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Over the last few decades, laser technology has greatly advanced resulting in high intensity

ultrashort laser pulses operating at many frequencies, which have made a huge impact in the

field of Atomic, Molecular and Optical Physics. As a result of these advances, new phenomena

have been discovered and studied in atoms such as high harmonic generation, multiphoton and

above-threshold ionization, among many more. While methods have been developed to study such

phenomena, such as the strong-field ionization, and the tunneling ionization models, these models

fail to properly describe the interaction between high intensity ultrashort laser pulses and molecules

due to their complex multielectron nature, and extra degrees of freedom.

In this thesis we apply time-dependent density functional theory, optical Bloch equations, and

Floquet theory to study the interaction of high intensity ultrashort laser pulses with molecules in the

context of high harmonic generation, strong field ionization and nonadiabatic electron localization.

Based on our numerical results we analyze new features in high harmonic spectra of molecules such

as the ellipticity of generated harmonics in CO2, as previously measured in experiments, and the

appearance of Mollow sidebands in the respective spectra of N+
2 and C2H

+
4 . We also consider

the modification of harmonic spectra by the interaction of two linearly polarized pulses and two

circularly polarized pulses interacting with molecules. We then look into the effects of a laser

induced coupling of orbitals in the context of ionization and show that as a result of the coupling,

ionization contributions from inner shell orbitals are greatly enhanced. We also consider how the

addition of a second linearly polarized pulse affects the ionization of molecules. Lastly, we study the

effects of electron localization via the laser induced coupling of orbitals for the interactions between

molecules and lasers in the context of time-dependent density functional theory and Floquet theory.
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Chapter 1

Introduction

In the world of physics there exist many disciplines that aim to help us understand the

behavior of nature ranging from phenomena related to the cosmos, to the behavior of sub-atomic

particles. One of those disciplines is Atomic, Molecular and Optical Physics (AMO Physics) which

includes the study of the interaction between matter and light. Within itself, AMO is a broad area

of physics that spans a variety of topics such as laser cooling and atom trapping, quantum optics,

and the study of ultrafast processes in atoms and molecules by ultrashort laser pulses.

Ever since the laser was invented in 1960 it has become a fundamental tool to study the dynamics

and response of atomic and molecular systems which in turn has expanded our knowledge of how

matter interacts with light. We know that at low laser intensities I < 1013 W
cm2 the dominating

process is related to emission or absorption of few photons and can be properly analyzed with the

use of perturbation theory. However, with technological advances in laser science we were able to

increase the intensity threshold beyond what perturbation theory can explain. In turn, a new realm

of light-matter interaction was opened. At intensities of I ≥ 1013 W
cm2 the interaction between the

electrons in a system with the electric field of the laser pulse and the Coulomb interaction become

comparable, leading to interesting highly nonlinear high order processes due to the absorption and

emission of many photons, such as high harmonic generation (HHG), and above threshold ionization

(ATI).

So far, the interaction between atomic systems and intense laser pulses has been extensively studied

and considered to be well understood. Many theoretical methods exist to describe such interactions
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and the results have so far agreed with those obtained via experiments. High-order processes such

as ATI have been successfully modeled by methods such as the Keldysh, Faisal, Reiss theory (KFR)

and quasi-static tunneling models [1,2,3], where it is assumed that only the most loosely bound

electron responds to an external field in an adiabatic manner. This is known as the single-active

electron approximation (SAE) and so far it has been shown that it works well for atomic systems

due to the large energy spacing between atomic orbitals.

However, unlike for atoms, the interaction between molecular systems and strong laser fields is less

well understood. This is largely due to the ever increasing complexity brought upon by multielectron

effects, rotational and vibrational degrees of freedom, and multi-center nuclear potential surfaces,

among many others [4,5,6,7,8,9,10]. As a result, many previous approximations that are useful

when studying intense laser light interaction with atoms no longer apply and the theories must

be modified, as approximations like SAE begin to break down due to the closer spacing in energy

levels, and due to the multielectron effects present.

In this thesis we consider ab-initio methods and certain approximation models that allow us to

understand the more complex dynamics occurring in the interaction of intense lasers and molecules.

The thesis is organized as follows: In chapter 2 we introduce the theoretical methods we use to

study our systems. These include time-dependent density functional theory (TDDFT), the optical

Bloch equations, and lastly Floquet theory.

In chapter 3 we investigate multielectron effects in high-harmonic generation, in the cases where

either one or two lasers are interacting with molecular systems. We describe the differences that

arise in HHG from molecules compared to what has been observed in atoms. We also analyze

the appearance of Mollow sidebands present in HHG spectra as a result of laser induced coupling

between molecular orbitals in N+
2 and C2H

+
4 by utilizing TDDFT and optical Bloch equations, and

compare both results from theories. We then analyze the ellipticity of harmonics from CO2 which

agrees with previously conducted experiments. We end the chapter by considering the interaction

of bichromatic circularly polarized pulses interacting with H2 and describe the differences that arise

in HHG spectra as a result of the fields used.
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In chapter 4 we consider the effects of laser induced resonances in multiphoton ionization, and study

how such couplings of orbitals can enhance ionization from inner shell orbitals in molecules like N+
2

and C2H
+
4 . We study the case for both one color interactions as well as two color interactions and

explain the differences between them.

We then analyze nonadiabatic electron localization arising from the coupling of orbitals in chapter

5, and show how such dynamics can be visualized from the models we utilize such as TDDFT and

Floquet theory. We again consider the cases of one and two-color laser interactions and explain

how they both differ.

Lastly, we summarize our findings in chapter 6.



Chapter 2

Theoretical Methods in Ultrafast Atomic, Molecular, And Optical Physics

2.1 Multi-Electron Systems

Atoms and molecules are multielectron systems. A system of N electrons interacting with

a laser field can be described by its wavefunction Ψ(r, t) (r = [r1,...,rN ]) which obeys the time-

dependent Schrödinger equation (note: we will be working in atomic units, e = m = ~ = 1, in the

whole thesis):

ĤΨ(r, t) = i
∂Ψ(r, t)

∂t
, (2.1)

where the Hamiltonian H is written in the form

H(r, t) = T (r) + Vee(r) + Vne(r) + Vlaser(r, t), (2.2)

with T (r) being the kinetic energy of the electrons

T (r) = −1

2

N∑
i=1

∇2
i . (2.3)

The second term denoted Vee(r) is the electron-electron interaction which has the form

Vee(r) =

N∑
i<j=1

1

|ri − rj |
, (2.4)

Vne(r) corresponds to the nuclear-electron interaction given by

Vne(r) = −
∑
i,k

Zk
|ri −Rk|

, (2.5)
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where Rk is the position and Zk is the charge of the kth nucleus. The last term Vlaser(r, t) includes

the interaction between the electrons and the applied laser field

Vlaser(r, t) = Eof(t)sin(ωt)

(
N∑
i=1

ri · n̂

)
, (2.6)

where Eo is the amplitude of the electric field, f(t) is the envelope of the pulse, ω is the frequency

of the laser, and n̂ is the polarization direction of the field.

While the multielectron Schrödinger equation describes the system fully, it is computationally

expensive to solve for Ψ(r, t) in the case of larger systems. Due to this, it is indeed currently

impossible to exactly solve the multielectron Schrödinger equation for systems with more than

two electrons interacting with intense laser pulses in a reasonable amount of time. Fortunately,

there exists an alternative approach to approximately solve multielectron systems known as Density

Functional Theory (DFT).

2.1.1 Hohenberg-Kohn Theorem

The basis of DFT originates from the Hohenberg-Kohn (HK) theorem [11,12,13] which states

that the external potential given by:

V̂ext = V̂ + Ŵ =

N∑
i=1

v(ri) +
1

2

N∑
i,k,i6=k

1

|ri − rk|
, (2.7)

of the system is a functional of the electron density ρ(r), and that the ground state of a system can

be determined by its electronic density given by

ρgs(r) = N
∑
σ

∫
dx2...

∫
dxN |Ψgs(r, σ,x2, ...,xN )|2. (2.8)

We can show this by considering a ground state wavefunction ψ(r) with an electron density ρ(r)

for an external potential V (r), with a Hamiltonian H and energy E, and another ground state

wavefunction ψ′(r) corresponding to a second external potential V ′(r) with a Hamiltonian H ′ and

energy E′, which gives the same electron density ρ(r). Due to the variational principle we can then



6

say that:

〈ψ|H|ψ〉 <〈ψ′|H|ψ′〉 = 〈ψ′|H ′|ψ′〉+ 〈ψ′|H −H ′|ψ′〉

= E′ +

∫
(V (r)− V ′(r))ρ(r)dr,

(2.9)

which gives the following:

E < E′ +

∫
(V (r)− V ′(r))ρ(r)dr, (2.10)

and also for the case of the primed and unprimed indices being reversed:

E′ < E +

∫
(V ′(r)− V (r))ρ(r)dr. (2.11)

If we then add equations (2.10) and (2.11) we get the following contradiction:

E + E′ < E + E′, (2.12)

so we see that the external potential V (r) is indeed a unique functional of the ground state electron

density ρ(r). Or in other words, the ground state wavefunction Ψgs(r) is a functional of the ground

state density ρgs(r), so it can be written as

Ψgs(r) = Ψgs[ρgs(r)], (2.13)

where square brackets denote functional dependence. This then leads to the fact that any observable

corresponding to the ground state is also a functional of the density ρgs(r)

O[ρgs(r)] = 〈Ψgs[ρgs(r)]|O|Ψgs[ρgs(r)]〉. (2.14)

2.1.2 Density-Functional Theory and the Kohn-Sham Equations

Based on the HK theorem it has been established that the observables of a system are

functionals of the density ρgs(r), we therefore need to consider ways to solve for the density. This

can be done using the Kohn-Sham equations.
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Consider a system of noninteracting particles with a Hamiltonian given by:

Ĥs = T̂ + V̂s =
N∑
i=1

(
− ∇

2
i

2
+ vs(ri)

)
, (2.15)

where Vs is an arbitrary external potential. We can write the associated total energy of the system

as a functional given by:

Evs [ρ] = Ts[ρ] +

∫
d3rρ(r)vs(r), (2.16)

where ρ(r) is the electron density of the system.

Since the particles are non-interacting, a Slater determinant can be used to approximate the ground

state wavefunction Ψgs(r) of the N-particle system:

Ψgs(r) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) φ1(r3) . . . φ1(rN )

φ2(r1) φ2(r2) φ2(r3) . . . φ2(rN )

...
...

...
...

φN (r1) φN (r2) φN (r3) . . . φN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.17)

where the orbitals φi(r) are solutions to the single particle Schrödinger equation

−1

2
∇2φi(ri) + Vs(ri)φi(ri) = εiφi(r)i, (2.18)

and the ground state density of the N electron system is given by

ρgs(r) =
N∑
i=1

|φi(r)|2. (2.19)

In this case the HK theorem applies and there exists a one to one mapping between the ground

state density ρ(r) and the potential Vs(r). The energy of the system is given by

Es,gs[ρ] = Ts[ρgs] +

∫
drρ(r)vs(r) =

N∑
i=1

∫
drφ∗i (r)(−1

2
∇2
i )φi(r) +

∫
drρ(r)vs(r). (2.20)

Now consider a system of interacting particles with an external potential denoted by Vext(r). The

ground state density ρgs(r) for this system can be obtained from the ground state density of a system
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of noninteracting particles with a potential denoted by Vs(r). This turns the problem of solving

a multielectron Schrödinger equation into multiple noninteracting single particle Schrödinger-like

equations. In turn, this greatly reduces the computational costs needed to numerically solve such

systems.

For a system of interacting particles the energy functional is given by

E[ρgs] = Ts[ρgs] + VH [ρgs] + Exc[ρgs] + V [ρgs]. (2.21)

The second term VH [ρgs] is the Hartree energy (classical Coulomb energy) which is given by

VH [ρgs] =
1

2

∫
dr

∫
dr′

ρgs(r)ρgs(r
′)

|r− r′|
, (2.22)

while Exc[ρgs] is the exchange correlation energy:

Exc[ρgs] = T [ρgs]− Ts[ρgs] + U [ρgs]−
1

2

∫
dr

∫
dr′

ρgs(r)ρgs(r
′)

|r− r′|
. (2.23)

Taking the derivative of the exchange correlation energy, gives the exchange correlation potential

Vxc[ρgs] =
δExc
δρgs

. (2.24)

This potential has an unknown form, but can be approximated for different systems.

For a system of interacting particles the variational principle with respect to the electron density

results in

0 =
δTs[ρgs]

δρgs
+
δV [ρgs]

δρgs
+
δVH [ρgs]

δρgs
+
δExc[ρgs]

δρgs
. (2.25)

Similarly, for a system of noninteracting particles the variational principle with respect to density

yields

δExc[ρgs]

δρgs
= 0 =

δTs[ρgs]

δρgs
+
δVs[ρgs]

δρgs
. (2.26)

Comparing the variational principle for both the interacting and noninteracting system, we get

vs(r) = vext(r) + vH(r) + vxc(r), (2.27)
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to achieve both minimizations resulting in the same electron density ρs(r) = ρ(r). This implies

that the density of an interacting system within an external potential vext(r) can be determined

by solving the Schrödinger equation for many non-interacting particles in a potential vs(r), only

if the exchange-correlation potential is known. Based on this assumption, the orbitals of the

noninteracting system can be obtained by solving the Kohn-Sham (KS) equation, given by

−1

2
∇2φi(r) + vs(r)φi(r) = εiφi(r), (2.28)

and the electron density of the interacting system can then be obtained via

ρ(r) =

N∑
i=1

|φi(r)|2. (2.29)

The KS equations must be solved self-consistently because both the terms vH(r) and vxc(r) depend

on the density ρ(r), which depends on the orbitals φi(r), which in turn depend on vs(r). Due to

this, the calculation starts with an initial guess for the electron density ρ(r), then the potential vs(r)

is obtained, which leads to a solution of the KS equation φi(r), which then yields a new density

ρ(r). This process is repeated until the system converges to the correct ground state density. Once

convergence is obtained, then observables for the system can be calculated.

2.2 Runge-Gross Theorem

The Schrödinger equation maps an external potential v(r, t) to a time-dependent wavefunction

Ψ(r, t) with a given initial state Ψo. However, there exists a second mapping between the density

ρ(r, t) and Ψ(r, t), which leads to the Runge-Gross theorem [11,12,13] which states that given

two electron densities ρ(r, t) and ρ′(r, t), both obtained from an initial wave function Ψo which is

influenced by two different potentials v(r, t) and v′(r, t), will become different after a given time to.

This implies that there is a one-to-one correspondence between densities and potentials obtained

from a given initial wavefunction.

ρ(r, t)→ V (r, t)→ Ψ(r, t). (2.30)
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2.3 Time-Dependent Density-Functional Theory (TDDFT)

An extension of DFT beyond the static potential is TDDFT, which considers the system

being subjected to a time dependent external potential, typically for laser-molecule interactions, of

the form of equation (2.6). There are several assumptions made in this description

(1) The field is treated classically since at high intensities the field has a large photon density.

(2) The dipole approximation is used, which holds when the wavelength of the laser field is

larger than the size of the system.

The electromagnetic field is treated as purely electric field, and its magnetic component can be

neglected for the considered range of laser frequencies and intensities.

In the case of a time dependent external potential, the Runge-Gross theorem states that there

is a one-to-one mapping between the electron density ρ(r, t) and the external potential v(r, t).

