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Optical atomic clock comparison through turbulent air
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We use frequency-comb-based optical two-way time-frequency transfer (O-TWTFT) to measure the optical
frequency ratio of state-of-the-art ytterbium and strontium optical atomic clocks separated by a 1.5-km open-air
link. Our free-space measurement is compared to a simultaneous measurement acquired via a noise-cancelled
fiber link. Despite nonstationary, ps-level time-of-flight variations in the free-space link, ratio measurements
obtained from the two links, averaged over 30.5 hours across six days, agree to 6 × 10−19, showing that O-
TWTFT can support free-space atomic clock comparisons below the 10−18 level.
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Optical atomic clocks, with stabilities and accuracies now
approaching 10−18 [1–10], have created new opportunities for
precision measurements in physics. These include the redefi-
nition of the SI second, relativistic geodesy, investigation of
possible variations in fundamental constants, and searches
for dark matter, among others [11–24]. These applications
require comparisons between clocks, and they have motivated
optical atomic clock comparisons both within the same labo-
ratory [1–4,15–17,25–28] and over fiber-optic links between
laboratories [15,16,19,20,29–31]. However, recent progress in
the development of high-performance portable atomic clocks
[20,32–34], as well as continued interest in links between
airborne or spaceborne clocks [35–50], highlights the need for
methods of comparing atomic clocks over free-space links.
Ideally, such methods would have residual instabilities and
inaccuracies below those of the clocks themselves, despite the
inevitable presence of atmospheric turbulence and platform
motion.

To this end, we have explored frequency-comb-based opti-
cal two-way time-frequency transfer (O-TWTFT) across km-
scale distances through turbulent air [42–48]. In previous
experiments, our two optical clocks consisted of frequency
combs phase-locked to cavity-stabilized lasers, which served
as optical reference oscillators. With these clocks, O-TWTFT
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was used to compare the optical phase of two 195-THz (1535-
nm) oscillators to below 10 milliradians [42], to compare their
relative frequencies to fractional instabilities below 10−18

[42,43], and to actively synchronize two clocks to within
a femtosecond, despite turbulence-induced signal fades and
Doppler shifts due to motion [43–47].

In this work, we demonstrate the advancement of O-
TWTFT in several ways. First, we demonstrate the capability
of O-TWTFT to compare optical atomic clocks with transition
frequencies that differ by over 90 THz. Second, we operate
the O-TWTFT system in a new mode, allowing direct mea-
surement of the frequency ratio of the two clocks. Finally,
we confirm that O-TWTFT does not contribute any additional
noise or systematic bias; the overall ratio uncertainty is lim-
ited by the clocks themselves, despite ps-level time-of-flight
fluctuations in the transmitted optical timing signals.

The frequency ratio measurements discussed in this pa-
per were performed during a measurement campaign con-
ducted by the Boulder Area Clock and Optical Network
(BACON) collaboration [51]. This campaign compared three
state-of-the-art optical atomic clocks: a ytterbium (Yb) lat-
tice clock [4], an aluminum ion (Al+) clock [5], and a
strontium (Sr) lattice clock [7]. Here, we describe measure-
ments of the ratio of 171Yb and 87Sr transition frequen-
cies, obtained over six days using O-TWTFT across a free-
space optical link. We compare these measurements with
frequency ratio measurements simultaneously obtained us-
ing a conventional noise-cancelled fiber link [52,53]. Ad-
ditionally, we evaluate the residual instability of the mea-
surement network through a loopback test. We find that the
frequency ratios measured by the free-space and fiber links
agree to an uncertainty of 6 × 10−19, and the instability of
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FIG. 1. (a) In the Yb Clock Lab, frequency-doubled light from a 1157-nm cavity stabilized laser (CSL) is steered into resonance with the
171Yb atomic transition via frequency shifts from an acousto-optic modulator (AOM). This steered 1157-nm light is sent to the Transfer Lab,
where a fiber comb [55] transfers the frequency stability and accuracy of this 1157-nm light to a 1535-nm laser. This laser light is then sent
to a rooftop laboratory where it serves as the reference for comb A within the O-TWTFT transceiver. In the Sr Clock Lab, the frequency of a
698-nm CSL is steered into resonance with the 87Sr atomic transition. The 698-nm light is steered by adjusting the frequency of a low-noise
1542-nm CSL [56]. A frequency comb then acts to transfer the frequency adjustments of the 1542-nm light to the 698-nm light. The steered
1542-nm light also serves as the reference for comb B within the O-TWTFT transceiver. On both sides of the free-space link, the heterodyne
beat between local and remote comb pulses is detected and processed within the O-TWTFT transceivers. Additionally, the atomic clock
frequencies are compared via a noise-cancelled fiber link. BD: Balanced detector. (b) Photo from O-TWTFT transceiver at CU, looking toward
NIST. A free-space optical (FSO) terminal with active beam steering maintains the bidirectional link between sites (photo edited to remove
window frame).

