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Protoplanetary disks (PPDs) are disks of gas and dust that form around young stars and

evolve into planetary systems over the course of a few million years. PPDs are poorly ionized,

with only the innermost radii being hot enough to be thermally ionized, and radiation only able

to ionize the surface layers of the optically thick disk. As a result, the disk will have turbulence

in it’s surface layers driven by the magnetorotational instability (MRI), but the mid-plane will be

dominated by non-ideal magnetohydrodynamic (MHD) effects that damp the MRI, leading to a

“dead zone” (DZ). This thesis explores several topics relating to magnetic fields, non-ideal MHD

effects, and turbulence in PPDs.

We quantify how forced turbulence in Ohmic DZs varies with the ratio between the column

of magnetically active and inactive gas. We find that the Reynolds stress near the mid-plane drops

rapidly with increasing DZ thickness, becoming negligible for DZs with an active to dead mass

ratio less than a few percent. The DZ’s fluid motions are dominated by “r-modes”, a oscillatory

circulation pattern that is inefficient at transporting angular momentum.

We present a 1D model that couples the net-magnetic-flux and surface density evolution of

the disk. We use this model to investigate the interaction between the stellar magnetic cycle and

the disk, showing that some disks may exhibit cyclical or outburst-like accretion behaviour due to

the interaction between the net-flux in the disk and a Hall-effect dominated DZ.

We study turbulence in the outer regions of protoplanetary disks, where ambipolar diffusion

is the dominant non-ideal effect. We show that the properties of the MRI are not determined purely

locally, with transport of toroidal magnetic flux from the active layers to the mid-plane playing a

significant role.

We investigate the streaming instability’s ability to form planetesimals in a turbulent en-
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vironment. We find that turbulence does not greatly change the shape of the mass-spectrum of

planetesimals that form. However, no planetesimals are able to form at all in the presence of tur-

bulence with α ∼ 10−3, implying that DZs are essential if planetesimals are to be formed by this

mechanism.
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(which determines Ω), and ṁ, our static disk model determines all other quantities

as a function of radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Assumed stellar parameters for several stellar types. . . . . . . . . . . . . . . . . . . 69

4.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Simulation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 High level summary of clumping behaviour in high resolution simulations. tfirst

denotes the time of the formation of the first clump. tsnap shows the time at which

we measure the values for the next 3 columns. . . . . . . . . . . . . . . . . . . . . . . 145



xiii

5.3 Summary of fits to the cumulative mass spectrum of planetesimals based on single

snapshots from our high resolution simulations. ∆IC denotes the average of the two

information criteria considered. We give the parameters for the STPL and BCPL

for all runs regardless of ∆IC as a way of comparing from run-to-run and because

the interpretation of their parameters is intuitive. . . . . . . . . . . . . . . . . . . . 148

5.4 Summary of fits to the cumulative mass spectrum of planetesimals based on the initial

masses of each clump from our clump-tracking analysis. We give the parameters for

the STPL and BCPL for all runs regardless of ∆IC as a way of comparing from run-

to-run and because the interpretation of their parameters is intuitive. For all cases

here, no fits other than the BPL had ∆IC < 10 For reference, the SPL fits to the

differential spectra for this method are 1.372±0.023, 1.357±0.035, and 1.380±0.047

for the 3 runs shown from top to bottom, respectively. . . . . . . . . . . . . . . . . 155



xiv

Figures

Figure

1.1 A cartoon illustration of the linear regime of the ideal MRI. The two dots repre-

sent fluid elements and the “spring” represents a magnetic tension force. Due to

differential rotation in the disk, the fluid elements have different velocities, causing

them to drift apart over time and stretch the spring. This causes a prograde force

on the outer element which will gain angular momentum and drift outward, and a

retrograde force on the inner element which will loose angular momentum and drift

inward. This drift stretches the spring further and reinforces the instability. . . . . . 5

1.2 A cartoon “map of the disk”, emphasizing the most relevant non-ideal MHD effects

in each region. We also point out the various regions and phenomena studied by

each chapter of this thesis. Credit to Armitage (2007), and Simon et al. (2018) for

the general idea for figures of this type. A few purely notational choices that require

clarification: 1. There are not actually breaks in the particle layer as shown, this is

just to allow room for text. 2. Planetesimal formation is not necessarily specific to

the radii shown here, it will generally happen throughout the radial extent of the disk. 8

2.1 Resistivity η as a function of z for each of our simulations, as labeled in the legend.

The mass in the active zone as a fraction of the total mass varies between about 0.58

(for simulation “S”) and 0.029 (for simulation “L”). . . . . . . . . . . . . . . . . . . 30



xv

2.2 The dependence of the Elsasser number, Λ on z for each of our simulations, as labeled

via the legend. The solid black horizontal line shows where Λ = 1. The dead zone is

defined here as the region where Λ < 1. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 The log of the velocity magnitude for the medium sized dead zone run, plotted with

darker colors indicating higher velocity. The outer regions are clearly turbulent,

transitioning into more laminar flow at the mid-plane. . . . . . . . . . . . . . . . . . 34

2.4 Space-time plots of the Maxwell stress = −BxBy (first and third plots) and Reynolds

stress = ρvxδvy (2nd and 4th plots) for the small (top 2) and medium (bottom 2)

dead zone sizes. The quantities are averaged in the x and y directions. Note that

the color scales are kept constant for like-quantities across the runs. . . . . . . . . . 35

2.5 Time evolution of the volume averaged Kinetic Energy, Reynolds Stress, and Maxwell

Stress (from top to bottom), for the medium sized dead zone. The average over the

dead zone is taken from |z/H| = 0 to 0.5, and for the active zone from |z| = 2.0 to

3.3. In addition, the plots were smoothed by time averaging over 10 orbits. . . . . . 36

2.6 The saturation time as a function of the ratio of the dead zone mass to the active

zone mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Time averaged vertical profiles of the Reynolds stress (left) and Maxwell stress (right)

for the different sized dead zones. The sharp transition seen near |z| = 3 in the

Reynolds stress for the ML and L runs corresponds to where the r modes (discussed

in detail in §2.3.8) shut off. The r modes have a larger spatial extent in the ML and

L runs due to the larger dead zone. Therefore the location of the transition feature

happens in a region of lower Reynolds stress, making the features most prominent

in these runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 The average Reynolds stress near the mid-plane as a function of the ratio of the

active zone mass to the dead zone mass. Note that the mass ratio on this x-axis is

inverted relative to figures 6 and 11 to show the linear relationship. . . . . . . . . . 40

2.9 The density perturbation profiles for the 5 runs, averaged over the saturated state. . 43



xvi

2.10 The non-dimensional accretion rate as a function of z for the different dead zone

sizes, averaged over the saturated state. . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 The ratio of the accretion rate in the dead zone to the accretion rate in the active

zone as a function of the mass ratio of the two zones. The accretion rate was averaged

over the region defined to be the dead zone in table 2.1, which changes from run to

run. Time averaging was done over the saturated state. . . . . . . . . . . . . . . . . 44

2.12 Autocorrelation functions for the density perturbation for the medium dead zone

(top) and large dead zone (bottom). Moving from left to right, the ACF is calculated

using planes |z| = 0 to 0.5, 1.0 to 1.5, 2.0 to 2.5 and 3.0 to 3.5. Each plot is 2H on a

side. The plots on the left show that perturbations near the mid-plane get sheared

out by the background flow, while perturbations in the upper layer are smaller and

less aligned with the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.13 Autocorrelation functions for the vertical velocity for the medium dead zone (top)

and large dead zone (bottom). Moving from left to right, the ACF is calculated using

planes |z| = 0 to 0.5, 1.0 to 1.5, 2.0 to 2.5 and 3.0 to 3.5. Each plot is 2H on a side.

The large scale circulation modes can clearly be seen in the leftmost plots, while the

plots on the right corresponding to the upper layers are consistent with the structure

of MRI-driven turbulence in the ideal MHD limit, as seen in other quantities and

previous studies (e.g., Guan et al., 2009). . . . . . . . . . . . . . . . . . . . . . . . . 46

2.14 The angle of the density perturbation ACF away from the y-axis for each of the dead

zone runs as a function of z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.15 A snapshot from the medium-sized dead zone run of the vertical velocity in the x-

z plane, averaged over y. The figure clearly depicts the presence of two vertically

coherent updrafts / downdrafts, stretching throughout the dead zone region. . . . . 50

2.16 The vertical velocity plotted for the x-y plane at the mid-plane of the medium-sized

dead zone run. Time advances from top to bottom by 3.5 Ω−1 each panel, showing

half of a cycle of this standing wave pattern. . . . . . . . . . . . . . . . . . . . . . . . 51



xvii

2.17 The average auto-correlation function of the random vertical velocity for all points

−0.5 < z/H < 0.5 as a function of the lag time. The vertical diffusion parameter is

the area under this curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 A qualitative representation of the static magnetic field geometry. The black circle

in the center represents the star and the gray shaded area is the disk. The disk is

threaded by open field lines shown in red. The star produces closed dipole-like field

lines, shown in blue. In isolation this would be a true dipole, but the interaction

with the open line region causes the dipole lines to be compressed inward, while the

open lines are pushed outward. This results in a region where there are concentrated

closed field lines from the star overlapping the inner edge of the disk. . . . . . . . . 74

3.2 A cartoon illustration of the outburst mechanism proposed by Armitage (2016). . . 77

3.3 The power laws for the diffusion time at the radius where the Hall DZ begins plotted

for several stellar masses and two α values. The α values here refer to α in the active

region. The The horizontal line shows the solar cycle period for the sun, roughly 20
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Chapter 1

Introduction

1.1 Protoplanetary Disk Physics and Phenomena

Accretion disks are ubiquitous throughout the universe, found rotating about a wide array of

different objects including super massive black holes (AGN), white dwarves (dwarf novae), neutron

stars/stellar-mass black holes (x-ray binaries), and young stars (circumstellar or protoplanetary

disks (PPDs)). While these disks exist across many orders of magnitude in size-scale and energy,

they all share a very general common origin: they form as the result of gravitational collapse of a

system that has net-angular-momentum. This net-angular-momentum defines an axis about which

the resulting system will rotate as the matter in the disk structure accretes inwards towards the

central object.

1.1.1 Formation and Basic Structure

PPDs form as a part of the star formation process. When a large cloud of gas becomes

sufficiently cool to no longer provide enough pressure support to balance it’s self-gravity, it col-

lapses. The resulting system is called a young stellar object (YSO). After an initial phase during

which the YSO accretes it’s surrounding envelope, the system arrives at the configuration we will

consider throughout this thesis: an (optically visible) star surrounded by a disk of gas and dust.

Observationally, these objects are referred to as a Class II source (Lada and Wilking, 1984), or a

“classical T Tauri Star” (Joy, 1945).

Disks extend from ∼ 0.1 to ∼ 100 AU in the radial direction and are very thin in the vertical
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direction, typically having aspect ratios (h/r) on the order of a few percent. Disk masses are on the

order of 1 to 10% of the stellar mass. To first order, the structure of the disk is dominated by the

star’s gravity and the disk’s self-gravity can be ignored. As a result, disks generally rotate within

a few percent of the Keplerian orbital velocity (more on this in §1.2). In the vertical direction,

the disk’s pressure profile balances the vertical component of the star’s gravity. For a thin disk

(which is always the case for a PPD), the pressure profile in the vertical direction works out to be a

Gaussian with scale height h = cs/Ω, where cs is the sound speed in the fluid and Ω is the angular

orbital velocity.

1.1.2 Accretion, Angular Momentum Transport, and Turbulence

The most fundamental question in protoplanetary disk theory is quite simple: how do they

accrete? Based on observations of the disk-fractions of stellar populations in star forming regions

(eg. Haisch et al. (2001)), the observed lifetime of a typical disk is on the order of a few million

years. This gives a time-scale during which the disk must accrete onto the central star. The specific

angular momentum of a fluid element in an accretion disk is given by l =
√
GM∗r, which is notably

an increasing function of radius. So in order for accretion to occur, angular momentum must be

transported outward to compensate for the inward moving mass. A logical source of this angular

momentum transport is viscosity, which allows adjacent annuli within the disk to transfer energy

and angular momentum to one another. Outer annuli will rotate more slowly and tug backward on

inner annuli, causing the inner annuli to lose angular momentum (or rather, transport it outwards).

So while viscosity allows angular momentum to be transported, the source of this viscosity

in an accretion disk is not obvious. The molecular viscosity for a typical protoplanetary disk

is ∼ 2.5 ∗ 107cm2s−1. Taking a typical length scale to be 10 AU yields a viscous time-scale of

∼ 3× 1013 years. This is over 2000 times the life of the universe, never-mind the few million year

observed evolution time of a typical protoplanetary disk. The molecular viscosity is far too small to

explain the observed lifetime, so an effective viscosity must arise from local turbulence (Balbus and

Papaloizou, 1999). Turbulence then generates hydrodynamic and magnetic stresses that transport
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angular momentum. Considering turbulent eddies on scale h (the pressure scale height of the

disk) circulating at the sound speed cs, the turbulent viscosity is conventionally parameterized as

νturb = αcsh, where α is an unknown dimensionless parameter that scales the strength of turbulence

(Shakura and Sunyaev, 1973). Thus, if an α value is specified then the evolution of the surface

density of the disk can be determined. While this is a convenient convention, we still have not

specified the physical source of this turbulence or the value of α.

1.1.3 The Magneto-Rotational-Instability

The leading candidate for driving turbulence in accretion disks is the magnetorotational

instability (MRI) (Balbus and Hawley, 1991, 1998). This instability arises from a magnetic field

coupling to deferentially rotating fluid. As the fluid shears, field lines must stay frozen into the fluid,

causing the field to shear and stretch. Fluid parcels at larger radii feel a force in the retrograde

direction, causing them to move farther outward. In turn, the field stretches more and exerts a

stronger force. A cartoon illustration of this instability is shown in figure 1.1.

Under ideal magnetohydrodynamics (MHD), a disk with a vertical magnetic field and differ-

ential rotation has a local, linear instability if

B2
z

8π
≤ 3ρc2

s

π2
,
d

dr
(Ω2) < 0, (1.1)

where Bz is the vertical magnetic field, ρ is the density, cs is the sound speed, r is the radial

coordinate, and Ω is the rotation rate. Note that this is a weak-field instability, making this criteria

fairly trivially satisfied. Under these conditions, the linear growth rate of the fastest growing MRI

mode is ∼ Ω. This growth rate is very fast, so the instability will quickly saturate and enter the

non-linear regime.

In the case of a vertical seed-field, the wavelength of the most unstable mode of the MRI

is given by λm/h = 9.18β
−1/2
0 , where β0 is defined to be the standard plasma β parameter: the

ratio of the gas pressure to the magnetic pressure (Hawley et al., 1995). For a reasonable choice

of β0 = 104, this characteristic MRI wavelength is about one tenth of the scale height. Hence,
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if one wants to resolve the MRI’s behaviour and study the non-linear regime numerically, a local

simulation is usually necessary.

This introduces the “shearing box” approximation: a small patch of the disk is simulated in

the co-rotating frame (Hawley et al., 1995). In this context, Cartesian coordinates can be assumed,

radial gradients can be ignored, and a shearing background velocity must be applied such that the

inner edge of the box has a positive azimuthal velocity and the outer edge of the box has a negative

azimuthal velocity. Early numerical studies showed that the nonlinear state of the MRI sustains

turbulence with an effective α parameter of . 10−2 (Brandenburg et al., 1995; Stone et al., 1996),

with most angular momentum transport occurring due to magnetic stresses. This result was very

exciting for theorists, as this α parameter predicts viscous evolution time-scales on the order of

millions of years, matching the expectation from observational constraints on disk lifetimes. More

recent studies have largely confirmed this level of turbulence in a sufficiently ionized fluid, and have

also showed that the MRI can act even without a net-vertical magnetic field (Simon et al., 2012;

Davis et al., 2010).

While the ideal MRI described here may explain angular momentum transport in high energy

disks like those around black holes, we have not yet addressed the fact that PPDs are generally

not well ionized. In the next few sections, we consider the ionization state of the disk and the role

of non-ideal MHD effects in determining the the behaviour of the MRI and angular momentum

transport.

1.1.4 The Ionization State of PPDs

The degree of coupling between the magnetic field and the gas is crucial to the efficacy of

the MRI in transporting angular momentum. In fully ionized disks, such as those around black

holes, the coupling is very strong and the MRI will drive turbulence at a level of α = 10−2, or even

greater in the presence of a strong net-vertical field (Simon et al., 2013a; Salvesen et al., 2016).

However, the colder environments present in protoplanetary disks lead to low ionization levels; the

result is substantially weakened gas-field coupling such that non-ideal MHD effects are relevant,
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Figure 1.1 A cartoon illustration of the linear regime of the ideal MRI. The two dots represent fluid
elements and the “spring” represents a magnetic tension force. Due to differential rotation in the
disk, the fluid elements have different velocities, causing them to drift apart over time and stretch
the spring. This causes a prograde force on the outer element which will gain angular momentum
and drift outward, and a retrograde force on the inner element which will loose angular momentum
and drift inward. This drift stretches the spring further and reinforces the instability.
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and the MRI cannot operate at full capacity throughout the disk.

First, we will consider thermal ionization. Typical temperatures at the mid-plane of the

disk vary from up to a few thousand K at the innermost radii (inside ∼ 1AU), to tens of K in

the very outer regions (∼ 100AU). Even at the innermost radii, this temperature is less than the

thermal ionization temperature for Hydrogen (∼ 104K), and even the most easily ionized trace

species like alkali metals (∼ 5000K). However, it turns out that the disk does not need to be

particularly well ionized in order for the field to be coupled to the gas, with the critical ionization

fraction lying around 10−13 (Gammie, 1996). Based on chemical equilibrium modeling done by

Umebayashi (1983), only a relatively modest temperature of 800-1000 K is required to achieve this

critical ionization fraction. As a result, we expect that the inner radii of PPDs will be sufficiently

thermally ionized to be in the ideal MHD regime.

In the outer disk, thermal ionization can largely be neglected, however radiative ionization

from cosmic-rays (Gammie, 1996), X-rays (Igea and Glassgold, 1999), and FUV photons (Perez-

Becker and Chiang, 2011a) will play a role. Gammie (1996) put forth a layered accretion model in

which the surface layers of the disk are well-ionized by radiation and exhibit ideal MRI behaviour,

while the mid-plane of the disk is shielded from radiation and is very weakly ionized. This leads

to a large magnetic diffusivity in the mid-plane region that quenches the MRI there, creating a

so-called “dead zone”. While the layered accretion model provides a great starting point, there are

3 distinct non-ideal MHD effects that will be relevant in different regions of the disk, and each has

a different effect on the MRI. We will discuss these effects in the following sections.

1.1.5 Non-Ideal MHD Effects and Dead Zones in PPDs

Within a PPD, the gas density, ionization fraction, and field strengths all vary by orders

of magnitude. As a consequence, we have no expectation of universality in the properties of disk

turbulence sourced from MHD processes like the MRI, whose characteristics will vary with the

importance of the 3 non-ideal MHD terms: Ohmic diffusion, ambipolar diffusion, and the Hall

effect (Armitage, 2011; Turner et al., 2014; Balbus and Terquem, 2001; Kunz and Balbus, 2004; Xu
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and Bai, 2016). These 3 non-ideal effects of MHD break the ”frozen in” condition of the magnetic

field that is true for ideal MHD. The non-ideal induction equation is given by

∂B

∂t
= ∇×

[
v ×B− η∇B− J×B

ene
+

J×B×B

cγρiρ

]
(1.2)

where B is the magnetic field, v is the velocity, J is the current, ρ is the total density, ρi is the ion

density, η is the resistivity, ne is the electron number density, and γ is the drag coefficient, related

to the ion-neutral collision rate. The 2nd, 3rd, and 4th terms on the right hand side correspond to

ohmic diffusion, the Hall effect, and ambipolar diffusion respectively.

While the relative importance of these 3 terms is itself an interesting and relevant topic

of study (Lesur et al., 2014; Kunz and Balbus, 2004), as a general rule ambipolar diffusion will

dominate at low densities, ohmic diffusion will dominate at high densities, with the Hall effect

dominating in an intermediate regime, but also being relevant at high densities. Translating to

regions of the disk, large radii (∼ 30 − 100 AU) will be dominated by ambipolar diffusion, (e.g.,

Desch, 2004; Kunz and Balbus, 2004; Simon et al., 2013b,a), while at AU-scales both Ohmic

diffusion and the Hall effect modify the mid-plane dynamics (Lesur et al., 2014; Bai, 2014; Simon

et al., 2015a), with ambipolar diffusion playing an important role in the atmosphere (Desch, 2004;

Kunz and Balbus, 2004; Wardle, 2007; Bai and Stone, 2013a). Accurately capturing the full non-

ideal physics is computationally difficult, and the numerical expense limits the feasible resolution

and / or run length, so it is common for studies to focus on a regime where only one or two effects

dominate, as we will do throughout this thesis. Figure 1.2 shows a “map of the disk”, which gives a

rough idea which effects are most relevant in each disk location, as well as pointing out the different

regions and effects studied in this thesis.

1.1.5.1 Ohmic Term

Physically, the Ohmic term arises due to collisions between charge-carrying species and neu-

trals, which causes the currents that generate magnetic fields to dissipate. Gammie (1996) considers

the damping of the MRI by Ohmic diffusion in a disk with scale height h, Alfvén speed vA and
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Figure 1.2 A cartoon “map of the disk”, emphasizing the most relevant non-ideal MHD effects in
each region. We also point out the various regions and phenomena studied by each chapter of this
thesis. Credit to Armitage (2007), and Simon et al. (2018) for the general idea for figures of this
type. A few purely notational choices that require clarification: 1. There are not actually breaks
in the particle layer as shown, this is just to allow room for text. 2. Planetesimal formation is not
necessarily specific to the radii shown here, it will generally happen throughout the radial extent
of the disk.
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resistivity η. By equating the minimum Ohmic damping rate, η/h2, with the linear MRI growth

rate on the same scale, vA/h, he argued that local turbulence would damp for resistivities exceeding

ηcrit ∼ hvA. As discussed above, this corresponds to an ionization fraction on the order of 10−13,

which is not achieved via thermal nor plausible non-thermal ionization sources. Consequently,

η > ηcrit at the mid-plane on AU-scales. This damping effect at the mid-plane lead to a layered ac-

cretion model: MRI-active surface layers with efficient angular momentum transport, and a “dead”

mid-plane region with no MRI activity.

