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Tools for Improved Quantum Metrology on Atomic Platforms

Thesis directed by Prof. Murray J. Holland

The last three decades have witnessed the rapid rise of technologies based on quantum me-

chanical principles. In particular, quantum systems are expected to revolutionize the way we sense

and measure properties of our universe. The ongoing transition from fundamental studies of quan-

tum systems to a quantum technology revolution is being powered by significant advancements in

laser cooling and trapping of atoms, and in the manipulation and readout of quantum degrees of

freedom. In this thesis, we contribute to this movement by presenting theoretical ideas of practical

relevance, that will enable improved quantum metrology using atom-based platforms.

We advance capabilities in three areas of relevance to quantum metrology. First, under the

theme of sub-Doppler cooling of large quantums systems, we describe the numerical modeling of

a successful experiment for near ground-state cooling of trapped ion crystals with more than 100

ions in a Penning trap. Second, we propose a new readout technique using atom-cavity interactions

to continuously and precisely track the relative phase of a spin superposition. Third, we propose

a scheme to engineer squeezing on a platform where controllable atom-atom interactions have

been hard to achieve, namely atomic Bragg interferometers. In this way, we introduce useful

entanglement into a sensing platform traditionally relying on single-atom physics.
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Chapter 1

Context

We are currently entering an era where quantum technologies are expected to revolutionize the

way we communicate, compute, measure and understand our universe. Tremendous advancements

in the theoretical understanding and experimental control of physics in the quantum regime has led

to a ‘There And Back Again’ scenario: Early experiments in the 20th century typically worked with

a large number of poorly controlled atoms or molecules, but greatly contributed to understanding

central concepts in quantum physics. The late 20th and early 21st centuries witnessed significant

advances in laser cooling and trapping [126], heralded by elegant theoretical schemes for the cooling

of single atoms and unprecedented experiments with a single or a few atoms [29, 69, 109]. We are

now ready to reconsider working with large quantum systems by asking the following two very

exciting questions:

(1) Can we leverage the lessons learned with small systems and scale up these techniques to

exquisitely control and manipulate large quantum systems?

(2) If we had such exquisite control, can we engineer and observe intrinsically many-body

features predicted by quantum mechanics, such as entanglement, and exploit such features

for novel practical applications?

Indeed, modern theory and experiments have answered both of these questions in the affir-

mative. The last decade has witnessed rapid advancements in studies and applications of quantum

many-body systems. The demonstration of quantum computers claiming quantum supremacy over
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known classical algorithms [3], quantum simulations of exotic states of matter such as discrete time

crystals [135] and the operation of optical lattice clocks with record breaking precision [86] are

important but nevertheless only representative examples of quantum many-body systems playing

a central role in quantum computing, simulation and metrology.

In particular, quantum metrology with atoms stands to benefit immensely with the develop-

ment of large, well controlled quantum systems. Typically, metrology with atoms involves preparing

an initial quantum state with high accuracy, perturbing the state with a signal to be measured,

and reading out the change in the state as a result of the applied signal. Working in the spirit

of the questions raised above, we broadly identify three crucial themes in the context of quantum

metrology, where advancements will lead to new and improved practical applications:

(1) Sub-Doppler laser cooling of large quantum systems,

(2) Novel techniques to read out changes in the prepared state, and

(3) Engineering entanglement to improve measurement precision in traditionally non-interacting

quantum systems.

In this thesis, we present our contributions to advancing state-of-the-art capabilities in each

of these three areas. We begin with an introduction in Chapter 2, where we establish the backdrop

against which our work has been carried out. Subsequently, under the first theme, we report on

the numerical modeling of an experiment to ground-state cool large two dimensional trapped ion

crystals in a Penning trap. This work is detailed in Chapters 3 and 4. Under the second theme,

in Chapters 5 and 6, we describe and numerically demonstrate a proposal for continuously and

precisely tracking the relative phase of a spin superposition using atom-cavity interactions. As

a paradigm for the third theme, we propose in Chapters 7 and 8 a scheme for entangling spins

encoded in the center-of-mass motion of atoms, for use in a Bragg interferometer. For each of these

projects, we comment on possible future directions at the end of the relevant chapters. We conclude

with a brief summary in Chapter 9.



Chapter 2

Introduction

In the last chapter, we identified three central themes in quantum metrology that we will

be exploring in this thesis. In this chapter, we provide an overview of concepts that are essential

to understanding our work on these themes. Accordingly, we first review advancements in laser

cooling from a trapped ion perspective. To warm up to our second and third themes, we introduce

the notion of spin-1/2 systems and how such systems can be encoded in a variety of atomic degrees

of freedom. Next, we describe the Ramsey sequence, a protocol that is currently the workhorse for

quantum metrology with atomic systems. Despite its widespread application, we point out some

situations where it is not effective and alternative protocols may be required. We show how the

use of uncorrelated atoms in this sequence leads to limits on measurement precision. We discuss

how precision beyond this limit can be achieved via the concept of spin squeezing. As examples,

we describe a couple of mechanisms by which such squeezed spin states can be generated. Finally,

we briefly describe the operation of an atomic Bragg interferometer, a platform where controllable

atom-atom interactions are hard to engineer and spin squeezing has not been experimentally realized

till date.

2.1 Laser cooling of trapped ions

To illustrate general features of laser cooling, we consider a toy model of a single trapped ion

with two internal (electronic) states |g〉 , |e〉 and with one external (motional) degree of freedom,

say along the z direction. The harmonic trapping potential enables us to treat the ion’s motion as
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that of a quantum harmonic oscillator. The Hamiltonian for this isolated trapped ion is

ĤA =
~ωa

2
(|e〉 〈e| − |g〉 〈g|) + ~ω0b̂

†b̂, (2.1)

where ~ωa is the energy difference between the ground (|g〉) and excited states (|e〉) and ω0 is

the trapping frequency. The external degree of freedom is described using bosonic creation and

annihilation operators b̂†, b̂ satisfying [b̂, b̂†] = 1 from which a position operator ẑ for the ion can be

constructed.

2.1.1 The atom-laser interaction

The essential idea behind laser cooling is that the absorption and emission of photons in

general simultaneously affects both the electronic and motional state of an ion. We assume that a

traveling wave laser with frequency ωl tuned close to ωa and wavevector kl = klẑ drives the |g〉 ↔ |e〉

transition. The electric field associated with this laser is given by E(z, t) = E0 cos (klz − ωlt).

Within the electric dipole approximation, the Hamiltonian for the interaction of the atom with the

laser field is given by the expression −d̂·E, where the atomic dipole operator d̂ = d |e〉 〈g|+d∗ |g〉 〈e|

induces transitions from |g〉 to |e〉 and vice versa [41]. The transition dipole matrix element d is a

vector and captures details about the spatial profile of the wavefunctions associated with the two

electronic states. A subtle point to note is that only the center-of-mass coordinate of the entire ion

is represented as a quantum harmonic oscillator. The valence electron that is making transitions

between the two electronic states should be pictured as tagging along closely with the ion, thereby

making the electric dipole approximation valid. In other words, the dipole formed by the valence

electron and the ionic shell can still be regarded as a point dipole, but the location of the point

dipole itself is captured by the center-of-mass coordinate ẑ of the ion.

Except at very strong laser intensities, energy conservation can be imposed by assuming that

the |g〉 → |e〉 (|e〉 → |g〉) transition is accompanied by the absorption (emission) of a laser photon.

Rigorously, this assumption amounts to making the rotating wave approximation (RWA) [41].

Within the electric dipole and rotating wave approximations, the Hamiltonian for the atom-laser
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interaction is given by

ĤAF =
~Ω

2
|e〉 〈g| ei(klẑ−ωlt) +

~Ω∗

2
|g〉 〈e| e−i(klẑ−ωlt), (2.2)

where Ω = −d̂ ·E0/~ is called the Rabi frequency and captures the driving strength. Without loss

of generality, we assume Ω to be real in the subsequent discussion as its complex phase can always

be absorbed into an initial phase offset of the electric field. One way to understand the signs of

the complex exponentials multiplying the atomic transition operators is to consider the case when

the laser field is quantized and is described by bosonic creation and annihilation operators â†, â.

The laser field is then governed by a Hamiltonian ĤL = ~ωlâ†â. From ĤL, it is easy to see that

the time evolution of the Heisenberg picture operators â(t), â†(t) is given by â(t) = âe−iωlt and

â†(t) = â†eiωlt. Matching signs with the exponentials in Eq. (2.2), we see that the raising operator

|e〉 〈g| is accompanied by photon annihilation or absorption while the lowering operator |g〉 〈e| is

accompanied by photon creation or emission. Since the laser field is assumed to carry a large

number of photons, the operators â, â† which should have appeared in Eq. (2.2) have been replaced

by a macroscopic c-number, that has been absorbed into the definition of the classical electric field

E0.

Since the laser electric field is z dependent, the ion experiences a varying electric field as it

oscillates along the z direction. This piece of physics is captured by the e±iklẑ terms entering the

atom-laser interaction in Eq. (2.2), where ẑ is the position operator for the ion. Clearly, from the

form of Eq. (2.2), the laser affects both the electronic and motional state of the ion and therefore

we can envisage the possibility of cooling the ion using the laser.

Time dependent Hamiltonians such as Eq. (2.2) are harder to analyze, so we first transform

to an interaction picture with free Hamiltonian H0 = ~ωl/2 (|e〉 〈e| − |g〉 〈g|). In this picture, the

total Hamiltonian is time independent and is given by

ĤI = −~∆

2
(|e〉 〈e| − |g〉 〈g|) + ~ω0b̂

†b̂+
~Ω

2

(
|e〉 〈g| eiklẑ + |g〉 〈e| e−iklẑ

)
, (2.3)

where ∆ = ωl − ωa is the laser-atom detuning.
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2.1.2 The Lamb-Dicke regime

When the typical displacement of the ion, as it oscillates, is small compared to the wavelength

of the laser light, the exponentials e±iklẑ can be expanded in a Taylor series. Mathematically, this

condition translates to kl
√
〈ẑ2〉 � 1, and is called the Lamb-Dicke criterion [126]. Furthermore,

expressing the position operator ẑ in terms of the creation and annihilation operators, we can write

klẑ = η
(
b̂+ b̂†

)
, (2.4)

where η = kl
√

~/2Mω0 is called the Lamb-Dicke parameter. An important point is that a small

Lamb-Dicke parameter, η � 1, is necessary but not sufficient to satisfy the more restrictive Lamb-

Dicke criterion defined above [126]; from the definition of η, we see that it is the ratio of the RMS

zero-point displacement to the laser wavelength. However, the Lamb-Dicke criterion also requires

that the number of vibrational quanta in the harmonic oscillator remains small.

The atom-laser interaction in Eq. (2.3) can now be expanded in powers of η as

~Ω

2
|e〉 〈g|

(
1 + iη

(
b̂+ b̂†

)
− η2

2

(
b̂+ b̂†

)2
+ . . .

)
+ H.c. (2.5)

2.1.3 Motional sidebands

Eq. (2.5) implies that the atom can be excited from |e〉 〈g| not just by the absorption of a laser

photon, but also by the simultaneous absorption and emission of vibrational quanta, or phonons

[126, 36]. The O(η) term describes two processes where the excitation of an atom is accompanied

by the absorption of a photon and a phonon or by the absorption of a photon and emission of a

phonon. Similarly, the O(ηn) term describes various processes involving n phonons and a single

laser photon. To understand what these terms entail from an energy perspective, let us consider

the O(η) term as an example. The energy required to excite the atom is ~ωa. The laser photon

supplies ~ωl, while the absorption (emission) of a phonon supplies (demands) ~ω0, leading to a

net excitation energy of ~ (ωl + ω0) (~ (ωl − ω0)). If the laser is appropriately detuned from the

atomic transition frequency, one of these two processes can be tuned closer to resonance than the

other. From a cooling perspective, we would prefer to make the phonon absorption process more
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resonant, as this would ensure that every atomic excitation is more likely to remove, rather than

add, one quantum of motional energy. From the atom’s perspective, the laser now appears to

have sidebands at frequencies ωl ± ω0. Almost all laser cooling schemes rely on strongly enhancing

atomic excitation via the motion removing sideband at ωl + ω0 while simultaneously suppressing

excitations via the motion adding sideband at ωl − ω0.

2.1.4 Spontaneous emission

A purely Hamiltonian process cannot irreversibly remove energy from the system, as the

reverse process (the Hermitian conjugate term) is also energetically equally favorable. Instead,

such irreversible removal of energy occurs through spontaneous emission from the excited state |e〉

that resets the atom to the ground state |g〉, thereby completing one absorption-emission cycle. As

an example for a single cooling cycle, an atom in an n-phonon state |g, n〉 is likely to be excited to

the state |e, n− 1〉, from where spontaneous emission brings the state to |g, n− 1〉. In this way, laser

cooling can be pictured as a sequence of absorption-emission cycles, with each cycle more likely to

remove a phonon rather than add one. For this picture to be accurate, spontaneous emission itself

should not change the vibrational quantum number. To see the effect of spontaneous emission on

the motion, we consider the Lindblad dissipator associated with this process, given by

Dρ = Γ

{
|g〉 〈e|

(∫ 1

−1
duNµ(u)e−ikscẑuρeikscẑu

)
|e〉 〈g| − 1

2
|e〉 〈e| ρ− 1

2
ρ |e〉 〈e|

}
. (2.6)

Here, the density matrix ρ describes the joint electronic and motional state of the ion, Γ is the

spontaneous decay rate of |e〉 → |g〉, ksc is the wavevector associated with the spontaneously emitted

photon, u = cos θsc, with θsc the angle between ksc and the z axis, and N (u) is the normalized

dipole radiation pattern associated with the emission. Assuming ksc ≈ kl, we can expand the

complex exponentials in Eq. (2.6) to O(η2) to write Dρ ≈ D0ρ+K2ρ, where

D0ρ = Γ

{
|g〉 〈e| ρ |e〉 〈g| − 1

2
|e〉 〈e| ρ− 1

2
ρ |e〉 〈e|

}
, (2.7)
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is the familiar Lindblad dissipator for spontaneous emission that neglects effects on the motion,

and

K2ρ =
η2Γ〈u2〉

2
|g〉 〈e|

(
2X̂ρX̂ − X̂2ρ− ρX̂2

)
|e〉 〈g| , (2.8)

is a term that accounts for changes in motional state at O(η2). The O(η) term vanishes because

N (u) is an even function. Therefore, at O(η0), spontaneous emission predominantly does not

change the motional state, thereby providing support to the cooling cycle picture described above.

Yet another interpretation of η helps understand the associated physics [126]. Upon sponta-

neously emitting a photon, the kinetic energy of the atom is reduced by ∼ ~ωr, where ωr = ~k2
l /2M

(ksc ≈ kl) is the recoil frequency. The energy required to change the harmonic oscillator state by

one quantum is ~ω0. The ratio of the two frequencies is

ωr
ω0

=
~k2

l

2Mω0
= η2. (2.9)

Therefore, η � 1 is also equivalent to assuming that the recoil energy of the scattered photon is

too small to cause significant changes in the motional state.

2.1.5 Laser cooling with two electronic states

The toy model we developed using just two electronic states forms the basis for the two most

popular laser cooling techniques, Doppler cooling and sideband cooling, which are closely related.

The absorption spectrum of the two level system is a useful tool for understanding the cooling

mechanism [36]. This spectrum is obtained by addressing the |g〉 ↔ |e〉 transition with a laser

and measuring the scattered intensity as the laser frequency is varied across the atomic resonance.

Essentially, this measurement is equivalent to probing the excited state population ρee. For a laser

detuning ∆, decay rate Γ and Rabi frequency Ω� Γ, the steady state excited population takes the

form of a Lorentzian given by

ρee ≈
Ω2/4

Γ2

4 + ∆2
. (2.10)

From Eq. (2.5), the action of the first motion removing sideband on the state |g, n〉 is

i~Ωη

2
|e〉 〈g| b̂ |g, n〉 =

i~Ωη

2

√
n |e, n− 1〉 , (2.11)
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suggesting that the Rabi frequency associated with this sideband drive is Ω−n = iΩη
√
n. Similarly,

for the motion adding sideband, the associated Rabi frequency is Ω+
n = iΩη

√
n+ 1. Combined

with Eq. (2.10), the rates for cooling and heating cycles are respectively given by R−n = nη2A− and

R+
n = (n+ 1)η2A+, where

A− = Γ
Ω2/4

Γ2

4 + (∆ + ω0)2
, A+ = Γ

Ω2/4
Γ2

4 + (∆− ω0)2
, (2.12)

where the modified detunings now account for the respective sideband frequencies. These rates are

linear in n, therefore we can immediately write down a rate equation for the average occupation n̄

of the harmonic oscillator as

d

dt
n̄ = −R−n̄ +R+

n̄

= −Wn̄+ η2A+, (2.13)

where W = η2(A− −A+) is the cooling rate provided that A− > A+. The steady-state occupation

n̄SS is given by

n̄SS =
A+

A− −A+
. (2.14)

In addition to these cooling and heating cycles, there is a third diffusive cycle that first

involves absorbing just a laser photon (the ‘carrier’ transition, O(η0) term in Eq. (2.5)) and leaving

the motional state unaffected, and then changing the motional state via the spontaneously emitted

photon. As the K2 term, Eq. (2.8) shows, this process is also O(η2). However, such a process has

equal probability for heating and cooling, and therefore leaves the net cooling rate W unaffected.

However, n̄SS depends additionally on A+ which is modified because of this cycle. Therefore, n̄SS

increases by a small numerical factor of O(1).

2.1.5.1 Doppler cooling

When Γ� ω0, the Lorentzian absorption spectrum with width ∼ Γ is so broad that several

motional sidebands can fit within the broad peak. The sidebands are said to be unresolved and

cooling in this regime is traditionally called Doppler cooling. The maximum ratio of A−/A+, and



10

Figure 2.1: Sketch of absorption spectrum and locations of the carrier, motion adding and motion
removing sidebands in (a) Doppler cooling and (b) Sideband cooling.

correspondingly, the lowest n̄SS is obtained for the optimum value ∆ = −Γ/2 [36]. Intuitively, this

optimum value can be understood by noting that for a Lorentzian function f(x) = 1/(1 + x2), the

maximum fractional change between two points x± δx, characterized by 2δxf ′(x)/f(x), occurs at

the the half maximum point corresponding to x = ±1 and takes the simple value 2δx. Identifying

x = 2∆/Γ and δx = ±2ω0/Γ, this result can directly be applied to the absorption spectrum,

Eq. (2.10), in the regime where Γ� ω0. The minimum value of n̄SS is then simply given by

n̄min
SS ∼

Γ

2ω0
� 1. (2.15)

We avoid writing a strict equality since a rigorous derivation must also account for the previously

discussed diffusion cycles. Therefore, in Doppler cooling, the mean occupation, or equivalently, the

temperature kBT = n̄~ω0 ∼ ~Γ, is limited by the lifetime of the excited state.

2.1.5.2 Sideband cooling

In the opposite limit when Γ � ω0, the absorption spectrum is so narrow that with the

choice of ∆ = −ω0, the motion removing sideband is exactly on resonance, while the carrier and

motion adding sideband are strongly suppressed [36]. The sidebands are now said to be resolved

and cooling in this regime is called resolved sideband cooling. At this value of ∆, clearly A− ∼ Ω2/Γ
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whereas A+ ∼ A−Γ2/ω2
0 � A−. Therefore, the minimum occupation is given by

n̄SS ≈
A+

A−
∼ Γ2

ω2
0

� 1. (2.16)

Therefore, sideband cooling is an attractive choice for cooling the ion to near ground state occupan-

cies. We note that a popular technique to implement sideband cooling involves creating an artifical

narrow line transition using stimulated Raman transitions on a three-level system. However, the

general features from the two-level model still apply in that case [126].

2.1.6 Engineering the absorption spectrum using quantum interference

An attractive question to ask is the following. Is it possible to somehow engineer the absorp-

tion spectrum so that the asymmetry between the motion removing and motion adding sidebands is

greatly enhanced? Furthermore, can the diffusion arising from the carrier transition be completely

suppressed? It turns out that these features can be engineered by coupling the state |e〉 to a third

long-lived state |r〉 as shown in Fig. 2.2(a) [84]. A strong coupling laser with Rabi frequency Ωc

couples the |r〉 ↔ |e〉 transition and is blue detuned so that ∆c > 0. To obtain the absorption

spectrum, a weak probe laser with Rabi frequency Ωp � Ωc couples the |g〉 ↔ |e〉 transition and

the excitation probability is studied as its detuning ∆p is swept across ∆c. The excited state is as-

sumed to decay with rates Γg and Γr respectively to the two long-lived states, and its total lifetime

is Γ = Γg + Γr. An analytic expression for the steady state value of ρee is tedious to derive, but has

been done, for example in Refs. [57, 73]. For Ωp � Ωc, the expression can be compactly written as

ρee ≈
1

Γg

4δ2Ω2
pΓ

4δ2Γ2 + [Ω2
c − 4δ(∆c + δ)]2

, (2.17)

where δ = ∆p − ∆c is the two-photon detuning from Raman resonance. Figure 2.2(b) shows the

absorption spectrum as a function of ∆p for a specific choice of parameters. The spectrum features

a broad resonance, around ∆p ≈ 0 when Ωc � ∆c, and a narrow resonance for ∆p slightly greater

than ∆c. Remarkably, the absorption completely vanishes at Raman resonance, when ∆p = ∆c.

The vanishing of the absorption probability from a probe laser when the excited state is coupled

to an auxiliary state by a second laser is called electromagnetically induced transparency (EIT).
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Figure 2.2: Engineering the absorption spectrum using quantum interference. (a) A weak probe
laser is scanned across the |g〉 ↔ |e〉 transition as the state |e〉 is dressed by a strong coupling
laser driving the |r〉 ↔ |e〉 transition in a blue detuned regime (∆c > 0). (b) The corresponding
absorption spectrum displays a Fano profile close to ∆p ≈ ∆c.

In the bare basis, the transparency point can be understood as arising from destructive

interference between two pathways [73]. In the first pathway, a probe photon is absorbed from

|g〉 and immediately scattered into free space via |e〉, returning the atom to |g〉. In the second, a

probe photon absorption from |g〉 is followed by the emission and absorption of a coupling laser

photon, before free space scattering from |e〉 returns the atom to |g〉. These pathways are depicted

in Fig. 2.3.

The two resonances can be understood by considering the dressed states |ψ±〉 of the system

comprising the atom and the coupling laser [84]. With the zero energy reference chosen to be the

excited state |e〉, the energies of the two dressed states are given by

E± = ~
∆c ∓

√
∆2
c + Ω2

c

2
. (2.18)

With ~∆c the bare energy of the state |r〉, |ψ+〉 (|ψ−〉) can be identified with the broad (narrow)

resonance in the absorption spectrum shown in Fig. 2.2(b). Further confirmation can be obtained

from the form of |ψ±〉, which for Ωc � ∆c simplify to

|ψ+〉 =
1√

4∆2
c + Ω2

c

(Ωc |r〉 − 2∆c |e〉) , |ψ−〉 =
1√

4∆2
c + Ω2

c

(2∆c |r〉+ Ωc |e〉) . (2.19)

From the excited state coefficient, the lifetime of these states can be approximately identified as

Γ+ ≈ Γ and Γ− ≈ ΓΩ2
c/4∆2

c � Γ+, corresponding respectively to the broad and narrow peaks in

the spectrum.
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Figure 2.3: The two interfering pathways that transfer the atom from |g〉 to |e〉. Subsequent
spontaneous emission returns the atom to |g〉.

2.1.6.1 EIT cooling

From the perspective of cooling, an important feature of the spectrum is that the energy

difference between the transparency point and the sharp narrow peak can be tuned via the Rabi

frequency Ωc of the coupling laser [84]. Consider the case when the probe laser is fixed at the

detuning ∆p = ∆c. Then, by arranging

∆c +
√

∆2
c + Ω2

c

2
−∆c = ω0, (2.20)

the motion removing sideband at ∆p+ω0 can be brought on resonance with the narrow peak and is

therefore strongly enhanced. Simultaneously, the very low absorption probability at ∆p−ω0 strongly

suppresses the motion adding sideband. Naturally, this cooling mechanism is called EIT cooling.

Notably, diffusion from the carrier transition is nonexistent as the absorption vanishes exactly at

∆p = ∆c. This latter property ensures that for the same cooling rates, EIT cooling achieves

lower n̄SS compared with resolved sideband cooling. Under the optimum condition Eq. (2.20), the

minimum value of n̄SS = (Γ/4∆c)
2 is attained, indicating that the lowest occupations are obtained

when the atom is dressed with a far detuned laser [84]. In contrast to Doppler and sideband cooling,

EIT cooling works only for blue detuned probe and coupling lasers. When the coupling laser is red

detuned, the absorption spectrum is a mirror image of the one shown in Fig. 2.2(b) (see Ref. [73]),

and with ∆c = ∆p, the motion adding sideband is instead enhanced, leading to heating.

As in the case of Doppler and sideband cooling, analytic expressions for the A± rates and n̄SS
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have also been derived for EIT cooling. The rates can be motivated from the form of Eq. (2.17),

although a formal derivation is tedious and involves projection operator techniques [84, 83]. An

important feature of the corresponding rate equation is that the Lamb-Dicke parameter η dictating

the cooling rate corresponds to the projection of an effective wavevector along the motional axis.

Specifically,

η = |kp − kc| cosφ

√
~

2Mω0
, (2.21)

where kp,kc are respectively the wavevectors of the probe and coupling lasers, and φ is the angle of

the difference wavevector along the motional axis. Furthermore, the results have been generalized

to the case when Ωp ≈ Ωc, an attractive parameter regime for rapid cooling since the cooling rate

scales with the product ΩcΩp for a fixed value of Ω =
√

Ω2
c + Ω2

p [83]. However, the physics is not

as intuitive as in the Ωp � Ωc limit presented here.

2.2 Quantum Metrology with pseudospin-1/2 systems

A two-level system such as the toy model we introduced in Section 2.1 can be conveniently

mapped onto a spin-1/2 system by defining the following operators

σ̂x = (|e〉 〈g|+ |g〉 〈e|) , σ̂y = −i (|e〉 〈g| − |g〉 〈e|) , σ̂z = (|e〉 〈e| − |g〉 〈g|) . (2.22)

These operators are precisely the Pauli matrices that are ubiquituous in the description of spin-

1/2 systems. Specifically, they satisfy the commutation relations [σ̂j/2, σ̂k/2] = iεjklσ̂
l, implying

that the vector σ̂/2 = (σ̂x/2)x̂ + (σ̂y/2)ŷ + (σ̂z/2)ẑ is a legitimate angular momentum operator.

Furthermore, since
(
σ̂j
)2

= 1, the quantity σ̂2/4 ≡ S(S + 1) = 3/4, revealing that the total spin

S = 1/2. We can also define ladder operators σ̂± = σ̂x/2± iσ̂y/2 that correspond to exciting and

de-exciting the atom. To connect with spin terminology, we will henceforth generically refer to the

two states as |↑〉 and |↓〉 in this chapter.

Atoms and atom-like systems provide a variety of degrees of freedom in which spin-1/2

systems can be encoded. Such ‘pseudospin-1/2’ systems find applications throughout quantum

computing, simulation and metrology. For example, optical atomic clocks based on 87Sr atoms rely
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on encoding a pseudospin-1/2 system in an ultranarrow linewidth optical transition with |↓〉 ≡ 1S0

and |↑〉 ≡ 3P0 [86]. As a second instance, quantum computing and simulations with trapped ions

are often enabled by the ability to encode spins in atomic hyperfine levels [46, 10]. For example, in

Chapter 4, we will encounter a motion sensing technique that relies on encoding a spin-1/2 system

in the 2s2S1/2(mJ = −1/2) and 2s2S1/2(mJ = +1/2) hyperfine states of 9Be+ ions trapped in a

high magnetic field [105, 42, 58]. A very interesting spin encoding is utilized in the case of atomic

Bragg interferometers, where a discrete spin-1/2 system is mapped on to a continuous variable,

namely the center-of-mass momentum of the atom. Important applications of such interferometers

include their use as gravimeters and gravity gradient sensors [1, 31, 27]. We will provide a brief

introduction to Bragg interferometers in Section 2.4 as our work in Chapters 7 and 8 revolves

around such momentum pseudospin based systems.

2.2.1 The Ramsey sequence

The Ramsey sequence is by far the most important and most common technique for metrology

with spin-1/2 systems. The sequence is best illustrated by visualizing pure states of a spin-1/2

system as points on the surface of a Bloch sphere. For the purpose of this discussion, a pure state

can be parameterized in spherical coordinates as

|ψ (θ, φ)〉 = cos
θ

2
|↑〉+ eiφ sin

θ

2
|↓〉 , (2.23)

where θ and φ represent polar and azimuthal angles respectively (see Fig. 2.4). In this represen-

tation, the south (north) pole corresponds to |↓〉 (|↑〉), while points on the equator correspond to

equal superpositions of the form

|ψ (θ = π/2, φ)〉 =
|↓〉+ eiφ |↑〉√

2
. (2.24)

Measurements with spin-1/2 systems rely on mapping the signal of interest on to the az-

imuthal phase φ. For example, let us suppose that the |↓〉 and |↑〉 are nominally separated in
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Figure 2.4: Bloch sphere representation of the pure state of a single spin-1/2 system

energy by E0 = ~ω0. Then, the time evolution of a initial state with θ = π/2, φ = 0 is given by

|ψ(T )〉 =
|↓〉+ eiω0T |↑〉√

2
. (2.25)

Therefore, the spin transition frequency is mapped on to a total accumulated phase of φ(T ) = ω0T .

Extending this example further, let us suppose that the energy difference of the spin states increases

linearly in the presence of a weak magnetic field. In a frame rotating at ω0, the accumulated phase

φ(T ) = 0 in the absence of a magnetic field and φ(t) ∝ B × T in the presence of an applied field.

That is, the magnetic field strength is mapped on to the accumulated phase.

There still remains the question of how this accumulated phase can be measured. In the

Ramsey sequence, the accumulated phase is converted into a difference in population between the

two states |↑〉 and |↓〉. Mathematically, the angle φ is mapped on to θ. The sequence is illustrated

in Fig. 2.5. The spin is initially prepared in |↓〉. A π/2 rotation about the −y axis prepares the

spin in an equal superposition of the two spin states with φ = 0. A signal field µ(t) interacts with

the spin for a total time T , leading to a net accumulated phase

φ(T ) = G

∫ T

0
dtµ(t), (2.26)

where G is a proportionality constant. Finally, a second π/2 rotation about the −y axis takes the

state out of the equatorial plane. If φ(T ) = 0, the spin ends up in the north pole after the second

rotation and the final polar angle θf = 0. If φ(T ) 6= 0, θf > 0 after the second rotation. The
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Figure 2.5: State of the spin at different points in the Ramsey sequence.

probability to find the spin in the state |↑〉 at the end of the sequence is

P↑ = cos2 θf
2

=
1 + cos θf

2
=

1 + cosφ(T )

2
. (2.27)

If φ(T ) is linear in the accumulation time T , P↑ oscillates between 0 and 1 as T increases, leading

to the so called Ramsey fringes.

With just a single spin, one run of the Ramsey sequence will simply collapse the spin to |↓〉 or

|↑〉. In order to measure the underlying probabilities, experiments typically employ a large number

of spins in each run of the Ramsey sequence, and also repeat the sequence several times for each

accumulation time T . The random collapse of each spin means that the measurement precision is

limited by quantum noise. We will further discuss this notion of measurement precision, as well as

how to improve it using entanglement, in Section 2.3.

2.2.2 Limitations of the Ramsey sequence

A big advantage of the Ramsey sequence is that, in the end, the experimenter has to only

measure state populations. Such measurements are facilitated by well established techniques, for

example, using fluorescence measurements on cycling transitions [126]. However, let us now analyze

some features of the traditional Ramsey sequence, which makes it unsuitable for use in certain

situations. Here, we assume that N � 1 spins are participating in each sequence.

In Section 2.2.1, we emphasized that the Ramsey sequence is designed to measure the net

phase φ(T ) accumulated up to some time T . In a single run of the sequence, the population
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measurement collapses the state of individual spins, and the next run must begin with re-initializing

all spins in the |↓〉 state. In order to study the time variation of a signal field µ(t), the sequence

has to be repeated at least once for several different accumulation times T so that the time series of

φ(T ) versus T can be constructed. The derivative of φ(T ) then yields information about µ(t). This

procedure seems straightforward, but it intrinsically assumes that the signal field is reproducible.

If µ(t) is, for example, derived from a rare phenomenon, then we would like to have a protocol

by which the entire time series of µ(t) can be measured in a single experimental run without

re-initializing the spins at all.

A second problem with the Ramsey sequence concerns the variation of P↑ with φ(T ). From

Eq. (2.27), the mapping of φ(T ) on to P↑ is one to one only for φ(T ) ∈ [0, π]. Phase excursions

beyond such an unambiguous interval cannot be uniquely measured within the traditional Ramsey

paradigm.

Recent work has attempted to increase the length of the unambiguous interval beyond π by a

modification of the Ramsey sequence [112, 63]. First, a phase φ(T ), within the unambiguous inter-

val, is allowed to accumulate over time T . Next, an intermittent rotation converts the phase into a

population difference. The subsequent population measurement, however, is coherence preserving

in nature. This means that a measurement of the total population in |↑〉 is performed without

gaining knowledge about the state of each individual spin. After measurement, the state is rotated

back on to the equatorial plane. The inferred phase is then fed back as an azimuthal rotation that

returns the phase of the spins to zero. In this process, the time history of applied phase corrections

can be tracked, and the net accumulated phase can be uniquely measured even when it is well

outside the unambiguous interval. We note that this procedure also partially overcomes the first

problem discussed above as several rotation-measurement-feedback sequences are possible before

decoherence effects force re-initialization of the spins and restarting of the experiment.

While this workaround is elegant, it naturally begs the following question. Can we design a

scheme where the phase can be continuously monitored even as it accumulates? That is, can we

move beyond the Ramsey paradigm of converting the accumulated phase φ(T ) into a population
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difference, and attempt to directly measure the instantaneous phase φ(t)? In Chapters 5 and 6,

we present such a scheme for continuous real-time tracking of the instantaneous phase φ(t). Fur-

thermore, it can potentially be combined with a feedback loop to extend the unambiguous interval

for phase measurements while avoiding intermittent rotation-measurement-feedback sequences that

interfere with the phase accumulation.

2.3 Measurement precision in the Ramsey sequence

Upon measurement, a single spin in a superposition state will collapse to either |↑〉 or |↓〉

with fixed probabilities. Because of this inherent randomness, measurements of the accumulated

phase are always noisy and it is meaningful to define a measurement precision ∆φ.

To do so, we first introduce the concept of a collective spin associated with N spin-1/2 sys-

tems. The vector components of this collective spin are described by collective angular momentum

operators Ĵ j =
∑N

r=1 σ̂
j
r/2, j = x, y, z. These operators also satisfy the angular momentum commu-

tation relations [Ĵ j , Ĵk] = iεjklĴ
l. Analogous to the spin-1/2 case, raising and lowering operators

can be defined as Ĵ± = Ĵx ± iĴy.

2.3.1 Coherent spin states

Let us suppose that all of theN spins are initialized in the state |ψ(θ = π/2, φ = 0)〉 (Eq. (2.23),

that is, they are directed along the x axis. This state is an example of a coherent spin state (CSS)

|Ψ(θ, φ)〉, where the collective spin is simply built as a direct product of N identical, uncorrelated

spins. Classically, the collective spin can be visualized as the expectation value of the angular

momentum vector, 〈Ĵ〉 = 〈Ĵx〉x̂+ 〈Ĵy〉ŷ + 〈Ĵz〉ẑ = (N/2)x̂. Although the mean values of Ĵy, Ĵz are

zero, the quantum fluctuations in these quantities do not vanish. For the present state, we have

that

〈
(
Ĵy
)2
〉 =

1

4

 N∑
r=1

〈(σ̂yr )2〉+
∑
r 6=s
〈σ̂yr σ̂ys 〉

 =
N

4
. (2.28)
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Figure 2.6: Coherent spin state (CSS). (a) Visualization of a CSS as a cone ending in an uncertainty
circle. (b) Quantum fluctuations in the components orthogonal to the mean spin direction lead to
limited resolution of small rotations.

