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Abstract. Recent experimental progress with Alkaline-Earth atoms has opened the door to quantum com-
puting schemes in which qubits are encoded in long-lived nuclear spin states, and the metastable electronic
states of these species are used for manipulation and readout of the qubits. Here we discuss a variant of
these schemes, in which gate operations are performed in nuclear-spin-dependent optical lattices, formed by
near-resonant coupling to the metastable excited state. This provides an alternative to a previous scheme
[Phys. Rev. Lett. 101, 170504 (2008)], which involved independent lattices for different electronic states.
As in the previous case, we show how existing ideas for quantum computing with Alkali atoms such as
entanglement via controlled collisions can be freed from important technical restrictions. We also provide
additional details on the use of collisional losses from metastable states to perform gate operations via a
lossy blockade mechanism.

1 Introduction

There has been a lot of recent experimental progress
in cooling and manipulating alkaline-earth and alkaline-
earth-like atoms in the laboratory, especially in the con-
text of optical clocks with strontium atoms [1–5], and
the production of Bose-Einstein condensates and degen-
erate Fermi gases of ytterbium [6–8], calcium [9] and
strontium [10–13]. The control that has been developed
over these atoms makes them an extremely interesting
candidate for the implementation of quantum informa-
tion processing [14–17]. This is especially true in light
of the laser stability achieved in optical clock experi-
ments [3,5], which is reminiscent of the development path
towards quantum computing taken in the case of trapped
ions [18,19].

The key new feature of alkaline earth atoms in com-
parison with alkali atoms is the singlet-triplet metastable
transition, with the 1S0–3P0 transition being used as the
clock transition (see Fig. 1a). In particular, for 87Sr, the
3P0 manifold has a measured lifetime of τ ∼ 30 s, and
the 3P2 levels have even longer predicted lifetimes. In ad-
dition, for species with non-zero nuclear spin, this spin
can be decoupled from the electronic state on the clock
transition [14–17,20], especially in the presence of a large
magnetic field. The use of this nuclear spin for storage
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of quantum information would then be ideal, as the nu-
clear spin is much less sensitive to magnetic fields than
electron spins, and thus much less susceptible to decoher-
ence from magnetic field fluctuations than qubits stored
on electronic states. This has lead to a series of propos-
als [14,15,21] in which the electronic state is used for access
to and manipulation of the qubit [22], and the nuclear spin
state is used for qubit storage.

In previous work [14] we developed a scheme for quan-
tum computing with alkaline earth atoms that was based
on electronic-state-dependent lattices in which indepen-
dent control over lattices for the metastable excited 3P0

and ground 1S0 levels is obtained by using light of differ-
ent wavelengths. This is made possible by the fact that
these levels are optically separated, providing very differ-
ent AC polarisabilities for the states as a function of the
wavelength. We showed how these two independent lat-
tices could be used as a storage lattice for qubits encoded
on the nuclear spin state, and a transport lattice to manip-
ulate the qubits and perform gate operations [14]. A key
theme in this context is that many schemes and concepts
developed for alkali atoms, including certain techniques
that have already been demonstrated in proof-of-principle
alkali experiments simply work quantitatively better for
alkaline earth atoms, where they are freed from important
technical restrictions. In this sense, alkaline earth atoms
represent an extremely important technological advance
in various settings.
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Fig. 1. (Color online) Level structure for alkaline-earth-like
atoms. (a) These atoms possess a singlet-triplet transition with
long-lived metastable 3P0 and 3P2 levels. (b) Adiabatic dressed
potentials can be created by a resonant coupling on the clock
transition with a sinusoidally varying Rabi frequency Ωi(x),
producing dressed states of the 1S0 and 3P0 levels. (c) The
differential Zeeman shift for different nuclear spin levels can
be used to produce nuclear spin-dependent lattices, by driving
the transition between the 1S0 and 3P0 levels resonantly at the
different resonant frequencies for different nuclear spin states
in a magnetic field. Here we show some of the mI states for an
atom with nuclear spin I = 9/2, such as 87Sr.

Here we present an alternative scheme to this previous
proposal, in which we show that near-resonant coupling
on the clock transition can produce frequency selective
nuclear-spin-dependent lattices (see Figs. 1b, 1c). As in
the case of electronic-state-dependent lattices, this makes
it possible to produce state-dependent lattices without
the restriction of having to tune couplings between fine-
structure states [23,24], which can lead to large heating
and decoherence from spontaneous emissions in the case
of alkali atoms. In addition, spin-dependent lattices made
in this way can be easily generated so that motion of the
two potentials is independent in 2D. Below we discuss this
implementation in detail, developing a complete proposal
for quantum computing with alkaline-earth(-like) atoms,
including methods for production of a quantum register
and for performing single-qubit operations. Qubit read-
out with individual addressing can be performed in a sim-
ilar manner to the case of electronic-state-dependent lat-
tices [14], using magnetic gradient fields to shift the energy
of states in the 3P2 manifold. In nuclear-spin-dependent
lattices, the large two-body loss rates from metastable 3P2

levels can also be used to perform two-qubit gates via
a lossy blockade mechanism as an alternative to the im-
plementation of gates via controlled collisions [23]. This
was originally discussed for electron-state-dependent lat-
tices [14], and we provide further details of this mechanism
below.