Therefore, instead of solving a many body time dependent Schrödinger equation, the density can

be found by using the time dependent Kohn-Sham equation given by

−1

2
∇2φi(r, t) + vks(r, t)φi(r, t) = i

∂

∂t
φi(r, t), (2.31)

where for the time-dependent case, the external potential includes the potential from the laser field

and is of the form:

vks(r, t) = vext(r) + vH(r) + vxc(r) + vlaser(r, t). (2.32)

By solving the time-dependent Kohn-Sham equations the time-dependent density is then given by

ρ(r, t) =
N∑
i=1

|φi(r, t)|2, (2.33)

where φi(r, t) is the ith time-dependent Kohn-Sham orbital.

2.4 Spin Polarized Time-Dependent Density Functional Theory

A useful feature of DFT and TDDFT is that spin-dependent cases can be considered [13].

This can be implemented in both the time-independent and time-dependent Kohn-Sham equations
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by adding a spin index σ =↑, ↓, which gives

[
− 1

2
∇2 + vσ(r, t) +

∫
d3r′

ρ(r’, t)

|r− r’|
+ vXC,σ[ρ↑, ρ↓](r, t)

]
φi,σ(r, t) = i

∂

∂t
φi,σ(r, t), (2.34)

where upon solving, the total density is given by:

ρ(r, t) =
∑
σ=↑,↓

ρσ(r, t) =
∑
σ=↑,↓

N∑
i=1

|φi,σ(r, t)|2. (2.35)

2.5 Implementation of Time-dependent Density functional Theory

The solution of the KS equation can be found numerically by discretizing both the time and

spatial components via some finite difference method. This converts the KS equation into a matrix

equation. To obtain the initial wavefunction, the eigenvalue problem is solved self-consistently

with an initial guess for the ground state needed. After the ground state of the system has been

obtained, the wavefunction can be propagated in time. There are a variety of methods available to

numerically solve the KS equations [14].

Given some initial wavefunction for the jth orbital ψj(t = 0), time evolution states that after some

time ∆t the wavefunction is given by:

ψj(t+ ∆t) ≈
1− i∆t

2 H(t+ ∆t
2 )

1 + i∆t
2 H(t+ ∆t

2 )
ψj(t). (2.36)

This time propagation scheme is known as Crank-Nicolson and it is what was used to generate the

results presented in this thesis. The Hamiltonian operator H(t) can be evaluated by using a finite

difference scheme [14] where the wavefunction of the system is defined on a discrete spatial and

temporal grid.

For the results presented in this thesis, all of the simulations were performed using the ab-initio

TDDFT software Octopus [15,16,17]. The simulations for the molecules were performed at their

equilibrium bond length with a trapezoidal or sin2(.) pulse shape at wavelengths 400 nm, 600 nm,
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and 800 nm. In addition, the simulation grid used is spherically shaped with a varying radius

depending on intensity of the pulse. The exchange correlational functional used in the simulations

was the local-density approximation (LDA) [17] and an average-density self-interaction correction

was applied [18].

2.6 Absorbing-Boundary Conditions in Time-Dependent Density-Functional

Theory

A property of TDDFT is that the calculated time-dependent wavefunctions conserve their

norm for all times, which can be given by:

∫
d3rρ(r, t) = N, (2.37)

where N is the norm, or number of particles. This then implies probability conservation, meaning

that probability density cannot be created or destroyed.

In many situations in which a system is driven by a strong electric field, as in this thesis, ion-

ization occurs, and boundary conditions at the edge of the numerical grid have to be considered.

Numerically speaking, if one is calculating the dynamics of a system in the presence of a strong

electric field via TDDFT, the outgoing wavefunctions driven by the field, will indeed return, if the

boundary conditions are reflective. Fortunately, absorbing boundary conditions can be applied to

the real-space grid in which the calculation is taking place. This is done by adding a negative short

range complex valued potential to the total potential in the asymptotic region which is located far

away from the system that is being ionized. If the outgoing wavepacket hits the absorbing bound-

ary and is absorbed, the norm of the wavefunction will no longer be conserved and the outgoing

portion of the wavefunction is assumed to describe ionization.

2.7 Optical Bloch Equations

While TDDFT captures the full 3-dimensional dynamics of a system in the presence of a

strong electric field, it can be computationally expensive and time-consuming. Therefore, it is
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useful to consider simple models which can capture some of the dynamics that one can investigate

using TDDFT. We apply the optical-Bloch equations, which are useful when analyzing the resonant

dynamics in two-level systems. Unfortunately, when using such simple models many aspects of the

dynamics are not seen. In the case of high-harmonic generation, which we will study closely in this

thesis, the optical Bloch equations fail to capture the ionization process of HHG as there is no way

to correctly include the continuum into the picture in a straight forward manner. Yet, the simple

picture gives insight into some of the dynamics we will investigate.

2.7.1 Derivation of Optical-Bloch Equations

Consider a two level system with a ground state labeled |g〉 and an excited state labeled |e〉

with energies Eg and Ee, respectively. Figure 2.1 shows a diagram of such a system.

Figure 2.1: Schematic diagram of a two-level system with energies Eg and Ee, representing states
|g〉 and |e〉 respectively.

For such a system we can write the Hamiltonian as:

Ĥ = ĤA − d̂ · Ê(ro), (2.38)

where ĤA is the unperturbed atomic Hamiltonian of the system, d̂ is the transition dipole moment

of the atom and Ê(ro) is the electric field operator evaluated at the position of the dipole ro.

We make the assumption that the electric field is monochromatic and has a frequency close to the
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transition frequency between the states |g〉 and |e〉. We then find the matrix elements of the various

atomic operators which are:

〈e|ĤA|e〉 = Ee, 〈g|ĤA|g〉 = Eg

〈e|ĤA|g〉 = 0, 〈g|ĤA|e〉 = 0,

(2.39)

and

〈e|d̂|e〉 = 0, 〈g|d̂|g〉 = 0

〈e|d̂|g〉 = deg, 〈g|ĤA|e〉 = (deg)
∗,

(2.40)

where deg and (deg)
∗ are the transition dipole moments between states and can be written as:

deg = dr + idi, dge = dr − idi, (2.41)

where dr and di are the real and imaginary components of the dipole moment. From here we can

now express the dipole operator in terms of Pauli matrices:

d̂ = drσ̂x − diσ̂y. (2.42)

Similarly we can write the atomic Hamiltonian in terms of Pauli operators given by:

ĤA =
1

2
(Ee + Eg)Î +

1

2
(Ee − Eg)σ̂z, (2.43)

where Î is the identity matrix. The full form of the Hamiltonian given in equation (2.38) is then:

Ĥ =
1

2
(Ee + Eg)Î +

1

2
(Ee − Eg)σ̂z − (dr · Ê)σ̂x + (di · Ê)σ̂y. (2.44)

If we consider the Heisenberg equation for some operator Ô given by:

i~ ˙̂
O = [Ô, Ĥ], (2.45)

we then obtain three equations for the Pauli matrices given by:

˙̂σx(t) = −ωoσ̂y(t) +
2

~
[di · Ê(t)]σ̂z(t), (2.46)

˙̂σy(t) = ωoσ̂x(t) +
2

~
[dr · Ê(t)]σ̂z(t), (2.47)
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˙̂σz(t) = −2

~
[dr · Ê(t)]σ̂y(t)−

2

~
[di · Ê(t)]σ̂x(t), (2.48)

where ωo is the transition frequency between states:

ωo =
Ee − Eg

~
. (2.49)

We then introduce the expectation values of the Pauli operators given by:

si(t) =< σ̂i >, i = x, y, z, (2.50)

so then our coupled equations can be written as:

ṡx(t) = −ωosy(t) +
2

~
[di · Ê(t)]sz(t), (2.51)

ṡy(t) = ωosx(t) +
2

~
[dr · Ê(t)]sz(t), (2.52)

ṡz(t) = −2

~
[dr · Ê(t)]sy(t)−

2

~
[di · Ê(t)]sx(t), (2.53)

which are the optical Bloch equations that describe the interaction of a two-level atom with an

electric field.

2.8 Floquet Theory and The Dressed-State Picture

There is yet another theoretical method that gives insight into the interaction of atoms and

molecules with laser pulses, known as Floquet Theory. In this method we consider an intense field

interacting with a system, whose interaction energy is labeled Hint(t), so the full time-dependent

Hamiltonian is of the form:

H(t) = Ho +Hint(t), (2.54)
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where Ho is some field free Hamiltonian. We consider that the laser pulse is a CW monochromatic

field of intensity I such that Hint(t) is periodic in time. This then implies that the time-dependent

Hamiltonian in equation (2.54) is also periodic in time:

H(t) = H(t+ τ), (2.55)

where τ is the optical period of the applied laser field, equal to 2π/ω, where ω is the optical frequency

of the pulse. With this, the time-dependent Schrödinger equation (TDSE) can be written as:

i
∂

∂t
|Ψ(t)〉 = H(t)Ψ(t) = [Ho +Hint(t)]|Ψ(t)〉, (2.56)

where Ho is the field-free Hamiltonian. According to Floquet theory, the solution to the TDSE for

this system can be written as:

|Ψ(t)〉 = e−iEF t|PE(t)〉, (2.57)

where, EF is the Floquet quasienergy, and |PE(t)〉 is some state vector that is periodic in time:

|PE(t+ τ)〉 = |PE(t)〉. (2.58)

We can then find the state vector |PE(t)〉 and the quasienergy EF by considering the TDSE to be

a time-independent problem and write |PE(t)〉 as:

|PE(t)〉 =

∞∑
n=−∞

e−inωt|Fn(E)〉. (2.59)

Then the solution to the TDSE given in equation (2.57) can be written as:

|Ψ(t)〉 = e−iEF t
∞∑

n=−∞
e−inωt|Fn(E)〉. (2.60)

We can also expand the interaction term Hint(t) as a Fourier series resulting in:

Hint(t) =
∞∑

n=−∞
(Hint)ne

−inωt. (2.61)
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We substitute equations (2.60) and (2.61) into the TDSE given in equation (2.56) and obtain the

following form:

(Ho − nω)|F (E)n〉+
∞∑

k=−∞
(Hint)n−k|F (E)k〉 = E|F (E)n〉, (2.62)

where n = 1, 2, 3, ... denotes the number of photons absorbed or emitted by the system. We can

then write the above equation in a simpler form as a time-independent Schrödinger equation:

HF |F (E)〉 = E|F (E)〉, (2.63)

where HF is the Floquet Hamiltonian given by a matrix whose elements are time-independent

operators, and |F (E)〉 are the Floquet vectors. Recall that we assumed that the laser field was

monochromatic with frequency ω. We can therefore write our interaction Hamiltonian Hint(t) in

the form:

Hint(t) = H+e
−iωt +H−e

iωt, (2.64)

where H+ and H− are time-independent Hermitian operators. With this we can rewrite equation

(2.62) in the form:

(Ho − nω)|F (E)n〉+H+|F (E)n−1〉+H−|F (E)n+1〉 = E|F (E)n〉, (2.65)

which tells us that the Floquet Hamiltonian will be of the form:

HF =



. . .

· · · H+ Ho − (n− 1)ω H− 0 · · ·

· · · 0 H+ Ho − (n− 1)ω H− 0

. . .


. (2.66)

This form of the Floquet Hamiltonian has a simple interpretation, the harmonic components

|F (E)n〉 describe the state that the system becomes upon exchanging n-photons with the applied



18

laser field. We refer to these Floquet states as ”dressed” states which are obtained via diagonal-

ization. We apply this method to charge resonance enhanced ionization related to localization in

chapter 5 of this thesis.



Chapter 3

Multi-electron Effects in High Harmonic Generation

3.1 High Harmonic Generation

High harmonic generation (HHG) is a phenomenon that has been observed and studied for

several decades now. While many studies of HHG have been focused on atoms, it has been shown

that HHG can in fact occur in molecules.

In this chapter, we will study the cases of laser induced resonant coupling in molecules

which results in non-adiabatic electron dynamics that leads to Mollow sidebands appearing in

HHG spectra. We consider the cases of a single linearly polarized laser pulse interacting with the

system, as well as the case of multiple linearly and circularly polarized pulses interacting with a

molecule. In addition, we study the cases where generated harmonics are elliptically polarized.

3.1.1 Motivation for High Harmonic Generation

The demand for efficient coherent light generation at high frequencies has been something

scientists and engineers have pushed for since the maser was first invented. In particular, the

generation of coherent light in the extreme-ultraviolet (EUV) to x-ray regime has been a problem

for many years. An attractive and practical solution to this problem has been the generation of

radiation by non-linear processes such as the interaction of ultra-short high-intensity pulses with

atoms, which as a result generate high harmonics [19,20]. A particularly important application

of HHG has been the generation of attosecond (1 attosecond = 10−18 seconds) pulses, which are

important within the discipline of ultrafast AMO.
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To motivate HHG further we consider a historical experiment performed by Leland Stanford and

Eadweard Muybridge in 1872 [21]. Stanford asked the question if, at any point during a horses

gallop, were all of its feet in the air. Unfortunately, the human eye was not enough to determine

this. With the help of Muybridge, they arranged many threads along a race track, each connected

to an individual camera which captured a photograph when the threads were pulled or broken. The

horse proceeded to run along the track triggering each camera resulting in a series of pictures (see

figure 3.1). The mystery was then solved and it was determined that by time resolving the horse’s

motion, that all its feet were indeed in the air at a given time within its gallop.

Figure 3.1: Eadweard Muybridge’s The Horse in Motion, 1878. [19]

Similar to Stanford’s and Muybridge’s experiment, HHG can act as a camera which capture electron

dynamics in atoms and molecules at their fundamental time scale, the attosecond. Hence, it is a

powerful tool within AMO, and gives us further insight into the behavior of light matter interactions.



21

3.1.2 A Semi-Classical Description of High Harmonic Generation

The mechanism of HHG was first proposed by Corkum and others in 1993 [22, 23]. This

model is referred to as the three step model. It gives a simple description of the dynamics involved

in HHG. In step 1 of the model, the bound electron is ionized into the continuum by the applied

field, which in this case is a laser pulse. In step 2, the electron is accelerated by the field, until

in step 3 the switching of direction of the polarization of the field causes the electron to return

and recombine with the parent ion, and a photon of energy equal to the energy of the recombined

electron is emitted. There is a caveat in step 3 however, if the recollision of the ionized electron

is inelastic then above-threshold ionization occurs, and HHG is suppressed. Figure 3.2 shows a

diagram of the three-step model.

Figure 3.2: Diagram of the three-step model for high harmonic generation. Adapted from [46].
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3.1.3 Features in High Harmonic Generation

High harmonic spectra are often calculated by taking the Fourier transform of the time-

dependent dipole moment d(t), and then using the formula below:

P (ω) =
α3ω2

3
d(ω) · d∗(ω). (3.1)

Such spectra have various notable features as can be seen in figure 3.3. The first regime of the

spectra is regarded as the perturbative regime, which typically shows up to the 3rd-5th generated

harmonics. Following is the plateau, where high-order harmonics are generated at similar intensities.

Occurrence of this regime is a sign that there is a non-perturbative interaction between the electrons

in an atom or a molecule and the applied laser field. There is then a cutoff following the plateau

beyond which the intensity of the generated harmonics is greatly reduced.

Figure 3.3: A schematic of a spectrum obtained from HHG due to the interaction of an atom or
molecule with a linearly polarized laser.

The frequency at which the cutoff occurs can be determined using the following formula obtained

from classical analysis:

ωcutoff = |Ip|+ 3.17Up, (3.2)
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where Ip is the ionization energy of the bound electron and Up is the ponderomotive energy of an

electron interacting with a laser, given by:

Up =
E2
o

4ω2
, (3.3)

where e is the electron charge, Eo is the amplitude of the laser field, m is the mass of the electron,

and ω is the frequency of the laser field.

It is typical for systems with inversion symmetry, i.e. systems with invariance under a point

reflection, to exhibit only odd harmonics in their respective spectra, while under the influence of a

linearly polarized pulse. It is worthwhile to mention that HHG spectra do not necessarily have the

features shown in figure 3.3, modified properties of HHG can be seen when the polarization of the

laser field or fields is not linear, but rather circular, as will be discussed later on in this chapter.