In calculating the above variance, we have used the properties that
(
σ̂jr
)2

= 1 and in this particular

state, 〈σ̂yr σ̂ys 〉 = 〈σ̂yr 〉〈σ̂ys 〉 = 0. Similarly, we can compute 〈
(
Ĵz
)2
〉 = N/4.

Therefore, quantum mechanically, a CSS can be visualized as a cone as shown in Fig. 2.6,

with the radius of the circular base representing the isotropic standard deviations in the directions

perpendicular to the mean spin direction (MSD) [62]. Rigorously, such states can be represented

on a collective Bloch sphere using quasiprobability distributions [76]. However, the notion of a

mean spin and an uncertainty circle (or more generally, an uncertainty ellipse) is sufficient for our

present discussion, especially since we generally consider N � 1 spins, in which case the curvature

of the spherical phase space can be neglected.

The measurement precision of such a CSS can be determined by considering a rotation by a

small angle φ about the z axis. Classically,

Jy = Jx tanφ ≈ Jxφ. (2.29)

By the propagation of errors, we have that

∆φ =

∣∣∣∣ ∆Jy

∂Jy/∂φ

∣∣∣∣ . (2.30)

Using the quantum mechanical value of (∆Jy)2 = N/4 and ∂Jy/∂φ = Jx = N/2, we get

∆φSQL =
1√
N
. (2.31)
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The measurement precision ∆φSQL associated with a coherent spin state is called the standard

quantum limit (SQL) in the metrology community [76]. Going through the full sequence of state

rotations involved in the Ramsey technique still leads to the very same measurement precision for

an initial CSS pointing along the ±z axes.

2.3.2 Squeezed spin states

The Heisenberg uncertainty relation dictates that for a collective spin (assuming MSD along

the x axis), (
∆Ĵy

)2 (
∆Ĵz

)2
≥ |〈Ĵ

x〉|2
4

. (2.32)

States which satisfy the equality are called minimum uncertainty states. We restrict the subsequent

discussion to such minimum uncertainty states. The CSS |Ψ(θ = π/2, φ = 0)〉 is a trivial example

of such a state.

The concept of squeezed spin states (SSS) arises with the realization that the equality in

Eq. (2.32) only imposes a constraint on the product of the variances in the orthogonal components.

This means that the variance in one of these components can be significantly reduced at the expense

of increasing the variance in the other component. In other words, as shown in Fig. 2.7, the base

of the cone can be ‘squeezed’ into an ellipse with vastly different lengths for the major and minor

axes such that the area of the ellipse is still equal to that of the original circle [62].

Depending on the context, various types of spin squeezing parameters have been introduced

to quantify the degree of squeezing. From a metrology perspective, the relevant parameter is the

Wineland squeezing parameter ξR [76]. This parameter has a practical definition as the improve-

ment in phase sensitivity of the prepared squeezed state, compared to a coherent spin state with

the same number of spins. Mathematically,

ξ2
R =

(∆φ)2

(∆φSQL)2 . (2.33)

Values of ξR < 1 =⇒ ∆φ < ∆φSQL, signifying an improvement in measurement precision beyond

the standard quantum limit.
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Figure 2.7: Squeezed spin state (SSS). (a) Visualization of an SSS as a cone ending in an uncertainty
ellipse with unequal major and minor axes. (b) The minor axis can be oriented along the component
accumulating phase in order to improve the resolution of small rotations.

For a collective spin state, the Wineland parameter can be written in terms of the angular

momentum components as

ξ2
R = min

n̂⊥n̂MSD

N ×Var
(
Ĵ · n̂

)
|〈Ĵ〉|2

, (2.34)

where n̂MSD is the mean spin direction. The factor of N is simply the inverse of the baseline value

of (∆φSQL)2. The remaining fraction corresponds to the minimum possible value of (∆φ)2 given

the present state.1

2.3.3 Mechanisms to prepare squeezed spin states

Taking the y component as an example, Eq. (2.28) implies that in order to reduce the variance

below the N/4 level, spin-spin correlations have to be engineered so that
∑

r 6=s〈σ̂
y
r σ̂

y
s 〉 < 0. While

many methods to engineer spin-spin interactions have been proposed and demonstrated, a broad

class of spin squeezing techniques rely on the availability of a common bosonic channel, such as a

cavity mode [11] or a shared vibrational mode [12], which couples to all the constituent spin-1/2

particles.

1 The formula assumes that the direction corresponding to the minimum variance can always be rotated to align
with the spin component that accumulates phase. For example, consider a SSS with MSD along the x axis and with(

∆Ĵz
)2

= N/20,
(

∆Ĵy
)2

= 5N/4 and 〈Ĵx〉 ≈ N/2, so that ξ2
R = 1/5. In the Ramsey sequence, phase accumulates

in the x − y plane. Therefore, the SSS must be first rotated by 90◦ about the MSD so that the minimum variance
component aligns with the y axis and enhances the measurement precision.
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Figure 2.8: Two common mechanisms to generate squeezed spin states involve (a) Squishing the
uncertainty ellipse, as happens during squeezing by quantum nondemolition measurements, and
(b) Shearing the uncertainty ellipse, as happens during squeezing by one-axis twisting.

Two typical squeezing mechanisms enabled by such a channel are collective quantum non-

demolition (QND) measurements [67, 51, 11, 26] and twisting protocols that work using a non-linear

interaction [12, 71, 107].

2.3.3.1 Squeezing by quantum non-demolition measurements

Squeezing by QND measurements arises naturally in our proposal for real time phase tracking

and we therefore extensively discuss this mechanism in Chapters 5 and 6. Briefly, such schemes

involve coupling a Hermitian operator of the common channel with a spin component by engineering

a QND Hamiltonian of the form

ĤQND = ~gX̂Ĵz. (2.35)

Here, X̂ could be, for example, the amplitude quadrature, given by
(
â+ â†

)
/
√

2. Measurement

of the conjugate phase quadrature can then enable estimation of the collective spin component Ĵz

below the N/4 level. In such schemes, the squeezing dynamics proceeds by continuously ‘squishing’

the measured component of the uncertainty ellipse while elongating the orthogonal component. For

simple QND schemes, the variance in the squeezed component falls as 1/T with the measurement

time T .
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2.3.3.2 Squeezing by one-axis twisting

The one axis twisting (OAT) Hamiltonian is a common non-linear mechanism to generate

spin squeezing [62]. Here, we will briefly describe the OAT mechanism in its simplest form. The

Hamiltonian is of the form

ĤOAT = ~χ
(
Ĵz
)2
. (2.36)

Let us consider an initial CSS along the x axis. The squeezing mechanism can be visualized by

considering the dynamics of different points (jy, jz) within the uncertainty ellipse. A Hamiltonian

of the form ΩĴz leads to a rotation of the CSS around the z axis. Over a short time interval ∆t,

the transformation is (jy, jz)→ (jy +NΩ∆t/2, jz). Analogously, HOAT can be visualized as a non-

linear rotation where the rotation rate of a point depends on its jz coordinate. The transformation

in the OAT case is given by (jy, jz) → (jy + Nχjz∆t, jz). As a result, the uncertainty ellipse is

‘sheared’ or twisted over time, leading to reduced variance in one component at the expense of the

orthogonal one. The minor axis of the ellipse rotates over time and gets closer to the z axis.

Simple calculations can reveal the rate of squeezing in this mechanism. For sufficiently short

times, the state is accurately described by a mean spin, assumed along the x axis and of approximate

length N/2, and a covariance matrix that captures the quantum fluctuations in the y − z plane.

The diagonal components of this covariance matrix evolve as

d

dt
〈(Ĵy)2〉 = 2Nχ〈ĴyĴz〉s,

d

dt
〈(Ĵz)2〉 = 0. (2.37)

Here, 〈ÂB̂〉s =
(
〈ÂB̂〉+ 〈B̂Â〉

)
/2 is the symmetric combination of the second order moments.

Clearly, all moments involving only Ĵz commute with ĤOAT. The off-diagonal element 〈ĴyĴz〉s

evolves as

d

dt
〈ĴyĴz〉s = Nχ〈(Ĵz)2〉. (2.38)

In deriving these equations, we have substituted Ĵx → N/2 wherever it appears on the right hand

side. The solution to these equations are given by

〈(Ĵz)2〉(t) =
N

4
, 〈ĴyĴz〉s(t) =

N2χt

4
, 〈(Ĵy)2〉(t) =

N

4
+
N3χ2t2

4
. (2.39)
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The squared lengths of the major and minor axes of the corresponding uncertainty ellipse are given

by the eigenvalues of the covariance matrix

Σ =

 〈(Ĵy)2〉 〈ĴyĴz〉s

〈ĴyĴz〉s 〈(Ĵz)2〉

 . (2.40)

The eigenvalues are given by

λ± =
N

4

[
1 +

N2χ2t2

2
± N2χ2t2

2

(
1 +

4

N2χ2t2

)1/2
]
. (2.41)

For t � 1/Nχ, Nχt � 1 and the expression under the square root can be Taylor expanded to

second order. The two eigenvalues are then respectively given by

λ+ ≈
(
N2χ2t2

)
×N/4, λ− ≈

N/4

N2χ2t2
. (2.42)

Therefore, the minor axis of the uncertainty ellipse shrinks as 1/t2 with interaction time t. Fur-

thermore, we can identify Nχ as a characteristic rate for the dynamics. The assumption that the

dynamics in the y − z plane can be decoupled from the x axis fails when the major axis becomes

comparable to the mean spin length. Therefore, this analysis is valid for times such that

λ+

N2/4
� 1 =⇒ Nχ2t2 � 1. (2.43)

In fact, the dynamics of an initial CSS under the action of ĤOAT can be computed exactly. Ex-

pressions for the minimum attainable variance and spin squeezing parameters that account for the

curvature of the collective Bloch sphere can be found in Refs. [76, 62].

2.4 Momentum pseudospins and Bragg interferometers

In Chapters 7 and 8, we will engineer the OAT interaction between pseudospins encoded

in the center-of-mass momentum of the atomic wavepackets. We will then study the efficiency

of squeezing accounting for the complications arising from the setup and the nature of the spins

themselves. Here, we introduce the notion of momentum pseudospins and explain how they form

the basis of Bragg interferometers.
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Atomic Bragg interferometers are so named because the basic working principle can be visu-

alized as the diffraction of atomic matter waves from periodic potentials of light [27]. Compared to,

say, X-ray diffraction from a crystal, where electromagnetic waves are diffracted from periodic ar-

rays of atoms, here the roles of atoms and light are interchanged. Atomic Bragg interferometers are

widely used for applications such as tests of fundamental physics [90, 64, 4, 134] and precision mea-

surements of gravitational acceleration [1, 31]. These systems are attractive because of the unique

encoding of the spin-1/2 system in two momentum states associated with the center-of-mass motion

of the atomic wavepacket. They operate by splitting the wavepacket into two momentum states—

that propagate along different spatial paths accumulating a relative phase—and finally recombining

them to obtain interference fringes. Throughout the interferometer operation, the atom is confined

to the same metastable electronic state, typically the ground state. Although an atom’s momentum

is a continuous variable, a pseudospin-1/2 system with two discrete states can be mapped on to

the external motion in a Bragg interferometer. This mapping requires an initial atomic momentum

distribution that is a sharp peak about a central value, so that the distribution serves as one of

the pseudospin states. Subsequently, pulses of light resonantly couple this distribution to a second

narrow peak that is shifted by an even multiple of the well-defined photon momentum. This shifted

distribution serves as the other pseudospin state.

2.4.1 Coherent manipulation of momentum states

To understand how the momentum of the atom can be manipulated, let us consider a toy

model of a two-level atom in free space. The initial state of the atom is assumed to be |g, p〉, where

the variable p denotes the momentum of the atom along the z axis in the lab frame. By addressing

the atom with two suitable counterpropagating lasers as shown in Fig. 2.9(a), the atom can be

coherently transferred to the state |g, p+ 2~k〉. These lasers drive the |g〉 → |e〉 transition in a far

detuned regime so that the state |e〉 is negligibly occupied. However, as Fig. 2.9(b) illustrates, the

two-photon process involving the absorption of a photon from the upward propagating laser and

emission into the other laser is arranged to be a resonant process: Momentum conservation dictates
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that the atom has gained a momentum of 2~k after such a two-photon process. Therefore, energy

conservation requires that the two-photon process must also supply the associated excess energy

for the atom to occupy the new momentum state. Therefore, the frequencies of the lasers, ω1 and

ω2 must be arranged such that

~ω1 − ~ω2 =
(p+ 2~k)2

2M
− p2

2M
. (2.44)

Assuming that the Rabi frequency associated with either laser driving the |g〉 ↔ |e〉 transition is

Ω, and that the single photon detuning is ∆, the effective two-photon Rabi rate for the |g, p〉 ↔

|g, p+ 2~k〉 transition is Ωeff ∼ Ω2/∆. The recoil frequency ωr = ~k2/2M characterizes the energy

increase of a stationary atom as a result of absorbing or emitting a single photon. Provided

Ωeff � 8ωr, the |g, p〉 ↔ |g, p− 2~k〉 and |g, p+ 2~k〉 ↔ |g, p+ 4~k〉 transitions are far off resonance

and the |g, p〉, |g, p+ 2~k〉 manifold can be considered a closed two-level system. A two-photon

Bragg transition between these two states is then analogous to two-photon Raman transitions

mediated by a far off resonant excited state.

Figure 2.9: Bragg transitions. (a) Two counterpropagating lasers address an upward moving atom
with frequencies arranged to satisfy Eq. (2.44). (b) The two lasers drive a resonant transition
between two momentum states (taken to be |0~k〉 and |2~k〉 here) in the same electronic manifold.
The process is reminiscent of a two-photon Raman transition.

Although the above example illustrates the basic concept, significant theoretical and experi-

mental research has been devoted to the design of momentum transfer pulses [85, 118]. Furthermore,

experiments are now using large momentum transfer pulses that use a succession of higher-order
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multi-photon Bragg pulses [21, 93, 65]. Such pulses enable the spin-1/2 system to be encoded in

states with a large momentum difference, greatly increasing the sensitivity to external fields such

as gravity.

2.4.2 Phase accumulation in a gravitational field

We conclude this chapter with an illustration of how Bragg interferometers typically operate

and how they are capable of sensing gravitation fields (see Fig. 2.10). The sequence of state

manipulations is exactly as in a two-path Mach Zehnder interferometer. Here, the beam splitter

and mirror operations are achieved using Bragg pulses that rotate the state of each atom by 90◦ or

180◦ in a Bloch sphere formed by the two states |↓〉 ≡ |p〉 and |↑〉 ≡ |p+ 2~k〉.

First, the atoms are prepared in a narrow momentum distribution about |p〉. We ignore

the momentum spread in this simple discussion. Two counterpropagating lasers resonantly drive

a Bragg transition and place all the atoms in an equal superposition of |p〉 and |p+ 2~k〉. In

the presence of a gravitational field, the momentum of these states linearly decreases with time.

Therefore, the energy difference between the two states at a time t is given by

E↑(t)− E↓(t)
~

= 4ωr

(
1 +

p−Mgt

~k

)
, (2.45)

where g is the gravitational acceleration and M is the atomic mass. Knowing the approximate value

of g, the difference frequency of the two lasers is chirped at a rate α that roughly compensates for

this changing transition frequency, thereby ensuring that the lasers always drive near resonant

Bragg transitions [78]. The laser frequency difference therefore varies in time as

ω1(t)− ω2(t) = 4ωr

(
1 +

p

~k

)
− αt. (2.46)

The atoms are then allowed to freely evolve for time T . During this time, the two momentum states

propagate along different spatial paths that we will denote as A and B as shown in Fig. 2.10.

From Eq. (2.45) and Eq. (2.46), the net phase accumulated relative to the two-photon drive

is given by

φ
(1)
BA = −

∫ T

0

(
4ωr

Mg

~k
− α

)
t dt = −1

2

(
4ωr

Mg

~k
− α

)
T 2. (2.47)
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Figure 2.10: Schematic of a two-path Bragg interferometer. The two paths are respectively denoted
by A and B. The momentum labels indicate the ‘spin up’ (|↑〉 ≡ |p+ 2~k〉) and ‘spin down’
(|↓〉 ≡ |p〉) states at different points during the interferometer sequence. Gravitational acceleration
causes the momenta of the two states to linearly vary over time.

At time T , a Bragg pulse is applied so that the momenta of the two paths are interchanged. The

atoms are then allowed to freely evolve again for time T . The relative phase accumulated between

the two paths in this arm is given by

φ
(2)
BA = −φ(2)

AB =

∫ 2T

T

(
4ωr

Mg

~k
− α

)
t dt =

3

2

(
4ωr

Mg

~k
− α

)
T 2. (2.48)

The sign of the accumulated phase in the second arm is opposite to that in the first because the

momenta of the two paths have been flipped. Therefore, the net phase accumulated up to time 2T

is given by

Φ = φ
(1)
BA + φ

(2)
BA = (2kg − α)T 2. (2.49)

The net phase accumulated depends on the precise value of g and scales with the square of the

interferometer arm time T . Finally, a third Bragg pulse converts the accumulated phase into a

population difference. In practice, the net phase accumulated also depends on the phases of the

three Bragg pulses, leading to the formula [78]

Φ = (2kg − α)T 2 + φ1 − 2φ2 + φ3. (2.50)

In a Bloch sphere picture, the phases φj , j = 1, 2, 3 set the axis of rotation in the x − y plane for
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the three Bragg pulses. Ramsey-type fringes of the population in one of the momentum states are

typically obtained by varying the phase of the final Bragg pulse while keeping other parameters

fixed.

Finally, we note that the entire sequence can be viewed as a Ramsey sequence with an extra

spin echo pulse halfway through the phase accumulation time. The spin echo pulse ensures that

dephasing arising from a momentum width is reversed during the second half of the sequence. In

real space, such a cancellation ensures that the two atomic wavepackets spatially overlap at the

end of the sequence, thereby closing the interferometer.

In Chapters 7 and 8, we will discuss how to engineer squeezing on momentum pseudospins

for use in such Bragg interferometers.



Chapter 3

Near ground-state cooling large trapped ion crystals: Theoretical modeling

3.1 Motivation: Why ground-state cooling?

Trapped ions have rapidly evolved to become a leading platform for quantum computing,

quantum simulation and metrology [46, 10]. Specifically, ions stored in Penning traps have been

demonstrated to be ideal for analog quantum simulation as well as quantum-enhanced sensing, in

part because large ion crystals are routinely formed and controlled in this device [8, 77, 5]. For

example, planar crystals of tens to hundreds of 9Be+ ions have been used to simulate spin-spin

as well as spin-boson models including the Ising [17, 12], transverse-field Ising, as well as Dicke

models [101, 24]. Quantum information studies on the growth of entanglement [39] as well as

investigations on preparing ground states of exotic Hamiltonians [101, 24] have shown that exciting

many-body physics can be studied with this versatile quantum simulator. In addition, ions in

Penning traps serve as excellent motion sensors capable of resolving, in a single experimental trial,

motional amplitudes smaller than the zero-point fluctuations of the normal modes dictating the

motion transverse to the crystal plane [42], thus enabling the detection of extremely weak forces

and electric fields.

For implementing these protocols with the NIST Penning trap, the spin is encoded in two

hyperfine ground states of 9Be+ [8]. Spin-spin interactions are mediated by the motional drumhead

modes, transverse to the crystal plane, that arise from the interplay of the trap potential and the

inter-ion Coulomb repulsion, with the spin-motion coupling generated using suitable drive lasers

[17]. As a result, excess thermal energy in these normal modes adversely affects the science protocol
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being investigated, higlighting the need for sub-Doppler, near ground-state cooling. For example,

the fidelity of preparing the ground state of the Dicke model is significantly reduced by the thermal

occupation of n̄ ≈ 6 of the center-of-mass (COM) mode, which is close to the Doppler cooling limit

[101, 24]. Estimates show that the fidelity significantly improves if the COM mode is cooled down

to n̄ ≈ 0. From a metrology standpoint, near ground-state cooling should also greatly improve the

motion sensing capability of this platform.

3.2 EIT cooling in a Penning trap: Expectation and challenges

Electromagnetically induced transparency (EIT) promises a path for cooling the entire band-

width of drumhead modes close to their ground states. In contrast to sideband cooling where

the modes are cooled one-by-one by sweeping the two-photon detuning across the bandwidth of

modes, EIT cooling can potentially cool the full bandwidth of modes in a single experimental ap-

plication with no time-varying parameters, allowing for simpler implementation and faster cooling.

The naive expectation comes from the well understood physics of EIT cooling of a single trapped

ion [83], which we now recall briefly. The ion is assumed to have a closed three-level electronic

manifold consisting of two long-lived states, such as the hyperfine ground states of 9Be+, and an

excited state (see Fig. 3.1). Two strong dressing lasers couple the long-lived states to the excited

state and are equally blue detuned from their respective transitions. EIT cooling can be under-

stood by considering the absorption of a fictitious weak probe coupling one of the long-lived states

to the excited state. As shown in Fig. 3.2, the steady-state absorption spectrum has a unique

profile as the probe detuning ∆P is swept, with the absorption exactly vanishing when the probe

detuning equals the dressing detuning ∆D. A sharp peak immediately follows this transparency

point and the separation between this peak and the transparency point can be tuned using the

dressing laser powers. For a trapped ion, the motion-adding and motion-removing sidebands of the

dressing lasers serve as weak probes that sample this absorption spectrum. Tuning the separation

between the sharp peak and the transparency point to match the motional frequency causes the

motion-removing sideband to be strongly enhanced and the motion-adding sideband to be strongly
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Figure 3.1: Two EIT lasers address the ion, with one driving the |g1〉 ↔ |e〉 transition and the
other driving the |g2〉 ↔ |e〉 transition in a blue-detuned regime (∆ > 0).

suppressed, leading to highly efficient cooling. In the Penning trap, by tuning this separation to

coincide with the frequency of the COM mode, which is the highest frequency drumhead mode,

all the drumhead modes have highly asymmetric motion-removing and motion-adding sidebands,

which should produce efficient cooling over the full bandwidth of these modes. In this chapter,

we theoretically investigate this idea under realistic experimental conditions employed in the NIST

Penning trap.

The unique challenges confronted in implementing EIT cooling in a Penning trap further

motivate our theoretical study of the prospects for its success. First, ions stored in a Penning

trap are constantly revolving around the trap center and therefore, in general, experience time-

varying Doppler shifts on the applied dressing lasers. Second, experimental constraints as well as a

compromise between the speed of cooling and the final temperature dictate that the timescales for

the electronic and motional degrees of freedom may not be sufficiently well separated to adiabatically

eliminate the electronic degrees of freedom, as was done in the initial analysis of trapped-ion EIT

cooling [83, 84]. Third, although EIT cooling has been used to cool all the radial modes of a linear

chain of up to 18 ions [68], the dynamics of simultaneously EIT cooling several tens to hundreds

of normal modes that can interact via the applied lasers is not well understood and could be very

different from the single-ion case.
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Figure 3.2: EIT absorption spectrum with laser parameters relevant to the NIST EIT cooling
experiment. Two strong dressing lasers, with equal Rabi frequencies and equal detunings from
their respective transitions, couple two long-lived states to an excited state in a closed three-
level system. The absorption from a weak probe is plotted as the probe detuning ∆P is scanned
across the dressing detuning ∆D. The motion-removing (blue impulses) and motion-adding (red
impulses) sidebands can be interpreted as weak probes that sample this spectrum. Inset: Close-up
near (∆P − ∆D)/2π = 0, with a magnified y-axis, showing the zero at the transparency point as
well as the asymmetry in the spectrum on either side of this point. The blue dashed line is a mirror
image of the spectrum on the blue-detuned side, drawn on the red-detuned side to highlight the
asymmetric growth of the absorption away from the transparency point. The dressing lasers have
equal detuning ∆D/2π ≡ ∆0/2π = 360 MHz, and equal Rabi frequency Ωopt(∆

0)/2π ≈ 33.9 MHz.
The Rabi frequency of the weak probe is ΩP = 0.05 Ωopt(∆

0). The decay rates from the excited
state to the two long-lived states are Γ1/2π = 6 MHz, Γ2/2π = 12 MHz. (See the discussion in
Section 3.4 and Eq. (3.14) for a detailed explanation of the parameters.)

3.3 Summary of predictions

At the outset, we summarize the major predictions from our study. Under typical experi-

mental conditions, EIT cooling leads to near ground-state occupancies for all the drumhead modes,

spread over a bandwidth of hundreds of kilohertz, of large ion crystals in a Penning trap. The cool-

ing of the COM mode has a time constant of few tens of µs. Further, under suitable experimental

conditions, the cooling rate of the COM mode increases with the number of ions in the crystal.

This latter result leads us to predict that the measured cooling of multi-ion crystals will be faster

than the rate expected if the ions cooled independently. These predictions have been verified by

the successful demonstration of EIT cooling with more than 100 ions [58], where significant sub-

Doppler cooling, strongly suggestive of near-ground state cooling, has been observed over the full
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bandwidth of drumhead modes. Quantitative measurements on the COM mode reveal occupations

of n̄ ≈ 0.3 ± 0.2, and a measured cooling constant τ ≈ 28 µs. The measured cooling rate is faster

than the expected single-ion rate under the same experimental conditions.

The rest of this chapter is devoted to the modeling procedures and the numerical results. In

Section 3.4, we describe the NIST Penning trap and proceed to set up the master equation for the

EIT cooling of multiple ions. In Section 3.5, we use a toy model of a single revolving ion to illustrate

the degrading effects of the time-varying Doppler shifts as well as demonstrate the invalidity of the

adiabatic elimination procedure in our system. In Section 3.6, we first build a Gaussian model for

approximately studying the cooling dynamics for multiple ions, and demonstrate the near-ground

state cooling of the COM mode for crystals with up to N = 37 ions. By comparing the cooling

transients from our Gaussian model to full density matrix calculations for a single ion, we show

the build-up of beyond Gaussian correlations between the system degrees of freedom, which we are

able to reproduce by systematically extending our approximate model beyond the Gaussian regime.

Our improved model predicts a surprising enhancement in the cooling rate of the COM mode with

increasing number of ions that is not captured by the Gaussian model. In Section 3.7, we show

how EIT cooling works efficiently over the full bandwidth of drumhead modes of crystals with as

many as 120 ions, resulting in near ground state occupancies for all these modes. In Section 3.8, we

briefly demonstrate the expected robustness of EIT cooling to small misalignments of the dressing

lasers. We conclude with a brief summary in Section 3.9, where we also discuss possible future

extensions of our work.

3.4 Modeling the experiment

3.4.1 NIST Penning trap

The NIST Penning trap is used to routinely produce, control and manipulate planar ion

crystals of tens to hundreds of 9Be+ ions [8]. A static electric quadrupole field is used to achieve

transverse confinement, while the addition of a strong transverse magnetic field ensures radial
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confinement. Potentials applied to electrodes arranged symmetrically around the z-axis generate

the required electric fields and a superconducting magnet produces a strong magnetic field of 4.46 T.

The E×B drift of the ions arising from the combination of the magnetic field and the azimuthally

symmetric electric fields causes the ions to revolve around the trap center. The frequency of the

crystal rotation can be precisely controlled and stabilized by applying a weak rotating potential on

the electrodes. Typically, this ‘rotating wall’ potential is used to stabilize the rotation frequency of

the crystal to ωr/2π = 180 kHz. When the radial confinement is weak compared to the transverse

confinement, the ions form a 2D planar crystal with an approximate triangular lattice (see Fig. 3.3

for an illustration). The strength of the transverse harmonic confinement is characterized by a

trapping frequency that is also the frequency of the transverse center-of-mass (COM) mode, ωCOM,

of the ion crystal. A planar ion crystal with N ions has 3N normal modes of motion, 2N of

which are in-plane modes superposed on the crystal rotation, and N of which are drumhead modes

transverse to the crystal plane. The COM mode is the highest-frequency drumhead mode. For the

experiments we model here, ωCOM/2π ≈ 1.57 − 1.59 MHz, tunable using trap parameters. The

2N in-plane modes consist of N high frequency cyclotron modes and N low frequency magnetron

modes. Typical frequencies characterizing the three branches are summarized in Table 3.1. Further

discussion of these modes is postponed to Chapter 4.

Branch Displacement Typical frequency

Drumhead z axis 1− 1.59 MHz
Cyclotron x− y plane 7.2− 7.3 MHz
Magnetron x− y plane 0− 170 kHz

Table 3.1: Summary of approximate characteristic frequencies for the three branches of modes for
two dimensional crystals in the NIST Penning trap.

3.4.2 Master equation model

We consider singly-charged positive ions with a closed three-level electronic structure loaded

in a Penning trap (see Fig. 3.1). The two hyperfine ground states of each ion are labeled |g1〉 and
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Figure 3.3: Experimental setup to cool ions in a Penning trap using electromagnetically induced
transparency (EIT). Two EIT lasers address the ion crystal at angles ±θ with respect to the x-axis.
The curved arrow indicates the rotation direction in the x-y plane.

|g2〉. Two EIT lasers are respectively blue-detuned from the |g1〉 ↔ |e〉 and |g2〉 ↔ |e〉 transitions,

where |e〉 is an excited state separated from the two ground states by optical frequencies. The

two EIT lasers are incident on the planar ion crystal at angles ±θ with respect to the plane of the

crystal, which we take to be the x-y plane. The {|e〉 , |g1〉 , |g2〉} manifold is a closed system, with

decay rates of Γ1 and Γ2 for the |e〉 → |g1〉 and |e〉 → |g2〉 pathways respectively. We will adopt

the shorthand notation σαβ to denote the internal state operator |α〉 〈β|.

In the Schrödinger picture, the Hamiltonian for the interaction of the EIT lasers with a single

ion is HS = HS
0 +HS

1 (t), where

HS
0 = −

∑
µ

(
ωe − ωgµ

)
σgµgµ (3.1)

and

HS
1 (t) =

∑
µ

Ωµ

2

(
ei(kµ·r(t)−ωµt)σegµ + H.c.

)
, (3.2)

where the index µ = 1, 2 accounts for the two ground states and the two EIT lasers coupling them

to |e〉. Here, ωe−ωgµ are the |gµ〉 ↔ |e〉 transition frequencies, Ωµ are the Rabi frequencies for the

laser-ion interaction, and ωµ and kµ are the angular frequencies and propagation vectors for the two

EIT lasers. Eventually, we will describe the motion along the z-direction using a set of quantized

normal modes, and add the self-energy terms associated with these quantum harmonic oscillators

to the interaction Hamiltonian. Throughout this Chapter, we have set ~ = 1, unless we explicitly

specify otherwise. For brevity, we have also dropped hats on the operators in this Chapter.

Since any given ion in the Penning trap is undergoing a coherent rotation in the x-y plane,
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its position r(t) is

r(t) =

(
x(0) +

∫ t

0
dt′vx(t′)

)
x̂ +

(
y(0) +

∫ t

0
dt′vy(t

′)

)
ŷ + z(t)ẑ, (3.3)

Here we are neglecting any thermal motion in the plane of the ion crystal and assume vx(t′)

and vy(t
′) arise from the coherent circular motion caused by the E×B drift, which is the dominant

in-plane motion. We assume that the laser beams are propagating in the x-z plane, so that k1 =

k1,xx̂ + k1,zẑ and k2 = k2,xx̂ + k2,zẑ.

We then transform to an interaction picture with a time-dependent ‘free evolution’ Hamilto-

nian HS
f (t) given by

HS
f (t) = −

∑
µ

{ωµ − kµ,xvx(t)}σgµgµ . (3.4)

The interaction picture transformation is very similar to the usual case with a time-independent free

evolution Hamiltonian because HS
f (t), HS

f (t′) commute at all times t, t′. The interaction Hamilto-

nian in this frame, given by the transformationHI(t) = ei
∫ t
0 dt
′HS
f (t′)(HS

0 +HS
1 (t)−HS

f (t))e−i
∫ t
0 dt
′HS
f (t′),

is

HI(t) =
∑
µ

∆µ(t)σgµgµ +
∑
µ

Ωµ

2

{
eikµ,xx(0)eikµ,zz(t)σegµ + H.c.

}
, (3.5)

where ∆µ(t) = ∆0
µ − kµ,xvx(t) are the effective detunings of the EIT lasers as seen by the ion,

with ∆0
µ = ωµ − (ωe − ωgµ). For an ion with initial position {x(0), y(0)}, the x-component of the

velocity is vx(t) = ωr(y(0) cosωrt− x(0) sinωrt), where ωr is the angular frequency of the rotating

wall potential.

To perform EIT cooling, we tune the EIT lasers to satisfy the two-photon resonance on the

blue-detuned side [83], i.e. ∆0
1 = ∆0

2 ≡ ∆0 > 0. Further, the lasers are aligned such that their

difference wavevector lies along the z-axis. This implies k2,x = k1,x and k2,z ≈ −k1,z. However, we

will develop the theory without these two simplifications, and only apply these conditions numeri-

cally. For N ions in the Penning trap, the interaction Hamiltonian generalizes straightforwardly as

a sum over all ions.
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The equilibrium crystal configuration results from the balance of the trap potential and the

inter-ion Coulomb repulsion. The transverse motion of the N ions about their equilibrium positions

are not independent, instead being described by a set of N collective normal modes with frequencies

ωn, n = 1, 2, . . . , N and amplitudesMjn at each ion j. The frequencies ωn and the column vectors of

the matrixM are respectively obtained as the eigenvalues and eigenvectors of the potential energy

matrix associated with the coupled transverse harmonic motion of the ions [124]. The transverse

displacement of any ion j can be expressed in terms of the N quantized drumhead modes of the

ion crystal as

zj(t) =

N∑
n=1

√
~

2Mωn
Mjn

(
bne
−iωnt + b†ne

iωnt
)
, (3.6)

where b†n, bn are the creation and annihilation operators for the normal mode n.

The time-dependent exponentials in Eq. (3.6) can be recast as self-energy terms, leading to

the total interaction Hamiltonian

HI(t) =
∑
n

ωnb
†
nbn +

∑
j,µ

∆µ,j(t)σ
j
gµgµ +

∑
j,µ

1

2

{
Ωµ,je

ikµ,zzjσjegµ + H.c.
}
, (3.7)

where the displacement operators zj are now simply zj =
∑

n

√
~/2MωnMjn

(
bn + b†n

)
.

Here, the instantaneous detunings experienced by each ion is different, depending on the x-

component of the ion’s velocity at that time point. In writing Eq. (3.7), the complex phase factors

associated with the initial positions of the ions have been absorbed into the (now complex) Rabi

frequencies. Further, for large ion crystals, the spatial profile of the EIT lasers over the extent

of the crystal may be important, and therefore Ω1(2),j ≡ Ω0
1(2) (xj(t), yj(t)) e

ik1(2),xxj(0), i.e. the

amplitude of the Rabi frequency is in general a function of the instantaneous in-plane position of

the rotating ion.