Modern studies usually quantify the Ohmic damping of the MRI in terms of a dimensionless

quantity called the Elsasser number:

Λ =
v2
az

ηΩ
, (1.3)

where the MRI is suppressed for Λ < 1. While the behaviour of the other two non-ideal terms

involves quite a bit of subtlety, the Ohmic term is more straight forward and binary: either the

MRI is permitted or it is suppressed.

The effect of Ohmic diffusion has since been well quantified by numerical studies. Simu-

lations by Fleming and Stone (2003) use a model that included only Ohmic diffusion and verify

Gammie’s qualitative disk structure. However, they also showed that waves generated within the

MRI-active zone could leak into the dead zone, producing a non-zero level of turbulence and purely

hydrodynamic stresses. This leaking effect is the primary topic of study in chapter 2.

1.1.5.2 Hall Term

The Hall effect can create an electromotive force on a plasma due to a difference between

the electron velocity and the mean fluid velocity. Balbus and Terquem (2001) look at the effects

of the Hall term on protoplanetary disks and find that Ohmic diffusion dominates over the Hall

effect if the neutral density exceeds 1018cm−3 or if the Alfvén speed is much less than the sound

speed. Dead zones dominated by the Hall Effect are thought to exist in the inner region of the

disc (∼ 1 AU), and have been shown by several studies to have an interesting behaviour with

respect to direction of the vertical magnetic field (Wardle, 1999; Simon et al., 2015b; Lesur et al.,
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2014; Bai, 2014, 2015). When the field is aligned with the spin axis of the disk, the Hall Effect

is able to “revive” the dead zone: the MRI is replaced with the ”Hall-shear” instability (Lesur

et al., 2014; Simon et al., 2015a; Kunz, 2008), resulting in stresses similar to the MRI (α ∼ 10−2).

However, when the vertical field is anti-aligned with the spin of the disk, the Hall Effect suppresses

the MRI a and the dead zone is largely true to it’s name. In this case, there is still a low level

of intermittent turbulence caused by the non-axisymmetric variant of the Hall-shear instability

(Simon et al., 2015a), but the overall result is stress on the order of α ∼ 10−4. This dichotomous

behaviour could have interesting consequences in disks. In chapter 3 we consider the ability of Hall

dominated dead zones to produce episodic accretion events.

1.1.5.3 Ambipolar Term

Ambipolar diffusion (AD) is caused by the breaking of the quasi-neutral assumption of ideal

MHD on small scales. The field drifts with the charged particles, causing it to drift relative to the

neutral fluid. The ambipolar MRI can be suppressed in a similar fashion to the Ohmic MRI, but

with some added complications. Analytic work has shown that the relevant control parameter (at

least in the linear limit) for the growth of the MRI is the ratio of the rate of ion-neutral collisions

to the orbital frequency:

Am =
γρi
Ω
, (1.4)

where γ is the drag coefficient (related to the ion-neutral collision rate) and ρi is the mass-density of

ions. The numerator as a whole represents the ion-neutral collision rate. In contrast to the Elsasser

number for Ohmic diffusion, Am does not represent a strict criteria for MRI activity/inactivity.

Generally speaking, the MRI will be more damped at lower values of Am. However, it is important

to note that the strength of AD depends on the magnetic field strength itself, meaning that unstable

modes will always exists for a sufficiently weak field (Blaes and Balbus, 1994; Kunz and Balbus,

2004).

This damping has been the topic of several numerical studies as well, seeking to understand

the full, non-linear evolution of the MRI under these conditions. Hawley and Stone (1998) studied
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this problem treating the ions and neutrals as separate fluids coupled with a collisional drag term.

They establish limits on the relevance of AD, showing that the fluid behaves essentially the same as

the ideal limit for collision frequencies on the order of 100Ω, while for collision frequencies . 0.01Ω

the neutral fluid is quiescent, unable to be affected by the motion of the ions. Bai and Stone (2011)

study the non-linear evolution of the ambiploar MRI in an unstratified shearing box using a single

fluid method. In contrast to the two-fluid approach, in the single fluid MHD limit, the ion-neutral

coupling is strong (which is shown to be appropriate for protoplanetary disks Bai 2011a), the ion

density is a fixed fraction of the neutral density instead of obeying it’s own continuity equation,

and the ion-density makes up a negligible fraction of the total mass-density. Bai and Stone (2011)

showed that for any given Am value, one can always find a magnetic field strength at which the

MRI is present in its full nonlinear state. For smaller Am, weaker magnetic field is required, which

in turn leads to a lower level of turbulence. AD’s dependence on the field strength is defining

difference between Ohmic and Ambipolar diffusion (at least in terms of their effect on the MRI).

The first work to self-consistently model the AD-dominated outer disk with vertical gravity

included was carried out by Simon et al. (2013b) and Simon et al. (2013a). These authors carried out

local and vertically stratified calculations, in which AD was quite strong near the mid-plane. This

work included ionization of upper disk layers by FUV photons (Perez-Becker and Chiang, 2011a)

leading to a scenario similar to the Gammie (1996) model; active regions vertically sandwich a

region of weak or no turbulence. Furthermore, these works determined that a net vertical field is

required to predict high enough accretion rates to match the expected life-time of disks around

young stars (assuming that disk accretion is at least approximately in steady-state). In chapter

4 we further explor the physics of disks with ambipolar damping zones, primarily focusing on the

role of vertical transport of energy and magnetic fields, which has not been addressed previously.

1.1.6 Observations of PPD Turbulence

In recent years, it has become possible to put direct observational constraints on turbulence

in the outer regions of disks with ALMA. Molecular line broadening measurements of HD163296
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place an upper limit on the velocity dispersion (δv) of the turbulence throughout the disk at 0.05cs

(Flaherty et al., 2015, 2017). Similar measurements of the TW Hydra system also show low levels

of turbulence: δv . 0.08cs (Flaherty et al., 2018). These measurements mainly measure the outer

region of the disk (tens - 100 AU), where ambipolar diffusion is the dominant non-ideal effect.

Simulations relevant to this region of the disk predict characteristic velocity perturbations in the

range of 0.1 − 1cs in the surface layers of the disk, definitively inconsistent with the observations

(Simon et al. (2015a), chapter 4). These observations have been somewhat baffling to theorists,

and this discrepancy has become known as the “weak turbulence problem”.

These observations motivate a more precise understanding of the physics of the outer disk

regions for two primary reasons. First, the presence of weak turbulence has only been established

for a few systems; if disks with strong turbulence do exist, it behooves us to explore this turbulence

in more detail. Second, if indeed all disks show significantly weak turbulence, then we need to

understand precisely why the MRI is prevented from operating. It is a very robust and vigorous

instability. From a theory standpoint, it is much easier to explain its presence than its absence.

Two basic scenarios are possible: 1. The surface layers of the disk are somehow prevented from

being radiatively ionized and the magnetic field is weak (Simon et al., 2018). 2. Some unknown

process is actively arresting the MRI in the surface layers.

1.1.7 Winds from PPDs

Following the focus of this thesis as a whole, this introduction has mainly focused on MRI

turbulence as the driver of angular momentum transport and accretion in PPDs. However, disk

winds also merit mention. Whereas turbulence provides a mechanism for redistributing angular

momentum within the disk, winds are able to effectively remove angular momentum from the

system entirely. It is likely that both winds and turbulence play an role in the angular momentum

evolution in PPDs.

The basis for most wind models in disks starts with Blandford and Payne (1982), who derive

the MHD solutions for a wind launched from a Keplerian disk with a poloidal magnetic field and
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infinite conductivity. These solutions show that the magnetic field lines, which are anchored in the

conducting disk, act as rigid wires and will centrifugally accelerate gas away from the disk as long

as the field lines are inclined at least 30 degrees away from the spin axis. For a very simplistic

illustration, see figure 1.2. This wind then exerts a torque on the disk, removing angular momentum

and allowing the disk to accrete. While this mechanism may apply fairly directly to high-energy

accretion disks, winds from PPDs require further consideration due to their poorly-ionized nature.

Bai et al. (2016) constructs a model for magneto-thermal winds from poorly-ionized PPDs,

integrating results from local simulations which include non-ideal MHD effects. While the basic

principles of the Blandford-Payne mechanism still apply, in this case the wind is launched solely

from the ionized surface layers of the disk, with the mid-plane playing essentially no role. This

model demonstrates that winds can drive reasonable accretion rates in the inner disk (∼ 10−8M�/yr

at 1 AU). Furthermore, mass loss due to this wind is quite high, on the order of 0.1− 1 times the

accretion rate itself. However, the strength of this wind scales strongly with the net-vertical field

in the disk, which is largely unconstrained.

1.1.8 Episodic Accretion in PPDs

While most studies of PPDs are designed to have relevance to either planet formation or

angular momentum transport, another active area of research is episodic accretion. Observations

of young stellar objects in the optical and infrared have revealed a wide range of out-bursting

behaviours in which the disk’s apparent brightness increases for a brief time. These events vary

greatly both in amplitude and time-scale (Herbig, 1977; Hartmann and Kenyon, 1996). Historically,

these events have been placed into two categories: FU Orionis objects (FUors) and EX Lupi

objects (EXors) (Herbig, 1989). FUor outbursts generally occur for several to tens of years with

accretion rates increasing by several orders of magnitude compared to the quiescent state, although

properties of individual objects vary greatly. In contrast, EXor outbursts are shorter and weaker,

typically bursting for months to years. They also occur more frequently, typically having a few years

between bursts. As the sample of observed out-bursting young stars has expanded, the wide range
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of parameters for both categories has caused the distinction between the two cases to become less

clear. Several observations of “in between” events have led to the idea that these events may be part

of a continuous spectrum instead of a dichotomy (Audard et al., 2014). While this classification is

useful from an observational standpoint, it is not clear that FUors and EXors are caused by distinct

physical mechanisms, or that all events of each type are caused by the same physical mechanism.

Modeling of the spectral energy distribution of FUor events, in combination with basic time-

scale arguments, has led theorists to conclude that these events are most likely from the inner

disc (Zhu et al., 2007, 2008). The viscous accretion time of the disc is roughly Ω−1α−1(h/r)−2.

Plugging in some typical numbers (α = 0.1, h/r = 0.1) yields a viscous time of about 160 years at

1 AU, which is roughly consistent with the time-scale of FUors. Any explanation of these events

invoking phenomena on larger size-scales would be difficult to justify. One proposed mechanism

for triggering FUors is called the gravo-magneto instability (Martin and Lubow, 2011). In this

scenario, the inner edge of the dead zone builds up enough mass to become unstable to self gravity,

which causes turbulent heating, which increases the ionization fraction of the gas enough to trigger

the MRI. This model relies on the presence of a true dead zone with little turbulence, and could be

sensitive to turbulence induced in the dead zone via hydrodynamic mixing from the active layers

(the effect studied in chapter 2).

EXors, occurring on even shorter time-scales than FUors, would naively be expected to

be triggered by something in the very inner disc as well, or by magnetospheric accretion effects.

Armitage (2016) suggests that the dichotomous behaviour of Hall dead zones (described in §1.1.5.2)

could lead to episodic and/or cyclic accretion with properties similar to EXor events. While the

magnetic field is aligned with the spin axis of the disk, the dead zone will be “active”, and the

turbulent stress will drive a relatively high accretion rate. While the field is anti-aligned, the dead

zone will be “dead”, and the lack of turbulence will cause the accretion rate to be much lower.

This change in net-field polarity could be caused by the stellar magnetic field diffusing though the

inner disc, with the stellar field changing sign on some characteristic timescale. We explore this

mechanism in detail in chapter 3.
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Now that we have given an overview of the physics involved for the gaseous component of the

disk, we can move on to take a look at the behaviour of solids in the disk, and most importantly

the interaction between the gas and solid components.

1.2 Solids in Disks

Solid objects (or “particles”) interact with the fluid component of the disk via aerodynamic

forces, with the gas providing a drag force on particles that have a velocity relative to the local

velocity of the gas. Broadly speaking, the drag exerted on a particle with size s will be proportional

to it’s surface area (scaling as s2), while the particle’s inertia (ie. mass) will be proportional to

it’s volume (scaling as s3). So as a particle’s size increases, the relative strength of aerodynamic

forces will decrease. Dust grains will be very easily blown around by the fluid’s movement, while

object’s on the order of kilometers will not be greatly affected by the fluid. The strength of the

aerodynamic force on particles is typically quantified by the friction time:

tfric =
mv

FD
, (1.5)

where m is the particle mass, v is the relative velocity, and FD is the drag force. This is also

frequently parameterized in terms of the “dimensionless stopping time”, given by τs = Ωtfric. Small

particles, which are very well coupled to the fluid, will have τs � 1. In contrast, large objects

that do not particularly care about the fluid will have τs � 1. With a basic framework for talking

about drag in place, we will now briefly discuss two important particle phenomena in disks: vertical

settling and radial drift.

1.2.1 Vertical Settling

Unlike the fluid, which has a vertical density distribution determined by balancing the vertical

component of the star’s gravity with the fluid’s pressure gradient, particles do not feel pressure

gradients. As a result, if we consider a non-turbulent disk, we would expect to find all solid particles

in a very thin layer at the mid-plane of the disk, feeling only the effect of gravity (Weidenschilling,
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1980). The presence of turbulence complicates the situation, providing an effective diffusion of

the particle layer in the vertical direction that will depend on the stopping time of the particles

considered and the magnitude of the turbulent velocities in the disk. If the turbulent diffusion

coefficient for the particles is assumed to be the same as the turbulent diffusion coefficient for

momentum (ie. viscosity), and the particles are relatively well coupled to the fluid (τs < 1), then

a simple expression can be derived for the scale height of the particle layer hp:

hp
h

=

√
α

τs
. (1.6)

In other words, the settling changes the scale height of the particle layer relative to the gas by a

factor of
√
α/τs. The density of the particle layer is then enhanced by the inverse of this factor.

For example, a τs = 10−2 particle layer in a turbulent disk with α ∼ 10−2 will not have enhanced

density. However, a dead mid-plane can have orders of magnitude less turbulence, creating a much

thinner dust layer and enhancing the particle density by a factor ∼ 100 for a stress of α ∼ 10−6.

This density enhancement is crucial for many planet formation models as it allows for much faster

particle coagulation, and is another reason that understanding the level of turbulence at the mid-

plane of PPDs is essential.

1.2.2 Radial Drift

While settling arose due to particles not feeling pressure gradients in the vertical direction,

another important effect called radial drift arises due to particles not feeling pressure gradients in

the radial direction. If we choose to work in the frame of a particle orbiting the central star, the

particle experiences only 2 forces which balance each other: gravity and the centrifugal force. This,

of course, leads to the particle orbiting the star at the familiar Keplerian velocity: vk =
√
GM∗/r.

In contrast, if we consider a fluid element in the same frame, it will experience 3 forces: gravity,

the centrifugal force, and an inward pressure gradient force due to the outward-decreasing pressure

profile of the disk (Weidenschilling, 1977). If the pressure profile of the disk is given by a power
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law: P ∝ r−n, then the orbital velocity of the fluid is given by

vφ = vk

[
1− n

(
cs
vk

)2]1/2

. (1.7)

Notably, this orbital velocity is sub-Keplerian, with the difference between the two velocities usually

being on the order of 1%. However, even this small deviation has very interesting consequences:

particles in the disk are constantly experiencing a “headwind”. They are trying to orbit more

quickly than the fluid they are immersed in, and as a result they loose angular momentum and will

drift radially inward. This effect is felt by particles of all sizes, but is most prominent for objects

in an intermediate regime: τs ∼ 1 (Weidenschilling, 1977; Takeuchi and Lin, 2002). Physically, this

corresponds to objects roughly 1 meter in size, which will drift inwards to the star on a remarkably

short time-scale of ∼ 1000 years. This is the basis of the “1-meter barrier” for planet formation.

Considering a zeroth-order approximation of planet formation wherein small particles coagulate

over time to form larger and larger objects, as soon as an object approaches roughly 1 meter in

size, it will fall into the star and halt any further coagulation unless it is able to rapidly grow to a

size-scale on the order of kilometers. This poses probably the hardest problem in planet formation:

theorists need a mechanism in this intermediate regime that is able to grow objects from cm to km

scales very quickly. We will revisit this problem in the following section.

1.3 An Overview of Planet Formation

To put it simply: explaining the entire planet formation process is an incredibly hard problem.

One needs to start with dust grains on the scale of microns and end up with a giant rock (and/or

ball of gas) on the scale of thousands of kilometers or larger. That’s a span of at least 12 orders of

magnitude in size with different physical processes dominating the formation process at different

size-scales. In this section, we give a very brief overview of the planet formation process, with an

emphasis on planetesimal formation (the phase directly studied in this work).



18

1.3.1 Coagulation at Small Size-Scales

At micron scales, the evolution of particles (often called “grains” at this scale) is dominated

by collision physics: do grains stick together or fragment when they collide?. The physics of

the sticking efficiency of grains is complex and dependent on many factors including size, shape,

composition, and collision velocity. However, this is a rare area of astrophysics where laboratory

experiments have been incredibly helpful in determining this behaviour. Dominik et al. (2007) gives

a review of these experiments in combination with coagulation models (eg. Dullemond and Dominik

(2005); Schmitt et al. (1997)) to give a useful picture of the early stages of planet formation. In

growing from micron to mm scale, surface electromagnetic forces are able to stick grains together

very efficiently, even for relatively large collision velocities (∼ 1m/s for spheres, or up to ∼ 100 m/s

for irregular grains). Once mm-cm scales are reached, the expected relative velocity of collisions

increases and composition and grain structure become more important, with fragmentation being

overall a more likely outcome of collisions (Zsom et al., 2010). If grains are not particularly compact,

then more collision energy can be dissipated. Wurm et al. (2005) shows that, on this size-scale,

collision velocities of up to 10 m/s or higher can still lead to net-growth of large grains while also

producing many small fragmented grains.

After particles have coagulated to cm-size scales, we approach the 1-meter barrier posed by

the radial drift effect described in the previous section. The next growth mechanism must grow

objects very quickly (thousands of years) to kilometer sizes. This phase of formation is known as

planetesimal formation, where a planetesimal is defined to be an object with relevant self-gravity

whose dynamics are no longer greatly affected by gas drag. One promising theory for planetesimal

formation that will be discussed in this thesis involves a combination of a phenomenon called the

streaming instability and particle self-gravity.
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1.3.2 Planetesimal Formation via the Streaming Instability

The streaming instability (SI) is a local, linear instability in Keplerian disks. The SI is a result

of the aerodynamic coupling of solids to the fluid and the momentum-feedback of the solids onto the

fluid. The SI was first quantified by Youdin and Goodman (2005), who use a 2-fluid approach to

consider the interaction between the gas and solids in a unstratified disk with uniform particle sizes,

no turbulence, and no self-gravity. While there is no particularly obvious intuitive interpretation

of the instability, it generally concentrates solids within the disk into streams and clumps. A very

non-physical analogy would be that of birds flying in flocks to reduce wind resistance. Youdin

and Goodman (2005) show that the instability is robust, existing across a wide range of particle

parameters. Growth rates are maximized when the stopping time of the particles is near the

dynamical time (τs ∼ 1) and the solid-to-gas ratio (ie. metallicity) is near 1. If we are considering

the disk as a whole, this is a drastically super-physical value for the metallicity, which would be

expected to be near the solar value of ∼ 0.01. However, we must keep in mind that vertical settling

can concentrate solids to the mid-plane of the disk, creating a local region with a greatly enhanced

metallicity. Growth rates under these optimal conditions can be up to ∼ 0.1Ω, which is slower than

the dynamical time but very importantly faster than the time-scale for radial drift. The ability

of the SI to concentrate solids into clumps on a quick time-scale excited theorists, giving a new

potential mechanism for rapid planetesimal formation.

Since the initial formulation of the SI, considerable numerical work has been done to study

the non-linear regime. Johansen and Youdin (2007) demonstrate that the SI is capable of producing

particle over-densities of greater than 100 times the background particle density, and also drives

turbulence at a very low level (α ∼ 10−5). While these particle over-densities are promising for

initiating the collapse of gravitationally bound planetesimals, there are non-trivial constraints on

the parameters that lead to this clumping. In particular, the degree of clumping is a very strong

function of the solid-to-gas ratio: changing the metallicity from solar to twice solar can produce a

ten-fold increase in the typical particle over-density (Johansen et al., 2009).
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To carry the planetesimal formation process one step further, several recent studies have

included particle-self-gravity (Simon et al., 2016; Abod et al., 2018; Schäfer et al., 2017). With

this included, particle clumps that are concentrated to sufficient densities by the SI become bound

by their own self gravity and form a bonafide “planetesimal”. These studies then characterize

the mass-spectrum of the planetesimals, generally finding that the spectrum is well-described by a

power law of the form

dN

dMp
∝M−pp , (1.8)

where the power law index p is measured to be ∼ 1.6± 0.1. We save a detailed discussion of these

spectra and SI clumping for chapter 5.

1.3.3 Planetesimals to Terrestrial Planets

Once planetesimals have formed, interactions with the gas component of the disk do still

play a role: gravitational interactions with turbulent density fluctuations will excite the planetes-

imal’s orbits (more on this in §1.3.4), while aerodynamic interactions will damp orbits. However,

the primary driver of further formation in this phase is mutual self-gravity between planetesimals.

Gravitational focusing will enhance the effective cross-section for collisions of planetesimals by a fac-

tor of (1+v2
esc/σ

2), where vesc is the escape velocity from the surface of the planetesimal and σ is the

velocity dispersion of planetesimals. This enhanced cross section makes planetesimal-planetesimal

collisions quite frequent. Lissauer and Stewart (1993) derive growth rates for planetesimals in this

scenario. Most notably, the growth rate is proportional to the surface density of solids in the disk,

and the effectiveness of this type of growth is dependent on a fairly low value of σ (ie. planetesimals

are generally on circular orbits). If this velocity dispersion is sufficiently low, the largest planetes-

imals in the disk will exhibit runaway growth as their gravitational focusing factor continues to

increase as they accrete more planetesimals, making accretion more efficient as they grow. After

tens of millions of years, the end result is a terrestrial-like planet (or gas-giant core).
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1.3.4 Turbulence, Dead Zones, and Planet Formation

In this section we will briefly emphasize several areas in which a detailed understanding of

PPD turbulence plays an important role in understanding planet formation, further motivating the

study of non-ideal MHD effects and dead zones.

