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Inelastic collisions and density-dependent excitation suppression in a 87Sr optical lattice clock
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We observe two-body loss of 3P0
87Sr atoms trapped in a one-dimensional optical lattice. We measure loss rate

coefficients for atomic samples between 1 and 6 μK that are prepared either in a single nuclear-spin sublevel
or with equal populations in two sublevels. The measured temperature and nuclear-spin preparation dependence
of rate coefficients agree well with calculations and reveal that rate coefficients for distinguishable atoms are
only slightly enhanced over those of indistinguishable atoms. We further observe a suppression of excitation and
losses during interrogation of the 1S0–3P0 transition as density increases and Rabi frequency decreases, which
suggests the presence of strong interactions in our dynamically driven many-body system.
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I. INTRODUCTION

Ultra-narrow optical transitions in alkaline-earth-metal
atoms are the foundation for state-of-the-art optical lattice
clocks [1–5] and recent proposals for quantum information
science [6,7]. All of these applications will benefit from
achieving long atom-light coherence with large numbers of
atoms, although at large densities inelastic and elastic collision
processes become increasingly important. For ensembles of
indistinguishable fermions, s-wave collisions are forbidden
by the Pauli exclusion principle and higher order partial
wave collisions are suppressed when the thermal energy
of the atoms is much less than the energetic barrier for
interactions. However, inhomogeneous excitation can populate
multiparticle electronic states that are not symmetric with
respect to exchange, thereby allowing s-wave collisions [8,9].
Furthermore, p-wave collisions, though suppressed at low
temperatures, are not forbidden and evidence of p-wave
collisions was recently observed in an optical lattice of
fermionic Yb atoms [10].

In this work, we demonstrate that nuclear-spin-polarized,
fermionic 87Sr atoms in the 3P0 state experience inelastic
p-wave collisions that cause two-body population decay in
a one-dimensional (1D) optical lattice. Atoms prepared in an
incoherent mixture of two nuclear-spin sublevels experience
slightly greater loss than atoms polarized to a single nuclear-
spin sublevel. We also observe evidence of strong interactions
during spectroscopy of the 1S0–3P0 transition as we reduce
the Rabi frequency, �. Typically, a system is termed strongly
interacting if the thermally averaged mean interaction energy
per particle U dominates over all other energy scales. In our
dynamically driven system, the finite temperature only affects
the dynamics through a slight perturbation to � based on
the vibrational mode of an atom [8,9]. Since the only other
relevant energy scale is h̄�, our system becomes strongly
interacting when U/h̄ � �. Previously, this was accomplished
by confining atoms in a two-dimensional (2D) optical lattice,
which increases U but decreases lattice site occupancy to
mainly one or two atoms [10–12]. In this work, we achieve
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strong interactions by decreasing � in a 1D lattice, where
we trap over 20 atoms per site on average. Thus, we are
able to use the established techniques of optical lattice clock
spectroscopy to probe the physics of strongly interacting
many-body systems.

At a fixed density, strong interactions are signaled by an
inhibition of losses and excitation with decreasing �. As �

decreases, the number of inelastic collisions during excitation
increases for constant pulse area, and an increase in losses
is naively expected. Similarly, for sufficiently small � we
measure that both losses and excitation fraction are suppressed
by increasing density beyond a critical value, contrary to
the expectation that loss will increase with density. Similar
inhibition mechanisms have been observed in other strongly
interacting systems [13–16].

Both strong elastic and inelastic interactions could be
responsible for the observed suppression in our experiment.
Although losses are significant, a mean field density matrix for-
malism that only includes inelastic processes underestimates
the observed suppression. This together with the observation of
a density dependent asymmetric broadening of the line shape
suggest that elastic interactions are playing an important role
in the dynamics.

II. EXPERIMENTAL SETUP

In our experiment, 87Sr atoms are cooled to about 2 μK in
a magneto-optical trap (MOT) based on the 1S0-3P1 transition
[17]. The atoms are loaded into a vertically oriented, 1D optical
lattice that is overlapped with the MOT. The distribution of
atoms across lattice sites is determined by the vertical extent
of the MOT which is approximately Gaussian with a standard
deviation σ = 30 μm. At the largest achieved density, we
estimate that over 8000 atoms are distributed over about 400
sites with an average occupation number of 23.