This alternative scheme with nuclear-spin-dependent
lattices has the advantage of not requiring additional
lasers to trap the 1S0 and 3P0 lattices independently, and
can be performed with a strong laser on the clock transi-
tion. At the same time, this method is somewhat sensitive
to collisional losses when two atoms in the 3P0 manifold
collide, as the near-resonant lattices will always produce
admixtures of this state. However, this is only an issue
during the short times involved in gate operations, and is
strongly suppressed in a realistic setup where atoms are
also AC-Stark shifted, as discussed below. Nuclear-spin-
dependent lattices would also have immediate applications
in quantum simulation [25–29]. In particular, the degen-
eracy in models with SU(N) symmetry [25–27] (which can
be studied using alkaline-earth-like atoms by making use
of the symmetry for interactions of atoms in different nu-
clear spin levels) could be deliberately broken and restored
by applying these nuclear-spin-dependent potentials.

The rest of this article is organised as follows: we first
discuss the formation of near-resonant spin-dependent op-
tical lattices in more detail in Section 2, together with
preparation of atomic registers in these lattices. In Sec-
tion 3 we then discuss means for readout of individual
qubits, and in Section 4 we treat ideas for gate schemes to
entangle two qubits, including making use of lossy block-
ade mechanisms. In Section 5 we present a summary and
outlook.

2 Spin-dependent adiabatic potentials

In the following, we discuss a quantum register formed by
one atom trapped every site of a deep optical lattice, where
tunnelling of atoms between sites can be neglected on the
timescale of the experiment. As discussed above, we iden-
tify hyperfine states with two chosen nuclear spin states,
and we would like to create spin-dependent potentials in
order to move these qubit states independently. We will
make use of these in the two-qubit gate operations that
we discuss in Section 4.

A novel method of forming optical lattices for alka-
line earth atoms is to make use of a near-resonant optical
coupling directly on the clock transition, which will pro-
duce adiabatic dressed potentials1. In the case that the
coupling field is a standing wave, the Rabi frequency, and
thus the final dressed potential, will be sinusoidally vary-
ing, providing an optical lattice for dressed states that
are superposition of states in the 1S0 and 3P0 levels (as
shown in Fig. 1b). In a large magnetic field, there is a
differential Zeeman shift ΔEZ between the 1S0 and 3P0

states (109 Hz/G for 87Sr [5]), meaning that a direct cou-
pling preserving the nuclear spin (with π-polarised light)
will be resonant at substantially different frequencies for
different nuclear spin states (see Fig. 1c). We can then
drive each transition independently with Rabi frequencies
Ω0 = Ω±, as shown in Figure 1b. Provided that the shift
ΔEZ � Ω±, we will then obtain independent two-level

1 For a discussion of the use of near-resonant lattices to pro-
duce polarisation-dependent potentials, see reference [20].
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systems for each mI state for which we apply the ap-
propriate coupling frequency. For example, if we choose
Ω0 ∼ 100 kHz, then for 87Sr, we would like to apply a field
�1000 G in order to obtain shifts between neighbouring
states �100 kHz (however, states separated further in mI

could also be used to reduce the required field – see below).
In this way, we can choose, e.g., two mI states as our two
qubit states, |0〉 and |1〉, and create independent potentials
for these two states. At the same time, because the fre-
quency differences between lattices for different mI states
will of the order of 1 MHz, the lattice laser wavenumber
kl is approximately the same for the two species – in fact
the resulting lattice potentials will overlap for the order
of millions of periods.

2.1 Dressed potentials for a two-level system

We will now discuss the form of the dressed potentials for
a single nuclear spin state, identified with qubit state i = 0
or i = 1, and discuss the case where we have multiple nu-
clear spin states below. We can first write the Hamiltonian
for a two-state atom, with states |g, i〉 ≡ |1S0, mI = i〉 and
|e, i〉 ≡ |3P0, i〉 as (� ≡ 1)

Ĥ = ĤM + Ĥ0,

where ĤM = p̂2/2m is the kinetic energy, and

Ĥ0 = −δi|e, i〉〈e, i|+ (Ωi(x)/2)|e, i〉〈g, i| + h.c.

describes the near-resonant coupling field with Ωi(x) and
δi the Rabi frequency and detuning respectively.

Generation of adiabatic dressed potentials is then
based on the validity of a Born-Oppenheimer-type as-
sumption, where we assume that the kinetic energy of the
atoms is small on a scale given by the separation of the
resulting adiabatic potentials. The wavefunction |Φ(t)〉 of
a single atom satisfies the Schrödinger equation,

i
∂

∂t
|Φ(t)〉 = (HM + H0)|Φ(t)〉. (1)

If we omit the kinetic energy term from the Hamiltonian,
we obtain an equation for adiabatic eigenstates, |Ψ±(t)〉,

H0(x)|Ψ±〉 = V ±(x)|Ψ±〉. (2)

Note here that as H0(x) is time-independent, there are
only two such eigenstates |Ψ±〉. If we consider the 1D
case, and set Ωi(x) = Ωi sin(klx + φ), representing the
field of a standing wave (with kl the laser wavenumber
and φ a phase), we find the adiabatic potentials V ±(x) =
(−δi ±

