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Fast Apparent Oscillations of Fundamental Constants

Dionysios Antypas,* Dmitry Budker, Victor V. Flambaum, Mikhail G. Kozlov, Gilad Perez,
and Jun Ye

Precision spectroscopy of atoms and molecules allows one to search for and
to put stringent limits on the variation of fundamental constants. These
experiments are typically interpreted in terms of variations of the fine structure
constant 𝜶 and the electron-to-proton mass ratio 𝝁 = me∕mp. Atomic
spectroscopy is usually less sensitive to other fundamental constants, unless
the hyperfine structure of atomic levels is studied. However, the number of
possible dimensionless constants increases when allowed for fast variations
of the constants, where “fast” is determined by the time scale of the response
of the studied species or experimental apparatus used. In this case, the
relevant dimensionless quantity is, for example, the ratio me∕⟨me⟩ and ⟨me⟩
is the time average. In this sense, one may say that the experimental signal
depends on the variation of dimensionful constants (me in this example).

1. Introduction

Variations of “constants” have been extensively discussed in the
literature, see, for example, a review,[1] and references therein as
well.[2–9] However, in the previous literature, it was usually as-
sumed that variations occur at time scales much longer than that
of an individual measurement, so the “constants” could be safely
assumed to be, in fact, constant during a given experimental run.
The goal of the present article, is to clarify, following the ear-
lier discussions by others,[10,11] the beyond-the-standard-model
context in which apparent variations of “constants” may arise.
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We provide a general recipe of how to
deal with apparent variation of constants
in a situation where the time scale of
the variation is faster than the response
time of a part of the experimental system.
This is important because some of the
basic rules that were established for the
case of slow variations need to be revis-
ited andmodified. We also discuss the of-
ten contentious question of whether only
dimensionless constants may be allowed
to vary in the case of the constants hav-
ing fast variations on a time scale rele-
vant to a measurement such as in the
atomic experiments,[12,13] or the exper-
iment with resonant-mass antennae.[14]

The present work provides a full motivation for, and significantly
expands on the analysis presented in ref. [13]. The new analysis is
done using a fully relativistic Lagrangian for the description of the
relevant physics. The presented formalism enables description
of searches for other time-varying constants of nature which are
not confined to the fine structure constant or the electron mass,
but also changes of the quark masses and any other constants
of nature.
The masses of the particles in the standard model (SM) are

generated by the interaction with the scalar Higgs field, which
forms vacuum condensate. In somemodels, dark matter (DM) is
associated with ultralight scalar fields (see, e.g., refs. [1–7, 9, 11]).
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These fields do not necessarily form vacuum condensate, but ex-
ist as classical fields filling the space. The galactic DM field is
known tobe non-relativistic. This means that kinetic energy is
small compared to the rest energy mc2 and the field is oscillat-
ing at the frequency close to 𝜈 = mc2∕h, where m is the mass of
the scalar particle, c is the speed of light, and h is Plank’s con-
stant. Interaction of such a field with fermions leads to a term in
their Lagrangian, which looks like an oscillating mass term.
In this scenario of oscillating DM field linearly coupled to

fermions, the particles acquire apparent modifications to their
masses,[2,5–7,9,11] which oscillates at the frequency 𝜈. The ampli-
tude of these oscillations depends on the local density of the
scalar field. If, for example, the apparent mass of the electronme
is modified in such a way, this must affect the spectra of atoms
and molecules. As long as this additional mass-like term appears
from the interaction with the cosmological field, it does not vi-
olate the conservation of energy, though the energy of atoms is
changing.[15] If the scalar field is also coupled to the electromag-
netic field, this generally leads to the variation in the strength of
the electromagnetic coupling characterized by the fine structure
constant 𝛼 = e2

ℏc
.[2–6,9,11] As a result, the fine structure constant

also acquires oscillating components. For an example of a model
with oscillating me and 𝛼, see for example, refs. [5, 7, 9]. Below
we discuss how such effects can be observed in precision spec-
troscopic experiments.
In the non-relativistic approximation, the energy of any elec-

tronic level in an atom is proportional to the atomic unit of en-
ergy, Hartree:

EH =
mee

4

ℏ2
≈ 27 eV (1)

where e is elementary charge, and we write the analytical expres-
sion in Gaussian units. In this approximation, all atomic tran-
sition frequencies are also proportional to EH and their ratios
do not depend on fundamental constants.[16,17] When relativistic
corrections are taken into account, the energies acquire a depen-
dence on the fine structure constant:

Eat = EH
[
C0 + C1(𝛼Z)

2 +…
]

(2)

where Z is the number of protons in the nucleus. For neutral
atoms, the coefficients Ci are of the order of unity and depend on
the quantum numbers of the level. For light atoms, 𝛼Z ≪ 1, and
the dependence of the energies on 𝛼 is weak; however, it becomes
significant for heavy elements with Z ≈ 100.
Electronic energy of light molecules is also proportional to

EH, but now there are also vibrational and rotational energies
Evib and Erot, which depend on the electron-to-proton mass ratio
𝜇 = me∕mp:

[18]

Evib = CvEH𝜇
1∕2 , Erot = CrEH𝜇 (3)