Spontaneous emission from the excited level |e〉 to the two ground states is accounted for

using dissipation terms written in Lindblad form, i.e. for any jump operator O, the dissipation

term takes the form D[O]ρ = OρO† − 1
2O
†Oρ− 1

2ρO
†O, where ρ is the density matrix of the system

at hand. Since we are interested in the effect on the motion along the z-direction, the dissipation

terms must account for the recoil momentum along the z-axis due to spontaneous emission [28].
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Therefore, the Lindblad term for ion j, including recoil associated with spontaneous decay of |e〉

to |gµ〉, is

Dµ,jρ = Γµ

{∫ 1

−1
duNµ(u)σjgµee

−iksczjuρeiksczjuσjegµ −
1

2
σjeeρ−

1

2
ρσjee

}
, (3.8)

where Γµ is the spontaneous decay rate of |e〉 → |gµ〉, ksc is the wavevector associated with the

spontaneously emitted photon, u = cos θsc, with θsc the angle between ksc and the z-axis, and

Nµ(u) is the normalized dipole radiation pattern associated with the transition. Finally, the master

equation for EIT cooling of N ions in a Penning trap is given by

ρ̇ = −i[HI(t), ρ] +
∑
j,µ

Dµ,jρ, (3.9)

where HI(t) and Dµ,jρ are as in Eq. (3.7) and Eq. (3.8) respectively.

3.4.2.1 Lamb-Dicke regime

When the condition 〈(kµ,zzj)2〉1/2 � 1 is satisfied for every ion, the motion is in the Lamb-

Dicke regime [126] and the master equation can be expanded in a series expansion in kµ,zzj [83]. In

our setup, the angles ±θ are such that the z-components kµ,z are (a) not too large to cause beyond

Lamb-Dicke regime dynamics, and (b) not too small that the cooling is weak. For any wavevector,

it is useful to recast its coupling to the z-motion in terms of the Lamb-Dicke parameters associated

with the drumhead modes as

kzzj =
N∑
i=1

ηkzn Mjn(bn + b†n), (3.10)

where ηkzn = kz

√
~

2Mωn
is the Lamb-Dicke parameter [126] for mode n, associated with a wavevector

whose z-component is kz. Expanding the master equation Eq. (3.9) up to second-order in the Lamb-

Dicke parameters results in

ρ̇ = L0ρ+ L1ρ+ L2ρ. (3.11)



41

Here,

L0ρ = −i[H0(t), ρ] +
∑
µ,j

ΓµD[σjgµe]ρ,

L1ρ = −i[H1, ρ],

L2ρ = −i[H2, ρ] +K2ρ, (3.12)

with

H0(t) =
∑
n

ωnb
†
nbn +

∑
j,µ

∆µ,j(t)σ
j
gµgµ +

∑
j,µ

Ωµ,j

2
σjegµ + H.c.,

H1 =
∑
j,n,µ

iλµjnΩµ,j

2
Xnσ

j
egµ + H.c.,

H2 = −
∑
j,n,k,µ

λµjnλ
µ
jkΩµ,j

4
XnXkσ

j
egµ + H.c.,

K2ρ =
∑
j,n,k,µ

Γµ
2
〈u2〉egµλsc

jnλ
sc
jkK2ρσ

j
gµe (2XnρXk −XnXkρ− ρXnXk)σ

j
egµ , (3.13)

where Xn = bn + b†n and λµjn = η
kµ,z
n Mjn, λsc

jn = ηksc
n Mjn are dimensionless electronic-motional

coupling strengths. The quantity 〈u2〉egµ is the variance of u = cos θsc taken with respect to

the dipole radiation pattern Negµ(u) associated with the |e〉 → |gµ〉 decay. The master equation,

Eq. (3.11), is the starting point for our analysis of EIT cooling of ions in the Penning trap.

3.4.3 Parameters from the NIST EIT cooling experiment

In the NIST EIT cooling experiment with 9Be+ ions, the transverse magnetic field of B =

4.46 T leads to a splitting of 124 GHz between the 2s2S1/2(mJ = −1/2) and 2s2S1/2(mJ = +1/2)

levels [8], labeled as |g1〉 and |g2〉 respectively. The |g1〉 ↔ |e〉 transition frequency is ωg1e/2π ≈

957 THz. The two EIT lasers, with σ+ and π polarizations are oriented at ±10◦ with respect to

the x-axis and respectively couple the |g1〉 and |g2〉 levels to the excited level 2p2P3/2(mJ = +1/2),

labeled as |e〉. They are blue detuned with equal detuning ∆0 from their respective transitions by

hundreds of megahertz. These lasers generate sufficient power to give Rabi frequencies of tens of

megahertz. The beam diameters (≈ 1 mm) of the EIT lasers are large compared to the diameters
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of the ion crystals (≤ 300 µm) so that we can assume constant laser intensities over the spatial

extent of the crystal. The decay rates out of |e〉 are Γ1/2π ≈ 6 MHz and Γ2/2π ≈ 12 MHz, with

〈u2〉eg1 = 2/5 and 〈u2〉eg2 = 1/5.

For all the results in this chapter, we operate at the expected optimum EIT cooling condition

for the COM mode of a stationary ion [83] given by Ω2
1 + Ω2

2 = 4ωCOM(ωCOM + ∆0), and assume

equal Rabi frequencies, i.e. Ω1 = Ω2 = Ωopt, so that

Ωopt(∆
0) =

√
2ωCOM(ωCOM + ∆0), (3.14)

where we use the value ωCOM/2π = 1.59 MHz. Further, we assume the rotation frequency of the

crystal is ωr/2π = 180 kHz.

3.5 A single revolving ion

3.5.1 Time-varying Doppler shifts

A toy model of a single ion revolving around the trap center in the x-y plane can shed light

on the impact of the in-plane motion on the cooling of the transverse motion. We recall that the

circular in-plane motion of the ion causes a sinusoidally modulated Doppler shift, with the precise

form of the modulation detailed in the paragraph immediately following Eq. (3.5). For a single ion,

we are able to perform full density matrix computations using the master equation, Eq. (3.11).

We set the detuning ∆0/2π ≈ 180 MHz, and operate with equal Rabi frequencies Ωopt(∆
0)

given by Eq. (3.14). We assume that a preceding Doppler cooling stage initializes the transverse

motion of the ion to a thermal state with n̄ = 5. Typically, EIT cooling is applied after initializing

the ion(s) in |g1〉 by optical pumping. Figure 3.4 shows the decrease in the thermal occupation

n̄ with time as the EIT lasers address a single revolving ion, for different distances of the ion

from the trap center. For a detuning ∼ 180 MHz, the ion experiences effective red detunings for

parts of its trajectory for a radius r & 50 µm. Consequently, the ion undergoes heating in these

regions, leading to slower cooling and higher final occupancies at larger radii (see inset of Fig. 3.4).
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Figure 3.4: Cooling of the transverse motion over time, for a single ion revolving around the trap
center at different radii. The cooling is slower at larger radii because of time-varying Doppler shifts
modulating the detunings of the EIT lasers as seen by the ion. Inset: The steady-state occupation
also increases with distance from the trap center. Here, ∆0/2π = 180 MHz, Ω1/2π = Ω2/2π =
Ωopt(∆

0)/2π ≈ 24 MHz.

Therefore, sufficiently large detunings have to be used, so that ions at the outer boundary of large

crystals still experience an effective blue detuning of the EIT lasers.

3.5.2 Timescale for internal dynamics

An ion located at the trap center experiences no Doppler shifts, and hence, we could argue

that analytical expressions derived elsewhere [83] for EIT cooling of a single ion might be valid

in such a situation. With the EIT wavevectors making an angle of ±10◦ with the x-axis, the

Lamb-Dicke parameters are ηk1,z ≈ −ηk2,z ≈ 0.066. Combined with the typical Rabi frequencies

used in the experiment, in the range of tens of megahertz, the wide separation of electronic and

motion timescales demanded by an adiabatic elimination procedure is not satisfied in our system

[83]. Figure 3.5 shows the disagreement between the cooling curves obtained with (black dashed

line) and without (red solid line) adiabatic elimination of the electronic degrees of freedom (DOF)

for an ion at the trap center. The insufficient separation of timescales can also be seen qualitatively

by simultaneously examining the transient dynamics of the population, in say, |g1〉, on a common

time axis, as shown in Fig. 3.5.
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Figure 3.5: Cooling curve for an ion at the trap center that experiences no Doppler shifts. The
separation of the timescales for the electronic and motional degrees of freedom is not large enough
to validate the adiabatic elimination of the electronic degrees of freedom. The cooling is therefore
much slower than the result predicted from such an elimination procedure [83]. Here, ∆0/2π = 180
MHz, Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 24 MHz.

3.6 EIT cooling of multiple ions

The NIST Penning trap routinely stores and manipulates tens to hundreds of ions. Since the

density matrix, now consisting of the electronic degrees of freedom of all the ions and their drumhead

modes, scales exponentially in the ion number, full density matrix solutions are impossible, and we

are forced to resort to approximate techniques.

From the master equation, Eq. (3.11), we write down the equations of motion for the means

of all the system operators (first order moments) and the products of operator pairs (second order

moments). In general, these equations will couple to higher order moments, for example, means of

products of triplets of operators, and so on. We truncate the hierarchy at second order by neglecting

all cumulants higher than means and covariances, and close the set of equations by approximating

higher order moments using sums of products of first and second order moments [80, 132]. As an

example, for a product of three operators this would imply

〈ABC〉 ≈ 〈AB〉〈C〉+ 〈AC〉〈B〉+ 〈BC〉〈A〉 − 2〈A〉〈B〉〈C〉. (3.15)

Here 〈. . .〉 denotes the mean value of an operator or product of operators. We will refer to
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Type Moments

Internal 〈σjg1g1〉, 〈σjg1g2〉, 〈σjg1e〉, 〈σjg2g2〉#, 〈σjg2e〉#

External 〈bn〉, 〈bnbk〉, 〈b†nbk〉

Hybrid
〈bnσjg1g1〉, 〈bnσjg1g2〉, 〈bnσjg1e〉 〈bnσjg2g1〉#,

〈bnσjg2g2〉#, 〈bnσjg2e〉#, 〈bnσjeg1〉, 〈bnσjeg2〉#

Table 3.2: List of moments classified according to the nature of the operators involved. The
equations for the moments marked with a # can be derived trivially by exchanging g1 ↔ g2 in the
appropriate equations of motion for the other moments.

the equations obtained for the first and second order moments using this truncation scheme as

the Gaussian model (GM), since the scheme neglects third and higher order cumulants. We note,

however, that we factorize second order moments involving the electronic degrees of freedom of

different ions of the type 〈σjαβσkγδ〉 as 〈σjαβ〉〈σkγδ〉 for j 6= k. We classify the remaining moments

into three categories: internal, external and hybrid moments. These are listed in Table 3.2. In

Appendix A.1, we write down the equations of motion (EOM) for the moments not marked with

a # in Table 3.2, from which the remaining EOM can be obtained by appropriately exchanging

g1 ↔ g2.

3.6.1 Results from the Gaussian model

We set the detuning ∆0/2π = 360 MHz, which ensures that the cooling rate for a single

revolving ion does not change appreciably over the spatial extent of the small crystals we consider

here. Figure 3.6 shows the cooling of the COM mode for crystals with N = 1, 2, 19 and 37 ions.

For N = 1, 2 we simply take the ion(s) to be revolving at a distance of 20 µm from the trap

center, and diametrically opposite each other in the N = 2 case. In the case of multi-ion crystals

(N > 2), the equilibrium configuration of the crystal and the mode frequencies and eigenvectors

are solved for following the procedure in Ref. [124]. We assume that a preceding Doppler cooling

stage initializes the COM mode to a thermal state with n̄ = 5. We choose the initial n̄ of the

remaining drumhead modes assuming that they are initially in thermal equilibrium with the COM
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Figure 3.6: Cooling curves for the center-of-mass (COM) mode for crystals with different ion
numbers, calculated using the Gaussian model (GM), showing rapid near ground-state cooling
within 100 µs. However, the cooling rates are almost identical for all of these crystals. Here,
∆0/2π = 360 MHz, Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 33.9 MHz.

mode. Qualitatively, the COM mode rapidly cools to near ground-state occupations within 100

microseconds. However, the cooling curves for the different crystals are nearly identical, showing

that the net cooling rate of the COM mode, within the Gaussian framework, is approximately

independent of the number of ions. For the multi-ion crystals, we observe an initial heating effect

that is also observed experimentally [58]. We attribute the initial heating to transient electronic

transitions until the electronic state of the ions reaches close to the steady state, at which point

the cooling begins.

3.6.2 Benchmarking the Gaussian Model: Single-ion results

Since we are able to perform full density matrix (DM) computations in the single-ion case, we

proceed to compare the cooling transients from the GM with the full DM results. Figure 3.7 shows

the cooling curves from the GM (black, dashed) and the full DM calculation (red, solid) for a single

revolving ion at r = 0, 20, 40 and 60 µm from the trap center, with ∆0/2π = 360 MHz. While both

models qualitatively indicate that the cooling rate is roughly the same at these different radii, the

cooling rate obtained from the GM is quantitatively very different from the full DM result. This

indicates that keeping track of only means and covariances is not sufficient to accurately capture
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the cooling curve.

The GM assumes that in the combined phase space of all the system degrees of freedom

(DOF), the joint (quasi)-probability distribution of these DOF remains Gaussian at all times. In

reality, while the initial distribution is Gaussian, evolution under the subsequent dynamics generally

distorts the distribution so that it is no longer Gaussian at later times. A systematic way to capture

this effect is to construct moments by averaging the evolution of the corresponding phase space

variables (or products of variables) over a large number of trajectories, where the initial conditions of

these variables in each trajectory are chosen randomly from their initial distribution (see Table 3.3).

Such a sampling and averaging procedure captures the build-up of non-trivial third and higher order

cumulants that are neglected in the GM. We note that this approach is in the same spirit as the

Truncated Wigner Approximation (TWA) used in calculating the dynamics of spin-spin and spin-

boson models [94, 9, 106, 92]. Moreover, we track separate phase space variables corresponding

to system operators as well as operator pairs, and evolve these variables using the same equations

of motion as in the GM (Appendix A.1), but for many trajectories. We thereby perform beyond
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Figure 3.7: Cooling curve for a single revolving ion, located at r = 0, 20, 40 and 60 µm from the trap
center, computed using three numerical approaches: (i) Time evolution of the full density matrix
(full DM), (ii) the Gaussian model (GM) and (iii) the Sampling model (SM) using 2096 trajectories.
The cooling curves from the GM do not agree with the full DM curves. However, sampling the initial
noise systematically (SM) accounts for beyond-Gaussian properties of the phase-space distribution
of the system degrees of freedom, and reproduces the full DM curves very well. Here, ∆0/2π = 360
MHz, Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 33.9 MHz.
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mean-field calculations [92] that capture those contributions to the covariances between system

operators which develop as a result of the subsequent diffusive-dissipative dynamics. We refer to

this method as the Sampling model (SM). Table 3.3 summarizes the implementational differences

between the Gaussian and the beyond-Gaussian Sampling model.

Model Trajectories Initial condition

Gaussian (GM) 1
〈bn〉(0) = 0,

〈b†nbn〉(0) = n̄n(0)

Sampling (SM) Many

Re{〈bn〉(0)} = Gaus(0,
√
n̄n/2),

Im{〈bn〉(0)} = Gaus(0,
√
n̄n/2),

〈b†nbn(0)〉 = |〈bn〉(0)|2

Table 3.3: Implementational differences between the Gaussian and Sampling models. Here
Gaus(0, σ) is a Gaussian distributed random variable with zero mean and standard deviation σ,
and n̄n are the initial thermal mode occupations. In the sampling model, the quantity 〈A〉 simply
denotes the value of the respective phase space variable in that trajectory, and is not the mean
value of the operator A. Instead, the mean value of A is given by the average of 〈A〉 over many
trajectories with random initial conditions drawn from the initial phase space distribution. We
note that we only sample the initial thermal distribution of the normal modes, and initialize the
electronic DOF in the same way as in the GM, i.e. 〈σjαβ〉 = 1 when α = β = g1.

In Fig. 3.7 we show the cooling curves from the SM along with the full DM as well as GM

results for the single revolving ion. Since the SM involves averaging over multiple trajectories with

randomly drawn initial conditions, the cooling curves are shown as 1-σ confidence intervals instead

of a line plot. The SM cooling curves agree very well with the full DM result, indicating that

beyond-Gaussian correlations develop during the cooling process that lower the cooling rate.

3.6.3 Results from the Sampling model

The SM predicts that the cooling rate of the COM mode increases with the number of ions N

in the crystal. In Fig. 3.8, we plot the cooling curve for the COM mode for crystals with N = 1, 2, 19

and 37 ions. The cooling is faster in the N = 2 case than in the single ion case, and even faster in

the 19 and 37 ion crystals. The inset shows the ratio of the cooling rate RN of an N -ion crystal
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to the rate R1 for a single ion. With the parameters used, and for these small crystals, the cooling

rate scales as ∼ N0.3, highlighting that EIT cooling of multiple ions cannot be explained trivially

as the net cooling resulting from the individual ions. Rather, the N -dependency of the cooling rate

indicates the intrinsic many-body nature of this problem. We note, however, that for fixed laser

parameters, the adverse effects of the time-varying Doppler shifts is expected to slow down the

cooling enhancement with increasing N as ions are added further from the trap center. Moreover,

with different laser parameters, the scaling with N could also vary. Finally, the rapid nature of

EIT cooling is evident from the time constant τ ≈ 21 µs for the cooling curve of the 37 ion crystal.

3.7 Cooling over the full bandwidth

The full bandwidth of drumhead modes are typically cooled to near ground-state occupancies

in a single experimental application of EIT cooling with a fixed set of parameters. We recall that

the cooling parameters are set according to the expected optimum condition, Eq. (3.14), for cooling

the COM mode, which is the highest frequency drumhead mode with ωCOM/2π = 1.59 MHz. In
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Figure 3.8: Cooling curves for the center-of-mass (COM) mode for crystals with different ion
numbers, calculated using the Sampling model (SM) with 2048 trajectories. The SM predicts
that the cooling rate increases with ion number N . The cooling curves from the GM (Fig. 3.6)
are also shown for comparison, where the N -dependency of the cooling rate does not manifest.
Inset: Cooling rate of an N -ion crystal RN relative to the single-ion rate R1 extracted from the
SM (markers). A power-law fit (solid line) shows that the cooling rate scales as ∼ N0.3 for the
parameters used. Here, ∆0/2π = 360 MHz, Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 33.9 MHz.
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Figure 3.9: (a) Cooling curves for all the drumhead modes of a 37-ion crystal with bandwidth
approximately 2π×185 kHz, computed using the SM, showing efficient cooling within 100 µs. Here,
∆0/2π = 360 MHz, Ω1 = Ω2 = Ωopt(∆

0) ≈ 33.9 MHz. (b) GM cooling curves for all the drumhead
modes of a 120-ion crystal with bandwidth approximately 2π×376 kHz, showing near ground-state,
steady-state occupations of all the modes after few hundred microseconds of EIT cooling. Note that
the y-axis is plotted in logscale. Here, ∆0/2π = 400 MHz, Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 35.7
MHz. The same rotating wall frequency, ωr/2π = 180 kHz was used in both cases.

Fig. 3.9(a), we show the cooling transients for all the tranverse modes of a 37-ion crystal, calculated

using the SM. The bandwidth of the drumhead modes is approximately 2π×185 kHz. All the modes

are observed to reach near ground-state occupations within 100 microseconds.

The computational complexity of a single trajectory in the SM scales as N3 with the number

of ions N , thereby making trajectory computations for large crystals (& 60) untractable. However,

the GM and SM will result in the same steady-state results since they only differ in the initial

conditions, and eventually dissipation leads to the system of equations losing memory of its initial

conditions. Therefore, the GM can be used to study the final temperatures that result from EIT

cooling of large ion crystals, as shown in Fig. 3.9(b) for a 120-ion crystal. From initial occupations

in the range n̄ ≈ 5 − 7, all the modes are cooled down to n̄ < 0.1, showing the efficient cooling

over the full bandwidth of drumhead modes, which in this case is approximately 2π × 376 kHz.

We note that the experimentally observed occupations are expected to be somewhat higher than

the steady-state values attained here because of the approximate model used in the simulations.

Although the GM cooling transients are not completely reliable, they nevertheless indicate that a
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few hundred microseconds of EIT cooling is sufficient to achieve these very low occupations.

3.8 Sensitivity to laser alignment

In modeling the EIT cooling in Sections 3.5, 3.6 and 3.7, we have assumed that the lasers

are perfectly aligned, i.e. k2,x = k1,x, so that their difference wavevector is along the z-axis. In

practice, a small misalignment of the EIT lasers could result in a component of the difference

wavevector along the in-plane x-axis, because k2,x 6= k1,x. As a result, the detunings of these

dressing lasers are now modulated unequally by Doppler shifts arising from the large amplitude

in-plane rotation of the ion crystal, so that the instantaneous detunings of the two lasers as seen

by the ion, ∆µ(t) = ∆0
µ − kµ,xvx(t) with µ = 1, 2, are no longer identical.

We study the effect of such a misalignment by considering a single ion revolving at different

distances r from the trap center. We introduce a small misalignment δθ that modifies the perfectly

aligned k2 → k
(m)
2 such that,

k
(m)
2,x = k2,x cos δθ + k2,z sin δθ (3.16)

k
(m)
2,z = k2,z cos δθ − k2,x sin δθ,

where the subscript (m) denotes the misaligned k2 vector.

Figure 3.10 shows the final steady-state occupation n̄ of a single ion revolving around the

trap center at different radii r, as the misalignment angle δθ is varied. We set the detuning

∆0/2π = 400 MHz, which ensures that for r ≤ 110 µm, the revolving ion experiences effective

blue detuning throughout its trajectory. The steady-state n̄ begins to significantly increase only

when |δθ| & 1◦, at which point the plot still indicates n̄ � 1. As r varies from 25 µm to 75 µm,

the sensitivity to δθ also increases with r. For r = 100 µm, the ion experiences only small blue

detunings for parts of its trajectory, resulting in inefficient cooling in these regions even with perfect

alignment. As a result, the final temperature is not very sensitive to small misalignments such that

|δθ| . 0.5◦. However, the final temperature grows sharply as |δθ| increases beyond this value.

In the NIST EIT cooling experiment, the misalignment between the two EIT wavevectors
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Figure 3.10: Steady-state occupation as a function of the misalignment angle δθ for a single ion
revolving around the trap center at different radii. The final occupation is not very sensitive to
small misalignments (δθ ≤ 1◦) of the EIT wavevectors. Here, ∆0/2π = 400 MHz, Ω1/2π = Ω2/2π =
Ωopt(∆

0)/2π ≈ 35.7 MHz.

was estimated to be < 0.2◦ [58], ensuring that the cooling is negligibly affected by the in-plane

crystal rotation. We note, however, that our analysis of the laser misalignment does not consider

the potential adverse effect of the EIT lasers on the in-plane modes, which in turn could degrade

the cooling of the drumhead modes. Such an analysis might result in a more stringent restriction

on the tolerable range of δθ.

3.9 Conclusion

Our numerical study shows that EIT cooling is a robust technique for cooling all the drumhead

modes of two-dimensional ion crystals in Penning traps to near ground-state occupancies. EIT

cooling relies on quantum interference effects for its operation, and prior to our work, the chances

for its success, dependent on delicate cancellations of absorption amplitudes, in a challenging setting

such as a Penning trap were very uncertain. Multiple factors could have potentially led to the failure

of EIT cooling, namely, Doppler shifts, insufficient separation of electronic and motional timescales,

as well as simultaneous cooling of multiple ions. Our predictions for the success of EIT cooling have

been validated by the successul experimental demonstration of EIT cooling of crystals with more
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than 100 ions in the NIST Penning trap [58]. Quantitative measurements of the cooling rate and

final occupation of the COM mode, as well as qualitative features observed over the full bandwidth

of modes are consistent with the expectations from our numerical study. These theoretical and

experimental results highlight the robustness of EIT cooling and make it an attractive scheme to

cool large chains or arrays of trapped ions in other settings [89, 96].

In the future, an important aspect to investigate is the effect of higher-order anharmonic

terms in the trap potential, and more importantly, in the Coulomb interaction. These anharmonic

terms not only result in additional coupling of the different drumhead modes to each other, but also

couple these modes to the thermal motion associated with the in-plane modes. An understanding

of these anharmonic couplings, at least for small ion crystals, will provide great insight into whether

EIT cooling of the drumhead modes can also indirectly cool the in-plane modes, and also conversely,

how the temperature of the in-plane modes could limit the achievable drumhead mode temperatures

as well as cooling rates. Finally, while we have numerically observed and also found experimental

support for the enhancement in the cooling rate with the number of ions, an intuitive explanation

for this surprising feature will greatly illuminate the role played by many-body physics in the cooling

dynamics.



Chapter 4

Near ground-state cooling large trapped ion crystals: Experimental results

In the last chapter, we presented numerical results that demonstrated the effectiveness of EIT

cooling when implemented on large ion crystals in Penning traps. Here, we will present results from

the EIT cooling experiment performed with the NIST Penning trap. The focus in our presentation

will be on how the data validates the features predicted by our theoretical modeling. Details about

the experimental implementation can be found in Ref. [58].

The thermometry of the drumhead modes in the NIST Penning trap is performed in a rather

unique manner, using the so-called optical dipole force (ODF). In order to understand the data, a

basic introduction to the ODF and its application in thermometry is required. We will therefore

begin this chapter with a description of the thermometry technique. Next, we will present quan-

titative measurements on the center-of-mass mode of large crystals that reveal mean occupations

close to zero, and cooling rates that are faster than single-ion rates. We will then present data

acquired on the full bandwidth of drumhead modes that provides qualitative evidence for signifi-

cant sub-Doppler cooling of all these modes. We will discuss how the smearing of sharp features in

the ODF spectrum inhibit a quantitative analysis over the full bandwidth of modes. As a starting

point for future studies, we will present a model based on in-plane thermal motion that attempts

to explain the smearing out of the spectrum.
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Figure 4.1: Schematic of the NIST EIT cooling experiment, showing the EIT lasers and ODF lasers
incident on the ions at angles of ±10◦ to the crystal plane. Figure credit: Elena Jordan, NIST.

4.1 The Optical Dipole Force

One way to interpret the optical dipole force (ODF) is as a ‘spin’-dependent force, where the

two states composing the pseudospin correspond to 2s2S1/2(mJ = −1/2) and 2s2S1/2(mJ = +1/2).

Therefore, we will switch to labeling these states by |↓〉 and |↑〉 respectively, instead of the |g1〉,

|g2〉 notation used in the previous chapter.

4.1.1 Physical mechanism

The optical dipole force (ODF) is generated by two lasers, termed the ODF lasers, that are

incident on the crystal at angles of ±10◦ with respect to the crystal plane, as illustrated in Fig. 4.1.

These lasers couple the spin states to optically excited states in the 2p2P3/2 manifold and lead to

AC Stark shifts on the spin states.

First, let us consider the case when only one of the ODF lasers is on. For any particular

detuning, there exists a laser polarization such that the two spin states experience the exact same

AC Stark shift [105]. Next, consider the case when both lasers simultaneously address the crystal.

From the geometry, it is clear the difference wavevector δk of the two lasers lies along the z axis,

similar to the pair of EIT lasers. In addition, the difference frequency µr of the ODF lasers can

be tuned using an acousto-optic modulator. The net intensity of the two lasers now includes an

interference term which has the form ∼ sin (δkz + µrt). For a specific choice of detuning and at
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fixed z, t, this interference term results in additional AC Stark shifts for the spin states that have

equal magnitude |δAC|, but are opposite in sign [105]. For a single ion, the Hamiltonian for this

interaction can be written as

ĤODF = ~|δAC| sin (δkẑ + µrt) σ̂z. (4.1)

In the Lamb-Dicke regime (δk
√
〈ẑ2〉 � 1), this interaction simplifies to

ĤODF ≈ F0 cos (µrt) ẑσ̂z, (4.2)

where F0 = ~|δAC|δk has dimensions of force. The difference frequency µr can be tuned on resonance

with the various frequency components of the drumhead motion, and is therefore typically varied

in the range ∼ 900 kHz to 1.6 MHz. As a result, the z-independent term that appears in the Taylor

expansion is ’rapidly oscillating’ at frequency µr and therefore has been dropped while going from

Eq. (4.1) to Eq. (4.2).

For a crystal with N ions, the ODF Hamiltonian straightforwardly generalizes to

ĤODF = F0 cos (µrt)
N∑
j=1

ẑj σ̂
z
j . (4.3)

In Eq. (4.3), the position operator for each ion is time-dependent, and can be expanded in terms

of the N drumhead modes as

ẑj(t) =
∑
n

√
~

2Mωn
Mjn

(
b̂ne
−iωnt + b̂†ne

iωnt
)
. (4.4)

4.1.2 Interpretation

The ODF Hamiltonian, Eq. (4.2), can be interpreted in two equivalent ways. First, the

grouping [F0 cos (µrt) σ̂z] ẑ leads to its interpretation as a force acting on the ion, whose sign

is dependent on the electronic spin state. This interpretation gives rise to the ‘optical dipole

force’ or ‘spin-dependent force’ terminology. Alternatively, the grouping [F0 cos (µrt) ẑ] σ̂z gives

an interpretation of a spatially dependent differential AC Stark shift between the two spin states.

That is, as the ion oscillates about the crystal plane z = 0, an equal superposition state of |↓〉
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and |↑〉, initialized say along the x-axis of the Bloch sphere, will precess on the equatorial plane

and accumulate a relative phase that sensitively depends on the nature of the ion’s out-of-plane

motion. The contribution of specific drumhead modes can be selectively enhanced and probed by

tuning the difference frequency µr close to these mode frequencies. We note that when µr is tuned

exactly on resonance with a mode, the resulting AC Stark shift is effectively mixed down to DC

and results in spin precession at a constant rate. The AC Stark shift interpretation is particularly

useful in understanding how the ODF can be used for thermometry.

4.2 Thermometry with the ODF

In order to measure the temperature of a mode, the ODF interaction is applied as part of

a Ramsey-style sequence as shown in Fig. 4.2 [105, 58]. First, all spins are initialized in |↑〉. A

π/2 rotation about the y axis results in an equal superpositon of |↓〉 and |↑〉 along the x axis.

The ODF interaction is then applied for an arm time τ , during which the spins precess on the

equatorial plane because of the motion of the ions. Next, an echo pulse of duration tπ is applied

about the x axis. This pulse is intended to cancel unwanted phase accumulations, say because of

magnetic field inhomogeneities. The echo is followed by a second arm of duration τ during which

the ODF interaction is applied again. Finally, a second π/2 rotation about the y axis converts the

accumulated phase into a population difference. If no phase was accumulated, all the spins end up

in |↓〉. Otherwise, there is a non-zero probability to detect the spins in |↑〉 and this population can

be detected via fluorescence. For this reason, |↑〉 is referred to as the ‘bright’ state and the fraction

of ions in this state is called the ‘bright fraction’. In principle, an ODF spectrum for a mode can

be generated by plotting the measured bright fraction as a function of the difference frequency µr,

as it is stepped across the mode frequency. A single measurement merely collapses each spin to |↓〉

or |↑〉. In order to precisely measure the bright fraction, the cooling and ODF sequence is repeated

a large number of times (∼ 100) at each µr value so that sufficient statistics accumulate to reveal

the true bright state probability.

We assume that the drumhead modes can be described by thermal states both after Doppler
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Figure 4.2: Schematic of the thermometry sequence involving the ODF interaction. Bloch sphere
pictures indicate the spin state of an ion at different points of the sequence.

cooling as well as after EIT cooling. One interpretation of thermal motion is that in each trial of the

experiment, the ions are left with varying motional energies after the cooling. As a result, in each

trial of the ODF sequence, any particular spin will accumulate varying amounts of relative phase

between the two spin states. When averaged over a large number of cooling and measurement

sequences, the net effect is that the spin appears to have ‘dephased’. Therefore, measuring the

bright fraction is often termed as a measurement of the ‘motion-induced spin dephasing’ [104].

4.2.1 Analytical formula for the bright fraction

The Hamiltonian, Eq. (4.3), is special because the propagator Û(t) associated with it can be

computed exactly [123, 34]. This property makes the ODF Hamiltonian one of the best studied

many-body spin-boson models, with analytical formulae calculable for all observables of interest. In

this section, we present an analytical formula for the bright fraction at the end of the thermometry

sequence, which can be used to fit an experimentally measured ODF spectrum in order to measure

mode temperatures. This formula is a straightforward adaptation of analytical expressions that

have been rigorously derived elsewhere by other researchers [123, 34, 102], so we briefly sketch the
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derivation in Appendix A.2.

The bright fraction at the end of the thermometry sequence is given by

P (|↑〉) =
1

N

N∑
j=1

(
1− e−2ΓτCjssC

j
sm

2

)
, (4.5)

where the spin-motion contribution Cjsm is an exponential involving a summation over all the

drumhead modes, given by

Cjsm = exp

{
−2

N∑
n=1

|αnj |2 (2n̄n + 1)

}
(4.6)

and the spin-spin contribution Cjss is a product over the ions, given by

Cjss =
∏
k 6=j

cos (4Jjk) . (4.7)

In writing the formula for the bright fraction, we have introduced new symbols αnj and Jjk for which

exact analytical expressions are presented in Appendix A.2. We use these expressions to numerically

compute the bright fraction in order to compare with and fit the experimentally measured ODF

spectrum. Importantly, these coupling constants depend on (a) the ODF difference frequency µr,

which appears in the expressions for these quantities in the form δn = µr − ωn and (b) the mode

occupations n̄n. These dependencies enable the use of the ODF spectrum in thermometry. In

addition, they also depend on the ODF amplitude F0, arm time τ , echo time tπ, and also explicitly

on the drumhead mode frequencies ωn and displacements Mjn. The factor e−2Γτ in Eq. (4.5)

accounts for decoherence arising from free-space scattering induced by the ODF lasers.

4.3 Temperature measurements on the COM mode

For values of µr close to the COM mode frequency, denoted as ω1 here, contributions from

other modes can be neglected. The identical coupling of the COM mode to all ions results in simple

expressions Csm = exp
{
−2|α|2 (2n̄+ 1)

}
and Css = [cos (4J)]N−1 that are independent of j. For

simplicity, here we denote n̄ ≡ n̄1. Once again, we provide expressions for α and J in Appendix

A.2. The bright fraction is simply given by

P (|↑〉) =
1

2

(
1− e−2ΓτCssCsm

)
. (4.8)
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As µr is stepped across the COM mode, Eq. (4.8) predicts qualitatively different lineshapes

for the spectrum of P (|↑〉) versus µr in regimes of high and low n̄ values, when other parameters are

held fixed. A crucial insight into this feature is obtained by noting that the term Css is independent

of n̄ while Csm decreases exponentially with n̄. Furthermore, the product of these two terms is

then subtracted from a constant value of 1. At low n̄, Csm does not suppress the features resulting

from Css and leads to a complex lineshape. At high n̄, Csm is very small and strongly suppresses

features resulting from Css, leading to a simpler lineshape. Moreover, the larger suppression of

Css results in greater values of P (|↑〉) as n̄ increases. In fact, P (|↑〉) → 1/2 as n̄ → ∞, except for

discrete values of µr where |α|2 = 0. Therefore, the spectrum after Doppler cooling can be expected

to be higher as well as simpler in structure, whereas the spectrum after EIT cooling is expected

to be lower and relatively more complex. In general, with similar parameters used for the ODF

sequences after Doppler and EIT cooling, the above argument leads us to expect a lower bright

fraction across the entire bandwidth of drumhead modes after EIT cooling.

Such features are indeed observed in the experimentally measured ODF spectrum for µr close

to the COM mode, an example of which is shown in Fig. 4.3 for a crystal of 158±10 ions. The data

set in black is measured immediately after Doppler cooling, whereas the blue data set is measured

after an additional 200 µs of EIT cooling. The spectrum after Doppler cooling is higher and two

peaked, whereas the spectrum after EIT cooling is lower but features four peak-like structures.