√
δ2
i + Ωi(x)2)/2. These are shown schematically

in Figure 1b. The complete wavefunction can then be ex-
panded in a basis of these adiabatic eigenstates, which
play the role of Born-Oppenheimer channel functions,

|Φ(t)〉 = c+(x, t)|Ψ+〉 + c−(x, t)|Ψ−〉, (3)

resulting in the equation

i
∂

∂t
c±(x, t) = [HM + V ±(x)]c±(x, t) + H±

Mc∓(x, t), (4)

where H±
M = 〈Ψ±(x, t)|HM |Ψ∓(x, t)〉 gives the non-

adiabatic couplings between the dressed states due to the
motion of the atom. Provided these latter terms are small,
the two equations decouple and the atoms remain in a
single dressed state. In our case, there will be no non-
adiabatic loss of atoms in this sense, provided that they
are loaded into low energy states of the lower of the two
adiabatic potentials (V −). If atoms are loaded into the
higher energy dressed potential, loss of atoms into the
continuum states of the V − potential can occur, how-
ever this is exponentially suppressed as the separation be-
tween adiabatic potentials is increased, with the loss rate
Γl ∼ Γ0 exp(−δi/ω) [20], where Γ0 is a prefactor that we
do not compute in detail here, and ω is the trap frequency
in an individual site of the dressed potential.

2.2 Dressed potentials for independent states

When these dressed potentials are created independently
for different mI levels, the result is that we can form two
independent but almost identical potentials. These can,
e.g., be shifted with respect to each other in a 2D plane
using interferometrically stable methods, e.g., by adding
path length to an interferometer arm in which the light
is frequency-shifted in order to produce one of the trap-
ping frequencies. As discussed above, this means of cre-
ating spin-dependent lattices has substantial advantages
over spin-dependent lattices for alkali atoms, where the
lifetime is limited by the need to tune the lattice beams
to a frequency in the middle of the fine structure split-
ting. Here, the lifetime will be controlled by the lifetime
of the 3P0 level (which is many seconds), or by off-resonant
couplings to shorter lived states (but these will typically
be many tens of nanometers detuned). In the presence
of a second frequency (e.g., due to the laser creating the
lattice for the second internal state), atoms can also be
lost from the lower adiabatic potential, essentially being
coupled out of the lattice into the continuum. However,
due to the large momenta in the resulting state, this rate
is suppressed exponentially in the ratio of the separation
between manifolds in a Floquet basis and the trapping
frequency in the lattice, Γl ∼ Γ̃0 exp(−ωdiff/ω) [20], where
Γ̃0 is a prefactor [20] and ωdiff is the frequency difference of
the lattices for the two qubit states. If we operate in a field
∼2500 G, then ωdiff ∼ 2π× 275 kHz, and if we choose the
Rabi frequency Ω ∼ 2π × 60 kHz, then ω ∼ 2π × 10 kHz.
We can also reduce the required field strength by choos-
ing mI levels that are further separated (in 87Sr we can
reduce the required field strength by a factor of 9 by
choosing ml = −9/2 and ml = +9/2 as the two trapped
states).

2.3 Combining resonant and off-resonant potentials

In practice, strong coupling at intensity I on the clock
transition will also give rise to off-resonant AC-Stark shifts
ΔEe

AC and ΔEg
AC of the states |e, i〉 and |g, i〉 from cou-

pling to other manifolds (e.g., 1P1 and 3S1) in addition
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Fig. 2. (Color online) (a) Lower dressed potentials for the
|0〉 qubit state (solid lines) and the |1〉 qubit state (dashed
lines) formed by combining resonant and off-resonant contri-
butions. These are plotted as a function of position for varying
phase offsets φ between the coupling fields for the |0〉 and |1〉
states. For 87Sr at the wavelength of the clock transition, we
obtain ΔEe

AC ≈ 3ΔEg
AC , and we choose the intensity so that

Ω = 4ΔEg
AC (ca. 10 kW/cm2). Here, δ = −3Ω/4. (b) Projec-

tion on the excited state of the dressed state corresponding to
the lower dressed potential, plotted for the same values of Ω,
ΔEg

AC , and ΔEe
AC as in (a) as a function of φ. The different

lines correspond to varying δ, from top to bottom, δ = −Ω/2,
−3Ω/4, −Ω, and −5Ω/4.

to the resonant couplings between the two levels. These
must be added to the Hamiltonian, as H = HM + H0 +
ΔEe

AC |e, i〉〈e, i|+ΔEg
AC |g, i〉〈g, i|. As ΔEe,g

AC ∝ I and Ω ∝√
I, the off-resonant contributions will become more im-

portant as the intensity of the applied field becomes larger.
For 87Sr, the shifts from the AC-Stark shift become of the
same order as the AC-Stark splitting due to resonant cou-
pling at relatively high fields, with I ∼ 50 kW/cm2 [5,20].
At higher fields, the potentials V ± will be modified by
these shifts, but can still be made spin-dependent if the
detunings and Rabi frequencies of the lattice beams are
chosen carefully. This is illustrated in Figure 2, where we
show the lower adiabatic potential for each of the two
nuclear spin states for a selection of different phases φ be-
tween the potentials. We see that at relative phase φ = 0
the potentials for different nuclear spin states are identi-
cal, and are given by a combination of the resonant and

off-resonant contributions. At phase φ = π/2, however,
the off-resonant contributions from the two coupling fre-
quencies, which are independent of the nuclear spin state,
become spatially homogeneous due to the addition of the
two spatially shifted contributions. At this point the si-
nusoidal form of the lattice potentials is due solely to the
resonant contribution. It can be seen that the lattice, also
in between, will be modified in such a way that the atoms
will be transported through the lattice spin-dependently.