In the early coagulation phase, the effective diffusivity generated by turbulent velocity fluc-

tuations within the dead zone sets the thickness, and hence the density, of settled particle layers.

In addition, turbulence plays the dominant role in determining the collision velocity of small grains.

The presence of dead zones is friendly to the formation of large grains in this regime, as a less-

turbulent mid-plane will lead to a denser particle layer, more frequent collisions, and collisions that

are more likely to result in coagulation rather than fragmentation.

At planetesimal size scales, surface density fluctuations in the disk due to turbulence gener-

ate stochastic gravitational torques on planetesimals (Ida et al., 2008; Gressel et al., 2011, 2012;

Okuzumi and Ormel, 2013). The net-result of these torques is a more excited orbit (higher ec-

centricity and inclination), which leads to larger relative velocities between planetesimals (the σ

parameter in the previous section). The excitation of the orbits scales roughly proportional to the

density perturbation δρ. In a fully turbulent disc, the relative velocities of the planetesimals are

above the threshold for catastrophic disruption for bodies on the order of 1 km. For this reason,

planet formation models that rely on runaway growth of bodies of this size fail in a fully turbulent

disc. Gressel et al. (2011) find that the presence of a largely non-turbulent dead zone near the

mid-plane reduces the excitation of the planetesimals by a factor of 20, putting the relative velocity

of km sized bodies in between the catastrophic disruption threshold for weak and strong materials

(Stewart and Leinhardt, 2009). This allows planetesimals composed of strong materials to survive

collisions and aggregate gradually.
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1.4 Organization of This Thesis

This thesis consists of 6 chapters: this introduction, 4 chapters describing distinct projects

on topics related to turbulence and magnetic fields in protoplanetary disks, and finally a summary

and discussion of future work. Each of the 4 middle chapters will have a scope roughly equivalent

to that of a typical journal article. These chapters were largely written to each be understandable

as a stand-alone work, and as a result there may be some small overlap from chapter-to-chapter

(in particular in the introduction and methods sections).

This first chapter is an introduction that provides a general background of protoplanetary

disk physics and phenomena, focusing on areas relevant to this thesis. In addition to this overall

introduction, there will be an introduction to each chapter that will re-emphasize some of the

relevant physics already described here, as well as put the chapter in context relative to other work.

The 3 chapters following the introduction each explore one of the 3 non-ideal (MHD) effects as it

relates to disk turbulence and phenomena that stem from this turbulence: In chapter 2, we use 3D

shearing box simulations to study Ohmic dead zones, exploring the effect that the fluid motions in

the surface layers of the disk have on the dead zone. In chapter 3, we use a 1D disk model to study

the stellar magnetic field’s interaction with the disk, showing that the stellar magnetic cycle may

be able to produce episodic accretion events from Hall dead zones. In chapter 4, we use 3D shearing

box simulations to study ambipolar dominated dead zones, again emphasizing the importance of

the interaction between the active and dead zones and demonstrating the importance of vertical

transport processes in disks. In chapter 5, we again use 3D shearing boxes explore the effect that

turbulence has on planetesimal formation via the streaming instability. Finally, in chapter 6, we

summarize the most important conclusions of this thesis and brief discussion of future work.

As a note to the reader, I will be using the pronoun “we” to describe in the first-person what

I have done throughout this thesis, as is standard practice in writing multi-author journal articles.



Chapter 2

Turbulence, Transport and Circulation in Ohmic Dead Zones

2.1 Introduction

Turbulence and angular momentum transport in well-ionized accretion disks are generated by

the magnetorotational instability (MRI; Balbus and Hawley, 1991, 1998). In weakly ionized disks,

however, the efficiency of the MRI is modified by non-ideal magnetohydrodynamic effects — Ohmic

diffusion, ambipolar diffusion, and the Hall effect (Blaes and Balbus, 1994). These processes are

predicted to impact the dynamics of accretion in the cool outskirts of cataclysmic variable (Gammie

and Menou, 1998) and Active Galactic Nuclei disks (Menou and Quataert, 2001), and are dominant

across most radii in protoplanetary disks (for reviews, see e.g. Armitage, 2011; Turner et al., 2014).

The simplest explicit model for the effect of the non-ideal MHD terms was introduced by

Gammie (1996), who considered the damping of the MRI by Ohmic diffusion in a disk with scale

height h, Alfvén speed vA and resistivity η. By equating the minimum Ohmic damping rate, η/h2,

with the linear MRI growth rate on the same scale, vA/h, he argued that local turbulence would be

damped for resistivities exceeding ηcrit ∼ hvA. For AU-scales in protoplanetary disks this resistivity

corresponds to an ionization fraction of the order of 10−13, which is larger than that expected at

the disk mid-plane via thermal or plausible non-thermal ionization sources. These considerations

led to the prediction of an Ohmic dead zone around the mid-plane in which η > ηcrit. In this

model, accretion preferentially occurs in non-thermally ionized surface layers in which the MRI

drives turbulence. Simulations by Fleming and Stone (2003), using a similarly simplified model

that included only Ohmic diffusion, verified Gammie’s qualitative disk structure. However, they
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also showed that waves generated within the MRI-active zones could leak into the dead zone,

producing turbulence and purely hydrodynamic stresses.

The presence of a dead zone can qualitatively change the nature of protostellar accretion and

planet formation. For accretion, the dependence of the vertically integrated stress α (Shakura and

Sunyaev, 1973) on the surface density Σ determines whether the disk, at some radius r, is able

to attain a steady-state for a specified accretion rate Ṁ . Simple models of Ohmic dead zones do

not in general admit steady-states for all Ṁ (Gammie, 1996), and are potentially vulnerable to a

gravo-magneto limit cycle instability (Martin and Lubow, 2011) that has been conjectured to be

the origin of episodic accretion in Young Stellar Objects (Armitage et al., 2001; Zhu et al., 2009).

For planet formation, the effective diffusivity D generated by turbulent velocity fluctuations within

the dead zone sets the thickness, and hence the density, of settled particle layers. Surface density

fluctuations, on the other hand, generate stochastic gravitational torques that may dominate the

excitation (and limit the growth) of planetesimals (Ida et al., 2008; Gressel et al., 2011, 2012;

Okuzumi and Ormel, 2013).

Although the relative importance of the non-ideal MHD terms varies with density, tempera-

ture, and degree of magnetization (Balbus and Terquem, 2001; Kunz and Balbus, 2004; Xu and Bai,

2016), in protoplanetary disks it is often the case that multiple non-ideal effects are simultaneously

important. At large disk radii (∼ 30− 100 AU) ambipolar diffusion is dominant (e.g., Desch, 2004;

Kunz and Balbus, 2004; Simon et al., 2013b,a), but on AU-scales both Ohmic diffusion and the

Hall effect modify the mid-plane dynamics (Desch, 2004; Kunz and Balbus, 2004; Wardle, 2007;

Lesur et al., 2014; Bai, 2014; Simon et al., 2015a), while ambipolar diffusion is important in the

atmosphere (Desch, 2004; Kunz and Balbus, 2004; Wardle, 2007; Bai and Stone, 2013a). Accu-

rately capturing the full non-ideal physics is computationally difficult, and the numerical expense

limits the feasible resolution and / or run length. Here, following Fleming and Stone (2003) and

Okuzumi and Hirose (2011), we instead study the model problem of a purely Ohmic dead zone,

which we further simplify by imposing a sharp vertical transition between the active and dead

layers. By examining the interaction of dead zone and active zone gas in this controlled manner,
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we are able to better understand the physical effects that are observed in the simulations. We are

particularly interested in determining the functional form of α(Σ), which is the critical quantity

for disk stability, and in studying the nature of dead zone fluid motions and their implications for

settled particle layers.

The plan of this chapter is as follows. In §2.2 we describe the numerical methods and initial

conditions used. §2.3 presents the results of the simulations, including the scaling of dead zone

properties with dead zone thickness and the nature of turbulence and large scale fluid flows in

the simulated disks. §2.4 discusses the implications for particle settling and growth if large-scale

circulatory flows, seen in our simulations, are present in real disks. We wrap up with our conclusions

in §2.5.

2.2 Methods

2.2.1 Numerical Algorithm

We compute the structure of Ohmic dead zones using Athena. Athena is a second-order

accurate Godunov flux-conservative code that uses constrained transport (CT; Evans and Hawley,

1988a) to enforce the ∇ · B = 0 constraint, the third-order in space piecewise parabolic method

(PPM) of Colella and Woodward (1984) for spatial reconstruction, and the HLLD Riemann solver

(Miyoshi and Kusano, 2005; Mignone, 2007) to calculate numerical fluxes. A full description of the

Athena algorithm along with results showing the code’s performance on various test problems can

be found in Gardiner and Stone (2005), Gardiner and Stone (2008), and Stone et al. (2008).

We employ the shearing box approximation to simulate a small, co-rotating patch of an

accretion disk. Taking the size of the shearing box to be small relative to the distance from the

central object, we define Cartesian coordinates (x, y, z) in terms of the cylindrical coordinates

(R,φ, z′) such that x = R−R0, y = R0φ, and z = z′. The box co-rotates about the central object

with angular velocity Ω, corresponding to the Keplerian angular velocity at R0.

The equations of resistive MHD in the shearing box approximation are,
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∂ρ

∂t
+∇ · (ρv) = 0, (2.1a)

∂(ρv)

∂t
+∇ · (ρvv −BB + ¯̄IP*) = 2qρΩ2x̂i− ρΩ2zk̂− 2Ωk̂× ρv, (2.1b)

∂B

∂t
−∇× (v ×B)− η∇2B = 0. (2.1c)

Here ρ is the gas density, B is the magnetic field, P* is the total pressure (related to the magnetic

field and the gas pressure, P , via P* = P + B ·B/2), ¯̄I is the identity tensor, v is the velocity, η

is the Ohmic resistivity, and q is the shear parameter defined by q = −d ln Ω/d lnR, which is 3/2

in this case of a Keplerian disk. An isothermal equation of state with a constant sound speed cs is

used,

P = ρc2
s. (2.2)

We use a standard set of boundary conditions appropriate for the shearing box approximation.

At the azimuthal boundaries we exploit the symmetry of the disk and apply periodic boundary

conditions. At the radial boundaries we apply shearing periodic boundaries, such that quantities

that are remapped from one radial boundary to the other are shifted in the azimuthal direction by

the distance the boundaries have sheared relative to each other at the given time (Hawley et al.,

1995). In the vertical direction, we employ the modified outflow boundary condition of Simon

et al. (2013b), which are the standard outflow boundaries but with the gas density extrapolated

exponentially into the ghost zones; this method reduces the artificial build-up of toroidal magnetic

flux near the vertical boundaries. Such outflow boundaries can lead to significant mass loss, par-

ticularly in the case of strong vertical magnetic flux (Simon et al., 2013a). However, such drastic

mass loss is not observed in our simulations, consistent with expectations from our magnetic field

geometry as described below. In general, these boundary conditions can break conservation, so

methods described in Stone and Gardiner (2010) are used in order to keep the correct variables

conserved. Furthermore, we employ Crank-Nicholson differencing to conserve epicyclic energy to

machine precision. A full discussion of these methods and Athena’s shearing box algorithm can
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be found in Stone and Gardiner (2010).

2.2.2 Initial Conditions

We run all simulations using a domain size of Lx × Ly × Lz = 2H × 4H × 8H, where H is

the scale height, defined here as,

H =

√
2cs
Ω

. (2.3)

We assume that the disk is initially in hydrostatic equilibrium. Balancing the vertical component

of gravity from the star with the gas pressure gives a Gaussian density profile:

ρ(z) = ρ0 exp

(
−z2

H2

)
. (2.4)

We set ρ0 = 1 as the initial density at the mid-plane. A density floor of 10−5 is applied to keep

the Alfvén speed from getting too high (and thus the time step too small) in the region far from

the mid-plane. The density floor also prevents β (defined below) from getting too low, which can

cause numerical problems. We set the constant isothermal sound speed cs = 1/
√

2, and choose the

angular velocity to be Ω = 1, which gives H = 1.

We initialize the magnetic field to be purely toroidal with constant β parameter of β = 400,

where β is the ratio of the gas pressure to the magnetic pressure,

β =
2P

B2
. (2.5)

Note that a factor of 4π has been subsumed into the definition of the magnetic pressure, following

the standard definition of units in Athena (Stone et al., 2008).

The saturation level of MRI-driven turbulence is known to be a function of the net vertical

magnetic flux (Hawley et al., 1995; Salvesen et al., 2016), which can additionally give rise to

outflows (Bai and Stone, 2013b) and to qualitatively distinct Hall physics (Lesur et al., 2014; Bai,
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2014; Simon et al., 2015a). Here, our primary goal is to study the relationship between active layer

turbulence and motions induced by this active layer in an idealized model of the dead zone, for

which the actual saturation level of the MRI is of secondary importance. For simplicity, and to

reduce the parameter space that needs to be studied, we therefore choose a field geometry with no

net vertical magnetic flux. Consistent with this choice, we do not observe strong MHD outflows

from our simulations.

In order to seed the MRI, we apply random perturbations to the gas pressure and velocity.

Following the procedure used by Hawley et al. (1995), the perturbations are uniformly distributed

throughout the box and have zero mean. Pressure perturbations are a maximum of 2.5% of the

local pressure, and velocity perturbations are a maximum of 5 × 10−3cs. We employ a uniform

numerical resolution of 60 grid cells per H, giving a total resolution of 120 × 240 × 480 zones per

simulation.

2.2.2.1 Resistivity Profile

Five simulations were done, varying the ratio of the surface density of the active zone Σactive

to the total surface density Σtotal. The surface density of the active layer is physically set by a

balance between recombination and ionization from sources such as cosmic rays (Gammie, 1996),

X-rays (Igea and Glassgold, 1999), and FUV photons (Perez-Becker and Chiang, 2011c). In most

circumstances this balance is achieved on time scales that are shorter than the turbulent mixing time

between the surface and the interior of the disk (Bai, 2011a). It is then a reasonable approximation

to ignore time-dependent ionization effects, and take the column of ionized gas to be fixed in space

and time. Varying the active to total surface density ratio is thus equivalent to changing the size

of the dead zone.

Physically, the resistivity varies with column density as a smooth function whose form is set

by the details of the ionization-recombination balance. To more accurately study the scaling of

dead zone properties with dead zone size, however, we ignore this complexity and instead create

a simple dead zone by imposing a sharp vertical transition in the Ohmic resistivity using an error
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function. Specifically, we adopt,

η = MIN(η1, η2) (2.6)

where

η1 =
ηmid

2

[
ERF

(
z + zcrit

hη

)
+ 1

]
, (2.7)

and

η2 =
ηmid

2

[
1− ERF

(
z − zcrit

hη

)]
. (2.8)

Here ηmid = 0.005 is the resistivity of the mid-plane, hη = 0.2H controls how quickly the resistivity

transitions from the dead zone at the mid-plane to the active region, and zcrit controls the height at

which this transition happens. Note that zcrit is specified by the initial conditions and remains fixed

throughout the simulation, it is not adjusted on-the-fly to account for changes in the instantaneous

vertical density distribution.

Depending upon the ionization source (cosmic rays or X-rays) the ratio of active to total

column at 1 AU in a purely Ohmic dead zone model is expected to be of the order of 0.1 to

10−2, if the underlying disk has a surface density comparable to the Minimum Mass Solar Nebula.

Substantially smaller values of the order of 10−3 are possible if mass accumulates in the dead

zone, as occurs in some models for episodic accretion (Armitage et al., 2001; Zhu et al., 2009;

Martin and Lubow, 2011). As we show later, however, modeling extremely thin active layers is

numerically challenging, because the time scale for kinetic energy in the dead zone to saturate

becomes prohibitively long. With this constraint in mind, we are able to reliably model dead zones

whose active to total column varies between ∼ 0.5 and ∼ 0.03. The specific values of this ratio,

along with the corresponding values of zcrit, are shown in Table 2.1. The corresponding resistivity

profiles are plotted in Figure 2.1.
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Run zcrit/H Active-to-Dead Mass Ratio

S 0.64 0.58
MS 0.93 0.23
M 1.16 0.11
ML 1.37 0.054
L 1.55 0.029

Table 2.1 Dead Zone Size

Figure 2.1 Resistivity η as a function of z for each of our simulations, as labeled in the legend. The
mass in the active zone as a fraction of the total mass varies between about 0.58 (for simulation
“S”) and 0.029 (for simulation “L”).
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The degree to which the resistivity suppresses the MRI can be quantified by the Elsasser

number, which compares the MRI growth rate to the resistive damping rate,

Λ =
v2
a

ηΩ
. (2.9)

We show Λ as a function of z in Fig. 2.2. Where Λ > 1, the most unstable mode of the MRI is

unaffected by ohmic diffusion. Where Λ < 1, the growth rate of the MRI goes as ΛΩ (Sano and

Miyama, 1999). The initial resistivity and magnetic field strength were chosen such that Λ < 1 at

the mid-plane to keep the MRI suppressed in the dead zone, while maintaining a sufficiently small

resistivity such that the diffusive time scale does not limit the time step.

The local wavelength of the most unstable MRI mode is the greater of the ideal MRI wave-

length and the resistive MRI wavelength, given as (Sano and Miyama, 1999),

λideal =
2πva

Ω
(2.10)

λresistive =
λideal

Λ
. (2.11)

With a resolution of 60 zones perH, these MRI modes are well resolved in the initial conditions, with

20 zones per MRI wavelength at minimum in the active region and about 40 zones per wavelength

in the dead zone.

2.3 Results

2.3.1 General, Large-scale Properties

Illustrative properties of the simulations are shown in Figure 2.3 and Figure 2.4. Figure 2.3

shows a rendering of the velocity fluctuations in the simulation domain, while Figure 2.4 shows

space-time diagrams of the Maxwell and Reynolds stresses for the small and medium dead zone

cases (note that the stress is not normalized to the mean local density, and hence is not equivalent

to a local α value). It is clear from either figure that the imposed resistivity profile delivers the
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Figure 2.2 The dependence of the Elsasser number, Λ on z for each of our simulations, as labeled
via the legend. The solid black horizontal line shows where Λ = 1. The dead zone is defined here
as the region where Λ < 1.
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expected morphology of an idealized Ohmic dead zone. The Maxwell stress saturates rapidly to a

dominant level in the active zone, and is damped to very low levels in the dead zone. The Reynolds

stress starts low in the dead zone and then builds up over time. Fluctuations in the Reynolds stress

in the dead zone ultimately build up to be as high or higher than in the active region.

2.3.2 Saturation Time-scales

Figure 2.5 shows the time evolution of the kinetic energy, Reynolds stress and Maxwell stress

in the active and dead zone regions, for the run with a medium-sized dead zone. The stresses

in the active zone saturate on a time scale of 10-20 orbits, consistent with previous studies of

MRI-driven turbulence (e.g., Simon et al., 2009). The properties of turbulent and non-turbulent

fluid motions in the dead zone, conversely, evolve in a substantially different way. The dead zone

Reynolds stress appears to initially saturate on a rapid time scale, but continuing the run reveals

long (∼ 102 orbit) time scale, large amplitude fluctuations. The kinetic energy, meanwhile, grows

essentially monotonically and saturates only after approximately 300 orbits of evolution. (The

dead zone Maxwell stress also continues to evolve for a long time, but at such a low level as to be

physically uninteresting.) As we will discuss later, the bulk of the kinetic energy is associated with

non-turbulent fluid motions, and hence the kinetic energy evolves in a distinctly different manner to

the Reynolds stress. To quantify how the saturation time scale depends on the dead zone thickness,

we take the most conservative (slowest saturating) measure and define the saturation time to be

when the average mid-plane kinetic energy did not increase by more than 3 percent over 20 orbits.

The saturation time increases as the mass of the dead zone increases relative to the active zone, as

shown in Figure 2.6 and Table 2.2. This is qualitatively consistent with the expectation that energy

and turbulence are being generated in the active layer and injected into the dead zone, so that a

larger dead zone takes longer to saturate. However, the detailed evolution of the kinetic energy as

a function of time (both for the dead zone shown in Figure 2.5 and the other runs) proved hard

to fit with a simple quantitative model of energy injection plus damping. Clearly, though, some

physically realistic dead zones — for which the ratio of the active to dead mass might be as low
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Figure 2.3 The log of the velocity magnitude for the medium sized dead zone run, plotted with
darker colors indicating higher velocity. The outer regions are clearly turbulent, transitioning into
more laminar flow at the mid-plane.
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Figure 2.4 Space-time plots of the Maxwell stress = −BxBy (first and third plots) and Reynolds
stress = ρvxδvy (2nd and 4th plots) for the small (top 2) and medium (bottom 2) dead zone sizes.
The quantities are averaged in the x and y directions. Note that the color scales are kept constant
for like-quantities across the runs.
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Figure 2.5 Time evolution of the volume averaged Kinetic Energy, Reynolds Stress, and Maxwell
Stress (from top to bottom), for the medium sized dead zone. The average over the dead zone is
taken from |z/H| = 0 to 0.5, and for the active zone from |z| = 2.0 to 3.3. In addition, the plots
were smoothed by time averaging over 10 orbits.



37

as 10−3 — would require very long simulations, with well-controlled numerical dissipation — to

model faithfully.

2.3.3 Stresses and energies in the saturated state dead zone

Having defined the saturation time for the different dead zone sizes, we compute time-

averaged vertical profiles of the Reynolds and Maxwell stresses using data from the remaining

portion of the runs. These stress profiles are plotted in Figure 2.7. The mid-plane Maxwell and

Reynolds stresses both decline as the thickness of the dead zone increases, but the Maxwell stress

is always negligible. Only the Reynolds stress is interesting for physical purposes.

If Reynolds stress in the dead zone derives exclusively as a consequence of energy transported

there from the active zone, then its magnitude ought to be set by an equilibrium between energy

injection from the active zone and damping (which might be turbulent dissipation in the dead

zone, or leakage of dead zone energy back into the active zone). We therefore expect a scaling of

the mid-plane Reynolds stress with the ratio of the mass in the active zone to that in the dead

zone. The derived scaling is shown in Figure 2.8. A linear fit to the 〈ρvxδvy〉-maz/mdz relation

provides a good description of the numerical results at the disk mid-plane. As can be seen in

Figure 2.7, however, the mid-plane stress becomes extremely small for the thickest dead zone, and

this is reflected in the linear fit predicting that the mid-plane stress goes to zero at finite dead zone

thickness. We do not expect this to be strictly correct, but the results suggest that Ohmic dead

zones have physically negligible mid-plane stresses once the active zone column becomes less than

or of the order of 1% of the total disk column.