Atoms can be sideband and Doppler cooled (or heated)
on the 1S0–3P1, F = 11/2 transition. Simultaneously, atoms
are either pumped to the mF = +9/2 state (polarized) using
circularly polarized light resonant with the 1S0–3P1, F = 9/2
transition, or pumped to an incoherent mixture of spin states
with equal populations in the mF = ±9/2 states (dual-spin
state) using linearly polarized light on the 1S0–3P1, F = 7/2
transition. The quantization axis is defined by a bias magnetic
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field parallel to lattice polarization, which is strong enough
to prevent nuclear-spin depolarization. We quantify the atom
number in both 1S0 (g) and 3P0 (e) states by detecting
fluorescence on the strong 1S0–1P1 dipole allowed transition
at 461 nm both before and after e atoms are repumped to g. To
measure atom loss from the e state, atoms are excited on the
g-e transition prior to lattice hold time with a resonant π pulse
from an ultrastable laser copropagating with the lattice beam
and π polarized. The remaining g atoms are removed with a
5 ms pulse of 461 nm light.

III. 3P0 LOSS EXPERIMENT

For each experimental condition, we make a series of 30
to 50 repeated measurements of the atom number at various
lattice hold times and calculate the mean and standard error
for each series. Preceding each series of measurements at a
particular hold time, we perform a series of measurements
with zero lattice hold time. In order to reduce the effect of
long term drifts in atom number, the mean value for a particular
hold time is expressed as a fraction of the mean value with no
additional lattice holding. These fractional values are scaled
by the mean value of all zero hold time measurements, and the
uncertainty of this value is calculated from the uncertainty of
the fractional value and the standard deviation of the zero hold
time measurements.

Measured loss from the g state is well represented by
exponential decay with a lifetime of 7 to 8 s, consistent
with loss due to collisions with background gas. In contrast,
we measure a rapid, density-dependent loss from e that is
inconsistent with a simple exponential decay law. Figure 1(a)
shows the measured atom number as a function of lattice
hold time for polarized samples of g and e atoms under
similar temperature and trapping conditions. The additional
loss from e results from inelastic e-e collisions. Figure 1(b)
compares e atom decay with and without an equal number of g

atoms present. Agreement between the two curves in Fig. 1(b)
limits inelastic g-e collisions to below the sensitivity of our
experiment, and thus, we neglect them. The decay of g atoms
in the 50:50 mixture is likewise unperturbed by the presence
of e atoms.

To quantify loss from e, we adopt a model that includes
both one and two-body losses. The atomic density in e, ne, is
described by

ṅe = −�ne − Keen
2
e . (1)

Here, � is the one-body loss rate due to collisions with the
background gas, and Kee is the two-body loss rate coefficient.
As in Refs. [18,19], spatial integration of the solution to Eq. (1)
yields an expression for the atom number in a single lattice site
as a function of time:

N (t) = N0 exp(−�t)

1 + [
N0Kee/

(
π3/2�w2

r wz

)]
[1 − exp(−�t)]

. (2)

Here, N0 is the initial atom number in a site, and wz (wr ) is the
1/e2 radius of the atom cloud in the strongly (weakly) confined
direction(s).

For polarized atoms, loss occurs dominantly from inelastic
p-wave collisions at microkelvin temperatures. This means
that Kee = K ind

p (T ), where K ind
p (T ) is the loss rate coefficient

:

(a)(a) (b)

FIG. 1. (Color online) (a) Atom number as a function of lattice
hold time for atoms prepared in the g state (black triangles) and in
the e state (green squares). Fits to the decay curves are calculated for
the case of exponential decay (dashed lines). The solid line is a fit
to the e atom decay using a sum over decays in single lattice sites
[Eq. (2)]. (b) Comparison of e atom decay in the presence of an equal
population of g atoms (purple circles) to that of a pure population of
e atoms (green squares). Here, temperature is 3.5 μK.

due to inelastic p-wave collisions between indistinguishable e

atoms, which depends on temperature T . For dual-spin state
atoms, loss can occur from intraspin-state odd partial wave
collisions and from interspin-state collisions which can be any
partial wave. Keeping only s- and p-wave contributions, the
decay of a single-spin state α in the presence of another spin
state β can be written as

ṅα = −�nα − K ind
p (T )n2

α − [
Kdist

s + Kdist
p (T )

]
nαnβ, (3)

where nα (nβ) is the density of spin state α (β), and Kdist
l is the

loss rate coefficient due to l-wave inelastic collisions between
distinguishable e atoms. In the case where nα = nβ = 1/2 ne

the differential equation for the total e state density gives that
Kee = 1/2 Kdist

s + 3/4 K ind
p (T ) since K ind

p = 2 Kdist
p [20,21].