The same formula, Eq. (4.8), is used to fit the spectrum in both cases, resulting in measured n̄

values of 5.6 ± 1.1 in the Doppler cooling case and 0.28 ± 0.18 in the EIT cooling case. These

measurements quantitatively demonstrate near ground-state cooling of the COM mode within just

a few hundred microseconds of EIT cooling. We note that, although we considered the case of an

equal ODF amplitude F0 in motivating the expected lineshapes in the two cases, the spectrum after

EIT cooling is typically taken with a somewhat higher F0 value.

By measuring n̄ after varying durations of EIT cooling, a cooling rate can be measured for the

COM mode. Figure 4.4 shows a measurement of n̄ versus cooling time for a crystal with 190± 10

ions. An exponential fit to the data reveals a cooling time constant of τcool = 27.6± 1.7 µs for this
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Figure 4.3: ODF spectra showing the bright fraction as the ODF difference frequency is stepped
across the COM mode frequency ω1. The black and blue data are respectively measured after
Doppler cooling and 200 µs of additional EIT cooling on a crystal with 158±10 ions. The measured
n̄ values in each case are obtained by fitting the data with the formula Eq. (4.8). Figure and data
credit: Bollinger group, NIST.

Figure 4.4: Measured thermal occupation n̄ of the COM mode (black) as a function of the cooling
time for a crystal with 190± 10 ions. The measured cooling time constant of approximately 28 µs
corresponds to a rate that is faster than that theoretically expected from separate cooling of each
ion in the trap (blue). Inset: We recall the cooling transients resulting from the Sampling Model
presented in Chapter 3, where the cooling rate of the COM mode increases with ion number.
Experimental data credit: Bollinger group, NIST.

particular set of EIT cooling parameters [58]. The rapid cooling is consistent with results from our

theory, where the observed time constant is typically a few tens of microseconds.
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An exciting observation is that the measured cooling rate is faster than the average rate

theoretically expected if each ion was independently cooled in the trap (Fig. 4.4, blue curve in

main panel). For this comparison, we compute single-ion cooling transients for ions revolving at

different radii from the trap center, and then average by weighting each transient by the number

of ions approximately situated at that radius. The stepwise behavior is merely an artifact caused

by choosing the same initial phase of revolution for each transient. The faster rate of cooling in

the multi-ion crystal is consistent with the numerical observation that the cooling rate of the COM

mode increases with ion number, a result that we recall in the inset of Fig. 4.4. In the future,

better understanding of this speed-up phenomenon can be obtained by performing cooling rate

measurements on small ion crystals (N < 60), where direct theory-experiment comparisons are

feasible.

4.4 Measurements over the full bandwidth

Our modeling predicts that with a fixed set of experimental parameters, EIT cooling should be

able to cool down the entire bandwidth of drumhead modes close to their ground states within a few

hundred microseconds. To verify this experimentally, the cooling and ODF sequence is repeatedly

applied, keeping the cooling parameters fixed while scanning the ODF difference frequency over

the full bandwidth of the drumhead modes. Figure 4.5 shows the ODF spectrum obtained using

a crystal with 158 ± 10 ions, after Doppler cooling only (red) and after 300 µs of additional EIT

cooling (blue). A steep drop in the bright fraction is observed across the entire bandwidth of modes,

providing evidence for strong sub-Doppler cooling of all the drumhead modes.

A natural next step is to use this spectrum and the formula, Eq. (4.5), to quantitatively

estimate the mean occupations for various drumhead modes. However, the measured spectrum

is not easily amenable to such a quantitative analysis. The qualitative differences between the

theoretically expected and measured spectra already manifest in smaller ion crystals, where a

comparative study is easier to carry out. Figure 4.6(a) shows the theoretically expected ODF

spectra with a 79 ion crystal, for the cases when all the modes have n̄ = 6.0 and n̄ = 0.26
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Figure 4.5: ODF spectrum measured over the full bandwidth of drumhead modes after Doppler
cooling only (red) and after 300 µs of additional EIT cooling (blue), for a crystal with 158 ± 10
ions. The significant reduction in bright fraction over the entire bandwidth after EIT cooling is
evidence of strong sub-Doppler cooling of all the drumhead modes. Data credit: Bollinger group,
NIST.

(green and orange curves respectively). The ODF parameters correspond to the experimental data

presented in Fig. 4.6(b). The theory curves confirm two of our intuitive expectations. One, the

bright fraction at low n̄ is consistently lower than at high n̄ over the full bandwidth.1 Two, the

ODF spectrum displays sharp peaks that are expected when µr is tuned close to a mode or a cluster

of modes.

In comparison, Fig. 4.6(b) shows the spectra measured using a crystal with 79± 5 ions, after

Doppler cooling only (red) and after additional EIT cooling (blue). In the latter spectrum, the

measured n̄ for the COM mode is 0.26 ± 0.38, motivating our choice of n̄ for the corresponding

theory curve. While the spectrum after EIT cooling is indeed lower than that after Doppler cooling

only, the sharp features predicted by the theory have smeared out into a smooth continuum. A

quantitative analysis of this spectrum is not possible without first understanding the reason behind

this qualitative difference between theory and experiment.

The smearing of the ODF spectrum suggests fluctuations in the drumhead mode frequen-

cies. To investigate this possibility, we carry out a numerical simulation that is inspired by the

experimental protocol used to obtain the spectrum. We assume that the mode frequencies remain

1 This feature manifests even though the effective amplitude F0 for the n̄ = 0.26 case is somewhat larger than the
n̄ = 6.0 case.
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Figure 4.6: Qualitative differences between theory and experimentally measured ODF spectra,
exemplified using a 79 ion crystal. (a) Theoretically expected spectrum at high and low n̄ values
are spiky and partially resolve the modes. (b) Experimentally measured spectra (red and blue)
display a smooth continuum. Theory incorporating ad hoc mode frequency fluctuations smear
the sharp features seen in (a) and lead to curves (green and orange) that resemble the measured
spectra. Experimental data credit: Bollinger group, NIST.

constant within the duration of a single ODF sequence, but fluctuate from one trial to the next.

To simulate this, we first numerically obtain the drumhead mode frequencies ωn and amplitudes

Mjn for the equilibrium crystal configuration [124], which are used to generate the theory curves

in Fig. 4.6(a). Next, for each value of µr, we add independent Gaussian distributed fluctuations to

each mode frequency and compute the bright fraction. We repeat this several tens of times at every

µr value and average over all the trials. We assume that the magnitude of fluctuations increases

with decreasing mode frequency. Repeating this process for µr spanning the full bandwidth leads to

the theory curves shown in Fig. 4.6(b) (green and orange). These curves were generated assuming

frequency fluctuations that linearly increase from 1 kHz for the second-highest frequency mode to

80 kHz for the lowest frequency mode. Clearly, these curves suggest that frequency fluctuations

strongly affect the measured spectrum.

The similar profiles of the theory (orange) and data (blue) measured after EIT cooling en-

able us to make qualitative assessments of the drumhead mode temperatures. The measured bright

fraction after EIT cooling is below the corresponding theory curve, strongly suggesting near ground-

state cooling over the entire bandwidth of drumhead modes. In the case of only Doppler cooling,

there is qualitative agreement at higher frequencies, but the measured bright fraction at low fre-

quencies is consistently higher than theory predictions with reasonable n̄ values. We have observed

these general trends over a range of data sets measured after both types of cooling, and with varying
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ion numbers.

For improving the analysis of these spectra, the ad hoc frequency fluctuations assumed so

far in this study have to be replaced by a physically motivated model. To explain the EIT data,

the effect of frequency fluctuations on the spin-spin interaction signal, which is dominant at low

temperatures, is required. In the Doppler cooling case, the large temperatures should allow for

a numerical model that neglects quantum effects [105], making a first analysis far easier in this

case. Some initial steps towards developing a physical model of mode frequency fluctuations and

modeling the spectrum measured after Doppler cooling are described in Section 4.5.

4.5 Physical model for mode frequency fluctuations

The Coulomb interaction is intrinsically anharmonic, and therefore introduces coupling be-

tween the in-plane and out-of-plane motion even when the trapping potential is purely harmonic.

We speculate that this coupling is the primary reason for the observed drumhead mode frequency

fluctuations. To understand the motivation for this hypothesis, a brief introduction to the classical

dynamics of ions in a Penning trap is first required.

4.5.1 Classical dynamics of ions in a Penning trap

Following Ref. [124], we write down the Lagrangian for a collection of N ions in a Penning

trap. The Lagrangian for this system is

L =

N∑
j=1

[
1

2
mj ṙj · ṙj − eφj + eAj · ṙj

]
. (4.9)

Here, Aj = (B× rj)/2 is the vector potential associated with the magnetic field B = Bzez in the

symmetric gauge. Therefore, Aj = −Bz(yex−xey)/2. The potential φj experienced by each ion is

φj(t) = V0

[
z2
j −

1

2
ρ2
j

]
+ VWρ

2
j cos [2(θj + Ωt] +

kee

2

∑
k 6=j

1

rkj
. (4.10)

The first term represents the quadrupole electric potential, the second term is the rotating wall

potential while the third term describes the inter-ion Coulomb potential. Here, we have used the
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shorthand ke = 1/(4πε0) with ε0 the permittivity of free space. In writing Eq. (4.10), we have used

the radial coordinate ρj =
√
x2
j + y2

j and the angular coordinate θj = tan−1(yj/xj).

4.5.1.1 Transformation to the rotating frame

In a frame rotating at angular frequency Ω, the Lagrangian becomes time independent.

The coordinates in the rotating frame xRj (t), yRj (t) are related to the coordinates in the lab frame

xj(t), yj(t) as [124] xj
yj

 =

 cos Ωt sin Ωt

− sin Ωt cos Ωt


xRj
yRj

 . (4.11)

Direct substitution of this relation into Eq. (4.9) and Eq. (4.10) gives the Lagrangian in the rotating

frame as

L =

N∑
j=1

[
1

2
mj ṙ

R
j · ṙRj − eφRj −

eBeff,j [Ω]

2
(ẋRj y

R
j − ẏRj xRj )

]
, (4.12)

where Beff,j [Ω] = Bz − 2mjΩ/e and

eφRj = eV0(zRj )2 +
1

2

(
eBzΩ−mjΩ

2 − eV0

)
(ρRj )2 + eVW [(xRj )2 − (yRj )2] +

kee
2

2

∑
k 6=j

1

rRkj
. (4.13)

Henceforth, we drop the R subscript, and work in the rotating frame, unless explicitly mentioned

otherwise.

4.5.1.2 Dimensionless units

We now make the problem dimensionless by introducing certain characteristic scales. The

axial trapping strength can be characterized in terms of the trapping frequency ωz for a single 9Be+

ion with mass mBe, i.e. eV0 = mBeω
2
z/2. We define the scale factors

m0 = mBe, l0 =

(
2kee

2

mBeω2
z

)1/3

, t0 = 1/ωz, (4.14)

for mass, length and time respectively. In these new units, frequencies are specified relative to ωz.

A characteristic energy scale that can be constructed out of these base units is

E0 =
1

2
m0l

2
0t
−2
0 ≡ eV0l

2
0. (4.15)
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We normalize the Lagrangian, Eq. (4.12), by this characteristic energy to obtain L̃ = L/E0, given

by

L̃ =
N∑
j=1

[
m̃j

˙̃rj · ˙̃rj −
∼
eφj − ω̃′c,j [Ω]( ˙̃xj ỹj − ˙̃yj x̃j)

]
, (4.16)

where the ·̃ indicates normalization with respect to the respective characteristic scales. Here, ω̃′c,j =

ω̃c − 2m̃jΩ̃ is an effective normalized cyclotron frequency with ωc = eBz/mBe, and ω̃c = ωc/ωz,

Ω̃ = Ω/ωz and m̃j = mj/mBe. The effective potential energy term is

∼
eφj = z̃2

j +

(
ω̃cΩ̃− m̃jΩ̃

2 − 1

2

)
ρ̃2
j + CW

(
x̃2
j − ỹ2

j

)
+

1

2

∑
k 6=j

1

r̃kj
. (4.17)

Here CW = VW /V0 is the dimensionless rotating wall strength. Note how simple the Coulomb

interaction becomes in these scaled variables. We note that the Lagrangian, Eq. (4.16), generically

allows for the presence of ions with different masses and can therefore be used to study the effect

of impurity ions [79].

4.5.1.3 Euler-Lagrange equations of motion

Defining the mechanical momentum Π̃j = m̃j
˙̃rj , we obtain the equations of motion along

the three directions as a set of first order coupled differential equations. The positions are updated

trivially as

˙̃rj =
1

m̃j
Π̃j (4.18)

by construction. The momentum components evolve as

˙̃Πx
j = −

(
ω̃cΩ̃− m̃jΩ̃

2 − 1

2
+ CW

)
x̃j +

ω̃′c,j [Ω]

m̃j
Πy
j +

1

2

∑
k 6=j

x̃j − x̃k
r̃3
kj

,

˙̃Πy
j = −

(
ω̃cΩ̃− m̃jΩ̃

2 − 1

2
− CW

)
ỹj −

ω̃′c,j [Ω]

m̃j
Πx
j +

1

2

∑
k 6=j

ỹj − ỹk
r̃3
kj

,

Π̇z
j = −z̃j +

1

2

∑
k 6=j

z̃j − z̃k
r̃3
kj

. (4.19)

Here, the · now indicates the time derivative with respect to the scaled time t̃.
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4.5.1.4 Nature of normal modes for planar crystals

We can roughly motivate the typical frequency ranges of the three branches of modes, sum-

marized in Table 3.1, using characteristic frequencies constructed out of the trap parameters. First,

we recall that the drumhead center-of-mass mode frequency is set by the axial trapping frequency

and is typically ω1 = ωz ≈ 2π × 1.57 − 1.59 MHz in this work. In the crystal plane, the high

frequency cyclotron modes have frequencies close to the cyclotron frequency ωc = eB/mBe. For

the NIST Penning trap, ωc ≈ 2π × 7.6 MHz. In addition, large amplitude in-plane motion occurs

on a slower time scale and is governed by the magnetron modes. These modes have frequencies

below the magnetron frequency of ωm =
(
ωc −

√
ω2
c − 2ω2

z

)
/2. Typically, ωm ≈ 2π × 170 kHz for

the parameters of the NIST Penning trap. In the absence of a rotating wall potential, the lowest

frequency magnetron mode, called the rocking mode, acquires zero frequency and can be thought

of as a Goldstone mode arising from the spontaneous breaking of rotational symmetry. In the

presence of a weak wall potential, this rocking mode acquires a small non-zero frequency.

4.5.2 The thermal snapshot picture

We are now ready to discuss an intuitive model for drumhead mode frequency fluctuations.

During a single time period associated with a typical magnetron frequency (∼ 10 − 100 kHz),

every drumhead mode (& 1 MHz) completes several oscillations. In an extreme, even unrealistic,

simplification, we can imagine the ions to be frozen in plane at different points along their magnetron

motion trajectories, while they execute rapid motion out-of-plane. Further, we are assuming that

the cyclotron motion has very small amplitude and can be neglected for the sake of this argument.

For each frozen configuration, we can follow the procedure of Ref. [124] and perform a normal mode

analysis in the out-of-plane direction and sort the drumhead modes in descending order. We can

then repeat this exercise a large number of times and histogram the sorted modes into frequency

bins to study the spread in the mode frequencies.

In order to execute this program, we extensively use the Metropolis-Hastings (MH) algo-
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Figure 4.7: Simulated annealing to find the minimum energy configuration of a 53 ion crystal. (a)
Ion positions before (blue) and after (orange) the simulated annealing procedure. (b) Annealing
temperature and in-plane potential energy versus annealing iteration.

rithm 2 . In fact, the MH algorithm is the building block of the global minimization technique of

simulated annealing. Therefore, we first realize a minimum energy configuration using the simu-

lated annealing technique and the potential energy for the x− y coordinates as the cost function.

Figure 4.7(a) shows a minimum energy crystal (orange) obtained using simulated annealing, start-

ing from a random configuration (blue). The parameters used for this study are N = 53 ions,

ωz = 2π × 1.575 MHz and Ω = 2π × 187 kHz, deviating from the conventional 180 kHz rotation

frequency. The wall potential is VW = 5.3 V. Figure 4.7(b) shows how the annealing temperature

is decreased with each successive iteration and also plots the decreasing in-plane potential energy

as the simulated annealing proceeds.

Next, we introduce a temperature T⊥ that characterizes the excess thermal energy in the

in-plane configuration. We use the MH algorithm with the in-plane potential energy as the cost

function to generate a sequence of snapshots corresponding to the temperature T⊥. Figure 4.8(a)

captures the deviation of ion positions in a typical thermal configuration (orange) with T⊥ = 10 mK,

from the corresponding positions in the minimum energy configuration (blue). The MH algorithm

proceeds by attempting to perturb the position of each ion in succession. Going through each ion

2 See Ref. [91] for an introduction to this technique, which is referred to as the Metropolis Monte Carlo algorithm.
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Figure 4.8: Metropolis-Hastings algorithm to find thermal snapshots of the in-plane configuration.
(a) Thermal snapshot (orange) with T⊥ = 10 mK compared to the minimum energy configuration
(blue). (b) Thermalization of the in-plane potential energy as the MH algorithm repeatedly scans
over all the ions in the crystal.

in the crystal completes one scan. Figure 4.8(b) plots the in-plane potential energy versus scan

number and confirms that typical configurations for the set temperature are reached within the

first 104 scans. Compared to the minimum energy configuration, typical configurations at a set

temperature T⊥ correspond to an average potential energy increase of approximately kBT⊥ per ion,

accounting for the two spatial degrees of freedom.

For each value of T⊥, we then perform a normal mode analysis on 2000 snapshots. Successive

snapshots are chosen 40 scans apart to ensure that they are sufficiently uncorrelated. Figure 4.9

shows the histograms of drumhead frequencies for T⊥ = 0, 1 and 10 mK. As T⊥ increases, the

spectrum transitions from being spiky and fully resolved to a smooth and continuous distribution

where only the first few modes are resolvable.

We can also directly study the effect of T⊥ on the ODF spectrum. For this purpose, we

realize 48 different in-plane configurations at each value of T⊥, feed in the normal mode spectrum

corresponding to each realization into the analytic formula for the ODF spectrum (Eq. (4.5)), and

average the spectrum over all the realizations. The results are shown in Fig. 4.10. For comparison,

we also show the location of the normal modes for the minimum energy configuration. Clearly,
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Figure 4.9: Histograms of sorted drumhead modes for 2000 realizations of the in-plane configura-
tions with (a) T⊥ = 0 mK, (b) T⊥ = 1 mK and (c) T⊥ = 10 mK. The bin size is 0.5 kHz. In the 0
mK case, some of the bins carry counts that are not a multiple of 2000 possibly because of round-off
errors affecting the binning algorithm or because of slight fluctuations in mode frequencies as the
MH algorithm might have found lower energy configurations.

Figure 4.10: ODF spectra computed by averaging over the bright fraction expected from the normal
modes of 48 thermal snapshots of the in-plane configuration. Here, (a) T⊥ = 0 mK, (b) T⊥ = 1
mK and (c) T⊥ = 10 mK. We have assumed n̄ = 6 for all the modes. Also shown are the mode
frequencies for the minimum energy configuration.

the ODF spectrum smoothens out with increasing value of T⊥, further supporting the case that

in-plane position fluctuations might explain the experimentally measured drumhead spectra.

4.5.3 Molecular dynamics simulations

After establishing an intuitive argument for why thermal in-plane fluctuations may lead to

drumhead mode fluctuations, we proceed to verify this idea by brute force molecular dynamics

simulations.

The initial conditions for the position and momentum degrees of freedom of the ions are
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set using an adaptation of the MH algorithm. First, the MH algorithm is applied using the to-

tal Hamiltonian of the system as the cost function. The Hamiltonian can be obtained from the

Lagrangian, Eq. (4.16), using a Legendre transformation. When written in terms of the positions

and the mechanical momenta, instead of the canonical momenta, the Hamiltonian is separable and

therefore the positions and momenta can be sampled separately [33]. Note, however, that as in

the case of the in-plane potential energy, the sampling of the ion positions cannot be performed

independently for each ion because of the Coulomb interaction.

We would like to study the effect of changing the in-plane temperature T⊥ as the out-of-plane

temperature Tz is held fixed. Therefore, we first apply the MH algorithm for the full set of 6N

degrees of freedom using T⊥ as the temperature. Then, we scale the position and momentum fluc-

tuations of each ion in the out-of-plane direction by a factor of
√
Tz/T⊥ in order to approximately

set an unequal temperature in the z direction. When T⊥ = 0, we first follow the above procedure for

a value T⊥ 6= 0 and then additionally reset the fluctuations in the in-plane positions and momenta

to zero.

To study the dynamics, we use a 4th order Runge-Kutta integrator to evolve the Euler-

Lagrange equations of motion (Eqs. (4.18 and (4.19). First, we consider the power spectrum,

obtained by taking the Fourier transform of the drumhead motion [119]. In Fig. 4.11, we compare

the power spectrum in the three cases when T⊥ = 0, 1 and 10 mK. In all cases, the out-of-plane

temperature is held fixed at Tz = 0.5 mK. As T⊥ increases, the power spectrum broadens into

a smooth continuum where the modes beyond the highest frequency ones are no longer resolv-

able. This observation is consistent with the intuitive ‘thermal snapshot’ picture presented in

Section 4.5.2.

4.5.3.1 ODF spectrum from molecular dynamics simulations

We can also extract the expected ODF spectrum from the molecular dynamics simulation.

Since the motion is treated classically, this analysis ignores the effect of the zero-point motion and

the phonon-mediated spin-spin interaction on the bright fraction (see Eq. (4.5)).
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Figure 4.11: Power spectra of the drumhead motion from molecular dynamics simulations. Here,
Tz = 0.5 mK, and (a) T⊥ = 0 mK, (b) T⊥ = 1 mK and (c) T⊥ = 10 mK.

The ODF interaction Hamiltonian for ion j is

Hj
ODF = F0 cos(µRt)zj σ̂

z
j . (4.20)

First, we investigate the effect of HODF on the motion. In addition to the trap dynamics, the

equation for the momentum pzj picks up an additional term

d

dt
pzj = −F0 cos(µRt)〈σ̂zj 〉. (4.21)

However, 〈σ̂zj 〉 ≈ 0 since all the spins precess on the equator for the ODF sequence. Therefore,

the effect of the ODF interaction on the ion motion can be neglected when the motion is treated

classically, as in the molecular dynamics simulations.

Next, we investigate the effect on the spin. For the quantity 〈σ̂+
j 〉, we get

d

dt
〈σ̂+
j 〉 =

1

~
2iF0 cos(µRt)zj〈σ̂+

j 〉. (4.22)

From this, we see that the time evolution of 〈σ̂+
j 〉 is given by

〈σ̂+
j 〉(t) = 〈σ̂+

j 〉(0) exp

[
1

~
2iF0

∫ t

0
dt′zj(t

′) cos(µRt
′)

]
, (4.23)

with the initial value 〈σ̂+
j 〉(0) = 1/2. Knowing that the bright fraction after the ODF sequence is

related to 〈σ̂xj 〉 before the final state rotation, we immediately obtain

Pj(↑) =
1

2

(
1− e−2Γτ cosAj

)
, (4.24)
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Figure 4.12: ODF spectra computed from molecular dynamics simulations. Here, Tz = 0.5 mK,
and (a) T⊥ = 0 mK, (b) T⊥ = 1 mK and (c) T⊥ = 10 mK.

where

Aj =
2F0

~

∫ t

0
dt′zj(t

′) cos(µRt
′). (4.25)

We have included the effect of decoherence by introducing the factor of e−2Γτ as in Eq. (4.5). To

simulate the actual ODF sequence, the force F0 is multiplied by a factor g(t), which takes the value

1 for t < τ , 0 during the echo time and −1 for t > τ + tπ. The sequence ends at t = 2τ + tπ.

In Fig. 4.12, we plot the ODF spectrum for the three cases with T⊥ = 0, 1 mK and 10 mK.

Each spectrum was generated by averaging the bright fraction over 48 realizations of the initial

conditions. The ODF spectrum at T⊥ = 10 mK is reminiscent of experimentally observed spectra

and strongly suggests that thermal energy in the in-plane modes is the primary reason for drumhead

mode frequency fluctuations.

In the case of a simple harmonic oscillator, thermal initial conditions can be realized by

simply providing velocity kicks corresponding to twice the temperature and setting the position co-

ordinate to zero. The oscillator dynamics will eventually mix the velocity fluctuations into position

to give thermal snapshots of the harmonic oscillator. Because of the magnetic field, the in-plane

cyclotron and magnetron modes are not such simple harmonic oscillator modes. Therefore, we find

that initializing the ions by in-plane velocity kicks is qualitatively very different to additionally

initializing the positions via the Metropolis-Hastings algorithm. We find that, even at T⊥ = 10

mK, the velocity-kick initialization typically leads to a spiky power spectrum and ODF spectrum,

in contrast to the MH based initialization. Based on videos of the in-plane dynamics, we speculate
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that the velocity-kick initialization predominantly excites the high-frequency, small-amplitude cy-

clotron modes, whereas the MH based initialization also excites the low-frequency, large amplitude

magnetron modes. The large amplitudes of the latter modes are responsible for significant changes

in the instantaneous in-plane configuration, leading to drumhead mode frequency fluctuations.

4.5.4 Further extensions of this study

In order to improve the qualitative and quantitative agreement with measured ODF spectra,

several extensions are possible. It is now known that when the EIT measurements were taken, the

trap was actually operating with a small anharmonic potential. The addition of such a C4 term may

further smear out the ODF spectrum. Further, the role of impurities has to be investigated. This

will require data sets where the number and type of impurities are measured. While here the initial

conditions have been assumed to correspond to some temperature, a more realistic simulation could

first apply Doppler cooling as in the experiment and use the initial conditions resulting from this

process [119]. Studying the ODF spectra obtained after EIT cooling is more complicated because

quantum effects of the ion motion must be properly accounted for at such low temperatures.



Chapter 5

Real-time phase tracking: Formalism

Many applications in quantum metrology rely on the dynamics of pseudospin-1/2 systems

with two long-lived quantum states, |↑〉 and |↓〉. After preparing an equal superposition of these

two states, a physical interaction is studied by investigating its effect on the relative phase φ(t),

with the state of each spin evolving in time as |ψ(t)〉 =
(
|↓〉+ eiφ(t) |↑〉

)
/
√

2. In this chapter, we

will describe a novel scheme that enables continuous tracking of this relative phase. Our scheme

continuously and directly measures the real-time phase φ(t) unlike the widely used Ramsey sequence

[95, 86, 49, 60, 6, 100, 108, 125, 97, 48, 43, 39], which indirectly measures the net accumulated

phase φ(T ) during an interrogation time T . The typically destructive readout in a Ramsey sequence

requires multiple state resets, rotations and repetitions of the sequence to infer the phase at different

times from a population difference. In contrast, a single run of our protocol yields a continuous

time series of phase measurements. Therefore, our scheme enables real-time tracking of time-varying

signals that are not reproducible.

As an added benefit, our scheme yields continuous phase estimates with precision well beyond

the standard quantum limit (SQL) of ∆φSQL = 1/
√
N radians that limits readout precision with N

unentangled spins. In comparison to several proposals and experiments [62, 71, 107, 67, 11, 26, 52]

that have demonstrated squeezed states with precision beyond the SQL, our scheme enjoys the

advantage that the squeezing is produced, the phase accumulated, and the readout performed, all

in the same spin quadrature.

Recent experiments have demonstrated phase tracking of a spin using quantum non-demolition
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(QND) measurements via a Faraday rotation angle [25]. In contrast, our proposal is based on in-

terfering Raman transitions in a cavity and enables an intuitive interpretation of phase tracking in

terms of elementary atom-cavity interactions that nearly balance one another. Our scheme directly

reveals a phasor precessing in the equatorial plane of a Bloch sphere, in the spirit of the “hand on

a clock” analogy at the core of quantum metrology.

Such interfering cavity-assisted Raman transitions have been considered previously for de-

terministic squeezing schemes [115] and quantum simulations of the Dicke model [32, 7, 136]. The

frequency arrangement of our drive lasers is also related to two-tone drive schemes for back-action

evading measurements of mechanical oscillators [16, 23, 15] and for measuring the state of individual

superconducting qubits [45, 35].

We represent the collective angular momentum of N atomic spins by a classical Bloch vector

of length N/2 with components Jx, Jy, Jz. With all spins initially in the same equal superposition

state, the Bloch vector lies in the equatorial plane along a direction that we define as the y-axis.

As the phase evolves, the Bloch vector acquires a small x-component, Jx = N
2 sinφ(t) ≈ N

2 φ(t), for

small deflections, and we propose a straightforward extension to large deflections in the conclusion.

We arrange atom-cavity interactions wherein a cavity field quadrature is sourced by Jx. Continuous

homodyne detection of this quadrature amounts to real-time, continuous, QND measurement of

φ(t).

We proceed by first introducing the setup under consideration. We then provide an intuitive

picture based on classical Bloch vectors that outlines the essential mechanism by which the phase

can be tracked. After rigorously deriving the quantum non-demolition Hamiltonian, we introduce

the stochastic master equation governing the dynamics of the atom-cavity system under continu-

ous measurement. We employ a Gaussian state approximation to derive dynamical equations for

observables from this master equation.
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Figure 5.1: Schematic for continuous, real-time phase tracking. Two lasers drive a collection of
atoms to interact with a cavity mode. The relative phase φ(t) can be continuously tracked by
homodyne detection of the field leaking out.

5.1 Setup and basic mechanism

We consider N atoms trapped at the antinodes of a cavity with resonance frequency ωc and

decay rate κ, as shown in Fig. 5.1. The states |↓〉 and |↑〉 have an energy separation ~ω0 � ~κ

and form a pseudospin-1/2 system described by the Pauli spin operators σ̂i, i = x, y, z, with

raising (lowering) operators σ̂+ (σ̂−). The N atoms form a collective spin with total angular

momentum components Ĵx, Ĵy, Ĵz, with Ĵi =
∑N

j=1 σ̂
j
i /2. We assume the dipole-allowed transitions

|↓〉 ↔ |e〉 and |↑〉 ↔ |e〉 with frequencies ω↓e and ω↑e to be respectively driven using lasers with

frequencies ω1 and ω2 in a far-detuned regime with detuning ∆� ω0, κ, allowing for the adiabatic

elimination of |e〉 [56]. The two drive lasers differ by a frequency 2ω0 (Fig. 5.2(b)) and do not by

themselves drive |↓〉 ↔ |↑〉 Raman transitions; however, they are symmetrically detuned by ω0 from

ωc and participate in cavity-assisted Raman transitions as illustrated in Fig. 5.2(b). When the Rabi

frequencies of the two drive lasers are balanced, i.e. Ω1 = Ω2 = Ω0, the atom-cavity Hamiltonian,

to leading order in 1/∆, is simply the sum of a Jaynes-Cummings and an anti-Jaynes-Cummings

interaction and is given by

ĤQND =
~ΩQND

2
X̂Ĵx. (5.1)

Here X̂ = (â + â†)/
√

2 is the amplitude quadrature, with â, â† the annihilation and creation

operators for the cavity mode, and Ŷ = (â − â†)/
√

2i is the conjugate phase quadrature such
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Figure 5.2: (a) Cavity-assisted Raman transitions: The red (blue) pathway leads to the emission
of a cavity photon accompanied by a spin flip |↓〉 → |↑〉 (|↑〉 → |↓〉). (b) Hierarchy of frequencies.

that [X̂, Ŷ ] = i. The atom-cavity interaction strength is ΩQND =
√

2Ω0g0/∆ with g0 the single

atom-cavity vacuum Rabi frequency. For the interested reader, a detailed derivation of ĤQND

is presented in Section 5.2. If the two drive lasers have initial phases ψ1 and ψ2, the cavity

quadrature
(
â†ei(ψ1+ψ2)/2 + H.c.

)
is coupled to the spin component

(
Ĵ+e

i(ψ1−ψ2)/2 + H.c.
)

, where

Ĵ+ = Ĵx + iĴy. Here we assume ψ1 = ψ2 = 0 without loss of generality.

Classically, the intracavity fields established by the two balanced drives exactly cancel when

Jx = 0 (Fig. 5.3). However, even with 〈Ĵx〉 = 0, 〈Ĵ2
x〉 6= 0, i.e. quantum fluctuations source the Y

quadrature of the cavity field. In the regime κ2 � NΩ2
QND, Ŷ is slaved to Ĵx as

Ŷ (t) ≈ −ΩQND

κ
Ĵx(t) + F̂(t), (5.2)

where the noise operator F̂(t) arises from coupling of the cavity mode to external modes through

the lossy mirror (Fig. 5.1) [133, 82]. The field leaking out is to be monitored via balanced homodyne

detection using a local oscillator at frequency (ω1 + ω2)/2 with phase tuned to detect the output

field quadrature that is sourced by the intracavity Y quadrature. The photocurrent thus recorded

is a measurement of the Y quadrature which, from Eq. (5.2), amounts to measuring Jx.

Measurement back-action in the Jz quadrature arises because of the indistinguishability of the

two pathways that give rise to the intracavity field (Fig. 5.1(b)): The field leaking out is consistent

with equal probability amplitudes for tipping the Bloch vector above or below the equator and
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Figure 5.3: Classical Bloch vector picture: The red and blue pathways set up balanced, opposing
superradiance pathways that lead to a coherent cancellation of the intracavity field when the Bloch
vector (green) is along the y-axis (φ = 0). When the Bloch vector has a small x-component (φ 6= 0),
the intracavity field from the two pathways add constructively, giving rise to non-zero output field.

therefore increases the spread in Jz without affecting its mean value.

5.2 Derivation of the QND Hamiltonian

Here, we systematically derive ĤQND starting from basic atom-cavity interactions and by

using effective Hamiltonian theory. This section can be skipped if the reader is not interested in

the details of this derivation.

The basic Hamiltonian for the interaction of the atoms with the drive lasers and cavity mode

is (~ = 1 in this Section)

Ĥ = ωcâ
†â− ω↓e

∑
j

|↓〉j 〈↓| − ω↑e
∑
j

|↑〉j 〈↑|

+
∑
j

(
Ω1

2
|e〉j 〈↓| e−iω1t +

Ω2

2
|e〉j 〈↑| e−iω2t + H.c.

)
+
∑
j

(g1

2
â |e〉j 〈↓|+

g2

2
â |e〉j 〈↑|+ H.c.

)
. (5.3)

The drive laser frequencies are arranged such that ω1 = ωc+ω0 and ω2 = ωc−ω0. We assume

that the splitting ω↓e−ω↑e between the spin states, nominally ω0, can be slightly modified, e.g. by

a weak external magnetic field that we wish to sense, i.e. ω↓e − ω↑e = ω0 + 2δ, where δ (−δ) is the

shift of the |↑〉 (|↓〉) state.

The detunings of the drive lasers from the atomic transitions are given by ∆1 = ω1 − ω↓e =
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−∆ + ω0/2− δ and ∆2 = ω2 − ω↑e = −∆− ω0/2 + δ. Similarly, the detunings of the cavity mode

from the atomic transitions are ∆c
1 = ωc−ω↓e = −∆−ω0/2−δ and ∆c

2 = ωc−ω↑e = −∆+ω0/2+δ.

We write the interaction Hamiltonian expressing the energy requirements in Eq. (5.3) using

complex exponentials involving these detunings as

ĤI(t) =
∑
j

(
Ω1

2
|e〉j 〈↓| e−i∆1t +

Ω2

2
|e〉j 〈↑| e−i∆2t + H.c.

)
+

∑
j

(g1

2
â |e〉j 〈↓| e−i∆

c
1t +

g2

2
â |e〉j 〈↑| e−i∆

c
2t + H.c.