the loopback test reaches 1.5 × 10−18 at a 1000-s averaging
time.

The complexity of the experimental setup (Fig. 1) reflects
the fact that the 171Yb and 87Sr atomic transition frequen-
cies cannot be compared directly. The atomic transitions are
separated in frequency by almost 90 THz, and the clocks
themselves by 1.5 km. The Yb clock is located at the National
Institute of Standards and Technology (NIST), while the Sr
clock is located at the University of Colorado Boulder (CU).
To enable the comparison, two optical frequency synthesis
chains create phase-coherent connections between the atomic
transition frequencies and the frequency combs within two
associated O-TWTFT transceivers.

Inside the Yb Clock Lab at NIST, frequency-doubled
light from a 259.1-THz (1157-nm) cavity-stabilized laser
(the Yb clock laser) is maintained on resonance with the
171Yb 6s2 1S0 − 6s 6p 3P0 transition frequency at 518.3 THz
(578 nm). An optical frequency synthesis chain then con-
nects this Yb atomic resonance frequency to the comb tooth
frequencies of comb A, located within the NIST O-TWTFT
transceiver [43,46]. Similarly, inside the Sr Clock Lab, the
429.2-THz (698-nm) output frequency of a cavity-stabilized
laser (the Sr clock laser) is maintained on resonance with
the 87Sr 5s2 1S0 − 5s 5p 3P0 transition. A second optical fre-
quency synthesis chain connects the Sr atomic resonance
frequency to the comb tooth frequencies of comb B, located
within the CU O-TWTFT transceiver.

To achieve a line-of-sight link over the city of Boulder,
the two O-TWTFT transceivers were placed in a rooftop
laboratory at NIST and in an 11th floor conference room at
CU. Two low-insertion loss, free-space optical terminals [54]
enabled bidirectional transmission of comb light between the
two transceivers. Before transmission, the comb light was
spectrally filtered to a 1.5-THz (12-nm) bandwidth centered at

192 THz (1560 nm). Additionally, to avoid receiver saturation,
comb launch powers were attenuated by 3–10 dB from an
initial in-band power of 5 mW.

The mathematical description of the optical frequency
syntheses provides the following, exact relationship between
the atomic frequency ratio and the repetition frequency ratio
of combs A and B:

νYb

νSr
= C1 + C2

fr,A

fr,B
. (1)

Here, fr,A and fr,B are the repetition frequencies of combs
A and B, respectively; νYb is the 171Yb transition frequency;
νSr is the 87Sr transition frequency; and constants C1 and
C2 are known quantities—linear combinations of the optical
and rf frequencies in the optical frequency synthesis chains.
(See Supplemental Material [57] for a derivation.) We use
O-TWTFT to measure the repetition frequency ratio fr,A/ fr,B

in the optical domain, with high precision, despite time-of-
flight variations from turbulence or building sway. Then, using
Eq. (1), we compute the atomic frequency ratio from the
measured repetition frequency ratio.

