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Interactions
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We take advantage of a phase-stable, wide-bandwidth femtosecond laser to bridge

the fields of high-resolution spectroscopy and ultrafast science. This approach, which we

call Direct Frequency Comb Spectroscopy (DFCS), involves using light from a comb of

appropriate structure to directly interrogate atomic levels and to study time-dependent

quantum coherence. In fact, DFCS may be effectively applied to determine absolute

frequencies for atomic transitions anywhere within the comb bandwidth, obviating the

need for broadly tunable and absolutely referenced continuous-wave (cw) lasers.

In this work, we apply DFCS to determine absolute atomic transition frequencies

for one- and two-photon processes in laser-cooled 87Rb atoms. In addition, DFCS

enables studies of coherent pulse accumulation and multipulse interference, permitted

by the relatively long-lived excited states. These effects are well modeled by our density

matrix theory describing the interaction of the femtosecond comb with the cold atoms.

As in the case of precision spectroscopy performed with cw lasers, the use of

the femtosecond comb as a probe requires a careful understanding of all systematic

effects. We isolate and then mitigate the effects of the dominant sources of systematic

errors, which include the mechanical effect of the optical comb on the atomic motion,

Stark shifts by the probe laser, and Zeeman frequency shifts. The absolute frequency

measurement results are comparable to the highest resolution measurements made with

cw lasers. In addition, by determining the previously unmeasured absolute frequency

of the 5S-7S two-photon transitions in 87Rb, we show that prior knowledge of atomic

transition frequencies is not essential for DFCS.
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Chapter 1

Introduction

1.1 Overview

The recent introduction [1,2] of phase-stabilized, wide-bandwidth frequency combs

based on mode-locked femtosecond (fs) lasers has provided optical frequency markers

that may be directly linked to optical or microwave standards. Many laboratories

have since constructed frequency combs for a variety of exciting applications. These in-

clude: measurements of absolute optical frequencies and precision laser spectroscopy [3],

development of optical atomic clocks [4, 5], optical frequency synthesis [6] and broad-

band, phase-coherent spectral generation [7,8], along with coherent synthesis of optical

pulses [9], phase-sensitive extreme nonlinear optics [10] and pulse timing stabilization.

Ultrashort pulses may also be applied to study coherent evolution in atomic and

molecular systems. In particular, coherent wave packet motion has been observed and

even actively controlled [11]. In addition, current work involves the use of fs lasers to

achieve quantum coherent control in semiconductors [12] and in studying the temporal

dynamics of biological physics [13]. These studies may require pulses which are tailored

to probe or indeed selectively drive the dynamical process. This necessitates precise

control over the amplitude- and phase of the ultrashort pulses, otherwise known as

optical pulse synthesis [14].

On the road to tailoring optical pulses, one powerful demonstration was the phase-

coherence established between two independent femtosecond lasers. Coherent optical
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pulse synthesis from two fs lasers has been reported in 2001 [9], where light pulses were

generated with durations shorter than those obtainable from the individual lasers. This

leads to an extended coherent bandwidth to be used in ultrafast experiments.

Before the advent of phase-stabilization, research showed [15] that the longitudinal

modes of a 73-fs Kerr-lens mode-locked Ti:S laser [16] are uniformly distributed in

frequency space within an experimental resolution of better than 10−16 and that the

mode spacing differs from the pulse repetition frequency by less than 10−15. Thus,

passively mode-locked Ti:S lasers can possess an inherent stability and that is one of

their most powerful features.

On an apparently independent path, precise spectroscopic studies of atoms and

molecules have always been performed with continuous wave (cw) lasers, refined over

the years to be very narrow spectrally, in order to enable probing of very narrow fea-

tures [17]. Precision atomic and molecular spectroscopy, enabled by the progress in

cw laser stabilization, has been one of the most important fields of modern scientific

research, providing the experimental underpinning of quantum mechanics and quantum

electrodynamics (e.g. detailed investigations of atomic and molecular structure, deter-

mination of fundamental constants, realization of time, frequency and length standards,

tests of special relativity, progress in optical communications etc.).

In the first experiments using mode-locked femtosecond lasers, they served only as

rulers for studying atomic systems and did not directly interrogate the atoms. Hänsch

and coworkers used the comb spectrum of a fs laser to span an optical interval of 50 nm,

and improved the measurement accuracy of the D1 resonance line in cesium by almost

three orders of magnitude [18], providing a new value for the fine structure constant. To

measure the D1 line, its frequency was compared against the fourth harmonic of a CH4-

stabilized laser employed as the absolute frequency reference. The fs comb was used

as a frequency ruler to measure the resulting frequency difference of 18.39 THz (this

frequency interval contained roughly 244 000 comb lines). To uniquely determine the
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exact number of comb lines involved and therefore the unknown frequency, an optical

cavity was employed to select every 20th mode, thus increasing the pulse repetition rate

by a factor of 20.

Diddams and colleagues at JILA later bridged a frequency gap of 104 THz [19],

yielding an improved frequency measurement of the 1064 nm Nd:YAG laser by using

a 778-nm two-photon transition in 85Rb as an absolute reference. In a following ex-

periment, the output of the laser was spectrally broadened to an optical octave in a

microstructure fiber, permitting a direct measurement of an iodine-stabilized Nd:YAG,

and then measurements of ‘known’ frequencies within the laser spectrum, such as the

well established transitions at 633 nm and 778 nm [20].

Phase-stabilization of mode-locked lasers was enabled by the implementation of

self-referencing techniques [21] by means of highly nonlinear microstructure fibers [22].

A self-referencing technique, that will be discussed in Chapter 3, was first demonstrated

at JILA by Jones and coworkers [1]. They also made absolute frequency measurements

using a phase-stabilized frequency comb referenced to the primary Cs standard. The

stabilized frequency combs, providing a dense grid of reference frequencies that span

substantial parts of the visible to near-infrared, have rapidly become extremely pow-

erful tools for optical frequency metrology, opening the door to a new exciting era of

remarkable progress. This is because atomic and molecular structural information can

now be probed over a broad spectral range, with vastly improved measurement precision

and accuracy enabled by this absolute frequency-based approach.

To date, however, these applications of fs lasers in frequency metrology used

the frequency comb only as a reference ruler, while still employing the traditional cw

laser-based spectroscopic approaches [23].
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1.2 What about using the femtosecond comb directly for spec-

troscopy?

The main problem with using a pulsed laser for spectroscopy is the broad fre-

quency bandwidth associated with a short pulse. The broad spectrum prevents high-

precision measurements of state energies. This problem can be avoided by using a train

of phase-coherent pulses, which permits frequency resolution orders of magnitude better

than that associated with a single pulse.

T. Hänsch first introduced the idea of using coherent pulse trains from mode-

locked lasers for the measurement of optical frequency intervals and high-resolution

spectroscopy in 1976 [24]. A stable train of pulses forms a regular and discrete set of

modes separated by the pulse repetition rate in the frequency domain. Hänsch showed

that a sequence of pulses results in signal enhancement over single-pulse excitation for

the atomic transition amplitude. In particular, he pointed out the resonant excitation

probability is proportional to the squared number of pulses arriving within the atomic

lifetime (for small incident light intensities).

The spectroscopic applications of this multi-pulse interference were experimen-

tally demonstrated within the following two years. First, a train of phase-coherent pulses

produced externally to the laser, by multiple reflections of a single pulse injected into an

optical resonator, was utilized for Doppler-free two-photon excitation in Na [25]. Then,

in 1978, the comb of a mode-locked picosecond dye laser [26] was used to measure the

Na 4d fine-structure splitting, i.e. frequency intervals of ∼ 1 GHz, via Doppler-free two-

photon spectroscopy [27]. In this experiment, the axial mode separation was actively

controlled in the frequency domain (equivalent to stabilizing the repetition frequency of

a train of pulses). As the laser spectrum is scanned, resonant excitation occurs whenever

the sum of two frequencies is equal to the two-photon transition frequency. The comb

of lines was used as a ruler in frequency space to measure optical frequency differences.
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The limitation of this technique was the small bandwidth of the available mode-locked

dye lasers, preventing measurements of large optical frequency differences.

The powerful combination of cw stabilization, passively mode-locked lasers and

microstructure fibers, culminating with the phase-stabilization of femtosecond lasers,

has made it possible to meet some of the conditions necessary to probe atomic structure

directly with a frequency comb for precise frequency measurements: (i) short pulses,

i.e. wide bandwidth (ii) pulse-to-pulse coherence and (iii) absolute referencing of the

frequency comb.

Many new technologies have been enabled by the phase-stabilization of femtosec-

ond lasers. In order to be able to phase-stabilize a femtosecond laser, one needs to

understand its pulse characteristics. The connection between the short pulses emitted

from the laser and the powerful frequency comb generated is described in the following

section.

1.3 Time- and frequency-domain description of mode-locked lasers

The output of a mode-locked laser is a very regular train of ultrashort pulses, with

the interval between pulses τ usually ∼ 6 orders of magnitude higher than the pulse

duration. These short pulses are produced when a fixed phase relationship is established

among all the lasing longitudinal modes of the laser cavity (i.e. mode-locking), resulting

in their coherent addition and the formation of a light pulse. An isolated light pulse

can be represented as a sinusoidal optical carrier of angular frequency ωc, amplitude-

modulated by an envelope function E(t), with the electric field thus given by E(t) =

E(t) exp [ i (ωc t + φ0)]. When traveling through a medium, the carrier propagates at

the phase velocity, while the envelope advances at the group velocity. In general, the

two velocities are different for a dispersive medium: vp = c /n and vg = c /
(
n + ω ∂ n

∂ ω

)
.

For instance, traversing a distance l in a dispersive material gives a phase shift of

ωc

(
l

vg
− l

vp

)
= l ωc

2

c
∂ n
∂ ω = −2π l ∂ n

∂ λ . This difference in the phase and group velocities
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inside the laser cavity causes the phase between the optical carrier and the peak of the

envelope to evolve between successive pulses in the train. Let δφ denote the amount by

which the carrier-envelope phase changes from pulse to pulse. After including this pulse-

to-pulse phase-shift, the electric field of a train of pulses for a fixed spatial coordinate

is

E(t) =
∑
n

En(t− nτ) exp [ i (ωc t + φ0 − n ωc τ + n δφ)]. (1.1)

By taking its Fourier Transform [28] we obtain the following expression for the angular

frequencies

ωN =
N 2π

τ
− δφ

τ
. (1.2)

Thus, the spectrum of the mode-locked femtosecond laser consists of a wide comb

of discrete optical frequencies, offset from the exact harmonics of the repetition rate

by a frequency proportional to the pulse-to-pulse carrier-envelope phase shift [Fig. 1.1].

The spectrum is described by the simple relation νN = Nfr + f0, where N is a large

integer on the order of 106, fr = 1
τ is the pulse repetition rate and f0 = − 1

2π δφ fr is the

carrier-envelope offset frequency. Note that the relevant quantity here is δφ modulo 2π,

i.e. f0 is bounded by fr.

The two laser parameters are dynamic quantities, sensitive to environmental per-

turbations affecting the laser cavity. Not surprisingly, there are no locking mechanisms

between the pulse envelope and the optical carrier inside an unstabilized laser, so their

relative phase δφ experiences fluctuations between successive pulses. Consequently, for

spectroscopic studies with a femtosecond laser, both comb parameters fr and f0 need

to be actively stabilized.

As a reminder, absolute optical frequency measurements are made with respect

to the ground state hyperfine splitting in 133Cs at 9.192631770 GHz, which provides

the current definition for the second. This leap from the optical to the radio-frequency

domain has been a daunting task in frequency metrology for the last 30 years, before
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fo

fr

νN = N fr + fo

I(ν

ν

)

FT
1  fr = τ

E(t

t

φδ φ2δ)

Figure 1.1: Correspondence between the time and frequency domains for a Ti:S mode-
locked laser. In the time domain, the carrier-envelope phase changes at a defined rate
between successive pulses in the train. In the frequency domain, the comb lines are
spaced by the laser repetition rate fr and the comb is shifted from integer multiples of
fr by an offset frequency f0. The Ti:S laser used in the experiment is centered at 778
nm and has a FWHM bandwidth of ∼ 55 nm.
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the introduction of the mode-locked approach. Because of the complexity involved,

only a few harmonic frequency chains were ever implemented, for very specific optical

frequency measurements. A few examples are: the 88 THz transition in CH4 [29] (which

led to the speed of light measurement [30]), the I2-stabilized He-Ne transition at 473

THz [31], the 455 THz intercombination transition in 40Ca [32], the 5s 2S1/2→ 4d 2D5/2

transition at 445 THz in 88Sr+ [33], the 2S-12D transitions in hydrogen and deuterium

at 799 THz [34]. Stabilized frequency combs allow one to phase-coherently link any

unknown optical frequency within the comb spectrum directly to a primary microwave

standard.

1.4 Direct Frequency Comb Spectroscopy

Following our own theoretical studies [35], we take advantage of the phase-stable,

wide-bandwidth femtosecond pulse train to bridge the fields of high-resolution spec-

troscopy and ultrafast science, in a spectroscopic study of laser-cooled 87Rb atoms.

This approach, which we call Direct Frequency Comb Spectroscopy (DFCS), involves

using light from a comb of appropriate structure to directly interrogate atomic levels

and to study time-dependent quantum coherence.

By utilizing a stabilized fs comb, multiple atomic states may be simultaneously

and directly excited, by tuning the appropriate comb lines into resonance, and the subse-

quent dynamics may be probed. Furthermore, given that the comb has two independent

degrees of freedom, it is always possible to simultaneously satisfy two-photon as well as

one-photon resonance conditions.

In fact, DFCS may be applied to determine absolute frequencies for atomic tran-

sitions anywhere within the comb bandwidth. The entire transition spectrum can be

efficiently retrieved by a quick scan of the laser repetition frequency. This obviates the

need for a broadly tunable and absolutely referenced cw laser and is especially useful in

the study of multi-photon processes where several laser sources may be required. Thus,



9

optical frequency combs are a highly efficient tool for precise studies of atomic structure.

In this work, we apply DFCS to determine absolute atomic transition frequencies

for one- and two-photon processes, as illustrated in Fig. 1.2. DFCS enables studies

of coherent pulse accumulation and multipulse interference, permitted by the relatively

long-lived 5D and 7S states. The observed coherent pulse accumulation and interference

effects are well modeled by our density matrix theory describing the interaction of the

femtosecond comb with the atoms, as discussed in Chapter 2. We use the theory results

to construct transition spectra to compare against the experimental spectra.

ν

5D or 7S

5P1/2 or 5P3/2
(27 ns)

(240 ns or 88 ns)

5S

3 >

2 >

1 >

f =100 MHzr

87Rb

Figure 1.2: Schematic of the 87Rb energy levels participating in the 5S-5D and 5S-7S
two-photon transitions and 5S-5P one-photon transitions. These are the relevant levels
probed using direct frequency comb spectroscopy (DFCS).

We present the details of the implementation of the femtosecond stabilization

scheme and the MOT setup in Chapter 3. These are integrated together for spectro-

scopic studies in Chapter 4.

As in the case of precision spectroscopy performed with cw lasers, the use of the

femtosecond comb as a precision probe requires a careful understanding of all systematic

effects. We find that the dominant effects are the mechanical effect of the optical comb
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on the atomic motion, the light shift by the probe laser, and the Zeeman frequency

shifts. In Chapter 4, we address the mechanical action of the probe laser by using a

counterpropagating beam configuration. We observe Stark shifts generated by detunings

from the intermediate states in the two-photon processes and we reduce their effect by

always probing on resonance with the intermediate state of interest.

We first study the 5S-5D two-photon transitions in 87Rb, leading to high-resolution

spectroscopy for some of the transitions, as presented in Chapter 5. The measurement

results are comparable to the highest resolution measurements made with cw lasers.