)
. (5.4)

We use the effective Hamiltonian theory of Ref. [56] to derive the effective Hamiltonian

in the limit where the detunings are all much greater than the Rabi frequencies. This effective

Hamiltonian has three parts

Ĥeff(t) = ĤStark(t) + Ĥatom-atom(t) + ĤRaman(t), (5.5)

where

ĤStark(t) =
∑
j

|Ω1|2
4∆1

(
|↓〉j 〈↓| − |e〉j 〈e|

)
+
∑
j

g2
1

4∆c
1

(
â†â

(
|↓〉j 〈↓| − |e〉j 〈e|

)
− |e〉j 〈e|

)
+
∑
j

Ω1g1

4h(∆1,∆c
1)
â†
(
|↓〉j 〈↓| − |e〉j 〈e|

)
ei(∆

c
1−∆1)t + H.c.

+ ↓→↑ (1→ 2), (5.6)

Ĥatom-atom(t) = −
∑
j,k 6=j

g2
1

4∆c
1

|e〉j 〈↓| ⊗ |↓〉k 〈e|+ ↓→↑ (1→ 2)

−
∑
j,k 6=j

g1g2

4h(∆c
1,∆

c
2)

(
|↑〉j 〈e| ⊗ |e〉k 〈↓| ei(∆

c
2−∆c

1)t + H.c.
)
, (5.7)
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and

ĤRaman(t) =
∑
j

Ω1Ω∗2
4h(∆1,∆2)

|↑〉j 〈↓| ei(∆2−∆1)t + H.c.

+
∑
j

g1g2

4h(∆c
1,∆

c
2)
â†â |↑〉j 〈↓| ei(∆

c
2−∆c

1)t + H.c.

+
∑
j

Ω1g2

4h(∆1,∆c
2)
â† |↑〉j 〈↓| ei(∆

c
2−∆1)t + H.c.

+
∑
j

Ω2g1

4h(∆2,∆c
1)
â† |↓〉j 〈↑| ei(∆

c
1−∆2)t + H.c. (5.8)

In the above expressions, h(a, b) = 2/(a−1 + b−1) is the harmonic mean of a and b. All

terms in the effective Hamiltonian conserve the number of excitations in |e〉. This means that if

the atoms are initially in the |↓〉 − |↑〉 manifold, then the state |e〉 is negligibly populated and all

interactions involving this level, and consequently, Ĥatom-atom(t), can be dropped. Expressing the

difference detunings in the complex exponentials in terms of ∆, ω0, and δ shows the presence of

rapidly oscillating terms with frequency ∼ ω0 and slowly varying terms with zero frequency or a

small frequency δ. For Ω1 ≈ Ω2 ∼ Ω, the rapidly oscillating terms can be neglected since we operate

in the regime where Ω2/∆� ω0. The resulting Hamiltonian consists of

ĤStark(t) =
∑
j

|Ω1|2
4∆1

|↓〉j 〈↓|+
∑
j

g2
1

4∆c
1

â†â |↓〉j 〈↓|

+ ↓→↑ (1→ 2) (5.9)

and

ĤRaman(t) =
∑
j

Ω1g2

4h(∆1,∆c
2)
â† |↑〉j 〈↓| e2iδt + H.c.

+
∑
j

Ω2g1

4h(∆2,∆c
1)
â† |↓〉j 〈↑| e−2iδt + H.c. (5.10)

5.2.1 Simple picture

For ∆� ω0, we can make the substitution ∆1,∆2,∆
c
1,∆

c
2 → −∆. Then, with Ω1 = Ω2 = Ω0,

the Stark shifts from the drive lasers shift the two spin states identically and therefore lead to an

overall energy shift of −NΩ2
0/4∆, where we assume Ω0 is real. Similarly, with g1 = g2 = g0, the
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frequency of the cavity mode is shifted by an amount −Ng2
0/4∆ on account of the atom-cavity

interaction. This can be compensated for by shifting the frequency of the drive lasers by the same

amount. Introducing the collective angular momentum operators Ĵ+ ≡
∑

j |↑〉j 〈↓|, Ĵ− ≡ Ĵ†+, and

Ĵz ≡
∑

j

(
|↑〉j 〈↑| − |↓〉j 〈↓|

)
/2, we can express the effective Hamiltonian as

Ĥeff = 2δĴz +
Ω0g0

4∆

(
â+ â†

)(
Ĵ+ + Ĵ−

)
, (5.11)

where we have let Ω0 → −Ω0. The second term on the RHS is precisely the QND Hamiltonian,

Eq. 5.1. This coarse-grained Hamiltonian is valid over time intervals ∆t� Tω0 ≡ 2π/ω0, and there-

fore, we require δ � ω0 and that δ is approximately constant over the interval ∆t. Mathematically,

the latter implies d ln δ/dt� 1/∆t� ω0/2π.

5.2.2 Accounting for ω0/∆

For δ ≈ 0, h(∆1,∆
c
2) = ∆1 and h(∆2,∆

c
1) = ∆2. To isolate the balanced cavity-assisted

Raman transitions, three requirements have to be satisfied [32]:

(1) Equal drive laser Stark shifts on both spin states: Ω2
1/4∆1 = Ω2

2/4∆2.

(2) Equal frequency shift of cavity mode per atom in either spin state: g2
1/4∆c

1 = g2
2/4∆c

2.

(3) Balanced Raman transitions: Ω1g2/4∆1 = Ω2g1/4∆2.

We note that arranging Ω1/Ω2 and g1/g2 to satisfy (1) and (2) above automatically results

in satisfying requirement (3).

5.2.3 Note concerning drive laser frequencies

In practice, the frequency arrangement of the drive lasers requires their average frequency

ωav to be tuned well within the cavity linewidth, i.e. |ωc − ωav| � κ. The difference frequency

ω1 − ω2 is relatively easier to stabilize, and deviations from 2ω0 manifest as a growth of the phase

over time that can be measured and statistically modeled.
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Figure 5.4: Free-space scattering processes considered in our model: Rayleigh scattering (blue),
Raman scattering (red) and atom loss (black).

5.3 Phenomenological free-space scattering model

The drive lasers also lead to undesirable, off-resonant free-space scattering processes with

total rate γsc that degrade atomic coherence. We consider three such single-atom decoherence

mechanisms: (a) dephasing with probability rd: random rotation about the z-axis, (b) spontaneous

Raman spin flips : |↓〉 → |↑〉 (r↓↑) and |↑〉 → |↓〉 (r↑↓), and (c) atom loss (rl): the atom decays

to a state |s〉 outside the |↓〉 − |↑〉 manifold and no longer interacts with the cavity mode. The

probabilities are related by rd + r↓↑ + r↑↓ + rl = 1.

Fig. 5.4 shows the various free-space scattering (FSS) processes considered in our model. The

lifetime of the excited state is Γ = Γ↓ + Γ↑ + Γs.

The dephasing rate is set by the total rate of Rayleigh scattering [110]:

Dephasing: Γ↓
Ω2

1

4∆2
+ Γ↑

Ω2
2

4∆2
. (5.12)

Raman spin flips (|↓〉 → |↑〉) occur with rate Γ↑
Ω2

1
4∆2 , while |↑〉 → |↓〉 occur at rate Γ↓

Ω2
2

4∆2

[110]. Finally, atom loss occurs at a net rate given by

Atom loss: Γs

(
Ω2

1

4∆2
+

Ω2
2

4∆2

)
. (5.13)

With Ω1 ≈ Ω2 ≡ Ω0, the probabilities for the different FSS channels are

rd =
Γ↓ + Γ↑

2Γ
, r↓↑ =

Γ↑
2Γ
, r↑↓ =

Γ↓
2Γ
, rl =

Γs
Γ
. (5.14)
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The total FSS rate is

γsc = 2Γ
Ω2

0

4∆2
. (5.15)

While presenting our numerical results in Chapter 6, we adopt a “symmetric loss” model

wherein the three decoherence mechanisms degrade the atomic coherence at equal rates, and spin-

flips in either direction occur with equal probability. This implies rd = 1/3, r↓↑ = r↑↓ = 1/6 and

rl = 1/3. Such a model corresponds to Γ↓ = Γ↑ = Γs = Γ/3. In this case, from Eq. (5.14), rd = 1/3,

r↓↑ = r↑↓ = 1/6 and rl = 1/3.

Our simple phenomenological model captures the FSS processes expected when a three-

level system is driven by two lasers whose difference frequency is far detuned from the two-photon

resonance. In practice, scattering from any additional excited states should be considered. Detailed

modeling of a real experiment will benefit from a rigorous first-principles derivation of the effects

of free-space scattering that also accounts for the cavity mode, as shown in Refs. [13, 115].

5.4 Stochastic master equation

Under continuous measurement, the dynamics of the density matrix ρ of the atom-cavity

system is governed by the stochastic master equation [129, 15, 131]:

ρ̇ = −i/~[ĤQND, ρ] + κD[â]ρ+ γsc
∑N

j=1 L
j
1ρ

+
√
ηκξ(t)

(
iρâ† − iâρ−

√
2〈Ŷ 〉ρ

)
, (5.16)

with decoherence effects bundled in Lj1ρ, given by

Lj1ρ = r↓↑D[σ̂j+]ρ+ r↑↓D[σ̂j−]ρ+
rd
4
D[σ̂jz]ρ

+
rl
2

(
D
[
|s〉j 〈↓|j

]
ρ+D

[
|s〉j 〈↑|j

]
ρ
)
, (5.17)

with D[Ô]ρ = ÔρÔ†− Ô†Ôρ/2−ρÔ†Ô/2, the Lindblad dissipator. In Eq. (5.16), η is the detection

efficiency, and ξ(t) is a white-noise process satisfying ξ(t) = 0 and ξ(t)ξ(t′) = δ(t−t′). The measured

photocurrent i(t) is

i(t) = Ge|αLO|
(
η
√

2κ〈Ŷ 〉+
√
ηξ(t)

)
, (5.18)
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with detector gain G, electronic charge e, and local oscillator photon flux |αLO|2 with units of

photons/time.

5.5 Gaussian state approximation

With no decoherence, measuring for very long times will result in preparing states arbitrarily

close to Dicke states in the Jx basis. However, decoherence restricts the maximum achievable

squeezing well before the state begins to wrap around the Bloch sphere. This enables a Gaussian

approximation where we only track the dynamics of the means and covariances of all operators and

pairs of operators of the atom-cavity system. The 5 operators X̂, Ŷ , Ĵx, Ĵy and Ĵz result in a total

of 20 dynamical equations.

To derive these equations, we first rewrite Eq. (5.16) as

dρ =

−i/~[ĤQND, ρ] + κD[â]ρ+ γsc

N∑
j=1

Lj1ρ

 dt

+
√
ηκdW (t)

(
iρâ† − iâρ−

√
2〈Ŷ 〉ρ

)
, (5.19)

where dW (t) is a Wiener increment that satisfies dW (t) = 0 and dW (t)2 = dt [120].

The expectation value of an operator Ô is given by 〈Ô〉 = Tr
[
Ôρ
]

and, consequently, 〈 ˙̂
O〉 =

Tr
[
Ôρ̇
]
. We keep track of only the means and covariances of the five operators X̂, Ŷ , Ĵx, Ĵy and

Ĵz. We truncate these evolution equations at second order by factorizing third order moments of

the type 〈Ô1Ô2Ô3〉 as

〈Ô1Ô2Ô3〉 ≈ 〈Ô1Ô2〉〈Ô3〉+ 〈Ô2Ô3〉〈Ô1〉+ 〈Ô1Ô3〉〈Ô2〉 − 2〈Ô1〉〈Ô2〉〈Ô3〉. (5.20)

This procedure leads to five equations governing the means of the operators that have the

typical form of stochastic differential equations: d〈Ô〉 = adt + bdW . The time evolution of the

fifteen covariances, on the other hand, are governed by ordinary differential equations that have no

terms proportional to dW . This structure is a direct consequence of the Gaussian approximation

we employ. We reproduce these equations below.
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We use the notation 〈. . .〉 to denote means and 〈. . .〉c to denote (co)variances evaluated using

the stochastic master equation, Eq. (5.19). The covariance is defined as 〈Ô1Ô2〉c = (〈Ô1Ô2〉 +

〈Ô2Ô1〉)/2− 〈Ô1〉〈Ô2〉.

5.5.1 Operator means

The operator means obey the following set of equations.

d〈X̂〉 = −κ
2
〈X̂〉dt+ 2

√
ηκ

2
〈X̂Ŷ 〉cdW

d〈Ŷ 〉 = −
(
κ

2
〈Ŷ 〉+

ΩQND

2
〈Ĵx〉

)
dt+

√
ηκ

2

(
2〈Ŷ 2〉c − 1

)
dW

d〈Ĵx〉 = −γsc

2
〈Ĵx〉dt+ 2

√
ηκ

2
〈Ŷ Ĵx〉cdW

d〈Ĵy〉 = −
[
γsc

2
〈Ĵy〉+

ΩQND

2

(
〈X̂Ĵz〉c + 〈X̂〉〈Ĵz〉

)]
dt+ 2

√
ηκ

2
〈Ŷ Ĵy〉cdW

d〈Ĵz〉 = −
[
γsc

((
r↑↓ + r↓↑ +

rl
2

)
〈Ĵz〉+ (r↑↓ − r↓↑)

N

2

)
− ΩQND

2

(
〈X̂Ĵy〉c + 〈X̂〉〈Ĵy〉

)]
dt

+2

√
ηκ

2
〈Ŷ Ĵz〉cdW (5.21)

5.5.2 Operator covariances

Operator covariance are governed by the following sets of equations.

d

dt
〈X̂2〉c = −κ

(
〈X̂2〉c −

1

2

)
− 2ηκ〈X̂Ŷ 〉2c

d

dt
〈Ŷ 2〉c = −κ

(
〈Ŷ 2〉c −

1

2

)
− ΩQND〈Ŷ Ĵx〉c −

ηκ

2

(
2〈Ŷ 2〉c − 1

)2

d

dt
〈X̂Ŷ 〉c = −κ〈X̂Ŷ 〉c −

ΩQND

2
〈X̂Ĵx〉c − ηκ〈X̂Ŷ 〉c

(
2〈Ŷ 2〉c − 1

)
(5.22)

d

dt
〈X̂Ĵx〉c = −

(
κ+ γsc

2

)
〈X̂Ĵx〉c − 2ηκ〈Ŷ Ĵx〉c〈X̂Ŷ 〉c

d

dt
〈X̂Ĵy〉c = −

(
κ+ γsc

2

)
〈X̂Ĵy〉c −

ΩQND

2

(
〈X̂Ĵz〉c〈X̂〉+ 〈X̂2〉c〈Ĵz〉

)
− 2ηκ〈Ŷ Ĵy〉c〈X̂Ŷ 〉c

d

dt
〈X̂Ĵz〉c = −

(κ
2

+ γsc

(
r↑↓ + r↓↑ +

rl
2

))
〈X̂Ĵz〉c +

ΩQND

2

(
〈X̂Ĵy〉c〈X̂〉+ 〈X̂2〉c〈Ĵy〉

)
−2ηκ〈Ŷ Ĵz〉c〈X̂Ŷ 〉c (5.23)
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d

dt
〈Ŷ Ĵx〉c = −

(
κ+ γsc

2

)
〈Ŷ Ĵx〉c −

ΩQND

2
〈Ĵ2
x〉c − ηκ〈Ŷ Ĵx〉c

(
2〈Ŷ 2〉c − 1

)
d

dt
〈Ŷ Ĵy〉c = −

(
κ+ γsc

2

)
〈Ŷ Ĵy〉c −

ΩQND

2

(
〈ĴxĴy〉c + 〈X̂Ŷ 〉c〈Ĵz〉+ 〈Ŷ Ĵz〉c〈X̂〉

)
−ηκ〈Ŷ Ĵy〉c

(
2〈Ŷ 2〉c − 1

)
d

dt
〈Ŷ Ĵz〉c = −

(κ
2

+ γsc

(
r↑↓ + r↓↑ +

rl
2

))
〈Ŷ Ĵz〉c

−ΩQND

2

(
〈ĴzĴx〉c − 〈X̂Ŷ 〉c〈Ĵy〉 − 〈Ŷ Ĵy〉c〈X̂〉

)
− ηκ〈Ŷ Ĵz〉c

(
2〈Ŷ 2〉c − 1

)
(5.24)

d

dt
〈Ĵ2
x〉c = −γsc

(
〈Ĵ2
x〉c −

(
r↑↓ + r↓↑ + rd +

rl
2

) N
4

)
− 2ηκ〈Ŷ Ĵx〉2c

d

dt
〈Ĵ2
y 〉c = −γsc

(
〈Ĵ2
y 〉c −

(
r↑↓ + r↓↑ + rd +

rl
2

) N
4

)
− ΩQND

(
〈X̂Ĵy〉c〈Ĵz〉+ 〈ĴyĴz〉c〈X̂〉

)
−2ηκ〈Ŷ Ĵy〉2c

d

dt
〈Ĵ2
z 〉c = −γsc

(
(2r↑↓ + 2r↓↑ + rl) 〈Ĵ2

z 〉c − r↑↓
(
N

2
+ 〈Ĵz〉

)
− r↓↑

(
N

2
− 〈Ĵz〉

)
− rl

N

8

)
+ΩQND

(
〈X̂Ĵz〉c〈Ĵy〉+ 〈ĴyĴz〉c〈X̂〉

)
− 2ηκ〈Ŷ Ĵz〉2c (5.25)

d

dt
〈ĴxĴy〉c = −γsc〈ĴxĴy〉c −

ΩQND

2

(
〈X̂Ĵx〉c〈Ĵz〉+ 〈ĴzĴx〉c〈X̂〉

)
− 2ηκ〈Ŷ Ĵx〉c〈Ŷ Ĵy〉c

d

dt
〈ĴyĴz〉c = −γsc

((
3

2
r↑↓ +

3

2
r↓↑ +

rd
2

+ rl

)
〈ĴyĴz〉c −

(
r↑↓ − r↓↑

2

)
〈Ĵy〉

)
+

ΩQND

2

(
〈X̂Ĵy〉c〈Ĵy〉+ 〈Ĵ2

y 〉c〈X̂〉 − 〈X̂Ĵz〉c〈Ĵz〉 − 〈Ĵ2
z 〉c〈X̂〉

)
− 2ηκ〈Ŷ Ĵy〉c〈Ŷ Ĵz〉c

d

dt
〈ĴzĴx〉c = −γsc

((
3

2
r↑↓ +

3

2
r↓↑ +

rd
2

+ rl

)
〈ĴzĴx〉c −

(
r↑↓ − r↓↑

2

)
〈Ĵx〉

)
+

ΩQND

2

(
〈X̂Ĵx〉c〈Ĵy〉+ 〈ĴxĴy〉c〈X̂〉

)
− 2ηκ〈Ŷ Ĵz〉c〈Ŷ Ĵx〉c (5.26)

5.5.3 Some comments on the equations of motion

The above equations describe the conditional evolution when no external phase modulation is

applied. Such a modulation can be straightforwardly accounted for by including the contributions

of an additional Hamiltonian term ∝ Ĵz, such as the first term on the RHS of Eq. (5.11), to the

equations of motion of the means and covariances.

In deriving the above equations, we have accounted for the contribution of the atom loss

terms (proportional to rl) to the loss of coherence and the increase in diffusion. We note that atom
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loss reduces the effective number of atoms Neff that interact with the cavity mode. However, we

simply use the total number N wherever Neff explicitly appears in these equations. That is, we

account for Ṅeff = −rlγscNeff that leads to increased diffusion of the atomic spin components, but

approximate Neff ≈ N everywhere in the above equations.

5.5.4 Numerical evolution

We numerically evolve the dynamical equations for the means and covariances using a vari-

ation of the Improved Euler scheme for integrating stochastic differential equations [98]. Our

numerical results are obtained using a C++ program that employs linear algebra features provided

by Eigen [44], a C++ template library. The Wiener increments and random numbers required

for numerical integration are obtained using random number generators from the GNU Scientific

Library [38]. Numerically, the infinite bandwidth of i(t) (Eq. (5.18)) means that the data sampling

time step must equal the simulation time step.



Chapter 6

Real-time phase tracking: Numerical experiments

In this chapter, we will use the Gaussian equations that we derived in the previous chapter

to perform numerical simulations that demonstrate real-time phase tracking below the standard

quantum limit. We will also discuss connections with the Ramsey sequence and derive an analytic

expression for the optimum metrological gain achievable when our scheme is used as a Ramsey-like

sequence. We conclude with a discussion on the advantages of combining our proposal with a

feedback scheme.

6.1 Estimating the phase

To estimate the phase, we average the simulated photocurrent (Eq. (5.18)) in a time window

[Ti, Tf ] to obtain an estimate as

J (m)
x = − κ

ΩQND
Y (m) =

−(Ge|αLO|)−1

η
√
Cγsc(Tf − Ti)

∫ Tf

Ti

i(t)dt, (6.1)

where C = 2Ω2
QND/κγsc is the dimensionless atom-cavity cooperativity. The phase is estimated

as φ(m) = (J
(m)
x /(N/2))/V(t), where the visibility V(t) ≈ e−γsct/2e−(Cγsc/4)t/2 accounts for the

shortening of the Bloch vector, evaluated either at the window center or end depending on where

the phase is estimated. For C � 1, free-space scattering is the main reason for shortening of the

Bloch vector, whereas for C � 1, measurement-induced squeezing is the dominant contribution.

While we use a simple averaging procedure for clarity, optimal filters, such as Kalman filters, can

be applied for superior phase tracking [40, 117, 14].
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The precision of the phase estimate in a window is determined by the window duration.

A characteristic time, T0 = (ηCγsc)
−1/(N/4), is the time required to average down the photon

shot-noise (ξ(t) term, Eq. (5.18)) in estimating J
(m)
x (Eq. (6.1)) to the standard quantum limit

∆J2
x,SQL = N/4.

6.1.1 Note concerning the cooperativity

We have defined the cooperativity C in terms of the two-photon rates ΩQND and γsc. With

the explicit form of γsc in Eq. (5.15), and the expression ΩQND =
√

2Ω0g0/∆, we can express C in

terms of the single-photon coupling strength g0 and the lifetime Γ of the state |e〉 as

C = 2
Ω2

QND

κγsc
= 8

g2
0

κΓ
. (6.2)

We note that our definition of C differs from the usual definition [81] by a factor of 8.

However, as Eq. (6.4) later shows, with our definition of C, the rate ηCγsc takes on the simple

interpretation as the rate at which the variance in Jx decreases as the field leaking out from the

cavity is monitored. Here, η is as usual the detection efficiency of the photodetectors used for

homodyne detection. With perfect detectors (η = 1), C is therefore the ratio of the rates of the

desirable and undesirable processes.

6.2 Parameters for numerical experiments

For our numerical experiments, we use N = 105 atoms identically coupled to a cavity mode

with C = 0.1, unless specified otherwise. We work in a bad-cavity regime such that NCγsc = 0.2κ,

achievable by arranging for ΩQND = 10−3κ. We adopt the “symmetric loss” model for free space

scattering that is described in Section 5.3. However, our results are not very sensitive to the specific

choice of relative rates. The loss in visibility only depends on the total decoherence rate, while the

measurement of Jx marginally improves if the atom loss channel is dominant (see Eq. (6.11)).

Finally, the detection efficiency is assumed to be η = 0.4 [26].
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6.3 Real-time phase tracking: A demonstration

We now demonstrate the ability of our scheme to track in real-time, a phase modulation φ(a)(t)

applied for t > 0 (Fig. 6.1(a, black solid line)). At time t = −50T0, the collective spin is initialized

to a coherent spin state (CSS) along the y-axis whose initial phase is φ0 = 0. First, measuring the

photocurrent in the state preparation window [−50T0, 0] gives a phase estimate φ
(m)
0 (blue triangle).

This estimate is obtained at the end of this window using the procedure described below Eq. (6.1).

The value of φ
(m)
0 varies from trial-to-trial with a variance ∆φ2

SQL = 1/N corresponding to the

phase uncertainty of the initial CSS. The long state preparation window ensures strong averaging

down of the photon shot-noise, leading to a state with reduced phase uncertainty around φ
(m)
0 , i.e.

a spin squeezed state (SSS). For the subsequent real-time tracking, two choices for the initial phase

reference could be used: φ0(= 0) or φ
(m)
0 .

During the time [0, 200T0], we average the photocurrent in windows of duration 8T0 to extract

a raw phase estimate φ(m)(j) for window j = 1, 2, . . .. We construct two estimates for the phase at

the window centers, φ
(m)
CSS(j) = φ(m)(j)−φ0 (hollow red squares), and φ

(m)
SSS(j) = φ(m)(j)−φ(m)

0 (filled

blue squares). The precision of these estimates is determined not just by the window duration over

which the raw estimate is obtained, but also by the precision of the phase reference. To determine

the single-run precision of these estimates, we run 2048 trials of the experiment and histogram the

error in these estimates, an example of which is shown in Fig. 6.1(b) for the window [48T0, 56T0].

The estimates φ
(m)
CSS use the imprecise zero phase φ0 of the initial CSS as reference, and lead to

a broad error histogram (red). In contrast, the estimates φ
(m)
SSS lead to a narrow error histogram

(blue) whose spread is instead dominated by the imprecision in obtaining the raw estimates φ(m)(j)

over short windows (here, 8T0), demonstrating the improved precision of the phase reference φ
(m)
0

over φ0
1 . In Fig. 6.1(c) we show that the variance ∆φ2

SSS of the estimates φ
(m)
SSS is significantly

less than ∆φ2
SQL in all windows over the time we consider here, demonstrating the potential for

real-time phase tracking with precision beyond the SQL.

1 If only the form, and not the precise value, of an AC signal is to be tracked in a single run, the choice of initial
phase reference is irrelevant, making the state preparation step unnecessary.
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Figure 6.1: Real-time continuous tracking of a time-varying phase. (a) A single experimental run:

A squeezed state is prepared during [−50T0, 0], with the initial measured phase φ
(m)
0 (blue triangle)

varying in each run. Subsequently, a phase modulation φ(a)(t) = 15 mrad × sin(t/40T0) (black
line) is applied e.g. using a time-varying magnetic field. The blue, filled (red, hollow) markers are

estimates φ
(m)
SSS (φ

(m)
CSS) of the phase using the measured photocurrent in windows of duration 8T0

that account for (do not account for) the initial offset φ
(m)
0 . The gray shaded region indicates the

1-σ SQL tolerance for this applied signal. Representative Bloch spheres for t ≤ 0 indicate the state
before and after the state preparation stage. For t > 0, Bloch spheres indicate the deflection of
the spin as a result of the phase modulation (black dots on the spheres indicate the zero phase

reference), as well as the equivalent spin state used for the respective estimates φ
(m)
CSS, φ

(m)
SSS. (b)

Histogram of phase errors φ
(m)
SSS−φ(a) (blue) and φ

(m)
CSS−φ(a) (red) over 2048 runs in one particular

measurement window [48T0, 56T0]. (c) Single-run precision gain of the estimates φ
(m)
SSS relative to

the SQL at different window centers t. Here, ∆φ2
SSS is the variance of Gaussian fits to histograms

such as the blue histogram in (b). Decoherence results in decreased gain over time.
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6.4 Use as a Ramsey sequence

First, we note an advantage of our scheme, namely that the same photocurrent data from a

single run can be analyzed using multiple methods to extract varying information. As a demon-

stration, we use varying window durations TW to extract precise timing and amplitude information

from a sudden jump in phase (at TJ = 50T0 in Fig. 6.2(a)). Starting with an initial CSS at t = 0, we

continuously estimate the phase by averaging the photocurrent over moving windows of durations

TW = 2T0 (red) and TW = 20T0 (blue). Clearly, the shorter window reproduces the time variation

of the phase more precisely. To estimate the amplitude of the jump φJ , we compute the difference

φ
(m)
J in the estimates φ

(m)
W1

, φ
(m)
W2

in the two windows W1 ≡ [TJ − TW , TJ ] and W2 ≡ [TJ , TJ + TW ]

that border the jump time TJ (Fig. 6.2(b))2 . While the shorter window results in faster response,

the longer window gives a more precise estimate of the jump amplitude (Fig. 6.2(c)).

Alternatively, the sudden phase jump in the protocol depicted in Fig. 6.2(b) can be replaced

with a “dark” phase accumulation time of duration TD where no measurements are performed. The

scheme can then be identified as a Ramsey-like sequence where a squeezed state is prepared in W1,

phase accumulates in an interrogation time TD, and finally, phase is read out in W2, without ever

converting the phase information into a population difference. In this Ramsey mode, the achievable

gain in phase resolution using the prepared squeezed state compared to a CSS is

∆φ2
SQL

∆φ2
=

∆J2
x,SQL(

∆J
(m)
x,diff

)2V2, (6.3)

where J
(m)
x,diff = J

(m)
x,W2
−J (m)

x,W1
and V is the visibility at the end of the first window [11, 26]. Fig. 6.2(d)

plots the numerically extracted gain (markers) versus the window duration TW for different values

of cooperativity C. Gaussian fits to histograms of J
(m)
x,diff were used to extract values for (∆J

(m)
x,diff)2.

2 For simplicity, we assume that the jump time of our test signal is known in advance. In practice, the jump time
and amplitude can be simultaneously estimated using tools from optimal filtering theory.
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Figure 6.2: (a) A sudden jump in the phase with amplitude φJ = 40 mrad at TJ = 50T0 is tracked
in the same run using moving windows of durations TW = 2T0 (red) and TW = 20T0 (blue), showing
the faster response of the shorter window. (b) Protocol to estimate φJ . (c) Histograms, over 2048

runs, of φ
(m)
J for TW = 2T0 (red) and TW = 20T0 (blue), demonstrating the greater precision of

the longer window. For TW = 2T0, W2 was offset by a small time 0.2T0 to allow transients on
timescales of κ−1 to decay. (d) Gain in precision over a CSS in Ramsey mode as the duration of
W1 and W2 is varied, for fixed Cγsc and different values of C. Analytic results (lines) calculated
using Eqs. (6.3) and (6.11) are in excellent agreement with simulations (markers).
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6.5 Analytic expression for variance in the difference measurement

To understand the numerically observed trend, we work with the equations derived in Sec-

tion 5.5 to obtain an analytic expression for (∆J
(m)
x,diff)2. The time evolution of the conditional

variance 〈Ĵ2
x〉c satisfies the Riccati equation

d

dt
〈Ĵ2
x〉c = −γsc

(
〈Ĵ2
x〉c − β

N

4

)
− ηCγsc〈Ĵ2

x〉2c , (6.4)

where we have used the bad-cavity limit to adiabatically eliminate 〈Ŷ Ĵx〉c and substitute it with

the quantity −(ΩQND/κ)〈Ĵ2
x〉c in the equation for 〈Ĵ2

x〉c. In the regime where
√
NC � 1 and

√
βηNC � 1, the solution to Eq. (6.4) simplifies to

〈Ĵ2
x(t)〉c =

N

4

√
4β

NCη
coth

[√
βNC

4η
γsct+

√
4β

NCη

]
. (6.5)

The conditional mean 〈Ĵx〉 is given by

〈Ĵx(t)〉 = −
√
ηCγsc

∫ t

0
dt′〈Ĵ2

x(t′)〉ce−
γsc
2

(t−t′)ξ(t′). (6.6)

From Eq. (5) and the bad-cavity relation 〈Ŷ 〉 = −(ΩQND/κ)〈Ĵx〉, the instantaneous photocur-

rent i(t) carries information about 〈Ĵx〉 but is corrupted by photon shot noise. Using Eq. (6), the

estimate J
(m)
x from the photocurrent measured in an interval [Ti, Tf ] is related to the conditional

mean 〈Ĵx〉 as

J (m)
x =

1

Tf − Ti

∫ Tf

Ti

dt

(
〈Ĵx(t)〉 − 1√

ηCγsc
ξ(t)

)
, (6.7)

where 〈Ĵx〉 satisfies Eq. (6.6). In deriving Eq. (8), we perform the first measurement J
(m)
x,1 (TW )

over the window [0, TW ], and the second measurement J
(m)
x,2 (TW ) over the window [TW , 2TW ]. The

variance in the difference measurement (∆J
(m)
x,diff)2(TW ) is given by

(∆J
(m)
x,diff)2(TW ) =

(
J

(m)
x,2 (TW )− J (m)

x,1 (TW )
)2
, (6.8)

where the overbar indicates averaging over all possible realizations of the noise ξ(t), which has the

properties ξ(t) = 0 and ξ(t)ξ(t′) = δ(t − t′). We use the approximation that γscTW � 1 for the
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measurement windows we consider, so that the exponential factor in Eq. (6.6) can be set to unity.

The resulting integrals can be evaluated analytically, resulting in

(∆J
(m)
x,1 )2(TW ) =

N

4

(
1 +

T0

TW
+

4β

3ηNC

TW
T0

)
(6.9)

for the variance in the first measurement, and

(∆J
(m)
x,2 )2(TW ) =

N

4

(
1 +

T0

TW
+

16β

3ηNC

TW
T0

)
(6.10)

for the variance in the second measurement. For the variance in the difference measurement, we

get

(∆J
(m)
x,diff)2(TW )

∆J2
x,SQL

= 2
T0

TW
+

8β

3ηNC

TW
T0

, (6.11)

where β = rd + r↓↑ + r↑↓ + rl/2, giving a minimum normalized variance of 8
√
β/3ηNC at T opt

W =

T0

√
3ηNC/4β. The expression for β shows that the normalized variance is not very sensitive to the

relative probabilities of the decoherence mechanisms. For typical values of C ∼ 0.1 and N ∼ 105,

Fig. 6.2(d) shows that a gain upwards of 11 dB can be achieved. The (NC)−1/2 scaling of the

minimum normalized variance in J
(m)
x,diff leads to an optimal phase resolution scaling as ∆φ ∼ N−3/4

compared to ∆φSQL = N−1/2 radians.

6.5.1 Physical explanation for optimum measurement window

Although the photon shot noise is averaged down as the measurement window TW is increased,

undetected photons emitted via free-space scattering (FSS) lead to increased ignorance about the

actual state of the collective spin. The photocurrent measurements in the initial parts of the

measurement window are no longer as reliable in estimating the current value of Jx as those in

the latter parts, since FSS has significantly affected the collective spin state. Since J
(m)
x,diff is the

difference of measurements in two such windows, for very large TW , the correlation in these two

measurements decreases as a result of FSS. The upshot: The window has an optimum duration

below which the measurement suffers from photon shot-noise, and above which it is affected by

FSS.



98

6.5.2 Absence of noticeable Zeno effect

A natural question concerns the quantum Zeno effect: Does the real-time phase measurement

inhibit the evolution of the phase? For the parameters used in the simulations, we do not observe any

noticeable Zeno effect. Here, we describe a theoretical situation where it can likely be observed. In

the absence of free-space scattering, Eq. (6.9) implies that measuring for very long times suppresses

the photon shot noise arbitrarily, and that the variance of the measurement is eventually limited

only by the spread of the initial CSS over the eigenstates of Ĵx. Although our Gaussian theory

cannot describe this extreme limit, we can use Eq. (6.9) to qualitatively estimate the time required

to resolve such eigenstates by assuming that the photon shot noise contribution NT0/TW ∼ 1,

leading to TW ∼ NT0. The Zeno effect can be observed if the phase evolves by 1/N radians

on a timescale & NT0, translating to a phase modulation rate ∼ 1/(N2T0) ∼ Cγsc/N . In the

simulations, free-space scattering takes over well before the Ĵx eigenstates can be resolved and we

only prepare squeezed states with variance a factor of O(1− 10) below the SQL. Furthermore, the

peak modulation rate, for example, in Fig. 6.1, is ∼ 107 times greater than 1/(N2T0). These factors

probably suggest why the Zeno effect is not noticeable in our simulations.

6.6 Advantage of a feedback loop

While Ramsey sequences only measure phase changes unambiguously in the interval [−π/2,

π/2], our scheme readily extends to tracking large excursions |φ(t)| � π: The measured current i(t)

can be used in a feedback loop [128, 2, 130, 127, 120] to adjust the differential phase offset ψ1−ψ2 of

the drive lasers such that i(t) is continuously driven back to zero. The feedback loop continuously

adjusts the spin component probed by the cavity mode such that it is always perpendicular to the

mean spin direction, while mapping the phase φ(t) onto the feedback signal as φ(t) = (ψ1 −ψ2)/2.