Because of these vibrational and rotational energies, molecu-
lar spectra are sensitive to the mass ratio 𝜇. Relativistic correc-
tions again introduce an 𝛼 dependence: Cv = Cv,0 + Cv,1(𝛼Z)

2 +
… and similarly for Cr . This dependence comes about be-
cause themolecular potential and the inter-nuclear distance (that

enters the moment of inertia and thus the rotational energy) de-
pend on the electronic wavefunctions and thus on 𝛼Z.
For completeness, we need to mention that the hyperfine

structure of atomic and molecular levels is sensitive to the nu-
clearmagnetic and quadrupolemoments, which depend on other
fundamental constants. With this exception, all the ratios of
atomic and molecular transition frequencies are sensitive only to
the values of two fundamental constants, namely, 𝛼 and𝜇. Strictly
speaking, the ratios of atomic frequencies depend on all funda-
mental constants. However, their sensitivity to other fundamen-
tal constants is orders of magnitude smaller. For example, the
finite nuclear size leads to the “volume shifts” of atomic levels,
typically on the scale 10−5EH. The size of the nucleus depends
on the strong coupling constant. Thus, the sensitivity of atomic
energy levels to the variations of the strong coupling constant is
suppressed by roughly five orders of magnitude. The advent of
laser spectroscopy of a low-energy nuclear transition in 229Th is
expected to be a game-changer with greatly enhanced sensitivity
to nuclear parameters.[19,20]

2. Experimental Consequences

Let us first assume slow variation of the “constants” on all time
scales relative to a measurement. Many spectroscopic experi-
ments use optical resonators (cavities). The latest state-of-the-art
optical resonators use crystalline material, instead of amorphous
low-expansion glasses, for cavity spacers.[21,22] The length L of
such a cavity depends on the lattice constant of the material its
spacer is made of. The latter, in turn, is proportional to the Bohr
radius

r0 =
ℏ2

mee2
(4)

The resonant frequency of such cavity is proportional to c∕r0:

𝜈cav = Cc
c
r0

= Cc

mee
2c

ℏ2
= Cc

EH
ℏ𝛼

(5)

where Cc = Cc,0 + Cc,1(𝛼Z)
2 +… We see that the ratio of atomic

transition frequency 𝜈at to 𝜈cav to a first approximation is propor-
tional to 𝛼:

𝛿

(
𝜈at

𝜈cav

)
(

𝜈at

𝜈cav

) = 𝛿𝛼

𝛼

[
1 + (𝛼Z)

]
(6)

If the constants are rapidly oscillating, the spectra we study
will depend on some average values of the constants and the cor-
responding averaging time depends on the response time of the
atoms/molecules and the apparatus we use. For an atom, the re-
sponse time depends on the lifetime of the level 𝜏at and the width
of the transition Γ. For a resonator with a finesse  the response
time is 𝜏cav,1 ∝ L∕c.
For a resonator there is also another relevant time. This is the

time 𝜏cav,2 during which the length Lmay adjust to the changing
value of the atomic length scale r0. We can estimate 𝜏cav,2 in terms
of the speed of sound in the material vs,

[23] 𝜏cav,2 ≈ L∕vs. If the
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finesse is  < c∕vs, then 𝜏cav = 𝜏cav,2 > 𝜏cav,1. A more accurate
analysis has to account for other vibrational modes of the
cavity,[14] but for the estimates one can still use 𝜏cav ≈ L∕vs.
As an example, consider the experiment[13] where the fre-

quency of the 6s → 6p3∕2 transition in Cs is compared to the
frequency of an optical resonator with an invar spacer[24] of
length L = 12 cm. The lifetime of the atomic upper state here
is 𝜏at = 30.5 × 10−9 s. The speed of sound for steel is vs ≈ 6 ⋅
105 cm/s, and 𝜏cav = 2 × 10−5 s. If we assume that all fundamen-
tal constants oscillate at some common frequency fa, then the
experiment[13] is sensitive to different combinations of constants
depending on the frequency fa. If fa ≪ 𝜏−1cav then Equation (6)
holds. If 𝜏−1cav ≪ fa ≪ 𝜏−1at , then the cavity is sensitive only to the
averaged values of EH and 𝛼, while the atoms maintain sensitiv-
ity to the variation. As a result,

𝛿

(
𝜈at

𝜈cav

)
(

𝜈at

𝜈cav

) =
𝛿EH
EH

[
1 + (𝛼Z)

]
(7)

where 𝛿EH = EH − ⟨EH⟩ is the deviation from the time aver-
aged value.
Equation (7) shows that for intermediate frequencies fa the ra-

tio 𝜈at

𝜈cav
depends on the variation of the dimensionful parameter

EH. At this point we need to specify what kind of models we are
interested in.

3. Discussion of Models

First, we assume that at short distances our system is described
by a local perturbative Lorentz invariant quantum field theory
(QFT), which implies no charge, parity and time-reversal (CPT)
violation. For this case we have fairly good understanding of how
to proceed. Without loss of generality, we are allowed to use nat-
ural units ℏ = c = 1 (see, e.g., ref. [25–27]). We also have exam-
ples of working models (e.g., dilation, relaxion, and SUSY the-
ories). For the gauge field we can use a normalization where
the coupling constant 𝛼 is absorbed into the field (𝛼A𝜇 → A𝜇).