By determining the previously unmeasured absolute frequency of the 5S-7S two-photon

transitions in 87Rb, we show that prior knowledge of atomic transition frequencies is

not essential for this technique to work, and indicate that it can be applied in a broad

context. When resonant enhancement is enabled by a comb component tuned near an

intermediate 5P state, we observe two-photon transitions occurring between initial and

final states that differ by one unit of the total angular momentum (∆F = ±1), which

are absent for far-detuned intermediate states. This capability of accessing adjacent

excited hyperfine levels from the same ground state allows for direct measurements of

hyperfine splittings.

We then use DFCS to measure one-photon transitions, and choose the 5S-5P

transitions as an example, as detailed in Chapter 6. The measurement of 5P states

is also carried out indirectly via the 5S-5D two-photon transitions, by studying their

resonant enhancement when comb components are scanned through the intermediate

5P states. We compare the 5P measurements obtained via one-photon and two-photon

DFCS and clearly demonstrate the importance of population transfer in working with

multilevel systems probed by multiple comb components. Incoherent processes such as

optical pumping govern the population dynamics beyond the atomic decoherence time.

For the case of the indirect 5P frequency measurements via the 5S-5D two-photon

transitions, the experimental data do not yield directly the lineshape. In this case, we
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use the theory prediction to adjust the raw data and retrieve a Lorentzian lineshape, as

described in Chapter 6.

The optical coherence of a phase-stabilized pulse train provides a spectral re-

solving power approaching that of state-of-the-art cw lasers. At the same time, the

narrow linewidth of individual comb lines permits a precise and efficient determination

of the global energy-level structure, providing a direct connection among the optical,

terahertz, and radio-frequency domains.



Chapter 2

Density-matrix method for coherent accumulation

in a multi-level atom

We will now study coherent accumulation in a multi-level atom interacting with

a train of ultrashort pulses. For the situation where the atomic relaxation times are

longer than the interpulse interval τ , the atomic coherence will survive between two

consecutive pulses, leading to coherent accumulation of excitation in the sample. Con-

structive/destructive interference among the coherences excited by the train of pulses

will determine the final atomic populations. We will focus on the accumulative effects

occurring in the sequential 5S-5P-5D two-photon transitions.

The interaction of the femtosecond comb with the atoms is modeled starting with

the Liouville equation for the density matrix of all the atomic states in the laser band-

width accessible through two-photon absorption, with radiative relaxation included via

phenomenological decay terms. The density matrix equations are solved to a fourth-

order perturbative expansion in the electric field. With the approximation of impulsive

optical excitation during the pulse, followed by free evolution and decay, an iterative nu-

merical procedure is used to determine the state of the atomic system after an arbitrary

number of pulses.
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3k>

2j >

1i>

5D

5P

5S

k = 1,8

i = 1,2

j = 1,6

Figure 2.1: Cascade configuration for a multi-level atom.

2.1 Modeling coherent interactions

Consider an electric field E(t) interacting with a multi-level atom in which all

the levels are distributed in three different manifolds |1i〉, |2j〉 and |3k〉, in a cascade

configuration, as presented in Fig. 2.1. Here ‘1’ labels the ground 5S states, ‘2’ the

intermediate 5P states and ‘3’ the excited 5D states, while i, j and k stand for the

various fine and hyperfine levels of a specific state. We adopted this simplified notation

for the energy levels only in the theory chapter, because it will make the following

equations easier to follow.

The Hamiltonian of the system Ĥ is given by the sum of the field-free atomic

Hamiltonian Ĥ0 and the interaction potential between the atom and the electric field

in the electric-dipole approximation Ĥint. Thus, Ĥ = Ĥ0 + Ĥint, with

Ĥ0 =
∑

i

E1i|1i〉〈1i|+
∑
j

E2j |2j〉〈2j|+
∑
k

E3k|3k〉〈3k| and

Ĥint = −
∑
i,j

µ1i,2j E(t)|1i〉〈2j|+
∑
j,k

µ2j,3k E(t)|2j〉〈3k|+ h.c., (2.1)

where E1i, E2j , E3k are the energies of levels |1i〉, |2j〉 and |3k〉, respectively, and µi,j

is the dipole moment of the i → j transition.
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We are interested in the time evolution of the state of the system after a long

sequence of pulses. This temporal evolution is described by the Bloch equations, derived

from the Liouville equations upon inclusion of the relaxation terms. The starting point

is therefore the Liouville equation for the density-matrix elements of the multi-level

atomic system, resulting in 9 families of equations for the ground-, intermediate- and

excited-state populations, the intra-ground-, intra-intermediate- and intra-excited-state

coherences, as well as the 1-2, 2-3 and 1-3 coherences. For clarity, I will write out

some representative Liouville equations, for the ground-state populations, ground-state

coherences and the 1-2 coherences, respectively:

∂ρ1i,1i

∂t
= − i

h̄
〈1i|[Ĥ, ρ̂]|1i〉 ground-state population

∂ρ1i,1s

∂t
= − i

h̄
〈1i|[Ĥ, ρ̂]|1s〉, s 6= i intra-ground-state coherence

∂ρ1i,2j

∂t
= − i

h̄
〈1i|[Ĥ, ρ̂]|2j〉 1-2 coherence. (2.2)

The 6 remaining families can be written in a similar manner.

The Bloch equations are obtained from the Liouville equations after including the

relaxation rates Γi,j of the (i, j) density matrix components. Note that for our case,

Γ1i,1i = 0, all the population decay rates for a given state are equal, i.e. Γ2j,2j = Γ5P ≡

Γ2 and Γ3k,3k = Γ5D ≡ Γ3, and Γi,j = 1
2 (Γi,i + Γj,j). The subscripts indicating the

states in the Γ coefficients will all be kept in the following derivation, for symmetry of

the equations. As an example, I will write the Bloch equation for the 1-2 coherence:

∂ρ1i,2j

∂t
= −iω1i,2j ρ1i,2j −

i

h̄
〈1i|[Ĥint, ρ̂]|2j〉 − Γ1i,2j ρ1i,2j (2.3)

This was obtained by substituting the expression for the Hamiltonian Ĥ in Eq. 2.2, with

ωi,j ≡ (Ei−Ej)/h̄. All the coherence equations look the same as Eq. 2.3, with only the

appropriate change of indices.

Before writing expressions for the populations of levels |1〉 and |2〉, we must also

consider the incoherent feeding of level |2〉 by level |3〉 and |1〉 by |2〉 present in a multi-
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level atomic system. Including these additional terms gives the populations as

∂ρ1i,1i

∂t
= − i

h̄
〈1i|[Ĥint, ρ̂]|1i〉 − Γ1i,1i ρ1i,1i +

∑
r

γ1i,r ρr,r (2.4)

∂ρ2j,2j

∂t
= − i

h̄
〈2j|[Ĥint, ρ̂]|2j〉 − Γ2j,2j ρ2j,2j +

∑
r

γ2j,r ρr,r

∂ρ3k,3k

∂t
= − i

h̄
〈3k|[Ĥint, ρ̂]|3k〉 − Γ3k,3k ρ3k,3k.

More details about deriving the incoherent feeding terms will be given in 2.1.2.

We can now integrate Eqs. 2.3 and 2.4, with the assumption of impulsive optical

excitation during the interaction time: the pulse duration is ultrashort compared to the

pulse repetition period or any relaxation time of the system, as seen from Table 2.1.

Pulse duration ∼ 30 fs
Laser repetition period 10 ns

5P lifetime 27 ns [36]
5D lifetime 240 ns [36]

1-2 coherence lifetime 54 ns
1-3 coherence lifetime 480 ns
2-3 coherence lifetime 48.5 ns

Table 2.1: Relevant times for the interaction of the femtosecond laser with the
87Rb atoms.

This means that the interaction potential Ĥint changes on a very fast timescale

compared to the Γi,j relaxation rates, allowing us to neglect the temporal dependence

on Γi,j inside the integrals containing Ĥint, and yielding:

ρ1i,1i(t) = e−Γ1i,1i t

[
ρ0
1i,1i −

i

h̄

∫ t

0
dt′〈1i|[Ĥint, ρ̂]|1i〉+

∑
r

γ1i,r

∫ t

0
dt′eΓ1i,1i t′ ρr,r(t′)

]

ρ1i,2j(t) = e−iω1i,2j t−Γ1i,2j t
[
ρ0
1i,2j −

i

h̄

∫ t

0
dt′eiω1i,2j t′〈1i|[Ĥint, ρ̂]|2j〉

]
(2.5)

for the ground-state population and 1-2 coherence, respectively.

Numerical integration of Eq. 2.5 gives the time evolution of the system with ar-

bitrary initial conditions, but is computationally challenging for the 87Rb atom, where

there are two 5S initial levels, six 5P intermediate levels and eight 5D final levels,
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leading to a total of 162 = 256 coupled Bloch equations. To avoid the long computa-

tional times, our collaborator Daniel Felinto [37,38] has developed an iterative numerical

procedure that determines the state of the atomic system after any number of pulses.

As previously mentioned, for laser repetition periods τ shorter than the relaxation times

of the system, as is the case of 87Rb, the atomic sample will accumulate excitation in

the form of population and coherence.

In Daniel Felinto’s iterative solution, the state of the system before the (n + 1)-

th pulse in the train is obtained from the state prior to the n-th pulse. The relation

connecting ρn+1 to ρn is easily derived from Eq. 2.5 by setting t = τ . Again, making

the impulsive optical excitation assumption means setting t → ∞ in all the integrals

containing Ĥint; the lower limit can be made t → −∞, since E(t) = 0 for t < 0. For

the two sample elements of the density matrix appearing in Eq. 2.5 we obtain

ρn+1
1i,1i = e−Γ1i,1iτ

[
ρc
1i,1i +

∑
r

γ1i,r

∫ τ

0
dt′eΓ1i,1i t′ ρr,r(t′)

]
(2.6)

ρn+1
1i,2j = e−iω1i,2jτ−Γ1i,2jτ

[
ρc
1i,2j

]
,

where

ρc
r,s = ρn

r,s −
i

h̄

∫ ∞

−∞
dt′eiωr,s t′〈r|[Ĥn

int, ρ̂]|s〉 (2.7)

is the density matrix coherently excited by the n-th pulse (Ĥn
int), a function of the initial

state prior to the n-th pulse ρn. Expressions similar to Eq. 2.6 are derived for the 7

remaining families of equations.

As a demonstration, Fig. 2.2 (adapted from Felinto et al., reference [38]) shows

the temporal evolution of the ρ22 and ρ33 populations in a three-level atom interacting

with a train of hyperbolic-secant pulses. The total number of coupled Bloch equations

for this system is 32 = 9, so a direct numerical integration is not yet computationally

intensive. The solid lines are a result of the direct numerical integration (∼ 1.5 hours of

computational time), while the open circles arise from successive applications of Eq. 2.6

to the atom initially in the ground state (< 10 s). The transient behavior of the excited
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level populations is governed by their significantly different (factor of 10) lifetimes, as

demonstrated by the different timescales in the two frames of the figure.

Figure 2.2: (adapted from reference [38]) Time evolution of the populations ρ22 and
ρ33 for a three-level atom interacting with a train of hyperbolic-secant pulses. The two
frames are different timescales of the same evolution, where the solid lines are a result
of direct numerical integration of the Bloch equations and the open circles come from
successive applications of Eq. 2.6.

After a large number of pulses, the system reaches a stationary state that repeats

every τ . The shape of the direct-integration curve accounts for the very fast change

in population during the pulse interaction time, followed by a slow decay in between

pulses. The numerical-iteration method agrees well with the direct integration, in that

it always matches the value at the minimum. This happens because, in the iteration
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procedure, the initial state is always taken to be the state ρn just before the impulsive

excitation. The situation would be reversed and the two curves would match at the

maximum if the initial state were the state immediately after each individual pulse.

To summarize, in the simplified treatment of coherent accumulation for a two-

photon process in a multi-level atom, there are two major steps: the first is obtaining the

state of the system after the interaction with a pulse in the train, for an arbitrary initial

state of the atom (Eq. 2.6). The second step is the successive application of Eq. 2.6,

yielding the atomic state after a sequence of pulses, or in other words, describing the

time evolution of the system.

2.1.1 The coherently excited density matrix ρc

There are two quantities left to calculate now, the coherently excited density

matrix in Eq. 2.7, associated with the impulsive excitation during the laser pulse, and

the feeding terms in Eq. 2.4, arising from incoherent decay.

We will first focus on ρc, realizing that it is a product of two probability amplitudes

in the interaction picture

ρc
i,j = Ci × C∗

j , Ci = 〈i|ÛI(t)|Ψ0〉, (2.8)

with Ψ0 the initial state of the system, which is a superposition of all the atomic states,

and ÛI(t) the time propagation operator in the interaction picture, given by

ÛI(t) = 1 +
(
− i

h̄

)∫ t

0
dt′ĤI

int(t
′) +

(
− i

h̄

)2 ∫ t

0
dt′
∫ t′

0
dt′′ĤI

int(t
′)ĤI

int(t
′′) + . . . (2.9)

After inserting the relation for ĤI
int(t), ĤI

int(t) = eiĤ0t/h̄ Ĥint(t) e−iĤ0t/h̄, and specifying

the electric field E(t) = E(t)eiωct+iφ0 + c.c. as defined in section 1.3, we obtain the

following general expressions for the three groups of probability amplitudes:

C3k(t) =
∑
s

A3k,3sC
0
3s +

∑
j

A3k,2j e−iφ0C0
2j +

∑
i

A3k,1i e
−2iφ0C0

1i (2.10)
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C2j(t) =
∑
k

A2j,3k eiφ0C0
3k +

∑
s

A2k,2sC
0
2s +

∑
i

A2j,1i e
−iφ0C0

1i

C1i(t) =
∑
k

A1i,3k e2iφ0C0
3k +

∑
j

A1i,2j eiφ0C0
2j +

∑
s

A1i,1sC
0
1i,

where Ai,j are the Dyson coefficients corresponding to the time evolution from state i

to state j. This yields the final formula for any element (i, j) of the impulsively excited

density matrix ρc

ρc
i,j = e−iBi,j φ0

∑
r,s

Ai,rA
∗
j,s eiBr,s φ0ρ0

r,s, (2.11)

with Bi,j = 2
∑

k(δ3k,i − δ3k,j) +
∑

k(δ2k,i − δ2k,j), where the δ s are Kronecker symbols.

We are interested in developing a theory in the weak-field regime: from the infinite

Dyson series only the terms up to the fourth order in the electric field will be kept. The

fourth order is the smallest order contributing to population in the most excited level

for two-photon transitions from the ground state. In this regime, making the rotating-

wave approximation will result in expressions for the 9 groups of elements Ai,j present

in Eqs. 2.10 and 2.11. As an example, I will write out the expression for A3k,3s:

A3k,3s = δ3k,3s +
(
− iea0

h̄

)2∑
r

m3k,2rm2r,3s

∫ t

0
dt′
∫ t′

0
dt′′eiδ3k,2r t′eiδ2r,3s t′′E∗(t′)E(t′′)

+
(
− iea0

h̄

)4 ∑
r,n,q

m3k,2rm2r,1nm1n,2qm2q,3s

∫ t

0
dt′
∫ t′

0
dt′′
∫ t′′

0
dt′′′
∫ t′′′

0
dt′′′′eiδ3k,2r t′

× eiδ2r,1n t′′eiδ1n,2q t′′′eiδ2q,3s t′′′′E∗(t′)E∗(t′′)E(t′′′)E(t′′′′) +
(
− iea0

h̄

)4

×
∑
r,n,q

m3k,2rm2r,3nm3n,2qm2q,3s

∫ t

0
dt′
∫ t′

0
dt′′
∫ t′′

0
dt′′′
∫ t′′′

0
dt′′′′eiδ3k,2r t′eiδ2r,3n t′′

× eiδ3n,2q t′′′eiδ2q,3s t′′′′E∗(t′)E(t′′)E∗(t′′′)E(t′′′′), (2.12)

with δi,j ≡ ωi,j − ωc the detunings relative to the carrier frequency, mi,j = µi,j/ea

dimensionless dipole moments, e the electron charge and a the Bohr radius. The last

three terms in Eq. 2.12 are second-order and fourth-order contributions to the excitation,

related to the processes of absorption and stimulated emission on the lower and upper

transitions. They are schematically drawn in Fig. 2.3.