We also note that two important characteristics relat-
ing to the shape of the lattice and the form of the dressed
states changes as a function of φ. Firstly, the lattice depth
changes, because for φ = 0 the effect of the resonant and
off-resonant contributions to the lower dressed potential
are summed, whereas for φ = π/2, the lattice is formed
solely by a resonant contribution. This is shown in Fig-
ure 2a. In addition, for φ = 0 the off-resonant potentials
shift the coupling out of resonance, changing the adiabatic
dressed states. As a result, the admixture of the excited
internal state in the lower dressed level is relatively small.
As the lattices are shifted, and the resonant contribution
dominates, the admixture of the excited state increases.
In Figure 2b, we plot the admixture of the 3P0 level, av-
eraged over one period of the lower dressed potential for
different values of the detuning δ. We note that for the de-
tuning values we choose here, this value is always small.
This will lead to a significant reduction in collisional loss
rates due to 3P0-3P0 collisions when two atoms are on the
same lattice site.

2.4 Loading a quantum register

A quantum register with one atom in every lattice site
can be produced along similar lines to previous proposals
for alkali atoms, beginning from a spin-polarised gas of
fermionic alkaline earth-like atoms, produced by optical
pumping. This should be a degenerate Fermi gas so that
the densities are sufficiently high to load a single atom
per lattice site. Note that we choose fermions here be-
cause for Yb and Sr, it is the fermionic isotopes that have
non-zero nuclear spin, and thus allow us to encode qubits
using this degree of freedom. An important consideration
is that loading atoms into dressed potentials must be per-
formed appropriately so that all atoms end in the lower
dressed potential. It is thus not necessarily possible to fix
the detuning of the lattice laser and increase the intensity,
as is done in the case of far off resonance optical lattices.
In the case that we have sufficient intensity to produce a
large AC Stark shift at approximately the same frequency
as the final lattice, we can achieve this by first loading the
gas into an off-resonance optical lattice in the 1S0 state,
and then adiabatically tuning the coupling closer to reso-
nance with the 3P0 state in order to load the gas carefully
into the lower dressed potential.

A high-fidelity quantum register can then be formed by
creating a band-insulator state [30], and we gain substan-
tially over the case where bosons would be used for a quan-
tum register, as the temperature need only be substan-
tially smaller than the bandgap, and not an interaction
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energy for the band insulator to form. In addition, if a
harmonic trapping potential is added to the system, most
defects in the state will be localised near the edges of
the trap [31]. The resulting state can be further improved
upon by applying additional techniques, such as filtering
of the state to improve the fidelity [32] or fault-tolerant
loading of atoms by transfer of atoms between two internal
states, one trapped by the lattice and the other not [33].

3 Single qubit addressing via the 3P2 level

We would like to be able to read out the state of a sin-
gle qubit, or alternatively perform gate operations on a
single qubit. The has been enormous recent process in
individual addressing of sites in an optical lattice via op-
tical means [34–41]. However, it would also be useful to be
able to address individual qubits without the use of these
techniques and the corresponding overheads in experi-
ments. Such addressing can be achieved by coupling our
dressed state qubit-selectively to states in the metastable
3P2 level, and then detecting whether the atom is indeed
present in the 3P2 manifold. For the purpose of readout it
is only necessary to be able to couple one of our two qubit
states, e.g., the |0〉 state (which could be represented, e.g.,
by mI = −9/2 in 87Sr) to an auxilliary level |0x〉 in the
3P2 level (e.g., the |3P2, F = 13/2, mF = −13/2〉 state,
where F is the total angular momentum quantum num-
ber F and mF is the magnetic quantum number). The
readout process is depicted schematically in Figure 3.

Because of their non-zero electron spin, states in the
long-lived 3P2 manifold are much more sensitive to mag-
netic fields than the 3P0 and 1S0 level, and we can use
these shifts to make possible a spatially-dependent read-
out of spin states by applying a magnetic gradient field,
in a manner first mentioned in reference [22]. In apply-
ing such a field, the 3P2 level can be significantly shifted,
whilst the 1S0 and 3P0 states are not substantially shifted,
and thus the form of the dressed lattice potential is not
substantially changed. In particular, a gradient field of
1 G/cm will provide an energy gradient of 4.1 MHz/cm
for the |3P2, F = 13/2, mf = −13/2〉 state, or an energy
difference of about 15 kHz between atoms in neighbour-
ing sites for a field gradient of 100 Gauss/cm. Atoms in
the dressed lattice can then be selectively transferred via a
Raman process connecting off-resonantly via the 3S1 man-
ifold to the 3P2 manifold, on a timescale limited by the
frequency shift between neighbouring sites.