To avoid the inaccuracy associated with direct photodetec-
tion of pulse arrival times, O-TWTFT uses a linear optical
sampling scheme to extract the relative frequencies of the
combs [58]. The repetition frequencies of combs A and B,
both near 200 MHz, are deliberately offset by � fr = fr,A −
fr,B ≈ 2.3 kHz. In each O-TWTFT transceiver, the pulse train
of the local comb is mixed with the incoming pulse train from
the remote comb. The resulting optical interference pattern is
a series of interferograms, repeating at ∼2.3 kHz. In both
O-TWTFT transceivers, interferograms are digitized by an
analog-to-digital converter (ADC) and processed to extract
the exact times at which interferogram envelope maxima
occurred. We refer to these extracted times as time stamps,
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denoting them kA and kB in the NIST and CU transceivers,
respectively.

For precise frequency ratio measurements, avoiding the
introduction of an external, cesium-based timescale is critical.
Consequently, in both transceivers, the ADCs are clocked
off the local comb’s repetition frequency. One increment of
ADC clock time k is equal to the spacing between local comb
pulses, and time stamps have units of local ADC clock cycles,
rather than seconds. Following [41,43,46], we label successive
interferogram maxima with integer indices p and write the
time stamps as

kA
[
p
] = fr,A

� fr
p − fr,A fr,B

� fr
Tlink

[
p
]

(2)

and

kB
[
p
] = fr,B

� fr
p + fr,A fr,B

� fr
Tlink

[
p
]
, (3)

where Tlink is the varying time-of-flight across the reciprocal
free-space path. Note that interferogram maxima are fitted
with subcycle accuracy, localized to 1/1024th of an ADC
clock cycle (roughly 5 ps). Consequently, time stamps kA

and kB are noninteger. Although the time stamps have units
of ADC clock cycles, considering their approximate value
in seconds can be helpful. If, for example, one divides each
side of Eq. (2) by the local ADC clock rate, fr,A, then the
time stamps are scaled to nominal units of seconds, with an
approximate spacing � f −1

r ≈ 435 μs.
Were it not for ps-level, nonstationary variations in Tlink,

the combs’ repetition frequency ratio could be obtained from
a single set of time stamps, i.e., from either Eq. (2) or Eq. (3).
Fortunately, the effects of time-of-flight variation may be
eliminated by summing Eqs. (2) and (3), giving

ksum[p] = fr,A + fr,B

fr,A − fr,B
p, (4)

as illustrated in Fig. 2. The slope of ksum vs p, obtained
using ordinary least squares (OLS) fitting, is rearranged to
find the comb repetition frequency ratio fr,A/ fr,B and then,
using Eq. (1), the atomic frequency ratio. Equation (4) is
very sensitive to changes in the repetition frequency. Con-
sider a small fractional frequency change (δ fr.A/fr.A) at the
NIST site. With some manipulation, one finds the resulting
fractional change in ksum is greatly magnified and is given
by (δksum/ksum ) ≈ M(δ fr,A/fr,A), where M = fr,A/� fr ∼ 105.
This magnification, which arises from the linear optical sam-
pling technique [41,43,46], underlies the precision of O-
TWTFT in determining the ratio.

O-TWTFT is inherently phase-continuous because it relies
on a stable, uninterrupted local timescale (as defined by pulses
of the local comb) to accurately record the time stamps.
Here, the local timescales are extremely stable, since they are
ultimately defined by atomic transitions. They are continuous
as long as the optical frequency synthesis chains maintain the
phase relationships between each clock laser and comb A or
B. Note that phase continuity is not broken by signal fades due
to turbulence or airborne debris. Signal fades along the free-
space link can only reduce the total number of recorded time

FIG. 2. (a) Time stamps kA recorded at NIST and time stamps
kB recorded at CU, as well as their sum ksum. Inset: Expanded 10-s
data segment with linear fits removed. Fluctuations in kA and kB are
caused by atmospheric turbulence and building sway. When scaled
from ADC clock cycles to approximate time (scale bar), these can
easily reach 100 fs in 1 s, but they are cancelled in ksum. (b) Ratios of
comb A and comb B repetition frequencies, offset from their mean.
Each point is extracted from the slope fit to a single 10-s segment of
ksum.