3.2 Molecular High Harmonic Generation

Harmonics generated from atoms with the interaction of linearly polarized pulses are linearly

polarized as well. However, since molecular systems tend to be more complicated due to multielec-

tron effects, their interaction with linearly polarized pulses is also more complex. An example of

such complex interactions is that elliptically polarized harmonics can be generated. This is largely

due to the non-spherical symmetry of molecular orbitals.

3.2.1 Ellipticity of Generated High-Harmonics

As described by the 3-step model, HHG is a result of tunnel ionization followed by acceleration

of the wavepacket into the continuum and then recombination with the parent ion accompanied by

the release of energy as a harmonic. It is expected that the polarization of these harmonics is the

same as the polarization of the laser field. This is indeed the case for atoms due to their inversion

symmetry. However, harmonic generation from molecules has two components, one parallel and

another perpendicular to the polarization of the field. One would expect another component to be
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along the propagation direction of the field, however it cannot be phase-matched, thus it is neglected

[24]. This further complicates the use of the 3-step model to describe HHG from molecules.

HHG generated from molecules can encode various properties of the molecule such as structural

information [24], in particular if the molecule is aligned. Until recently, only the intensity of gen-

erated harmonics could be obtained as well. However, due to technological advances, the phase

of generated harmonics can now be measured. As a result, it is now possible to experimentally

determine elliptically polarized HHG emission from molecules interacting with a linearly polarized

pulse. It is also worth mentioning that the widely used theory known as the strong-field approxi-

mation (SFA) fails to predict elliptical polarization of molecular harmonics correctly. However via

the use of ab-initio methods such as TDDFT, ellipticity of HHG can be predicted properly.

Measuring the polarization of emitted harmonics is of particular interest for various reasons. Both

the parallel and perpendicular components depend on the optical frequency ω and the angle θ of

the molecule with respect to the field polarization. These components are directly related to the

field induced dipole moment and have a ratio given by:

r =
|d⊥(ω)|
|d‖(ω)|

, (3.4)

which is independent of the angle-dependent ionization (see [24]). From there it is possible to

determine the phase difference between the parallel and perpendicular components given by:

δ = arg[d⊥(ω)]− arg[d‖(ω)], (3.5)

where this relative phase is not dependent on the intrinsic phase accumulated during the ionization

and acceleration steps of the 3-step model because they are common for both the parallel and

perpendicular components. While both r and δ are assumed to be independent of angle dependent

ionization in SFA, we do not make this assumption within TDDFT and in our calculations. In

the end, measuring the polarization of HHG should in theory allow us to investigate the ionization

and recombination steps in the 3-step model in deeper detail and thus extend our knowledge of the



25

mechanism of HHG in molecules.

By obtaining the HHG spectrum, we can then determine the ellipticity of a given harmonic within

the spectrum with the following equation:

ε =

√
1 + r2 −

√
1 + 2r2cos(2δ) + r4

1 + r2 +
√

1 + 2r2cos(2δ) + r4
, (3.6)

The ellipticity has a range of 0 ≤ ε ≤ 1, where 0 corresponds to linear polarization, and 1 to circular

polarization and anything in between is considered elliptical polarization. From equation (3.6) we

can see that the maximum ellipticity occurs when r = 1 and δ = 90o, which means that both

the parallel and perpendicular components of the dipole moment must be of similar magnitude.

However, as a result of the strong oscillation of the electron due to the laser, the perpendicular

component tends to be smaller in magnitude than the parallel component, which is due to the

shaking of the electron wavepacket happening in the parallel direction, so a larger time-dependent

dipole moment component is expected.

3.2.2 Ensemble Alignment Averaging

In this thesis we investigated the appearance of elliptically polarized harmonics generated

from the interaction of a linearly polarized laser and CO2. It is typical in experiments that molecules

are aligned using a laser pulse, which creates a rotational wave-packet that synchronizes the motion

of molecules. Then at a certain time during the experiment the molecules are aligned, however not

perfectly. The distribution of alignment is measured by doing rotational averaging.

Within our theoretical studies, we begin by solving the time-dependent Kohn-Sham equation (2.31)

for our system to obtain the time-dependent dipole moments d(t). This is done for each orientation

angle ranging from 0o to 90o. Then, in order to account for the distribution of alignment angles,

as done in the experiment, the dipole moments are averaged using the same averaging technique,

〈cos2θ〉 [24,26].

If we consider the direction of the probe laser pulse to be along the z-direction and the pump

laser field to lie in the xy-plane with a polar angle α, while orienting the molecule around the
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direction given by the vector (sinθmcosφm, sinθmsinφm, cosθm), as shown in figure 3.4, where θ

is the intersection angle between the molecular axis and the pump laser field. As a result, the

distribution of the alignment of the molecules with respect to the pump laser is a function of the

intersection angle θ. We can then solve for this angle via:

cosθ = sinαsinθmsinφm + cosαcosθm. (3.7)

We can then determine an angular distribution ρ(α, θm, φm) for the molecular axis at any given

orientation angle given by (θm, φm) with respect to the pump-probe angle α. With that the averaged

time dependent dipole is given by:

〈d‖/⊥(t, α)〉 =

∫ π

0

∫ 2π

0
dθmdφmd‖/⊥(t, θm, φm)ρ(α, θm, φm)sinθm. (3.8)

Considering to the symmetry of molecules, we only performed calculations in which the polar angle

θm was varied from 0o to 90o as mentioned prior, while setting φm = 0

Figure 3.4: Diagram illustrating the method for angle averaging.
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3.2.3 Ellipticity of Harmonics From CO2

In experiments involving N2 and CO2 interacting with a linearly polarized laser field, ellip-

ticity of harmonics was observed for N2 but not for CO2 [24,25]. However, other theories based on

SFA which include multiple electronic continuum dynamics predict ellipticity of harmonics from

CO2 [24,25]. In other words, multi-electron effects in molecules can indeed lead to the production

of elliptically polarized harmonics in CO2.

We investigate the cases of CO2 interacting with an 800 nm field of intensities (i) 1.5×1014 W
cm2 and

(ii) 2×1014 W
cm2 . The orientation angle of the molecule with respect to the laser polarization is varied

from 0o to 90o with a step of 10o. With the use of TDDFT we are able to calculate the responses

of a set of occupied orbitals to the driving field. Figures 3.5a-b show ellipticity as a function of

harmonic order for various orientation angles θ = 20o, θ = 40o, and θ = 80o for both intensities

discussed above. We can see that there is in fact elliptically polarized harmonic generation in CO2,

and for some harmonic orders the ellipticity is quite large ranging from values of 0.5 to 0.8, which

contradicts the results found in experiments conducted in [24,25]. We investigate this further in

the following sections by looking at the single orbital contributions to ellipticity.
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Figure 3.5: Ellipticity as a function of harmonic order for CO2 interacting with an 800 nm pulse

at intensities (a) I = 1.5× 1014 W
cm2 and (b) I = 2× 1014 W

cm2 . Various orientation angles are shown:

θ = 20o, θ = 40o, and θ = 80o.

3.2.3.1 Orbital Contributions to Ellipticity of Harmonics

As mentioned, multi-electron effects in molecules play a role in the generation of elliptically

polarized harmonics. To further analyze, we look at the individual orbital contributions to the

generation of elliptical harmonics. We begin by looking at an intensity plot of the ellipticity for

each orbital added step by step as a function of harmonic order and molecular alignment angle

as shown in figure 3.6a-f. For the sake of understanding these contributions, we do not perform

an ensemble average of the molecular alignment. From the figures we observe that each orbital is

indeed influencing the generation of elliptically polarized harmonics. We observe that the ellipticity

of harmonics is quite strong when we consider just the 1πu orbital. However upon adding other

orbital contributions the ellipticity becomes weaker largely due to interference.

Recall that HHG depends on ionization which in turn is dependent on the ionization potential and

the alignment angle of the molecule. When the molecule is oriented at 0o and 90o the contribution

to HHG from the 1πg orbital is greatly suppressed due to quantum interference, thus ellipticity is
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nearly zero at these angles. However when the alignment angle is between 0o and 90o ellipticity

of harmonics in non-zero. In contrast the σg and σu orbitals exhibit strong ellipticity when the

alignment is near these angles.

Realistically and experimentally we do not have the means of observing ellipticity without ensemble

averaging, or the ability to observe individual orbital contributions. As a result the actual ellipticity

of generated harmonics will be quite weak as is observed in figure 3.7. Interestingly enough, when

the intensity of the field is increased, ellipticity becomes more apparent, as can be seen in figure

3.9. This makes sense as the strength of the induced dipole is related to the strength of the field,

thus the generation of harmonics will be increased
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Figure 3.6: Ellipticity of harmonics of CO2 as a function of harmonic order and alignment angle

for different orbital contributions added step by step. No ensemble average is made. The applied

laser field is an 800 nm linearly polarized field with intensity 1.5× 1014 W
cm2 .
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Figure 3.7: Ellipticity of harmonics of CO2 as a function of harmonic order and alignment angle.

Here an ensemble average is made. The applied laser field is an 800 nm linearly polarized field with

intensity 1.5× 1014 W
cm2 .



32

(a) (3σg)
2(2σu)

2(4σg)
2(1πu)

4(3σu)
2(1πg)

4 (b) (2σu)
2(4σg)

2(1πu)
4(3σu)

2(1πg)
4

(c) (4σg)
2(1πu)

4(3σu)
2(1πg)

4 (d) (1πu)
4(3σu)

2(1πg)
4

(e) (3σu)
2(1πg)

4 (f) (1πg)
4

Figure 3.8: Ellipticity of harmonics of CO2 as a function of harmonic order and alignment angle

for different orbital contributions added step by step. No ensemble average is made. The applied

laser field is an 800 nm linearly polarized field with intensity 2× 1014 W
cm2 .
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Figure 3.9: Ellipticity of harmonics of CO2 as a function of harmonic order and alignment angle.

Here an ensemble average is made. The applied laser field is an 800 nm linearly polarized field with

intensity 2× 1014 W
cm2 .

3.3 Mollow Sidebands

3.3.1 Adiabatic and Non-Adiabatic Behavior of Laser Induced Dipole Moments

There are several types of dynamics which can occur as a result of the interaction between

molecules and laser pulses. One such type is regarded as adiabatic, meaning that the oscillation of

the electron follows the oscillation of the electric field. Typically, this results in HHG spectra with

the usual features as mentioned earlier in this chapter, at least for the case of linearly polarized

pulses. The other type of dynamics which can occur is regarded as non-adiabatic, meaning that

the electron does not follow the oscillation of the laser pulse. This can occur as a result of laser

induced resonant couplings of orbitals. Typically this is done by setting the optical frequency of

the laser pulse equal to the frequency between the orbitals. This type of dynamics gives rise to
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interesting phenomena that appears in HHG and electron localization, as we will see further in

this thesis. Figures 3.10a-b respectively show adiabatic and non-adiabatic dipole behavior for N+
2 ’s

time-dependent dipole in the presence of an laser field for the cases of a 400 nm pulse with intensity

I = 2 × 1014 W
cm2 and polarization (a) perpendicular to the molecular axis and (b) parallel to the

molecular axis.
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Figure 3.10: Time-dependent dipole moments of N+
2 in the presence of a 400 nm laser field with

intensity I = 2× 1014 W
cm2 . (a) Adiabatic behavior, and (b) Non-adiabatic behavior.

3.3.2 Open Shell Molecules

Within this thesis, non-adiabatic effects were studied for N+
2 and C2H

+
4 , which are both open

shell molecules, i.e. they contain valence shells which are not completely filled. In N+
2 such effects

happen in two cases studied. The first case is a linearly polarized laser of 400 nm with polarization

oriented along the molecular axis. This case results in a laser induced resonant coupling between

the 3σg and 2σu orbitals. The second case is an 800 nm linearly polarized pulse whose polarization

is oriented perpendicular to the molecular axis, and for this case there is a laser induced resonant

coupling between the 3σg and 1πu orbitals. Figure 3.11 shows the molecular orbital diagram of N+
2
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along with the possible resonant couplings. Note, that we are able to specify in the TDDFT code

OCTOPUS the orbital with the electron hole, thus making it the open-shell orbital.

(a) (b)

Figure 3.11: Molecular orbital diagram of (a) N+
2 and (b) C2H

+
4 . The purple arrow indicates a

resonant coupling between the orbitals (a) 3σg and 2σu and (b) 1b3g and 1b2u induced by a 400 nm

laser pulse with polarization parallel to the molecular axis, and the red arrow indicates a resonant

coupling between the orbital 3σg and 1πu induced by an 800 nm laser pulse with polarization

perpendicular to the molecular axis.

While C2H
+
4 is also an open shell molecule, it is far more complex than N+

2 . Still, it is worthwhile

to investigate the non-adiabatic effects occurring due to a laser induced coupling of orbitals. Unlike

N+
2 , where the open shell orbital is the highest occupied molecular orbital (HOMO), the open shell

orbital in C2H
+
4 is 1b3g, which is the HOMO-1, and a 400 nm linearly polarized laser pulse with

polarization oriented parallel to the molecular axis induces a resonant coupling with the 1b2u orbital

(HOMO-3).

It is worthwhile to mention that we make a distinction between molecular orbitals and states in

this thesis. While we talk about coupling orbitals, there is another picture that can give us insight

into the dynamics occurring. We consider the ground state of N+
2 labeled Σg and two excited
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states of N+
2 labeled Πu and Σu in figure 3.12, which have the respective electron configurations,

(2σg)
2(2σu)2(1πu)4(3σg)

1, (2σg)
2(2σu)2(1πu)3(3σg)

2, and (2σg)
2(2σu)1(1πu)4(3σg)

2. We make the

distinction that the ground state is the lowest energy configuration, while the two latter are the

higher energy configurations, hence the excited state. We can think as the orbital coupling of a

superposition wavepacket of the ground and excited states during the interaction with the laser.

However for the remainder of this thesis we will talk about coupling of orbitals and not the states.

Figure 3.12: Potential energy surfaces of the ground state Σg and two excited states Πu and Σu of

N+
2 and their respective diagrams showing the electron configuration for each state.

3.3.3 Appearance of Mollow Sidebands in High-Harmonic Generation

As a consequence of laser induced resonant coupling between orbitals, certain features appear

in the respective HHG spectra of molecules. One of such features is the appearance of Mollow

sidebands [43], which unlike regular harmonics they do not appear at integer multiples of the

optical frequency of the laser field, but rather at a linear combination of the multiples of the laser
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frequency and the Rabi frequency which is given by:

ΩRabi = µEo, (3.9)

where µ is the transition dipole moment between the orbitals, and Eo is the amplitude of the

applied laser field. Figure 3.13 shows the respective HHG spectra for N+
2 interacting with (a) a 400

nm laser with intensity I = 5× 1014 W
cm2 with polarization parallel to the molecular axis and (b) an

800 nm laser with intensity I = 2 × 1014 W
cm2 polarized perpendicular to the molecular axis. As is

evident from the figures, a laser induced resonance between orbitals causes additional features to

appear in the HHG spectra in the form of the so-called Mollow sidebands. An interesting feature

of these sidebands is that they are relatively similar in intensity to the odd harmonics. This can

be attributed to the large transition dipole moment between orbitals as well as the strong coupling

between the orbitals. We can identify the coupled orbitals by projecting the ground state orbital

onto the excited state orbital during the simulation. The results show the population transfer

between orbitals, and can be seen in figure 3.14. For the case of N+
2 interacting with the 400 nm

pulse polarized parallel to the molecular axis we can see that there is a strong coupling between the

3σg and 2σu orbitals, and that during the interaction with the laser there is a population transfer

of about 80%. In contrast, for (b) the population transfer between 3σg and 1πu is about 40%.