This messy expression can be greatly simplified if we consider the situation where
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2>

3>

1>

Figure 2.3: Vector diagrams for the four terms present in Eqs. 2.12 and 2.13 for the
sample Dyson coefficient.

the pulse is ultrashort compared to the time variation determined by the atomic detun-

ings, i.e. we neglect all the exponentials in Eq. 2.12, and if we limit ourselves to the

reasonable case of a real envelope function. Under these approximations, the nested

integrals take a much simpler form, via successive integration by parts, with the result

A3k,3s = δ3k,3s −
θ 2

2!

∑
r

m3k,2rm2r,3s + (2.13)

+
θ 4

4!

(∑
r,n,q

m3k,2rm2r,1nm1n,2qm2q,3s +
∑
r,n,q

m3k,2rm2r,3nm3n,2qm2q,3s

)
.

Here θ is the pulse area, defined as

θ =
ea

h̄

∫ ∞

−∞
dt E(t) pulse area. (2.14)

2.1.2 The incoherent feeding terms

There are two very different timescales over which the populations present in

the feeding-term integrals vary: first, there is a very fast change in population during

the pulse interaction time, followed by a slow, incoherent decay during the interpulse

interval. In this model, it is assumed for simplicity that level |2〉 is fed only by level |3〉,

and |1〉 is only fed by |2〉. Note that the population in the latter level varies in time

due to feeding from |3〉. However, in reality, there are two decay channels for the 5D

population [36], as illustrated in Fig. 2.4: the first is the 5D-5P-5S radiative cascade
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and the second is the 5D-6P-5S cascade. In fact, we experimentally determine the 5D

population by detecting the 420 nm blue fluorescence emitted in the 6P-5S transition.

The 6P state is not included in the simulation.

5P3/2 (1/2)

6P3/2 (1/2)

776 (762) nm

780 (795) nm 420 (422) nm

62% 38%

31% (27%)

5D

5S

5.2 µm

Figure 2.4: Decay paths for the 5D levels of 87Rb, with the corresponding transition
wavelengths and branching ratios specified. In the experiment, we detect the 6P-5S blue
photons at 420 nm, which represent roughly 10% of the 5D population. The 6P levels
also decay to the 6S and 4D levels, not pictured here.

For the situation where the pulse duration is ultrashort compared to the laser

repetition period τ and considering only the 5P decay channel for the 5D population,

we have:

∑
k

γ2j,3k

∫ τ

0
dt′eΓ2j,2j t′ρ3k,3k(t′) '

∑
k

γ2j,3k ρc
3k,3k

∫ τ

0
dt′eΓ2j,2j t′e−Γ3k,3k t′

=
∑
k

γ2j,3k ρc
3k,3k

1− e(Γ2j,2j−Γ3k,3k)τ

Γ3k,3k − Γ2j,2j

(2.15)

∑
j

γ1i,2j

∫ τ

0
dt′eΓ1i,1i t′ρ2j,2j(t′) '

∑
j

γ1i,2j

∫ τ

0
dt′eΓ1i,1i t′e−Γ2j,2j t′

×
[

ρc
2j,2j +

∑
k

γ2j,3k

∫ t′

0
dt′′eΓ2j,2j t′′ρ3k,3k(t′′)

]

=
∑
j

γ1i,2j ρc
2j,2j

1− e(Γ1i,1i−Γ2j,2j)τ

Γ2j,2j − Γ1i,1i
+
∑
j

∑
k

γ1i,2jγ2j,3k

Γ2j,2j − Γ3k,3k
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×ρc
3k,3k

[
1− e(Γ1i,1i−Γ3k,3k)τ

Γ3k,3k − Γ1i,1i
− 1− e(Γ1i,1i−Γ2j,2j)τ

Γ2j,2j − Γ1i,1i

]
. (2.16)

After realizing that Γ1i,1i = 0 and that all the population decay rates for a given state

are equal, i.e. Γ2j,2j = Γ2, Γ3k,3k = Γ3, after setting the feeding coefficients proportional

to the branching ratios of the upper levels down to the lower levels γ2j,3k = r2j,3kΓ3,

γ1i,2j = r1i,2jΓ2 and defining the following constants D32 = Γ3
1−exp(Γ2−Γ3)τ

Γ3−Γ2
, D21 =

1 − exp(−Γ2τ) and D321 = Γ2Γ3
Γ2−Γ3

[
1−exp(−Γ3τ)

Γ3
− 1−exp(−Γ2τ)

Γ2

]
, the final expression for

the populations after the n-th pulse becomes:

ρn+1
1i,1i = ρc

1i,1i + D21

∑
j

r1i,2j ρc
2j,2j + D321

∑
j

r1i,2j

∑
k

r2j,3k ρc
3k,3k

ρn+1
2j,2j = e−Γ2τ

[
ρc
2j,2j + D32

∑
k

r2j,3k ρc
3k,3k

]
ρn+1
3k,3k = e−Γ3τρc

3k,3k, (2.17)

where ρc
i,j are given by Eq. 2.11.

2.2 Summary of the coherent interaction model

The relevant laser parameters for describing the interaction of the femtosecond

comb with the atoms are the interpulse period τ , the carrier envelope phase evolution

between successive pulses δφ, the pulse duration and its associated area θ. The model

includes the fine and hyperfine structure of the 5S, 5P and 5D states, with energy-

level information provided by the literature. The Zeeman substructure is averaged over,

for linear polarization. In the simulation, calculated oscillator strengths and Clebsch-

Gordan coefficients are employed for all the involved transition pathways in an effort to

accurately predict the relative signal strengths. This general set of coupled Bloch-type

equations, evolving from one pulse to the next, leads to a global picture of coherent

population accumulation and incoherent optical pumping.

For times that are short compared to the atomic decoherence time, the femtosec-

ond pulse train drives the atomic coherence in phase such that a multi-pulse excitation
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is coherently built up for resonant atomic states. At longer times, however, the coher-

ence in the optical field can no longer be transferred to the atom owing to the finite

atomic coherence time. Incoherent processes such as optical pumping then govern the

population transfer dynamics.

These two timescales of the system, excitation and optical pumping, can be clearly

seen in Fig. 2.5 (a) which shows the time evolution for two different two-photon reso-

nances. The two curves have the same coherent excitation timescale of a few microsec-

onds, set by the 5S-5D coherence lifetime of ∼ 500 ns. The slow decay rate is different

though for each transition. Figure 2.5 (b) illustrates the behavior of one of the tran-

sitions as a function of the detuning from resonance. On resonance, all the pulses in

the train contribute to the excitation, since the train of pulses is in phase with the

atomic frequency. Away from resonance, the decrease in population due to destructive

interference is accompanied by oscillations in the excitation region, arising from the

phase difference between the atomic frequency and the frequency of the closest comb

line. This oscillatory behavior at the frequency difference is more obvious in Fig. 2.5 (c),

where the detuning from resonance is even larger.

2.3 Coherent accumulation enables high resolution

Temporal coherent control is best manifested in the 5D coherent population ac-

cumulation and transition linewidth evolution, which reach their asymptotic limits im-

posed by the atomic decoherence, through the coherent interaction with the train of

femtosecond pulses . The results of the model (Fig. 2.6), under the condition of a small

pulse area, illustrate the effect of pulse accumulation on signal strength and spectral

linewidth.

The upper graph [(Fig. 2.6 (a)] shows that the on-resonance 5D population in-

creases as the square of the number of pulses until reaching approximately the decoher-

ence time, ∼ 500 ns for the 5D states. This 5D signal scaling at short times is reinforced
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Figure 2.5: Several aspects of population dynamics at short and long timescales:
(a) Time evolution for two resonances, showing the short coherent excitation, followed by
the slow incoherent decay. (b) Temporal evolution for one of the previous transitions, for
different detunings from the atomic resonance, illustrating the destructive interference
that results in the out-of-resonance condition. (c) Oscillation resulting from the phase
difference between the atomic frequency and the train of pulses.
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in the figure by a quadratic fit. The proportionality of the transition probability to the

squared number of pulses N2 is a more general result, valid in the weak excitation

regime, which was theoretically demonstrated for a two-level atom [39], in agreement

with earlier conclusions based on perturbation theory [40].

The rapid population increase is accompanied by the narrowing of the resolution

linewidth [(Fig. 2.6 (b)], with the obtained resolution limited only by the 5D natural

linewidth. After the very first pulse, the linewidth is the single-pulse bandwidth of

the laser; as the pulses keep coming, the spectral components from successive pulses

interfere among themselves, resulting in the linewidth decrease. Thus, the atoms are

the spectrometer used to observe the frequency comb, and the atomic linewidth is the

bandwidth limit of this spectrometer.

The dependence of the 5D population and linewidth versus the number of pulses

is temporally analogous to the power density scaling and the spatial resolution versus

the number of slits in a multi-slit experiment [39, 40]. Again, this is a general result,

valid for a broad range of pulse shapes, pulse areas or detunings. The two effects of

coherent pulse accumulation on signal strength and spectral linewidth have both been

experimentally verified [41]. The quadratic increase of the excited state population

versus the accumulated number of pulses can be further enhanced with a larger fr,

where the shorter pulse interval allows for more pulses to be ‘added’ during the atomic

coherence lifetime.

The theoretical model we have developed is designed to predict the coherent

accumulation of population in the 5D states, followed by incoherent optical pumping.

Using this model we generate atomic transition spectra by tuning either fr or f0. We

then compare them with the corresponding experimental spectra (covering the same

fr and f0 range), as presented in Chapter 5. In addition to comparing theory and

experiment, we also use the model prediction to adjust the experimental data. For the
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case of the indirect 5P frequency measurements via the 5S-5D two-photon transitions,

described in Chapter 6, we use the theoretical prediction to modify the raw data (after

the adjustment, the data fall on top of a Lorentzian).

-2 -1 0 1 2
0.00

0.03

0.06

0.09

0.12

0.15
Total Pulses:

 10
 20
 50
 80
 100

D
-S

ta
te

 P
op

ul
at

io
n

Frequency (MHz)

(b)

(a)

0 20 40 60 80 100

1E-4

1E-3

0.01

0.1

Number of Pulses

D
-S

ta
te

 P
op

ul
at

io
n

Natural Linewidth
       (660 kHz)Quadratic Fit

0.1

1

10

100

Linew
idth (M

H
z)

linewidth

D-population

Figure 2.6: (a) Left (right) axis shows calculated 5D population (linewidth) on resonance
for the closed two-photon transition versus total number of accumulated pulses. The
time between pulses is ∼ 10 ns, and the system reaches its asymptotic values of signal
amplitude and linewidth after ∼ 480 ns. The quadratic fit to the 5D population at
short times shows that the signal scales as the square of the number of pulses until
atomic decoherence limits the coherent pulse accumulation. (b) The corresponding 5D
resonance lineshape versus the number of pulses. During the first 10 pulses, the comb
structure is not sufficiently developed to offer appreciable signal or resolution.



Chapter 3

Experimental Apparatus: the femtosecond Ti:S setup and the MOT

This chapter discusses the two primary components of the experimental setup,

the femtosecond laser and the MOT. I will first present the idea for the Ti:S laser

stabilization and then describe one of the most commonly used self-referencing schemes.

I will conclude by briefly discussing the stabilization of the cw lasers and the setup used

for cooling and trapping in the MOT. Chapter 4 will present the integration of the

femtosecond laser and the MOT.

3.1 The femtosecond Ti:S laser and its stabilization setup

Recent advances in controlling the pulse repetition period and the carrier-envelope

phase of mode-locked lasers have ushered in a series of novel applications using their

frequency combs [42]. In the introduction I presented some of the fundamental aspects

of mode-locked lasers. In this section, I will review some of the basic concepts be-

hind carrier-envelope phase stabilization and I will explain how the two dynamic laser

parameters are optically detected and stabilized in the experiment. Stabilization of

the two degrees of freedom is a necessary step for using these lasers for spectroscopic

applications.
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3.1.1 Stabilizing the two degrees of freedom of mode-locked lasers

For the experiment, we used a home-built titanium-doped sapphire (Ti:S) laser

pumped by a 5 W single-frequency, diode-pumped, frequency-doubled Nd:YVO4 laser

(Coherent Verdi) operating at 532 nm. The Ti:S laser generates a 100-MHz pulse train

with pulse widths on the order of 15 fs and energies of about 5 nJ per pulse, using

Kerr lens mode-locking (KLM). A diagram of our KLM laser is shown in Fig. 3.1. The

configuration used is a standing-wave, folded geometry, with the cavity delimited by

two flat mirrors: the laser end mirror (EM) and the partially reflective output coupler

(OC). The nonlinear gain element for the laser cavity is the Ti:S crystal. The passive

mode-locking mechanism employed here is the nonlinear Kerr Effect, which gives an

increase in the index of refraction of the crystal as the optical intensity is increased (self-

phase modulation, self-focusing, see for example [43]). The Ti:S acts like a nonlinear

lens, slightly focusing the intracavity beam, but it also spreads the pulses temporally

through normal dispersion (the long wavelengths travel faster than the short ones). As

a consequence, a sequence of two prisms is used to compensate for the group velocity

dispersion (GVD) in the crystal: the first prism spatially disperses the pulse, leading the

long wavelengths to traverse more glass in the second prism than the short wavelengths.

The beam is still horizontally dispersed after the second prism, though collimated. Upon

reflection by the laser cavity EM, the pulse travels again through the pair of prisms,

thus canceling the spatial dispersion.

As mentioned before, fr determines the mode spacing and is inversely propor-

tional to the cavity length L, fr = vg

L , while f0 sets the absolute comb position and is

proportional to the intracavity dispersion, f0 = ωc
2π (1 − vg

vp
). They are both influenced

by the group velocity vg, but there is no apparent f0 dependence on the laser cavity

length. Ideally one would like to control the two parameters independently. One ad-

justable parameter can be the cavity length, for fr control; yet, an additional degree of
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Figure 3.1: Optical layout of the KLM Ti:S laser used in the experiment; the end mirror
(EM) and the output coupler (OC) are the two flat mirrors bounding the cavity, used
for the f0 and fr stabilization, respectively. The two prisms P1 and P2 are used for
dispersion compensation.

freedom is needed for changing vg. The one employed in my laser was first suggested

in 1999 by the Hänsch group [44] and uses small-angle rotations about the vertical axis

of the laser EM. As previously stated, the different spectral components in the laser

beam are horizontally spread out at the EM, leading to a linear relationship between

the spatial coordinate and the wavelength. For small angle (β) changes, there is a linear

path length change, i.e. phase shift, with frequency. This is effectively a group delay,

linear with the angle. Under this assumption that the swivel mirror changes the group

delay by a small amount ∼ β, it can be shown [28] that f0 is only controlled by β, while

fr depends on both β and L. Therefore, one can use the swivel angle β to control f0 (this

will also change fr!), and the cavity length L to compensate for the subsequent change

in fr. Details of the experimental implementation of the vg, and hence f0, control will

be given in 3.1.5.

3.1.2 Stabilization of the laser repetition rate

The laser repetition frequency fr is a radio frequency (rf) ∼ 100 MHz and is

measured directly using a fast photodiode. To reduce the increase in phase noise that

is due to the large frequency multiplication factor up into the optical region (∼ 106), a
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higher harmonic of the pulse repetition rate is used for stabilization. A portion of the

pulse train is detected with a high-speed photodetector; the 10th harmonic of fr at 1

GHz is filtered and amplified (to 0 dBm, suitable for the rf port of a double-balanced

mixer) and then phase-locked to the 1 GHz provided by a stable microwave source.