[28]

Then the kinetic term for the gauge field has the form: kin =
− 1

4𝛼
F𝜇𝜈F

𝜇𝜈 .
Using the above conventions we can now consider a model

with relevant fields (omitting for simplicity the weak and strong
gauge fields): A𝜇 , the photon field (with F𝜇𝜈 stands for the
corresponding field strength), a lepton doublet, LTe = (𝜈e, eL),
with 𝜈e electron–neutrino and eL,R left-handed and right-handed
electron fields, the Higgs field written in unitary gauge as
HT = (0, h + v)∕

√
2 , with h being the celebrated Higgs boson,

and v ≃ 246, GeV being the Higgs vacuum expectation value
(VEV). In addition, we have a new scalar field 𝜑, the singlet of
the SM gauge interactions. The relevant part of the Lagrangian
is (for more detail see, e.g., ref. [29, 30]):

free = − 1
4𝛼

F𝜇𝜈F
𝜇𝜈 − 1

2

(
𝜕𝜇𝜑 𝜕𝜇𝜑 −m2𝜑2

)

+
SM
kin −

√
2
me

v
HL̄eeR + h.c.

−𝜇2H†H + 𝜆
(
H†H

)2 + 𝜇𝜙h𝜙H
†H (8)

where 
SM
kin stands for the SM matter field’s kinetic terms, me

being the electron mass, 𝜇2 (𝜆) being the Higgs quadratic (quar-
tic) coupling and m (𝜇𝜙h) are the singlet mass (cubic coupling)
and higher order terms being suppressed. The electromagnetic
interactions for the electron field, relevant for low energy physics
discussed below are

gauge = ēA𝜇𝛾
𝜇e (9)

The coupling 𝜇𝜙h in Equation (8) induces mixing between 𝜑 and
hwith the mixing angle usually designated as 𝜃 (see, e.g., ref. [31]
for a recent review). Then we find that the Yukawa interaction in
(8) between the electron and the field H leads to a similar term
between the electron and the scalar field 𝜑:

sin 𝜃
√
2me

(
𝜑

v

)
ēLeR (10)

At the one-loop level, a coupling between the scalar 𝜑 and the
photon is induced (see, e.g., ref. [32]), approximately given by

sin 𝜃 𝛼

4𝜋

(
𝜑

v

)
F𝜇𝜈F

𝜇𝜈 (11)

Of course, there will be similar induced terms for other particles
and interactions of the standard model, which we omitted here
for simplicity. We note that couplings of similar form are also
expected for a simple dilaton model which couples to the gauge
fields via the anomalous contribution to the trace of the energy–
momentum tensor (see, e.g., refs. [5,33]).
Now we can introduce a time and a space dependent classical

field 𝜑 and see what the implications are. This leads to a theory
with a space and time dependent effective Higgs-VEV. The terms
in Equations (10) and (11) modify the kinetic and mass terms
in the Lagrangian of Equation (8). Implications of these modifi-
cations are the same as those of varying coupling constant 𝛼(𝜑)
and mass me(𝜑):

𝛼(𝜑) = 𝛼

(
1 + sin 𝜃 1

𝜋

𝜑

v

)
(12a)

me(𝜑) = me

(
1 − sin 𝜃

𝜑

v

)
(12b)

We see that in this model an effective variation of the fine-
structure constant 𝛼 and mass me appears, which is linear in the
field 𝜑.
Now we need to find out how this affects atomic unit EH in

Equation (7). With the chosen units (ℏ = c = 1), any variation of
the atomic unit EH is induced by the variations of 𝛼 andme. If we
rewrite (1) as

EH = mec
2𝛼2 (13)

we see that

𝛿EH
EH

=
𝛿me

me
+ 2𝛿𝛼

𝛼
(14)
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Substituting (12) into (14), we find a (unit independent) result:

𝛿EH
EH

= − sin 𝜃 𝜑

v

(
1 − 2

𝜋

)
(15)

which is connected to the experimental observables via Equa-
tion (7).
The above mechanism can be actually realized in dilaton-DM

theory[5] and in cases where 𝜑 is an axion-like DM field that is
subject to (spontaneous) charge and parity (CP) violation, as in
the case of relaxion dark matter models.[7,34]

4. Summary

The presence of oscillating background fields in a broad class of
QFTmodels, may be interpreted as temporal variations of funda-
mental constants. In the case of variation of a constant q, it is pos-
sible to find setups where q is calibrated by its own average value
⟨q⟩, resulting in a comparison of a dimensionless ratio q−⟨q⟩

⟨q⟩ . In
this sense, for the case of rapid variations, it is possible to test vari-
ations of dimensionful constants as well as that of dimensionless
ones. To be sensitive to such variations requires two systems, one
of which has a faster response (such as an atom) and another is
more inertial (such as a cavity). Then the faster-response system
tracks instantaneous values of the constants, while the inertial
one depends only on their average values.
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