We can therefore conclude that the appearance of Mollow sidebands is indeed caused by the laser

induced coupling between the orbitals.
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Figure 3.13: HHG spectra for N+
2 interacting with (a) a 400 nm laser pulse of intensity I =

5× 1014 W
cm2 with polarization parallel to the molecular axis, and (b) an 800 nm pulse of intensity

I = 2× 1014 W
cm2 with polarization perpendicular to the molecular axis. Note: figure (b) shows the

spectrum before the frequency cutoff to make visualization of Mollow-sidebands easier to see.
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Figure 3.14: Time-dependent projections between coupled orbitals of N+
2 , for the cases of (a)

coupling between 3σg and 2σu by a 400 nm pulse of intensity I = 5 × 1014 W
cm2 polarized parallel

to the molecular axis, and (b) coupling between 3σg and 1πu by an 800 nm pulse of intensity

I = 2× 1014 W
cm2 polarized perpendicular to the molecular axis.

It is worthwhile to mention, that due to the electron hole in the 3σg orbital of N+
2 , the appearance

of Mollow sidebands in the ion is more prevalent than in the neutral counterpart N2. This is

largely attributed to the fact that the electron located in the 3σg must first be ionized in order

for the electrons in inner shell orbitals to resonate between them, thus limiting the contribution

to Mollow sidebands appearing in the spectra. However, if one begins with the ionic molecule,

there is no need for the electron in the 3σg orbital to first be ionized which then allows for the

electron in the coupled orbital to transition at a faster rate to the orbital where the electron hole

is, thus making Mollow sidebands appear more prevalent in the HHG spectra. Figures 3.15a-b

show the HHG spectra for N2 interacting with (a) a 400 nm laser of intensity I = 2 × 1014 W
cm2

polarized along the molecular axis, and (b) an 800 nm laser of intensity I = 2× 1014 W
cm2 polarized

perpendicular to the molecular axis. We can see that for case (a) there appears to be some peaks

forming next to the odd harmonics, albeit not of similar intensity as in N+
2 , while in case (b) there

appear only odd harmonics with no trace of sidebands. This is largely due to the transition dipole
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moment being much larger in the case where one couples the 3σg and 2σu orbitals with a 400 nm

pulse than when one couples the 3σg and 1πu orbitals, and while the Mollow sidebands appear low

in intensity, they are still noticeable for certain harmonic orders. Interestingly enough, the time-

dependent projection between orbitals (see figures 3.16a-b), shows that there is indeed a strong

population transfer between orbitals, in fact comparable to that of N+
2 for the case of a 400 nm

laser pulse polarized parallel to the molecular axis. However, for the case of an 800 nm pulse with

perpendicular polarization, the population transfer is quite strong compared to the ionic counter

part.
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Figure 3.15: HHG spectra for N2 interacting with (a) a 400 nm laser pulse of intensity I =

2× 1014 W
cm2 with polarization parallel to the molecular axis, and (b) an 800 nm pulse of intensity

I = 2× 1014 W
cm2 with polarization perpendicular to the molecular axis.
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Figure 3.16: Time-dependent projections between coupled orbitals of N+
2 , for the cases of (a)

coupling between 3σg and 2σu by a 400 nm pulse of intensity I = 2 × 1014 W
cm2 polarized parallel

to the molecular axis, and (b) coupling between 3σg and 1πu by an 800 nm pulse of intensity

I = 2× 1014 W
cm2 polarized perpendicular to the molecular axis.

3.3.4 High Harmonic Generation Dependence On Pulse Envelope

Up until now, every system we have considered has had the laser envelope be trapezoidal,

figure 3.17a, i.e., a flat top pulse. Realistically speaking, such pulses cannot be realized at the

femtosecond level, and mathematically the ’kink’ that occurs after the ramp up brings about

problems when considering the Fourier transform of the pulse. Despite that, they are useful when

investigating HHG due to their continuous wave like properties, resulting in cleaner and smoother

HHG spectra. Simply put, the electrons feel the peak intensity of the pulse for a majority of the

interaction. Fortunately enough we are not limited to this pulse envelope when using TDDFT.

In fact, we have complete freedom to choose what envelope we use throughout a simulation. We

present the laser field obtained by using a sin2(.) envelope in figure 3.17c and from a first glance it is

evident that the electrons in the system experience different intensities throughout the interaction,

rather than a peak intensity for a longer period of time as in the trapezoidal case. Looking at the
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Fourier transform of the sin2(.) envelope, figure 3.17d, also shows that the spectrum about the

peak frequency, which in this case corresponds to λ = 400 nm, is broader when using the sin2(.)

envelope rather than the trapezoidal one and as a result the HHG can vary greatly as shown in

figure 3.18, where we present HHG for the case where C2H
+
4 interacts with a 400 nm laser polarized

parallel to the molecular axis and couples the 1b3g and 1b2u orbitals. We observe that when using

the trapezoidal pulse the overlap between Mollow sidebands and the odd harmonics is such that

the peaks are distinguishable, however when using the sin2(.) pulse the overlap between Mollow

sidebands is increased so one cannot identify the structures caused by the laser coupling of orbitals.

In the context of this thesis however, we are interested in distinguishing such features that arise

from non-adiabatic behavior, so we will consider trapezoidal pulses for most of the results presented.
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Figure 3.17: Plots of the laser fields with different pulse envelopes of wavelength λ = 400 nm in

the time and frequency domains.
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Figure 3.18: HHG spectra for C2H
+
4 interacting with a 400 nm pulse of peak intensity I = 1 ×

1014 W
cm2 .
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3.3.5 Mollow Sidebands in Optical Bloch Equations

While the use of TDDFT allows us to capture full 3-dimensional multielectron dynamics in

molecules interacting with a laser field and get a good quantitative and qualitative description of

the features of HHG, it can computationally be quite time consuming. As a result we turn to

other methods, which give us insight into what is occurring during HHG. One such way is based on

optical Bloch equations, as described in chapter 2. While not as effective as TDDFT in capturing

the full effects occurring in HHG, it paints a simple picture of the effect related to the appearance

of Mollow sidebands in HHG.

We begin by considering the wavefunction of a two-level system given by a superposition state:

|ψ(t)〉 = a1(t)|ψ1〉+ a2(t)|ψ2〉, (3.10)

where a1(t) and a2(t) are determined by solving the system of equations obtained from the TDSE,

given by: (assuming that 〈ψ1|ψ2〉 = 0)

iȧ1(t) = −ωo
2
a1(t) + V (t)a2(t), (3.11)

iȧ1(t) =
ωo
2
a2(t) + V (t)a1(t), (3.12)

where ωo is the frequency corresponding to the energy difference between states, V (t) = µE(t), and

µ is the transition dipole moment between states. The optical Bloch equations are for this case

defined as equations for x(t), y(t), and z(t):

x(t) = a1a
∗
2 + a2a

∗
1, (3.13)

y(t) = i(a2a
∗
1 − a1a

∗
2), (3.14)

z(t) = |a1|2 − |a2|2, (3.15)
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which upon combination with the equations for the coefficients a1 and a2 lead to the following

equations:

ẋ(t) = −ωoy(t), (3.16)

ẏ(t) = ωox(t) + 2V (t)z(t), (3.17)

ż(t) = −2V (t)y(t). (3.18)

Solving the set of equations gives us the induced dipole moment d(t) = µx(t) and the population

inversion z(t).

Previous studies conducted by Bandrauk have shown that symmetric molecular ions have charge

resonant states that are coupled by a laser field with optical frequency equal to the energy difference

between the orbitals. However depending on wavelength and potential energy surface, it is also

possible to couple orbitals when the internuclear distance R is enlarged. Such is the case for

H+
2 , as shown by Bandrauk and Zuo [27,28], where they created charge resonant (CR) pairs from

the superposition of the 1σu and 1σg orbitals. They considered three different excitation regions

where the CR pairs could be created: (1) small R corresponding to multiphoton excitation, (2)

intermediate R which is near resonant excitation, and (3) large R corresponding to the strong

coupling regime.

We consider similar conditions to those considered by Bandrauk and show that such simple models

like the optical Bloch equations do in fact predict Mollow sidebands. We consider the three following

cases of H+
2 interacting with a continuous wave laser of the form E(t) = Eocos(ωt): (1) R = 2.12

a.u. with laser parameters λ = 1064 nm, I = 1014 W
cm2 , (2) R = 5 a.u. with λ = 1064 nm at

I = 4 × 1013 W
cm2 and (3) R = 10 a.u. with λ = 1064 nm and I = 1013 W

cm2 . The HHG spectra

corresponding to these cases are shown in figures 3.19a-c, respectively. In each of the HHG spectra

we can see that Mollow sidebands are indeed appearing, though their intensities vary depending on
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the internuclear distance of H+
2 and also each of the three coupling regimes we considered.
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(c) R = 10 a.u.

Figure 3.19: HHG spectra for H+
2 obtained via the optical Bloch equations. Three cases are shown:

(a) R = 2.12 a.u. with laser parameters λ = 1064 nm, I = 1014 W
cm2 , (b) R = 5 a.u. with λ = 1064

nm at I = 4× 1013 W
cm2 and (c) R = 10 a.u. with λ = 1064 nm and I = 1013 W

cm2 .
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While we do observe Mollow sidebands in the HHG of H+
2 for different internuclear distances we

must consider that this system is quite simple compared to the others we have been investigating

in this thesis so the question we now ask is if the optical Bloch equations can indeed predict Mollow

sidebands in multielectron molecules such as N+
2 .

We begin by considering the case were we couple 3σg and 2σu with a 400 nm laser pulse. We utilize

the transition dipole moment µ = 1.558a.u obtained from TDDFT calculations, and obtain the

respective HHG from cases where we vary the intensity from I = 1× 1013 W
cm2 to I = 5× 1015 W

cm2 .

The HHG spectra are shown in figure 3.20a-f. At the lowest intensity we observe odd harmonics

ranging from order 0 to 5 with small peaks forming on the left and right side of each odd harmonic.

These are indeed Mollow sidebands caused by the coupling of orbitals. As the intensity is increased

the overlap between odd harmonics and Mollow sidebands decreases which is expected due to the

Rabi frequency being directly proportional to the field strength. Another noticeable feature is that

the harmonic order increases as the intensity is raised, however due to the perturbative nature of

the optical Bloch equations, the cutoff is not where one would expect it.

The second case considered is when an 800 nm pulse couples the 3σg and 1πu orbitals. Figure

3.21a-f shows the HHG spectra with intensities once again varying from I = 1 × 1013 W
cm2 to I =

5× 1015 W
cm2 . We again observe odd harmonics as well as Mollow sidebands whose overlap increases

as the intensity is raised. However, unlike the full 3-dimensional calculations, the cutoff appears

to occur at low harmonic orders. This is due to the fact that the continuum is not considered

in optical Bloch equations, hence there is no acceleration acceleration and recombination of the

ionized wave-packet resulting in a cutoff at higher orders.
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Figure 3.20: HHG spectra for N+
2 obtained via the optical Bloch equations. The laser pulse has a

wavelength of 400 nm and the intensity of the pulse is increased for each panel.
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Figure 3.21: HHG spectra for N+
2 obtained via the optical Bloch equations. The laser pulse has a

wavelength of 800 nm and the intensity of the pulse is increased for each panel.
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3.3.6 Comparison Between Theoretical Methods in the Appearance of Mollow

Sidebands

The appearance of Mollow sidebands is clearly seen in HHG spectra obtained from both

TDDFT and optical Bloch equations, however many differences arise when comparing both. When

performing the full 3-dimensional calculation via TDDFT one is considering multi-electron effects

as well as the electrons being ionized into the continuum and then recombining with the parent

ion, which gives rise to an extension of harmonics to higher orders of frequency, whereas in optical

Bloch equations the continuum is not included, thus the cutoff for harmonic generation occurs at

lower frequencies than that obtained in TDDFT.

In addition, HHG spectra obtained from optical Bloch equations appear to be cleaner and so it is

easier to distinguish Mollow sidebands from the odd harmonics. In TDDFT multielectron effects

give rise to many interferences and overlaps between harmonics so obtaining a cleaner HHG spectra

is sometimes more difficult.

For example, problems can arise when using TDDFT to model Rabi oscillations, as is the case in

laser induced orbital coupling. When one utilizes adiabatic functionals the potential energy surfaces

will change as the electron density changes, and so the system will be driven out of resonance. In

other words, Rabi oscillations cannot be fully captured when using the adiabatic approximation as

the instantaneous dependence of the state brings about a time-dependent detuning.

We look at the predicted versus measured Rabi frequencies given by the following equation:

ΩMollow = nω ± Ωrabi. (3.19)

where nω is the n− th odd harmonic in the corresponding HHG spectra, and the second term is the

Rabi frequency. Figures 3.22a-d show the comparisons for both the optical Bloch equations and

TDDFT. We see that for both theories the measured frequencies agree with what is predicted with

the given equation above. In conclusion we see that both theories do in fact capture the effects of

the Rabi oscillations occurring as a result of the laser induced coupling between orbitals.
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(c) TDDFT 400 nm
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Figure 3.22: Predicted (blue dashed line) vs. Numerically obtained (red circles) frequencies of

Mollow sidebands appearing in HHG spectra obtained from optical Bloch equations (panels a and

b) and TDDFT (panels c and d) for the cases were the laser wavelength is 400 nm and 800 nm.

3.3.7 Time-Frequency Analysis of High-Harmonic Generation.

When we obtain HHG spectra by performing a Fourier transform of the time-dependent

dipole moment we lose all information in the time-domain, per the Heisenberg uncertainty principle.

Fortunately, there exist a tool by which we are able to examine how HHG changes with time known

as time-frequency analysis, or wavelet analysis. The time-frequency spectra is obtained using the
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transform equation below:

d(ω, t) =

∫
d(t)exp(−(t− τ)2/2σ2)exp(−iωτ)dt, (3.20)

where the Gaussian function is a time window which constraints the FFT of the dipole to be applied

only in the size defined by the function.

We begin by looking at a nonresonant case of N+
2 interacting with a 400 nm laser pulse of intensity

I = 2 × 1014 W
cm2 with polarization direction oriented perpendicular to the molecular axis, which

does not induce a resonance between orbitals. The corresponding wavelet spectrum is shown in

figures 3.23a-b , where (a) shows the total spectrum and (b) shows the spectrum zoomed in from

5 to 10 femtoseconds.
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Figure 3.23: Wavelet spectrum for N+
2 interacting with a 400 nm laser pulse of intensity I =

2 × 1014 W
cm2 with polarization direction oriented perpendicular to the molecular axis. Panel (a)

shows the spectrum over the total length of the laser propagation, and (b) shows a zoom in from

5 to 10 femtoseconds and has labels showing where the trajectory of the electron is short or long

during the propagation of the laser.

From the spectrum we can see where there is an HHG burst during the propagation of the laser
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pulse. We can also tell for each harmonic order the recombination times which are related to

classical trajectories of electrons. We see in figure 3.23b that at about 6 and 8 femtoseconds the

electron recombines with the parent ion resulting in an HHG burst of the 9th harmonic. While, this

harmonic is emitted at multiple times, the smaller time corresponds to a shorter electron trajectory

as a result of the interaction with the laser pulse, and the later time to the long trajectory.