The error signal obtained by comparing against this reference frequency is integrated,

filtered and amplified in a JILA-built loop filter (LF) and then used for active feedback

to the laser, as shown in Fig. 3.2. Cavity length corrections are controlled with a small

(∼ 5 mm) tube piezoelectric transducer (PZT), on which the output coupler of the laser

has been mounted. All the comb modes are moved together by this translating PZT

which varies the laser cavity length.

DDS

JILA LF

HV driver (1 kV)

1 GHz Wenzel

rf amplifier

N fr

1GHz BPF

Ti:S Laser

frequency counter

to Output Coupler (translating PZT)

to f0 stabilization
and MOT

Figure 3.2: Stabilization diagram used for phase-locking of the laser repetition rate fr;
BPF stands for band-pass filter, DDS for direct digital synthesizer and LF for loop filter.
More details are given in the text.

Several stable rf oscillators were tried as references for the repetition rate (I will

address this issue further in Chapter 4) and in the end a custom-made Wenzel oscilla-

tor, based on a crystal oscillator that has a very good short-term frequency stability,

was settled upon. The short-term stability of the rf source is very important, given

the huge multiplication factor up into the optical domain. Unfortunately, the Wenzel

tuning range is only 3.2 kHz around 1 GHz, corresponding to a 320 Hz tunability of
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the repetition rate very close to 100 MHz. One would like to have more freedom than

that in choosing a suitable fr value, so an extra direct digital synthesizer (DDS) had to

be later added to the stabilization setup. Its widely tunable output (∼MHz) is mixed

with the Wenzel and the repetition rate is forced to track the resulting frequency via

the phase lock described above.

3.1.3 Self-referencing

In 1999 Telle and coworkers suggested several methods allowing for direct mea-

surement and stabilization of the frequency offset of the fs comb, without using another

optical standard [21]. These ‘self-referencing’ methods employ non-linear processes like

second harmonic generation to compare the spectral extremes of the comb. In that

work, it is shown that frequency-doubling of a number of modes from the infrared end

of the spectrum and heterodyning them with the existing visible section of the spectrum

will result in a beat frequency, equal to the offset of the fs comb from integer multiples

of the repetition rate:

2 νN − ν2N = 2 (Nfr + f0)− (2 Nfr + f0) = f0. (3.1)

Thus, f0 can be derived directly from the beat note, with no knowledge of the laser

repetition rate. The requirement for this detection scheme to work is that the frequency

comb contain on the blue side the second harmonic of the red side, i.e. that the laser

optical bandwidth cover an optical octave. Along the same line of thought, the use of

mode-locked lasers for absolute metrology of optical frequencies, where the frequency of

every comb line is an integer multiple of the fixed comb spacing (f0 = 0), was suggested

in a NIST competence proposal from March 1999 [45].

Fortunately, the introduction in 2000 of special air-silica microstructure (MS) op-

tical fibers [22], which broaden the output of the fs comb to span an entire optical octave

solved the bandwidth requirement. These photonic crystal fibers have a very small core
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diameter (1.7 µm), providing a very tight spatial confinement that generates very high

intensities (∼TW/cm2). They have been engineered to exhibit zero GVD near 800 nm,

which minimizes the temporal spread of the pulses propagating in the fiber over signif-

icant distances (several cm). The main non-linear effect leading to spectral broadening

in the fiber is strong four-wave-mixing among the different frequency components in the

input pulse spectrum, which generates new spectral components, while maintaining the

periodicity of the incoming frequency comb. The spectral bandwidth at the output of

the MS fiber can extend well beyond one optical octave e.g. 400 to 1200 nm.

The first experimental implementation of the self-referencing technique using ex-

ternal broadening in a MS fiber, followed by doubling of the 1040 nm light and mixing

with the fundamental at 520 nm, was reported by Jones and co-workers in 2000 [1].

Ultra-broadband mode-locked lasers whose direct output spans on optical octave, al-

lowing for direct self-referencing and stabilization of the pulse train, have also been

recently demonstrated [7].

3.1.4 The ν-to-2 ν prism interferometer

To achieve spectral broadening, ∼ 120 mW of the fs laser output light (∼ 500

mW) are coupled into a ∼ 7-cm piece of MS fiber. The output of the fiber is then sent

into an ν-to-2 ν interferometer for self-comparison.

The configuration chosen for the interferometer is the so-called ‘prism-pair’ geom-

etry, presented in Fig. 3.3. The sequence of SF10 prisms (8-cm prism separation) spa-

tially separates the green (e.g. 532 nm) and red (e.g. 1064 nm) components of the

spectrum, which are then reflected by two mirrors located very close to each other. The

green-reflecting mirror is mounted on a translation stage, to easily adjust the temporal

overlap between the red and green pulses at the detector. When the interferometer is

well aligned and working, the distance between the end mirrors is ∼ 1 mm.

The beams retrace their path through the prism pair with a slight vertical offset
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Figure 3.3: Diagram of the prism interferometer used for the detection of the comb
offset frequency. The broad spectrum from the MS fiber is sent into a prism pair for
spatial dispersion. The light near 532 nm is reflected by one end mirror, while the
light near 1064 nm hits a second end mirror. Both beams are reflected back through
the prism pair, recombined and then sent through a nonlinear BBO crystal tuned for
efficient second harmonic generation at 1064 nm. The output is filtered, and the f0 beat
is detected on a PD.

in order to be picked off by a mirror positioned below the incoming beam. The pick-

off mirror sends the recombined beams to a lens, which focuses them into a nonlinear

crystal (1-mm BBO, type I phase-matching), angle-tuned for efficient second harmonic

generation at 1064 nm.

Two types of green light are present at the output of the BBO crystal: the

frequency-doubled beam obtained from the infrared part of the spectrum and the fun-

damental green coming out of the MS fiber; the polarization of the frequency-doubled

green is rotated by 90 degrees with respect to the fundamental green. A 10-nm interfer-

ence filter centered at 532 nm removes the extra, non-contributing spectral components,

while a polarizer ensures that the polarizations of the two green beams are aligned along

the same axis. Spatial overlap and mode-matching of the two beams are essential for a

good signal-to-noise ratio (S/N) of the beat signal. A photodiode detects their difference

frequency, the f0 beat, along with the laser repetition rate. In reality, the detected beat
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arises from mixing of thousands of comb lines, not just the two frequencies mentioned,

giving a better S/N. In the experiment, the typical S/N of the offset beat is ∼ 45 dB in

a 100 kHz resolution bandwidth.

The prism pair geometry is advantageous to use compared to other configurations,

e.g. a Mach-Zender interferometer, because most of its elements are common-mode (the

only differential path is the prism pair region), which makes it easier to align and tweak.

3.1.5 Stabilization of the laser offset frequency

The output of the ν-to-2 ν PD is sent through two 50 MHz low-pass filters (LPF),

to reduce all the unnecessary rf frequencies in the spectrum (otherwise, they would

saturate the subsequent amplifiers), then a small portion of the signal is sent via a

directional coupler to an rf spectrum analyzer for monitoring of the beat note. The

main signal is amplified to ∼ -5 dBm and then frequency-prescaled (divided by 64)

before its phase is compared to a stable rf oscillator such as a DDS. Unlike the fr lock

which employs an analog phase detector, the stabilization circuit used for f0 employs a

digital phase detector (DPD), which provides both a frequency and a phase lock. This

allows for a larger capture and locking range than the double-balanced mixer case and

increases the stability of the lock. Again, the error signal derived by comparing against

the reference frequency is integrated, filtered and amplified in a JILA LF (see Fig. 3.4)

and then sent to the laser for frequency correction. Note that the local oscillators used

for the fr and f0 stabilization are all referenced to the same local commercial cesium

clock.

As announced earlier in section 3.1.1, f0 control is carried out by fine-tuning the

laser end mirror angle using a twister PZT. The twister PZT used to tilt the end mirror

is a 0.5 inch diameter cylinder, about 0.5 inch long, that has been modified such that the

outer electrical surface is split to allow for the two outer sides to have different voltages

with respect to the inner surface of the PZT. When applying opposite-sign voltages to
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Figure 3.4: Stabilization diagram used for phase-locking of the laser offset frequency f0;
LPF stands for low-pass filter, DPD for direct phase detector, DDS for direct digital
synthesizer and LF for loop filter. The details are given in the text.

the two sides, one contracts, while the other expands, with the net effect of an angle

change for the end mirror mounted on the PZT. As mentioned before, this is effectively

a group delay, which depends on the voltage sent to the PZT. Changing the voltage in

the 0 to ±150 V range allows for scanning of the offset frequency beat over its full range

of ∼ 50 MHz.

Another method of adjusting and stabilizing f0 is employing an acousto-optic

modulator (AOM) to control the pump laser power. Modulating the pump laser power

actually affects several laser parameters. Systematic studies of intensity-related dynam-

ics in mode-locked Ti:S lasers have been recently undertaken [46,47] to understand the

effects on fr and f0.

To summarize, fr and f0 stabilization and referencing to an atomic clock result

in knowledge of the absolute frequencies of the ∼ 106 comb lines, with an accuracy only

limited by the frequency reference used. The stabilized comb can now be employed as a

precision frequency ruler for any optical frequency in the visible to near-infrared range.
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3.2 The MOT

The magneto-optical trap (MOT) is currently the starting point for many ex-

periments with laser-cooled atoms. Cold atoms are used for precision measurements,

atom interferometers, atomic clocks, to name just a few examples. Advances in laser

cooling of alkali atoms [48] have also paved the way to producing the first Bose-Einstein

condensates and degenerate Fermi gases [49–51]. In particular, vapor-cell traps [52] like

the one used in this experiment, are simple and versatile tools for many experiments

with cold atoms.

Our experiment was performed on a sample of laser-trapped and -cooled Rubid-

ium 87 atoms (see Fig. 4.2 for a detailed 87Rb level diagram, I=3/2). The 5S1/2 → 5P3/2

cooling transitions can be easily accessed with commercially available laser diodes cen-

tered at 780 nm, making 87Rb a convenient choice for laser cooling and trapping. We

use two lasers to trap and cool the atoms. The cooling beams are ∼10 MHz red-detuned

from the 5S1/2 (F=2) → 5P3/2 (F′=3) cycling transition. An additional laser, the so-

called ‘repumper’, tuned to the 5S1/2 (F=1) → 5P3/2 (F′=2) transition, is needed to

return the atoms to the cooling cycle whenever they decay to the F=1 ground level,

thus preventing them from falling dark due to optical pumping.

3.2.1 Diode lasers: description and stabilization

The laser diodes used are Sharp LT024MD (specified output power of 20 mW)

for the repump laser (RL) and Sanyo DL7140-201 (specified output power of 70 mW)

for the trap laser (TL). They are configured in an external cavity geometry, based on a

design described in reference [53,54], with ∼ 3.5 cm extended cavity length. The lasers

employ a diffraction grating (1200 lines/mm) aligned in the Littrow configuration [55]

to couple the first diffraction order back into the laser. One PZT controls the horizontal

tilt of the grating, permitting adjustments of the laser wavelength. A change in the PZT
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length alters the grating angle and the external cavity length at the same time, allowing

for continuous scans of typically ∼ 5 GHz. Additionally, the grating is mounted on a

fast disk PZT, which is servoed together with the laser diode current to stabilize the

laser frequency.

Both diode lasers are locked to the specified atomic transitions using standard

saturated absorption spectroscopy [53], which yields sub-Doppler hyperfine lines that

are used to frequency-stabilize the laser (see Fig. 3.5). The TL is locked to the red side

of the saturated absorption peak; a side lock is not ideal, since the locking set point

is inevitably dependent on power broadening of the transition lines. We use acousto-

optic modulators (AOMs) to create beams at various detunings and also to control the

timing of the lasers in the experiment. The TL light is steered through two AOMs: the

first AOM deflects a small amount of power (-1 order) into the saturated absorption

spectrometer, for frequency stabilization. The second AOM acts as a shutter for the

light, by directing the negative first order diffracted beam to the MOT cell. Thus, the

MOT red detuning is set by the side lock along with the frequency difference of the two

AOMs.

The RL is locked to the peak of the crossover transition between the 5S1/2 (F=1)→

5P3/2 (F′=1) and the 5S1/2 (F=1)→ 5P3/2 (F′=2) transitions, using modulation side-

bands at 4.6 MHz, written directly on the diode-laser current (the laser output current

can be modulated rapidly by sending a voltage into the rf modulation input, this in turn

will modulate the frequency of the laser). The signal from the RL saturated absorp-

tion spectrometer is detected with a homemade resonant photodetector (PD) and then

compared in a double-balanced mixer with the local oscillator at 4.6 MHz, resulting

in dispersion curves for all the features in the saturated absorption spectrum [56, 57].

The value of these dispersion curves changes sign at the peak, allowing for a lock at the

zero-crossing of the error signal. Since the RL is offset peak-locked, an AOM is needed

to shift the frequency into resonance with either the 5S1/2 (F=1)→ 5P3/2 (F′=1) or the
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Figure 3.5: Saturated absorption spectra, showing the hyperfine structure of the
5S1/2 → 5P3/2 transitions for the two Rb isotopes. The numbers labeling the hyperfine
peaks correspond to F′ states in the 5P3/2 manifold. Note that the spectra contain both
true Doppler-free resonances (numbered peaks) and crossover resonances. The crossover
resonances occur at frequencies (νa +νb)/2 for each pair of true resonances at frequency
νa and νb, as exemplified for the bottom spectrum.
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5S1/2 (F=1)→ 5P3/2 (F′=2) transition. We opted for the latter and thus the positive

first order deflected beam is sent to the MOT vapor cell. In order to operate the trap

at zero repump detuning, the driving frequency for the RL AOM is equal to exactly

half of the F′=1– F′=2 5P3/2 hyperfine interval (78.45 MHz). This AOM is a fast and

convenient switch used to turn off the RL beam whenever needed.

3.2.2 MOT details

The main TL beam is spatially filtered by a 70 µm pinhole, which reduces the

high-frequency spatial modes, and collimated to roughly a 1-cm beam diameter with

a beam-enlarging telescope. It is then divided into three separate, intensity-balanced

beams using λ/2 plates and polarizing beamsplitter cubes. The three beams are sent

to the experiment glass cell using 1-inch diameter optics, in a standard retro-reflected

MOT configuration [58]. The atoms are caught in the MOT using these three pairs of

orthogonal, circularly-polarized beams in the typical σ+−σ− arrangement, and detuned

∼ 10 MHz to the red of the atomic resonance. The RL beam is directed into the cell

along one of the TL beams. We monitor the beams in the cell and the position of the

trapped cloud with a low-cost CCD camera.

We load the MOT from the vapor produced by Rb dispensers (‘getters’) in a

cylindrical glass cell. The vapor cell is continuously pumped by an ion pump and

typically reaches a background pressure of 10−9 Torr. The source of Rb consists of

three nichrome (Ni-Cr alloy) dispenser strips, connected in parallel and placed in a

small side arm of the cell. They contain a Rb salt and release atoms through a chemical

reaction when an electric current is passed through them and heats the nichrome. Only

one dispenser is used at a time, and the operating current is usually 3.5 A.

The quadrupole magnetic field necessary to operate a MOT is provided by a pair

of anti-Helmholtz coils. The two coils are wound from ‘magnet wire’, i.e. Cu wire (∼ 1

mm diameter) coated with an insulating material, and are wrapped around the axis of
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the cylindrical cell. Each coil is 7 cm in diameter and has 33 turns. The coils are spaced

5.5 cm apart and are supplied with ∼ 4.5 A, generating a magnetic field gradient of ∼

10 G/cm.

Stray magnetic fields, due mainly to the Earth’s field, can shift the zero-point of

the MOT field. They are compensated by three pairs of orthogonal Helmholtz coils.