2.3.4 Transport Efficiency

The ratio of Reynolds stress to kinetic energy (KE) is indicative of the efficiency of angular

momentum transport. The ratio is defined as,

〈reynolds stress〉
〈KE〉

=
〈ρvrvφ〉
〈ρv2/2〉

(2.12)
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Figure 2.6 The saturation time as a function of the ratio of the dead zone mass to the active zone
mass.
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Figure 2.7 Time averaged vertical profiles of the Reynolds stress (left) and Maxwell stress (right)
for the different sized dead zones. The sharp transition seen near |z| = 3 in the Reynolds stress for
the ML and L runs corresponds to where the r modes (discussed in detail in §2.3.8) shut off. The r
modes have a larger spatial extent in the ML and L runs due to the larger dead zone. Therefore the
location of the transition feature happens in a region of lower Reynolds stress, making the features
most prominent in these runs.



40

Figure 2.8 The average Reynolds stress near the mid-plane as a function of the ratio of the active
zone mass to the dead zone mass. Note that the mass ratio on this x-axis is inverted relative to
figures 6 and 11 to show the linear relationship.
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where the brackets indicate an average over a given spatial volume. Table 2.2 contains this efficiency

diagnostic for the different runs, time averaged in the saturated state. The dead zone spatial average

is taken from from |z/H| = 0 to 0.5, while the active zone is from |z/H| = 2 to 3.3. These limits

were maintained across the runs to compare like quantities.

The efficiency in the active zone is about 0.17, independent of the size of the dead zone, while

the efficiency in the dead zone scales strongly with the size of the dead zone. The (hydrodynamic)

transport efficiency for the medium sized dead zone is about an order of magnitude less than in

the active region, where ideal MHD conditions apply. There is a substantial further decline for the

larger dead zones. The large kinetic energy content of the dead zone is thus largely irrelevant as

far as angular momentum transport goes, implying some combination of (a) non-turbulent motions

and (b) turbulence that at the mid-plane is inefficient at transport.

2.3.5 Density Perturbations

The magnitude of density fluctuations is of interest, especially in the mid-plane where stochas-

tic gravitational forces from such fluctuations excite the velocity dispersion of planetesimals (Ida

et al., 2008; Gressel et al., 2011; Okuzumi and Ormel, 2013). We define the amplitude of density

perturbations as,

δρ

ρ
(x, y, z, t) =

ρ(x, y, z, t)− 〈ρ〉xy(z, t)
〈ρ〉xy(z, t)

. (2.13)

The time and volume averaged density perturbation is,

δρ

ρ
(z) = 〈|δρ

ρ
(x, y, z, t)|〉xy, (2.14)

where the over-bar represents a time average and the brackets represent a volume average over the

given dimensions.

The vertical profile of the density perturbations in the saturated state can be seen in Figure 2.9

for each different run. The perturbation in the active layer is relatively consistent across the different
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runs, peaking at about ' 0.25 (i.e. moderately compressible). However, the perturbation at the

mid-plane decreases as the dead zone size increases, being as high as 0.02 for the smallest dead

zone and 3× 10−3 for the largest. This diagnostic again reveals that, while there is a large amount

of kinetic energy in the dead zone, the fluid motions are essentially incompressible and are not

turbulent — even hydrodynamically — in the same way as the active zone.

2.3.6 Accretion Rates

Disks with dead zones are potentially subject to outbursts as the dead zone gains mass that

can rapidly accrete once mid-plane temperatures are high enough for the MRI to set in (Armitage

et al., 2001; Zhu et al., 2009; Martin and Lubow, 2011). These outbursts can be avoided if the dead

zone is sufficiently active, such as in the steady state disk models of Terquem (2008). However,

such models generally require that the mass accretion rate through the dead zone be larger than in

the active region. The simulations provide a means of estimating the accretion rates through the

active and dead zones by performing integrals ∝
∫
ρα(z)dz. The dimensionless accretion rate from

a single, constant z plane is calculated as follows,

ṁ(z)

mtotΩ
=

3πc2
s

mtotΩ2
〈ρ〉xy

(
〈ρvxδvy −BxBy〉xy

〈P 〉xy

)
∆z, (2.15)

where mtot is the total mass of the shearing box. In Figure 2.10, we plot this accretion rate profile

for each run. We then integrate Equation 2.15 over z to calculate the ratio of the mass accretion

rate through the dead zone to the mass accretion in the active zone — parameter f in equation

11 of Martin and Lubow (2014) — as a function of the ratio of the dead to active zone masses.

This ratio is shown in Figure 2.11. The result is a non-monotic relationship in which f is less than

unity for all plotted cases. For the three smallest dead zones, the dominant effect is that adding

dead zone mass increases f simply because there is more mass present in the dead zone to accrete.

However, for the largest two dead zones, the dominant effect is that the stress is very low, which

causes f to be very small. Since f is not large, we expect then that outbursts will generally occur

(see Fig. 5 of Martin and Lubow (2014)).
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DZ Size Sat. Time Time Averages Reynolds active
dead KE active

dead T.E. Dead T.E. Active

S 120 150-230 40.1 11.6 0.048 0.17

MS 230 230-300 67.5 10.2 0.023 0.15

M 290 250-450 114 13.8 0.02 0.16

ML 430 400-700 2250 51 0.0098 0.18

L 490 500-800 4550 106 0.0041 0.18

Table 2.2 Summary of time and volume averaged values in the steady state. Times are given in
units of orbits. In the rightmost two columns, ”T.E.” refers to the transport efficiency. We compare
the transport efficiency in the dead and active zones, as defined in equation 2.12

Figure 2.9 The density perturbation profiles for the 5 runs, averaged over the saturated state.
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Figure 2.10 The non-dimensional accretion rate as a function of z for the different dead zone sizes,
averaged over the saturated state.

Figure 2.11 The ratio of the accretion rate in the dead zone to the accretion rate in the active zone
as a function of the mass ratio of the two zones. The accretion rate was averaged over the region
defined to be the dead zone in table 2.1, which changes from run to run. Time averaging was done
over the saturated state.
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2.3.7 Structure of the Turbulence

To further quantify the turbulent structure as a function of height, we use autocorrelation

functions (ACF) to characterize the degree of non-axisymmetry present in the turbulence. The 2D

ACF in the x-y plane for a quantity f is defined as,

ACF(f(∆~x )) =

(∫
f(t, ~x )f(t, ~x + ∆~x )d2~x∫

f(t, ~x )2d2~x

)
, (2.16)

where ~x is the position in the x-y plane, ∆~x is the shift in this position, and the over bar indicates

an average over time. With this definition, the ACF is normalized by its maximum value at ∆~x = 0.

The time averages are performed during the saturated state for each run (see table 2.2). An ACF

was calculated in the x-y plane for each z and time, and then averaged over the desired range of z

and time-interval. Examples of time and volume averaged ACFs for the density perturbation and

vz can be seen in Figures 2.12 and 2.13 respectively.

From the figures it is clear that the structure of the turbulence (or lack thereof) is a strong

function of z, as expected for a disk with a dead zone. In the active zone the density perturbation de-

correlates over a short distance scale, and the ACF is a small, significantly tilted ellipse, consistent

with previous studies (Guan et al., 2009; Simon et al., 2012). Near the mid-plane the density

fluctuations are almost axisymmetric, consistent with the dynamics in this region being dominated

by spiral density waves. In an intermediate region near the lower parts of the active zone, the

presence of the dead zone causes the turbulence not to look like ideal MRI even where Λ� 1.

The shape of the ACFs was quantified by fitting an ellipse to the density perturbation ACF.

The ellipse was fit such that it had the minimum possible area while containing at least 10 percent

of the total value of the entire ACF. In the case of the ideal MRI, prior shearing box simulations

show that the expected angle of the density perturbation ACF is about −7◦ offset from the y-axis

(Guan et al., 2009). This angle is plotted as a function of height for each run in Figure 2.14. In the

active zone (higher than z/H = 2.0 for all runs), the angle is near the expected value for ideal-MHD

MRI turbulence, while in the dead zone the turbulent fluctuations are more closely aligned along
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Figure 2.12 Autocorrelation functions for the density perturbation for the medium dead zone (top)
and large dead zone (bottom). Moving from left to right, the ACF is calculated using planes |z| =
0 to 0.5, 1.0 to 1.5, 2.0 to 2.5 and 3.0 to 3.5. Each plot is 2H on a side. The plots on the left show
that perturbations near the mid-plane get sheared out by the background flow, while perturbations
in the upper layer are smaller and less aligned with the y-axis.

Figure 2.13 Autocorrelation functions for the vertical velocity for the medium dead zone (top) and
large dead zone (bottom). Moving from left to right, the ACF is calculated using planes |z| = 0
to 0.5, 1.0 to 1.5, 2.0 to 2.5 and 3.0 to 3.5. Each plot is 2H on a side. The large scale circulation
modes can clearly be seen in the leftmost plots, while the plots on the right corresponding to the
upper layers are consistent with the structure of MRI-driven turbulence in the ideal MHD limit, as
seen in other quantities and previous studies (e.g., Guan et al., 2009).
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the y-axis. The degree of alignment generally increases as the dead zone thickness increases. We

also note that the angle measured at the very outer part of the disc (|z/H| > 3.0) is discrepant as

compared to ideal-MHD expectations. This could be due to the influence of boundary conditions

near the edge of the box, or because the magnetic pressure dominates the gas pressure in this

region, quenching the MRI and thus changing the expected structure of turbulence in this region.

The ACFs of the magnetic field components are consistent with no magnetic activity in

the dead zone and the expectations of the ideal MRI from Guan et al. (2009) in the active zone.

However, the ACF of the vertical velocity displays distinctly different behavior. In the active zone,

the vertical velocity ACF has the modestly non-axisymmetric structure that is characteristic of

turbulence in the active zone, as seen in the ACF of other quantities. However, near the dead-

zone mid-plane, there are coherent, large-scale structures in the vertical velocity. We analyze the

properties of these structures further in the next section.

2.3.8 Large scale velocity structures in the dead zone

The structure of the large scale velocity field in the dead zone is shown in Figure 2.15 and

Figure 2.16. Figure 2.15 shows a snapshot of the vertical velocity in the x-z plane (averaged over y)

for the medium sized dead zone simulation. Figure 2.16 shows the vertical velocity in the x-y plane

at the mid-plane at a number of different time slices. In the example shown, the vertical velocity is

dominated by a mode with a horizontal wavelength of H, which is coherent vertically between about

z = ±2H. Two of these modes fit within the radial extent of the shearing box. An inspection of

the time sequence of snapshots at z = 0 shows that the large scale velocity structures take the form

of a low frequency oscillatory meridional circulation. A Fourier analysis shows that the frequency

is approximately 0.036Ω, implying a period of about 4.5 orbits. This dominant (primary) mode is

not the only such structure present. Figure 2.16 shows half a cycle of the oscillation. When the

dominant mode is at a minimum, a weaker (secondary) mode with wavelength 2H/7 is apparent.

We have examined how the kinetic energy is partitioned between small-scale and large-scale fluid

motions as a function of height. As is clear visually, small scale kinetic energy dominates by a



48

Figure 2.14 The angle of the density perturbation ACF away from the y-axis for each of the dead
zone runs as a function of z.
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factor of a few in the active zone, while conversely large scale kinetic energy dominates by a factor

of a few in the dead zone.

The spontaneous development of large scale velocity structure in the simulated dead zone is

somewhat surprising, and we have made various checks to assess whether similar structures would

be present in real disks. We first note that similar features were already seen in the shearing box

simulations of Oishi and Mac Low (2009), which were run with a different code (Pencil). Those

authors also found evidence for similar modes (though with reduced amplitude) in simulations

where the isothermal equation of state was changed to ideal. We are therefore confident that the

large scale circulation is not a numerical artifact of the Athena code, though as we will discuss

below, the manifestation of disk modes in the shearing box approximation can differ from those

expected in a physical disk. We have also verified that the mid-plane of the simulated disk is stable

to within a grid cell over the course of a vertical oscillation cycle. This implies that our use of

a resistivity profile that is fixed in z, rather than being specified by column density directly, is

unlikely to drive the modes unphysically.

We interpret the standing wave pattern in Figure 2.16 in terms of disk modes. We ignore the

effects of magnetic fields that play a key role in the active zone. We apply the approximation that

the dead zone occupies the full vertical extent of the disk in computing the mode structure. This

approximation should approximately hold, since the active zone involves only about 11% of the disk

mass and lies well outside the disk mid-plane region where the dead zone resides. In the notation of

Lubow and Pringle (1993) the implied wave angular frequency from Figure 2.16 is ω ' 0.22Ω. Since

plots in Figure 2.16 are nearly independent of the azimuthal coordinate y, we take these modes to

be axisymmetric. The only axisymmetric modes that have ω < Ω are r modes (Lubow and Pringle,

1993; Ogilvie, 1998). These modes derive their support from inertial and rotation forces. For disks

that behave adiabatically in the presence of vertical entropy gradients, buoyancy forces also play

a role in confining the mode near the disk mid-plane (see Figure 11 of Lubow and Pringle (1993),

who referred to these modes as g modes). In the simulations of this chapter, buoyancy plays no

role, since the disk is strictly isothermal.
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Figure 2.15 A snapshot from the medium-sized dead zone run of the vertical velocity in the x-z
plane, averaged over y. The figure clearly depicts the presence of two vertically coherent updrafts
/ downdrafts, stretching throughout the dead zone region.
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Figure 2.16 The vertical velocity plotted for the x-y plane at the mid-plane of the medium-sized
dead zone run. Time advances from top to bottom by 3.5 Ω−1 each panel, showing half of a cycle
of this standing wave pattern.
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We suggest that the wave pattern in Figure 2.16 is the lowest order (in terms of vertical

structure) r mode. This mode has no vertical nodes in the vertical velocity. Its linear dispersion

relation for an isothermal Keplerian disk follows from equation (54) of LP93 with n = 0 (no vertical

nodes in the vertical velocity), κ = Ω (which is equivalent to κLP93 = 1), and γ = 1 (isothermal

perturbations in an isothermal disk) and is given by

ω =

√
2 Ω

2

√
2 +K2 − |K|

√
4 +K2, (2.17)

where K = kxcs/Ω = kxH/
√

2 is the scaled radial wavenumber.

The perturbations caused by the linear wave depend on a scale factor that we take to be the

vertical velocity amplitude W . This amplitude depends on the strength of forcing from the active

layer. The standing wave properties are given by

vx(x, z, t) =
√

2W
( ωz

ΩH

)
sin (kxx) cos (ωt), (2.18)

vy(x, z, t) = −
√

2

2
W

z

H
sin (kxx) sin (ωt), (2.19)

vz(x, z, t) = W cos (kxx) cos (ωt), (2.20)

p(x, z, t) = 2

(
W ω z

H2Ω2

)
p0 exp (−z2/H2)

× cos (kxx) sin (ωt), (2.21)

where p0 is the unperturbed disk pressure at mid-plane. Note that we have selected a phasing in

which vz(0, z, 0) = W . In the low frequency limit for fixed W , the pressure perturbation vanishes,

while the wavenumber diverges in lowest order as K = Ω/ω. The velocity divergence does not

vanish in this limit and is finite.

The radial boundary conditions used in the simulations imply that there is a discrete set of

radial wave numbers in the disk with

kx =

√
2K

H
=

2π`

Lx
(2.22)

for integer ` and Lx = 2H in the simulations presented here. The discreteness is due to the limited

box size. The wave structures given by Equations (2.18) - (2.21) satisfy this boundary condition
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for the radial wavenumbers found in the simulations. The primary mode with radial wavelength H

and the secondary mode with radial wavelength 2H/7 identified in Figure 2.16 correspond to ` = 2

and 7 respectively. The level of excitation of these particular modes is determined by the overlap

of their space and time dependences with these dependences for the turbulence.

For the primary mode that has ` = 2, wavelength H, and the wavenumber K =
√

2π, the

r mode dispersion relation given by Equation (2.17) evaluates to ω = 0.2147Ω, in good agreement

with the angular frequency ω ' 0.22Ω that is determined by the time changes in Figure 2.16 for

the same wavelength H disturbance. The agreement gives us confidence that we have properly

identified this dead zone disturbance as being due to the lowest order r mode.

We expect that the other (secondary) wave mode with radial wavelength 2H/7 to be roughly

similar to the primary r mode that has radial wavelength H and no vertical nodes in the vertical

velocity, n = 0, since both modes are excited by the active layer turbulence. The n = 1 r mode has

zero vertical velocity at the disk midplane at all times and therefore cannot explain the presence of a

vertical velocity in Figure 2.16. (The n = 1 mode may exist, but is is not detectable in Figure 2.16.)

A possible candidate for this secondary mode seen in Figure 2.16 is the n = 2 r mode which has

a nonzero vertical velocity at the mid-plane. The dispersion relation of Equation (2.17) applied to

this mode predicts a lower angular frequency that is about half the frequency of the n = 0 mode.

Due to the substantial frequency difference between the primary and secondary modes, we expect a

substantial phase difference between the modes when the primary mode has zero vertical velocity.

We then expect the secondary mode to have a nonzero vertical velocity at this time, as seen in the

middle panel of Figure 2.16.

We speculate on how the shearing box simulations might carry over to a full disk. For a full

disk, the radial wave numbers would be continuous rather than discrete. Furthermore, the waves

would not generally be standing waves. A mix of inwardly and outwardly propagating r mode

waves would be excited by turbulence in the active layer. An outwardly propagating r mode with

n = 0 becomes an outwardly propagating p (pressure) mode when it propagates past its corotation

radius that occurs where Ω(r) = ω (Lubow and Pringle, 1993). An inwardly propagating wave
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remains as an r mode. An outwardly propagating r mode with n > 0 reflects at corotation and

becomes an inwardly propagating r mode. These waves would be subject to damping by shocks

and interactions with turbulence.

The flow pattern of an r mode is quite different for a disk with buoyancy. Buoyancy acts

to vertically confine r modes near the disk mid-plane. The confinement condition on z is that

N(z) < ω, where N is the vertical buoyancy frequency. For γ = 1.4, the r mode extends over

height |z| < 1.87ωcs/Ω
2, which for ω = 0.2Ω, implies |z| < 0.3H. The extent of driving the mid-

plane motions could also be affected, if the base of the active region lies above this height. For any

reasonably sized dead zone, we would then expect a major change in the vertical flow properties of

a disk that undergoes adiabatic perturbations.

2.4 Implications for Particle Dynamics

Proceeding under the assumption that the wave modes seen in the simulations are present

in disks, we now ask what impact they would have on the distribution of solid particles. As Oishi

and Mac Low (2009) noted, the low frequency and non-turbulent nature of the vertical velocity

field means that there is no direct effect on particle settling for the small (dimensionless stopping

time τ � 1) particles generally assumed as progenitors for planetesimal formation. However, a

low frequency vertical flow could have the effect of “buckling” a vertically settled particle layer,

such that the mid-plane of the particle layer coincides with the mid-plane of the gas disk only for

a fraction of an oscillation cycle. For realistic amplitudes, it is not clear that buckling of a mid-

plane particle layer would have directly observable effects. A buckled particle layer would, however,

suppress the rate of pebble accretion (Lambrechts and Johansen, 2012) on to larger bodies that are

aerodynamically or gravitational damped to the mid-plane of the gas disk.

To estimate the potential importance of this effect, we first determine the expected amplitude

of the vertical oscillations that would be experienced by a settled particle layer. To first order, the

circulation modes discussed in §2.3.8 have a sinusoidal time dependence at a given point in the

mid-plane,
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vz = vz,0 cos(Ωct) (2.23)

where Ωc is the oscillation frequency of the circulation mode and vz,0 is the peak vertical velocity

of the mode at the mid-plane. Under this assumption, the maximum displacement of a particle

that is perfectly coupled to the gas is given by

∆zc =
vz,0
Ωc

. (2.24)

The circulation mode parameters and this estimate of the displacement are given in Table 2.3 for

each different dead zone size. Because of the low frequencies involved, the modest velocities (of the

order of 0.1cs) are able to induce vertical displacements that are of the order of H for all of the

dead zone sizes considered.

The buckling of the particle layer will affect the efficiency of pebble accretion if the amplitude

exceeds the settled thickness of the layer. For particles with dimensionless stopping time τs the

thickness of this particle layer can be written as,

Hd

H
=

√
Dd,z

τs
(2.25)

where Hd is the scale height of the layer and Dd,z is the dimensionless vertical dust diffusion

coefficient. For particles that are well coupled to the gas (ts � Ω−1), this diffusion coefficient is

the same as the vertical gas diffusion coefficient Dg,z, given by,

Dd,z = Dg,z =
Ω

c2
s

∫ ∞
0
〈vz(t)vz(0)〉dt. (2.26)

The integrand is the auto-correlation function of the vertical gas velocity (Zhu et al., 2015). In order

to calculate this parameter, a high frequency (10 snapshots per Ω−1) 3D sample of data was output

from the medium-sized dead zone run over 5 orbits. To calculate the diffusion coefficient without

contamination from the circulation modes themselves, the circulation mode must be subtracted



56

from the velocity. Given that the mode is roughly constant across y and z near the mid-plane, the

circulation velocity vz,c was defined to be,

vz,c(x, t) =
〈ρ(x, y, z, t)vz(x, y, z, t)〉y,z

ρavg
, (2.27)

where ρavg is the average density over the mid-plane region being considered. The random velocity

vz,random entering into equation (2.26) is then taken to be,

vz,random = vz − vz,c. (2.28)

Using this random vertical velocity, the average auto-correlation function over all points near

the mid-plane (−0.5 < z/H < 0.5) was calculated. This function, shown in Figure 2.17, is well-

behaved, and when integrated yields a dimensionless vertical diffusion parameter of 7.2× 10−3 for

the middle sized dead zone. We roughly estimate this parameter for the other runs by assuming

that Dd,z scales with δv2 at the mid-plane. Using equation 2.25, the scale height of the particle

layer can now be determined for a given stopping time τs.