For the nonresonant case there are modifications to the semi-classical description of HHG which are

also present in the time-frequency analysis. We consider the case where N+
2 interacts with a 400

nm laser of intensity I = 2× 1014 W
cm2 with polarization direction oriented parallel to the molecular

axis, shown in figure 3.24. We know from previous discussion that this induces a coupling between

the 3σg and 2σu orbitals, and as a result we expect this nonadiabatic behavior to be present in

the wavelet spectrum. Unlike the nonresonant case presented above, the generation of harmonics

in the resonant case is far more complex, and the use and interpretation of classical trajectories

become difficult when describing what is occurring in the spectrum. Instead, we see modulation

due to the nonadiabatic behavior induced by the laser coupling and the spectrum does not exhibit

the same periodic nature of the nonresonant case.
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Figure 3.24: Wavelet spectrum for N+
2 interacting with a 400 nm laser pulse of intensity I =

2× 1014 W
cm2 with polarization direction oriented parallel to the molecular axis.

3.4 Two-Color High-Harmonic Generation

The interaction of molecular ions with a single color linearly polarized pulse brings about

interesting features in HHG spectra in the cases of a laser induced resonant coupling between

orbitals. However what happens when one considers adding another laser to the system? Will the

effects we have encountered before in the single color linearly polarized case still be present, and if

so will they be enhanced or diminished? What about changing the polarization of the fields, will

there be noticeable changes to the HHG spectra? We consider each of these cases in this part of

the thesis.

3.4.1 Two-Color Linearly Polarized Laser Pulses

We begin by considering two cases, (a) N+
2 interacting with a 400 nm pulse with polarization

fixed parallel to the molecular axis, and an 800 nm pulse with polarization varied from 0o to 90o
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with respect to the molecular axis, and (b) N+
2 interacting with an 800 nm pulse with polarization

fixed perpendicular to the molecular axis, and a 400 nm pulse with polarization varied from 0o to

90o with respect to the molecular axis. Figure 3.25 shows a schematic diagram of both cases (a)

and (b). Recall that for case (a) the 400 nm pulse will induce a coupling between 3σg and 2σu, and

for (b) an 800 nm pulse will induce a coupling between 3σg and 1πu. Will the addition of the other

pulses to the system affect coupling between orbitals thus drastically changing the HHG spectra?

(a) (b)

Figure 3.25: Schematic diagram for the N+
2 interacting with (a) a 400 nm pulse with fixed polar-

ization parallel to the molecular axis and an 800 nm pulse varied in angle θ = 0o to θ = 90o with

respect to the molecular axis, and (b) an 800 nm pulse with polarization fixed perpendicular to the

molecular axis and a 400 nm pulse with polarization varied from θ = 0o to θ = 90o with respect to

the molecular axis.

The HHG spectra for case (a) and all angles θ are shown in figure 3.26. If we compare case (a)

to a single color case where N+
2 interacts with a 400 nm laser pulse of intensity I = 2 × 1014 W

cm2 ,

as shown in figure 3.27 we can see that the HHG spectra show similar signatures and behavior,

however there are slight differences. For example, the 3rd harmonic in the single color case seems

to have a larger magnitude than harmonics of lower order, whereas in the two-color case the 3rd

harmonic is lower in magnitude than those before. In addition, the Mollow sidebands seem to
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become more broad in the two-color case, which is due to the second 800 nm pulse interfering with

the resonant effects. A noticeable difference occurs in the plateau regime of HHG for the two-color

case. We see that unlike the single color case the harmonics of higher magnitude extend further

in harmonic order, which is a result of the 800 nm pulse, that leads to longer harmonic spectrum

than the single 400 nm pulse.
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Figure 3.26: HHG spectra for a 400 nm pulse at 2 × 1014 W
cm2 polarized along the molecular axis

with an 800 nm pump pulse at 1× 1013 W
cm2 with polarization direction rotated from 0o to 90o with

respect to the molecular axis. Note: Intensities are scaled for comparison.
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Figure 3.27: HHG spectra for a 400 nm pulse at 2× 1014 W
cm2 polarized along the molecular axis.

We then consider case (b) where the 800 nm pulse of intensity I = 2 × 1014 W
cm2 is the one with

polarization direction fixed perpendicular to the molecular axis. When comparing the spectrum to

the single color 800 nm case of intensity I = 2× 1014 W
cm2 and polarization direction perpendicular

to the molecular axis, as shown in figure 3.13b, we see many notable differences. The sidebands

due to the resonant coupling are more defined for the lower order harmonics, but become smaller in

magnitude as the angle of the polarization direction of the 400 nm is varied from θ = 0o to θ = 90o.

Also, as the harmonic order is increased, the resolution of the sidebands becomes worse and so it is

not clear if there are indeed Mollow sidebands occurring as a result of the resonant coupling by the

800 nm pulse, or if they are even harmonics resulting from a breaking of inversion symmetry due

to the second laser being present. Regardless of the details, it is safe to assume that the addition

of a second pulse does not enhance the emission of Mollow sidebands, but rather suppresses them.

Also, while some features of HHG for a single color are present in case (a) we see that it is not so

in case (b) so we can say that features in HHG spectra are indeed modified when adding a second

pulse to interact with our system.
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Figure 3.28: HHG spectra for an 800 nm at 2× 1014 W
cm2 probe pulse polarized along the molecular

axis with an 400 nm pump pulse at 1× 1013 W
cm2 with polarization direction rotated from 0o to 90o

with respect to the molecular axis. Note: Intensities are scaled for comparison.

3.4.2 Two-Color Circularly Polarized Laser Pulses

As we have seen molecules interacting with strong linearly polarized pulses exhibit interesting

phenomena such as the appearance of Mollow sidebands in HHG spectra as a result of resonant

coupling, and the generation of ellipticaly polarized harmonics when the symmetry of the system is

broken. However, we ask the question of what occurs when the laser field has a circular polarization?

Will the generated harmonics be circularly polarized as well? The answer to this question is actually

quite straight forward, no harmonics will be generated. The reason being that a strong single

circularly polarized pulse will ionize the wavepackets and cause no recombination with the parent

ion, hence no generated harmonics. However, if a second circularly polarized pulse is added to the

system, then there will in fact be harmonic generation as was shown by Eichmann et al. [29] in

which two cases were considered, the first being two circularly polarized pulses of frequencies ω and

2ω, respectively, with the electric field vectors co-rotating in the same plane. In this case it was
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seen that all harmonics of frequency nω (n = 0, 1, 2, ...) were emitted with elliptical polarization.

The second case considered the same fields but counter-rotating and it was seen that harmonics

of frequency (3n ± 1)ω were emitted with circular polarization with their helicity changing signs

from one harmonic to the next. This is in fact quite different to the case of atoms and molecules

interacting with a linearly polarized pulse, where only odd harmonics appear in the respective HHG

spectrum.

In this thesis we consider the cases of neutral H2 and ionic H+
2 interacting with bi-chromatic co-

and counter- rotating fields of wavelengths 400 nm and 800 nm at intensity I = 1 × 1013 W
cm2 .

The fields are shown in figure 3.29a-b where (a) corresponds to the co-rotating case, and (b) the

counter-rotating case.

(a) (b)

Figure 3.29: Plots of bichromatic laser fields of wavelengths 400 nm and 800 nm with intensity

I = 1× 1013 W
cm2 for cases where the fields are (a) co-rotating and (b) counter-rotating.

We first consider H2 under the presence of bichromatic pulses for both the cases mentioned above.

We obtain HHG spectra by performing calculations using TDDFT. Figure 3.30a-b shows the HHG

spectra for the cases of (a) co-rotating and (b) counter-rotating bichromatic fields. By inspection of

the respective spectra, we can see that harmonic generation is greatly suppressed when the fields are
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co-rotating and the intensity of harmonics diminishes greatly as harmonic order increases, however,

harmonics of order nω seem to be present as discussed in [30]. When the fields are counter-rotating

the intensity of generated harmonics falls off slower than in the co-rotating case and higher orders

of harmonics are present in the HHG spectra. In addition, we observe that harmonics generated

are of order (3n± 1)ω as discussed in [30].
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Figure 3.30: HHG spectra of H2 interacting with bichromatic circularly polarized pulses of wave-

lengths 400 nm and 800 nm with intensity I = 1 × 1013 W
cm2 for the cases where the fields are (a)

co-rotating and (b) counter-rotating.

In conclusion, HHG spectra obtained from molecules are highly dependent on the type of laser

used. As we saw the differences between linearly and circularly polarized pulses producing HHG

vary drastically. This tells us the three-step semi-classical model can be heavily modified depending

on the laser used, and that in molecules the prediction of HHG patterns is not as simple as in atomic

systems.
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3.5 Summary

In this chapter we investigated the appearance of Mollow sidebands appearing in HHG spectra

of open shell molecules such as N+
2 and C2H

+
4 . We found that the sidebands were caused by a

laser induced coupling between orbitals. We illustrated the appearance of the phenomena for both

parallel (σ-σ) transitions and perpendicular (σ-π) transitions. We further analyzed the appearance

of Mollow triplets by considering a simple two level system given by the optical Bloch equations and

showed that Rabi oscillations could indeed be captured by both theories, though certain differences

arise in HHG due to the complexity and approximations of the theories. We also considered how

different pulse envelopes affect the appearance of Mollow sidebands and showed that the resolution

of the sidebands in HHG spectra are highly dependent on the envelope used. We then looked at

the time frequency analysis to give insight in the generation of harmonics during the interaction

with the pulse, which we connected to the timescale of the trajectories of the electron due to the

interaction with the pulse.

We also considered the effects of HHG when molecules interact with two linearly polarized pulses.

We considered the following two cases: (a) a 400 nm pulse with polarization fixed parallel to the

molecular axis and (b) an 800 nm pulse with polarization varied at angles θ = 0o to θ = 90o with

respect to the molecular axis. We found that while some features of single color HHG remain in

case (a), the features are greatly modified for case (b), and the addition of the second laser does

indeed interfere with the nonadiabatic effects which we observed for the single color case.

Furthermore, we investigated how ellipticaly polarized harmonics can be formed from the interaction

between CO2 and linearly polarized pulses with orientation varied from θ = 0o to θ = 90o with

respect to the laser polarization. We considered the single orbital contributions to ellipticity and

compared to experiments reported in [24,25]. We showed that results from experiments and theory

agree.

Lastly, we looked at the cases where H2 and H+
2 interact with bichromatic circularly polarized

pulses at optical frequencies ω and 2ω respectively for the cases of co- and counter rotating pulses.
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We compared to previous theoretical results performed in [30] and confirmed that the respective

HHG spectra are indeed different than those resulting from interactions with linearly polarized

pulses, which in turn leads to the question of whether the three-step semi-classical model of HHG

must be modified in the case of pulses with non-linear polarization, and that such pulses lead to

interesting features in HHG spectra.



Chapter 4

Multi-Electron Effects in Strong-Field Ionization

Ionization is a fundamental process that is often studied in AMO, and it can act as a way to

obtain information about the dynamics of atomic and molecular systems. While methods such as at-

tosecond streaking and reconstruction of attosecond harmonic beating by interference of two-photon

transitions (RABBITT) [31,32,33,34,35,36] allow for the experimental measurement of ionization

of electrons at their fundamental timescale, and give insight into the dynamics occurring during

the interaction of ultrafast, high intensity laser pulses with atoms and molecules it is useful to

use theories such as TDDFT to see if we can extract the same information as in the experiments.

While the tunneling ionization model helps paint a picture of the dynamics involved in strong-field

ionization of atoms, it lacks the modifications necessary to describe the mechanism in molecules,

which implies that there are fundamental differences in the strong-field ionization mechanism of

atoms and molecules.

Earlier experimental studies showed that atoms and molecules with similar ionization potentials

exhibit similar behavior, e.g. their ionization yields were similar when hit with laser pulses of equal

peak intensities [37,38,39]. Later experiments discovered that it is not always the case. Ionization

experiments using O2 and Xe, which have similar ionization energies, differed greatly, and this was

greatly due to the orbital structure in O2 [40]. This in fact showed that the tunneling formula was

not enough to describe ionization in molecules due to the more complex properties present and or

complex dynamics occurring.

In this chapter, we study the ionization effects of molecules in the cases where a laser induces
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resonant couplings between orbitals, which as shown in previous chapters can lead to non-adiabatic

behavior of electron dynamics, also seen in HHG via the occurrence of Mollow sidebands. In addition

we study the effects of ionization when multiple lasers interact with a molecule, in particular, if

ionization can be enhanced or suppressed.

4.1 Strong-Field Ionization

Since the early days of quantum mechanics, people have studied ionization in such systems,

but it was not until 1979 that Agostini et al. [41] observed ionization in the non-perturbative light-

matter interaction regime. Before this, data obtained by ionization experiments was well described

by low-order perturbation theory. However, in the strong-field regime, i.e the non-perturbative

regime, it was observed that an atomic or molecular system could in fact absorb multiple photons

above the ionization threshold with comparable probabilities and thus the result is called Above-

Threshold Ionization (ATI). Typically such a process as ATI occurs in the intensity regime above

1013 W
cm2 . In this intensity regime atoms and molecules are significantly or even completely ionized

before the pulse reaches its maximum. To avoid this, it is typical that systems with high ionization

potentials, or in the case of this thesis, ultrashort pulses, in the femtosecond regime are used.

Up to this point, strong-field ionization in atoms has been well understood, in particular, in the

high-intensity and long-wavelength regimes as described by the so called Keldysh parameter γ < 1

[42] given by:

γ =
ω

ωt
, (4.1)

where ω is the laser frequency and ωt is given by the equation:

ωt =
Eo√
2Ip

, (4.2)

where Eo is the amplitude of the laser field, and Ip is the ionization potential. With this, strong-field

ionization of atoms can be described as the electron tunnel-ionizing out of the Coulomb potential

as a result of the interaction with the laser pulse. This process is the same as the first step in

the semi-classical three-step model mentioned earlier in this thesis in the chapter devoted to HHG.
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However, due to the multi-electron nature of molecules, the ionization mechanisms differ from that

in atoms.

4.1.1 Multiphoton Ionization

When the Keldysh parameter is small, γ < 1, we expect tunneling ionization to occur, however

when γ >> 1, meaning that the ionization potential is much greater than the ponderomotive energy

Up given in equation (3.3), which is common for low intensity fields, or high frequencies then the

dominant form of ionization is multiphoton ionization (MPI). In such a process, n photons are

absorbed by the electron in the ground state interacting with the field, and the electron transitions

via some virtual state (see figure 4.1b) into an excited state or into the continuum (see figure 4.1a).

If we increase the strength of the field, many more photons are absorbed and we expect effects such

as HHG and ATI to occur.

(a) (b)

Figure 4.1: Figures depicting multiphoton ionization where (a) an electron is ionized into the

continuum, and (b) an electron is excited into a higher energy state via multiphoton absorption.



69

4.2 Charge-Resonance Enhanced Ionization

One fundamental difference between ionization of atoms and molecules is charge-resonance

enhanced ionization (CREI). First observed in 1995 for H+
2 at an internuclear distance Rc, larger

than its equilibrium bond length [43]. At this critical internuclear distance Rc the 1σg and 1σu

orbitals in H+
2 become close in energy, as shown in figure 4.2b, and a charge resonant pair of

states is created. Figure 4.2a shows the ionization rate as a function of internuclear distance for

this study. We can see that at large internuclear distances, especially at Rc = 10 a.u. the rate

of ionization reaches a maximum, and as a result of the study, it was determined that at this

internuclear distance there is in fact a charge resonance occurring between the orbitals, which in

turn leads to an enhancement in ionization.

(a) (b)

Figure 4.2: (a) Ionization rate of H+
2 as a function of internuclear distance, when interacting with

a linearly polarized 1064 nm laser with intensity I = 1014 W
cm2 and (b) the energy levels of H+

2 as a

function of internuclear distance. Adapted from [43] and [28].
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4.2.1 Charge-Resonance Enhanced Ionization in Multi-Electron Molecules

While the study conducted in [39] gave insight into differences in strong-field ionization of

atoms and molecules, it was still limited due to the one electron nature of H+

2 . It is worthwhile to

study strong-field ionization and CREI in multi-electron molecules.