The glass cell is surrounded by these pairs of shim coils, each run by a different current

supply. In the early stages of the experiment, the beam alignment and ambient magnetic

field compensation were verified by monitoring the isotropy of the molasses expansion.

We were aiming for a slow and uniform expansion of the atomic cloud upon switching off

the quadrupole field. At a later stage, after obtaining the two-photon signal as described

in Chapter 4, we realized that we could use it to find the zero-point of the magnetic

field.

Resonance fluorescence from the atoms is detected with a photodiode (PD), lead-

ing to an estimate of the atom number based on the PD current, the PD responsitivity,

the solid angle of the light collected by the imaging lens, the energy of a photon and

the optical scattering rate. We typically trap 5×106 atoms in a 0.5 mm diameter MOT

with a 1/e lifetime between 3 and 5 s.

After collecting the atoms in the MOT, we transfer them to optical molasses [59]

for further cooling using polarization gradients (PGC). To experimentally implement

PGC, the quadrupole field gradient is turned off, the TL is further red-detuned from

resonance (∼ 40 MHz) and the TL beam intensity is decreased. The resulting sub-

Doppler cloud temperature established by PGC is ∼ 15 µK, providing an ideal initial

condition for spectroscopy.

I have presented here the basic operation details of the MOT. In Chapter 4 I will

describe how the trapped atoms are probed with the frequency comb of a femtosecond

laser.



Chapter 4

Characterization of the systematic effects related to direct frequency

comb spectroscopy

We would like to use a phase-stabilized femtosecond laser comb directly for high-

resolution spectroscopy and absolute optical frequency measurements of one- and two-

photon transitions in laser-cooled 87Rb atoms. We defer further discussion of the spec-

troscopy, however, until we have explored some of the important sources of possible

systematic error [60]. In section 4.4.2, I will discuss both experimentally and theoret-

ically the mechanical action of the probe on the atoms. I will then present the AC

Stark frequency shifts induced by the femtosecond light in section 4.4.3. Finally, the

last systematic error we studied, arising from Zeeman shifts, will be presented in sec-

tion 4.4.4. As briefly mentioned in Chapter 3, the short-term stability of the reference

used to stabilize the repetition rate also warrants attention. We will see that the main

contributions to the systematics are those arising from mechanical effects and the AC

Stark shifts.

4.1 Doppler-free two-photon transitions with cw and pulsed sources

Study of two-photon transitions to achieve high-resolution spectroscopy or to

maximize the excitation efficiency of a desired state has been an active field of research

in the past decades. Doppler-free multi-photon transitions have been theoretically stud-

ied by Cagnac et al. [61]. The first experimental demonstrations followed shortly, by
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observing two-photon absorption resonances in Na using tunable dye lasers [62–64]. The

effects of Doppler broadening in the vapor were eliminated by making the atoms absorb

one photon from each of the two equal-energy, counterpropagating cw beams (Fig. 4.1,

top panel).

In a closely related experiment, optical beams were arranged to both (i) propagate

in opposite directions as well as (ii) have unequal frequencies (Fig. 4.1, bottom panel).

This configuration was used to demonstrate resonantly enhanced two-photon absorption

in Na vapor [65]. The two-photon absorption cross-section was enhanced by over 7 orders

of magnitude, by letting one of the photons be nearly resonant with an intermediate

state. Doppler effects were greatly reduced by using counter-propagating beams, but

not totally eliminated. In a different experiment, the two-photon transition rate was

resonantly enhanced by using a fast atomic beam [66], where the high atomic velocities

allowed for Doppler tuning of an intermediate state into exact resonance in the rest

frame of the atom.

DL Equal Frequency

cell

5D

5P

5S

DL1 DL2
Two Color

cell

=> 107 enhancement

5D

5P

5S

Figure 4.1: Schematic of Doppler-free two-photon spectroscopy in a cell, with equal-
frequency (top) and two-color (bottom) counterpropagating beams.
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Doppler-free two-photon spectroscopy has also enabled the observation of opti-

cal Ramsey fringes. In the experiments of Salour [40, 67] the atoms have interacted

with two time-delayed phase-coherent laser pulses, while Baklanov et al. have suggested

two spatially separated light standing waves [68]. Note that Bergquist et al. have ob-

served Ramsey fringes in the saturated-absorption signal from a fast beam of Ne* atoms

crossing three and four equally spaced spatially separated standing-wave beams [69].

With regard to employing pulsed sources, high-resolution two-photon spectroscopy

using picosecond pulsed light and hence, without any appreciable intermediate-state in-

teraction or absolute frequency reference, has been previously demonstrated [27], with a

recent extension to laser-cooled samples [70]. Cold atoms confined in a MOT provide an

almost-Doppler-free environment for use in spectroscopic studies. For the case of two-

photon transitions, where the absorption cross sections are relatively small and thus the

required intensities are rather large, the cold sample mitigates the Doppler broadening

arising from the strong focusing needed.

The advent of ultrafast lasers combined with pulse-shaping techniques has led to

new schemes [14, 71], where two-photon transitions which constitute the lowest-order

nonlinear interaction, are used as a benchmark system. In particular, Silberberg and

coworkers have shown that the two-photon absorption rate is maximized for transform-

limited pulses only in the case of transitions without any resonant intermediate state.

For transitions involving a nearly resonant intermediate state, an enhancement by a

factor of 7 of the two-photon absorption rate in Rb vapor has been obtained by shaping

the pulse [71]. Thus, the final population transfer was controlled by manipulating the

coherence properties of the optical field.

4.2 Background for the technique of two-photon DFCS

We directly interrogate a sample of laser-cooled 87Rb atoms with a frequency

comb and induce two-photon transitions. This capability is enabled by the bandwidth
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Figure 4.2: Schematic of the 87Rb energy levels participating in the one- and two-
photon transitions we studied, including the wavelength and energy level information.
The levels highlighted in red correspond to the closed 2-3-4 transition pathway (section
4.4). We have investigated seven two-photon transitions, as detailed in section 5.2.
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associated with the femtosecond pulse, which is sufficiently broad that many fine and

hyperfine atomic states (see Fig. 4.2) can be excited by tuning the relevant comb com-

ponents into resonance. The two independent parameters fr and f0 provide freedom in

choosing an appropriate frequency comb for control of resonant signal enhancement via

the intermediate 5P1/2 and 5P3/2 states.

Our experimental prototype system to study DFCS is therefore a set of two-

photon transitions from the ground-state 5S1/2 to the excited 5D3/2 and 5D5/2 states,

enhanced by the 5P intermediate states as shown in Fig. 4.3. The dipole-allowed inter-

mediate states, 5P3/2 and 5P1/2, are located ∼ 2 and 17 nm (i.e. ∼ 1 and 8 THz) below

the energy degenerate virtual level for the two-photon transition, respectively (Fig. 4.2).

The lifetime of the 5P intermediate states is 27 ns, the lifetime of the 5D states is 241

ns and the lifetime of the 7S states is 88 ns [72].

5P

5D

δSP

δSD

5S

νSP = N fr + fo

phase-coherent
comb

fr

…

f0

νPD = M fr + fo

Figure 4.3: Resonantly enhanced two-photon transition with detunings δSP and δSD

for the pair of comb modes that makes the dominant contribution to the transition
probability.

As mentioned in Chapter 1, the optical frequency of a particular comb mode
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can be expressed as νN = Nfr + f0, where fr is the pulse repetition rate, f0 is the

carrier envelope offset frequency, and N is an integer on the order of 106. The sum

frequency of the light from two comb lines labeled by N and M is given by ν2γ =

(N + M)fr + 2f0. There are several hundred thousand comb pairs (N , M) that yield

the same sum frequency and thus could contribute to the transition amplitude when ν2γ

is resonant with the two-photon transition (δSD ∼ 0 as shown in Fig. 4.3). However, in

estimating their relative contributions, it is necessary to consider the intermediate 5P

states that provide resonant enhancement.

When one of the comb lines is tuned near resonance with one of the 5S-5P transi-

tions (δSP ∼ 0 as shown in Fig. 4.3), the resonant enhancement causes the corresponding

pair to make the dominant contribution to the two-photon transition over all of the other

pairs. This dominant contribution is reinforced by destructive quantum interference be-

tween comb pairs symmetrically detuned on either side of the P state, resulting in a

∼ 180◦ phase difference [71]. For the non-resonant configuration of comb modes de-

tuned ±kfr/2 (k ≥ 1, odd integer) away from the P state, with all pairs satisfying the

two-photon resonance, the transition amplitudes associated with (+k) and (-k) modes

will again destructively interfere. However, there will be a net non-resonant contribu-

tion due mainly to the existence of multiple P states that break the symmetry of the

comb distribution. This destructive interference can be made constructive by flipping

the spectral phase about the P state [71].

The two-photon transition spectrum is obtained by scanning fr or f0; their pre-

cisely measured values, along with (N , M), determine all relevant atomic energy levels

in absolute terms.

4.3 Experimental method

The experiment is performed with an optical frequency comb (emitted from a

20-fs, 100-MHz repetition rate, mode-locked Ti:sapphire laser) centered at 778 nm with
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Figure 4.4: Timing scheme for the 100 Hz experiment cycle. The atoms are first loaded
in the MOT for 7.5 ms and then, at the end of the loading time, the trapping quadrupole
magnetic field is extinguished (not shown). Additional cooling of the atoms is done with
polarization gradients (PGC) for 2 ms. All MOT-related fields are turned off at the end
of the PGC stage. At this point, the femtosecond laser is switched on using the liquid
crystal shutter (30-µs response time). The 500-µs zoom window shows the variable
probe window (τ) used for the two-photon measurements. Signals are averaged over
hundreds of 10 ms experiment cycles.
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ShutterFs 

Beam

Figure 4.5: Shown here is the optical configuration for the counterpropagating beams,
implemented in all our two-photon studies, including those described in Chapters 5 and
6. The 420-nm blue fluorescence detected by the PMT is sent to a photon counter and
then read into the computer.

a full width at half maximum bandwidth of ∼ 55 nm (∼ 26 THz). There is ∼ 200 nW

of power in each of the comb lines resonant with the 5S-5P and 5P-5D transitions. The

light is typically focused to a beam waist of 130 µm, giving an on-axis intensity of ∼ 0.8

mW/cm2 in each comb line. For time-resolved studies, the sample is exposed to light

by a liquid crystal with a 30-µs response time.

As described in Chapter 3, the atomic source is a cloud of 87Rb trapped and

cooled in a vapor-cell MOT. As shown in Fig. 4.4, the typical loading cycle used for the

MOT is 100 Hz and the sequence of the experiment is as follows: the atoms are loaded

in the MOT for 7.5 ms, then the quadrupole magnetic field for the trap is switched off,

the atoms are further cooled with polarization gradients (PGC) for 2 ms, then all the

MOT beams are extinguished, the femtosecond comb beam is switched on for 500 µs

using the shutter, and finally, the 420 nm fluorescence is detected.

The cw MOT repumping laser controls the initial populations of the two ground-

state hyperfine levels. During the actual probing period, the femtosecond comb itself

acts as a repumper, allowing one to maintain a stable population in the initial ground

state.
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The excited 5D state population is determined from the 5D-6P-5S radiative cas-

cade: the atoms relax to the 6P state and then decay down to the ground state, emit-

ting photons at 420 nm. These blue photons are detected with a photomultiplier tube

(PMT) centered (Fig. 4.5) at 420 nm and are counted and subsequently time-binned

with a multi-channel photon counter, with a typical integration time of 10 µs. In general,

signals are averaged over hundreds of 10-ms experiment cycles.

One of the main problems in acquiring reproducible data is that the femtosecond

laser is located on one optical table, and the Rb apparatus on a different optical table

∼10 meters away. This creates serious beam-pointing instabilities. We have imple-

mented a beam-steering servo based on a quadrant photodiode and a tip/tilt mirror to

actively control the beam pointing.

4.4 Main systematic effects

As in the case of precision spectroscopy performed with cw lasers, the use of the

femtosecond comb as a precision probe requires a careful understanding of all systematic

effects. Indeed the dominant effects are the mechanical effect of the optical comb on the

atomic motion, the light shift by the probe laser, and the Zeeman frequency shifts. The

short-term stability of the rf source used to reference fr is also important, as discussed

in the next section.

We have performed all studies of the systematics involved on one sample transi-

tion, namely the 5S1/2 (F=2)→ 5P3/2 (F′=3)→ 5D5/2 (F′′=4) closed two-photon tran-

sition, which gives the best signal-to-noise ratio. A closed transition is defined to be a

transition which decays back to the hyperfine level from which it was excited. I have

highlighted in Fig. 4.2, in red, the states involved in the only closed two-photon transi-

tion occurring in 87Rb among the levels shown. This closed transition occurs when the

atoms start in the F=2 state, are then excited to the F′=3 state, and then to the F′′=4

state and finally decay back to the F=2 state (through either the 5P or the 6P channel).
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Figure 4.6: The top panel shows the experimental setup for scanning f0 and the lower
panel presents a typical 5S1/2 (F=2)→ 5P3/2 (F′=3)→ 5D5/2 (F′′=4) (‘2-3-4’) closed
two-photon lineshape obtained from such a frequency scan. The decay channel used for
detecting the population of the 5D excited state is also shown.
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In contrast, note for example that the transitions F=2 to F′=1 or 2 are not closed, since

they have a decay channel to the F=1 ground hyperfine level and thus, the atoms do

not all return to the initial F=2 state. In summary, the 2-3-4 is a closed transition

because for each of the two steps 5S-5P and 5P-5D, the electric dipole selection rule

(∆F = 0,±1) prevents the excited atoms from falling into the F=1 ground state.

As a convention, any two-photon process starting in F=2 that accesses the F′=3

state will be referred to as having a closed first step. We will study all of the two-photon

transitions that have a closed first step in Chapter 5.

For all of the systematic studies, we will scan the closed two-photon transition

repeatedly, taking note of how the line center and linewidth are affected by the changes

we implement. We will use an f0 scan, meaning fr is locked while f0 is swept (Fig. 4.6).

As a reminder, controlling f0 causes a rigid spectral shift of the optical comb, where the

frequency of all the lines is changed without modifying the comb spacing.

4.4.1 Stability of the reference for the pulse repetition rate

As detailed in Chapter 3, both the repetition rate and the carrier-envelope phase

of the fs laser are locked to radio-frequency oscillators with ultra-low phase noise.

At fast time scales, the femtosecond laser repetition frequency has less phase

noise, in other words it is more stable, than the best rf sources available. Therefore,

it may be that we are writing fast noise onto the laser if we lock it too tightly to an

external standard such as frequency synthesizer. Thus, after frequency multiplication

up into the optical domain, customary rf sources are not useful as a means to stabilize

the laser in the short term. As a reminder, we are using a custom-made crystal oscillator

(Wenzel) that has very good short-term stability (fractional instability of 5× 10−13 for

an averaging time of 1 s). At long times though, the Wenzel drifts, which is a potential

inconvenience when doing a long data run. For all the important measurements we

count the repetition rate as we acquire data. The radio frequency counter and the local
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oscillator used for the f0 stabilization are both referenced to the same local commercial

cesium clock. A slow servo control of the repetition rate is helpful in reducing the laser

frequency noise and drift resulting from lab vibrations and thermal drift of the laser

cavity.