If the displacement due to the circulation mode is comparable to the scale height of the

particle layer, the mode will have a significant effect on the structure of the layer. This criterion

can be used to define a critical stopping time τs,crit at which Hd and ∆zc are equal,

τs,crit =
Dd,z

(∆zc/H)2
(2.29)

These critical stopping time values are shown in Table 2.3. The results indicate that, in general,

particle layers with τs ≥ 10−3 will be significantly perturbed by these circulation modes.

2.5 Conclusions

We have used local numerical simulations to study the structure of Ohmic dead zones, that

may be relevant to accretion in protoplanetary disks (Gammie, 1996) and in the outer regions of

dwarf novae (Gammie and Menou, 1998). By setting up a simplified, yet well-defined model —
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Figure 2.17 The average auto-correlation function of the random vertical velocity for all points
−0.5 < z/H < 0.5 as a function of the lag time. The vertical diffusion parameter is the area under
this curve.

DZ Size vz,0 Ωc ∆zc/H Dd,z τs,crit

S 0.10 0.039 2.56 1.4× 10−2 2.2× 10−3

MS 0.08 0.038 2.11 1.1× 10−2 2.6× 10−3

M 0.06 0.036 1.67 7.2× 10−3 2.6× 10−3

ML 0.03 0.024 1.25 2.8× 10−3 1.8× 10−3

L 0.014 0.024 0.58 4.6× 10−4 1.4× 10−3

Table 2.3 Parameters of the circulation modes, vertical particle diffusion parameters, and critical
τs values for each run.
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that ignores the role of other non-ideal processes and has a sharp transition between magnetically

active and inactive zones — we were able to run long duration simulations at high resolution in

order to precisely quantify how dead zone properties scale with the thickness of the dead zone. We

found that:

(i) The Reynolds stress, which dominates transport near the mid-plane, scales strongly with

the thickness of the dead zone. For modest dead zones, in which the ratio of magnetically

active to inactive column is of the order of 0.1 or higher, we find α ∼ 10−4. Thicker

dead zones, in which the active column is only of the order of 1% of the total mass, have

negligible mid-plane stresses. As a result, small dead zones can have accretion rates that

are a significant fraction of the active zone accretion rate (10 to 30%), while larger dead

zones have accretion rates around 1% of the active zone rate. This scaling supports models

in which mass can accumulate in the dead zone region, building up a reservoir of material

that can potentially accrete rapidly (Armitage et al., 2001; Zhu et al., 2009; Martin and

Lubow, 2011).

(ii) The structure of turbulence in the MRI-active region, at high z, resembles that seen in

ideal MHD simulations of fully active disks (Guan et al., 2009; Simon et al., 2012). The

hydrodynamic component of the turbulence becomes more axisymmetric and less efficient

at angular momentum transport towards the mid-plane, especially for thick dead zones.

(iii) The time scale for saturation of the kinetic energy in the dead zone is long (reaching

∼ 500 orbits for the thickest dead zone studied). Most of the kinetic energy is contained in

large-scale, non-turbulent fluid motions, which take the form of an oscillatory meridional

circulation that is extended in the vertical direction. Similar fluid motions were observed in

independent simulations by Oishi and Mac Low (2009). We identify this motion with the

lowest order r mode expected in a purely hydrodynamic disk model (Lubow and Pringle,

1993).

(iv) We expect the properties of the large-scale fluid motions to depend upon the nature of
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the perturbations (isothermal or adiabatic), and upon where vertical driving of the mode

occurs. Moreover, the standing waves observed in our shearing box simulations would likely

be replaced by inwardly and outwardly propagating waves in a global disk model. However,

if models similar to those we observe are excited to significant amplitudes in more physical

models of protoplanetary disks, the resulting buckling of settled particle layers could reduce

the efficiency of pebble accretion for small (τ � 1) particles.

Although purely Ohmic dead zones are an idealization, the inclusion of non-ideal physics in

disk simulations frequently leads to vertical stratification of turbulent properties, and regions of

the disk where mid-plane MHD stresses are negligible, as we have seen here. Further simulations

will be needed to determine if our results for the scaling of Reynolds stresses, and for the excitation

of large scale fluid flows, carry over under more realistic conditions.



Chapter 3

The Interaction of the Stellar Magnetic Cycle with Hall Dead Zones in

Protoplanetary Disks

3.1 Introduction

Observations of young stellar objects in the optical and infrared have revealed a wide range

of cyclic and out-bursting behaviours that vary greatly both in amplitude and time-scale (Herbig,

1977; Hartmann and Kenyon, 1996). Historically, these events have been placed into two categories:

FU Orionis objects (FUors) and EX Lupi objects (EXors) (Herbig, 1989). FUor outbursts generally

occur for several to tens of years with accretion rates increasing by several orders of magnitude

compared to the quiescent state, although properties of individual objects vary greatly. In contrast,

EXor outbursts are shorter and weaker, typically bursting for months to years. They also occur

more frequently, typically having a few years between bursts.

As the sample of observed out-bursting young stars has expanded, the wide range of param-

eters for both categories has caused the distinction between the two cases to become less clear.

Several observations of “in between” events have led to the idea that these events may be part of

a continuous spectrum instead of a dichotomy (Audard et al., 2014). While this classification is

useful from an observational standpoint, it is not clear that FUors and EXors are caused by distinct

physical mechanisms, or that all events of each type are caused by the same physical mechanism.

SED modeling as well as basic time-scale arguments has led theorists to conclude that FUors are

most likely from the inner disk (Zhu et al., 2007, 2008). EXors, on even shorter time-scales, are

also expected to be triggered by phenomena at the inner edge of the disk, or by by magnetospheric
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accretion effects.

In this chapter, we will consider the interaction between the stellar magnetic field and the

surrounding accretion disk as a potential mechanism for episodic accretion. This interaction has

been explored in several contexts including the spin-down of the star due to magnetic torques from

the disk (Ghosh and Lamb, 1979; Illarionov and Kompaneets, 1990), and the geometry and obser-

vational appearance of magnetospheric flows (van Ballegooijen, 1994; Aly, 1980), but there remains

a gap in the literature on the influence of the star’s magnetic field on the disk’s magnetic field and

disk physics. This is particularly important to understand given how fundamental magnetic fields

have been shown to be in understanding disk physics.

Any discussion of magnetic fields in PPDs will need to include non-ideal MHD effects, which

have been shown to play an important role in understanding protoplanetary disk phenomena. In

general, these effects can allow the magnetic field to decouple from the gas such that the mag-

netorotational instability (MRI) (Balbus and Hawley, 1991) is no longer able to drive turbulence.

These regions of little to no turbulence are generally referred to as “dead zones” or “damping zones”

(Gammie, 1996). Dead zones dominated by the Hall Effect are thought to exist in the inner region

of the disk (≤ 1 AU), and have been shown by several studies to have an interesting behaviour

with respect to direction of the vertical magnetic field (Wardle, 1999; Simon et al., 2015b; Lesur

et al., 2014; Bai, 2014, 2015). When the field is aligned with the spin axis, the Hall Effect damps

the MRI and replaces it with the “Hall-shear” instability, which can still generate stress at roughly

the same level as the MRI itself (α ∼ 10−2) (Kunz, 2008; Lesur et al., 2014; Simon et al., 2015a).

However, when the vertical field is anti-aligned with the spin of the disk the Hall Effect is still

able to suppresses the MRI, but the Hall-shear instability is not able to produce stresses at the

same level. A non-axisymmetric version of the Hall-shear instability acts to produce weak and

intermittent stresses, but the dead zone is largely true to it’s name.

Armitage (2016) suggests that this dichotomous behaviour of Hall dead zones could lead to

episodic and/or cyclic accretion. While the field is aligned with the spin, the dead zone will be

“active”, and the turbulent stress will drive a relatively high accretion rate. While the field is anti-
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aligned, the dead zone will be “dead”, and the lack of turbulence will cause the accretion rate to

be much lower. This change in net-field polarity could be caused by flux from the stellar magnetic

cycle diffusing outward though the inner disk (Lubow et al., 1994) and reaching radii where the

Hall effect is relevant.

In this chapter, we develop a 1D, time-dependent model that co-evolves the disk’s surface

density and net-magnetic field in a self-consistent way such that the accretion physics can depend

on the magnetic field. We then establish a prescription for the stellar magnetic field’s influence on

the disk. We use our model to develop a criterion for the parameters of star/disk systems that

could generate outbursts or cyclic behaviour. Finally, we apply our time-evolution model to show

the characteristics of these outbursts. This chapter is organized as follows: In section 2 we describe

the disk model that we will use. In section 3 we describe the methods we use to discretize the

model and evolve it in time. In section 4 we describe the magnetic field geometry of the star/disk

system and a model for the star’s contribution to the disk field. In section 5 we establish a criterion

for outbursts. In sections 6 we use our time-dependent model to study these events, and in section

7 we summarize our results.

3.2 The Model

We develop a model using a mean-field approach that self-consistently evolves the net mag-

netic field and surface density of a turbulent accretion disk in one dimension.

3.2.1 Static Equations

Here we will give and briefly justify the equations that we will use to solve for the state of

the disk at any given point in time (Shakura and Sunyaev, 1973). The sound speed is given by

c2
s =

kb
µmp

Tc, (3.1)

where Tc is the temperature at the mid-plane of the disk, kb the Boltzmann constant, µ the mean

molecular weight, mp the proton mass, and cs the sound speed. Assuming hydrostatic equilibrium,
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the vertical pressure scale-height of the disk is determined by balancing the vertical component of

the central star’s gravity and the vertical pressure gradient. For a non-self-gravitating disk, the

scale height is given by

h =
cs
Ω
, (3.2)

where Ω is the angular orbital velocity.

The turbulence in the disk gives rise to an effective viscosity ν, which we will parameterize

with the usual α-model

ν = αcsh, (3.3)

where α is a dimensionless parameter that describes the level of turbulence. This viscosity allows

angular momentum to be transported within the disk such that some gas loses angular momentum

and accretes inward. The accretion rate is given by ṁ and in the steady state is related to the

viscosity via

νΣ =
ṁ

3π
, (3.4)

where Σ is the surface density.

In order to model the disk’s temperature there are two heating mechanisms to consider:

heating due to accretion and heating due to incident radiation. In general, the inner disk will be

dominated by accretion heating and the outer disk, where the surface area is much larger, will be

dominated by heating from incident radiation. For this application of the model to the inner disk,

we will assume a simple active disk model with no incident radiation. We will consider the disk to

be heated at the mid-plane due to the loss of gravitational potential energy as mass falls inward.

This energy will travel to the surface of the disk through an optical depth τ , and will be radiated

from the surface. Under these assumptions, the surface temperature Td and central temperature

Tc are then given by

σT 4
d =

9

8
νΣΩ2, (3.5)

T 4
c =

3

4
τT 4

d . (3.6)
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The optical depth is given by

τ =
1

2
ΣκR (3.7)

where κR is the mean opacity. κR will (very generally) be some function of the gas density ρ and

Tc:

κR = power law of ρ and Tc. (3.8)

We will be applying this model to the inner several AU of a protoplanetary disk, where temperatures

would be expected to be in the range of 100 to 1000K. Fortunately, the opacity at these temperatures

is roughly constant, so we will assume a constant opacity κR = 3cm2/g (Semenov et al., 2003).

Lastly, ρ at the mid-plane can be written as

ρ =
1√
2π

Σ

h
. (3.9)

Equations 3.1 through 3.9 form a system of 9 equations and 11 unknowns: cs, Tc, h, ν,Σ, Td, τ, κR, ρ, α, ṁ.

In the familiar problem solved by Shakura and Sunyaev (1973), α and ṁ are specified a-priori and

these equations have analytic solutions for the 9 remaining unknowns. We will extend this system

of equations in the next section to include a relationship between the net-magnetic field and the α

parameter.

3.2.2 Coupling MRI Turbulence to the Net Magnetic Field

For a disk with a Hall-effect-dominated dead zone, the turbulence in the disk is coupled

to the net-vertical magnetic field. Non-ideal MHD simulations of the MRI have shown that the

space-time averaged α value in the case of a net field aligned with the spin axis is ∼ 0.01 or slightly

higher. However, in the case that the field is anti-aligned with the spin axis the MRI is suppressed

significantly and α ∼ 10−4 to 10−3 (Simon et al., 2015b).

We will model this behaviour in a simple fashion, defining α in the Hall dead zone as the
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following function of the magnetic field:

α(βz) =


αactive, βzΩ > 0

αdead, βzΩ < 0,

(3.10)

where βz is the usual plasma β parameter calculated using the net vertical field and including its

sign:

βz = sign(Bz)

(
Pmid

B2
z

)
, (3.11)

where Pmid is the gas pressure at the mid-plane. Throughout this chapter we adopt αactive = 10−2

and αdead = 3× 10−4 unless otherwise noted.

The above equation for determining α based on the magnetic field applies only in the Hall

MHD regime. This regime occurs when the central disk temperature is not high enough to suffi-

ciently ionize the gas, which will be the case for temperatures below roughly 1000K (Umebayashi,

1983). We will define the radius where the temperature is equal to 1000K as rdz, the start of the

Hall dead zone. We will use our model to solve for this location when each simulation is initialized

and assume it to be static as time evolves. A more advanced model might dynamically calculate

the location where Tc =1000K and change the transport velocities accordingly, but this is difficult

to do self consistently. In addition, temperature by nature does not change as drastically as other

quantities, usually coming into equations as T 4, so assuming this to be static is not unreasonable.

A detailed discussion of the calculation of this radius will come later in section 3.5.

Adding equations 3.10 and 3.11 to the 9 equations from the previous section creates a system

of 11 equations and 13 unknowns (now including βz and Bz). We will close this system in the next

two sections with time-evolution equations for Σ and Bz that are only a function of already existing

variables.
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3.2.3 Surface Density and Net Magnetic Field Evolution

The surface density profile of the disk is evolved using the usual equation for a thin Keplerian

disk evolving due to viscous torques:

∂Σ

∂t
=

3

r

∂

∂r

[
r1/2 ∂

∂r

(
r1/2νΣ

)]
. (3.12)

We will follow Lubow et al. (1994) and Guilet and Ogilvie (2014) to time-evolve the poloidal

and radial components of the magnetic field in a turbulent disk. We will give an outline of the

method here, leaving the reader to refer to the original papers for some of the finer points and more

involved methods. The magnetic potential ψ is defined by

Bz =
1

r

∂ψ

∂r
(3.13)

where Bz is the vertical component of the net magnetic field. The magnetic flux is transported by

the inward accretion flow (advection) and by outward by turbulent diffusion. Under the influence

of these two effects, the potential’s time evolution is given by

∂ψ

∂t
= −r(vadvBz + vdiffBrs) (3.14)

where Brs is the radial magnetic at the surface of the disk, vadv is the advective velocity, and

vdiff is the diffusive velocity. Given ψ, Brs can be determined by solving an integral equation, or

equivalently solving a linear system of equations in the case of the discretized problem. For a full

discussion of these equations and there discretization, we refer the reader to Guilet and Ogilvie

(2014), equations 6-9, 26, and 27.

Following the α model of turbulence, the advective velocity and time-scale are given by

vadv = − 3

Σr−1/2

∂

∂r

(
νΣr1/2

)
, (3.15)

tadv =
r

vadv
. (3.16)

The turbulent magnetic diffusivity η is defined by assuming a constant magnetic prandtl number

Pr = ν
η (expected and assumed to be unity). In other words, we assume ν = η. The diffusive speed
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and time-scale are then given by

vdiff =
η

h
=
η

r

(h
r

)−1
, (3.17)

tdiff =
r

vdiff
. (3.18)

In this case, the relevant dimensionless parameter that describes the ratio of viscous diffusion to

magnetic diffusion is the effective prandtl number: Preff. In the steady state, where vadv = ν/r,

this is given by

Preff =
vadv

vdiff
=

3

2

h

r
Pr. (3.19)

Note that diffusion is faster than advection by a factor of (h/r)−1 (a primary result from Lubow

et al. (1994)). Thin disks diffuse net-flux outward, while only very thick disks can efficiently accrete

net-flux inward.

3.2.4 Evolving the Model Self-Consistently

We now have time evolution equations for the surface density and magnetic field that depend

on the statically-solvable variables. Our time-evolution scheme is as follows:

(1) Initialize by solving the static equations (3.1-3.11) at each radii with a constant initial ṁ

and power law Bz.

(2) Advance Σ and Bz using the time-evolution equations given in section 3.2.3.

(3) Re-solve the static equations at each radii, now with Σ known and ṁ unknown.

(4) Continue to repeat steps 2 and 3.

The numerical methods used to implement this algorithm are explained in detail in the next section.

3.2.5 Summary of Disk Parameters

While this is not the most sophisticated disk model, it’s simplicity means that there are

relatively few assumed parameters that need to be taken. In general, specifying our two primary
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control parameters for the disk: α and ṁ, determines the disk’s properties. Our fiducial choices of

disk parameters that will be used throughout the chapter are found in table 3.1.

3.2.6 Stellar Parameters

While the focus of this work is on the physics of the disk, we must briefly discuss our choice

of parameters for the stars we are considering. Disks form at roughly the same time as their host

stars and typically only have lifetimes of a few million years, so we are considering very young

stars. As a general rule, young stars are larger in radius, more rapidly rotating, and more strongly

magnetized than their main sequence counterparts. However, the properties of young stars vary

quite widely in these parameters, in particular the rotation rate and magnetic field strength. In

order to constrain the scope of this work, we will err on the side of adopting closer to solar values

for each stellar type. Table 3.2 shows our assumed stellar parameters, loosely based on Johns-Krull

(2009); Böhm-Vitense (2007); Vidotto et al. (2013); Casagrande et al. (2008). In addition to the

parameters in the table, we will generally take the period of the stellar magnetic cycle to be a free

parameter, but our fiducial choice will be 20 years.

While we consider stars with low stellar masses in this work, we do not attempt to fully

address the many interesting and erratic phenomena associated with M-dwarfs. An interesting

topic for future study might be to integrate some sort of stochastic modeling of M-dwarf behaviour

into the model given here, but that is outside of the scope of this work. In a sense, we are considering

”solar-like-M-dwarfs”: their mass, rotation period, radius, and field strength will be appropriate

for an M-dwarf, but their magnetic field cycles will be assumed to be similar to our sun.

3.3 Methods

3.3.1 Spatial Discretization

We use a logarithmically spaced grid in the radial direction that extends from rmin = 0.005

AU to rmax = 5 AU and has 600 points. This grid represents the maximum inner and outer extent
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Parameter Value

αideal 10−2

αdz, active 10−2

αdz, dead 3× 10−4

κR 3 cm2/g
µ 2.7
Pr 1

Table 3.1 Parameter choices for our disk model. Given these parameters, a specification of M∗
(which determines Ω), and ṁ, our static disk model determines all other quantities as a function
of radius.

Class / Reference Name M∗/M� R∗/R� B∗,0 (G) P∗
G 1 2 1000 7 days
K 0.8 1.6 1000 12 days
M1 0.5 1.0 2000 2 days
M4 0.3 0.6 2000 2 days
M6 0.1 0.2 2000 2 days

Table 3.2 Assumed stellar parameters for several stellar types.
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that we will use in any simulation. For each given simulation, a sub-section of this grid will be

selected as the grid for that specific problem based on a calculation of the inner truncation radius

of the disk for the given parameters. Our choice of truncation radius as a function of the star and

disk parameters is given in the following section. The outer radius is not intended to be the outer

edge of the disk, but is simply chosen to be far enough away from the relevant phenomena and

cyclic behaviour that the outer boundary condition does not have an effect on the phenomena. The

diffusive time-scale at 5 AU for a disk with α = 0.1, h/r = 0.1 is on the order of several hundred

years. This is significantly longer than reasonable stellar cycle times (∼ years to tens of years), so

the net-field will not be directly coupled to the stellar cycle at this radius.

3.3.2 Boundary Conditions and Truncation Radius

Our boundary conditions (BCs) for the magnetic field will follow a similar prescription to

Guilet and Ogilvie (2014). The transport velocities follow the equations given in the previous

section between rin and rout. These radii define buffer zones at the inner and outer edges of the

disk: rmin < r < rin and rout < r < rmax respectively. We define a smoothing function that goes to

zero at the grid boundaries and has a vanishing derivative on both ends:

smooth(x) =
3x3

1 + 2x3
(3.20)

where x = (r − rmin)/(rin − rmin) between rmin and rin and x = (r − rmax)/(rout − rmax) between

rout and rmax. This smoothing function multiplicatively modifies the diffusion velocity in the inner

buffer and the advection velocity in the outer buffer. Our choice of rin is physically motivated and

is explained below. Our choice of rout is simply 75% of the rmax.

For the surface density, the inner BC is already taken care of, as it follows the same advection

velocity as the magnetic field and we want to allow matter to freely pass through our inner boundary.

However, the advection velocity for the surface density does not go smoothly to zero at the outer

boundary as is does for the magnetic field. We use a feeding condition for the outer boundary, set

such that ṁ stays constant at the outer-most grid point. As emphasized in the previous section,
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this outer boundary is far enough away from the relevant phenomena that our choice of outer

boundary condition does not affect our results.

Next we will consider the location of the truncation radius rin. The co-rotation radius rco

is defined to be where the stellar angular velocity (and therefore the angular velocity of stellar

magnetic field lines) is equal to the Keplerian angular velocity. Interior to this radius, the disk

orbits faster than the star and stellar field lines exert a retrograde torque on the gas, causing it to

lose angular momentum. If this angular momentum loss is faster than the viscous evolution, this

is effectively where the disk is truncated. The magnetosphere radius rms, defines where the stellar

field is strong enough to generate this super-viscous magnetospheric accretion. These two radii of

interest are given by

rms =

(
3B2
∗R

6
∗

2Ṁ
√
GM∗

)2/7

, (3.21)

rco =

(
GM∗P

2
∗

4π2

)1/3

, (3.22)

where M∗ is the stellar mass and P∗ the stellar rotation period (Koenigl, 1991). Canonical param-

eters for sun-like T Tauri stars (B∗ = 1kG, R∗ = 2R�, Ṁ = 10−8M�yr−1,M∗ = M�, P∗ = 7 days)

yield rms ' 0.08AU and rco ' 0.07AU (Armitage, 2009). We will take the truncation radius to be

the lesser of these two radii. In table 3.2 we give the assumed stellar parameters that will be used

in this calculation for several types of stars that we will be consider later in the chapter.