This assumes, of course, that the state in the 3P2 mani-
fold to which we couple, |0x〉 is trapped in a lattice, prefer-
ably in a lattice at the same position as our qubit states
|0〉 and |1〉. In principle this could be achieved using an
additional standing wave at a different frequency to trap
states in 3P2 manifold via an additional AC-Stark shift.
However, this would require an additional laser, phase-
locked to the laser producing the dressed lattices, and us-
ing angled beams to ensure that the lattices overlap. This
additional complexity means that it would be much more
favourable to use states in the 3P2 manifold with a sig-
nificant negative AC-polarisability α at the wavelength of

1S0

3P0

3P2

Detection

Dressed
Qubit
States

Fig. 3. (Color online) Schematic diagram of qubit readout.
Qubits are stored in dressed states |0〉 and |1〉, which are
dressed superpositions of states in the 1S0 and 3P0 manifolds
with a definite values of mI . These can be coupled via off-
resonant Raman processes to long-lived auxilliary states |0x〉
and |1x〉 in the 3P2 manifold for the purpose of readout. In
order to read out a particular qubit state, this state should
be coupled to the 3P2 manifold. It can then be detected by
fluorescence on the cycling transition 3P2-

3D3.

the clock transition, as the potential they experience due
to the AC-Stark shift will then have minima in the same
places as the lower dressed state generated by the same
lattice laser. We have computed the polarisability from
known data of the states in the 3P2 manifold of 87Sr, and
have found that they vary substantially due to a large
tensor shift. We write the shift ΔE from linearly polarised
light as

ΔE = −1
2
αE2, (5)

= −
[
αscalar + αtensor 3m2

F − F (F + 1)
F (2F − 1)

]
E2

2
, (6)

where we have separated the coefficients of the scalar and
tensor shifts [5,42], and we obtain total polarisabilities at
the clock transition frequency as shown in Figure 4. Here
we note that light polarised along the quantisation axis
will give rise to a negative polarisability for the F = 13/2,
mF = −13/2 state. This state is thus trapped by the same
field creating the dressed lattice. We can couple from the
mI = −9/2 states in the dressed lattice via a Raman pro-
cess directly into the F = 13/2, mF = −13/2 state of
the 3P2 manifold, making this state ideal for use as the
|0x〉 state in readout operations2. A qubit could be read
out by choosing the detuning of a Raman coupling be-
tween the |3P2, F = 13/2, mF = −13/2〉 state (auxiliary
state |0x〉) and the |−〉 dressed state with mI = −9/2
(qubit state |0〉) so that it is in resonance at only one site
as a result of a gradient field shifting the energy of the

2 Note that here the Raman process is necessary to allow
ΔmF = −2, and also can make stronger coupling possible on
the otherwise doubly-forbidden transition.
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Fig. 4. (Color online) AC-Polarisabilities for 87Sr in the
3P2 manifold with F = 13/2 at the frequency of the clock
transition.

|3P2, F = 13/2, mF = −13/2〉 state. Coupling of the 3P2

level to a second qubit state with mI = −7/2 would not
occur as the mF = −11/2 state is not trapped (if for a
different species the equivalent state was trapped, then
the large tensor shift would probably result in this tran-
sition being anyway out of resonance). The occupation of
the 3P2 level can then be determined by fluorescence mea-
surements, e.g., using the cycling transition 3P2-3D3, inde-
pendent of the atoms remaining in the 1S0 and 3P0 levels.
Note that the timescale for this readout process τreadout

is limited by the trapping frequency in the dressed lat-
tice potential, τreadout � 2π/ω. This requirement must be
fulfilled so that the atom is not coupled to excited Bloch
bands of the lattice. It is also desirable for this coupling to
have similar trapping frequencies for the lattices trapping
|0〉 and |0x〉, so maximising spatial overlap of the wave-
functions. Again, the F = 13/2, mF = −13/2 state of the
3P2 manifold is favourable for this, as the polarisability
indicates that the lattice depth will be around 150 kHz
for I ∼ 3 kW/cm3, which is a similar depth to that of
the lattice for the dressed levels at the same lattice inten-
sity (assuming that the detuning of the resonant coupling
lasers, δi is small).

Note that one could equally use states with |mI | <
13/2 in this process if one stores the qubit states in
the upper dressed potential. This is disadvantageous, be-
cause a large detuning δ must be chosen for the lattice
lasers to prevent non-adiabatic loss of atoms from the
potential [20].

A variant of this scheme for addressing would be to use
a laser field with spatially varying intensity at the magic
wavelength (for equal shifts of the 3P0 and 1S0 levels)
instead of magnetic gradient fields. This would provide
a position-dependent differential AC-Stark shift between
the qubit states and the 3P2 level, without affecting the
relative energy of the 3P0 and 1S0 levels, and thus the
dressed lattice.

4 Quantum gates in spin-dependent
potentials

Single-qubit gates can be performed in one of two ways
in this scheme. The simplest means to obtain a global ro-
tation of many qubits is to directly couple the dressed
states for two nuclear spins via a Raman process. Alter-
natively, different nuclear spin (qubit) states can be al-
ternately coupled to auxiliary states in the 3P2 level in
order to provide individual addressing for single-qubit ro-
tations using the techniques described in the previous sec-
tion. Such coupling requires the use of a trapped state in
the 3P2 manifold that can be coupled to both qubit states.
For 87Sr, such addressing for single-qubit operations would
thus mean either using an auxiliary lattice to trap states
from the 3P2 manifold, or using the upper dressed states
for qubit storage.

Two-qubit gates can, in principle, be performed sim-
ilarly to existing schemes for alkali atoms, making use
of the spin-dependent potentials. In particular, existing
schemes for controlled collisions can be used to produce
controlled-phase gates for atoms in neighbouring sites [23].
This has been implemented experimentally in a proof-
of-principle experiment with alkali atoms [24], but here
we could take advantage of the 2D spin-dependent lat-
tices without having to tune trapping lasers between fine-
structure states.