We are able to lock the repetition rate to a number of different sources, including

two synthesizers referenced to a NIST hydrogen maser signal (fractional instability of

3×10−13 at 1 s), which were used as rf sources for the fr stabilization. The maser signal

was transferred to JILA through a single-mode fiber using amplitude modulation of a

cw laser [73]. Figure 4.7 has the resulting two-photon lineshape for the three standards

used. We observed that the two-photon linewidth for the case of the NIST synthesizers

was consistently broader than the Wenzel-referenced situation. We attribute this to the

short-term noise of the synthesizers being worse than the Wenzel, and possibly to fast

phase noise in the optical fiber used for signal transfer.
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Figure 4.7: Comparison among two-photon lineshapes obtained with different rf refer-
ences for the fr lock, showing the importance of having a reference with good short-term
stability.
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At a later time, we phase-locked one comb line near 1064 nm (282 THz) to a

Nd:YAG laser that was stabilized to molecular iodine. Although the short-term stability

of the I2-stabilized Nd:YAG is an order of magnitude better than that of the Wenzel

oscillator, we did not observe any improvement in the two-photon resonance linewidth.

We suspect that we are limited by the bandwidth of the PZT used for the fr lock.

This is a technical limitation, and in principle it can be overcome by improving the

actuator bandwidth or by using pump-power control. Also, note that the I2 system has

a fast linewidth of ∼ 5 kHz (i.e. fractional instability of 1.8 × 10−11), which at longer

timescales falls down as the square root of the averaging time.

4.4.2 Mechanical action of the probe

I will now discuss an important systematic effect, arising from the mechanical

action of the femtosecond probe on the atoms. Although the sub-Doppler temperature

established by polarization-gradient cooling provides an ideal initial condition for spec-

troscopy, it cannot be expected to survive the momentum transferred by the light from

the comb. At best, the mean-square momentum will increase, leading to Doppler broad-

ening. Worse, the momentum acquired may lead to systematic shifts in the resonance

line positions. Thus, we seek to understand momentum transfer from the comb and to

mitigate its effects insofar as possible.

We expect that the momentum transfer is dominated by the interaction of the

comb mode closest to resonance with the 5S-5P transition, given that the radiative

decay rate of the 5P-5S transition is an order of magnitude greater than that of 5D-5P,

and the population largely resides in the 5S state.

For ease of modeling, we use a single-beam (traveling wave) configuration and

choose a comb structure such that the closed 5S1/2 (F = 2) → 5P3/2 (F′ = 3) → 5D5/2

(F′′ = 4) transition is dominant (see Fig. 4.8). The temporal signal evolution is shown

in Fig. 4.9 for the initial detunings of δSP = 0 (red curve), δSP = 1 MHz (green curve),
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Figure 4.8: Schematic of the detunings from the intermediate and excited states relevant
for the radiation pressure studies. fr and f0 are kept constant for these experiments,
and the temporal signal evolution is monitored for different blue detunings.

and δSP = 2 MHz (blue curve).

In the fully resonant case (red curve), the delayed signal peak at 30 µs reflects

the switching time of our liquid crystal shutter. The subsequent decay arises as the

accumulated momentum transfer gradually blue-shifts the atoms out of two-photon

resonance.

Although the 5S-5P transition controls the mechanical action, the two-photon

resonance condition plays a more decisive role in the observed signal decay due to the

10-times-narrower D-state linewidth. When δSP = 1 MHz (green curve), the atoms,

initially with δSD = 2 MHz, will only reach the peak of the two-photon resonance

after they have reached the velocity at which the Doppler shift compensates the initial

detuning. Beyond this velocity, the signal contribution decreases. Similarly, when

δSP = 2 MHz (blue curve), the signal peaks still later.

The next section shows that all three experimental results agree well with our

theory based on a simple two-level dissipative light force model. The peak position is
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Figure 4.9: Momentum transferred by the optical frequency comb (in a single probe
beam configuration) to the cold 87Rb atoms, observed via the time-dependent fluores-
cence signal from the 5D states. The optical comb has fixed values of fr and f0 to achieve
the desired detunings (with respect to atoms initially at rest) of δSP = 0, δSD = 0 (red
curve); δSP = 1 MHz, δSD = 2 MHz (green curve); and δSP = 2 MHz, δSD = 4 MHz
(blue curve), respectively, for the dominant pair of comb modes.

determined by the scattering rate, photon recoil, and the initial detunings. The width

and shape of the peak are associated with the stochastic nature of radiation pressure,

the intensity variation over the radial beam profile, and the finite laser linewidth.

4.4.2.1 Momentum transfer model

To understand the momentum transferred by the light from the frequency comb

to the atoms we used single-beam (traveling wave) excitation for the experiment.

In this case, the net force on the atoms is

F = h̄k
Γ
2

s

1 + s + [2 (δ + ωD)/Γ ]2
, (4.1)

where s is the saturation parameter i.e. the ratio of the light intensity I to the saturation

intensity Is. For the case of linear polarization in 87Rb Is = 2.5 mW/cm2. The detuning

of the laser from resonance is δ = ωl − ωa, where ωl is the laser frequency and ωa is the

atomic resonance frequency. The Doppler shift seen by the moving atoms is ωD = −k·v.
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We can see from this equation that for a maximum scattering rate, i.e. at the peak of

the resonance, the Doppler-shifted laser frequency in the moving atoms’ reference frame

should match the atomic resonance frequency. In other words, for a given initial laser

detuning from resonance, the atoms will accelerate until they reach a threshold velocity,

at which point the peak of the resonance is attained (the threshold velocity occurs when

the Doppler shift has compensated the chosen detuning).

For a constant intensity the above equation is easily separated and integrated,

giving: ∫ v

v0

dv

(
1 + s +

[
4π

Γ

(
δ − v

λ

)]2)
= vr

Γ
2

s t (4.2)

with vr = h̄k
m the recoil velocity of the atom. The right-hand side of this equation

becomes upon integration a cubic function of v, from which we can obtain an expression

for v(t) by comparing against the left-hand side. In reality, though, the intensity depends

on both the beam radial coordinate and time. The time dependence of the intensity

is determined by our liquid crystal shutter response and has been well characterized.

Taking it into account, along with the correct scattering rate, photon recoil and initial

detunings gives a relatively good agreement with the experimental data, as far as the

peak position is concerned, as presented in Fig. 4.10.

The width and shape of the peaks do not agree with the experiment yet. For a

more realistic model, we have to consider and include the intensity variation with the

beam radial coordinate; for a Gaussian spatial profile of the laser beam the intensity is

given by

I(r) = I0 exp

[
−2

r2

w2
0

]
, (4.3)

where I0 is the on-axis intensity (∼ 0.8 mW/cm2) and w0 is the beam waist (∼ 130µm).

It is easy to show that ∼ 90% of the signal originates from within a radius of

100 µm. Actually, most of the signal comes from a radius of about 50 µm, as seen in

Fig. 4.11.
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Figure 4.10: Momentum transferred by the frequency comb to the atoms. A comparison
between the experiment and the simplified theoretical model, which assumes a uniform
probing laser intensity.
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Figure 4.11: Two-photon signal vs. radial coordinate r for a Gaussian probe beam
profile.

Including the r dependence, as well as a dependence on the laser linewidth (∼ 330

kHz) gives a reasonable agreement between data and theory (solid lines in Fig. 4.12),

as illustrated in Fig. 4.12. The dependence on the laser linewidth is introduced in the
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simulation via a random change of detuning for each iteration, governed by a Gaussian

distribution centered at zero with a variance equal to the linewidth.

It is evident that the force exerted on an atom by the optical comb is well modeled

by the radiation pressure due to a single comb mode tuned close to the 5S-5P resonance.
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Figure 4.12: Momentum transferred by the frequency comb to the atoms. A compari-
son between the experiment and the more complete theoretical model, which includes
integration over the radial probe beam profile and takes into account the laser linewidth.

As a first step in mitigating the effect of light-induced momentum transfer, we

use intensity-balanced counterpropagating beams generated by splitting the pulse with

a beamsplitter. We have arranged the setup to establish this counterpropagating beam

geometry so as to have the focused beams spatially overlapped at the MOT. Once the

setup is well aligned, the beams reflected from the beamsplitter back toward the laser

cavity can disrupt the mode-locking process. Therefore, we employ an optical isolator

to prevent feedback to the laser. As mentioned earlier, the spatial positioning of the

interrogating beams is maintained with feedback control to an actuator on a mirror.

We have made no significant efforts to have the pulses overlap temporally inside
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Figure 4.13: Shown here is the narrowing of the lineshape due to the counterpropagating-
beam arrangement which counteracts the mechanical action of the probe. In addition,
in the two-beam case, the line center shift is significantly reduced and the signal is
enhanced by a factor of three compared to the single-beam case.

the atomic cloud (the pulse spatial extent is about 10 µm and the beam diameter at

the MOT is about 300 µm). Nonetheless, the pulses do interact with the same group of

atoms within the atomic coherence time, leading to signal enhancement by a factor of ∼

3 compared to the single-beam case. We would expect a factor of 4, resulting from the

same quadratic signal scaling presented in section 2.3. We suspect that the difference

between our actual and expected enhancement is the result of both a slight intensity

imbalance between the beams and the presence of a small angle between the fs and the

coplanar (‘east-west’) MOT beam.

In addition to increasing the signal size when using a counterpropagating-beam

configuration, the line center shift versus time is significantly reduced for this case

compared to the single-beam case, as clearly shown in Fig. 4.13.
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Figure 4.14: Time evolution of the 5D fluorescence signal lineshape showing the me-
chanical action of the optical comb for the case of two balanced counterpropagating
probe beams. fr is fixed while f0 is scanned over the 5D resonance profile for two cases
of P-state detuning, (a) δSP ≈ 0 and (b) δSP = −4 MHz. For (a) there is a clear asym-
metry in the two-photon lineshape at longer probing times, as detailed in Fig. 4.15. In
contrast, for (b), the lineshape remains symmetric even after 300 µs of probing.
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We continue to study the momentum transfer associated with the 5S1/2 (F = 2)

→ 5P3/2 (F′ = 3) → 5D5/2 (F′′ = 4) transition, fixing fr and scanning f0. Figure 4.14,

(a) and (b), show time evolutions of the detected signal as f0 is swept, for two different

detuning conditions: δSP = 0 in Fig. 4.14(a) and δSP = −4 MHz in Fig. 4.14(b), when

f0 is tuned to the two-photon resonance peak. As f0 is scanned to recover the resonance

lineshape, the value of δSP changes.

It is clear that the directed momentum transfer seen in Fig. 4.12 is greatly sup-

pressed, and the heating is more evident. For the case of δSP ≈ 0, the lineshape profile

centered at 300 µs (Fig. 4.15, black circles) shows a marked asymmetry. This feature is

easily understood, because the comb lines are tuned blue relative to both the 5S-5P and

5S-5D resonances, although the detuning of the 5S-5P transition is less dramatic be-

cause its linewidth is an order of magnitude larger. Thus, Doppler heating accompanies

the probe of the blue side of the two-photon resonance.
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Figure 4.15: A detailed comparison of the lineshape under two detuning conditions after
an interaction time of 300 µs.
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Figure 4.16: Schematic of the detunings from the intermediate and excited states rele-
vant for the Stark-shifted data. fr and f0 are chosen such that the 5D state is always
on resonance, while the detuning from the intermediate 5P state of interest is varied.

For the case of δSP ≈ −4 MHz, the intermediate-state detuning is always red as

the two-photon resonance is probed. The red-detuned comb mode helps to maintain a

symmetric absorption lineshape even after 300 µs, as confirmed by the corresponding

profile (Fig. 4.15, red squares). Thus, a judicious choice of comb structure can help to

mitigate the heating of the sample caused by the probing beam. From Fig. 4.14, (a)

and (b), we also observe quite different signal decay rates versus observation time.

4.4.3 AC Stark shift and power broadening

Another systematic source of error is the light-induced AC-Stark shift on various

atomic states to be measured. To assess this effect in the presence of many comb modes,

we again take advantage of the flexibility in control of fr and f0 to vary δSP while

keeping δSD nearly zero for the closed transition (see Fig. 4.16). In this near-resonance

stepwise transition case, a non-vanishing value of δSP causes a shift in the measured two-

photon transition frequency. Atomic energy shifts occurring in a resonantly enhanced

two-photon process were first observed by Liao and Bjorkholm in Na vapor [74].

To clearly distinguish the AC Stark shift from mechanical actions, we gradually
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the corrected atomic transition frequencies (a) and the natural transition linewidths (b).



64

increased the power of the pulses as the laser shutter opened. For both δSP = +4

MHz (blue triangles) and δSP = −4 MHz (red squares) cases, the AC Stark shifts are

present as soon as the laser is turned on and the transition frequency shift follows the

time evolution of the peak power of the pulse train [Fig. 4.17(a)]. When δSP = 0

MHz (black circles), the measured AC Stark shift is close to zero when the shutter just

opens. The frequency shift measured at later times is attributed to the accumulated

photon momentum transfer, which is reduced in the detuned cases. The asymmetry in

frequency shift between the red and blue detunings is caused by the presence of other

5P hyperfine states that also perturb the 5S-5D transition.

Although the laser spectrum spans roughly 26 THz, the obtained spectroscopic

resolution approaches the atomic natural linewidth. This level of resolution is a result

of the use of ultracold atoms and careful control of the phase-stabilized comb parame-

ters, stray magnetic fields, light-induced shifts, and photon-momentum transfer. We

typically measure two-photon linewidths on the order of 1 MHz [Fig. 4.17(b)], which

is roughly consistent with the convolution of the natural linewidth of 660 kHz and the

laser technical linewidth of 300 kHz. (Note that the laser linewidth is 600 kHz for a

two-photon transition.) The measured transition linewidth is slightly smaller for red

detuning (δSP = −4 MHz) than blue detuning (at the same δSP value) with the same

probe power.

4.4.4 Nulling stray magnetic fields

A direct consequence of the previous two sections is that for all the spectroscopy

experiment, the line-center values are extrapolated to zero interrogation time to suppress

shifts associated with photon-momentum transfer and the transitions are probed on

optimal resonance (i.e., zero detuning for both the intermediate state and the final

state) to minimize the AC Stark shifts.

Additionally, stray magnetic fields are minimized by applying bias-coil compen-
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sation in three orthogonal directions. To null the residual magnetic fields we make use

of the two-photon signal itself: Zeeman-shifted spectra are obtained with right and left

circularly polarized femtosecond comb light along each direction and the zero-frequency

shift point is determined within ± 20 kHz, as presented in Fig. 4.18.
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Figure 4.18: The two-photon fluorescence signal is used to cancel the residual mag-
netic fields: Zeeman-shifted spectra are obtained with right and left circularly polarized
femtosecond comb light and the zero-frequency shift point is determined.

4.5 Conclusion

Because the use of the femtosecond comb is novel as a direct spectroscopic probe,

in this chapter we carefully characterized several prominent systematic effects. Indeed,

the dominant effects are the mechanical action of the optical comb on the atomic motion,

the light shift induced by the probe laser, and the Zeeman frequency shifts. Now that we

have isolated the biggest contributions to the systematic line center shift and linewidth

we can actually do precision spectroscopy! In fact, the bandwidth associated with the

femtosecond pulse is sufficiently broad so that many fine and hyperfine atomic states

can be excited by tuning the relevant comb components into resonance.



Chapter 5

Two-photon absolute frequency measurements

One desirable objective in atomic spectroscopy is the ability to obtain a global

energy level picture of the atomic transitions. In fact, the stabilized comb has tremen-

dous possibilities for mapping numerous transitions in a straightforward way. In this

chapter, I will show that it is possible to obtain all of the allowed single- and two-photon

transitions within the laser bandwidth by a quick scan of fr (∼ 26 Hz). This scanning

method is efficient and eliminates the need for broadly tunable and absolutely refer-

enced cw lasers. This is one of the main advantages of using a frequency comb directly

for spectroscopy.

Previously, in Chapter 4, we scanned f0 and kept fr locked in order to characterize

the primary contributions to systematic effects on both the line center and the linewidth.