Using TDDFT, we solved the time-dependent Kohn-Sham equations (2.31), and obtained the prob-

ability density in the ith orbital. From there we obtain the population of a given orbital using:

nksi (t) =

∫
d3r|φi(r, t)|2, (4.3)

where φi(r, t) is the ith Kohn-Sham orbital, and nksi (t) is the time dependent population of the

given orbital. The resulting ionization probability of the ith orbital is given by:

P ksi (t) = 1− nksi (t). (4.4)

Typically, one would expect that the highest occupied molecular orbital would in fact contribute

the most towards ionization due to the smaller ionization potential. This is in fact the case for

closed shell molecules, as well as those in which there is no laser induced coupling between orbitals.

Such examples are shown below in figure 4.3, where a 400 nm pulse at I = 2 × 1014 W
cm2 with

polarization along the molecular axis interacts with N2 (left), and a 600 nm pulse at I = 2× 1014

W
cm2 with polarization also along the molecular axis (right) interacts with N+

2 . Due to N2 being a

closed shell molecule we expect the HOMO to contribute the most to ionization due to the smaller

ionization energy, and this is in fact the case, albeit the fact that the laser parameters cause a

resonant coupling between HOMO and HOMO-2 in N+
2 thus resulting in CREI. In the second case

we see that even though the molecule is open-shell we do not observe CREI since to the optical

frequency of the laser is not equal to the frequency corresponding to the energy difference between

orbitals, therefore not inducing a resonant coupling of orbitals.



71

0 2 4 6 8 10 12 14 16 18
Time (fs)

0.00

0.02

0.04

0.06

0.08

0.10

Io
ni
za

tio
n 
Pr
ob

ab
ilit

y

2σg
2σu
1πu, x
1πu, y
3σg

(a)

0 2 4 6 8 10 12 14 16 18 20
Time (fs)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Io
ni
za

tio
n 
Pr
ob

ab
ilit

y

2σg↓
2σu↓
1πu, x↓
1πu, y↓
2σg↑
2σu↑
1πu, x↑
1πu, y↑
3σg↑

(b)

Figure 4.3: Ionization probability for two cases: (a) N2 in the presence of a 400 nm laser pulse with

intensity I = 2 × 1014 W
cm2 and polarization along the molecular axis, and (b) N+

2 in the presence

of a 600 nm laser pulse with intensity I = 2× 1014 W
cm2 and polarization along the molecular axis.

In both cases we can see that the HOMO is the orbital that contributes the most to ionization.

Interestingly enough, we would expect the other orbitals ionization probability to be almost negligi-

ble, this is in fact not what we see. For both cases the HOMO-2 still has a significant contribution to
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the ionization. This brings in the following question: is the ionization potential the only factor we

must consider? Well, the answer to this question is no, other factors such as orbital symmetry and

molecular orientation with respect to the laser pulse play a role in the ionization process. Consider

the HOMO-2 which is a 2σu orbital and the HOMO-1 which is a 1πu orbital in N2 and N+
2 . The

HOMO-2 extends along the molecular axis, so when the polarization of the pulse is oriented along

the molecular axis, the ionized wavepacket interferes constructively along the polarization direction,

thus enhancing the ionization of the HOMO-2, while if the polarization of the pulse was aligned

perpendicular, the ionized wavepacket would destructively interfere and hence suppress ionization.

A similar phenomenon happens for the case of 800 nm in which a resonant coupling occurs between

HOMO and HOMO-1 when the polarization is perpendicular to the molecular axis. The HOMO-1

as a π orbital extends perpendicular to the molecular axis, hence it is more easily ionized when

the polarization is perpendicular to the molecular axis. In addition, in N2 it is possible that the

HOMO-1 contributes more to ionization than the HOMO as can be seen in figure 4.4.
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Figure 4.4: Ionization probability for N2 while under the presence of an 800 nm laser pulse with

intensity I = 2× 1014 W
cm2 and polarization perpendicular to the molecular axis.
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4.2.2 Single-Color Ionization

We begin by first investigating ionization when a single laser field is applied to a system of

N+
2 and C2H

+
4 . In prior discussion we established that there is a laser induced resonance coupling

in N+
2 between the 3σg and 2σu orbitals when the laser pulse is at 400 nm and has a polarization

parallel to the molecular axis, and between the 3σg and 1πu orbitals when the laser pulse is at

800 nm and has a polarization perpendicular to the molecular axis. Similarly, in C2H
+
4 a coupling

between the 1b3g and 1b2u orbitals occurs when the laser pulse is at 400 nm and polarized parallel

to the molecular axis. As a result of such laser induced resonances we expect that there will be an

enhancement of ionization.

The first case we look at is the application of a 400 nm laser pulse polarized in the direction of the

molecular axis of N+
2 at intensity I = 2×1014 W

cm2 . The orbital contributions to ionization are shown

in figure 4.5. We saw before that for the cases of neutral N2 and nonresonant laser frequencies

that the 3σg orbital would contribute the most to ionization, shown in figures 4.3a-b. However

we now see that as a result of the laser induced coupling of orbitals the 2σu orbital contributes

the most to ionization. This however brings about another question which is why does the spin

down electron in 2σu ionize more than the spin up electron in 2σu? The answer to this question

is actually quite simple, the presence of a spin down hole makes the transition by the spin down

electron more probable, whereas for the spin up electron in the 2σu orbital to excite into the 3σg

orbital, the spin up electron occupying it would have to be ionized, first due to the Pauli exclusion

principle. Hence we expect the ionization to be greater for the electron with the same spin as the

electron hole. The effect is the same for the case of N+
2 interacting with an 800 nm pulse with

polarization perpendicular to the molecular axis. Indeed the 1πu orbital contributes the most to

ionization as a result of the laser induced resonance between 3σg and 1πu. Again we see one spin

state contributing more to ionization than the other.
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Figure 4.5: Ionization probability for N+
2 while under the presence of a 400 nm laser pulse with

intensity I = 2× 1014 W
cm2 and polarization parallel to the molecular axis.
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Figure 4.6: Ionization probability for N+
2 while under the presence of an 800 nm laser pulse with

intensity I = 2× 1014 W
cm2 and polarization perpendicular to the molecular axis.

In C2H
+
4 we saw that there is a laser induced resonance transition between the 1b3g and 1b2u
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orbitals by a 400 nm laser pulse with polarization parallel to the molecular axis when there is an

electron-hole present in the 1b3g orbital. We then expect that as a result of this coupling that the

1b3g would contribute the most to ionization, and indeed this is what we observe as shown in figure

4.7, and the explanation is the same as for N+
2 .
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Figure 4.7: Ionization probability for C2H
+
4 while in the presence of a 400 nm laser pulse with

intensity I = 1× 1014 W
cm2 and polarization perpendicular to the molecular axis.

4.2.3 Two-Color Ionization

As we saw, CREI is indeed present when there is a laser induced resonance between orbitals.

However, it is worthwhile to investigate the effects of ionization when an additional laser is made

to interact with the system. We first consider two cases: (1) a 400 nm laser with fixed polarization

parallel to the molecular axis with intensity I1 = 2×1014 W
cm2 , and an 800 nm laser with polarization

varying from 0o to 90o with respect to the molecular axis with intensity I2 = 1 × 1014 W
cm2 , and

(2) an 800 nm laser with fixed polarization perpendicular to the molecular axis with intensity

I1 = 2× 1014 W
cm2 , and a 400 nm laser with polarization varying from 0o to 90o with respect to the

molecular axis with intensity I2 = 1× 1014 W
cm2 . Figure 4.8 shows the total ionization for both cases
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(1) and (2), respectively.
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Figure 4.8: Total ionization probability as a function of polarization alignment for cases (1) and

(2) respectively. In (a) the polarization of the 800 nm pulse is varied from 0o to 90o with respect

to the molecular axis, and in case (b) the polarization of the 400 nm pulse is varied from 0o to 90o

with respect to the molecular axis.

We can see that for case (1) the ionization probability is maximized when both the 400 nm

and 800 nm laser pulses have polarization parallel to the molecular axis, and minimized when the

polarization of the 800 nm pulse is oriented perpendicular to the molecular axis. For case (2) it is

not so straightforward, ionization is minimized when the 400 nm pulse is parallel to the molecular

axis, as in case (1), but we see that ionization is maximized when the 400 nm pulse is oriented at

60o with respect to the molecular axis, and not when it is 90o. In order to fully understand why

this is occurring we must look at the single orbital contributions to ionization.

4.2.3.1 Orbital Contributions to Ionization

As we saw, for case (1) ionization was enhanced when the polarization of the 800 nm pulse

was parallel to the molecular axis, and became further suppressed as we increased the polarization

angle to θ = 90o. Analyzing the single orbital contributions tells us which orbitals contribute most,
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but it still does not give us the insight as to why suppression of ionization occurs as we increase

the angle θ. We must then consider the time dependent projections between coupled orbitals,

which initially begin as orthogonal orbitals but become coupled during the interaction with the

field. Figures 4.9a-b show the projections between the orbitals 3σg and 2σu as well as 3σg and 1πu

for the cases where the polarization angles of the 800 nm pulse are (a) θ = 0o and (b) θ = 90o.

We see that for case (a) where the 800 nm pulse has polarization parallel to the molecular axis

the projection between 3σg and 2σu has more irregular oscillations than in case (b), which can be

interpreted that the projected orbitals, which are typically orthogonal, being more in resonance

during the interaction with the laser field and so ionization is enhanced, whereas in case (b) we

see that the oscillations occurring in the time dependent projections of orbitals behave in a more

periodic manner with values ranging from 0 to 0.9, meaning that there are more times in which the

orbitals become orthogonal, i.e. nonresonant, resulting in a suppression of ionization. From here we

can interpret that as the polarization angle of the 800 nm pulse is changed from θ = 0o to θ = 90o

there are more instances of the coupled orbitals going out of resonance during the pulse, hence

reducing the total ionization. We also see, based on the projections, that the major contribution

to ionization for case (1) should be coming from the 2σu even as the angle θ is increased. We can

confirm this by looking at the peak ionization for each orbital as a function of angle θ, as shown in

figure 4.10. We see that for all angles the 2σu is ionized the most just like in the single color case.

However the probability of ionization of each orbital is less than that in the single color case, which

can mean that the addition of the second pulse is indeed suppressing total and partial ionization

of orbitals.
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Figure 4.9: Ground state orbital projections onto time-dependent orbitals for the cases of N+
2

interacting with a 400 nm pulse of intensity I = 2 × 1014 W
cm2 with fixed polarization along the

molecular axis and an 800 nm pulse of intensity I = 1 × 1014 W
cm2 with polarization (a) at angle

θ = 0o and (b) polarization at an angle θ = 90o with respect to the molecular axis.
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Figure 4.10: Total ionization for each orbital as a function of angle θ for the case where N+
2 interacts

with two pulses, a 400 nm one with polarization fixed parallel to the molecular axis and intensity

I = 2 × 1014 W
cm2 , and an 800 nm one of intensity I = 1 × 1014 W

cm2 with polarization angle varied

from 0o to 90o with respect to the molecular axis.

In case (2) we fixed the polarization of the 800 nm pulse and varied the polarization of the

400 nm pulse, and as we saw ionization becomes more complicated than in case (1). Figure 4.8b

tells us that there is minimum total ionization when the polarization angle of the 400 nm pulse is

θ = 0o. We would expect that the explanation to this is analogous to case (1) where the angle of

the 800 nm pulse is at θ = 90o where we see that the projection between coupled orbitals resonates

between 0 and 1 meaning that at points during the pulse there is no resonance between orbitals

so CREI is not occurring at times, however that is not what we are seeing when looking at the

time dependent projections, shown in figure 4.11a-b . In fact we see that there is strong coupling

between 3σg and 2σu as well as 3σg and 1πu. The electrons in both the 2σu and 1πu orbitals want

to excite into the 3σg however due to Pauli blocking, only one is able to be ionized at a given time.

Therefore ionization coming from both orbitals is suppressed as CREI only occurs at shorter time
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periods during the laser pulse. We also see from figure 4.12 that there is a small difference between

the contributions of ionization from the 1πu and 2σu orbitals unlike in the single color case where

almost no ionization came from 2σu. Again, this is explained by looking at the time dependent

projections between orbitals which tells us that there is a strong coupling between 3σg and 2σu

meaning that ionization from that orbital will be enhanced. When the polarization angle of the 400

nm pulse is θ = 90o we see that there is only a resonance between 3σg and 1πu which is expected

because the 400 nm pulse does not couple any orbitals when the polarization is perpendicular to

the molecular axis. We also see that when the angle is θ = 90o this becomes more like the single

color case of an 800 nm pulse polarized perpendicular to the molecular axis, and the ionization is

coming mostly from the 1πu orbital and the ionization from the 2σu goes almost to zero.
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Figure 4.11: Ground state orbital projections onto time-dependent orbitals for the cases of N+
2

interacting with an 800 nm pulse of intensity I = 2×1014 W
cm2 with fixed polarization perpendicular

to the molecular axis and a 400 nm pulse of intensity I = 1×1014 W
cm2 with polarization (a) at angle

θ = 0o and (b) polarization at an angle θ = 90o with respect to the molecular axis.
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Figure 4.12: Ionization probability for each orbital as a function of angle θ for the case where N+
2

interacts with two pulses, a 800 nm one with polarization fixed perpendicular to the molecular axis

and intensity I = 2 × 1014 W
cm2 , and a 400 nm one of intensity I = 1 × 1014 W

cm2 with polarization

angle varied from 0o to 90o with respect to the molecular axis.

As we saw case (2) had a maximum ionization when the polarization angle of the 400 nm pulse

was θ = 60o with respect to the molecular axis. This is unlike case (1) where the ionization has

a maximum and minimum at θ = 0o and θ = 900 respectively. In figure 4.12 we see that at this

angle there is also a large contribution to ionization from the spin up electron in the 2σu orbital.

This indicates that there is strong coupling between the spin up states of 3σg and 2σu. In fact

for all angles up to θ = 60o there seems to be a large contribution from the 2σu orbital, which is

contrary to what we have seen because a laser induced coupling between 3σg and 2σu should only

occur when the 400 nm laser is polarized parallel to the molecular axis. This is an indicator that

the addition of a second pulse is breaking the symmetry of the system such that we are able to still

couple 3σg and 2σu even at polarization not parallel to the molecular axis, in turn the ionization

is enhanced due to charge resonance. Indeed we can further confirm this by looking at the time

dependent projections of the coupled orbitals shown in figure 4.13, and we see that the 3σg and 2σu

for both spin up and down remain coupled at this angle which in turn should enhance ionization
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from those orbitals and contribute to the total ionization.
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Figure 4.13: Ground state orbital projections onto time-dependent orbitals for the cases of N+
2

interacting with an 800 nm pulse of intensity I = 2×1014 W
cm2 with fixed polarization perpendicular

to the molecular axis and a 400 nm pulse of intensity I = 1 × 1014 W
cm2 with polarization at angle

θ = 60o with respect to the molecular axis for both the spin up and down orbitals.

4.3 Summary

In this chapter we investigated the effects of strong field ionization in multielectron systems

such as N+
2 and C2H

+
4 . We considered the scenarios where a linearly polarized pulse couples two

orbitals, and observed that the coupling leads to a charge resonance enhanced ionization. We first

studied the case where our system interacts with a single linearly polarized laser pulse.

Later on we looked at how the addition of a second linearly polarized case affects the ionization of

our systems. We again considered the two following cases: (1) a 400 nm pulse with polarization

fixed parallel to the molecular axis and an 800 nm pulse with polarization varied at angles θ = 0o

to θ = 90o with respect to the molecular axis. We saw that for case (1) the behavior of ionization

was almost analogous to that of the single color 400 nm case observed earlier. We then showed

that for case (2) the addition of a second laser pulse further complicates the dynamics, and that

resonant induced coupling between orbitals remains present even as the polarization angle of one of
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the pulses was changed, which is unlike the single color case and case (1), leading to enhancement

and suppression of ionization from certain orbitals.