These schemes can be seen to implement controlled-
phase gates in three steps:

1. The spin-dependent lattices for each state are shifted
relative to each other so that atoms at a chosen
distance, e.g., in neighbouring lattice sites, will come
together on the same site if and only if they were orig-
inally in a specific combination of qubit states. For ex-
ample, if we write the state of a pair of neighbouring
qubits as |q1q2〉, where q1 is the state of the first qubit
and q2 is the state of the second qubit in the pair, then
atoms in the state |01〉 are brought together, whilst
|00〉, |11〉 and |10〉 remain separated (see Fig. 5).

2. A phase shift is generated conditioned on whether two
atoms are on the same site or not.

3. The atoms are returned to their initial positions.

The phase in step two can be generated in a number of
different methods, including via direct collisional phase
shifts, or the use of blockade mechanisms. These different
mechanisms are discussed in the following two subsections.

4.1 Phase for two-qubit gates: controlled collisions

For alkali atoms, the phase in step 2 is generated by col-
lisional interactions between atoms. This could be per-
formed directly if the atoms used have a relatively large
scattering length in the 1S0 manifold (e.g., 87Sr). For other
species and isotopes such as 171Yb, this could also be
achieved using optical Feshbach resonances [43–46] to en-
hance the otherwise very weak collisional interaction. The
speed of such gates is limited by the strength of the on-site
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|1|0

Fig. 5. (Color online) If the qubits are trapped in a spin-
dependent lattice, it is possible to shift the lattice for one qubit
state by one site, so that neighbouring atoms are brought to-
gether only if the qubit to the left was in state |0〉 and the
qubit to the right was in state |1〉. This can be used to aid in
producing two-qubit quantum gates (see text for details).

interaction between atoms, which for a single-band model
is limited by the trap frequency in each lattice site, ω.

However, the existence of weak collisional interactions
for certain isotopes also motivates us to look at other gate
schemes, particularly using excitations to states in the 3P2

manifold.

4.2 Use of 3P2 levels

We would again like to make use of states in the 3P2 man-
ifold to which our dressed qubit states (for a fixed nuclear
spin) can be coupled, and which are trapped in the same
locations as our qubits. This time we will assume that we
have two such auxiliary levels, |0x〉 and |1x〉, as depicted
in Figure 3.

4.2.1 Phase for two-qubit gates: dipole blockade mechanism

For sufficiently large onsite dipole-dipole interactions,
which provide a energy shift between 3P2-3P2 collisional
interactions and 3P0/1S0-3P2 corresponding to a large fre-
quency shift Δ, we can use a dipole blockade mechanism
to produce a π phase shift, as proposed, e.g., for Rydberg
atoms [47]. This is illustrated in Figure 6, and consists of
3 steps:

1. Excite all |0〉 qubit states to an auxillary level |0x〉
with a π-pulse.

2. Couple all |1〉 qubit states to an auxillary level |1x〉
with a 2π-pulse at Rabi frequency Ω, assuming that
there is no collisional interaction between the |0x〉 state
and either |1〉 or |1x〉 (i.e., the pulse duration T is given
by ΩT = 2π. In the ideal case, if the two atoms are on
the same site (as will happen for an initial state |0, 1〉,
this step should be blocked by collisional interactions,
which detune the coupling by a frequency Δ.

3. Return the |0x〉 state to the |0〉 state with a π pulse.

Assuming there is no coupling of the qubit state |1〉 to
the auxillary |1x〉 when the atom is on the same site as

i) ii) iii)

b)

a)

i) i)
ii)ii)

Fig. 6. (Color online) Schematic diagram of a blockade gate in-
cluding loss. (a) Operations performed on the individual qubit
states |0〉 and |1〉 (see text for details). (b) Comparison of the
operations for initial two-qubit states |0, 1〉 and |1, 0〉 in neigh-
bouring qubits, showing the two-qubit levels.

Table 1. The state of a two-qubit system after each step of
the protocol for a blockade gate.

Initial state After step 1 After step 2 After step 3

|0, 0〉 −|0x, 0x〉 −|0x, 0x〉 |0, 0〉
|0, 1〉 −i|0x, 1〉 −i|0x, 1〉 −|0, 1〉
|1, 0〉 −i|1, 0x〉 i|1, 0x〉 |1, 0〉
|1, 1〉 |1, 1〉 −i|1x, 1x〉 |1, 1〉

an already excited |0x〉 state (i.e., the blocking is perfect),
the states of the two-qubit system after each step of this
protocol are given in Table 1.

In practice, the state |0, 1〉 will collect a small addi-
tional phase φ ∼ Ω/Δ, where Ω is the coupling Rabi fre-
quency and Δ the detuning from the excited state, gener-
ated by the difference between 3P0.

4.2.2 Lossy blockade mechanism

It was shown by Greene et al. [48,49] that, in fact,
two-body collisions of atoms in the 3P2 level lead to large
inelastic loss. However, this loss can actually help us in
producing the blockade effect, as large losses involving
coupling to the continuum at a rate Γ from a given level
can also dynamically suppress occupation of that level, as
is well known from the physics of a two-level system. In the
limit where Δ 	 Γ , this would even produce a blockade
gate based entirely on a lossy blockade mechanism. In this
way we can turn an apparent problem into a feature of the
system. Such ideas have also been proposed in the context
of quantum simulation with cold atoms in optical lattices,
where three-body losses can be used to prepare interesting
many-body states via a similar mechanism [50,51].
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The key characteristics of the inelastic loss processes
that make this possible are:

– The energy change in the inelastic collision is larger
than the lattice depth, so that the energy carried away
as kinetic energy is sufficient to couple the atoms into
the continuum of motional states.