When these results are integrated into the the setup we have a system which can perform

precision mesurements. In this chapter, I focus on some representative 5S-5D transitions

for precision spectroscopy. Indeed, the measurement results approach the accuracy of

those obtained in the best cw measurements to date.

Also, if we consider that we have locked the Ti:S comb to a commercial cesium

clock and thus have generated an absolutely referenced set of optical frequencies, we

can use these frequencies for identification of previously unmeasured transitions. As

an example, we determine the previously unmeasured absolute frequency of the 5S-7S

two-photon resonances. We thus demonstrate that prior knowledge of atomic transition
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frequencies is not essential for this technique to work, and indicate that it can be applied

in a broad context.

5.1 Scanning fr gives a full spectrum

In general, sweeping fr has the advantage of yielding all the transitions within

the laser bandwidth in only a ∼ 26 Hz scan. This is due to the fact that the ratio of one-

photon optical transition frequencies (participating in stepwise two-photon transitions)

to fr is ∼ 3.8× 106, so that for a change in fr of ∼ 26 Hz the resonant enhancement is

repeated by the next neighboring comb component.

However, the optical frequency for the two-photon transitions is ∼ 770 THz, an

fr harmonic on the order of 7.7 × 106. Therefore, the two-photon resonance condition

is satisfied every time fr is changed by ∼ 13 Hz, corresponding to a change in the comb

frequency by fr /2 for the mode orders around 3.85× 106.

As an aside, I will discuss the two primary differences between scanning fr and

scanning f0: (i) simply stated, fr has the advantage of being multiplied by N , whereas

f0 does not and (ii) scanning fr can easily tune over 100 MHz in the optical region,

whereas scanning f0 in the current configuration produces a 80 MHz sweep at the

maximum. The trouble with scanning f0 is that the beat can reside anywhere between

0 MHz and fr/2 (there is of course a conjugate beat in the fr/2 to fr window) but,

in order for us to lock f0, we are restricted to the 7-47 MHz range. Thus, to obtain

broader tunability in the current experimental configuration, we scan f0 up to 47 MHz,

then change the sign within the servo to acquire lock on the conjugate beat and finally,

we proceed to scan this conjugate beat up to -47 MHz. This gives a total tuning of 80

MHz. (Note that we can adapt the current setup, for example by including acousto-

optic modulators in the ν-to-2 ν interferometer, to obtain continuous tuning without

having to change the servo sign.)

Figure 5.1 presents the two-photon transition spectrum obtained by scanning
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Figure 5.1: The top panel shows the experimental setup for scanning the laser repetition
frequency fr and the lower one presents the two-photon spectrum obtained from such
a scan. All possible 5S-5D transitions are observed; this includes the non-resonant and
resonantly enhanced transitions.
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fr for a fixed value of f0. It shows the 14 transitions (there are 39 possible pathways

for the case of linearly polarized light) that I identified for the 5S1/2 → 5D3/2 and

5S1/2 → 5D5/2 two-photon resonances. The data clearly show that the larger, one-

photon resonantly enhanced peaks repeat after a change of fr by ∼ 26 Hz, as expected

from the simple calculation above. As mentioned in section 4.2, for the resonantly

enhanced peaks, the pair of comb modes that is actually tuned onto the 5S-5P and

5P-5D resonances makes the dominant contribution to the two-photon transition rate.

In Fig. 5.2, we also present the theoretical spectrum corresponding to the set of

parameters used in the experiment. The two insets show signal magnitude on a loga-

rithmic scale to enhance the visibility of the smaller peaks. The peak corresponding to

non-resonant excitation of the 5S1/2 (F = 2)→ 5P3/2 (F′=3)→ 5D5/2 (F′′=4) transition,

made possible by the collective action of many comb modes, is larger than that theoreti-

cally predicted because the comb spectral phase is not flat and the comb spectrum is not

symmetric around the P state; thus, the destructive interference mentioned earlier in

section 4.2 is reduced. Furthermore, as the detuning from the P state becomes greater

than a few THz, the effect of phase mismatching between comb pairs over the spatial

dimension of the MOT can be non-negligible.

There are a couple of interesting spectral features that we notice when looking at

Fig. 5.2. The two resonance peaks observed in the experimental spectrum, which are not

present in the theory model, are due to the 5S1/2 → 7S1/2 two-photon transitions. Their

observation prompted us to consider both their theoretical modeling and experimental

investigation. However, it is more complicated to include these transitions in the model

than to include the 5S-5D two-photon transitions, primarily because their frequency has

never been measured before. In fact, this led us to actually experimentally measure their

absolute frequencies, as presented in section 5.3. I had not initially intended to study

them, though this shows again one of the powerful features of our direct frequency comb

technique, the fact that we can observe all the transitions within the fs laser bandwidth.
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For this fr scan, the initial ground-state population is in F=2. At longer times

(blue curves), all the transitions starting on F=2 are decreasing in amplitude compared

to shorter time scales (red curves) due to ground-state population redistribution and

heating. Most of the F=1 peaks remain unchanged or become larger. Our density

matrix simulation accounts for the time dependence of the shutter response and optical

pumping dynamics, but does not include any heating effects. The signal size shown in

Fig. 5.2 has been normalized against the square of the probe power. Not surprisingly,

both theory and experiment reveal that the most dominant transition pathway is the

closed 5S1/2 (F=2)→ 5P3/2 (F′=3) → 5D5/2 (F′′=4) transition.

The relative size of the features in Fig. 5.2 after any fixed number of pulses

reflects intermediate-state resonant enhancement as well as population transfer. Thus,

the spectrum contains all of the fine and hyperfine structure pertinent to the 5D states.

5.2 Absolute frequency measurements

After accounting for the systematics discussed in Chapter 4, we have analyzed

spectra similar to the ones shown in Fig. 5.2 to construct a table of absolute transition

frequencies from 5S to 5D (see Table 5.1). We isolated the five two-photon transitions

which start in F=2, and go through 5P3/2 F′=3, i.e. two-photon transitions which have

the 5S-5P step as a closed transition. This closed first step may help with the optical

pumping, giving better signal-to-noise ratios to determine their absolute frequency.

These representative transition frequencies are determined directly from the comb

structure and are given in the table, along with comparisons to available published

values [75]. The measurement accuracy is currently a few kHz to a few tens of kHz for

the 5D states and on the order of 100 kHz for the 5P states, comparable to the highest

resolution measurements made with cw lasers. All the measurement errors reported

here are statistical errors (one standard deviation of the mean).
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Measured transition Measured frequency (kHz) Literature value (kHz)
5S1/2 F=2→ 5D5/2 F′′=2 770 569 184 527.9 (49.3) 770 569 184 510.4 (16.0)
5S1/2 F=2→ 5D5/2 F′′=3 770 569 161 560.5 (11.1) 770 569 161 555.6 (16.0)
5S1/2 F=2→ 5D5/2 F′′=4 770 569 132 748.8 (16.8) 770 569 132 732.6 (16.0)
5S1/2 F=2→ 5D3/2 F′′=3 770 480 275 633.7 (12.7) 770 480 275 607.6 (10.0)
5S1/2 F=2→ 5D3/2 F′′=2 770 480 231 393.9 (38.1) 770 480 231 385.2 (10.0)
5S1/2 F=2→ 7S1/2 F′′=2 788 794 768 921.4 (44.5) 788 794 768 878.0 (40.0)
5S1/2 F=1→ 7S1/2 F′′=1 788 800 964 199.3 (121.9) 788 800 964 042.0 (40.0)

Table 5.1: 87Rb level structure from direct frequency comb spectroscopy. All the values
are obtained by extrapolating the line center to zero probing time and power. The first
six transitions presented here are resonantly enhanced by the 5P3/2 F′=3 state and thus
have a closed first step. The final seventh transition passes through the 5P3/2 F′=1
intermediate level.

We will now move on to discuss the measurement of the two extra resonances

that appeared in the spectra shown in Fig. 5.2.

5.3 5S-7S absolute frequency measurements

After observing the two resonances, we reviewed the literature and discovered

that in fact no one had measured these transitions with high precision. Without a

priori information of the 7S energy levels, we have determined their absolute transition

frequencies [76]. We have used the transition wavelength reported in the online NIST

atomic database, which was of course covered by the fs laser spectrum, so we were able

to determine the resonance frequencies. A single optical comb thus provides atomic

structural information in the optical, terahertz, and radio-frequency spectral domains.

I will discuss in some detail now the 5S-7S two-photon frequency measurements.

They were performed in a similar manner to the 5S-5D measurements, with the im-

portant change that we used a Pockels cell with a 8-ns rise time instead of the liquid

crystal shutter (∼ 30 µs response time). As a consequence, we did not have to account

for the shutter turn-on when obtaining the final frequency values, which made it eas-

ier to extrapolate to zero power. The experiment cycle and general method remained
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the same, especially since the 7S levels also decay through the 6P levels, which means

that we were able to use the same PMT. As seen from the general frequency diagram

in section 4.2, the wavelengths for the second step of the resonantly enhanced 5S-7S

transitions are 741 nm for transitions via 5P3/2 and 728 nm for transitions via 5P1/2.

The energy degenerate two-photon transition is at 760 nm. This makes it more difficult

to cover them in our spectrum, optimized for 778 nm. This fact is especially true about

728 nm wavelength. Shifting the spectrum to smaller wavelengths is definitely doable,

the problem is having a sufficient signal-to-noise ratio for the f0 beat to properly main-

tain phase-lock of the Ti:S. The degradation in the signal-to-noise ratio of the f0 beat

occurs because the microstructure fiber is optimized for its zero GVD point near 800

nm. Thus, I usually center the fs spectrum at 770 nm for these measurements and I try

to use only transitions enhanced by a 5P3/2 intermediate level.

Shown in Fig. 5.3(a) is a typical 7S1/2 F′′=2 Lorentzian lineshape, generated by

stepping the offset frequency f0 for a fixed value of the repetition rate fr and recording

the subsequent blue fluorescence corresponding to the 7S population. For each data

point, to obtain a better signal-to-noise ratio, the 80 ns-binned counts arising from the

fluorescence are integrated over 2.4 µs. Alternatively, this lineshape is retrieved by

sweeping fr with f0 fixed at some convenient value.

Once the lineshape has been acquired, what remains is to identify the correct

mode number N associated with each transition. If the optical frequency is already

known to within fr/2, this is a straightforward task. For the case of the 5S-7S two-

photon transitions, where the resonance frequencies are not known a priori (νopt = (N1+

N2)fr + 2f0), we scan the resonances for two different values of fr and unambiguously

deduce the sum of the two associated integers (N1 + N2) [77, 78]. In our case, the two

repetition rates used are separated by 600 kHz to eliminate possible uncertainties arising

from estimations of the f0 value corresponding to the peak of the resonance.

After identifying the comb numbers associated with the transition and reducing
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Figure 5.3: (a) Typical 5S1/2 F=2→ 7S1/2 F′′=2 two-photon Lorentzian lineshape ob-
tained from a scan of the offset frequency f0 for a fixed value of the repetition rate fr .
For each data point, the 80 ns-binned counts arising from the fluorescence are integrated
over 2.4 s. (b) Frequency shift of the transition line center vs. probing time resulting
from the momentum transferred by the femtosecond laser to the cold 87Rb atoms. Ex-
trapolation to zero interrogation time gives absolute atomic transition frequencies, as
well as roughly the natural linewidth, free of radiation pressure effects.

the systematic error arising from AC Stark shift (by probing on optimal resonance i.e.,

zero detuning for both the intermediate state and the final state), the remaining error

from radiation pressure is suppressed by extrapolating to zero interrogation time, as
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shown in Fig. 5.3(b). We determine for the 5S1/2 F=2→ 7S1/2 F′′=2 and the 5S1/2 F=1

→ 7S1/2 F′′=1 two-photon transitions in 87Rb the absolute optical frequencies of 788 794

768 921(44) kHz and 788 800 964 199 (122) kHz, respectively (see Table 5.1). The excited

state hyperfine interval of 639 404 (130) kHz agrees very well with a previous differential

measurement performed with a picosecond pulsed laser [70]. The transition spectra

reported in [70], as well as a continuous-wave (cw) laser-based scan [79], indicated

that the F=2 → F′′=2 and the F=1 → F′′=1, i.e. ∆F=0 transitions, were the only

allowed 5S-7S transitions in 87Rb. However, we observe additional lines, as the resonant

intermediate 5P state also enables the F=2 → F′′=1 and F=1 → F′′=2, i.e., ∆F=±1,

two-photon transitions. Similar ∆F=±1 S-S transitions have been previously observed

in Na in a two-step excitation experiment employing two tunable cw dye lasers, which

enabled a direct measurement of the excited state hyperfine splitting [80].

We recently learned that conventional, cw laser-based measurements of the 5S-7S

transitions in Rb were reported by Chui et al. [81]. Our measurements agree with their

results, within one standard deviation of the mean for the reported values, as can be

seen from Table 5.1. Thus, we have demonstrated that by using DFCS, the absolute

value of the 5S1/2 → 7S1/2 two-photon transitions in 87Rb is conclusively determined,

with no a priori knowledge about their optical frequency.

In the next chapter I will discuss single-photon frequency measurements that

we recently made. As described there, one indirect way to determine the absolute

frequencies of the 5S-5P transition is to scan the 5P state by using a set of fr and f0 pairs

that have a range of detunings from the 5P state and are all two-photon resonant. I will

show that detailed dynamics of population transfer driven by a sequence of pulses have

to be taken into account for the measurement of the 5P states via resonantly enhanced

two-photon transitions.



Chapter 6

One-photon absolute frequency measurements

Direct Frequency Comb Spectroscopy (DFCS) can be equally well applied to

measure single-photon transitions. However, since we have the ability to dynamically

access two-photon transitions (as shown in Chapter 4), we can measure the energy

of a given state in two ways. We can either investigate an atomic state as part of a

one-photon process or as a two-photon process. We have chosen the 5S-5P transitions

in 87Rb to demonstrate this ability. The measurement of 5P states has been carried

out directly and also indirectly, via the 5S-5D two-photon transitions by studying their

resonant enhancement when comb components are scanned through the intermediate

5P states. We compare the 5P measurements obtained via one-photon and two-photon

DFCS and clearly demonstrate the importance of population transfer in working with

multilevel systems probed by multiple comb components.

Also, again with the technique of DFCS, we have the advantage of being able to

determine absolute atomic transition frequencies anywhere within the comb bandwidth,

for one-photon processes.

6.1 Detection and timing scheme for the direct 5P measurements

For the one-photon studies we have investigated both the D1 and D2 transitions

in 87Rb, namely transitions from the ground state to the 5P1/2 excited state at 795 nm

and to the 5P3/2 state at 780 nm (see general diagram, in section 4.2).
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The three main timing sequences of the magneto-optical trap (MOT), the po-

larization gradient cooling (PGC), and the probing cycle are similar to those shown in

section 4.3. However, here during the probing cycle, we implement a switching scheme

for the photomultiplier tube (PMT) and the fs laser.

The main challenge with the direct 5P measurements is to collect the fluorescence

emitted by the atoms, while avoiding gathering the light from the fs probe, since they

have nearly the same wavelength. In addition, because we use acousto-optic modulators

for fast switching of the MOT lasers, there is always some residual light that may affect

the measurements. Care was taken to ensure that these lasers did not influence the

signal.

PMT
axis of fs beam

propagation

z-axispinhole to filter
out fs beam

narrowband
spectral filter

Figure 6.1: Detection assembly for the direct one-photon measurements. Background
counts are minimized by using spatial and spectral filters. As before, the PMT signal
is sent to a photon counter and the resulting counts are read into a computer.