3.3.3 Smoothing α

It is reasonable to assume that the turbulence is not perfectly local, and that it spreads from

one radii to another on a scale of roughly ∼ h. We use an smoothing procedure such that alpha is

slightly non-local on this scale.

αsmooth,i = mean(αlocal,j, j = i− k, j = i+ k) (3.23)

where i and j are grid indices, and k is the number of grid cells that α is being smoothed over. We

take k=5, which is equivalent to a length scale of 0.025r for all r, given our spatial discretization
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scheme. This length is on the order of the scale height, which will generally be between 0.01r and

0.1r.

3.3.4 Advancing in Time

The model is evolved in time with a Runge-Kutta 4th order algorithm. Because there are two,

coupled, time-evolution equations, this requires that the full state of the disk (i.e. the statically-

solvable quantities) be solved for 4 times each time-step. The time step is dynamic and is calculated

by applying the CFL condition for the 2 transport terms:

dt = C ×min

(
∆r

vadv
,

2∆r

πvdiff

)
, (3.24)

where the safety factor, C, is chosen to be 0.1.

We now have an implementation of a self consistent model that co-evolves the surface density

and net-field of an accretion disk in 1 dimension. While this could be useful to study a number

of topics (for example the fate of primordial net-fields in disks), for the remainder of the chapter

we will seek to understand the influence of the magnetic field of a central star on the surrounding

accretion disk.

3.4 Modeling the Influence of the Stellar Magnetic Cycle on the disk

We will assume that a star in isolation will produce a dipole magnetic field given by

B∗(r) = B∗,0

(
r

R∗

)−3

, (3.25)

where B∗ is the vertical component of the dipole field in the equatorial plane, R∗ is the radius of

the star, B∗,0 is the field strength at the star’s surface, and r is the distance from the star in it’s

equatorial plane. The strength of the field will vary with the stellar cycle, so we define the field

above to be when the field is at it’s strongest.

Next, we will consider the static magnetic field geometry in the case of a central star sur-

rounded by a disk. We will assume that the disk is threaded by a net-field in the vertical direction
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(ie. open field lines). While the exact geometry will be complicated and depend on the relative

field strengths, we reason that there will be an inner “compressed-dipole” region that overlaps the

inner edge of the disk, and an outer region with open field lines that will apply for most of the disk.

This is qualitatively similar to the geometries determined by Ostriker and Shu (1995), Muzerolle

et al. (2004), and Fendt et al. (1995). A qualitative representation of this field geometry is shown

in figure 3.1.

Near the inner edge of the disk, closed lines will push the open lines threading the disk

outward, creating a small region where the disk will be threaded by a concentrated dipole field. At

these radii the disk will likely be thermally ionized throughout the whole column, but at the very

least would have ionized surface layers capable of carrying currents. Thus, we must now consider

the interaction of a stellar dipole magnetic field with a rotating, conducting accretion disk.

Lovelace et al. (1995) and Lynden-Bell and Boily (1994) have explored very similar problems

analytically: a stationary dipole interacting with conducting disk that is rotating as a solid-body

and centered on the dipole. The magnetic field geometry that this situation produces is quite

complex, but we are primarily interested in the net flux contributed to the disk. Differential

rotation between the disk and star causes stellar field lines to twist. After the field lines are twisted

more than 1/
√

3 turns, they will reconnect and result in open field lines threading the disk. Because

this critical twist is small, we will assume that a closed field line threading the disk will become an

open field line after roughly one differential-rotation time. While there may be interesting effects

associated with these re-connection events that occur on the the time-scale of days (ie. the rotation

period of the star) (van Ballegooijen, 1994), we here we are consider the longer term impact of this

net-flux contribution to the disk (time scale on the order of years). Thus, we assume that at the

inner edge of the disk closed stellar field lines will become open nearly instantly, and will contribute

net-flux to the disk.

The stellar magnetic cycle causes the dipole strength (B∗,0) to vary in a roughly sinusoidal

way. We will model this by adding flux to the inner edge of the disk at a constant rate during the

positive-rising and negative-falling parts of the sinusoidal curve, with no flux being added during
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Figure 3.1 A qualitative representation of the static magnetic field geometry. The black circle in
the center represents the star and the gray shaded area is the disk. The disk is threaded by open
field lines shown in red. The star produces closed dipole-like field lines, shown in blue. In isolation
this would be a true dipole, but the interaction with the open line region causes the dipole lines
to be compressed inward, while the open lines are pushed outward. This results in a region where
there are concentrated closed field lines from the star overlapping the inner edge of the disk.
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the positive-falling and negative-rising quadrants of the cycle. The rate of flux added to the disk

is then given by

∂ΨB

∂t
= ± 4

tcycle

∫ ∞
rin

2πrB∗(r)dr, (3.26)

where rin is the radius at which the disk is truncated and tcycle is the period of the stellar magnetic

cycle. This rate is defined such that the flux added to the inner edge of the disk during a quarter-

stellar-cycle is equal to the flux of the isolated stellar dipole threading radii from rin to infinity.

3.5 A Criterion for Outbursts from Hall Dead Zones

In this section we will summarize the outburst mechanism proposed in Armitage (2016) and

consider an analytic criterion for generating outbursts.

3.5.1 Outburst Mechanism

Armitage (2016) proposes a mechanism by which outbursts events can be triggered in a

disk by the interaction of the stellar magnetic cycle with the disk’s Hall (DZ). This mechanism is

summarized by figure 3.2.

Consider an initial configuration where the stellar and disk fields are anti-aligned with the

spin-axis of the star. In this case, the Hall DZ is in the dead state: the MRI does not drive

turbulence to the same degree as ideal MHD or a Hall DZ with an aligned net-field. The turbulent

viscosity and advection velocity in the DZ are reduced by a factor of αactive/αdead compared to

the active state. Continuity demands that, in a steady state, ṁ must be constant as a function of

radius even if the α parameter is not constant. ṁ in the steady state is given simply by νΣ, and

according to our α-prescription, ν ∝ α. Therefore, Σ in the DZ is enhanced by the inverse of the

factor that the transport speed is reduced: αdead/αactive.

At some point in the stellar magnetic cycle, the star’s field will change sign to be aligned

with the spin-axis of the star. At this point, the star will start contributing net-flux to the inner

edge of the disk via the mechanism described in section 3.4. Once in the disk, this flux will diffuse

outward (Lubow et al., 1994) according to the diffusion velocity given in equation 3.17. When this



76

wave-front of aligned flux is able to reach the Hall DZ, the portion of the DZ that ends up with

an aligned net-field will transition from inactive to active, increasing the turbulence and transport

velocities. This causes the accretion rate in the active part of the DZ to increase by a factor of

αactive/αdead, and the excess mass that was stored in the slowly accreting dead zone is released and

flows inward. This burst of released mass causes ṁ to increase throughout the inner disk, not just

in the DZ region.

3.5.2 Outburst Criterion

In order for this mechanism to occur, the time it takes for the diffusion front to diffuse

through the inner disk and reach the Hall DZ must be on the order of the period of the stellar cycle

or shorter (ie. tdiff(rdz) . tcycle). If tcycle � tdiff(rdz) then the diffusion fronts of stellar flux will

combine together interior to the Hall DZ and the net-field in the DZ will effectively be decoupled

from the stellar cycle.

While the statement of this condition for outbursts is relatively straightforward, there are

quite a few parameters than need to be accounted for in calculating the diffusion time at rdz.

Combining equations 3.18 and 3.19 and again assuming Pr = 1 yields an expression for the diffusion

time in terms of the advection velocity:

tdiff = r

(
3

2

)(
h

r

)
v−1

adv (3.27)

The expression for vadv that is used in the time-dependent model is given in equation 3.15, however

for the purposes of this simple analytic calculation we will use the steady-state approximation:

vadv = ν/r (eq. 3.4). We will again follow the α-prescription for viscosity: ν = αcsh, and will

substitute cs = hΩ (eq. 3.2). Combining these relations gives a concise expression for the diffusion

time:

tdiff = Ω−1

(
h

r

)−1

α−1, (3.28)
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Figure 3.2 A cartoon illustration of the outburst mechanism proposed by Armitage (2016).
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where all quantities are a function of radius except α. In this calculation we are considering field

diffusing through the active (ionized) region, so the appropriate α parameter will be αactive.

We will now reduce this expression further to be only a function of radius and our primary

control parameters: α, ṁ, and M∗. For now we will ignore pre-factors and worry only about the

power law dependencies of each parameter, we will re-normalize the final result. Ω is defined as

usual:

Ω ∝M1/2
∗ r−3/2. (3.29)

We can use the static-disk model given in section 3.2.1 to solve for h/r for any given α and ṁ, and

also account for Ω’s dependence on M∗:

h

r
∝ r1/20M

−7/20
∗ ṁ1/5α−1/10 (3.30)

Plugging these scalings to equation 3.28 and re-normalizing gives

tdiff

308yr
=

(
α

10−2

)−9/10(M∗
M�

)−3/20( ṁ

10−7M�/yr

)−1/5( r

1AU

)29/20

(3.31)

We need to evaluate the above expression at the radius where the disk transitions from

ionized to neutral: rdz. This occurs when the central temperature of the disk (Tc) drops below

about 1000K. Following the same procedure as for h/r above, the model given in section 3.2 can

be solved to determine the central temperature as a function of the control parameters, yielding

the following result:

Tc
767K

=

(
α

10−2

)−1/5(M∗
M�

)3/10( ṁ

10−7M�/yr

)2/5( r

1AU

)−9/10

(3.32)

Setting Tc = 1000K and solving for rdz gives

rdz

0.744AU
=

(
α

10−2

)−2/9(M∗
M�

)1/3( ṁ

10−7M�/yr

)4/9

(3.33)

Finally, evaluating equation 3.31 at rdz yields the condition for outbursts as only a function of the

control parameters:

tdiff(rdz) = 201yr

(
α

10−2

)−11/9(M∗
M�

)1/3( ṁ

10−7M�/yr

)4/9

. tcycle. (3.34)
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From this relation we can see that outbursts will favor disks with high α, low ṁ, and stars

with low-mass and long stellar cycles. We will visualize this condition by plotting the power law

for tdiff(rdz) as a function of ṁ, for an assumed α values of 0.01 and 0.03 We plot this for several

stellar masses. If tcycle lies above the power law for a given ṁ, then outbursts are likely. If tcycle

lies significantly below the power law, then outbursts are not likely.

Inspecting figure 3.3, we can see that for a sun-like solar cycle period, disks with α = 0.01

will only have outbursts for ṁ . 10−8, even in the case of the smallest stars (M∗ ∼ 0.1M�). The

values plotted for ṁ represent fairly low, yet not completely unreasonable values for the accretion

rates of disks: 10−7 − 10−10M�/yr. In general the accretion rate is expected to decrease over the

lifetime of the disk. Consequently, based on this analysis, these sort of events might be expected

in the later stages of the evolution of the disk.

3.6 Results of Time-Dependent Modeling

In this section, we will finally apply our time-dependent model to the proposed outburst

mechanism. Our tests show that the stellar cycle’s contribution to the net field of the disk is

generally dominant over any background field in the disk on the scales that trigger these outburst

(tenths of an AU). As a result, the initialization of the background magnetic field is not a particularly

important factor. We choose to initialize the disk with anti-aligned flux following a power law:

Bz ∝ r−1/2 (Okuzumi et al., 2014). The field strength is normalized such that βz = 105 at 5AU.

These choices give a fairly direct test of the qualitative mechanism proposed by Armitage (2016).

Furthermore, while this model does not always enter a perfectly cyclic and well behaved pattern

initially, we generally try to plot sections of each test that are typical of the overall behaviour.

First, we demonstrate the diffusion of the stellar field through the disk in cases which both

do and do not produce outbursts. Figure 3.4 shows a space-time diagrams of the vertical magnetic

field in the disk, also denoting the radii at which the Hall DZ begins. We see that in the case of

a solar-like star with an accretion rate of ṁ = 10−8M�/yr, outbursts do not occur because the

diffusion fronts of aligned flux do not reach the Hall DZ. In contrast, figure 3.5 shows an out-



80

Figure 3.3 The power laws for the diffusion time at the radius where the Hall DZ begins plotted
for several stellar masses and two α values. The α values here refer to α in the active region. The
The horizontal line shows the solar cycle period for the sun, roughly 20 years. For any given ṁ
and M∗, if tcycle is above or roughly equal to the diffusion time, outbursts or cyclic behavior would
be expected.
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bursting cycle for an M4 star with a very low accretion rate of ṁ = 10−10M�/yr. In this case the

Hall DZ starts very near the inner truncation radius and the stellar flux is easily able to reach the

DZ on the time-scale set by the stellar cycle (20 years in this example).

In order to quantify the magnitude of the episodic accretion events, we calculate a simple

multi-temperature-blackbody luminosity of the disk. While this does not directly correlate to the

apparent brightness of the star/disk system, it is nonetheless a useful measure of the relative change

in accretion energy. The total luminosity of the disk at any point in time is given by:

L =

∫ rout

rin

2πrσT 4
d , (3.35)

where Td is the surface temperature of the disk, which is self-consistently evolved in our model.

This luminosity is then normalized by the luminosity of the “steady-dead-state” in which the disk

is initialized. We plot an array of light-curves determined by this calculation, in figure 3.6, as well

as in the bottom panel of figure 3.5.

Naively, if the full Hall DZ was changed from dead to active, we would expect the accretion

rate (and hence luminosity) in the DZ to jump by a factor of αactive/αdead (∼ 30 for our parameters).

However, the inner (always active) portion of the disk will also exhibit an enhanced accretion rate

as the excess mass that was trapped in the DZ accretes inward. Consequently, the accretion

luminosity could, in principle, increase by more than this factor. In reality, the entire dead zone

does not convert to active at once, so we would expect αactive/αdead to be a rough upper limit on

the change in luminosity. The light curves we calculate generally confirm this naive result, showing

characteristic changes in accretion luminosity between a factor of a few and a factor of ∼ 30. For

outbursts that just barely meet the criterion from §3.5, the change in luminosity is smaller.

The time-scale of the outbursts is generally about a quarter of the stellar magnetic cycle

or less, although the light curves are more complicated than a simple on/off paradigm. Weak

outbursts tend to also have shorter time-scales. Physically, this corresponds to the scenario where

the aligned-flux is just barely able to reach the inner edge of the Hall DZ before being cancelled

out by the stellar magnetic field changing direction (see row 1 column 2 and row 3 column 2 in
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Figure 3.4 A space-time diagram of the net-field in the disk for a G star with tcycle = 20yr and
ṁ = 10−8M�/yr. The horizontal dashed line represents the location of the inner edge of the Hall
DZ. In this case, the diffusion fronts of aligned flux do not reach the inner edge of the dead zone
before the stellar field changes sign, so no episodic or cyclic accretion occurs.

Figure 3.5 Space-time diagrams and the disk luminosity for a M4 star with tcycle = 20yr and
ṁ = 10−10M�/yr. The top 3 panels show net-field, local accretion rate, and surface density
respectively, with the bottom plot showing the luminosity calculated via equation 3.35.
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Figure 3.6 Light curves for all 5 stellar types considered for an accretion rate of ṁ = 10−9M�/yr.
The stellar types decline in mass from top to bottom. The stellar cycle time increases from left to
right: 6, 20, and 40 years respectively. Note that the scale of the x-axis is not the same in all plots.
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figure 3.6).

These tests demonstrate that the simple time-scale criterion given in the previous section,

which implies that smaller stars are friendlier to these outbursts, is not all that needs to be consid-

ered. The criterion did not account for any stellar parameters other than mass, but the rotation

rate, field strength, and stellar radius also play an important role here in determining the trunca-

tion radius of the disk. K stars, which are physically larger and generally rotate more slowly than

M stars, will truncate their disks at a larger radius. This truncation radius can end up being quite

close to the start of the Hall DZ, giving the stellar flux a shorter distance to travel to trigger an

outburst. In figure 3.6, we see that K stars are actually the only class considered that produces

outbursts for tcycle = 6 years at the given accretion rate.

3.7 Conclusions and Discussion

We propose a model for a new mechanism for outbursts from protoplanetary disks. This

mechanism is a result of several features of these disks and their host stars:

(1) Hall dead zones exist in the inner disk (∼ 0.1 AU to ∼ 1 AU) and suppress MRI turbulence

only if the vertical magnetic field is anti-aligned with the spin axis.

(2) The host star undergoes magnetic cycles in which the dipole-like field changes direction

periodically. This stellar field contributes flux to the very inner part of the disk (∼ 0.01−0.1

AU) significantly enough to dominate over any existing background field.

(3) Thin disks efficiently diffuse magnetic field outward, allowing this stellar field to reach the

Hall dead zone and influence the net-field of the disk on larger scales (∼ 0.1− 1 AU).

We develop a 1D model to quantitatively describe the features of these outbursts and generate

expected light curves. Our primary conclusions are as follows:

(1) On the scale of tenths of AU, the net field of the disk is dominated by the stellar magnetic

field and it’s cycle.
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(2) The mechanism is most effective for disks with low accretion rates and/or stars with long

magnetic cycles, with an accretion rate of 10−8M�/year or less required to get outbursts

from a star with a sun-like magnetic cycle in a disk with αideal = 10−2. If stars were to

exhibit outbursts of this type, they would likely be class II sources, which have accreted

most of their mass already and have lower accretion rates.

(3) Outbursts due to this mechanism type are cyclic, assuming the stellar magnetic cycle is

cyclic. Over the course of the cycle, the integrated luminosity changes by a factor of up to

αactive/αdead.

(4) The time-scale for outbursts is a quarter of the magnetic cycle time or less, with weaker

outbursts also being shorter. This is a useful, testable prediction.

This mechanism is able to produce events that roughly match some important features of

Exors:

(1) Exor outbursts have typical duration’s of 1-2 years (Herbig, 2008) with several years be-

tween events. Our model would predict this for a stellar cycle time of 5-10 years, which is

shorter than the Sun’s but certainly still within reason.

(2) Exors typically have changes in luminosity of a few magnitudes, which agrees well with our

prediction of luminosity changes on the order of αactive/αdead.

(3) When observed in quiescence, Exor objects typically have absorption features typical of

K or M dwarfs and emission features typical of type II T-Tauri objects (Parsamian and

Mujica, 2004; Herbig, 2008). This agrees reasonably well with our prediction that this

mechanism operates best around solar or sub-solar mass stars that are accreting slowly.

While these results are a useful proof of concept and are somewhat promising, the accretion

rates required by our outburst criteria are quite low, even for disks in the later stages of their evolu-

tion. Measured accretion rates for EXor objects are typically on the order of 10−7M�/yr (Audard
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et al., 2014). In addition, there is more work to be done in considering a more detailed description

of the stellar field’s contribution to the disk’s net-field. While our prescription is reasonable, this

is a complicated magnetic field configuration that deserves further modeling. Furthermore, if there

is an Ohmic-dominated DZ interior to the Hall-dominated DZ, the low transport velocities in the

Ohmic DZ would act as a barrier to diffusion, making this mechanism less likely to operate. Finally,

the physics of young M-dwarfs merit more consideration than we have been able to give in this

work. If the erratic behaviour of their magnetic activity was accounted for, we would generally

expect erratic accretion behaviour from the disk as well.



Chapter 4

The Nature of Turbulence in the Outer Regions of Protoplanetary Disks

4.1 Introduction

One of the most basic and fundamental processes at work in accretion disks is the removal

of angular momentum from the orbiting gas, which allows this gas to accrete onto the central

object. A commonly accepted way for this transport to occur is turbulence, which allows adjacent

annuli to exchange angular momentum on a macroscopic level, creating an effective enhanced

viscosity or “turbulent viscosity” (Shakura and Sunyaev, 1973). The leading candidate for sourcing

this turbulence is the magnetorotational instability (MRI; Balbus and Hawley, 1991, 1998), which

generates vigorous turbulence from an initially weak (compared to thermal pressure) and sufficiently

well-coupled (to the disk gas) magnetic field.

The degree of coupling between the magnetic field and the gas is crucial to the efficacy of the

MRI in transporting angular momentum. In fully ionized disks, such as those around black holes,

this coupling is very strong. However, the colder environments present in protoplanetary disks lead

to low ionization levels; the result is substantially weakened gas-field coupling such that the MRI

cannot operate at full capacity throughout the disk. Early considerations of low ionization effects

on the MRI led to a model, put forth by Gammie (1996), in which large Ohmic diffusivity within

the very weakly ionized mid-plane quenches the MRI there, creating a so-called “dead zone”. At

larger heights from the mid-plane, however, the gas is ionized by cosmic-rays (Gammie, 1996),

X-rays (Igea and Glassgold, 1999), and FUV photons (Perez-Becker and Chiang, 2011a).

More recently, it has been realized that two other low-ionization, “non-ideal” magnetohydro-
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dynamic (MHD) effects, namely, the Hall effect (which arises from ion-electron drift) and ambipolar

diffusion (AD; which arises from ion-neutral drift), are also important in protoplanetary disks (War-

dle, 1999; Sano and Stone, 2002; Fromang et al., 2002; Bai and Goodman, 2009; Bai and Stone,

2011). The relative strength of all three non-ideal MHD effects is dependent primarily on the den-

sity and ionization of the gas and thus the radius away from the central star (Kunz and Balbus,

2004; Desch, 2004). Broadly speaking, the Ohmic term dominates at high densities, the Hall term

dominates at intermediate densities, and the ambipolar term dominates at low densities; thus,

moving away from the star, the dominant non-ideal term transitions from Ohmic diffusion to the

Hall effect to ambipolar diffusion.

Considerable theoretical work has been carried out to study the role that both the Hall

effect and ambipolar diffusion play in determining the gas dynamics in protoplanetary disks. For

ambipolar diffusion, in particular, analytic work has shown that the relevant control parameter (at

least in the linear limit) for the growth of the MRI is the ratio of the rate of ion-neutral collisions

to the orbital frequency Ω, defined to be Am. If Am . 1, AD damps the MRI, although unstable

modes will always exists for a sufficiently weak field (Blaes and Balbus, 1994; Kunz and Balbus,

2004). This damping has been the topic of several numerical studies as well, seeking to understand

the full, non-linear evolution of the MRI under these conditions. Hawley and Stone (1998) studied

this problem treating the ions and neutrals as separate fluids coupled with a collisional drag term.