This way, large phase excursions can be tracked while remaining in the small angle measurement

limit. By encoding the spins in hyperfine levels that have an intrinsic splitting, our scheme has

the unique capability to greatly increase the unambiguous interval of phase evolution that can be
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Figure 6.3: Effect of number fluctuations on real-time phase tracking. Single-run precision gain
computed using error histograms of 2048 experimental runs (compare to Fig. 6.1(c)). Parameters
are from Fig. 6.1, except that the number of atoms in each run is variable, with a mean of N̄ = 105

and ∆N/N̄ indicated by the percentages. Data points (markers) extracted from the numerical
experiments are in very good agreement with semi-analytic results (solid lines) obtained using the
simple expression in Eq. (6.13) that accounts for number fluctuations. The black dashed line plots
the applied phase modulation, for reference.

continuously tracked, for example in atomic clocks. While feedback schemes using intermittent

non-demolition population measurements have been used to extend this interval in a Ramsey-like

sequence [63], our scheme continuously tracks the phase and removes the need for state rotations

altogether. Another benefit of feedback is that it greatly suppresses sensitivity to variations or

uncertainties in scale factors relating i(t) to φ(t), including uncertainties in atom number, as we

demonstrate below.

6.6.1 Atom number fluctuations

Here, we show why the number fluctuations are not important in a practical realization of

our proposal that implements feedback.

In the small angle limit, the measured phase is linearly related to J
(m)
x as

φ(m) =
2J

(m)
x

VN , (6.12)

where V is the visibility and N is the number of atoms. So far, we have assumed fluctuations only
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in J
(m)
x . In addition, when N is not precisely known, the error in φ(m) is given by

(∆φ(m))2 ≈
(

2

VN

)2

(∆J (m)
x )2 + (φ(m))2

(
∆N

N

)2

. (6.13)

The expression in Eq. (6.13) is approximate because we neglect the covariance of fluctuations

in Jx and N . The error from ∆N is negligible compared to the error from ∆Jx when

(φ(m))2 � 4

V2

(
∆J

(m)
x

∆N

)2

. (6.14)

In other words, the presence of number fluctuations only sets an upper bound on the dynam-

ical range of the phase that can be tracked, and does not impose a fundamental restriction.

In order to validate this argument, we introduce number fluctuations in our numerical exper-

iments for the situation depicted in Fig. 6.1, see Fig. 6.3. When ∆N = 0, we recover the results of

Fig. 6.1(c). As we increase ∆N , the precision gain sharply falls in regions where the tracked phase

has large amplitude. To verify the simple formula, Eq. (6.13), we take the numerically obtained

variance in the absence of number fluctuations (black markers) as representing the (∆J
(m)
x )2 term

in Eq. (6.13) and add, by hand, the contribution of the (∆N)2 term, to obtain the solid lines shown

in Fig. 6.3. The values of φ(m) that enter this expression are approximated to be the values of the

applied phase modulation (black dashed line) at the window centers. The very good agreement

between the numerically extracted (markers) and semi-analytic (solid lines) results validate the

expression, Eq. (6.13), for the error in φ.

Figure 6.3 and Eq. (6.13) imply that, in a practical realization, the effect of number fluc-

tuations can be suppressed if the measured phase is always maintained close to zero. Feedback

enables continuous tracking of large phase excursions in such a small angle measurement limit, and

therefore greatly suppresses sensitivity to atom number fluctuations. In fact, by the same argu-

ment, a feedback loop will also suppress variations or uncertainties in any scale factors relating the

measured current to the phase φ(t), and not just the atom number.



Chapter 7

Squeezing on momentum pseudospins: Formalism

Current Bragg interferometers operate in free space with state-of-the-art technology enabling

control of large numbers of atoms [21, 55, 54, 20]. This technical progress has now achieved high

signal-to-noise ratios for determining the relative phase shift. However, despite the use of large

atom numbers, their operation can be completely described in terms of single-atom physics since

the atoms are uncorrelated. As a result, regardless of whether further technical improvements

are realized, the phase sensitivity of these interferometers in the near future will be fundamentally

constrained by the SQL of ∆φSQL = 1/
√
N radians, whereN is the number of atoms. Monotonically

increasing N to improve precision suffers from problems such as practical limitations in trapping

and cooling [122, 18], and uncontrolled phase changes that arise from atomic collisions [99]. Schemes

to produce squeezed states of momentum pseudospins are therefore attractive as a means to achieve

precision beyond the corresponding SQL for a given N . A major hurdle to producing such states

in Bragg interferometers is that squeezing requires a channel for the atoms to controllably interact

with each other, and such a channel is unavailable in current interferometer designs.

The recent demonstration of a hyperfine-changing Raman gravimeter operating inside an

optical cavity [47] motivates us to envisage a similar operation of Bragg interferometers in cavities in

the near future. The availability of a cavity mode naturally opens up a channel for mediating atom-

atom interactions. Previous proposals for cavity-based squeezing on momentum spins [103] require

significant experimental overhead dedicated to achieving squeezing while the actual interferometer

itself operates in free space. Here, we propose an alternative approach that marries the generation of
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cavity-mediated spin squeezing [76, 53, 88] with the well known advantages of operating the entire

interferometer inside a cavity [47]. Importantly, our scheme does not require any experimental

overhead to generate interactions beyond what is already needed to run a Bragg interferometer in

a cavity. In fact, we show how all-to-all atomic interactions are generated by simply switching off

one of the two Bragg lasers and suitably adjusting the frequency and power of the other.

The use of momentum pseudospins in Bragg interferometers necessitates two unique consid-

erations. First, the atomic cloud will always have a non-zero momentum width even after velocity

selection. This width can typically be neglected in the analysis with uncorrelated atoms. Second,

momentum pseudospins cannot be considered as closed two level systems since the same pair of

counterpropagating electromagnetic fields couples the pseudospin states to other momentum states,

albeit with varying detunings. As a result, leakage to undesirable momentum states is unavoidable

even while applying efficient Bragg pulses for spin rotations, and also when attempting to engi-

neer interactions for spin squeezing. In our work, we account for the momentum width as well as

leakage to undesirable states and show that they can be important when considering the efficiency

of a spin squeezing protocol applied to momentum pseudospins. Nevertheless, as we demonstrate,

appreciable spin squeezing can still be achieved under suitable and potentially realizable operating

conditions.

In the process of accounting for the effects of momentum width and losses to undesirable

states, we show how to extend modeling techniques originally developed for spin systems to inter-

acting atoms in matter-wave interferometers where information is encoded in external degrees of

freedom. This ability to map the continuous momentum variable onto a discrete quantum pseu-

dospace allows us to directly employ methods developed for finite dimensional systems [106, 92, 70]

. The techniques we use to study our system are widely applicable for investigations of beyond

mean-field physics in a broad range of schemes involving interacting atoms whose momentum states

are coupled by electromagnetic fields.

In this chapter, we will introduce a scheme to generate squeezing on momentum pseudospins

and also develop the necessary framework to study the dynamics of this system. After describing
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the system under consideration, we will first provide an intuitive explanation for why one can expect

squeezing in this system. Next, we derive a master equation describing the atom-cavity interactions.

Further, we also adiabatically eliminate the cavity mode to arrive at a second effective master

equation for the atoms only. We also describe approximate numerical methods for each of the two

master equations that enable us to obtain complementary insights into the squeezing dynamics.

7.1 Setup

We consider a collection of N atoms with mass M in a ring cavity with resonance frequency

ωc as shown in Fig. 7.1(a). Each atom consists of two electronic levels |g〉 and |e〉 with transition

frequency ωa. A laser with frequency ωl drives one mode of the ring cavity. The cavity resonance

is red detuned from the atomic transition by a detuning ∆c = ωa − ωc > 0, while the drive

laser is detuned by ∆l = ωa − ωl > 0. The relative detuning of the laser and the cavity is

∆cl = ωl−ωc � ∆c,∆l. Upon absorption or emission of a photon with wavevector k, the momentum

of an atom is shifted by ~k, where k = |k|.

Figure 7.1: Experiment setup and working principle. (a) A cloud of atoms interacts with two
counterpropagating modes of a ring cavity. One mode (mode 1) is driven at frequency ωl, while
the counterpropagating mode (mode 2) is in vacuum, i.e. not pumped. The scheme enables cavity-
mediated interactions between every pair of atoms. (b) The excitation or de-excitation of a single
atom is off-resonant. However, the exchange of excitation between two atoms is a resonant process.
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7.2 Basic working principle

The underlying principle for how squeezing is generated in our scheme is summarized in

Fig. 7.1(b) for the case when the pseudospin is encoded in the states |↓〉 ≡ |g, 0〉 and |↑〉 ≡ |g, 2~k〉

with transition frequency 4ωr, where ωr = ~k2/2M is the atomic recoil frequency. We denote the

driven mode as mode 1 and the counterpropagating mode as mode 2. The drive laser frequency is

arranged such that ∆cl = ωl − ωc = 4ωr + δ, where δ is a two-photon detuning typically assumed

to be > 0 in this work. The excitation of an atom from |↓〉 to |↑〉 (green circle in Fig. 7.1(b)) is

facilitated by the absorption of a drive photon and subsequent emission into mode 2. The energy

imbalance between the photon exchange and the spin excitation is

∆E↓→↑ = (~ωl − ~ωc)− 4~ωr = ~δ. (7.1)

Similarly, the de-excitation of a second spin (magenta circle in Fig. 7.1(b)) is accompanied by the

absorption of a photon in mode 2 and subsequent emission at the drive frequency, leading to an

energy imbalance

∆E↑→↓ = (~ωc − ~ωl)− (−4~ωr) = −~δ. (7.2)

However, from Eqs (7.1) and (7.2), the simultaneous excitation of one atom and de-excitation of the

other is resonant, facilitated by the four-photon process consisting of absorption of a drive photon,

emission and absorption of a virtual cavity photon and subsequent return of the photon to the

drive laser. Assuming that the cavity mode couples identically to all the atoms, the cavity mode

cannot distinguish which atom was excited and which one was de-excited, leading to an effective

Hamiltonian of the form

Ĥeff ∝ Ĵ−Ĵ+, (7.3)

where Ĵ± =
∑N

j=1 σ̂
±
j , with σ̂+

j = |↑〉j 〈↓| and σ̂−j =
(
σ̂+
j

)†
. The effective Hamiltonian, Eq. (7.3),

can be expressed as

Ĵ−Ĵ+ = Ĵ · Ĵ− ĴzĴz − Ĵz, (7.4)
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where Ĵ = Ĵxx̂ + Ĵyŷ + Ĵzẑ and Ĵ i for i = x, y, z are the Cartesian components of the collective

angular momentum Ĵ formed by the momentum pseudospins.1 The second term is the familiar

one-axis twisting (OAT) interaction that gives rise to spin squeezed states useful for quantum

metrology [76]. The first term, on the other hand, opens a many-body energy gap that has been

experimentally observed, for example, using spins encoded in optical clock transitions [88]. We

briefly discuss how the latter effect manifests in our system in Section 8.7.

7.3 Atom-cavity interactions

We now proceed to derive a master equation that reflects the underlying atom-cavity inter-

action at the heart of the resonant spin exchange intuitively described in the previous section. The

Hamiltonian governing the dynamics of the atom-cavity system is

Ĥ =
N∑
j=1

(
p̂2
j

2M
+

~ωa
2

(|e〉j 〈e| − |g〉j 〈g|)
)

+

2∑
s=1

~ωcâ†sâs

+
N∑
j=1

2∑
s=1

~g
2

(
âse

iksẑj |e〉j 〈g|+ â†se
−iksẑj |g〉j 〈e|

)
+ ~

√
κ
(
αe−iωltâ†1 + α∗eiωltâ1

)
, (7.5)

where g is the atom-cavity vacuum Rabi frequency, κ is the cavity decay rate and α is the amplitude

of the drive laser with |α|2 the photon flux in units of photons/time. The operators â†s, âs for s = 1, 2

respectively describe the creation and annihilation of photons in modes 1 and 2 whose wavevectors

satisfy k1 = −k2 = kẑ (see Fig. (7.1)(a)). The operator ẑj represents the position of atom j along

the cavity axis. The decay of the cavity fields is accounted for by the standard Lindblad dissipator

of the type D[Ô]ρ = ÔρÔ† − Ô†Ôρ/2 − ρÔ†Ô/2 for jump operator Ô and density matrix ρ. The

resulting master equation is

ρ̇ =
1

i~

[
Ĥ, ρ

]
+

2∑
s=1

κD[âs]ρ. (7.6)

We neglect free-space scattering in our analysis since superradiant decay (Section (8.4)) is typically

the dominant dissipation mechanism (see Appendix B.3 and discussion in Section 8.8).

1 The symbols x̂, ŷ and ẑ refer to unit vectors along the coordinate axes and are not to be confused with position
operators.
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7.3.1 Adiabatic elimination of the excited state

First, we adiabatically eliminate the excited state |e〉 based on the large detuning of the drive

lasers and cavity modes from the |g〉 ↔ |e〉 transition (Section 7.3.1). We work in an interaction

picture rotating at the drive frequency ωl with free evolution Hamiltonian Hf =
∑

j ~ωl/2(|e〉j 〈e|−

|g〉j 〈g|) +
∑

s ~ωlâ
†
sâs. The resulting interaction picture Hamiltonian is

Ĥ
(1)
I =

N∑
j=1

(
p̂2
j

2M
+

~∆l

2
(|e〉j 〈e| − |g〉j 〈g|)

)
−

2∑
s=1

~∆clâ
†
sâs

+
N∑
j=1

2∑
s=1

~g
2

(
âse

iksẑj |e〉j 〈g|+ â†se
−iksẑj |g〉j 〈e|

)
+ ~

√
κ
(
αâ†1 + α∗â1

)
. (7.7)

The coherence operator |e〉j 〈g| satisfies the equation

d

dt
|e〉j 〈g| = i∆l |e〉j 〈g| − i

g

2

2∑
s=1

â†se
−iksẑj

(
|e〉j 〈e| − |g〉j 〈g|

)
. (7.8)

In a far-detuned regime, we can set |e〉j 〈e| − |g〉j 〈g| ≈ −1. We then transform to the cavity frame

by substituting â†s = â
†,(c)
s ei∆clt, |e〉j 〈g| = |e〉j 〈g|(c) ei∆clt and adiabatically eliminate |e〉j 〈g|(c) to

get

|e〉j 〈g|(c) ≈ − g

2∆c

2∑
s=1

â†,(c)
s e−iksẑj . (7.9)

In the drive frame, the annihilation operator for a mode s satisfies the equation

d

dt
âs = −

(κ
2
− i∆cl

)
âs − i

g

2

N∑
j=1

e−iksẑj |g〉j 〈e| − i
√
καδs,1 + F̂s, (7.10)

where F̂s is the noise operator associated with coupling to the modes outside the cavity. Using the

hermitian conjugate of the expression, Eq. (7.9), leads to

d

dt
âs ≈ −

(κ
2
− i∆cl

)
âs + i

g2

4∆c

N∑
j=1

2∑
s′=1

âs′e
−i(ks−ks′ )ẑj

− i
√
καδs,1 + F̂s. (7.11)
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These equations can be obtained from the effective Hamiltonian

Ĥ
(2)
I =

N∑
j=1

p̂2
j

2M
−

2∑
s=1

~
(

∆cl +
Ng2

4∆c

)
â†sâs

−
N∑
j=1

~g2

4∆c

(
â†1â2e

−ikeffẑj + â†2â1e
ikeffẑj

)
+ ~

√
κ
(
αâ†1 + α∗â1

)
. (7.12)

Here keff = k1 − k2 = 2k is the effective wavevector. The cavity resonance is now shifted by

−Ng2/4∆c because of the presence of the atoms. Modifying the drive frequency ωl → ωl−Ng2/4∆c

returns the detuning to ∆cl.

7.3.2 Replacing mode 1 by a c-number

Further, on long timescales, the upwards propagating mode (mode 1) is composed of a macro-

scopic steady state amplitude with small fluctuations around this value. The macroscopic amplitude

β (|β| � 1) is found from the mean-field equation

β̇ = −
(κ

2
− i∆cl

)
β − i√κα. (7.13)

For t � κ−1, the steady-state value is β = −i√κα/(κ/2 − i∆cl). We displace mode 1 by the

amplitude β by making the transformation â1 → β + â1. Apart from introducing some constant

terms that can be neglected, the resulting Hamiltonian is

Ĥa−c =

N∑
j=1

p̂2
j

2M
−

2∑
s=1

~∆clâ
†
sâs

−
N∑
j=1

~g2

4∆c

(
β∗â2e

−ikeffẑj + βâ†2e
ikeffẑj

)
, (7.14)

with keff = k1 − k2 = 2k the effective wavevector along ẑ. The dissipative part of the master

equation remains the same. The second line of Eq. (7.14) reflects the dominant photon exchange

between the macroscopic field in mode 1 and the vacuum of mode 2. In writing Eq. (7.14), we

have neglected the small exchange process between the vacuum fields of the two modes. This

approximation allows us to keep track of only mode 2 and ignore the other terms containing â1 in
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the master equation since mode 1 only interacts with the atoms and mode 2 through the c-number

β.

7.4 Momentum width using the |n, q〉 notation

The momentum shift operator e±ikeffẑj appearing in Eq. (7.14) can only shift the momentum

in units of ~keff. For simplicity, we consider initial atomic states that are clustered around |↓〉 ≡

|n↓~keff〉, i.e. 〈p̂j(0)〉 = n↓~keff, where n↓ is an integer. (A superposition of |↓〉 and |↑〉 ≡ n↑~keff

with n↑ = n↓ + 1 can be subsequently obtained by a π/2 Bragg pulse.) We introduce two labels

n, q to represent a momentum state as |p〉 ≡ |n, q〉. The label n denotes the momentum center and

is defined as

n =

∣∣∣∣∣∣∣∣ p

~keff

∣∣∣∣∣∣∣∣ (7.15)

where ||x|| denotes the nearest integer to x. The label q quantifies the deviation from a center and

is defined as

q = p− n~keff. (7.16)

We note that an initial offset from an integer multiple of ~keff , i.e. 〈p̂j(0)〉 = n↓~keff + poff can be

trivially accounted for by denoting states as |p〉 ≡ |n, q, poff〉 so that p = n~keff + q+ poff. Note that

|poff| < 1/2 since larger values can be modeled as an offset about a shifted initial center n↓ → n↓±1.

Without loss of generality, we assume poff = 0.

The momentum width is characterized by a spread σq. We assume that the initial momentum

spread σq is small compared to the difference between subsequent centers, i.e.

σq
~keff

� 1. (7.17)

Combined with the fact that the dynamics under Eq. (7.14) does not change the spread but only

shifts the center, this assumption ensures that we can assume the orthogonality relation

〈n′, q′|n, q〉 = δn,n′δ(q − q′), (7.18)

for all momentum states that significantly participate in the dynamics.
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7.5 Numerical solution: Semiclassical Langevin equations

The master equation governing the atom-cavity interactions is:

ρ̇a−c =
1

i~

[
Ĥa−c, ρa−c

]
+ κD[â2]ρ. (7.19)

For an atom in the initial state |n, qj〉, the momentum shift operator eikeffẑj only shifts the center

n but does not change qj . As a result, it can be expressed as

eikeffẑj =
∞∑

n=−∞
|n+ 1, qj〉j 〈n, qj | . (7.20)

We define generalized population and coherence operators σ̂jnm as

σ̂jnm = |n, qj〉j 〈m, qj | . (7.21)

We have dropped the label qj in defining the operators σ̂jnm, since an initial value of qj remains

constant during the subsequent dynamics governed by the master equation. The procedure to

sample the initial value of qj will be discussed shortly in Section 7.5.1.

The free energy term can be expressed as

p̂2
j

2M
=

∞∑
n=−∞

~ωjnσ̂jnn, (7.22)

where ~ωjn = (n~keff + qj)
2/2M . The frequency ωjn can be better expressed as

ωjn = 4ωr
(
n2 + 2nq̃j σ̃q + q̃2

j σ̃
2
q

)
, (7.23)

where we have introduced the dimensionless quantities q̃ = q/σq and σ̃q = σq/~keff. The Hamilto-

nian, Eq. (7.14), can now be expressed as

Ĥ =
∑
j

∑
n

~ωjnσ̂jnn − ~∆clâ
†
2â2 −

∑
j

∑
n

~g2

4∆c

(
β∗â2σ̂

j
n,n+1 + βâ†2σ̂

j
n+1,n

)
. (7.24)

Expressed this way, the atom-cavity interaction is reminiscent of the detuned Tavis-Cummings

model that is at the heart of cavity-based spin exchange schemes considered for optical clock

transitions [53, 88]. The Hamiltonian governing the dynamics is dependent on the initially sampled

value of qj which enters through the frequencies ωjn.
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We write down the dynamical equations for the corresponding c-numbers sjnm ↔ σ̂jnm and

ζ ↔ â2 within the truncated Wigner approximation (TWA) framework. The TWA technique

involves evolving the classical equations of motion associated with the Hamiltonian subject to initial

conditions sampled from the Wigner distribution of the initial state [94, 92]. While the sampling

procedure accounts for the quantum and statistical uncertainties in the initial conditions, the time

evolution governed by simple classical equations is a good approximation in a variety of situations

since, in leading order, these equations remain unaffected by quantum fluctuations [94, 9, 106, 116,

113]. In the case of open systems, the coupling to the reservoir not only gives rise to additional

damping terms in the classical equations but also introduces Langevin noise terms [9] with diffusion

coefficients satisfying the Einstein relations [82]. The expectation value of any symmetrized product

of operators is obtained directly by computing the corresponding c-number product, called the Weyl

symbol, and averaging this quantity over several trajectories with appropriately sampled initial

conditions and noise realizations [92]. The expectation values of operator products in a different

ordering can be subsequently obtained through the use of appropriate commutation relations.

We introduce the effective coupling strength geff = g2|β|/2∆c and without loss of generality

assume that β is real. The c-number equations are

d

dt
sjnm = −i(ωjm − ωjn)sjnm + i

geff

2

(
ζ∗
(
sjn,m−1 − sjn+1,m

)
+ ζ

(
sjn,m+1 − sjn−1,m

))
,

d

dt
ζ = −

(κ
2
− i∆cl

)
ζ + i

geff

2

∑
j

∑
n

sjn+1,n +

√
κ

4
(ξ1(t) + iξ2(t)) , (7.25)

where ξl(t) for l = 1, 2 are white-noise processes satisfying ξl(t) = 0 and ξl(t)ξl′(t′) = δl,l′δ(t − t′).

The bar indicates averaging over several trajectories with different noise realizations and initial

conditions (see Section 7.5.1). The equation for ζ is a stochastic differential equation because of

the noise arising from coupling to modes outside the cavity [9, 121]. We refer to this model as

the multi-center model (MCM) because of its ability to track an arbitrary number of momentum

centers.
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7.5.1 Initial Conditions

The mode amplitude ζ = a+ib is initialized according to the Wigner distribution of a vacuum

state as

P (a, t = 0) = P (b, t = 0) = N (0, 1/2), (7.26)

so that |ζ|2 =
(
〈â†2â2〉+ 〈â2â

†
2〉
)
/2 = 1/2. Here, N (µ, σ) denotes a normal distribution with mean

µ and standard deviation σ.

For the atoms, we first consider each atom to be in a state described by the density matrix

ρ(1)(0) =
1√

2πσq

∫ ∞
−∞

dq e−q
2/2σ2

q |n↓, q〉 〈n↓, q| (7.27)

where the restriction Eq. (7.17) ensures that states with |q| ∼ ~keff do not contribute significantly

so that the limits of integration can be extended to ±∞.

We note that by using two labels n, q to characterize the momentum, we have effectively split

the momentum phase space distribution into one for the discrete label n and one for the continuous

label q. To sample q, we note that the momentum space distribution of the state described by

Eq. (7.27) is Gaussian with spread σq. Therefore, in each trajectory, the value of qj for any atom

j is drawn as

P (qj , t = 0) = N (0, σq) =⇒ P (q̃j , t = 0) = N (0, 1). (7.28)

In general, our approach in its present formulation is valid for any initial atomic density matrix

that is diagonal in the momentum basis. The density matrix for atom j can then be interpreted

as a probability distibution for the initial value of qj from which this value can be sampled in

each trajectory. As already noted, the value of qj remains constant during the subsequent time

evolution and the only effect of qj is to modify the frequencies ωjn, ω
j
m, . . . that enter the Hamiltonian,

Eq. (7.24), for each trajectory.

To appropriately sample the n-space distribution corresponding to the state described by

Eq. (7.27), we note that the discrete levels n,m, . . . are reminiscent of the different mJ levels in a

2J+1 spin manifold. Here, the choice of J depends on the number of discrete levels that participate



112

significantly in the dynamics. We initialize the c-numbers sjnm according to the DTWA (discrete

truncated Wigner approximation) prescription [106, 92], namely,

sjn↓,n↓ = 1,

P (2 Re{sjn↓,m 6=n↓} = ±1) = P (2 Im{sjn↓,m 6=n↓} = ±1) =
1

2
,

sjm 6=n↓,n↓ =
(
sjn↓,m 6=n↓

)∗
,

sjn6=n↓,m 6=n↓ = 0. (7.29)

We note that our choice of initial conditions is consistent with a formal generalization of the

Truncated Wigner Approximation technique to systems with D discrete states on a given site [70].

Prior to implementing our squeezing protocol, a Bragg pulse rotates the state of each atom

to an equal superposition of the n↓, n↑ centers. Starting with the initial conditions in Eq. (7.29),

we obtain the c-number values corresponding to such an equal superposition by numerically imple-

menting a fictitious instantaneous state rotation that rotates each spin to lie on the equatorial plane

of the Bloch sphere formed by n↓, n↑ (Appendix B.1). The observables from the MCM simulations

are averaged over 2000 trajectories in order to sample the initial conditions and noise realizations.

7.6 Effective atom-atom interactions

7.6.1 Elimination of the cavity field â2

The spin exchange dynamics anticipated in Section 7.2 is confirmed when mode 2 is adia-

batically eliminated to obtain a master equation describing the effective atom-atom interactions.

When mode 2 is negligibly excited, it can be considered as a reservoir in a vacuum state with

density matrix R0 = |0〉 〈0|. We use the superoperator formalism to adiabatically eliminate mode

2 [19]. We split the master equation, Eq. (7.19), into system, reservoir as well as system-reservoir
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Liouvillians. These terms are given by

LSρa−c = −i

 N∑
j=1

p̂2
j

2M~
, ρa−c

 ,
LRρa−c = −i

[
−∆clâ

†
2â2, ρa−c

]
+ κD[â2]ρa−c,

LSRρa−c = = −i

− N∑
j=1

g2

4∆c

(
β∗â2e

−ikeffẑj + βâ†2e
ikeffẑj

)
, ρa−c

 . (7.30)

We first transform to an interaction picture with L0 = LS + LR. We then have

˙̃ρa−c = L̃SRρ̃a−c, (7.31)

where ρ̃a−c = e−L0tρa−c and L̃SR = e−L0tLSReL0t. We integrate Eq. (7.31) and substitute the

formal solution for ρ̃a−c(t) in the same equation to get

˙̃ρa−c = L̃SR(t)ρ̃a−c(0) +

∫ t

0
dt′L̃SR(t)L̃SR(t′)ρ̃a−c(t

′). (7.32)

We assume that mode 2 acts as a reservoir in the vacuum state, i.e. the reservoir density matrix

is R0 = |0〉 〈0|. At t = 0, the initial uncorrelated state is ρ̃a−c(0) = ρ̃a(0)R0, where ρ̃a(0) is

the density matrix for the atomic ensemble. We then use a decorrelation approximation to write

ρ̃a−c(t) ≈ ρ̃a(t)R0 for later times, and trace out mode 2 as

˙̃ρa = TrR

[
L̃SR(t)ρ̃a(0)R0

]
+

∫ t

0
dt′TrR[L̃SR(t)L̃SR(t′)ρ̃a(t

′)R0]. (7.33)

The first term vanishes because 〈â2〉 = 〈â†2〉 = 0 in the vacuum state.

Next, we find the time evolution equations governing the superoperators associated with

mode 2 that enter L̃SR, namely ˜̂a2 ⊗ Î, ˜̂a†2 ⊗ Î, Î ⊗ (˜̂a2)T and Î ⊗ (˜̂a†2)T . Here Î is the identity

operator, i.e. Î |n〉 = |n〉 for any Fock basis vector |n〉. The notation Â⊗ (B̂)T is to be understood

as the operation Â |n〉 〈m| B̂ for a vector |n〉 〈m| in the Liouville space of mode 2 [110]. These

equations are found to be

d

dt
˜̂a2 ⊗ Î = −

(κ
2
− i∆cl

)
˜̂a2 ⊗ Î

d

dt
Î ⊗ (˜̂a2)T =

(κ
2

+ i∆cl

)
Î ⊗ (˜̂a2)T − κ

(
˜̂a2 ⊗ Î

)
. (7.34)



114

The solution to this coupled set of differential equations is

˜̂a2 ⊗ Î(t) =
(
â2 ⊗ Î

)
e−(κ2−i∆cl)t

Î ⊗ (˜̂a2)T (t) =
[
Î ⊗ (â2)T − â2 ⊗ Î

]
e(

κ
2

+i∆cl)t +
(
â2 ⊗ Î

)
e−(κ2−i∆cl)t. (7.35)

Hermitian conjugation of these two equations yields the expressions for ˜̂a†2 ⊗ Î(t) and Î ⊗ (˜̂a†2)T (t).

For brevity, we denote Ŝj ≡ eikeffẑj . From Eqs. (7.33) and (7.35), we arrive at

˙̃ρa = −
(
g2|β|
4∆c

)2 N∑
j,j′=1

∫ t

0
dt′

[
˜̂
S†j (t)

˜̂
Sj′(t

′)ρ̃a(t
′)e−(κ/2−i∆cl)(t−t′)

− ˜̂
Sj(t)ρ̃a(t

′)
˜̂
S†j′(t

′)e−(κ/2+i∆cl)(t−t′)

− ˜̂
Sj′(t

′)ρ̃a(t
′)

˜̂
S†j (t)e

−(κ/2−i∆cl)(t−t′)

+ ρ̃a(t
′)

˜̂
S†j′(t

′)
˜̂
Sj(t)e

−(κ/2+i∆cl)(t−t′)
]
. (7.36)

In arriving at Eq. (7.36), we have used the fact that the reservoir is approximately in the

vacuum state to set 〈â2â2〉 = 〈â†2â2〉 = 0 and 〈â2â
†
2〉 = 1. The time evolution of the system operator

˜̂
Sj(t) is given by

˜̂
Sj(t) = exp

(
i
p̂2
j

2M~
t

)
eikeffẑj exp

(
−i

p̂2
j

2M~
t

)
. (7.37)

Once again, we introduce generalized population and coherence operators, but with an extra

label q, as

σ̂j,qnm = |n, q〉j 〈m, q| , (7.38)

and expand the momentum shift operator eikeffẑj as

eikeffẑj =

∞∑
n=−∞

∫ ∞
−∞

dqσ̂j,qn+1,n. (7.39)

We then have

˜̂
Sj(t) =

∞∑
n=−∞

∫ ∞
−∞

dqei∆ωn(q)tσ̂j,qn+1,n, (7.40)

where we have introduced ∆ωn(q) = 4ωr (1 + 2n+ 2q̃σ̃q). As an example, we explicitly write down

the first term in Eq. (7.36):

−
(
g2|β|
4∆c

)2∑
j,j′

∫ t

0
dt′
∑
n,n′

∫ ∞
−∞

dq

∫ ∞
−∞

dq′σ̂j,qn,n+1σ̂
j′,q′

n′+1,n′ ρ̃a(t
′)×

exp
[
−
(κ

2
− iδn(q)

)
t
]

exp
[(κ

2
− iδn′(q′)

)
t′
]
, (7.41)
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where δn(q) ≡ ∆cl −∆ωn(q).

The restriction σ̃q � 1 ensures that only operators associated with q � ~keff contribute to

the dynamics. We further assume that for the momentum centers that significantly participate in

the dynamics, the corresponding |κ/2− iδn(q)| is sufficiently ‘large’. We will quantify this criterion

self-consistently later on (see Section 7.6.1.1). Then, the integral over t′ can be performed under a

Markov approximation by setting ρ̃a(t
′) ≈ ρ̃a(t) to get

−
∑
j,j′

∑
n,n′

∫ ∞
−∞

dq

∫ ∞
−∞

dq′
(
g2|β|/4∆c

)2
κ
2 − iδn′(q′)

e−i(∆ωn(q)−∆ωn′ (q
′))tσ̂j,qn,n+1σ̂

j′,q′

n′+1,n′ ρ̃a(t). (7.42)

We repeat this calculation for the remaining three terms. We define the coherent and dissipative

coupling strengths as

χn(q) =

(
g2|β|
4∆c

)2
δn(q)

κ2/4 + (δn(q))2
, Γn(q) =

(
g2|β|
4∆c

)2
κ/2

κ2/4 + (δn(q))2
, (7.43)

and perform the reverse interaction picture transformation with L0 = −LS to obtain an effective

master equation governing the dynamics of ρa:

ρ̇a =
1

i~

 N∑
j=1

∞∑
n=−∞

∫ ∞
−∞

dq ~ωn(q)σ̂j,qnn, ρa


− i

∑
j,j′

∑
n,n′

∫ ∞
−∞

dq

∫ ∞
−∞

dq′χn′(q
′)
(
σ̂j,qn,n+1σ̂

j′,q′

n′+1,n′ρa − ρaσ̂
j′,q′

n′,n′+1σ̂
j,q
n+1,n

+σ̂j,qn+1,nρaσ̂
j′,q′

n′,n′+1 − σ̂
j′,q′

n′+1,n′ρaσ̂
j,q
n,n+1

)
+

∑
j,j′

∑
n,n′

∫ ∞
−∞

dq

∫ ∞
−∞

dq′Γn′(q
′)
(
σ̂j,qn+1,nρaσ̂

j′,q′

n′,n′+1 + σ̂j
′,q′

n′+1,n′ρaσ̂
j,q
n,n+1

−σ̂j,qn,n+1σ̂
j′,q′

n′+1,n′ρa − ρaσ̂
j′,q′

n′,n′+1σ̂
j,q
n+1,n

)
. (7.44)

We make the simplifying assumption that χn(q) ≈ χn(0) ≡ χn, Γn(q) ≈ Γn(0) ≡ Γn, that

allows to pull χn,Γn outside the integrals. We find that this requirement constrains

σq
~keff

� min
n

(
δn

16ωr

)
, (7.45)

where δn ≡ δn(0) and the values of n considered correspond to the centers that significantly

participate in the dynamics. In deriving the simple expression in Eq. (7.45), we have assumed
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that the dispersive interaction dominates, i.e. δn � κ/2 for participating centers. For detunings

δn↓ � 4ωr, Eq. (7.17) is clearly a more stringent requirement than Eq. (7.45).

Further, the simultaneous excitation and de-excitation of a pair of atoms is near-resonant

only when the same centers are involved, which corresponds to terms with n = n′ in Eq. (7.44).