We directly detect the fluorescence from the two 5P states with a near-infrared

PMT coupled with a 3-nm bandwidth interference filter centered at the appropriate

wavelength for the transition, as presented in the detection assembly in Fig. 6.1. We

use narrow band interference filters reduce the number of comb components that are

received by the PMT and thus minimize detection noise. Background counts are further

minimized by spatial filtering with two pinholes, the first very small (1 mm), through



78

which the MOT is imaged [Fig. 6.1]. Photon collection during the probe laser-on period

is disabled by switching off the PMT.

The loading cycle used for the MOT is 100 Hz, and the sequence of the experiment

is similar to the two-photon experiments [Fig. 6.2]: the atoms are loaded in the MOT

for 7.8 ms, then the quadrupole magnetic field for the trap is switched off, the atoms are

cooled with polarization gradients for 2 ms, then all the MOT beams are extinguished

and the femtosecond comb beam is switched on for 200 µs using the Pockels cell (8-ns

rise time)

As illustrated in the one-photon timing diagram in Fig. 6.2, during the 200 µs

probe window, we have a sequence of short cycles with the probe laser on (200 ns)

followed by the PMT on (400 ns) to detect photons from the fast-decaying 5P states. A

2.6 µs interval (PMT switch-off time) is required before initiating the next laser cycle.

Both the two-photon and the single-photon signals are averaged over hundreds of 10 ms

experiment cycles.

MOT
7.5 ms

PGC
2 ms

t
One-photon

timing diagram

200 µs

400 ns, PMT on200 ns, fs on

... 

Figure 6.2: Timing scheme for the 100 Hz experiment cycle, where the 200-µs zoom
window shows the sequences for the direct one-photon measurements. We switch the
PMT off during the laser-on period, to minimize detection noise.

For the indirect 5P measurements, we use results from the theoretical model

describing the fs comb interaction with the atoms. As discussed in Chapter 2, the
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theory accounts for detailed dynamics of population transfer among the atomic states

involved in transitions within the comb bandwidth. A numerical scheme is employed

to obtain the state of the atomic system after an arbitrary number of pulses [37, 60].

This model is applied to accurately predict the coherent population accumulation in the

relatively long-lived 5D, followed by incoherent optical pumping. Especially important

for the indirect 5P measurements is the incoherent optical pumping to the ground state

hyperfine levels, which depends critically on the 5P state detunings and will be discussed

in detail below.

We will now compare one-photon and two-photon DFCS measurements for the

5P state energy levels. The one-photon DFCS employs radiative detection directly from

the 5P states (Fig. 6.3, left panel), while the two-photon DFCS studies the 5P states

indirectly, via resonant enhancement of the 5S-5D two-photon transitions as a function

of the detuning from the intermediate 5P states (Fig. 6.3, right panel).

F=2
F=15S

5P

PMT
F=2
F=1

5D

5P

5S

6P

PMT

one-photon
DFCS

two-photon
DFCS

Figure 6.3: Schematic of one- and two-photon DFCS, used for measuring single-photon
transition frequencies. The two-photon DFCS here differs from the two-photon process
described in Chapter 5 in that the 5D state is kept strictly in resonance. The 5P
lineshape is obtained by scanning the detuning.
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6.2 5P3/2 frequency measurements

First, we measure the 5S1/2 F=2 → 5P3/2 F′=3 D2 transition with one-photon

DFCS, with the resulting transition line shown in Fig. 6.4(a) [76]. Frequency scans are

carried out similarly to those of the 5S-5D lines, that is, by stepping f0 continuously

while keeping fr fixed. The absolute optical frequency measured for this transition is

384 228 115 271 (87) kHz, in agreement with a previous measurement done here at

JILA [82], which resulted in an absolute frequency value of 384 228 115 203 (7) kHz.

Once again, all the measurement errors reported in this chapter, and actually in this

thesis, are statistical errors (one standard deviation of the mean).

For the two-photon DFCS, we use a set of different pairs of fr and f0 specifi-

cally chosen to have varying detunings from the 5P state for each data point shown in

Fig. 6.4(b), while at the same time satisfying strictly the 5S-5D two-photon resonance

(δSD = 0). In this case, we monitor once again the 420 nm fluorescence from the 5D

states. Such a set of fr and f0 is given as an example in Table 6.1. We immediately

see that fr must be known within 10 mHz. To obtain this level of accuracy, we always

reference the fr frequency counter to the cesium clock in our lab. As mentioned earlier,

this is necessary because the fr excursions get multiplied by ∼ 8 × 106. In contrast,

f0 must only be stable within 100 Hz.

The lineshape in Fig. 6.4(b) is retrieved by detecting the 420 nm signal as a

function of 5P state detuning and the optical frequency measured by this two-photon

DFCS is 384 228 115 309 (63) kHz, in agreement with the result obtained from one-

photon DFCS within the standard deviation. Although the two methods for measuring

this 5P state, direct and indirect, agree well, the indirect one is more cumbersome for

two main reasons. Firstly, fr must be changed by such a large amount as to require

the output coupler to be placed on a translation stage and thus, the laser box to be

opened for each detuning value. Secondly, this required hand-tuning adds significant
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Figure 6.4: (a) Lineshape of the 5S1/2 F=2→ 5P3/2 F′=3 transition obtained from a
scan of f0 for a fixed value of fr, by one-photon DFCS. (b) Same lineshape as in (a),
retrieved using its resonant enhancement of the 5S1/2 F=2→ 5P3/2 F′=3→ 5D5/2 F′′=4
closed two-photon transition, as a function of the detuning from the intermediate state.

time for retrieving a lineshape, so it is important that the data be taken under the same

conditions and thus, it all has to be acquired on the same day. The direct method,

though requiring an extra (switched) PMT, allows for a fast and smooth scan of the 5P

states.

It is also important to mention that for this scan we take advantage of the

5S1/2 F=2 → 5P3/2 F′=3 → 5D5/2 F′′=4 being the only 5S-5D closed transition.

As shown in the theory plots in Fig. 6.5, this closed transition ensures that most of
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5P detuning (MHz) fr (MHz) f0 (MHz)

-13 99.89260605 -16.4737
-10 99.92066423 -22.4503
-9 99.93474869 -16.2599
-4 99.92482030 -9.9189
-3 99.93890785 -11.1280
-2 99.91518350 -21.3653
+1 99.94325356 -24.2433
+3 99.86747878 -22.2673
+4 99.88155032 -24.0872
+5 99.89562280 -14.1944
+9 99.84803930 -11.4370
+12 99.84303590 -24.3973

Table 6.1: Example of a set of fr and f0 pairs used for the indirect scanning of the
intermediate 5P3/2 F′=3 state. All the detunings are given with respect to this P state.
The values for fr and f0 are chosen to ensure that the F′′=4 state is always resonant
for this indirect scan.
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Figure 6.5: Theoretical plot of the time evolution of the ground state populations for
two (symmetric) detuning values in Fig. 6.4(b), showing that (i) most of the atoms
remain in the initial F=2 ground level for this closed two-photon transition and (ii) the
ground state populations are largely insensitive to the sign of the detuning.

the atoms initially starting out in the F=2 ground-state hyperfine level remain in that

level, while ∼20% of the atoms fall into the dark F=1 ground state due to optical

pumping and hence do not contribute to the signal. In addition, the probe laser power
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is sufficiently reduced for the two-photon DFCS experiments to further decrease optical

pumping effects.

6.3 5P1/2 frequency measurements

1.0

0.9

0.8

0.7

0.6

0.5
25201510

 Single-photon P1/2 

 f0  (MHz)

Si
gn

al
 (a

.u
)

        Data
  Fit

(a)

500

400

300

200

100
-20 -10 0 10 20

         Data
 Visual 

         Guide

   Raw P1/2 

 lineshape 
     via a
two-photon 
     scan

5P State Detuning (MHz)

R
aw

 N
um

be
r o

f C
ou

nt
s

(b)

Figure 6.6: (a) Lineshape of the 5S1/2 F=2 → 5P1/2 F′=2 transition obtained from a
scan of f0 for a fixed value of fr, by one-photon DFCS. (b) Raw counts for the same
lineshape as in (a) by two-photon DFCS, along with a visual guide for the data.

Next, we employ DFCS to study another single-photon transition in the D1 man-

ifold, 5S1/2 F=2 → 5P1/2 F′=2, as shown in Fig. 6.6(a). Again, f0 is scanned while fr is

stabilized to a convenient value. The absolute optical frequency for this transition is

determined to be 377 105 206 563 (184) kHz, in agreement with a previous wavelength-
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based measurement [83], which gave an absolute frequency value of 377 105 206 705

(400) kHz for this transition.

For the corresponding two-photon DFCS experiment we map the 5S1/2 F=2

→ 5P1/2 F′=2 → 5D3/2 F′′=3 two-photon transition in the same manner employed for

Fig. 6.4(b). Figure 6.6(b) shows the raw data yielded by the (fr, f0) pair selections,

along with a visual guide for the data. The apparent linewidth is significantly broader

than that associated with the 5P state.

Unlike the previous two-photon DFCS measurement reported in Fig. 6.4, the

pairs of fr and f0 used to obtain each point in Fig. 6.6(b) lead to substantially different

detunings of the other 5P states and subsequently, varying optical pumping to the F=1

ground state. Indeed, the theory model applied to the actual experiment conditions

predicts significantly different ground state population transfer dynamics. As shown in

Fig. 6.7, the asymptotic values of the F=2 ground-state population are not the same

for symmetric detunings from the intermediate state.
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Figure 6.7: Theoretical plot of the time evolution of the ground state populations for two
(symmetric) detuning values in 6.6(b), showing a significant difference in the population
transfer between the ground state levels due to optical pumping caused by varying
detunings from the other 5P states.
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Figure 6.8(b) presents the Lorentzian lineshape resulting from the normalization

of the raw data shown in Fig. 6.8(a) with respect to the theoretical value of (1 - ρF=1),

where ρF=1 is the fractional ground state population in F=1, as shown in Fig. 6.7. After

we implement this normalization, the optical frequency for the transition measured by

the two-photon DFCS is 377 105 206 939 (179) kHz, which is within the error bars of

the corresponding one-photon DFCS result.
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Figure 6.8: Raw data (a) and normalized lineshape (b) obtained by using results from
the theory simulation in Fig. 6.8 accounting for optical pumping.

We note that for all measurements reported in this chapter, the statistical errors

(one standard deviation of the mean) associated with 5P3/2 are significantly smaller
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than those associated with 5P1/2. This is due to the stronger transition strength and

less severe optical pumping effects for 5P3/2 F′=3 (part of a closed transition), leading

to larger signal-to-noise ratios.

Direct frequency comb measurements of one-photon transitions in atoms other

than 87Rb have been recently reported. In Leo Hollberg’s group at NIST, they probed

Cs in an atomic beam with DFCS, but using a Ti:S laser with a 1 GHz repetition

rate [84]. Employing a 1-GHz fs laser has several advantages over a lower fr laser, as

stated in Chapter 7.

In conclusion, a phase-stabilized femtosecond comb has been used as an effective

tool to perform direct spectroscopy of one-photon transitions in cold 87Rb atoms. We

have demonstrated that DFCS can be successfully applied to one-photon studies, by

measuring 5S1/2 → 5P1/2,3/2 transitions both directly and indirectly, via their resonant

enhancement of the 5S-5D two-photon transitions. Additionally, we have shown the

importance of including the dynamic population changes arising from pulse-accumulated

population transfer in this indirect one-photon measurement.



Chapter 7

Summary and outlook

In this thesis, we have joined together the study of cold atoms, which are well

established as an ideal sample for spectroscopy with the field of ultrafast lasers, which

have recently emerged as a powerful tool for frequency metrology.

We have used a wide-bandwidth, phase-stabilized femtosecond laser as a novel

and efficient tool to perform Direct Frequency Comb Spectroscopy (DFCS) of one-

photon and two-photon transitions in laser-cooled 87Rb atoms. To begin with, we have

studied the dominant sources of systematic shifts and tried to reduce their effects as

much as possible. We have then measured the absolute atomic frequency for several

5S1/2 → 5D3/2,5/2 two-photon transitions in 87Rb. The two-photon spectroscopy is car-

ried out efficiently despite the low laser power, because we take advantage of intermedi-

ate 5P states that are near-resonant with a comb line. We have demonstrated that the

absolute optical frequency of the previously unmeasured 5S1/2 → 7S1/2 resonances can

be determined unambiguously from the comb structure used in the experiment. Lastly,

we have shown that DFCS can be successfully applied to one-photon processes as well,

by measuring 5S1/2 → 5P1/2,3/2 transitions both directly and indirectly, through their

resonant enhancement of the 5S-5D two-photon transitions. Detailed dynamics of popu-

lation transfer driven by a sequence of pulses were uncovered and taken into account for

the indirect measurement of the 5P states. Although the current experiments involve

one- and two-photon transitions, the advantages of DFCS should also apply to multi-
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photon excitations. In general, DFCS permits global, high-resolution spectroscopy of

all the atomic transitions within the comb bandwidth.

After we successfully implemented DFCS for the study of several one- and two-

photon transitions, there is still room left for improvements. Firstly, the resolution of

DFCS can be enhanced by locking the femtosecond laser to a cavity, which has been

shown capable to reduce the linewidth to below 100 Hz [85], rather than the current 300

kHz. Secondly, a larger signal can be obtained by using a laser with a higher repetition

rate; for example, a 1-GHz laser with the same average power and spectral width could

increase the signal up to a 100-fold. This is a result of the quadratic increase of the ex-

cited state population versus the accumulated number of pulses, where the higher fr and

hence the shorter pulse interval allow for more pulses to be ‘added’ during the atomic

coherence lifetime. Additionally, the power is distributed among fewer comb lines for

this fr ∼ 1 GHz case, and the decreased congestion of lines would reduce optical pump-

ing effects. Achieving simultaneous one- and two-photon resonance conditions should

still be possible. Using a 1-GHz laser provides more latitude in identifying the mode

number of the comb component that is resonant with each optical transition. The larger

mode spacing makes this identification easier, because it only requires knowledge of the

optical frequencies with a precision of a few hundred MHz. One practical consequence

of these results is a method to control both degrees of freedom of the femtosecond comb

directly by an optical transition in cold atoms.

Another interesting application of the demonstrated pulse accumulation effect

is using ultrafast pulse trains for laser cooling of atoms (e.g. hydrogen, deuterium,

antihydrogen) that require coherent ultraviolet light not easily accessible by conven-

tional laser sources [86]. Toward this goal, an extension of frequency comb metrol-

ogy to the deep-ultraviolet spectral region (where cw lasers are not readily available)

was recently achieved using an amplified train of phase-controlled pulses from a fem-

tosecond laser [78]. The peak power of these pulses allowed for efficient harmonic
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upconversion and thus, the 4th harmonic of the femtosecond laser was used for two-

photon spectroscopy in krypton. Even more recently, phase-coherent frequency combs

in the vacuum-ultraviolet spectral region were demonstrated in our lab, without active

amplification of the standard femtosecond laser [87]. Its output was stabilized to a

completely passive optical cavity, with a gas jet at the intracavity focus, generating a

phase-controlled frequency comb in the extreme ultraviolet region which preserves the

original repetition frequency. This technique, in combination with DFCS, opens the

door to more accurate atomic optical clocks that operate on resonances with ultrahigh,

vacuum-ultraviolet or extreme-ultraviolet, frequencies. These clocks would have a very

high stability, proportional to their transition frequency.

For general coherent control experiments, pulse accumulation (when enabled by

long coherence times) can complement spectral amplitude and phase manipulations,

leading to improved efficiency in population control with the added spectral resolution

and longer experimental timescales due to maintaining phase coherence for many con-

secutive laser pulses. The precise and phase-coherent pulse accumulation may prove

particularly useful in efficiently populating atomic Rydberg states for quantum infor-

mation processing. Multiple ultrafast lasers with optical spectra independently tailored

for different spectroscopic features could be phase coherently stitched together [9,88] to

further extend the utility of this approach.
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