They establish limits on the relevance of AD, showing that the fluid behaves essentially the same as

the ideal limit for collision frequencies on the order of 100Ω, while for collision frequencies . 0.01Ω

the neutral fluid is quiescent, unable to be affected by the motion of the ions. Bai and Stone (2011)

study the non-linear evolution of the ambiploar MRI in an unstratified shearing box using a single

fluid method. In contrast to the two-fluid approach, in the single fluid MHD limit, the ion-neutral

coupling is strong (which is shown to be appropriate for protoplanetary disks Bai 2011a) the ion

density is a fixed fraction of the neutral density instead of obeying it’s own continuity equation,

and the ion-density makes up a negligible fraction of the total mass-density. Bai and Stone (2011)

showed that for any given Am value, one can always find a magnetic field strength at which the
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MRI is present in its full nonlinear state. For smaller Am, weaker magnetic field is required, which

in turn leads to a lower level of turbulence.

With these results in hand, Bai (2011a,b) use complex chemical networks in combination

with ionization models for FUV, X-rays, and cosmic rays to calculate the ionization fraction and

non-ideal MHD parameters in the disk as a function of z. They then combine these calculations

with the α− βmin −Am relationship from their unstratified simulations to predict the turbulence

and stress in the disk as a function of z, and estimate the accretion rate. Modeling of this nature

implicitly assumes that each layer of the disk operates more or less independently, an assumption

that remains untested. Indeed, several effects are relevant in suggesting that processes cannot be

height-independent, including vertical turbulent diffusion, explicit diffusion of magnetic fields due

to non-ideal effects, buoyancy, and advective transport due to large scale velocity modes that have

been described analytically (Lubow and Pringle, 1993; Ogilvie, 1998) and have been seen in some

shearing box experiments (Oishi and Mac Low, 2009; Gole et al., 2016). The combination of these

effects may play a significant role in determining the steady state structure of the outer regions of

disks and may predict a significantly different accretion rate.

The first such work to self-consistently model the AD-dominated outer disk with vertical

gravity included was carried out by Simon et al. (2013b) and Simon et al. (2013a). These authors

carried out local and vertically stratified calculations, in which AD was quite strong near the mid-

plane. This work included ionization of upper disk layers by FUV photons (Perez-Becker and

Chiang, 2011a) leading to a scenario similar to the Gammie (1996) model; active regions vertically

sandwich a region of weak or no turbulence. Furthermore, these works determined that a net

vertical field is required to predict high enough accretion rates to match the expected life-time of

disks around T-Tauri stars (assuming that disk accretion is at least approximately in steady-state).

The theoretical work done to-date has established a new understanding of turbulence in the

outer regions of protoplanetary disks. However, as alluded to above, the precise nature of this

turbulence, and in particular, the role of vertical transport of energy (in any form) has not yet been

addressed in detail. It is a primary motivation of this chapter to better understand turbulence in
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the AD-dominated outer regions of protoplanetary disks, and in particular to address whether or

not each vertical layer can be treated (largely) independently.

Additionally, beyond purely theoretical considerations, it has now become possible to put di-

rect observational constraints on turbulence in the outer regions of disks with ALMA. Predictions

of the strength of MRI-driven turbulence in an AD-dominated disk (Simon et al., 2015a) have been

directly tested with observations of molecular line broadening (Flaherty et al., 2015, 2017, 2018) as

well as dust settling (Okuzumi et al., 2016; Pinte et al., 2016). These observations have (surpris-

ingly) suggested that turbulence in these regions is quite weak. These considerations motivate a

more precise understanding of the physics of the outer disk regions for two primary reasons. First,

the presence of weak turbulence has only been established for a few systems; if disks with strong

turbulence do exist, it behooves us to explore this turbulence in more detail. Second, if indeed all

disks show significantly weak turbulence, then we need to understand precisely why the MRI is

prevented from operating.

Thus, both theoretical and observational considerations strongly motivate us to deepen our

understanding of turbulence in the outer regions of protoplanetary disks. In this work, we carry

out a series of numerical simulations to do just that.

This chapter is organized as follows: in §4.2 we describe the numerical algorithm used in our

simulations and explain the physics and initial conditions of the simulations, in §4.3 we present the

results from control simulations with no FUV layers, in section §4.4 we demonstrate the gas and

magnetic field behaviour in simulations with FUV layers and contrast them with results from §4.3,

in §4.5 we do a temporal correlation analysis to characterize the nature of the MRI and vertical

magnetic flux transport in this situation, and in §4.6 we summarize and discuss our primary results.

4.2 Numerical Algorithm, Parameters, and Initial Conditions

We carry out a series of numerical simulations with Athena, which is a second-order accurate

Godunov flux-conservative code that uses constrained transport (CT; Evans and Hawley, 1988a)

to enforce the ∇ ·B = 0 constraint, the third-order in space piecewise parabolic method (PPM) of
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Colella and Woodward (1984) for spatial reconstruction, and the HLLD Riemann solver (Miyoshi

and Kusano, 2005; Mignone, 2007) to calculate numerical fluxes. A full description of the Athena

algorithm along with results showing the code’s performance on various test problems can be found

in Gardiner and Stone (2005), Gardiner and Stone (2008), and Stone et al. (2008).

We employ the shearing box approximation (Hawley et al., 1995) to simulate a small, co-

rotating patch of an accretion disk. Taking the size of the shearing box to be small relative to the

distance from the central object, we define Cartesian coordinates (x, y, z) in terms of the cylindrical

coordinates (R,φ, z′) such that x = R − R0, y = R0φ, and z = z′. The box co-rotates about the

central object with angular velocity Ω, corresponding to the Keplerian angular velocity at R0. The

equations of MHD, with ambipolar diffusion as the only non-ideal MHD term, in the shearing box

approximation are,

∂ρ

∂t
+∇ · (ρv) = 0, (4.1a)

∂(ρv)

∂t
+∇ · (ρvv −BB + ¯̄IP*) = 2qρΩ2x̂i− ρΩ2zk̂− 2Ωk̂× ρv, (4.1b)

∂B

∂t
−∇×

[
v ×B− (J×B)×B

γcρiρ

]
= 0. (4.1c)

∂E

∂t
+∇ ·

[
(E + P*)v −B(B · v)

]
= 0 (4.1d)

J = ∇×B (4.1e)

E =
P

γ − 1
+
ρ(v · v)

2
+

B ·B
2

(4.1f)

Here ρ is the gas density, ρi the ion density, γc is the coefficient of momentum transfer in ion-neutral

collisions, B is the magnetic field, J is the current density, P* is the total pressure (related to the

magnetic field and the gas pressure, P , via P* = P + B ·B/2), ¯̄I is the identity tensor, v is the

velocity, E is the total energy, and q is the shear parameter defined by q = −d ln Ω/d lnR, which

is 3/2 in this case of a Keplerian disk.

We use an adiabatic equation of state with a constant background temperature profile. The

disk is heated and cooled towards this profile with a characteristic cooling/heating time τcool. This
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adds the following term to the energy evolution equation:

∂E

∂t
= − ρ(T − T0)

τcool(γ − 1)
(4.2)

where T ≡ P/ρ and T0 is the constant background temperature. We set τcool = 0.1Ω−1.

We use the standard boundary conditions appropriate for the shearing box approximation.

At the azimuthal boundaries we exploit the symmetry of the disk and apply periodic boundary

conditions. At the radial boundaries, we apply shearing periodic boundaries; quantities that are

remapped from one radial boundary to the other are shifted in the azimuthal direction by the

distance the boundaries have sheared relative to each other at the given time (Hawley et al., 1995).

Furthermore, the energy and azimuthal velocity are appropriately adjusted to account for the

difference in angular momentum and orbital energy (see Hawley et al., 1995). Additionally, these

radial shearing-periodic boundaries are incorporated in such a way as to maintain conservation

of conserved variables (see Stone and Gardiner, 2010). In the vertical direction, we employ the

modified outflow boundary condition of Simon et al. (2013b), which are standard outflow boundaries

with the gas density extrapolated exponentially into the ghost zones; this method reduces the

artificial build-up of toroidal magnetic flux near the vertical boundaries. Such outflow boundaries

can lead to significant mass loss, particularly in the case of strong vertical magnetic flux (Simon

et al., 2013a). In order to keep the box in a steady state, we re-normalize the mass of the box at

every time step. Finally, we employ Crank-Nicholson differencing to conserve epicyclic energy to

machine precision. A full discussion of these methods and Athena’s shearing box algorithm can

be found in Stone and Gardiner (2010).

Our standard choice of domain size is Lx × Ly × Lz = 2H × 4H × 8H, where H is the

isothermal scale height, defined to be

H =
√

2
cs
Ω
. (4.3)

where cs is calculated using T0.1 We also carry out simulations with 4H × 8H × 8H to test

convergence with domain size (see table 4.1). Our simulations without an FUV layer will only

1 While our simulations are not isothermal, the cooling timescale is sufficiently short that departures away from
isothermality are minimal; see below
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extend 5H in the vertical direction, as the low density regions at large |z| will impose a very strict

constraint on the time-step from the strong diffusion in those regions.

We initialize the box with net-magnetic-flux in the vertical direction such that the βz,0,

defined as

βz,0 =
2Pmid

B2
z,0

, (4.4)

is βz,0 = 104. Note that a factor of 4π has been subsumed into the definition of the magnetic

pressure, following the standard definition of units in Athena (Stone et al., 2008). In the case

of a constant vertical field, the onset of the MRI creates a very strong channel mode that can

create numerical problems (Miller and Stone, 2000). To avoid this, the initial field has a spatial

dependence in the x direction:

Bz = Bz,0

[
1 +

1

4
sin(kx ∗ x)

]
, (4.5)

where kx = 2π/Lx, and Lx is the length of the box in the radial direction.

In order to seed the MRI, we apply random perturbations to the initial gas pressure and

velocity. Following the procedure used by Hawley et al. (1995), the perturbations are uniformly

distributed throughout the box and have zero mean. Pressure perturbations are a maximum of

2.5% of the local pressure, and velocity perturbations are a maximum of 5× 10−3cs.

We initialize the disk is in hydrostatic equilibrium. In an vertically isothermal disk, balancing

gravity against the gas pressure gradient yields a Gaussian density profile. While the disk is not

isothermal in this case, it is heated/cooled towards an isothermal profile. The heating/cooling time

is shorter than the dynamical time, meaning that temperature perturbations will be restored to the

isothermal temperature on a faster time-scale than the disk’s density profile will respond on the

scale of H. For this reason, we will consider H to be constant in our initialization and discussion.

We set ρ0 = 1 as the initial density at the mid-plane. A density floor of 10−4 is applied to keep

the Alfvén speed from getting too high (and thus the time step too small) in the region far from

the mid-plane. The density floor also prevents β from getting too low, which can cause numerical

problems. We set the constant, background isothermal sound speed cs = 1/
√

2, and choose the
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angular velocity to be Ω = 1, which gives H = 1.

4.2.1 Resistivity Profile

For the FUV-ionized layers of the disk we use a resistivity model informed by the considera-

tions of Perez-Becker and Chiang (2011b) and adapted from other works (e.g., Simon et al., 2013a).

FUV radiation will penetrate some constant column density of the disk given by ΣFUV. We will call

the point at which this column density occurs zFUV. As the box evolves, turbulence and magnetic

pressure can be significant enough to change the density profile. As a result, we need to re-calculate

zFUV at each time-step. This is done by integrating the horizontally averaged density profile from

the top of the box towards the mid-plane until ΣFUV is reached. The same calculation is made for

the bottom half of the box separately.

We will describe the strength of ambipolar diffusion in terms of the ambipolar Elsasser num-

ber, Am, defined as

Am =
γρi
Ω
. (4.6)

Am in the active layer (|z| > zFUV) is generally � 1. We will use the prescription given in Bai and

Stone (2013a):

Am = 3.37× 107

(
f

10−5

)(
ρ

ρmid

)(
r

1AU

)−5/4

. (4.7)

We take the ionization fraction f to be 10−5 and place the box at r = 115 AU in a minimum mass

solar nebula model (Weidenschilling, 1977; Hayashi, 1981).

At the mid-plane the ionization fraction is generally controlled by X-rays and cosmic rays,

which are able to penetrate farther into the disk. Bai (2011b) model this ionization using a complex

chemical reaction network and show that Am in the mid-plane region (|z| < zFUV) is generally

constant as a function of space and is on the order of 1. Including small grains in this model

decreases Am and gives it a dependence on β. We will not include this more complicated behaviour,

but will consider a range of values for Ammid to account for this uncertainty. The ionization profile

will be smoothed over a thin region to prevent potential numerical problems, following the same
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procedure as Simon et al. (2013b). Our choice of ΣFUV is 0.1g/cm2.

4.2.2 Resolution Considerations

Our fiducial choice of resolution for these simulations is 30 grid cells per H. This choice is

based on the size-scales on which the MRI operates in the linear limit. This is typically characterized

by the critical wavelength λc and the most unstable wavelength λm. All size-scales larger than λc

are unstable, and λm corresponds to the mode withf the largest growth-rate. For ideal MHD,

λm/H = 9.18β
−1/2
0 , while λc is roughly half that (see Hawley et al., 1995). However, ambipolar

diffusion increases both of these wavelengths significantly when Am . 10 (Wardle, 1999; Bai and

Stone, 2011). We will consider a variety of Am parameters for the mid-plane region, spanning 10−2

to 102, while Am will always follow equation 4.7 for |z| > zFUV. Figure 4.1 shows the most unstable

and critical wavelengths at the mid-plane and at z/H = 1.5 for our choice of β0 = 104. The MRI

is reasonably well resolved for z > zFUV, with 9 grid cells per λm at z/H = 1.5. However, at the

mid-plane our resolution only yields 3 grid cells per λm for Am & 1 . While this is not ideal,

previous convergence studies have shown that non-linear state of the MRI is not greatly changed

even if, in the linear limit, it is under-resolved (Simon et al., 2013a). This is potentially due to

two effects. First, even in the linear limit there are larger unstable modes than λm that will be

better resolved. Second, as the MRI evolves into the non-linear regime the field will generally get

stronger, increasing the most unstable size-scale such that it is better resolved.

We should also note that at very high diffusivities, λc can exceed the size of the ambipolar

damping zone, which is ≈ 2H, for our fiducial choice of parameters. For example, at Am = 0.01,

λc ∼ 4H for β0 = 104. If no MRI modes fit within the damping zone, then this is another way in

which ambipolar diffusion can effectively quench the MRI, in addition to that described in more

detail below. However, it is also worth mentioning that this argument only applies to vertical MRI

modes and not toroidal or radial modes, which may still persist within the damping region. We

will also conduct simulations with no FUV layers, for which the vertical extent of the box is 5H.

In these simulations, our most diffusive case will be Am = 0.032, and at this diffusivity both λc
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and λm fit within the vertical extent of the domain.

4.2.3 List of Simulations and Varied Parameters

Our main control parameter for this investigation will be Ammid. In order to rule out other

effects and help confirm our results, we will run a few simulations at higher resolution, and a few

with a larger domain in the horizontal directions. In addition to the simulations with the FUV

layer, we will perform simulations with constant Am across the domain as a comparison. In table

4.1 we list all of our simulations. Our labeling convention is as follows: The first letter is S or L

for small or large box size. The second letter is L or H for low or high resolution. The next letter

will be F or N for simulations with FUV or no FUV respectively. The number following Am is the

Am parameter at the mid-plane.

4.3 Stratified Ambipolar Simulations with no FUV

In this section we will consider a series of vertically stratified shearing boxes with no FUV-

ionized layers (SLN Am0.032 through SLN Am10). These will serve as a baseline for comparison

with the FUV simulations.

4.3.1 Expectations

A simple way to consider the effect of resistive conditions on the MRI is to compare the

MRI growth time-scale (∼ Ω−1) with the diffusion time-scale of the magnetic field. If the diffusion

time-scale is shorter than the growth time-scale, field will diffuse faster than the MRI can build it

up and the MRI will not operate. In the case of Ohmic diffusion, this is relatively straightforward

because the Ohmic diffusion coefficient is not a function of the field strength. So it is possible

to say whether the MRI will operate or not based simply on the Elsasser number (which is itself

essentially just a ratio of these time-scales). However, ambipolar diffusion is more involved. The

ambipolar term in the induction equations expands into many terms (see equation 4.1c). Just

for the sake of a heuristic argument, let’s just consider the term that looks the most like simple
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Figure 4.1 The critical and most unstable MRI wavelengths at the mid-plane and at z/H = 1.5) in
terms of our fiducial cell size δx = H/30. β0 = 104 at the mid-plane, which corresponds to β ∼ 103

at z/H = 1.5 due to the decrease in gas pressure.
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Label Ammid FUV H/∆x (Lx,Ly, Lz)/H Orbits

SLF Am0.01 0.01 yes 30 2,4,8 100
SLF Am0.018 0.018 yes 30 2,4,8 50
SLF Am0.032 0.032 yes 30 2,4,8 100
SLN Am0.032 0.032 no 30 2,4,8 75
SLF Am0.056 0.056 yes 30 2,4,8 200
SLF Am0.1 0.1 yes 30 2,4,8 400
SLN Am0.1 0.1 no 30 2,4,8 300
LLF Am0.1 0.1 yes 30 4,8,8 100
SHF Am0.1 0.1 yes 60 2,4,8 25
SLF Am0.18 0.18 yes 30 2,4,8 400
SLF Am0.32 0.32 yes 30 2,4,8 400
SLN Am0.32 0.32 no 30 2,4,8 300
SLF Am0.56 0.56 yes 30 2,4,8 400
SLF Am1 1.0 yes 30 2,4,8 400
SLN Am1 1.0 no 30 2,4,8 300
SHF Am1 1.0 yes 60 2,4,8 200
LLF Am1 1.0 yes 30 4,8,8 400
SLF Am1.8 1.8 yes 30 2,4,8 400
SLF Am3.2 3.2 yes 30 2,4,8 400
SLN Am3.2 3.2 no 30 2,4,8 300
SLF Am5.6 5.6 yes 30 2,4,8 400
SLF Am10 10 yes 30 2,4,8 100
SLN Am10 10 no 30 2,4,8 300
SLF Am18 18 yes 30 2,4,8 100
SLF Am32 32 yes 30 2,4,8 100
SLF Am56 56 yes 30 2,4,8 100
SLF Am100 100 yes 30 2,4,8 100

Table 4.1 Simulation Parameters
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diffusion, where the time derivative of a component is proportional to a double spatial derivative

of the same component: (
∂B

∂t

)
AD

=
B2

ΩρAm
· ∇2B. (4.8)

This consideration is particularly valid in a shearing box for the By component, which is expected

to dominate over the other field components due to the shear in the disk. Therefore this term with

B2
y as a pre-factor will dominate over any cross-terms. Notice that in this diffusion approximation,

the diffusion coefficient itself scales with B2, so the diffusion time-scale for length scale L does as

well:

tAD =
L2ΩρAm

B2
=

(
L

H

)2βAm

Ω
, (4.9)

with the second equivalency being true for vertically isothermal disk with constant sound speed,

a reasonable approximation for our disk with an isothermal equilibrium temperature and a short

cooling/heating time. Considering a disk with a relatively weak seed-field, the MRI will be able to

operate initially while the field is weak because the diffusion is also weak. However, as the MRI

winds-up the field, a saturation field strength will be reached where the diffusion time-scale and

growth time-scales are now equal and the MRI no longer operates. Setting tAD = Ω−1 in the above

equation yields the simple relation that the saturation β parameter will be ∝ Am−1.

The fully non-linear version of this problem was considered by Bai and Stone (2011) in a

3D, unstratified, fully ambipolar diffusion dominated shearing box. They fit the results of their

simulations to show that the minimum β parameter that permits the MRI is given by

βmin(Am) =

[(
50

Am1.2

)2

+

(
8

Am0.3
+ 1

)2]1/2

. (4.10)

The simple expectation is roughly recovered for the limit Am . 1, where βmin ∝ Am−1.2.

4.3.2 Magnetic Field Strength

We characterize the magnetic field strength in terms of the β parameter corresponding to the

total field:

β =
2P

B2
x +B2

y +B2
z

. (4.11)
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When space-time averages of β are calculated, the pressure and total field averages are taken first,

and then 〈β〉 is calculated from the ratio, i.e. 〈β〉 = 〈2P 〉/〈B〉. For the MRI operating in a shearing

box, we expect By to be the dominant field component as radial field will be sheared into toroidal

field by the shear velocity profile. In this case, B ' By and β ' βy.

In figure 4.2 we show the space-time averaged β parameter in the mid-plane region of our

stratified disk simulations. We find that the average field strength in the saturated state closely

follows the βmin − Am relationship described by Bai and Stone (2011) for their unstratified simu-

lations.

We need to be cautious in using the average field strength, as it is possible that there exist

regions of very strong field separated from weak field regions within the mid-plane (as shown by

Simon et al. 2017a in similar calculations); such non-uniform structure can lead to an average β

value that is not representative of the typical field strength found at the mid-plane. It would thus

be possible to sustain some turbulence sourced from small patches of weak-field (β > βmin) even

if on average β < βmin. We calculate the distribution of mid-plane field strength, integrated over

time and for |z| < 0.5H. Examples of these distributions are shown in figure 4.3. Especially for

the stronger diffusion cases, there are often regions where β < βmin, but the field strength does

not exceed this limit drastically and βmin is close to the center of each distribution. So while βmin

does not seem to be a strict limit on the field strength, it is generally gives a good description of

the saturated state field strength in the stratified case in addition to the unstratified case.

4.3.3 Turbulence and Stress

Throughout this chapter we will consider perturbations to various quantities, defined (for a

quantity a) as

δa(x, y, z, t) ≡ a(x, y, z, t)− 〈a〉xy(z, t). (4.12)

where the xy subscript on the angled bracket denotes a horizontal average. For vector quantities,

the perturbation of each component is calculated and then the total perturbation is the sum of the

3 components in quadrature.
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Figure 4.2 Temporally and spatially averaged β within 0.5H of the mid-plane. The black line shows
βmin (see Bai and Stone, 2011). βy generally follows βmin.