To extract Kee from our measured loss curves, we first esti-
mate the distribution of atoms in the lattice. This distribution
is determined by the vertical extent of our second stage MOT
based on the 1S0–3P1 transition. We assume that the number of
atoms loaded into a lattice site obeys a Poissonian probability
distribution with a mean value determined by the assumed
distribution of atoms,

λ(x) = Ntot√
2πσ̃ 2

exp

[
−

(
x√
2σ̃

)2
]

. (4)

Here, Ntot is the measured number of atoms, σ̃ is the standard
deviation of the Gaussian distribution in units of lattice sites
[σ̃ = σ/(λ/2) for λ the lattice wavelength and σ the standard
deviation in units of length], and x is the number of lattice
sites from the MOT center. For a particular N , we sum the
Poissonian distribution over all sites 5σ from the center to
obtain a value for the number of lattice sites containing N

atoms. Even for the largest achieved samples of atoms, the
average number of lattice sites with more than 60 atoms is
much less than 1.

The spatial extent of the atom clouds is assumed to be
Gaussian and identical across lattice sites since all occupied
sites are well within the 3-mm Raleigh range of our lattice
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FIG. 2. (Color online) Measured two-body loss rate coefficients
for polarized and dual-spin state atoms as a function of temperature.
The vertical error bars are calculated from an uncertainty in atom
cloud size associated with a temperature uncertainty of 0.5 μK, a
conservative estimation to account for measurement uncertainty and
experimental drifts. Solid lines are calculated values for loss rate
coefficients (see text).

beam, and we assume a uniform temperature. Using the
measured temperature and trap frequencies, we estimate the
1/e2 radius of the cloud in the ı̂ direction to be

wi =
√

h̄

πmνi

√
2〈ni〉 + 1, (5)

where m is the mass of the atom, νi is the trap frequency in
the ı̂ direction, and 〈ni〉 is the average vibrational quantum
number in the ı̂ direction, given by

〈ni〉 = (ehνi/kBT − 1)−1, (6)

where kB is the Boltzmann constant.
The extracted value of Kee for a measured loss curve is

determined by a weighted fit to a sum of decay equations
of the form of Eq. (2) ranging in initial atom number from
1 to 100. Each term in this sum is weighted by the number
of atoms and the average number of lattice sites with that
number of atoms. The one-body decay rate is set to 1/7.6 s−1,
the measured value from g atom decay. We estimate that
our temperature measurements are accurate to ±0.5 μK, and
the final uncertainty in Kee is dominated by the variation
of the fitted value when the temperature is changed by
±0.5 μK, leading to variations in the wi’s. Rate coefficients for
dual-spin state and polarized atoms at different temperatures
are shown in Fig. 2. One might expect to measure much
greater rate coefficients for dual-spin state atoms compared to
polarized atoms since p-wave collisions should be suppressed
at microkelvin temperatures. Yet, measured loss coefficients
for dual-spin state atoms are only slightly larger than for
polarized atoms at equivalent temperatures.

IV. 3P0 LOSS THEORY

To understand this result, we perform a time-independent
quantum calculation, similar to that in Refs. [22,23], using
a single scattering channel, and a short-range boundary
condition at an interatomic separation, R = R0, described by
two parameters. A first parameter δ represents an accumulated
phase shift from R = 0 to R = R0 due to an unknown

atom-atom short-range potential of Sr2. A second parameter,
pls, represents the probability of two atoms being lost when
they encounter at R = R0. These atomic losses are due to
couplings that can take place between different electronic
potential energy curves of the Sr2 complex at small R [24–27].
The release of kinetic energy associated with changes in
electronic configurations results in trap loss. The long-range
interaction potential between two 87Sr atoms is given by an
attractive van der Waals electronic potential. We choose an
isotropic C6 van der Waals coefficient of 5260 a.u. (1 a.u. = 1
Eha