Chapter 5

Electron Localization in Molecules

An indication of multielectron effects occurring in molecules can be seen by studying the

behavior of electrons within them while under the influence of a laser pulse. A useful way to

investigate such effects is to look at the electron localization, which provides a way to study how

said electrons respond to the laser field.

With TDDFT it is possible to visualize electron localization. We do this by solving the time-

dependent Kohn-Sham equation (2.31), and by obtaining either the total time-dependent density

given by equations (2.33) and (2.35) for the cases in which no spin polarization or spin polarization

are implemented in TDDFT, respectively. It is also possible to look at the individual orbital

contributions to the electron localization, which gives further insight into how each given electron

in a molecule responds to the applied laser field.

This can be done using one of the following equations for spin unpolarized and spin polarized cases,

respectively:

ρ(r, t) =
N∑
i=1

|φi(r, t)|2, (5.1)

ρ(r, t) =
∑
σ=↑,↓

ρσ(r, t) =
∑
σ=↑,↓

N∑
i=1

|φi,σ(r, t)|2, (5.2)

where the index i corresponds to the ith molecular orbital.

Upon solving for the total and/or individual orbital density, the three-dimensional densities are
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then integrated over the spatial dimensions except that along the molecular axis.

ρ(z, t) =

∫
dxdyρ(r, t). (5.3)

One thing to note is that this specific dimension is chosen because it allows us to see the dynamics

clearly, in any other dimension chosen it might be difficult to visualize.

After integrating onto the desired spatial dimension and obtaining ρ(z, t), the ground state density

ρ(z, t = 0) is subtracted:

∆ρ(z, t) = ρ(z, t)− ρ(z, t = 0). (5.4)

The resulting density difference is then plotted and the electron localization visualized using surface

plots. In certain cases the density difference is small so the time propagated density is shown.

In this chapter we will first consider electron localization in the presence of a one-color laser pulse

for both N+
2 and C2H

+
4 . We will then consider the case were a second laser is added to our system

and investigate the differences observed in comparison to the one-color case. We then finish by

looking at a different description of electron localization by Floquet Theory and connect to that

obtained by TDDFT.

5.1 Electron Localization in the Presence of One-Color Laser Pulses

We begin by looking at the case in which a molecule interacts with a single linearly polarized

laser pulse. As before the molecules considered in our study are N+
2 and C2H

+
4 . Recall that for N+

2

there is a resonant coupling of the 3σg and 2σu orbitals by a 400 nm pulse, and a resonant coupling

of the 3σg and 1πu orbitals by an 800 nm pulse. Figures 5.1a-b show the electron localization

obtained from the total density for two separate cases: (a) a 400 nm laser pulse, and (b) an 800

nm laser pulse, all with polarization oriented along the molecular axis and with peak intensity

I = 2× 1014 W
cm2 . We begin by considering the total electron density, and later look at the orbital

contributions to the nonadiabatic effects arising in electron localization. Recall that within our field,
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nonadiabatic behavior corresponds to the electron not following the oscillation of the electric field

during the time propagation and adiabatic behavior means that the electron follows the oscillation

of the electric field.
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Figure 5.1: Visualization of total electron localization of N+
2 along the molecular axis at different

laser wavelengths as a function of time: (a) 400 nm laser field of intensity I = 2 × 1014 W
cm2 , and

(b) 800 nm laser field of intensity I =2× 1014 W
cm2 . In all cases the orientation of the polarization is

parallel to the molecular axis.

It is evident that as the optical frequency gets closer to the resonant frequency between orbitals,

then the appearance of non-adiabatic dynamics becomes more visible. In the cases shown in figure

5.1, the interaction with the 400 nm pulse makes the localization of the electron behave more

non-adiabatically, hence not following the laser field. As we increase the wavelength to 800 nm,

the electron dynamics behaves adiabatically. Visualizing electron localization gives insight into the

non-adiabatic behavior brought upon when coupling the 3σg and 2σu orbitals of N+
2 .

Such behavior is also evident in C2H
+
4 . Recall that the laser coupled orbitals are 1b3g and 1b2u

by a 400 nm pulse with polarization parallel to the molecular axis. As a result we expect electron

localization to be nonadiabatic, and indeed it is as seen in figure 5.2.
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Figure 5.2: Visualization of total electron localization of C2H
+
4 interacting with a 400 nm laser

field of intensity I = 1× 1014 W
cm2 with polarization parallel to the molecular axis. The direction is

parallel to the C-C bond.

This nonadiabatic process occurring as a result of the laser induced coupling can be broken down

into two competing processes: first, there is an adiabatic response by the electrons to the laser field,

second the 400 nm laser couples the two orbitals which leads to an oscillation of the electrons at

the Rabi frequency Ωr resulting in nonadiabatic electron localization at certain times during the

laser pulse.

5.1.1 Single-Color Orbital Contributions to Electron Localization in Molecules

While the electron localization for the total density shows that non-adiabatic effects are

indeed occurring when there is a laser induced resonant coupling of orbitals it is necessary to look

at the individual orbital contributions to see if the coupled orbitals are indeed the ones that are

contributing the most to this effect, or if other orbitals are also involved.

We first consider the case of N+
2 interacting with a 400 nm laser pulse at intensity I = 2×1014 W

cm2 .

Figures 5.3a-d show the independent orbital contribution to electron localization for spin down

electrons and figure 5.4a-d for the spin up electrons.
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Figure 5.3: Visualization of orbital contributions to electron localization of N+
2 in the presence of

a 400 nm laser pulse with intensity I = 2×1014 W
cm2 and polarization along the molecular axis. The

orbitals are ordered, (a) 2σg, (b) 2σu, (c) 1πu, and (d) 3σg.
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Figure 5.4: Visualization of electron localization for the independent orbitals of N+
2 in the presence

of a 400 nm laser pulse with intensity I = 2 × 1014 W
cm2 and polarization along the molecular axis.

The orbitals are ordered, (a) 2g, (b) 2σu, (c) 1πu and (d) 3σg for the spin up electrons.

Figures 5.3 and 5.4 (b) and (d) correspond to the 2σu and 3σg orbitals for both the spin down and

spin up electrons respectively which are coupled by the 400 nm laser pulse. We can see that the

nonadiabatic effects are present in those two orbitals while all the others exhibit more adiabatic

dynamics. This confirms the idea that there are two competing processes occurring in nonadiabatic

electron localization as mentioned before. Interestingly enough we see in figure 5.4c that the 1πu
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orbital exhibits some nonadiabatic signature during certain instances of time. We can explain this

by looking at the time-dependent energy expectation values 〈φi(0)|H(t)|φi(0)〉 of each molecular

orbital φi during the propagation with the pulse shown in figure 5.5. We see that there are instances

in which there is an energy crossing by the 1πu and 3σg orbital energies, which indicate that at

those times there is a short lived orbital coupling, giving rise to nonadiabatic dynamics in the

electron localization of the 1πu orbital.
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Figure 5.5: Time-dependent energy expectation values of each molecular orbital of N+
2 during the

interaction with a 400 nm laser pulse.

By the same argument as for N+
2 , we then expect similar dynamics to occur in C2H

+
4 , however

when looking at the independent orbital contributions for both spin down and spin up, figures

5.7 and 5.8a-f respectively, we see that nonadiabatic effects are present not only in the coupled

orbitals 1b3g and 1b2u but also in other orbitals. This brings about the question of whether or not

nonadiabatic electron localization is indeed only caused by laser induced coupling of orbitals. By

similar analysis to that in N+
2 we consider the time-dependent energy expectation values of C2H

+
4
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during the interaction of the laser pulse to provide us with an explanation of this phenomena as

shown in figure 5.6. We see that during the pulse there are many crossings of the energy values for

many orbitals meaning that at certain times during the pulse there exist couplings between other

orbitals which will in turn result in the appearance of nonadiabatic behavior for different orbitals.
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Figure 5.6: Time-dependent energy expectation values of each molecular orbital of C2H
+
4 during

the interaction with a 400 nm laser pulse.

The conclusion is then that other features such as orbital geometry and energy spacing between

orbitals must be considered when investigating such effects so it is expected that nonadiabatic

response in electron localization for C2H
+
4 can indeed appear from orbitals that one would not

expect to be coupled by the laser pulse.
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Figure 5.7: Visualization of electron localization for the individual orbitals of C2H
+
4 while in the

presence of a 400 nm laser pulse with intensity I = 1×1014 W
cm2 and polarization along the molecular

axis spin down electrons.
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Figure 5.8: Visualization of electron localization for the individual orbitals of C2H
+
4 while in the

presence of a 400 nm laser pulse with intensity I = 1×1014 W
cm2 and polarization along the molecular

axis for spin up electrons.
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While the interaction of molecules with ultrashort laser pulses showed interesting behavior occurring

in electron localization we now ask the question of what will happen to electron localization if

another laser pulse is added to our system.

5.2 Electron Localization in the Presence of Two-Color Laser Pulses

While one color interactions bring about interesting nonadiabatic features in electron local-

ization as a result of two competing processes, it is worthwhile to ask if one can control these

effects by the addition of a second laser pulse. We consider the case shown in figure 3.25a where

we have N+
2 interacting with a 400 nm pulse with polarization fixed along the molecular axis, and

an 800 nm pulse with polarization varied along the molecular axis with angle θ = 0o to θ = 90o in

increments of θ = 10o. For this case the pulse with the fixed polarization is designed to control the

coupling effects while the one whose polarization varies is designed to either enhance or suppress

such effects. We only consider the case with the 400 nm pulse with fixed polarization because as

mentioned, electron localization is difficult to see if we consider projecting along dimensions that

are not the same as the molecular axis. We present the total electron localization for each angle

θ in figures 5.9a-j. It is evident that nonadiabatic electron localization is neither suppressed nor

enhanced, in fact it seems to remain the same for all angles presented. This could be due to the

intensities we have chosen for the pulses. For the 400 nm pulse the intensity was I = 2× 1014 W
cm2 ,

while for the 800 nm pulse the intensity was I = 1× 1014 W
cm2 , which are not too different, however

because the intensity of the 400 nm pulse and the transition dipole moment are stronger we expect

the orbital coupling between the 3σg and 2σu to be stronger than anything coupled by the 800 nm

pulse. Indeed this is the case as seen in figures 4.9a-b, where for θ = 0o we expect that only the 3σg

and 2σu are coupled and for the case of θ = 90o where we also expect a coupling between the 3σg

and 1πu orbitals in addition to the other one. Thus we can confirm that the greatest contribution

to the nonadiabatic effects is a result of the interaction with the 400 nm laser pulse.
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Figure 5.9: Visualization of electron localization of the total density of N+
2 interacting with a 400

nm pulse of intensity I = 2× 1014 W
cm2 with polarization fixed along the molecular axis, and an 800

nm pulse of intensity I = 1× 1014 W
cm2 with polarization varied from θ = 0o to θ = 90o with respect

to the molecular axis.

5.2.1 Individual Orbital Contributions to Two-Color Electron Localization

As we saw the presence of a second laser pulse does not enhance or suppress nonadiabatic

dynamics in electron localization for the total electron density. However it is still worthwhile to

investigate the individual orbitals and see if it is only the coupled ones that are exhibiting such
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effects or if others are indeed playing a role. We begin by looking at the case where the 800 nm

pulse of intensity I = 1× 1014 W
cm2 is oriented at an angle θ = 0o, figure 5.10. This case is identical

to the single color case when only the 2σu and 3σg orbitals bring about the nonadiabatic dynamics.

This is expected because the 400 nm pulse is the only one inducing a resonant coupling between

orbitals while the 800 nm pulse does not induce a coupling when the polarization is oriented along

the molecular axis.
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Figure 5.10: Visualization of orbital contributions to electron localization of N+
2 in the presence of a

400 nm laser pulse with intensity I = 2×1014 W
cm2 and an 800 nm pulse with intensity I = 1×1014 W

cm2

both with polarization along the molecular axis. The orbitals are ordered, (a) 2σg, (b) 2σu, (c)

1πu, and (d) 3σg.

We must turn back to the question of whether or not other orbitals exhibit such an effect when the

angle θ of polarization is nonzero. We present results for the following angles: θ = 50o and θ = 90o.

We only consider these angles because presenting all of the figures for each angle would be in fact

quite cumbersome and will not bring much into our discussion of what is occurring.
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We consider the case where the angle is θ = 50o shown in figure 5.11. We know that at this

angle there is no induced coupling from the 800 nm laser however, we indeed see that the electron

localization from the 1πu orbital behaves adiabatically except near the end of the pulse where we

begin to observe electron densities overlapping, and again this might not be a result of an induced

coupling but rather perturbations from the ramping down of the laser pulse. The 3σg and 2σu

orbitals still exhibit the most nonadiabatic behavior as is expected due to the resonant coupling

by the 400 nm pulse. We can say that we do not expect the behavior from those two orbitals to

change as we vary the angle of polarization of the 800 nm pulse.
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Figure 5.11: Visualization of orbital contributions to electron localization of N+
2 in the presence of

a 400 nm laser pulse with intensity I = 2× 1014 W
cm2 polarized along the molecular axis and an 800

nm pulse with intensity I = 1× 1014 W
cm2 with polarization at an angle θ = 50o with respect to the

molecular axis. The orbitals are (a) 2σg, (b) 2σu, (c) 1πu, and (d) 3σg.

On the other hand we know that there is an induced coupling between 3σg and 1πu by an 800

nm pulse with polarization oriented perpendicular to the molecular axis. Oddly enough, we do

not observe strong nonadiabatic effects arising in the electron localization of the 1πu orbital when

the angle is θ = 90o with respect to the molecular axis. However this could be due to projecting
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the three-dimensional time-dependent electron density along the axis of the molecular axis. We

stated before that this was the ideal axis onto which to project as it would allow us to observe

the full features of electron localization, however this is not entirely true since the 1πu orbital

is not oriented along the molecular axis like the σ orbitals but rather perpendicular. Therefore,

we consider the projection onto an axis perpendicular to the molecular axis and look at just the

electron localization of the 1πu orbital. Figures 5.13a-b presents such cases and indeed we can

see that there is non-adiabatic electron localization present from the 1πu orbital as a result of the

second 800 nm laser pulse oriented (b) perpendicular to the molecular axis, compared to (a) when

the 800 nm laser is oriented parallel to the molecular axis. Interestingly enough, while the case

in which the 800 nm pulse has parallel polarization (a) exhibits adiabatic effects, the amount of

electron density does not stay uniform. This could be a result of interferences occurring due to the

other laser being present.

The results we presented confirm that both pulses are inducing separate resonant couplings, albeit

of different strengths when the 400 nm pulse is parallel to the molecular axis and the 800 nm pulse

is perpendicular. We then conclude that two-color interactions do indeed enhance nonadiabatic

effects in electron localization, however with the caveat that certain effects can only be observed

when projecting along specific dimensions as we have shown.
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Figure 5.12: Visualization of orbital contributions to electron localization of N+
2 while in the

presence of a 400 nm laser pulse with intensity I = 2× 1014 W
cm2 polarized along the molecular axis

and an 800 nm pulse with intensity I = 1 × 1014 W
cm2 with polarization at an angle θ = 90o with

respect to the molecular axis. The orbitals are (a) 2σg, (b) 2σu, (c) 1πu, and (d) 3σg.
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Figure 5.13: Visualization of electron localization for the 1πu orbital projected along the direction

of the orbitals rather than the molecular axis for the cases when the 800 nm pulse of intensity

1× 1014 W
cm2 is oriented at angles (a) θ = 0o and (b) θ = 90o with respect to the molecular axis.