stamps; they cannot affect the stability or continuity of the lo-
cal timescale [42]. However, both clock downtimes (i.e., times
during which clock operation falls outside normal operating
conditions) and phase slips in the optical frequency synthesis
chains do interrupt the local timescale. Consequently, time
stamps assigned before and after such an interruption have no
relationship to one another, meaning that the slope of ksum in
Eq. (4) may only be obtained from phase-continuous sections
of data.

Identifying phase-continuous data involves two steps. First,
clock downtimes, logged in the Sr and Yb clock labs, are
flagged as discontinuities. Second, phase slips in the optical
frequency syntheses are detected by scaling ksum to its ap-
proximate value in seconds and convolving it with a cycle-slip
detection filter (see Supplemental Material [57]). Any sample-
to-sample timing jumps greater than 1.9 fs are flagged, as
1.9 fs corresponds to a single 2π phase slip of the 578-nm
Yb clock laser. Because the Yb clock laser has the highest
frequency in the entire measurement system, this threshold is
low enough to capture a phase slip anywhere within the optical
frequency synthesis chains. The 30.5 hr of data collected
during the measurement campaign contained 1201 segments
of phase-continuous data, having mean, minimum, and maxi-
mum durations of 98 s, 0.01 s, and 46 min, respectively.

Within any segment of phase-continuous data, an unbiased,
minimum-variance estimate of the slope of ksum depends on
noise statistics. In the presence of white phase noise—i.e., un-
correlated noise between summed timestamps—this estimate
is obtained by OLS fitting. In the presence of white frequency
noise—i.e., uncorrelated noise between successive values of
the numerical derivative ksum[p] − ksum[p − 1]—the mean of
the derivative is the unbiased minimum-variance estimate.
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FIG. 3. Measured atomic clock frequency ratios as a function of
the local time in Boulder, Colorado. Ratios are plotted as fractional
offsets: (measured − expected)/(expected). The fractional offset
from the expected value for the atomic frequency ratio RBIPM appears
significantly displaced from zero but is well within the ±6.4 × 10−16

uncertainty of RBIPM. The expected value of the loopback test is 1,
since this test compares the frequency of the 1542-nm CSL to itself.
Uncertainty bars show 1-σ statistical uncertainty.

Additionally, because both noise types are zero mean, these
two estimators are unbiased for either noise type. In our data,
white phase noise dominates at averaging times below 1 s (see
Fig. S2) and white frequency noise (from the atom-steered
clock lasers) at averaging times above 10 s. Between 1-s and
10-s averaging times, the noise is mixed. We use OLS to
determine the slopes of 10-s sections within phase-continuous
segments of data. (This requires rejecting segments which
are phase-continuous for less than 10 s—less than 1% of the
data.) These 10-s fits are overlapped by 80%, producing the
frequency ratio results at 2-s intervals, as shown in Fig. 2(b).
The variance penalty incurred from using this estimation
method, rather than the optimal method, is below 10%. (See
Supplemental Material [57] for an expanded discussion.)

Between February and April of 2018, the atomic frequency
ratio was measured on six days, producing 30.5 total hours
of data. Individual ratio measurements are shown in Fig. 3,
as fractional offsets from the ratio RBIPM calculated from the
International Bureau of Weights and Measures (BIPM) values
of 518 295 836 590 863.6 Hz and 429 228 004 229 873.0 Hz
for Yb and Sr, respectively [59].