– The length scale on which the physics of the inelastic
collision takes place is smaller than the confinement
length in a lattice site, so we do not expect the loss
process to be substantially modified by the presence
of the lattice.

– The rates for loss are large, and could reach of the
order of Γ = 2π × 20 kHz for lattice densities up to
1016 cm−3.

In the presence of loss, the basic physics of the second step
of the protocol, as illustrated in Figure 6 then reduces to a
two level system, where the state with one atom in 1S0 and
one in 3P2 playing the role of a lossless “ground” state and
that with two atoms in 3P2 the role of the lossy excited
state. If we write these states as a spin-1/2 system, the
Hamiltonian reduces to

H =
Ω

2
(σ+ + σ−) − Δ

2
σz (7)

where σ+ = |e〉〈g|, σ− = |g〉〈e| and σz = |e〉〈e| − |g〉〈g|
are the usual spin operators for our two-level system with
lossy excited state |e〉 and lossless “ground” state |g〉, Ω
is the Rabi frequency for the coupling laser, and Δ is the
effective detuning from the excited state, which can be
induced by interaction between two atoms when they are
both in the 3P2 manifold. Including the loss, this system
is described by the master equation

ρ̇ = −i[H, ρ] − Γ

2
[
σ+σ−ρ + ρσ+σ− − 2σ−ρσ+

]
. (8)

In the limit Δ, Γ � Ω we can describe the time evolution
of a system initially prepared in the ground state in per-
turbation theory, giving the probability that no decay has
occurred at short times t as

p = e−Γeff t, (9)

with

Γeff ≈ Ω2

4(Δ2 + Γ 2/4)
Γ ≈ Ω2

Γ
(10)

in the limit that Γ � Δ. For our lossy blockade gate this is
the worst-case scenario for loss events. We immediately see
that the ratio of the gate time (determined by Ω) to the
loss time is given by τgate/τloss = Ω/Γ . The probability for
loss will be the factor that determines the fidelity of the
lossy blockade gate, in that it will determine the success
of the gate in the case that both atoms were on the same
site and being excited during step 2 of the gate scheme.

The blockade mechanism is illustrated in Figure 7,
where we plot the decay probability as a function of time
t, and then at fixed time Ωt = 2π for varying Γ/Ω.

Fig. 7. (Color online) Loss from a two-level system prepared
in the stable state and coupled to the lossy state computed via
integration of equation (8). (a) The probability that the system
has undergone a loss event as a function of time when prepared
in the ground state, with Δ = 0, for varying values of Γ/Ω. (b)
The probability that a system has undergone a loss event by
time tΩ = 2π. Such losses would be the largest contributing
factor to imperfect fidelity of either (i) a lossy blockade gate
for Δ = 0, or (ii) a gate with a combined blockade generated
by interactions and loss for Δ �= 0.

5 Other two-qubit gates

It would also be possible to make use of exchange inter-
actions for fermions [52], but we will not discuss this in
detail because it does not make specific use of the spin-
dependent potentials, and does not, in its original form,
take specific advantage of the properties of alkaline earth
atoms.

Another possibility is the direct use of Rydberg
gates [47], which have been recently demonstrated for
trapped alkali atoms [53,54]. The separate hierarchy of
Rydberg states for the singlet and triplet manifolds could
give advantages for Rydberg excitations in alkaline earth
atoms, especially facilitating easier state-dependent exci-
tation. These could also be performed together with gra-
dient addressing, exciting the Rydberg state from the 3P2

manifold.
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6 Decoherence/loss mechanisms

There will be a number of possible sources of decoher-
ence within this setup, all of which should be controllable
in the experiment. These include magnetic field fluctua-
tions, decoherence due to frequency noise of the lasers,
spontaneous emissions, and collisional losses. We briefly
summarise the role of these key sources of decoherence
below.

6.1 Magnetic field fluctuations

Local magnetic field fluctuations will probably still consti-
tute the largest source of decoherence, however, sensitiv-
ity to these fluctuations is reduced by almost 3 orders of
magnitude compared with qubits encoded on an electron
spin. Fluctuations in the magnetic field can arise both as
background fluctuations, and due to fluctuations on mag-
netic fields directly applied as part of the nuclear-spin-
dependent lattice scheme, and will contribute to decoher-
ence both due to direct shifts of the energy of the qubit
states, and from the modification to the dressed poten-
tials due to the differential shift between the 1S0 and 3P0

levels.

6.2 Stability of the trapping lasers

A finite laser linewidth for the dressing laser creating the
potentials will give rise to fluctuations Δδi in the detun-
ing δi, and therefore the energy of atoms trapped in the
dressed potential. However, these fluctuations will lead to
the same fluctuation in lattice depth for the two qubits,
Δδ0 = Δδ1. The resulting ground state energy will shift
by different amounts, as the lattice periods are differ-
ent. However, if the corresponding wavelengths are λ and
(1+ε)λ, then the difference in trap frequencies for the two
qubit states, Δω is given in terms of the depth fluctuations
ΔV by

Δω

2
=

√

ΔV
4π2

2mλ2
−

√
ΔV 4π2

2mλ2(1 + ε)2
≈ −ε

√

ΔV
4π2

2mλ2
.