5.3 Floquet Picture of Electron Localization

Aside from full 3-d calculations performed with Octopus, Floquet theory can provide a simple

picture of localization. We do so by approximating the laser field as a CW field, and by considering

a Hamiltonian for a two-level system that has the form:

H(t) =
∆0

2
[σuu − σgg]− µguE(t)[σgu + σug], (5.5)

where ∆0 is the energy difference between orbitals |g〉 and |u〉, σij = |i〉〈j| (i,j ∈ u,g), respectively,

µgu is the transition dipole moment between orbitals, and E(t) is the applied laser field.

We consider an electric field that has a vector potential given by:

A(t) = Aosin(ωt+ φ) + Ã, (5.6)

where Ao is the amplitude of the vector potential, ω is the optical frequency of the field, φ is some

phase shift, and Ã is an arbitrary shift to the vector potential that has no effect on the physical
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observables. This vector potential has a corresponding electric field given by:

E(t) = −dA(t)

dt
= −Eocos(ωt+ φ), (5.7)

where the field strength is given by Eo = ωAo. We then rewrite the above equations with a

dimensionless coordinate τ = ωt+ φ, and obtain a TDSE given by:

i
∂

∂τ
|Ψ(τ)〉 = H̃(τ)|Ψ(τ)〉, (5.8)

where H̃(τ) = H(t(τ))/ω. As is required by Floquet theory, we impose that the Hamiltonian be

2π periodic, so we can then say that this TDSE has a solution of the form:

|Ψ(τ)〉 = e−iεjτ |φFj (τ)〉, j = 1, 2. (5.9)

where εj are the quasienergies of the Floquet states |φFj 〉 which are eigenstates of the Floquet

Hamiltonian described in equation (2.63). We can expand the quasienergies by making the ap-

proximation that the optical frequency of the field ω is much larger than the energy difference ∆0

between states and/or the coupling between states is strong. The expansion is as follows:

ε1 = −∆0

2ω
J0(ζ), (5.10)

ε2 =
∆0

2ω
J0(ζ), (5.11)

where J0(ζ) is the zeroth-order Bessel function of the first kind, and ζ =
2µguEo

ω , which is a ratio

of the Rabi frequency and the optical frequency of the field. With this we can then approximate

the corresponding Floquet states given by (see [45] for a complete and detailed derivation):

|φF1 (τ)〉 =[cos(φ(τ)) + i
∆0

ω
cos(φ(τ))ξs(τ) + i

∆0

ω
sin(φ(τ))ξa(τ)]|g〉+[

i sin(φ(τ)) +
∆0

ω
cos(φ(τ))ξa(τ)− ∆0

ω
sin(φ(τ))ξs(τ)]|u〉,

(5.12)
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|φF2 (τ)〉 =[i sin(φ(τ)) + i
∆0

ω
cos(φ(τ))ξa(τ) +

∆0

ω
sin(φ(τ))ξs(τ)]|g〉+[

cos(φ(τ))− i∆0

ω
cos(φ(τ))ξs(τ)− i∆0

ω
sin(φ(τ))ξa(τ)]|u〉,

(5.13)

where

φ(τ) = −µgu[A(τ)− Ã], (5.14)

ξa =
∞∑
k=0

J2k+1(ζ)
cos[(2k + 1)τ ]

2k + 1
, (5.15)

ξs =
∞∑
k=1

J2k(ζ)
sin[2kτ ]

2k
. (5.16)

With all of the above the solution to equation (5.8) can be be expressed as a superposition of the

Floquet states (5.12) and (5.13) given by:

|Ψ(τ)〉 = c1e
−iε1τ |φF1 (τ)〉+ c2e

−iε2τ |φF2 (τ)〉, (5.17)

where c1 and c2 are coefficients that are constant in time.

5.3.1 Two-Color Charge-Resonance Localization

As we have discussed, ionic diatomic molecules in the presence of a laser field can undergo a

laser induced coupling when the optical frequency of the pulse is close to the resonant frequency

between orbitals and the resulting electron density can oscillate between the two protons. We can

extract the populations of the charge-resonant states given by the solution |Ψ〉 either from full 3-D

calculations performed in Octopus or by using the two-state model described above in equation 5.5.

We consider the superposition which describes the electron localization at one of the protons as:

|L〉 =
1√
2

(|g〉+ |u〉), (5.18)

|R〉 =
1√
2

(|g〉 − |u〉), (5.19)
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we can then obtain the time-dependent local populations using:

PL =
|〈L|Ψ〉|2

|〈L|Ψ〉|2 + |〈R|Ψ〉|2
, (5.20)

PR =
|〈R|Ψ〉|2

|〈L|Ψ〉|2 + |〈R|Ψ〉|2
. (5.21)

We know that in H+
2 we observe charge resonance pairs between 1σu and 2σg orbitals at large

internuclear distances R. We then expect to see nonadiabatic effects in electron localization, and

indeed this was shown by Takemoto and Becker [44] where they considered the internuclear dis-

tance of H+
2 to be R = 7 a.u.. Figure 5.14 shows their results for electron localization for both

the (c) full 3-D TDSE and (d) Floquet theory. We see that Floquet theory indeed captures the

essence of nonadiabatic electron localization. However many of the features included in the full 3-D

calculations are lost such as ionization of the electron into the continuum, similar to what occurs

when using the optical Bloch equations to study HHG. Nevertheless, Floquet theory gives us some

insight as to how the populations of electrons move around a molecule when there is a laser induced

coupling between orbitals.

Figure 5.14: Electron localization for H+
2 with internuclear distance R = 7 a.u. for the cases of (c)

full 3-D TDSE, and (d) Floquet theory. Adapted from [44].

While the full 3-D TDSE and Floquet picture of electron localization seem to agree for the case of

H+
2 we must remind ourselves that this is a one electron system and that we are really interested

in looking at the multielectron effects in nonadiabatic dynamics in molecules. Unfortunately such
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simple models as the one considered by the Hamiltonian in equation (5.5) fail to capture effects

from electrons not in the orbitals we consider. However, even a simple model can provide some

information about what is occurring and provide a simple picture that is otherwise too complicated

to explain when looking at full 3-D TDDFT calculations.

We compare the dynamics of the two-level system to those obtained by performing full 3-D calcu-

lations on Octopus for N2+ and C2H
+
4 . We begin by first extracting the transition dipole moments

shown in table 5.1 by performing a DFT calculation in Octopus. This is done by taking the ground

state wavefunctions and using the integral below to calculate the transition dipole moment.

µ =

∫
Ψ∗2(~r)~rΨ1(~r)d3~r. (5.22)

Laser Wavelength (nm) Transition dipole moment spin down (a.u) spin up (a.u)

400 〈3σg|x|2σu〉 1.558 1.5691

800 〈3σg|y|1πu〉 0.28682 0.23659

400 〈1b2u|x|1b3g〉 -1.7231 1.7431

Table 5.1: Transition dipole moments for orbitals coupled by laser field of given wavelength for N+
2

and C2H
+
4 .

Before going further we must consider the correct parameters, such that the quasienergies undergo

a crossing, i.e., are degenerate. This is done by selecting an appropriate intensity of the pulse. In

the figures 5.15a-c respectively, we show the quasienergies as a function of intensity for the cases

of N+
2 interacting with a 400 nm and 800 nm laser field, and C2H

+
4 with a 400 nm field. From

there we can choose an appropriate intensity in which there is a crossing, and set our laser fields

accordingly. We can see that for N+
2 there is a crossing at about I = 1.5 × 1015 W

cm2 for 400 nm,

I = 1.5× 1016 W
cm2 for 800 nm, and for C2H

+
4 at I = 4× 1016 W

cm2 for 400 nm.
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Figure 5.15: Quasienergies ε1 and ε2 as functions of laser intensity.

We then use the chosen intensities and look at the left and right populations for each of the

molecules. We first consider N+
2 interacting with (a) a 400 nm pulse of intensity I = 1.5× 1015 W

cm2

and (b) an 800 nm pulse of intensity I = 1.5 × 1016 W
cm2 . Figures 5.16a-b show the respective left

and right populations for cases (a) and (b). We see that during the propagation of the pulse the

electron is localized at either the right or left side of the molecule. We note that the behavior of the

oscillations of PL(t) and PR(t) is clearly nonadiabatic as there are instances during the propagation

where the populations stay more localized on one of the sides of the molecule.
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Figure 5.16: Time-dependent left- and right- populations for N+
2 using the analytical solution

obtained from Floquet theory for the cases where the laser is (a) at 400 nm with intensity I =

1.5× 1015 W
cm2 and (b) at 800 nm with intensity I = 1.5× 1016 W

cm2 .

We now look at the time-dependent left and right populations of C2H
+
4 interacting with a 400 nm

laser at the chosen intensity I = 4×1016 W
cm2 . Figure 5.17 shows both PL(t) and PR(t) for said case.

It is evident that the behavior is nonadiabatic however we see more localization along the middle

of the molecule at certain times. This is similar to the effects seen in the full 3-D TDDFT orbital

contributions to localization for C2H
+
4 (figure 5.7), where at certain times during the propagation

of the pulse the electron is localized between the carbon nuclei.
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Figure 5.17: Left- and right- time-dependent populations for C2H
+
4 using the analytical solution

obtained from Floquet Theory for the case where the laser is 400 nm with intensity I = 1.5×1015 W
cm2 .

In conclusion, we see that a simple two-level system can in fact predict electron localization in

molecules when there is a laser induced resonance between orbitals. However, we note that the

perspective we gain by using this model is different than when using TDDFT, and we must analyze

electron localization using of left- and right- localized orbitals/states (i.e., charge resonance states)

and populations which tell us that the population of laser induced charge resonance pairs is localized

on either side of the molecule and that each population behaves nonadiabatically when there is a

resonance between orbitals. While the model helps predict some of the mentioned effects we must

take into consideration that we are neglecting full multielectron effects and ionization into the

continuum that we can otherwise observe with the use of TDDFT. Nonetheless, the model helps

to simplify the effects occurring in nonadiabatic electron localization.

5.4 Summary

In this chapter we investigated the appearance of nonadiabatic effects in electron localization

for N+
2 and C2H

+
4 . We first considered the case where one laser pulse induces a coupling between

orbitals, and studied at the total electron localization and the orbital contributions of localization.

We determined that there are several competing processes that contribute to nonadiabatic electron

localization: (1) the oscillation of the electrons with the electric field and (2) the oscillation at
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the Rabi frequency of the electrons coupled by the field. We then investigated the case where

our system interacts with two linearly polarized pulses, and exhibited the differences that arise

in nonadiabatic behavior of electron localization as a consequence of the addition of the second

pulse. Finally we investigated nonadiabatic electron localization with the use of Floquet theory

for a two-level system and analyzed how the population of the coupled orbitals varied between

the left and right sides of the molecule as a function of time and confirmed that in the case of a

resonant coupling nonadiabatic behavior was evident. We also saw that while the way we looked

at localization using Floquet theory was different as compared to full TDDFT calculations, it gave

a simple description of the more complex dynamics occurring in the full 3-D model.



Chapter 6

Summary, Discussion, and Outlook

6.1 Summary and Discussion

In this thesis we investigated how multielectron effects play a role in the interactions between

molecules and intense ultrashort pulse lasers in the context of high harmonic generation, strong-

field ionization, and electron localization. We considered various theories such as time-dependent

density-functional theory, optical Bloch equations, and Floquet theory to analyze our results and

compared each theory with each other.

In chapter 3 we studied the multielectron effects in molecules for HHG. We saw that a laser induced

coupling leads to the appearance of Mollow sidebands in HHG spectra for the cases of single-color

and two-color linearly polarized laser interactions for N+
2 . We compared both TDDFT and optical

Bloch equations and found that while both theories vary greatly in complexity, they both capture

the essence of Rabi oscillations and hence the appearance of Mollow sidebands. We also analyzed

how the pulse envelope affects the resolution of the Mollow sidebands for C2H
+
4 and found that

their appearance is greatly dependent on the laser pulse envelope used. We then investigated the

generation of elliptically polarized harmonics from CO2 for various intensities and investigated

the orbital contributions to ellipticity. Furthermore we compared the results to those obtained in

experiment and found that the theory and experiment agree. Finally we considered the interaction

of H2 and H+
2 with circularly polarized bichromatic pulses of commensurate frequencies for the

cases where they are co- and counter-rotating and found that the HHG spectra show features of

the three-step model breakdown meaning that it must be modified for situations where the pulse
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is not linearly polarized.

In Chapter 4 we considered the effects of strong-field ionization for both N+
2 and C2H

+
4 in the cases

where there was a laser induced coupling between orbitals and observed that the coupling enhances

ionization from inner shell orbitals that are coupled by the field in the form of charge-resonance

enhanced ionization. We then considered the case of interactions of N+
2 with two-color linearly

polarized pulses where one pulse had fixed polarization and the other had polarization varied from

θ = 0o to θ = 90o. We found that the case where a 400 nm pulse had fixed polarization parallel to

the molecular axis and an 800 nm pulse had polarization rotated behaved almost analogous to the

single-color 400 nm pulse case. In contrast, in the case where the 800 nm pulse had polarization

fixed perpendicular to the molecular axis and a 400 nm pulse had polarization varied behaved

different than what we have predicted based on previous results and that coupling between orbitals

remained even at polarization orientations where we would expect there not to be any coupling,

thus enhancing ionization.

Finally in chapter 5 we investigated the appearance of nonadiabatic behavior in electron localization

for both N+
2 and C2H

+
4 in the cases were a laser pulse induced a coupling between orbitals. We

observed such behavior in the cases of single color interactions and saw that it is apparent in the

total electron density and the single orbital density, which led us to the conclusion that there are two

underlying competing processes: (1) the electrons oscillate with the field, and (2) the electrons in

the coupled orbitals oscillate at the Rabi frequency which leads to nonadiabatic behavior in electron

localization. We then considered the case of two-color interactions similar to the other chapters

and observed that the addition of a second laser pulse does not enhance or suppress nonadiabatic

behavior in electron localization. Finally we looked at the Floquet picture of electron localization

in the context of how the population varied from side to side of the molecule and found that while

it gives a different picture than that obtained with TDDFT, the idea that laser induced coupling

between orbitals leads to nonadiabatic behavior is the same as that observed in TDDFT.
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6.2 Outlook

While the analysis for many of our results were conclusive, there are certain open ques-

tions that remain when looking at the cases were there is a two-color laser pulse interaction with

molecules. In particular a question remains in the case where the 400 nm laser pulse had its polar-

ization direction rotated from θ = 0o to θ = 90o with respect to the molecular axis and the 800 nm

laser pulse had polarization direction fixed perpendicular to the molecular axis. There appears to

be a coupling of the 3σg and 2σu orbitals even when the polarization direction of the 400 nm laser

pulse was not parallel to the molecular axis. Perhaps with more allotted time, we could have looked

further in to this to get a more detailed answer than what was provided in previous discussion in

this thesis. Other interesting cases could have been considered such as studying molecules different

than CO2, N+
2 , and C2H

+
4 and applying similar scenarios as in this thesis and see if any of the

effects discussed change or if they remain the same or similar. Lastly, we could have further changed

the way we performed our calculations and investigated how different, if at all, our results would

have been. Such examples include trying different time-propagators aside from Crank-Nicolson,

trying different functionals, and even different space-time grids.
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Appendix A

This work utilized the RMACC Summit supercomputer, which is supported by the National Sci-
ence Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder,
and Colorado State University. The Summit supercomputer is a joint effort of the University
of Colorado Boulder and Colorado State University [47]. In addition to Summit, the work pre-
sented in this thesis utilized the JILA computing clusters for calculations.
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