The overlapping Allan deviation for the ratio measure-
ments from March 6 is shown in Fig. 4. The Allan deviation
follows 3.8 × 10−16τ−1/2, where τ is the averaging time in
seconds, in accordance with the expected white frequency

FIG. 4. Fractional instabilities (overlapping Allan deviations) of
atomic frequency ratio measurements from March 6, of the differ-
ences between O-TWTFT and fiber link measurements from March
6, and of the network loopback test. Also shown is the previously
measured fractional instability (modified Allan deviation) of O-
TWTFT itself, as well as that of carrier-phase O-TWTFT [42].

noise contribution from the clock lasers [51]. In other words,
there is no evidence of additional noise due to the opti-
cal frequency synthesis chains or O-TWTFT. The statistical
uncertainty of each daily mean in Fig. 3 is computed by
extrapolating the measured Allan deviation to the full data set
duration. (Systematic uncertainties are discussed in [51].)

To determine an upper limit for any residual noise from
the comparison network, we perform two additional analyses.
First, we carried out a network loopback test, in which the
origin of both optical frequency synthesis chains was the
1542-nm CSL in the Sr Clock Lab [Fig. 1(a)]. The chain
leading to the O-TWTFT transceiver at CU was unchanged,
but the one at NIST was expanded to include the noise-
cancelled fiber link between CU and NIST. This loopback
test uses the measurement network to compare the frequency
of the 1542-nm CSL to itself, thereby evaluating the cu-
mulative statistical and systematic uncertainty of O-TWTFT,
the phase-locked loops within the optical frequency synthesis
chains, the noise-cancelled fiber links between laboratories,
and the short, uncontrolled free-space or fiber paths within
laboratories (other than those within the Yb Clock Lab). The
mean of the 6-hr loopback test is offset from its expected value
of 1 by 1.2 × 10−18 ± 0.9 × 10−18, with the 1-σ statistical
uncertainty of 0.9 × 10−18 taken from the last value of the
Allan deviation (Fig. 4).

Second, we compare νYb/νSr ratio measurements obtained
using O-TWTFT with simultaneous measurements obtained
across a noise-cancelled fiber link [52,53]. We calculate the
point-by-point differences between the O-TWTFT and fiber-
link values at common measurement times, thereby removing
common-mode Yb and Sr clock noise. This comparison as-
sesses possible measurement errors between O-TWTFT and
the noise-cancelled fiber link. Results, shown in Fig. 5, indi-
cate no such errors, as the daily means of the differences are
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FIG. 5. Differences between O-TWTFT and fiber measurements,
along with their 1-σ statistical uncertainties (error bars), their
weighted average (dashed line), and its uncertainty (gray shading).
Also shown is the offset of the network loopback test from its
expected value of 1.

consistent with zero. Their weighted mean is −4.5 × 10−19 ±
6 × 10−19, well below the clocks’ systematic uncertainties.

Also consistent with the removal of the common-mode
clock noise, the instability of the differences is reduced com-
pared to the instability of the ratio measurements themselves,
although only by a factor of two (Fig. 4). This imperfect
clock noise cancellation occurs because the two measure-
ment approaches weight the raw data differently. The fiber

link measurement uses a commercial lambda-type frequency
counter, while the free-space analysis applies an overlapping
parabolic filter to the raw frequency data. If the overlapping
Allan deviation of the differences (Fig. 4) is extrapolated to
the full 30.5-hr duration of the measurement campaign, the
instability is 6 × 10−19, consistent with the uncertainty quote
above.

In conclusion, the frequency-comb-based O-TWTFT mea-
surements reported here agree to within 6 × 10−19 with those
recorded across a fiber noise-cancelled link, indicating that
O-TWTFT can continue to support clock comparisons, even
as clock accuracies cross below 1 × 10−18. As transportable
optical atomic clocks are developed [20,32–34], O-TWTFT
will be able to support their comparisons for applications
such as fundamental time metrology, relativistic geodesy
measurements, or dark matter searches. With parallel work
expanding the operation of O-TWTFT to longer links [45,60]
and moving platforms [46,47], these comparisons could be
made not only between mobile terrestrial clocks, but between
future optical airborne and satellite-borne clocks as well.

We thank Frank Quinlan and Ian Coddington for comments
and Michael Cermak for technical assistance. We acknowl-
edge funding from the DARPA DSO PULSE program and
NIST.
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