For terms with n = n′ ± 1, the exchange process is energetically detuned by 8ωr.
2 From these

considerations, the effective master equation, Eq. (7.44), can be written as

ρ̇a =
1

i~

∑
j

∑
n

∫ ∞
−∞

dq ~ωn(q)σ̂j,qnn, ρa


− i

∑
j,j′

∑
n

χn

∫ ∞
−∞

dq

∫ ∞
−∞

dq′
(
σ̂j,qn,n+1σ̂

j′,q′

n+1,nρa − ρaσ̂j
′,q′

n,n+1σ̂
j,q
n+1,n

+σ̂j,qn+1,nρaσ̂
j′,q′

n,n+1 − σ̂j
′,q′

n+1,nρaσ̂
j,q
n,n+1

)
+

∑
j,j′

∑
n

Γn

∫ ∞
−∞

dq

∫ ∞
−∞

dq′
(
σ̂j,qn+1,nρaσ̂

j′,q′

n,n+1 + σ̂j
′,q′

n+1,nρaσ̂
j,q
n,n+1

−σ̂j,qn,n+1σ̂
j′,q′

n+1,nρa − ρaσ̂j
′,q′

n,n+1σ̂
j,q
n+1,n

)
. (7.46)

The master equation can be considerably simplified now because the integrals over q, q′ no

longer involve χ and Γ. By interchanging the dummy variables (j, q)↔ (j′, q′), terms in the third

line cancel. Also, the two terms on the second line can be cast in a Hamiltonian form. We then

transform to an interaction picture with free evolution Hamiltonian

Ĥf =
∑
j

∑
n

∫ ∞
−∞

dq 4~ωr
(
n2 + q̃2σ̃2

q

)
σ̂j,qn,n, (7.47)

and denote the interaction picture density matrix by ρ̃a, to arrive at the effective master equation

˙̃ρa =
1

i~

[
Ĥeff, ρ̃a

]
+
∑
j,j′

∑
n

Γn

∫ ∞
−∞

dq

∫ ∞
−∞

dq′
(

2σ̂j,qn+1,nρ̃aσ̂
j′,q′

n,n+1

−σ̂j′,q′n,n+1σ̂
j,q
n+1,nρ̃a − ρ̃aσ̂j

′,q′

n,n+1σ̂
j,q
n+1,n

)
, (7.48)

2 We note that ignoring terms with n 6= n′ amounts to assuming that rates of the order of 8ωr are ‘rapidly
oscillating’. Therefore, the model we derive here is strictly speaking only valid for squeezing rates Nχn↓ � 8ωr, and
cannot be expected to predict all features seen in the MCM in the strong driving regime (such as in Fig. 8.2, also see
Appendix B.2) even when more than two centers are tracked.
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where the Hamiltonian Ĥeff is given by

Ĥeff =
∑
j

∑
n

∫ ∞
−∞

dq (8n~ωr) (q̃σ̃q) σ̂
j,q
n,n

+
∑
j,j′

∑
n

~χn
∫ ∞
−∞

dq

∫ ∞
−∞

dq′σ̂j,qn,n+1σ̂
j′,q′

n+1,n. (7.49)

7.6.1.1 Validity of the Markov approximation

In Section 7.7, we will consider the evolution under the action of a truncated Hamiltonian,

Eq. (7.57), derived from the more general Eq. (7.49). Additionally, when σ̃q ≈ 0, the truncated

Hamiltonian results in squeezing at a rate Q ∼ Nχn↓ . The Markov approximation used in Eq. (7.41)

involves retaining only the leading term in the integration-by-parts expansion of the integrand.

Neglecting the next-to-leading term amounts to approximating that∣∣∣∣ 1

ρ̃a(t)

dρ̃a(t)/dt

κ/2− iδn↓

∣∣∣∣� 1. (7.50)

Since the atomic dynamics proceeds at rate ∼ Nχn↓ , the Markov approximation requires that

|κ/2− iδn↓ | � Nχn↓ .

7.6.2 Collective angular momentum operators

The resulting master equation can be compactly expressed in terms of operators analogous to

collective angular momentum operators. We define operators Ĵ ±n , Ĵ zn acting on any two consecutive

momentum centers n, n+ 1 as

Ĵ +
n =

N∑
j=1

∫ ∞
−∞

dq σ̂j,qn+1,n, Ĵ −n =

N∑
j=1

∫ ∞
−∞

dq σ̂j,qn,n+1, Ĵ zn =
1

2

N∑
j=1

∫ ∞
−∞

dq
(
σ̂j,qn+1,n+1 − σ̂j,qn,n

)
.

(7.51)

With Ĵ xn =
(
Ĵ +
n + Ĵ −n

)
/2 and Ĵ yn =

(
Ĵ +
n − Ĵ −n

)
/2i, the operators Ĵ xn , Ĵ yn , Ĵ zn satisfy the usual

angular momentum commutation relations[
Ĵ jn , Ĵ kn

]
= iεjklĴ ln, (7.52)

where εjkl is the usual Levi-Civita symbol for the right-handed coordinate system formed by the

x, y, z axes. Once again, the restriction on initial states, Eq. (7.17), ensures that the limits of
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integration over q can be extended to ±∞ while still allowing the use of the orthogonality relation

Eq. (7.18) in deriving the commutation rules in Eq. (7.52). Specifically, the collective spin consisting

of the pseudospin-1/2 systems formed by the two centers n↓, n↑ are characterized by the operators

Ĵ ±n↓ , Ĵ zn↓ .

The master equation, Eq. (7.48), for the reduced density matrix ρ̃a can be expressed as

˙̃ρa =
1

i~

[
Ĥeff, ρ̃a

]
+

∞∑
n=−∞

2ΓnL[Ĵ +
n ]ρ̃a, (7.53)

with the effective Hamiltonian

Ĥeff =

N∑
j=1

∞∑
n=−∞

∫ ∞
−∞

dq (8n~ωr) (q̃σ̃q) σ̂
j,q
n,n +

∞∑
n=−∞

~χnĴ −n Ĵ +
n , (7.54)

where the coherent and dissipative coupling strengths, χn and Γn, are defined as

χn =

(
g2|β|
4∆c

)2
δn

κ2/4 + δ2
n

, Γn =

(
g2|β|
4∆c

)2
κ/2

κ2/4 + δ2
n

, (7.55)

with δn ≡ ∆cl − 4ωr (1 + 2n). (Section 7.6.1).

7.7 Numerical solution: Cumulant theory for one and two-atom operators

To make computations tractable, we assume that the n↓, n↑ centers form a closed two-level

system while studying the collective spin dynamics using the master equation, Eq. (7.53). To this

effect, we truncate Eq. (7.53) as

˙̃ρa =
1

i~

[
ĤT

eff, ρ̃a

]
+ 2Γn↓L[Ĵ +

n↓
]ρ̃a, (7.56)

where the truncated Hamiltonian is

ĤT
eff =

N∑
j=1

∑
n=n↓,n↑

∫ ∞
−∞

dq (8n~ωr) (q̃σ̃q) σ̂
j,q
n,n + ~χn↓Ĵ −n↓Ĵ

+
n↓
. (7.57)

We recall that, with σ̃q = 0, the effective Hamiltonian, Eq. (7.57), is analogous to the standard spin

exchange/one-axis twisting model studied for closed two-level systems coupled to a cavity [76, 53,

88, 72] (also compare with Eq. (7.3)), and provides a reference model against which complications

arising from the nature of momentum states can be contrasted.
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Exact solutions even for the truncated master equation, Eq. (7.56), are computationally

intractable because of the exponential scaling of the Liouville space with atom number. We use

an approximate method where we only keep track of expectation values of single atom and two

atom operators, of the type 〈σ̂1,q
na,nb〉 and 〈σ̂1,q

na,nb σ̂
2,q′
nc,nd〉, where the n values can take either n↓ or

n↑. Since we are ignoring the other momentum centers, we refer to this model as the two-center

model (TCM). Furthermore, for the numerical simulation, we consider 2L + 1 discrete q̃ values

to sample the Gaussian wavepacket within rσq from center, where r is a small natural number,

typically r = 3. As a result, we have

q̃j =

(
j

L
− 1

)
r, j = 0, 1, . . . , 2L. (7.58)

For the one-atom operators, the evolution of the expectation value is given by the following

equation.

d

dt
〈σ̂1,q̃
na,nb
〉 = −

(
Γn↓

(
δna,n↓ + δnb,n↓

)
+ iχn↓

(
δnb,n↓ − δna,n↓

)
+ 8iωr(nb − na)q̃

)
〈σ̂1,q̃
na,nb
〉

+ δna,n↑δnb,n↑2Γn↓〈σ̂1,q̃
n↓,n↓
〉

+ δnb,n↑(N − 1)λ∗n↓

∑
j

〈σ̂1,q̃
na,n↓

σ̂
2,q̃j
n↓,n↑〉

− δnb,n↓(N − 1)λn↓
∑
j

〈σ̂1,q̃
na,n↑

σ̂
2,q̃j
n↑,n↓〉

+ δna,n↑(N − 1)λn↓
∑
j

〈σ̂1,q̃
n↓,nb

σ̂
2,q̃j
n↑,n↓〉

− δna,n↓(N − 1)λ∗n↓

∑
j

〈σ̂1,q̃
n↑,nb

σ̂
2,q̃j
n↓,n↑〉, (7.59)

where λn = Γn + iχn and the index j runs from 0 to 2L.

The expectation values of two-atom operators are governed by the following equation.

d

dt
〈σ̂1,q̃
na,nb

σ̂2,q̃′
nc,nd
〉 = −

(
Γn↓

(
δna,n↓ + δnb,n↓ + δnc,n↓ + δnd,n↓

)
+iχn↓

(
δnb,n↓ − δna,n↓ + δnd,n↓ − δnc,n↓

)
+8iωr

(
(nb − na) q̃ + (nd − nc) q̃′

))
〈σ̂1,q̃
na,nb

σ̂2,q̃′
nc,nd
〉

− δnb,n↓δnd,n↑λn↓〈σ̂1,q̃
na,n↑

σ̂2,q̃′
nc,n↓
〉 − δna,n↑δnc,n↓λ∗n↓〈σ̂

1,q̃
n↓,nb

σ̂2,q̃′
n↑,nd
〉
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− δnb,n↑δnd,n↓λn↓〈σ̂1,q̃
na,n↓

σ̂2,q̃′
nc,n↑
〉 − δna,n↓δnc,n↑λ∗n↓〈σ̂

1,q̃
n↑,nb

σ̂2,q̃′
n↓,nd
〉

+ δna,n↑δnb,n↑2Γn↓〈σ̂1,q̃
n↓,n↓

σ̂2,q̃′
nc,nd
〉+ δnc,n↑δnd,n↑2Γn↓〈σ̂1,q̃

na,nb
σ̂2,q̃′
n↓,n↓
〉

+ δnb,n↑δnc,n↑2Γn↓〈σ̂1,q̃
na,n↓

σ̂2,q̃′
n↓,nd
〉+ δna,n↑δnd,n↑2Γn↓〈σ̂1,q̃

n↓,nb
σ̂2,q̃′
nc,n↓
〉

+ δna,n↑(N − 2)λn↓
∑
j

〈σ̂1,q̃
n↓,nb

σ̂2,q̃′
nc,nd

σ̂
3,q̃j
n↑,n↓〉

− δna,n↓(N − 2)λ∗n↓

∑
j

〈σ̂1,q̃
n↑,nb

σ̂2,q̃′
nc,nd

σ̂
3,q̃j
n↓,n↑〉

+ δnc,n↑(N − 2)λn↓
∑
j

〈σ̂1,q̃
na,nb

σ̂2,q̃′
n↓,nd

σ̂
3,q̃j
n↑,n↓〉

− δnc,n↓(N − 2)λ∗n↓

∑
j

〈σ̂1,q̃
na,nb

σ̂2,q̃′
n↑,nd

σ̂
3,q̃j
n↓,n↑〉

+ δnb,n↑(N − 2)λ∗n↓

∑
j

〈σ̂1,q̃
na,n↓

σ̂2,q̃′
nc,nd

σ̂
3,q̃j
n↓,n↑〉

− δnb,n↓(N − 2)λn↓
∑
j

〈σ̂1,q̃
na,n↑

σ̂2,q̃′
nc,nd

σ̂
3,q̃j
n↑,n↓〉

+ δnd,n↑(N − 2)λ∗n↓

∑
j

〈σ̂1,q̃
na,nb

σ̂2,q̃′
nc,n↓

σ̂
3,q̃j
n↓,n↑〉

− δnd,n↓(N − 2)λn↓
∑
j

〈σ̂1,q̃
na,nb

σ̂2,q̃′
nc,n↑

σ̂
3,q̃j
n↑,n↓〉 (7.60)

To close the set of equations, we factorize the three-atom expectation values as

〈σ̂1,q̃
na,nb

σ̂2,q̃′
nc,nd

σ̂3,q̃′′
ne,nf

〉 ≈ 〈σ̂1,q̃
na,nb

σ̂2,q̃′
nc,nd
〉〈σ̂1,q̃′′

ne,nf
〉+ 〈σ̂1,q̃′

nc,nd
σ̂2,q̃′′
ne,nf

〉〈σ̂1,q̃
na,nb
〉

+ 〈σ̂1,q̃′′
ne,nf

σ̂2,q̃
na,nb
〉〈σ̂1,q̃′

nc,nd
〉 − 2〈σ̂1,q̃

na,nb
〉〈σ̂2,q̃′

nc,nd
〉〈σ̂1,q̃′′

ne,nf
〉. (7.61)

To speed up computation, we identify “partial sums” which are recurring summations that appear

in the evaluation of the right-hand-side of Eq. (7.59) and Eq. (7.60) for each q̃, q̃′, and evaluate

these partial sums only once per time step (See Appendix A in Ref. [111]).

As in the MCM, the initial conditions are determined by the state described in Eq. (7.27).

The one-atom expectation values are initialized as

〈σ̂1,q̃
n↓,n↓

(0)〉 =
1

N
e−q̃

2/2

√
2π

∆q̃, (7.62)

where ∆q̃ = r/L is the spacing between adjacent q̃ values and the normalization constant

N =

2L∑
j=0

e−q̃
2
j /2

√
2π

∆q̃ (7.63)
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ensures that the norm of the initial density matrix is unity even with a finite number of samples.

The two-atom expectation values are initialized as

〈σ̂1,q̃
n↓,n↓

σ̂2,q̃′
n↓,n↓

(0)〉 = 〈σ̂1,q̃
n↓,n↓

(0)〉〈σ̂1,q̃′
n↓,n↓

(0)〉. (7.64)

Next, an instantaneous rotation transforms these quantities to correspond to a state that is

an equal superposition of n↓, n↑ (Appendix B.1). The identical initial conditions for each atom and

the permutation symmetry of the master equation enable us to avoid separate indices for every

atom in the system, with the number of atoms N explicitly appearing in the equations for the

quantities 〈σ̂1,q
na,nb〉 and 〈σ̂1,q

na,nb σ̂
2,q′
nc,nd〉.



Chapter 8

Squeezing on momentum pseudospins: Results

We are now ready to investigate the efficiency of our proposed momentum-pseudospin squeez-

ing scheme. As a concrete example, we consider parameters relevant for Bragg transitions on the

1S0 − 3P1 transition in Strontium [31]. We show that appreciable spin squeezing can be demon-

strated using modest laser powers. First, we introduce the figure of merit for spin squeezing and

outline the considerations leading to our choice of parameters. Then, we study the interplay of

squeezing and superradiance, the dynamics under very fast squeezing, and the effect of a non-zero

momentum width. We also discuss the manifestation of an experimentally observable many-body

energy gap. We conclude this chapter with comments on the results and possible extensions of this

work.

8.1 Spin squeezing: Figure of merit

The Ĵ zn↓Ĵ zn↓ term implicit in Eq. (7.57) (see Eq. (7.4)) can be exploited to prepare spin

squeezed states. We recall that the Wineland squeezing parameter ξ2
R [76] is defined as

ξ2
R =

1

C2

Vmin

VSQL
. (8.1)

Here, the contrast C is given by

C =
|〈Ĵn↓〉|
N/2

, (8.2)

where Ĵn↓ = Ĵ xn↓ x̂+ Ĵ yn↓ ŷ+ Ĵ zn↓ ẑ. For a given state, Vmin is the variance in a spin component in the

plane perpendicular to the mean spin direction (characterized by the unit vector n̂MSD), minimized
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over all axes in this plane. Mathematically,

Vmin = min
n̂⊥n̂MSD

〈(
Ĵn↓ · n̂

)2
〉
. (8.3)

VSQL = N/4 sets the corresponding SQL for unentangled atoms and is the variance of any spin

component in this plane for a coherent spin state [76].

8.2 Considerations for choosing parameters

First, we note that the single atom-cavity vacuum Rabi frequency can be expressed as g =

√
Cκγ, where C is the cooperativity of the cavity and γ is the inverse lifetime of the excited state.

Our model imposes two constraints that limit |β| to the range

1� |β| � ∆c√
Cκγ

, (8.4)

where we have used g =
√
Cκγ. The lower bound |β| � 1 allows us to treat mode 1 as a classical

field represented by the c-number β. The upper bound ensures that the excited state |e〉 is negligibly

populated, i.e.

g2|β|2
4∆2

c

� 1, (8.5)

thereby ensuring that the adiabatic elimination of |e〉 is valid. We work with |β| values such that

|β| ≥ 100 and the excited state population is ≤ 0.01.

The constraint imposed by Eq. (8.4) translates to requirements on the laser power and limits

on the squeezing rate. We express these requirements in terms of a ratio R characterizing the

relative strength of the dissipative and dispersive interactions, defined as

R =
Γn↓
χn↓

=
κ

2δn↓
. (8.6)

Experimentally, the steady-state photon number |β|2 in mode 1 is set by the power in the

drive laser as

|β|2 =
κ

κ2/4 + ∆2
cl

(
P

~ωl

)
≈ 4R2P

~ωlκ
, (8.7)
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where the approximation assumes that δn↓ � ωr so that ∆cl ≈ δn↓ , and that the interactions are

in the dispersive regime i.e. R2 � 1. From Eq. (8.4) the required laser power range is

2500κ

R2
≤ P

~ωl
≤ ∆2

c

100CγR2
. (8.8)

In standard one-axis twisting with closed two level systems, squeezing proceeds at a charac-

teristic rate Q = Nχn↓ [53, 72, 76]. From Eq. (7.55), the rate of squeezing Q is proportional to

|β|2, and consequently, the input power P , as

Q ≈ |β|2 γ
2κ

8∆2
c

NC2R ≈
(
P

~ωl

)
NC2γ2R3

2∆2
c

, (8.9)

where we have assumed R2 � 1. Therefore, Q is constrained to the range[
1250 R

(
κCγ

∆2
c

)]
NCγ ≤ Q ≤ R

200
NCγ. (8.10)

8.3 Parameters for the 1S0 − 3P1 transition in 88Sr

Although our scheme is applicable to a wide variety of atomic species, here we consider

its efficiency when it is implemented on the 689 nm 1S0 − 3P1 transition of 88Sr. Our choice

is motivated by the advantages of using ground-state 88Sr in Bragg interferometers [31], such

as its extremely small scattering cross-section, insensitivity to stray magnetic fields and ease of

experimental manipulation, including accessing the parameter regimes required for our scheme.

The inverse lifetime of the excited state is γ/2π = 7.6 kHz while the single photon recoil frequency

is ωr/2π = 4.74 kHz. The spin-1/2 system is encoded in |↓〉 ≡ |1S0, 0~k〉 and |↑〉 ≡ |1S0, 2~k〉

implying that n↓ = 0, n↑ = 1. We consider N = 103 atoms in a cavity with decay rate κ/2π = 100

kHz, and with either of two cooperativities, C = 1 (C = 10). The single atom-cavity vacuum Rabi

frequency g =
√
Cκγ then takes the value g/2π ≈ 27.6 kHz (87.2 kHz). We assume that the cavity

resonance is detuned from the atomic transition such that ∆c/2π = 200 MHz.

Squeezing by one-axis twisting occurs when the dispersive interactions dominate, correspond-

ing to the regime R � 1. We consider R in the range 0.025 − 0.2 in our study, corresponding to
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δn↓/2π ≤ 2 MHz. We operate in the regime ∆c � NCRγ, which ensures that the squeezing in-

duced fields in both the modes, 1 and 2, are small compared to the macroscopic field |β| in mode

1. Further model-enforced constraints (Section 8.2) restrict the photon number in mode 1, |β|2,

to the range 1 × 104 − 2 × 106 (1 × 104 − 2 × 105). Experimentally, these constraints translate

to varying the power P in the drive laser in a range 10 nW − 150 µW (10 nW − 15 µW), and

achievable squeezing rates Q/2π in the range 5 Hz− 7.6 kHz (0.5 kHz− 76 kHz) (Section 8.2). We

only consider squeezing rates such that Q/δn↓ � 1 (< 1/50 in all simulations), allowing for the

adiabatic elimination of mode 2 in deriving the two-center model (see Section 7.6.1.1). Even in this

regime, while very slow rates are undesirable from a technical perspective, very fast squeezing with

Q & ωr leads to coupling with momentum states outside the pseudospin manifold and degrades the

squeezing, as we will demonstrate.

Finally, to account for the momentum width of the atomic cloud, we consider values σ̃q ≤ 0.1

to satisfy the requirement, Eq. (7.17), of our model. The dephasing rate µd = 4
√

2ωrσ̃q associates

a characteristic timescale to the momentum width. Specifically, for a collection of atoms initialized

in the same, equal superposition between the two centers n↓, n↑ and undergoing free evolution,

the contrast C decays as C(t) = e−µ
2
dt

2
. With σ̃q ≤ 0.1, the corresponding maximum rate is

µd/2π = 2.7 kHz.

8.4 Limits set by superradiance

We first consider the case of σ̃q ≈ 0, i.e. negligible momentum width. Figure 8.1(a) plots the

evolution of the spin squeezing parameter in the C = 1 case for values of R in the range 0.025−0.2,

and with |β|2 ≈ 5.4 × 105. Modest laser powers, up to 40 µW, are sufficient to maintain this

intracavity photon number for the range of R considered here (Section 8.2). In this parameter

regime, the TCM (dashed) and MCM (solid) results agree excellently until ξ2
R reaches its minimum

value. The minimum value of ξ2
R arises as a trade-off between the twisting dynamics that decreases

Vmin (Eq. (8.1) and fluctuations in superradiant decay from n↓ to n↑ that increase this quantity

[53, 72]. For smaller R, the larger value of δn↓ strongly suppresses dissipation relative to dispersive
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interactions (Eq. (7.55)), leading to improved squeezing, i.e. smaller values of ξ2
R. However, for

fixed |β|2, the absolute squeezing rate Nχn↓ also decreases with larger δn↓ (Eq. (7.55)), leading to

slower squeezing dynamics. Therefore, as summarized in the inset, smaller R values enable greater

metrological gain, but the time taken for squeezing also increases when |β|2 is fixed.

Figure 8.1: Interplay of squeezing and superradiance for different R = κ/2δn↓ values. (a) Evolution
of ξ2

R for R = 0.025, 0.05, 0.1, 0.2. Inset: Maximum metrological gain (in dB) and time taken
to achieve this gain. (b) Population in n↓, n↑ for R = 0.2, with total population in all centers
adding up to N = 103. (c) Population in n+1 for different R values. In this panel, N = 103, C = 1,
|β|2 ≈ 5.4×105. Solid (dashed) lines represent MCM (TCM) results. Four centers, n↓, n↑, n+1, n+2,
were tracked in the MCM simulations, with negligible population in n+2.

The population dynamics at the different momentum centers reveal the effect of superradi-

ance. Figure 8.1(b) shows the evolution of populations in n↓, n↑ for the case of R = 0.2. The rapid

decrease (increase) in n↓ (n↑) population reflects superradiant decay on the n↓ → n↑ transition.

Further, the MCM enables an investigation of the leakage to centers outside the spin manifold,

highlighting the power of this technique. We denote the first k centers higher than n↑ as n+k, and

the first k centers lower than n↓ as n−k. The MCM reveals that a small number of atoms (< 10)

are lost to n+1 during the squeezing dynamics, as seen in Fig. 8.1(c) for the various R values.

However, the excellent agreement between the TCM and MCM results in Fig. 8.1(a) indicates that

in this parameter regime, the centers n↓, n↑ can be effectively treated as a closed two-level spin-1/2
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manifold.

8.5 Squeezing faster and faster

A simple two-level model, such as the TCM, would predict that the squeezing rate can be

arbitrarily increased by simply pumping in more laser power so that |β|2 is increased. Figure 8.2(a)

explores the evolution of ξ2
R in the case C = 10, R = 0.05 (δn↓/2π = 1 MHz) for different values

of |β|2/104 in the range 2− 16. As expected, the TCM (dashed) predicts that ξ2
R attains the same

minimum value faster when |β|2 is increased. However, the MCM results (solid) present a different

narrative: As |β|2 increases, ξ2
R indeed attains its minimum faster, but this value also increases,

signaling a degradation of squeezing. In fact, the metrological gain ξ−2
R drops by ∼ 3 dB (factor of

2) as |β|2 increases from 2× 104 to 16× 104.

Large oscillations in the MCM curves as |β|2 is increased indicates the breakdown of the two-

center model. A study of the population dynamics at the different centers confirms this breakdown.

As seen in Fig. 8.2(b), although the populations in n↓ (n↑) follow the general decreasing (increasing)

trend expected from n↓ → n↑ superradiant decay, the TCM and MCM population transients

significantly differ in the case of strong driving (|β|2/104 = 16). Further, the MCM transients

display pronounced oscillations with a frequency ∼ 8ωr, corresponding to the relative detuning

between the n↓ ↔ n↑ and n↑ ↔ n+1, n−1 ↔ n↓ transitions.

Giant population oscillations in n±1, shown in Fig. 8.2(c-d), confirm the significant participa-

tion of these centers in the dynamics as |β|2 increases. A simple Rabi oscillation model qualitatively

explains the occupation of these states: The coherent superposition of the n↓, n↑ centers serves as

a large collective spin that sources mode 2. Both cavity modes, 1 and 2, are now macroscopically

occupied and drive two-photon Rabi oscillations between n↓ ↔ n−1 and n↑ ↔ n+1 with approxi-

mate two-photon detuning 8ωr. We find that the maximum population Pmax
n±1

in n±1 predicted by

this model is given by (see Appendix B.2)

Pmax
n±1
≈ N

2

(
Nχn↓
8ωr

)2

. (8.11)



128

Figure 8.2: Squeezing faster and faster. (a) Evolution of ξ2
R for |β|2/104 = 2, 4, 8, 16. (b) Population

in n↓, n↑ for |β|2/104 = 16, with total population in all centers adding up to N = 103. Solid
(dashed) lines represent MCM (TCM) results. (c-d) Population in, respectively, n−1 and n+1

centers, for various drive strengths. (e) Comparison of simulated n±1 populations to analytic result
of Rabi oscillation model (see Text). In this panel, N = 103, C = 10 and R = 0.05. Six centers,
n−2, n−1, n↓, n↑, n+1, n+2, were tracked in the MCM simulations with very low populations in n±2.

Figure 8.2(e) compares the first oscillation peak in the n±1 populations with the analytic formula

Eq. (8.11). For small occupations (small |β|2), the formula agrees very well with the simulations,

whereas the discrepancy becomes about a factor of 2 at the largest occupation (|β|2 = 16 × 104).

In this strong driving regime, the coherence that develops between n↑, n+1 and n↓, n−1 is no longer

negligible and modifies the field in mode 2 considerably, leading to the breakdown of the simple

Rabi oscillation picture presented here (Appendix B.2).

Finally, we note that Fig. 8.2(c) (Fig. 8.2(d)) displays trends such as the decrease (increase)

in the amplitude of population oscillations in n−1 (n+1) over time and the gradual deviation of

the oscillation troughs from zero. These features likely arise from the complex interplay of the
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Rabi flopping and cavity mediated superradiant decay on the n↓ → n↑, n−1 → n↓ and n↑ → n+1

transitions.

8.6 Effect of momentum width

We now consider the case when the atomic cloud has non-zero momentum width. For this

study, we use the parameters from Fig. 8.2, i.e. C = 10 and |β|2/104 = 2, 4, 8, 16. Fig. 8.3(a) shows

the evolution of ξ2
R for σ̃q = 0, 0.025, 0.05 and 0.1 in the case when |β|2/104 = 4. In this panel,

the solid and dashed curves respectively indicate the MCM and TCM models. Three trends can

be observed from this figure: (T1) When the rate of squeezing is fast relative to the dephasing

(∝ σ̃q), the ξ2
R transient is similar (blue) to the zero width case (red) while the minimum value

attained is greater indicating slight degradation of squeezing. (T2) For larger momentum width, the

ξ2
R transient displays oscillatory behavior signifying competition between squeezing and dephasing

(orange). (T3) As the width increases further and dephasing dominates, ξ2
R initially decreases

slightly but then steeply increases to values well above unity, signaling rapid loss of squeezing

(black).

These trends are summarized in Fig. 8.3(b), where the maximum metrological gain achievable

is plotted as a function of |β|2 for different values of σ̃q. The σ̃q = 0 case (red) reflects the study

performed in Fig. 8.2 and shows that very strong driving lead to loss of squeezing as a result

of coupling to other momentum centers. At the other extreme is the case of σ̃q = 0.1 (black),

where rapid dephasing leads to a complete loss of squeezing for weak driving, and barely observable

squeezing (∼ 2 dB) even for very strong driving. For intermediate widths σ̃q = 0.025, 0.05 (blue,

orange), the squeezing suffers at both ends, with dephasing restricting the squeezing at weak driving,

and coupling to other centers serving as a limitation at very strong driving. For these widths, an

optimum drive strength therefore exists where the metrological gain is maximized, as reflected by

the variation of the gain for the four cases of |β|2 considered here.

As Fig. 8.3(a) exemplifies, we observe that the TCM (dashed) typically qualitatively repro-

duces the features seen in the MCM (solid) when studying the effect of momentum width. Except at
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Figure 8.3: Squeezing in the presence of momentum width. (a) Evolution of ξ2
R in the case of

|β|2/104 = 4 for σ̃q = 0, 0.025, 0.05, 0.1. Solid (dashed) lines represent MCM (TCM) results. (b)
Maximum metrological gain as a function of drive strength for different σ̃q values. (c) Evolution of
ξ2

R in the TCM for σ̃q = 0.1 and |β|2/104 = 2 when NE = 0, 1, 2, 4 echo pulses are inserted. The
NE = 1, 2, 4 cases evolve identically to the NE = 0 case until the first echo is applied (at different
times in the three cases). The gray broken line shows the σ̃q = 0 case with no echoes. (d) Evolution
of the constituents, C and Vmin of ξ2

R in the TCM when NE = 2 echo pulses are inserted. Other
details are the same as in Fig. 8.2.

very strong driving, the TCM and MCM agree reasonably well in the (T1) cases until the minimum

squeezing time, after which the MCM rises very steeply compared to the TCM. In the (T2) cases,

both models capture the oscillatory behavior but can be very different quantitatively. Finally, both

models agree very well in the (T3) case. The difference in the two models is not only because of

the extra momentum centers tracked by the MCM, but also because of the approximations used in

solving for the dynamics in these models. In the TCM model, we force all non-trivial three-atom
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correlations to zero using a systematic truncation scheme (Section 7.7). However, the MCM is a

TWA-style approach that can, in general, capture the build-up of non-trivial three-atom correla-

tions, which should be anticipated in an interacting system such as the one considered here. As

an example, the general steep increase of the MCM curves after the minimum squeezing time in

the (T1) cases is a manifestation of the effect of three-atom correlations, also visible in the cases

plotted in Fig. 8.2(a). On the other hand, the superposed oscillations at frequency ∼ 8ωr are a

result of coupling to the n±1 momentum centers.

The dephasing-induced degradation of squeezing can in fact be reversed. To elucidate this

point, we consider the case of |β|2/104 = 2 and σ̃q = 0.1, a situation where achieving squeezing

is seemingly hopeless because of weak driving and rapid dephasing (red curve in Fig. 8.3(c)). As

a minimal toy model to illustrate our protocol, we consider the TCM and interrupt the squeezing

dynamics with a series of ‘instantaneous’ echo pulses (Appendix B.1.2). In a frame rotating at 4ωr,

the axis of rotation for these echoes is the same as that of the initial π/2-pulse used for preparing

the equal superposition of the n↓ = 0, n↑ = 1 centers. Figure 8.3(c) shows the evolution of ξ2
R

when NE = 0, 1, 2, 4 echo pulses are inserted during the course of the squeezing dynamics. The

gray broken line shows the evolution of ξ2
R when σ̃q = 0. The timing of the NE > 0 echo pulses are

such that they approximately divide the time to achieve the minimum ξ2
R in the σ̃q = 0 case (∼ 0.3

ms) into a sequence of T, 2T, . . . , 2T, T segments, where the number of 2T segments is NE − 1.

The insertion of echo pulses leads to a revival of ξ2
R as it periodically attains minima < 1 as the

spins re-phase after an echo pulse is applied. Increasing the number of such echoes prevents ξ2
R from

blowing up to very large values at any point during its evolution and also maintains the periodically

attained minima close to the σ̃q = 0 transient.

The applicability of such a protocol to revive the squeezing parameter goes beyond only

momentum pseudospins, and is useful on a variety of platforms where squeezing is desired in the

presence of unavoidable on-site disorder, for example, in the case of NV centers. For a practical im-

plementation using momentum pseudospins, the non-zero echo pulse duration ( & 2π/4ωr to avoid

leakage to centers outside n↓ = 0, n↑ = 1) and the effect of momentum width on pulse efficiency
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[118] have to be considered. Nevertheless, with suitable choice of parameters, we anticipate partial

revivals in ξ2
R to be observable despite these deviations from our toy model.

Finally, we investigate the constituent observables of the spin squeezing parameter to better

understand this strong revival phenomenon. From Eq. (8.1), ξ2
R comprises of two observables,

namely, C (Eq. (8.2)) and Vmin (Eq. (8.3)). Figure 8.3(d) plots the evolution of these observables as

well as ξ2
R for the case of NE = 2. The re-phasing of the spins after each echo leads to the expected

increase of C. However, Fig. 8.3(d) shows that this increase alone is not responsible for the strong

revival of ξ2
R. As the spins re-phase, Vmin also reaches its minima close to the times when C peaks,

thereby leading to sharp dips in ξ2
R.

8.7 Collective physics with a many-body energy gap

Apart from squeezing, yet another type of collective behavior manifests as a result of the

cavity mediated atom-atom interactions. We consider the observable C⊥, defined as the normal-

ized length of the projection of the Bloch vector on to the equatorial plane of the Bloch sphere.

Mathematically,

C⊥ =

√
〈Ĵ xn↓〉2 + 〈Ĵ yn↓〉2

N/2
. (8.12)

Figure 8.4(a) plots the evolution of C⊥ in the case σ̃q = 0.05 for different values of |β|2/104 = 2, 4, 8.

The TCM (dashed) and the MCM (solid) are in qualitative agreement in all cases and in quantitative

agreement when dephasing dominates, i.e. for weak driving (red). The gray broken line shows

the corresponding decay of C⊥ for freely evolving atoms, i.e. with no interactions, which obeys

the analytical expression C⊥(t) = e−µ
2
dt

2
, where µd = 4

√
2ωrσ̃q. Clearly, interactions lead to an

observably slow decay of contrast compared to the free evolution case.

The effective Hamiltonian, Eq. (7.57), provides insight into the slow decay of C⊥ in the

presence of interactions. We note that for any n,

Ĵ −n Ĵ +
n = Ĵn · Ĵn − Ĵ zn Ĵ zn − Ĵ zn . (8.13)



133

Figure 8.4: Manifestation of a many-body energy gap. (a) Evolution of C⊥ for σ̃q = 0.05 for different
values of |β|2/104 = 2, 4, 8. (b) TCM results using the same parameters as in (a), but with the gap
Hamiltonian ĤG turned off. The gray broken line in each case shows the decay of C⊥ under free
evolution. Solid (dashed) lines represent MCM (TCM) results. Other details are the same as in
Fig. 8.2.