(11)
Thus, as ε ∼ 10−8, this decoherence mechanism will be
strongly suppressed, and for laser linewidths of the or-
der of tens of Hz, dephasing times can be many minutes.
On the other hand, the resulting noise ΔV on the depth
of the lattice could give rise to heating of the particles
to higher oscillator levels, if appropriate frequency com-
ponents are present in the noise in order to drive these
couplings. This would lead to imperfect couplings for gate
and readout operations. Such heating rates can be esti-
mated [55,56] as giving an energy increase 〈Ė〉 = Γheat〈E〉
with rate Γheat = π2ω2Se(2ω)/2, where Se(2ω) is the
one-sided power spectrum of the trap amplitude noise at
twice the trap frequency ω. In our case, as for Ωi � δi

ΔV ≈ Δδ2
i /Ω2, this is also suppressed by an extra factor

of Δδ/Ω. In addition, other sources of heating, such as

intensity noise on the lasers creating the lattice, or shak-
ing of the lattice potential (due, e.g., to vibrating optical
components) will have a similar effect [55,56].

6.3 Spontaneous emissions

Qubits can decohere or be destroyed (the atoms lost from
the lattice) by spontaneous emission events. These can
come from two sources: the finite lifetime of the 3P0 state,
and off-resonant coupling to states with a short lifetime
induced by the lattice lasers (storage) or coupling lasers
(during gate and readout operations). However, the life-
time of 3P0 is many seconds, and this source of atom loss
can be further suppressed by using the resonant lattices
only for spin-dependent transfer, and storing the atoms at
other times in the 1S0 state (see previous section).

6.4 Collisional losses from 3P0

Measurements of collisional losses between atoms in the
3P0 manifold are currently underway in several groups, in
order to determine what the collisional lifetime is when
two atoms are present in these states at the typical lattice
densities that will be encountered here (ca. 1014 cm−3–
1015 cm−3 onsite). Effects of these losses have been ob-
served recently, e.g., in samples of strontium atoms con-
fined in 1D tubes [57]. However in our case, during storage,
readout, and single-qubit operations, the atoms are any-
way isolated by the lattice, and two atoms will not collide.
Thus, the only time that two atoms with components of
states from the 3P0 manifold are present on the same site
is during two-qubit gate operations. If these take place
on a timescale ca. 1 ms, then we would require collisional
stability of our atoms for timescales longer than 100 ms
in order to achieve gate fidelities larger than 99% if both
atoms were in the 3P0 manifold. However, as shown in
Section 2.3, the combination of resonant and off-resonant
lattices can be used to make the amplitude for atoms to be
in the 3P0 manifold small for all stages of operation, even
during transport of atoms. Gate schemes can be made
more immune to these losses by using larger intensity trap-
ping lasers, and thus introducing a larger component from
the off-resonant lattice (see Sect. 2.3). This will ensure
that when the lattices for the two qubit states overlap that
the dressed states are dominated by off-resonant lattices
for 1S0, and that the admixture of the 3P0 state is small.
If the probability to find a single atom on a given site in
the 3P0 manifold is ε3 for each of the qubit states, then
the onsite loss rate will be suppressed by a factor ∼ε2

3.

7 Summary and outlook

In summary, the quantum computing scheme we pre-
sented based on nuclear-spin-dependent lattices with near-
resonant coupling on the clock transition for alkaline-
earth(-like) atoms has several advantages over schemes
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with alkali atoms. The use of nuclear spins for qubit stor-
age makes this scheme relatively robust against decoher-
ence due to magnetic field fluctuations, and coupling to
the 3P2 manifold provides high-resolution individual qubit
addressing with a magnetic gradient field. There are also
possibilities here to perform gates based on transfer of
states to long-lived metastable excited levels (e.g., 3P2),
including the new mechanism of lossy blockade gates.
In comparison with a scheme presented previously us-
ing electronic-state-dependent lattices, this scheme does
not require lasers that independently trap the 1S0 and
3P0 manifolds. This method is more sensitive to colli-
sional losses between two atoms in the 3P0 manifold, al-
though this only affects short periods of time during the
gate operations. While we have focused here on gates
based on state-dependent lattices, other schemes, includ-
ing Rydberg gates will benefit from the unique properties
of alkaline-earth-like atoms. In particular, state-selective
excitation to a Rydberg state would be simplified, e.g., by
exciting one nuclear spin state to the 3P2 manifold first.

The key experimental requirements for implementa-
tion of these methods are: (i) large, stable magnetic fields
(to provide the differential Zeeman shifts allowing spin-
dependent lattices for different nuclear spin states), (ii) a
high-intensity stable laser on the clock transition (to pro-
vide a deep optical lattice whilst avoiding decoherence due
to noise on the detuning δ0); and (iii) control over mag-
netic field gradients to allow for either large parallel oper-
ations or individual addressing with qubits operations in-
volving coupling to 3P2 (although single-qubit gates could
also be done directly in parallel, and the use of 3P2 is only
necessary in two-qubit gates in the case that the scattering
lengths for the clock states are not sufficiently large).

Nuclear-spin-dependent lattices also have immediate
possible application for quantum simulation with alkaline-
earth-metal atoms. In particular, the dependence on the
nuclear spin state could be used to break the degeneracy
in models with SU(N) symmetry [25,26].
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