high-fidelity ground-state cooling 
via the 1S0 ↔ 3P1 transition, and would further be useful for performing 
site-resolved rearrangement in the lattice. Indeed, preliminary results 
of loading from a tweezer array into a 2D lattice potential at 813 nm, 
already integrated into our apparatus, showed that low temperatures 
were achievable.

Units and errors
Unless otherwise stated, all errors and numerical uncertainties in this 
article and its Supplementary Information denote a 1-s.d. confidence 
interval. When we quote a lifetime, we are typically referring to the 1/e 
decay time. As a frequency, the inverse of this quantity may be read as 
radians per second. When we explicitly refer to a Gaussian time con-
stant, we are referring to the timescale associated with 1 s.d. of the 
Gaussian envelope.

Data availability
The experimental data presented in this manuscript are available from 
the corresponding author upon reasonable request. Source data are 
provided with this paper.

Code availability
The code used for analysis and simulation in this work is available from 
the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Sideband cooling and inhomogeneous broadening. 
The trap frequency and cooling performance in the radial direction is uniform 
across the entire array, as further confirmed by spectra taken along a radial axis 
orthogonal to that of the data presented in Fig. 1d (left). However, in a reduced 
6 × 6 region at the centre of the array (shown in the far-right inset), the axial 
cooling performance is vastly improved (right), with an average phonon 
occupation of n = 0.00−0.00

+0.06 (n = 0.06−0.06
+0.10 ) before (after) the handoff. This is  

due to the comparable extent of the lattice beams to the tweezer array  
(the light-green contour in the far-right inset shows the region over which the 
lattice intensity stays within 90% of its maximal value). Each data point 
corresponds to 20 repetitions of the experiment.



Extended Data Fig. 2 | Lattice alignment. a, b, Spatial phase of the 
standing-wave lattice at each tweezer, inferred from measurements at 15 values 
of the lattice phase averaged over 100 trials (see Supplementary Information) 
with an intentional tilt (a, left) and properly aligned (a, right). These show that it 
is possible flatten the lattice relative to the entire tweezer array to within 1/10 
of a lattice period (b). This allows for high-fidelity sideband cooling in all axes. 
‘Cts’, counts; ‘arb.’, arbitrary units.
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Extended Data Fig. 3 | Timing of experimental sequence. a, The green and 
black curves track the depths of the 515-nm and 813-nm tweezers, respectively. 
The coloured regions above and below the graph categorize each step of the 
experiment (described in more detail in Methods). We find that maintaining 
the 813-nm tweezers at a depth greater than 20Er during the ramp down 
improves the fidelity of the handoff procedure. Not shown is the time required 
to load atoms into the 515-nm tweezers from the magneto-optical traps used 

for initial trapping and cooling, which takes roughly 120 ms. LAC, light-assisted 
collisions. b, Zoomed-in view of our cooling procedure, showing the depth of 
the axial lattice. We perform two rounds of sideband cooling, indicated by the 
two regions shaded in grey. The first, done before ramping up the axial lattice, 
does not cool axial motion to the ground state. Instead, it is important for 
reducing the size of the atomic wave packet to ensure loading of a single lattice 
fringe.



Extended Data Fig. 4 | Measuring atom–laser coherence. Fitting measured 
Ramsey fringes with fringes of a fixed frequency provides a conservative 
estimate of atom–laser coherence. Callouts share x-axis units with the main 

plot, and show the fitted Ramsey data (the same data as used in Fig. 2b).  
‘pop.’, population.
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Extended Data Table 1 | Relevant optical trapping parameters

The higher polarizability and available laser power, as well as tighter spatial confinement, make the 515-nm tweezers more appropriate for cooling and imaging atoms in larger tweezer arrays, 
because these operations require more strongly confining traps. Previous data from refs. 34,62.



Extended Data Table 2 | Rates contributing to the predicted Ramsey lifetime

All measured values are for a trap depth of 15Er, based on interpolating between the nearest points in Fig. 2a. The asterisk indicates that the inferred value of Γe
t  is dependent on the reasoning 

and theory values presented in Methods. Note that Γ2
BBR is smaller than the error bars on the other processes, so we neglect this process in our analysis. U is the trap depth and Er is the recoil 

energy of an 813-nm photon. Previous data from ref. 30.
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