We introduce the many-body gap Hamiltonian, ĤG = ~χn↓ Ĵn↓ · Ĵn↓ . The initial uncorrelated

many-body state can be visualized as a coherent spin state in the equatorial plane of the Bloch

sphere corresponding to the maximum quantum number Jn↓ = N/2 associated with the operator

Ĵn↓ · Ĵn↓ . In other words, this initial state satisfies

〈Ĵn↓ · Ĵn↓(0)〉 =
N

2

(
N

2
+ 1

)
, C⊥(0) = 1. (8.14)

The first term of Ĥeff in Eq. (7.57) is not collective, causing dephasing of individual spins that

leads to shortening of the mean spin length and populates shells of lower Jn↓ . The presence of ĤG

introduces an energy penalty for populating shells of lower Jn↓ . Specifically, ĤG dictates that

ĤG |Jn↓ ,MJn↓
〉 = ~χn↓Jn↓

(
Jn↓ + 1

)
, (8.15)

implying that the transition to a lower shell, Jn↓ → Jn↓ − 1, incurs an energy penalty

|∆E(
Jn↓→Jn↓−1

)| = 2~χn↓Jn↓ . (8.16)

As a result, individual atom dephasing is slowed down, leading to slower decay of C⊥.

We verify this qualitative explanation in Fig. 8.4(b), where we study the dynamics of C⊥

under the TCM with the gap Hamiltonian ĤG turned off. The decay of C⊥ is then in excellent
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agreement with the free evolution case, although interactions are present through the remaining

terms in Eq. (7.57) and the dissipative term of Eq. (7.56).

Investigations with the TCM indicate that the presence of the gap Hamiltonian ĤG is an

advantage from a metrology perspective. The slow decay of contrast leads to a smaller value for the

minimum squeezing parameter ξ2
R compared to the case when ĤG is turned off. Further, the subse-

quent rise of ξ2
R after the minimum value is attained is slowed down when ĤG is present. We note

that the non-zero momentum spread is an intrinsic source of dephasing in a Bragg interferometer,

and the cavity-mediated interactions we engineer naturally provide a many-body gap protection

that suppresses this dephasing.

In general, our results are consistent with other examples that confirm that the presence

of a many-body gap arising from correlations can supresses adverse effects of single-atom deco-

herence [88] and potentially contribute to extending the coherence time for precision metrology.

This ability to engineer many-body correlations driven either by mediated interactions or particle

statistics represents an emerging paradigm for advanced metrology [74].

8.8 Final comments and possible extensions

For studying various aspects of the problem, we have focused on the 1S0 − 3P1 transition in

88Sr as an example, working in parameter regimes where < 10 dB of metrological gain is achievable

in a few hundred microseconds to a few milliseconds based on the driving strength. While more than

sufficient for a proof-of-principle experiment, we expect that with suitable choice of parameters—

small momentum width, small ratios of dissipative to dispersive interactions (R = κ/2δn↓) and

moderately strong driving strengths, ∼ 10 dB of metrological gain can be achieved. Such parameters

are within the reach of current technology: State-of-the-art cooling and velocity selection techniques

are able to provide samples with σ̃q . 0.01 while still ensuring appreciable atom numbers [66, 54].

The R value can be tuned to smaller values by detuning the drive laser farther away from the cavity

resonance. Strong driving at large detunings is not a problem since modern lasers are able to deliver

orders of magnitude more power than the hundreds of microwatts required in our proof-of-principle



135

parameter regimes. In addition to squeezing, the same experimental setup can also be used to

demonstrate and explore collective physics associated with the opening of a many-body energy gap

by measuring a different observable, namely the contrast C⊥ (Eq. (8.12)).

While in principle the R value can be made arbitrarily small to suppress superradiance and

greatly improve the squeezing, with fixed atom number the power required to squeeze at a specified

rate Q rapidly increases as 1/R3 (Eq. (8.9)), motivating considerations of elegant related schemes

that are not as sensitive to superradiance. Recent schemes developed for squeezing on optical clock

transitions circumvent this problem by either squeezing faster using a twist and turn mechanism

achieved by introducing a resonant drive [53] or by an unconventional choice of initial state that

drives the squeezing in a spin component orthogonal to that affected by superradiant decay [72].

The former can be implemented on momentum pseudospins using an additional pair of resonant

Bragg lasers injected, for example, one free spectral range away from the cavity mode used for

squeezing. The latter scheme requires an initial state with two ensembles pointing along opposite

directions in the equatorial plane of the Bloch sphere. It can be implemented by launching two

clouds with equal number of atoms which are initially in the n↓ and n↑ states respectively and

applying a common π/2-pulse to rotate them to the equatorial plane. However, in either case, a

careful study of the effects of momentum width and potential leakage to other momentum centers

has to be performed. The techniques developed here can be readily used to undertake such a study.

The latter scheme, combined with differential rotations on the two ensembles [31], can potentially

be used to implement an entangled atom Bragg gradiometer.

Since our scheme relies on emission and absorption of a cavity photon, it is only applicable to

states separated by 2~k. Nevertheless, the squeezing can be transferred to higher diffraction orders

by subsequently applying large momentum transfer pulses [21, 93]. Finally, our scheme has natural

extensions [50] to circumvent situations where the detection noise limits the utility of the prepared

spin squeezed states for metrology. By adjusting the frequency of the drive laser, the sign of the

squeezing interaction can be reversed, thereby making our scheme amenable to interaction-based

readout schemes such as twisting echoes [30] that achieve precision below the standard quantum
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limit even in the presence of detection noise [87, 37].

From a modeling standpoint, while simulations with N = 103 atoms only require modest

computational resources, the favorable linear scaling of the multi-center model nevertheless allows

a straightforward extension to simulating atomic sources with larger number of atoms. Moreover,

our results are directly relevant to potential proof-of-principle experiments with small atomic clouds.

The unraveling of the dynamics into phase space trajectories is enabled by considering initial atomic

density matrices that have a momentum width but are still diagonal in the momentum basis.

The finite spatial extent of realistic atomic sources implies the presence of some degree of initial

coherence between the various momentum components. In future work, we will explore possible

extensions of our model to study the effects of such initial coherences on the squeezing dynamics,

which may be particularly important for sources such as Bose-Einstein condensates launched from

strongly confining traps.

In addition to superradiant decay, single atom free-space scattering (FSS) also degrades the

squeezing. Superradiance, being collectively enhanced, is the dominant source of degradation in

most of the parameter regimes we have considered and therefore we have only focused on this

dissipation mechanism. The parameter regime where superradiance dominates FSS is R2 � 1/NC

(Appendix B.3), and therefore, FSS is not important when large atom numbers are used such

that this inequality is satisfied. Nevertheless, FSS can be straightforwardly included in both the

simulation models demonstrated here with very little computational overhead by accounting for

the corresponding Lindblad terms. The scaling of the multi-center model remains linear in atom

number since FSS occurs independently for each atom.

From a broader perspective, several mature atomic and atom-like platforms are beginning

to demonstrate exotic many-body phenomena such as discrete time crystals [135, 22], many-body

localization [61, 75] and dynamical phase transitions [59, 114]. Bragg interferometers operating in

cavities open avenues for engineering interactions, and the theoretical techniques we have developed

here can be used to explore the complex interplay of interactions, losses, disorder and global state

rotations in other configurations involving momentum pseudospins.
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Conclusion

In Chapter 1, we listed three focus areas for improved quantum metrology. Accordingly,

we first discussed the modeling and successful demonstration of near ground-state cooling of large

trapped ion crystals with more than 100 ions. Powered by the robust technique of laser cooling

by electromagnetically induced transparency, large ion crystals in Penning traps are now one step

closer to becoming improved motion sensors that can potentially aid in future dark matter searches.

Second, we presented a new technique to continuously and precisely track the relative phase of a

spin superposition. Our scheme was based on atoms interacting with a lossy cavity mode, which

was in turn monitored using homodyne detection. Such a scheme is expected to be useful for single-

shot tracking of irreproducible signals and for continuous, uninterrupted operation of microwave

atomic clocks. Finally, we proposed a scheme to engineer squeezing on momentum pseudospins for

use in atomic Bragg interferometers, a platform traditionally operating on single-atom physics and

where controllable atom-atom interactions have been hard to engineer till date. Our scheme can

help improve the measurement precision of such interferometers and also aid in studies of collective

quantum dynamics using momentum pseudospins. We also developed a numerical framework for

modeling interacting momentum pseudospins, which can be used to study a range of quantum

metrology and simulation protocols that are based on variants of Bragg interferometers. We hope

that the tools discussed and demonstrated in this thesis will soon contribute towards improving

quantum metrology on atomic platforms.
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Appendix A

Supplementary Material for Chapters 3 and 4

A.1 Equations of motion for first and second order moments

In Table A.1, we introduce a set of “partial sums” that not only simplify the notation, but

also speed up the computation time by identifying recurring summations and evaluating them only

once per time step. In addition, we split the equations of motion for each moment into three parts

that correspond respectively to L0, L1 and L2 contributions from the master equation, Eq. (3.11).

A.1.1 Internal moments

The dynamics of the internal moments are governed by the following equations.

L0 contribution

d

dt
〈σjg1g1

〉 = − i
2

(
Ω∗1,j〈σjg1e〉 − c.c.

)
+ Γ1

(
1− 〈σjg1g1

〉 − 〈σjg2g2
〉
)

Symbol Definition

PXµ,j
∑

m λ
µ
jm〈Xm〉

PXXµ,j

∑
l,m λ

µ
jlλ

µ
jm〈XlXm〉

PbXµ,jn
∑

m λ
µ
jm〈bnXm〉

PdXµ,jn
∑

m λ
µ
jm〈b

†
nXm〉

PXσαµ,j

∑
m λ

µ
jm〈Xmσ

j
α〉

PXσαµ,[qj]

∑
m λ

µ
qm〈Xmσ

j
α〉

Table A.1: Definition of partial sums to simplify notation and speed up computation. The symbols
Xm and λµjm are defined after Eq. 3.13.
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d

dt
〈σjg1g2

〉 = i (∆1,j(t)−∆2,j(t)) 〈σjg1g2
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2
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L1 contribution
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dt
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2
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L2 contribution
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(A.3)

A.1.2 External moments

In the following equations, the index µ takes on values 1, 2 to account for the two EIT lasers.

L0 contribution

d

dt
〈bn〉 = −iωn〈bn〉

d

dt
〈bnbk〉 = −i(ωn + ωk)〈bnbk〉

d

dt
〈b†nbk〉 = −i(ωk − ωn)〈b†nbk〉 (A.4)

L1 contribution

d

dt
〈bn〉 + = −

∑
µ,j

λµjn
2

(
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)



150

d

dt
〈bnbk〉 + = −

∑
µ,j

λµj,n
2

(
Ω∗µ,j〈bkσjgµe〉 − Ωµ,j〈bkσjegµ〉

)
+ n↔ k


d

dt
〈b†nbk〉 + =

∑
µ,j

λµj,n
2

(
Ω∗µ,j〈bkσjgµe〉 − Ωµ,j〈bkσjegµ〉

)
−
∑
µ,j

λµj,k
2

(
Ω∗µ,j〈bnσjegµ〉∗ − Ωµ,j〈bnσjgµe〉∗

)
(A.5)

L2 contribution

d

dt
〈bn〉 + =

∑
µ,j

iλµj,n
2

(
Ω∗µ,jP

Xσgµe
µ,j + c.c.

)
d

dt
〈bnbk〉 + = −

∑
µ,j

Γµ〈u2〉egµλsc
µ,jnλ

sc
µ,jk(1− 〈σjg1g1

〉 − 〈σjg2g2
〉)

+

∑
µ,j

iλµj,n
2

(
Ω∗µ,j

{
(PdXµ,jk)∗〈σjgµe〉+ PXµ,j〈bkσjgµe〉+ PXσgµeµ,j 〈bk〉

− 2PXµ,j〈σjgµe〉〈bk〉
}

+ Ωµ,j

{
gµe→ egµ

})
+ n↔ k

}
d

dt
〈b†nbk〉 + =

∑
µ,j

Γµ〈u2〉egµλsc
µ,jnλ

sc
µ,jk(1− 〈σjg1g1

〉 − 〈σjg2g2
〉)

−
∑
µ,j

iλµj,n
2

(
Ω∗µ,j

{
(PdXµ,jk)∗〈σjgµe〉+ PXµ,j〈bkσjgµe〉+ PXσgµeµ,j 〈bk〉

− 2PXµ,j〈σjgµe〉〈bk〉
}

+ Ωµ,j

{
gµe→ egµ

})
+
∑
µ,j

iλµj,k
2

(
Ω∗µ,j

{
PdXµ,jn〈σjgµe〉+ PXµ,j〈bnσjegµ〉∗ + PXσgµeµ,j 〈bn〉∗

− 2PXµ,j〈σjgµe〉〈bn〉∗
}

+ Ωµ,j

{
gµe→ egµ

})
(A.6)

A.1.3 Hybrid moments

Table A.2 introduces some additional partial sums, now over the ions instead of the modes,

that will further aid in compact presentation and faster computation by identification of recurring

summations.

L0 contribution

d

dt
〈bnσjg1g1

〉 = −iωn〈bnσjg1g1
〉 − i

2

(
Ω∗1,j〈bnσjg1e〉 − Ω1,j〈bnσjeg1

〉
)
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Symbol Definition

QL1
jn −∑µ,q 6=j

λµq,n
2

(
Ω∗µ,q〈σqgµe〉 − c.c.

)
QL2(1),σα
jn

∑
µ,q 6=j

iλµqn
2 P

Xσα
µ,[qj]

(
Ω∗µ,q〈σqgµe〉+ c.c.

)
QL2(2)
jn

∑
µ,q 6=j

iλµqn
2

(
Ω∗µ,qP

Xσgµe
µ,q + c.c.

)
QL2(3)
jn

∑
µ,q 6=j

iλµqn
2 PXµ,q

(
Ω∗µ,q〈σqgµe〉+ c.c.

)
Table A.2: Additional partial sums, over the ions rather than modes, to simplify notation and
speed up computation.

+Γ1

(
〈bn〉 − 〈bnσjg1g1

〉 − 〈bnσjg2g2
〉
)

d

dt
〈bnσjg1g2

〉 = i (∆1,j(t)−∆2,j(t)− ωn) 〈bnσjg1g2
〉

+
iΩ1,j

2
〈bnσjeg2

〉 −
iΩ∗2,j

2
〈bnσjg1e〉

d

dt
〈bnσjg1e〉 = −

(
Γ

2
− i (∆1,j(t)− ωn)

)
〈bnσjg1e〉

− iΩ1,j

2

(
2〈bnσjg1g1

〉+ 〈bnσjg2g2
〉 − 〈bn〉

)
− iΩ2,j

2
〈bnσjg1g2

〉
d

dt
〈bnσjeg1

〉 = −
(

Γ

2
+ i (∆1,j(t) + ωn)

)
〈bnσjeg1

〉

+
iΩ∗1,j

2

(
2〈bnσjg1g1

〉+ 〈bnσjg2g2
〉 − 〈bn〉

)
+
iΩ∗2,j

2
〈bnσjg2g1

〉 (A.7)

L1 contribution

d

dt
〈bnσjg1g1

〉 + = −
Ω∗1,jλ

1
j,n

2
〈σjg1e〉 −

1

2

{
Ω∗1,j

(
(PdX1,jn)∗〈σjg1e〉+ PX1,j〈bnσjg1e〉+ P

Xσg1e
1,j 〈bn〉

− 2PX1,j〈bn〉〈σjg1e〉
)

+ Ω1,j

(
g1e→ eg1

)}
+QL1

jn 〈σjg1g1
〉

d

dt
〈bnσjg1g2

〉 + = −
Ω∗2,jλ

2
jn

2
〈σjg1e〉

−Ω1,j

2

(
(PdX1,jn)∗〈σjg2e〉∗ + PX1,j〈bnσjeg2

〉+ P
Xσeg2
1,j 〈bn〉 − 2PX1,j〈bn〉〈σjg2e〉∗

)
−

Ω∗2,j
2

(
(PdX2,jn)∗〈σjg1e〉+ PX2,j〈bnσjg1e〉+ P

Xσg1e
2,j 〈bn〉 − 2PX2,j〈bn〉〈σjg1e〉

)
+QL1

jn 〈σjg1g2
〉

d

dt
〈bnσjg1e〉 + =

Ω1,j

2

{
2
(

(PdX1,jn)∗〈σjg1g1
〉+ PX1,j〈bnσjg1g1

〉+ P
Xσg1g1
1,j 〈bn〉 − 2PX1,j〈bn〉〈σjg1g1

〉
)

+
(
g1g1 → g2g2

)
− (PdX1,jn)∗

}
+

Ω1,jλ
1
jn

2
〈σjg1g1

〉+
Ω2,jλ

2
jn

2
〈σjg1g2

〉
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+
Ω2,j

2

(
(PdX2,jn)∗〈σjg1g2

〉+ PX2,j〈bnσjg1g2
〉+ P

Xσg1g2
2,j 〈bn〉 − 2PX2,j〈bn〉〈σjg1g2

〉
)

+QL1
jn 〈σjg1e〉

d

dt
〈bnσjeg1

〉 + =
Ω∗1,j

2

{
2
(

(PdX1,jn)∗〈σjg1g1
〉+ PX1,j〈bnσjg1g1

〉+ P
Xσg1g1
1,j 〈bn〉 − 2PX1,j〈bn〉〈σjg1g1

〉
)

+
(
g1g1 → g2g2

)
− (PdX1,jn)∗

}
+

Ω∗1,jλ
1
jn

2

(
〈σjg1g1

〉+ 〈σjg2g2
〉 − 1

)
+

Ω∗2,j
2

(
(PdX2,jn)∗〈σjg1g2

〉∗ + PX2,j〈bnσjg2g1
〉+ P

Xσg2g1
2,j 〈bn〉 − 2PX2,j〈bn〉〈σjg1g2

〉∗
)

+QL1
jn 〈σjg1e〉∗ (A.8)

L2 contribution

d

dt
〈bnσjg1g1

〉 + =
iΩ∗1,jλ

1
jn

2
PXσg1e1,j

+
i

4

{
Ω∗1,j

(
PXX1,j 〈bnσjg1e〉+ 2(PdX1,jn)∗PXσg1e1,j − 2(PX1,j)2〈bn〉〈σjg1e〉

)
− Ω1,j

(
g1e→ eg1

)}
+QL2(1),σg1g1

jn +
(
QL2(2)
jn −QL2(3)

jn

)
〈σjg1g1

〉

d

dt
〈bnσjg1g2

〉 + =
iΩ∗2,jλ

2
jn

2
PXσg1e2,j

− iΩ1,j

4

(
PXX1,j 〈bnσjeg2

〉+ 2(PdX1,jn)∗PXσeg21,j − 2(PX1,j)2〈bn〉〈σjg2e〉∗
)

+
iΩ∗2,j

4

(
PXX2,j 〈bnσjg1e〉+ 2(PdX2,jn)∗PXσg1e2,j − 2(PX2,j)2〈bn〉〈σjg1e〉

)
+QL2(1),σg1g2

jn +
(
QL2(2)
jn −QL2(3)

jn

)
〈σjg1g2

〉
d

dt
〈bnσjg1e〉 + =

iΩ1,j

4

{
2
(
PXX1,j 〈bnσjg1g1

〉+ 2(PdX1,jn)∗PXσg1g11,j − 2(PX1,j)2〈bn〉〈σjg1g1
〉
)

+
(
g1g1 → g2g2

)
−
(
PXX1,j 〈bn〉+ 2(PdX1,jn)∗PX1,j − 2(PX1,j)2〈bn〉

)}
+
iΩ1,jλ

1
jn

2
PXσg1g11,j +

iΩ2,jλ
2
jn

2
PXσg1g22,j

+
iΩ2,j

4

(
PXX2,j 〈bnσjg1g2

〉+ 2(PdX2,jn)∗PXσg1g22,j − 2(PX2,j)2〈bn〉〈σjg1g2
〉
)

+QL2(1),σg1e
jn +

(
QL2(2)
jn −QL2(3)

jn

)
〈σjg1e〉

d

dt
〈bnσjeg1

〉 + = −
iΩ∗1,j

4

{
2
(
PXX1,j 〈bnσjg1g1

〉+ 2(PdX1,jn)∗PXσg1g11,j − 2(PX1,j)2〈bn〉〈σjg1g1
〉
)

+
(
g1g1 → g2g2

)
−
(
PXX1,j 〈bn〉+ 2(PdX1,jn)∗PX1,j − 2(PX1,j)2〈bn〉

)}
−
iΩ∗1,jλ

1
jn

2

(
PXσg1g11,j + PXσg2g21,j − PX1,j

)
−
iΩ∗2,j

4

(
PXX2,j 〈bnσjg2g1

〉+ 2(PdX2,jn)∗PXσg2g12,j − 2(PX2,j)2〈bn〉〈σjg1g2
〉∗
)
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+QL2(1),σeg1
jn +

(
QL2(2)
jn −QL2(3)

jn

)
〈σjg1e〉∗ (A.9)

A.2 Analytic formula for the bright fraction: Derivation outline

The bright-state fraction is P (|↑〉) = 1/N
∑

j 1/2(1+〈σ̂zj 〉), where 〈σ̂zj 〉, the population differ-

ence after the final π/2 pulse, is equal to −〈σ̂xj 〉 before that pulse. The problem therefore amounts

to computing the quantity 〈σ̂xj 〉 before the final state rotation. For the Hamiltonian, Eq. (4.3), the

propagator Û(t) factorizes as Û(t) = ÛSM(t) × ÛSS(t), where the spin-motion propagator ÛSM(t)

and the spin-spin propagator ÛSS(t) are given by [123, 34]

ÛSM(t) =
∏
n

exp

∑
j

(
αnj(t)â

†
n − α∗nj(t)ân

)
σ̂zj

 ,
ÛSS(t) = exp

−i∑
i 6=j

Jij(t)σ̂
z
i σ̂

z
j

 . (A.10)

Before detailing the coupling constants, we note that these propagators have to be adapted to

the thermometry sequence depicted in Fig. 4.2. For the purpose of computing the bright fraction,

the effect of the spin-echo pulse can simply be viewed as a change in the sign of F in the second arm

of the ODF sequence. Further, an arbitrary phase offset φ0 can be introduced in the second-arm

of the ODF sequence, which modifies the lineshape. These features can be accounted for by the

replacement cos(µrt)→ g(t) in Eq. (4.3), where

g(t) =



cos(µrt), t < τ

0, τ < t < τ + tπ

− cos(µrt+ φ0), τ + tπ < t < 2τ + tπ.

(A.11)

With this adaptation, the coupling constants in Eq. (A.10) are given by

αnj(t) = −iF
~
Mjn

√
~

2Mωn

∫ t

0
dt′g(t′)eiωnt

′
,

Jij(t) = Im
∑
n

F 2

~2
MinMjn

~
2Mωn

∫ t

0
dt1

∫ t1

0
dt2g(t1)g(t2)eiωn(t2−t1). (A.12)



154

We evaluate these expressions within the rotating-wave approximation that |δn| = |µr−ωn| �

µr, µr + ωn, where the frequency δn = µr − ωn is the detuning of the ODF difference frequency

from mode n. Specifically, at time 2τ + tπ, the expressions evaluate to

αnj(2τ + tπ) =
FMjn

2~δn

√
~

2Mωn

(
e−iδnτ + e−iφ0e−iδn(τ+tπ) − e−iφ0e−iδn(2τ+tπ) − 1

)
Jij(2τ + tπ) =

∑
n

F 2MinMjn

4~2δ2
n

~
2Mωn

(2δnτ + sin(δn(2τ + tπ) + φ0) + sin(δntπ + φ0)

−2 sin(δnτ)− 2 sin(δn(τ + tπ) + φ0)) . (A.13)

For µr close to the COM mode (n = 1) frequency, here denoted ω1, the contribution of the other

modes is negligible because of the large detunings δn for n 6= 1. As a result, αnj ≈ 0 for n 6= 1

and the symmetric coupling of the c.m. mode to all the ions results in α1j(2τ + tπ) ≡ α and

Jij(2τ + tπ) ≡ J , independent of the ion numbers i, j, with expressions

α =
F

2~
√
Nδ1

√
~

2Mωz

(
e−iδ1τ + e−iφ0e−iδ1(τ+tπ) − e−iφ0e−iδ1(2τ+tπ) − 1

)
J =

F 2

4~2Nδ2
1

~
2Mωz

(2δ1τ + sin(δ1(2τ + tπ) + φ0) + sin(δ1tπ + φ0)

−2 sin(δ1τ)− 2 sin(δ1(τ + tπ) + φ0)) . (A.14)

The lineshapes in Fig. 4.3 are obtained with a phase offset of φ0 = 0.

With the modes initially in thermal states characterized by mean occupations n̄n, and the

spins initialized along the x direction, the evolution of any observable can be computed using the

propagator Û(t) whose form is detailed in Eq. (A.10). Specifically, the expression for 〈σ̂xj 〉 evaluates

to [102]

〈σ̂xj 〉 =

∏
i 6=j

cos(4Jjk)

 exp

[
−2
∑
n

|αnj |2 (2n̄n + 1)

]
. (A.15)

A convenient way to account for thermal motional states is to first compute 〈σ̂xj 〉 for initial Fock

states of the modes and then sum over these initial states with appropriate coefficients.

For µr close to the COM mode 〈σ̂jx〉 becomes independent of j and reduces to

〈σ̂x〉 = (cos(4J))N−1 exp
[
−2|α|2 (2n̄1 + 1)

]
. (A.16)
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The ODF lasers also lead to free-space scattering that results in decoherence at rate Γ. This results

in an additional factor of exp (−2Γτ) in Eq. (A.15) and Eq. (A.16) that decreases the value of 〈σ̂xj 〉.



Appendix B

Supplementary Material for Chapters 7 and 8

B.1 Implementing instantaneous state rotations

B.1.1 Multi-center model

In the multi-center model, we implement an instantaneous rotation in order to initialize the

c-numbers in accordance with the initial state being in an equal superposition of the n↓, n↑ centers.

We adopt a pragmatic approach to implement such a rotation: In the lab frame, we consider a

fictitious Hamiltonian

Ĥ =
~Ω

2

N∑
j=1

(
σ̂jn↓,n↑e

−iθ + σ̂jn↑,n↓e
iθ
)

(B.1)

to act on the collection of atoms for a time T = π/2Ω so that the pulse area is A = π/2. Here

θ specifies the orientation of the axis of rotation on the equatorial plane of the Bloch sphere.

By ignoring the energy difference ~(ωjm − ωjn) between any pair of states n,m, we are making

the assumption that the pulse is ‘instantaneous’. While in practice any state preparation pulse

requires a finite amount of time, here we assume such instantaneous pulses for simplicity and to

avoid complications associated with pulse efficiencies and momentum widths [118].

B.1.2 Two-center model

In the two-center model, instantaneous state rotations are used for state initialization and

for probing the effect of echo pulses on the evolution of the squeezing parameter. To implement

perfect, instantaneous rotations, we consider a Bloch sphere for each q̃ value with the North and
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South poles represented by the states |n↑, q̃〉 and |n↓, q̃〉 respectively. The perfect rotation pulses

are assumed to not couple states with different q̃. The transformation of this pair of states under

a rotation with axis n̂ and pulse area A (∈ [0, 2π]) is,|n↑, q̃〉
′

|n↓, q̃〉′

 = U(n̂, A)

|n↑, q̃〉
|n↓, q̃〉

 , (B.2)

where the matrix U(n̂, A) is given by

U(n̂, A) =

 cos A2 − inz sin A
2 −i(nx + iny) sin A

2

−i(nx − iny) sin A
2 cos A2 + inz sin A

2

 . (B.3)

Since we track expectation values, we need to recast this transformation in terms of the means of

one and two-atom operators. In what follows, we label n↑, n↓ using binary digits, i.e. n↑ ≡ 0 and

n↓ ≡ 1. For one-atom operators, we define vq̃1 with elements vq̃,j1 = 〈σ̂1,q̃
nj ,mj 〉, where j = 0, . . . , 3

and nj (mj) is the second (first) digit from the right in the binary decomposition of j. The vector

vq̃1 transforms under the Bragg pulse to v̄q̃1 = M1(n̂, A)vq̃1, where

M1(n̂, A) =



|U11|2 U∗11U21 U∗21U11 |U21|2

U∗11U12 U∗11U22 U∗21U12 U∗21U22

U∗12U11 U∗12U21 U∗22U11 U∗22U21

|U12|2 U∗12U22 U∗22U12 |U22|2


. (B.4)

For two-atom operators, we similarly define vq̃,q̃
′

2 with elements vq̃,q̃
′,j

2 = 〈σ̂1,q̃
nj ,mj σ̂

2,q̃
rj ,sj 〉, where j =

0, . . . , 15 and nj ,mj , rj , sj are respectively the fourth, third, second and first digits from the right in

the binary decomposition of j. This vector transforms as v̄q̃,q̃
′,j

2 = M2(n̂, A)vq̃,q̃
′,j

2 where M2(n̂, A) =

M1(n̂, A)⊗M1(n̂, A) is a 16× 16 matrix obtained as the Kronecker product of M1 with itself.

B.2 Rabi oscillation model for population leakage

We consider the case when σ̃q ≈ 0. The two spin states correspond to |n↓〉 = |0~k〉 and

n↑ = |2~k〉. We assume that mode 2 is dominantly sourced by the coherence between n↓ and n↑
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and neglect the fluctuating terms to simplify the equation for ζ (Eq. 7.25) to

d

dt
ζ = −

(κ
2
− i∆cl

)
ζ + i

geff

2

∑
j

sjn↑,n↓ . (B.5)

We transform to the rotating frame sjn↑,n↓ = s̃jn↑,n↓e
4iωrt, ζ = ζ̃e4iωrt. At short times (NΓn↓t� 1),

assuming that the state is prepared along the x-axis of the Bloch sphere in the n↓, n↑ manifold,

s̃jn↑,n↓ ≈ 1/2 for all j. Then, using the fact that |κ/2−iδn↓ | � Nχn↓ , we can adiabatically eliminate

ζ̃ as

ζ̃ ≈ igeff/2

κ/2− iδn↓
∑
j

s̃jn↑,n↓ ≈ −
geff

δn↓

N

4
, (B.6)

where in the last approximation we have assumed that R = κ/2δn↓ � 1. As an example of

population leakage, we consider the n↑ ↔ n+1 transition. By symmetry, the same arguments

hold true for the n↓ ↔ n−1 transition. Assuming sn+1,n+1 is negligible, sn↑,n↑ ≈ 1/2, and zero

populations and coherences associated with n+2, the equation for the coherence sn+1,n↑ reads

d

dt
sjn+1,n↑

= 12iωrsn+1,n↑ + i
N

4δn↓

(geff

2

)2
e4iωrt, (B.7)

where we have used the expression for ζ from Eq. (B.6). From Eq. (7.55), the combination g2
eff/4δn↓

can be immediately identified as χn↓ for R� 1. Solving for sjn+1,n↑
gives

sjn+1,n↑
= −

Nχn↓
32ωr

(
e4iωrt − e12iωrt

)
. (B.8)

Further, still neglecting the n+2 center, we can arrive at an equation for the dynamics of the

population in n+1 as

d

dt
sjn+1,n+1

= i
geff

2

(
ζ∗sn+1,n↑ − ζsn↑,n+1

)
, (B.9)

which can be solved using Eq. (B.6) and Eq. (B.8) to give

sjn+1,n+1
≈ 1

4

(
Nχn↓
8ωr

)2

(1− cos 8ωrt) . (B.10)

This expression explains the oscillations at frequency ∼ 8ωr that can be seen in the populations

at the n±1 centers in Fig. 8.2(c-d), while the peak value scaled to the number of atoms gives the

analytic expression for Pmax
n±1

(Eq. (8.11)) plotted in Fig. 8.2(e).
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From Eq. (B.8), the maximum magnitude of the coherence sjn+1,n↑ is Nχn↓/16ωr. In es-

timating the intracavity field, we assumed that it is sourced only by the sn↑,n↓ coherence. This

approximation is valid as long as∣∣∣∣sn+1,n↑

sn↑,n↓

∣∣∣∣� 1 =⇒ Nχn↓ � 8ωr. (B.11)

The breakdown of the approximation, Eq. (B.11), signals the strong driving regime, i.e. it is the

regime where the squeezing rate Nχn↓ becomes comparable to the relative detuning 8ωr between

the n↓ ↔ n↑ and n↑ ↔ n+1, n−1 ↔ n↓ transitions.

B.3 Relative importance of free-space scattering

Here, we analyze the relative importance of single-atom free-space scattering and collective

superradiant decay in increasing the variance Vmin that enters Eq. (8.1). Since the squeezing is

driven by a term ∼ ĴzĴz, the axis corresponding to the minimum variance orients towards the

z-axis over time [76]. As a result, we can estimate the degrading effect of various diffusive processes

by estimating the corresponding increase in (∆Jz)2.

Free-space scattering: We assume that once a photon is scattered into free-space, the atom

recoils in a random direction and is lost from the atomic cloud. The rate of emission for a single

atom is γ
(
g2|β|2/4∆2

c

)
, where the term in parenthesis is the effective population in |e〉 as a result

of the drive laser. Starting with an equal superposition of |g, n↓〉 and |g, n↑〉, each such photon

could have been scattered equally likely from these two states, and so we have (assuming γt� 1)

Ṅn↓/N = Ṅn↑/N = −γ
2

(
g2|β|2
4∆2

c

)
. (B.12)

Scattering from the n↓ (n↑) state of any single atom increases (decreases) Jz by 1/2, therefore, the

increase in variance in a time t is

(∆Jz)2

N/4
=

4

N
N

(
γt

2

(
g2|β|2
4∆2

c

)(
(−1/2)2 + (1/2)2

)
−
(
γt

2

(
g2|β|2
4∆2

c

)
(−1/2 + 1/2)

)2
)

= γt

(
g2|β|2
4∆2

c

)
. (B.13)
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Superradiant decay: The Lindblad term ∝ Γn↓ in Eq. (7.53) contributes the following time

evolution for 〈Ĵz〉:

d

dt
〈Ĵz〉 = 2Γn↓〈Ĵ−Ĵ+〉 = 2Γn↓

(
〈Ĵ · Ĵ〉 − 〈ĴzĴz〉 − 〈Ĵz〉

)
, (B.14)

where we have used Eq. (7.4). For our initial state, we have 〈Ĵ · Ĵ〉 = N/2(N/2 + 1), 〈ĴzĴz〉 = N/4

and 〈Ĵz〉 = 0, so that,

Ṅn↑ = −Ṅn↓ = Γn↓N
2/2, (B.15)

where Nn↑ ≈ N/2 + 〈Ĵz〉 and Nn↓ ≈ N/2 − 〈Ĵz〉. The above rates are valid for times such that

NΓn↓t � 1. We can identify a per-atom rate of emission as Γn↓N/2. Each such photon increases

Jz by 1, therefore, the increase in variance in a time t is

(∆Jz)2

N/4
=

4

N
N

(
NΓn↓t

2
(+1)2 −

(
NΓn↓t

2

)2
)
≈ 2NΓn↓t. (B.16)

From Eq. (B.13) and Eq. (B.16), the contribution of free-space scattering can be neglected

compared to that of superradiant decay when

γt

(
g2|β|2
4∆2

c

)
� 2NΓn↓t =⇒ R2 � 1

NC
. (B.17)

Here, R = κ/2δn↓ is assumed to be � 1. As a result, when R2 becomes comparable to the

inverse collective cooperativity, free-space scattering can no longer be neglected. In the simulations

presented in this paper, N = 103, C = 1, 10, giving NC = 103, 104. As a result, R � 0.032, 0.01

respectively for the two values of C. The values of R we consider are in the range 0.025 − 0.2,

and therefore some of our parameter regimes (e.g. R = 0.025, C = 1) do not satisfy the preceding

requirement. A more precise estimate of the squeezing parameter for such regimes requires the

inclusion of free-space scattering. Nevertheless, in an experiment, increasing the total number of

atoms leads to a larger product NC and reduces the relative importance of free-space scattering at

fixed R.