6
0, Eh is the Hartree energy, and a0 is the Bohr radius) for

the e-e interaction [28].
The logarithmic derivative of the scattering wave function

is computed for each R after giving an initial value at R = R0

which is defined in terms of the two parameters δ and pls. Using
asymptotic boundary conditions at large interatomic distances,
we obtain cross sections for a wide range of collision energies.
Thermalized loss rate coefficients are calculated by averaging
the cross section over a Maxwell-Boltzmann distribution of
the relative velocities in three dimensions. Using values of δ =
0.9 π , pls = 0.4, and R0 = 30a0 as initial boundary conditions,
we were able to simultaneously determine: (i) K ind

p = T ×
(4 ± 2) × 10−6 cm3 s−1 K−1 and (ii) Kdist

s = (1.4 ± 0.8) ×
10−11 cm3 s−1 for 87Sr atoms, as well as reproduce (iii) K ind

s

(≈2 × 10−11 cm3 s−1) and (iv) the elastic cross section (≈7 ×
10−12 cm2) of indistinguishable bosonic 88Sr e atoms, from
previous experimental studies [19]. From a collisional point of
view, the loss rate probability at short range pls = 0.4 indicates
that the Sr-Sr system deviates significantly from a high-lossy
universal system (pls = 1) [22,23] where s-wave collisions
are generally two orders of magnitude higher than p-wave
collisions [29] at these typical temperatures.

V. INTERACTING MANY-BODY SPECTROSCOPY

To investigate the effect of inelastic collisions on Rabi
spectroscopy of the g to e clock transition, we interrogated
the transition with an ultrastable laser capable of resolving
subhertz spectral features [30] with varying atom numbers
and values of �. In these measurements, lattice trapped atoms
are cooled to 2 μK and polarized. For each �, the probe time is
held constant and the pulse area is controlled using laser power
to our best approximation of a π pulse by optimizing excitation
on resonance in a low density condition. We vary the number of
atoms loaded into the lattice by adjusting the loading rate into
a first stage MOT based on the 1S0–1P1 transition. To reduce
statistical fluctuations, the line shape for each experimental
condition is a superposition of ten individual scans which are
aligned by fitting to a Lorentzian. The resulting line shape is
binned into 1 or 0.5 Hz bins, and the excitation fraction of
each bin is determined from the mean of the points within
that bin. The uncertainty is determined from the standard
error of the mean. To eliminate the effect of laser drift on
the measured line shapes, we cancel the residual drift of our
ultrastable laser (about 80 mHz/s) to less than 5 mHz/s. Fur-
thermore, we alternate the direction in which we scan across
resonance.

Figure 3 demonstrates the dramatic effect that atomic
interactions have on Rabi spectroscopy of 87Sr. One distinct
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FIG. 3. (Color online) Measured Rabi line shapes of g to e

interrogation for different experimental conditions. Black circles
show the fraction of the population in the e state, and green triangles
show the total number of both g and e atoms. In panels (a) and
(b) � = 2π × 2.5 Hz, corresponding to a 200 ms π pulse. All
experimental conditions in these two panels are equivalent except
that in panel (a) the atom number is much greater than in panel
(b). Panels (c) and (d) are similarly related but for � = 2π × 1 Hz,
corresponding to a 500 ms π pulse.

feature in the measured line shape for � = 2π × 2.5 Hz at
the largest achieved density [see panel (a)] is a sideband at
negative detuning. Similar features have been observed in a
tightly confined 2D lattice [12]. In that work, the observed
sidebands were attributed to inhomogeneous excitation in
doubly occupied sites which allows transfer to electronic
states that are antisymmetric with respect to exchange and
therefore separated from noninteracting electronic states by
the energy of s-wave interactions. The main spectral features in
Ref. [12] were always dominated by lattice sites with only one
atom, and the possible role of p-wave interactions in doubly
occupied sites was not considered. The key difference in this
work is that most atoms are in multiply occupied lattice sites.
Therefore, a systematic evaluation of the role s- and p-wave
elastic collisions play in the spectroscopy of the g-e transition
will be necessary before the origin of these spectral features is
conclusively determined.

The line shapes in Fig. 3 clearly demonstrate the suppres-
sion mechanisms present in our system. The difference in exci-
tation fraction between vertically adjacent panels demonstrates
the suppression of excitation fraction with increasing density.
Furthermore, the difference between Figs. 3(a) and 3(c)
demonstrates the suppression of both excitation fraction and
loss for similar densities as � decreases and confirms that
loss is also suppressed as density increases for sufficiently low
� since loss does not increase in Fig. 3(c) compared to in
Fig. 3(d).

Although a quantitative analysis of these line shapes has
the potential to illuminate the collisional processes at work in
our system, their asymmetric features indicate the presence
of strong interactions and will require a true many-body
approach. Nonetheless, we have modeled the peak excitation
fraction and atom loss measured at different densities and �

using a mean field density matrix formalism, similar to that in

Π

(a) (b)

FIG. 4. (Color online) (a) Peak excitation (black circles) and
peak atom loss (green triangles) vs Rabi frequency. Atom loss is
expressed as a fraction of the total atom number in the absence of
loss (off resonance). (b) Peak excitation and peak atom loss vs atom
number for a fixed Rabi frequency of 2π × 2.5 Hz. Solid lines show
calculations using the density matrix model described in the text
with Kdep inversely proportional to the Rabi frequency. Dashed lines
indicate the same calculation with the only difference being Kdep is
set to zero.

Ref. [18]. In this model, the density matrix ρ within a lattice
site evolves as

ρ̇ = − i

h̄
[H,ρ] + R(ρ), (7)

where H is the atom-light Hamiltonian, and R(ρ) is a
relaxation matrix which describes population and coherence
decay. In the rotating wave approximation these can be written
as

H

h̄
=

(
0 �/2

�/2 �

)
, R(ρ)11 = −�ρ11,

R(ρ)12 = R(ρ)∗21

= −(Keeρ22/2 + �/2 + L + Kdep(ρ11 + ρ22))ρ12,

R(ρ)22 = − (� + Keeρ22) ρ22, (8)

where � is the detuning from resonance, and Kdep is a
phenomenological rate coefficient that accounts for elastic
dephasing collisions. L is set to 0.05� to account for the
excitation inhomogeneity arising from the dependence of �

on the trap oscillator level [9].
We determine the peak e population and peak atom loss

from each binned line shape and express both as a fraction
of the measured atom number. The excitation fraction at a
particular detuning is calculated using the total atom number at
that detuning, while the atom loss compares the atom number at
the detuning with greatest loss to the mean atom number away
from resonance. In Fig. 4, these quantities are plotted versus �

keeping the atom number constant [Fig. 4(a)], as well as versus
atom number for a fixed � of 2π × 2.5 Hz [Fig. 4(b)]. The
dashed lines are calculations of the plotted quantities using
the density matrix model above with Kdep set to zero and
Kee set to the maximum value allowed by our measurement
at these experimental conditions. Solid lines correspond to
another calculation with Kdep set to C × (2π × 5 Hz /�) with
C = 3.5 × 10−12 cm3/s. Both Kee and Kdep are necessary for
experiment-theory agreement.

The variation of Kdep with � is necessary to achieve
agreement with the experimental data and is motivated
by the analytic solution to Eq. (7) with Kee and L set
to zero. In the limit where �/(neKdep) � 1, the solution
predicts a suppression of excitation fraction proportional to
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�/Kdep = �2/C, a form similar to the predicted behavior for
suppression mechanisms in other strongly interacting systems
[11,13]. This suggests that elastic interactions are playing an
important role in the dynamics. Nevertheless the addition of
this phenomenological parameter produces line shapes that
are broader than those experimentally measured, and thus a
full many-body treatment is needed for understanding the role
played by inelastic and elastic processes.

VI. CONCLUSIONS

Here we report the existence of important 3P0–3P0 p-wave
inelastic collisions in optical lattice trapped 87Sr atoms at μK
temperatures. We also find that 3P0–1S0 inelastic losses are
negligible at current operating conditions. We further observe
a suppression of excitation and losses during interrogation
of the 1S0–3P0 clock transition as the atomic density increases
or the Rabi frequency decreases. Our observations demonstrate
the current experimental capability of reaching a strongly
interacting regime—in which interactions dominate over other
energy scales—in a 1D lattice clock system. In contrast to
prior experiments performed in a 2D lattice [10–12], where
strong interactions were achieved with at most two atoms per
lattice site, the capability of achieving strong interactions in

a 1D lattice geometry, with a few tens of atoms per lattice
site, opens the exciting possibility of studying mesoscale open
driven quantum systems with the modern tools allowed by
precision spectroscopy.

We have developed a simplified theoretical treatment in
terms of rate equations, with phenomenological parameters
adjusted to fit the experimental observations. The theoretical
model is crude but qualitatively describes the underlying
physics, i.e., the need of density-dependent decoherence terms.
It is clear, however, that a deeper understanding of the many-
body physics is required to rigorously justify the model. A
detailed characterization of the elastic and inelastic many-body
interactions observed in this work is fundamental for any
realistic implementation of various proposals for quantum
computation [7] or quantum simulation [6] with 87Sr.
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