Figure 4.3 β distributions for simulations with Am = 0.1, 1, 10 in blue, green, and red respectively.
The dashed vertical lines corresponds to βmin for each simulation. In general, βmin gives a reasonably
good description of the typical field strength.
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The first set of turbulence diagnostics that we calculare are the perturbed ρ and v. In

figure 4.4, we show that both of these perturbations scale as a power law with Am. The strength

of turbulent velocity perturbations (relative to the gas sound speed) in particular has been of

much interest recently as it provides a direct comparison to observations of turbulent line widths

(Flaherty et al., 2015, 2017, 2018). Many of these observations probe optically thick gas at large |z|

(usually |z| ∼ 2–3H) in the outer regions of protoplanetary disk. To date, these observations have

constrained turbulence to be quite weak (δv/cs < 0.05) for two systems: HD163296 (Flaherty et al.,

2015, 2017) and TW Hya (Flaherty et al., 2018). In an attempt to explain this weak turbulence,

Simon et al. (2017a) proposes a scenario in which the outer disk is shielded from ionizing sources

and thus strong ambipolar diffusion, analogous to what we are simulating here.

Given these considerations, we plot the the vertical profiles for the perturbed velocity in

Fig. 4.5, finding (in agreement with Simon et al. 2017a) that at large heights above the mid-plane,

δv/cs approaches values above the observational constraint. Even in our most diffusive simulation

(Am = 0.032), turbulence at large |z| is above that of HD163296 and approaches the limit from

TW Hya.

While these simulations do not extend into the corona far enough to cover the entire observed

region, we expect that δv would continue to increase as z increases. More specifically, we speculate

that, in the Am = 0.032 simulation, δv would exceed or equal the limit for TW Hya if we were to

consider the region between z/H = 2 and 3. So even in the scenario where a disk has no ionized

layers, an even lower ionization (i.e., ambipolar diffusion; Am < 0.032) or a weaker background

vertical field may be required to be consistent with observations.

Finally, we examine the Maxwell stress, and we calculate this stress in two different ways:

background-subtracted field perturbations, −〈δBxδBy〉, and the average field components, −〈Bx〉〈By〉,

evaluated for each constant-z plane. These perturbation and laminar contributions are plotted in

figure 4.6. The stress scales as a power law with Am, with perturbations providing the dominant

component for Am < 1.
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Figure 4.4 Hydrodynamic diagnostics of turbulence δρ and δv time and space averaged (within
0.5H of the mid-plane) for simulations SLN Am0.032 through SLN Am10. The level of turbulence
increases as the damping decreases, consistent with expectations.

Figure 4.5 The velocity perturbation profiles for our series of simulations with no FUV layer
(constant Am). The profiles are shown in a gradient from blue to red, corresponding to
Am = 0.032, 0.1, 0.32, 1.0, 3.2, and 10.0. The observed limits on TW Hya and HD163296 (Fla-
herty et al., 2015, 2017, 2018) are shown in the dotted and dashed lines respectively. (Note that in
the case of TW Hya, this limit only applies to |z| ∼ 2–3H.) Even in a disk with no FUV-ionized
layers, for β0 = 104 it would take a diffusivity of at least Am = 0.032, and likely higher, to explain
the observations of weak turbulence.
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Figure 4.6 The magnetic stress calculated from perturbations (black) and from laminar fields (blue).
Note that at Am = 1, the points are directly on top of one another. The stress clearly scales with
Am. For Am < 1, the stress is dominated by small-scale perturbations.
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4.4 Stratified Ambipolar Simulations with FUV

Having established a baseline of simulations, and accompanying diagnostics, with no FUV

ionization, in this section, we analyze simulations with FUV ionization (SLF Am0.01 through

SLF Am100) and consider the behaviour of the gas and magnetic field at the mid-plane as Ammid

is varied. We define the mid-plane, above-transition, and corona regions to be |z/H| = 0 to 0.5,

1.0 to 1.5, and 3 to 3.5 respectively. The simulations generally saturate in terms of turbulence and

field strength within about 10 orbits, so the time-averaged quantities shown in the plots in this and

following sections are taken starting at 10 orbits and extending to the end of the run. This gives

us a baseline of 40 orbits at minimum and over 100 orbits for most runs (see table 4.1).

4.4.1 Mid-plane field strength

We calculate the time and space averaged β in various regions of the box for our simulations

with an FUV ionized active layer. We find that the mid-plane β is less than the expected minimum

described in the previous section for simulations with Ammid < 1 (Figure 4.7).

As described briefly in §4.3, it is possible to have a situation where the average magnetic field

exceeds the maximum that permits the AD-dominated MRI while still having patches of weaker

field where the MRI is active. This idea has been seen recently in similar simulations by Simon

et al. (2017a). Thus, simply calculating the average β parameter is not sufficient, and so we also

calculate the distribution of mid-plane β, integrated over time and for |z| < 0.5H. Examples of

this distribution are shown in figure 4.8. We find that the fraction of cells for which β > βmin is

on the order of a few percent for Am < 1. So while there may be small patches for which the MRI

is permitted, this likely does not dominate the dynamics of the mid-plane. We also see that the

distribution for the Am = 1 case is qualitatively different than the Am < 1 cases, and that the

Am < 1 cases are similar to one another.

These results have two implications:

(1) The magnetic field at the mid-plane is not produced by the local MRI, as the field strength
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Figure 4.7 The time-averaged β parameter plotted versus Am for SLF Am0.01 S0.1 through
SLF Am100 S0.1 for 3 spatial regions: the mid-plane, above the transition, and the corona. The
black line shows the minimum β for the mid-plane MRI (given in equation 4.10). Because the field
strength exceeds what would be expected from the local MRI for Am < 1, we expect that this field
is sourced elsewhere and transported to the mid-plane.

Figure 4.8 Distribution of β taken over the mid-plane region of SLF Am0.032 through SLF Am1.0,
with the mid-plane Am shown on each plot. The vertical dashed lines indicate the minimum beta
that permits the MRI for each Am parameter. While the MRI might occasionally be active in
small patches, it is unlikely to dominate the dynamics of the mid-plane when Am < 1.
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exceeds what the local, AD-dominated MRI would be able to maintain for the given Am

parameter. The field here must be transported from the MRI active regions above and

below the mid-plane.

(2) In the majority of the mid-plane region (> 90%), the MRI cannot be active because the

field strength makes ambipolar diffusion strong enough to damp field perturbations faster

than they can grow.

4.4.2 Hydrodynamic Turbulent Properties

We again calculate the time and space averaged perturbations of density and velocity; in figure

4.9 we see that hydrodynamic diagnostics of turbulence are independent of the magnetic diffusivity

of the mid-plane for Am < 1. This agrees with the expectation from the previous section, as

the field is too strong for the MRI to be operating locally and generating density and velocity

perturbations. Any turbulence at the mid-plane has trickled down from the corona (possibily

related to the mechanisms seen in Fleming and Stone, 2003; Oishi and Mac Low, 2009; Gole et al.,

2016, for Ohmic dead zones), and given that the properties of the corona are not varied in these

simulations, one would expect to recover a constant perturbation amplitude at the mid-plane as a

function of Am for Am < 1. For Am > 1 we see a power law emerge, similar to the case with no

FUV layer where we see a power law across the entire range of Am tested. This is indicative that

the MRI is operating in this regime and gets stronger as Am increases, as expected. We should

also note that the properties of the corona are not effected by the diffusivity of the mid-plane.

4.4.3 Stress and Magnetic field perturbations

In Fig. 4.10, we calculate the average field perturbation as a function of Am for different

vertical regions. The mid-plane field perturbations scale roughly as a power law of Am with an

index of 1/3, even for Am < 1. This is in contrast to the hydrodynamic diagnostics of turbulence

discussed in the previous section that did not depend on Am in this regime. Considering a simple

diffusion equation for the magnetic field (e.g., equation 8), field perturbations will be diffused away
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Figure 4.9 Velocity and density perturbations for SLF Am0.01 through SLF Am100. The mid-
plane quantities do not scale with Am for Am < 1 indicating that these perturbations are not
generated by local MRI. In addition, the mid-plane turbulence does not seem to affect the level of
turbulence in the corona.
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in direct proportion to the magnetic diffusivity. Thus, we see that the field perturbations scale

with Am. Hydrodynamic perturbations, on the other hand, have no explicit diffusion, but can

be damped out by turbulent motions (e.g., through a turbulent cascade to the grid scale, where

numerical diffusion dominates); thus, these particular quantities do not scale with Am for Am < 1.

The expected α parameter in the ambipolar region determined by Bai and Stone (2011) is

given by

α = 1/(2〈β〉). (4.13)

If we assume β will saturate to βmin, we can combine this relation with equation 4.10 to get an

expected relationship between Am and the stress for the AD-dominated MRI. Note that this is an

upper limit on this stress, as β will not always reach βmin, depending on the field geometry (Bai and

Stone 2011 figure 15). We do not necessarily expect to recover this relation for Am < 1 because

the MRI is not active, but will use it as a point of comparison.

We again calculate the Maxwell stress from both laminar field and field perturbations, shown

for the mid-plane region in figure 4.11. Given that each individual field component perturbation

scales as Am1/3, we expect and do see that the stress due to perturbations scales roughly as Am2/3,

being the multiplication of two field components. We find that the laminar stress dominates for

highly diffusive mid-planes, equaling the perturbed stress around Am = 1. This is qualitatively

different from the results of our simulations with no FUV layers (figure 4.6), where we see that the

stress from magnetic field perturbations remains dominant for all simulations with Am < 1.

For Am < 1, there are two effects that make the observed mid-plane stress different than the

prediction in equation 4.13 :

(1) As shown in figure 4.7, 〈By〉 is stronger than the prediction based on βmin. This will

enhance the laminar magnetic stress defined to be -〈Bx〉〈By〉. Figure 4.11 shows that this

is the dominant effect on the total stress for Am . 0.1, where the laminar field is able to

produce a stress of α ∼ 10−3.
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Figure 4.10 Magnetic field perturbations versus Am within different vertical regions. The mid-plane
perturbations scale roughly as Am1/3, indicated by the black dashed line. Despite the mid-plane
scaling, the mid-plane does not influence the other regions.

Figure 4.11 The magnetic stress calculated from perturbations (black) and from laminar fields
(blue). The red line indicates the predicted upper limit of stress from Bai and Stone (2011). The
black dashed line indicates the expected power law scaling of the stress from perturbations: Am2/3

for Am < 1 (based on the scaling seen in figure 4.10), and Am1.2 for 1 ∼ Am (based on equations
4.10 and 4.13). The mid-plane stress is dominated by the laminar component for very diffusive
mid-planes (Am < 1).
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(2) The MRI is not active and is not generating perturbations locally. Any perturbations will

just be due to trickle down turbulence from the corona. This causes the stress due to

perturbations to be less than the prediction. This is the dominant effect on the total stress

for 0.1 . Am . 1, where the total stress is significantly less than the upper limit.

For 1 . Am, we expect β to scale roughly as Am−1.2 until Am >> 1, where the MRI will

saturate and is essentially in the ideal MHD limit (equation 4.10). Based on equation 4.13, this

means the stress should scale as Am1.2. We recover this scaling between Am = 1 and ∼ 10, at

which point the stress saturates, remaining constant as Am increases.

We should note that, for completeness, we performed tests at higher resolution and with a

larger box size in the horizontal directions to ensure that these would not affect our results (see

table 4.1). In all of these tests we find that the behaviour is consistent with our fiducial choice of

resolution and box size.

4.5 Vertical transport of magnetic field in the FUV simulations

Figure 4.12 shows the space-time diagram of the horizontally averaged toroidal field By for

run SLF Am0.1. Upon visual inspection of the diagram, it appears that even for a AD damped

mid-plane, the MRI dynamo starts at the mid-plane and then is transported upwards via buoyancy.

If this is true, it is inconsistent with our claim in the previous section that the MRI-active corona

is able to transport flux to the mid-plane. In this section, we will perform a temporal correlation

analysis to further elucidate this mystery.

We compute the temporal correlation of the mean By for each x-y plane with that at the

mid-plane:

c(z, t′) =

∫ T

t=0

〈
By
〉
x,y

(z = 0, t) ∗
〈
By
〉
x,y

(z, t− t′)dt, (4.14)

After computing this correlation function, the time-shift (t′) at which c is maximized is found for

each z. In our definition, t′ < 0 at a given z corresponds to magnetic field at that z lagging that

of the mid-plane. Thus, in the example of buoyantly rising magnetic fields, t′ < 0 and |t′| would
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increase as the field rose further away from the mid-plane.

As shown in Fig. 4.13, while field well above the transition region (denoted by the vertical

dashed lines) has t′ < 0, suggesting that field is buoyantly rising away from the transition region, the

mid-plane region has t′ > 0 suggesting that the mid-plane itself lags behind the transition region.

This result holds for all of our simulations with Am < 10. The dominant region for controlling the

MRI dynamo is right at the damping zone transition. The butterfly diagram still has its typical

appearance because the corona still lags behind both the transition region and the mid-plane.

These correlation results are somewhat surprising, as it is generally difficult to transport

magnetic flux towards the mid-plane of a disk. Usually the dominant effect in vertical transport

of flux is magnetic buoyancy, which gives space-time diagrams like figure 4.12 their characteristic

“butterfly” appearance. Considering a magnetic flux tube with field strength Bpert in a disk,

the magnetic flux provides additional pressure such that the gas pressure required to maintain

hydrostatic balance against the vertical component of the central’s stars gravity is reduced by B2
pert

(in our units). In the isothermal case, the gas density will also be reduced within the flux tube by

B2
pert/c

2
s. The flux tube is then lighter than it’s surroundings and experiences a force away from

the mid-plane. This effect is known as magnetic buoyancy. The buoyant force Fb on the gas in the

flux tube is equal to the weight of the displaced fluid:

Fb =
B2

pert

c2
s

g, (4.15)

where g is the acceleration due to vertical gravity. Dividing by the gas density in the tube and

using g = Ω2z yields a simple expression for the buoyancy acceleration ab:

ab =
B2

pert

ρc2
s

Ω2z =
Ω2z

βpert
, (4.16)

where βpert is the β parameter corresponding to Bpert. In order to arrive at a buoyant time-scale

tb, we consider the time it would take for a perturbation of constant β to rise H at this rate of

acceleration. This yields

tb = Ω−1

(
2H

z
βpert

)1/2

. (4.17)
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Figure 4.12 Space-time diagram of sign(By)B
2
y/2P0 for SLF Am0.1. Here, P0 is the mid-plane

pressure. The horizontal dashed lines indicate zFUV.

Figure 4.13 Time shift of maximum correlation relative to the mid-plane as a function of z for the
SLF Am0.1 simulation. The dashed vertical lines indicate the center of the transition between FUV
ionization and no FUV ionization. We see that the mid-plane lags behind the transition region,
implying that diffusion towards the mid-plane is able to beat out the effect of buoyancy.
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While the flux tube is accelerating upwards it will also be diffusing due to ambipolar diffusion.

In order to transport a significant portion of the flux to the mid-plane, this diffusive effect will have

to occur on roughly the same time-scale as buoyancy or shorter. The ambipolar diffusion time

under some simplifying assumptions is given in equation 4.9. Over length-scale H, the diffusion

time is tAD = 2βpertAmΩ−1. Taking the ratio of these two time-scales yields:

td
tb

=

(
z

h

)1/2

β
1/2
pert Am. (4.18)

Note that h = H/
√

2. In other words, diffusion will be the dominant transport mechanism if

Am < Amcrit, where Amcrit =
(
z
hβpert

)−1/2
. If we consider an MRI-generated perturbation of

β = 3 at z/H = 1, Amcrit ∼ 0.5. This is roughly consistent with the results of our simulations

with FUV layers, specifically figure 4.8, which shows that the mid-plane magnetic field strength

distribution changes in nature somewhere between Am = 0.32 and 1. This likely corresponds to a

transition from diffusion dominated transport to buoyancy dominated transport.

If ΣFUV is decreased, perturbations will start at larger |z/H| and we expect the effect of the

corona on the mid-plane will lessen due to two effects:

(1) The mid-plane is farther from the initial perturbation, and the time-scale for diffusive

transport scales as length squared.

(2) Buoyant acceleration is ∝ z/H, so perturbations will rise faster from their starting position

(this is accounted for in the relations given above).

4.6 Conclusions

In order to further understand the properties of turbulence in the outer regions of protoplan-

etary disks, we have run a series of stratified shearing box simulations with varying strength of

ambipolar diffusion and with and without an FUV layer. Our main conclusions are as follows:

(1) Our simulations without an FUV layer generally match the behaviour of the similar but

unstratified simulations of Bai and Stone (2011). The β parameter at the mid-plane has a
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narrow distribution centered near βmin, and both hydrodynamic and magnetic diagnostics

of turbulence scale with Am. This is consistent with the AD-damped MRI operating.

(2) In our simulations with an FUV layer and Am < 1 within the mid-plane region, we have

demonstrated that the behaviour of the mid-plane, even qualitatively, does not match the

behaviour of unstratified or stratified simulations without an FUV layer. This is due to

the interaction with the MRI-active layers, which can transport magnetic flux to the mid-

plane to a point such that the MRI is no longer permitted. There are several important

differences compared to the no-FUV-layer case:

• The magnetic stress is dominated by laminar fields rather than small scale field per-

turbations.

• Hydrodynamic perturbations do not scale with Am at the mid-plane; they are set by

the fluid motions in the FUV layers rather than local MRI.

• For most of the box, β < βmin. The field strength distribution is wider than the

no-FUV case and does not vary greatly as a function of Am.

All of these points are consistent with the MRI being arrested in most of the mid-plane

region by the magnetic field. The dynamics of the mid-plane are primarily determined by

the FUV layers instead of the local MRI. While the MRI may operate in small patches of

weak field, this does not seem to be a dominant effect and occurs in a small fraction of the

box, if at all.

(3) For Am . 10, toroidal field at the mid-plane is temporally correlated with toroidal field in

the corona with a lag time on the order of an orbit. This correlation implies that diffusion

(turbulent or ambipolar) of flux towards the mid-plane is able to overcome magnetic buoy-

ancy, which is usually the dominant effect in the vertical transport of magnetic flux in a

disk.

(4) The properties of the MRI-active region are not affected by the diffusivity of the mid-plane
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region.

What do these results imply for studies of turbulence in protoplanetary disks? First and

foremost, if an FUV layer is present, there is a significant influence of the strongly ionized layers

on the highly diffusive mid-plane. Thus, one cannot in general treat each vertical layer of the disk

independently; analytic or semi-analytic models that attempt to do so will potentially be missing

physical effects (e.g., vertical diffusion of magnetic field) that will change estimates for the degree

of turbulence and angular momentum transport. In the absence of an FUV layer, this issue is less

clear however. While there will be no interaction with the mid-plane from an FUV layer for these

simulations, buoyancy still likely plays an important role, which implies that one cannot treat each

layer independently, even without an FUV layer.

Furthermore, our results (particularly the second and fourth conclusions above) are quite

relevant to recent observational (Flaherty et al., 2015, 2017, 2018) and theoretical (Simon et al.,

2017a) results that suggest a picture in which turbulence in the outer regions of protoplanetary

disks is quite weak. If indeed, FUV photons are somehow prevented from reaching the outer disk,

as suggested by Simon et al. (2017a), then the turbulent velocity in the disk is largely set by the

strength of the ambipolar-diffusion-dominated MRI. Considering those simulations without FUV,

δv/cs ∼ 0.01 within the mid-plane region for the most diffusive case and rises up to δv/cs ∼ 0.05 at

|z| ∼ 2.5H, as shown in Fig. 4.5. Given the general trend of increasing δv with |z|, it seems likely

that at larger |z|, the turbulent velocity will be marginally consistent with observations (which

show δv/cs ∼ 0.05–0.1; Flaherty et al. 2017, 2018) at best, though potentially still larger than

observational constraints. In either case, this result indicates that even for very diffusive disks

(which can arise from small grains soaking up charges, or significant reduction of ionizing flux), to

be consistent with observations, one needs to reduce the background magnetic field strength (Bai

and Stone, 2011; Simon et al., 2017a).

In summary, our results provide a more in-depth understanding of turbulence and angular

momentum transport in the outer regions of protoplanetary disks. Not only will this aid in future
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modeling of these disks, but with observations of such systems continuing well into the next decade,

such work is crucial to making progress in comparing theoretical expectations with observational

data.



Chapter 5

Forming Planetesimals in a Disk with Driven Turbulence

5.1 Introduction

Perhaps the biggest problem in planet formation theory is the intermediate regime known

planetesimal formation, where particles must grow from cm size-scales to km size-scales. At micron-

sizes, simple coagulation is fairly efficient at growing grains to larger sizes (Dominik et al., 2007;

Dullemond and Dominik, 2005; Schmitt et al., 1997). Collisions between grains are frequent and

these collisions are more likely to stick grains together than break them apart. This process stops

being efficient around cm size-scales, at which point a particles become more likely to fragment upon

collision Zsom et al. (2010); Birnstiel et al. (2011). A new mechanism is needed to grow particles

to larger than cm-scales, and there is a strict time-constraint on this next growth mechanism due

to the radial drift of particles.

Radial drift is a consequence of the sub-Keplerian rotation of the gaseous component of the

disk. The gas has an outward-declining pressure gradient that gives some support against the

radial force of gravity. This causes the centrifugal force required to balance gravity to be less than

that of an object in orbit, leading to a slower rotation velocity for the gas than orbiting objects.

As a result, all solids in the disk experience a “headwind”, trying to move faster than the gas

they are embedded in. This headwind causes solids to loose angular momentum due to gas drag

and drift inward towards the star, a phenomenon known as “radial drift” (Weidenschilling, 1977;

Takeuchi and Lin, 2002). The speed of the drift depends on the size of the particle considered, with

the highest speeds achieved for particles of roughly 1m in size. At this scale, particles will drift
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inward to the central star in hundreds to thousands of years. This places a strict constraint on the

time-scale over which planetesimal formation process must occur.

A promising mechanism for rapid planetesimal formation is the streaming instability (SI).

This instability, first derived by Youdin and Goodman (2005), is able to concentrate solids that are

aerodynamically coupled to a fluid into streams and clumps. Considerable numerical work has been

done to confirm the SI (Youdin and Lithwick, 2007; Johansen and Youdin, 2007; Bai and Stone,

2010b) and quantify it’s properties (Johansen et al., 2009; Bai and Stone, 2010c; Carrera et al.,

2015). While the properties of the SI depend on several physical parameters including the solid-to-

gas ratio, the friction time for the particles, and the radial pressure gradient of the gas (more on this

in §5.2.3), studies generally find that the SI is able to concentrate particles into clumps with over-

densities of 100-1000 times the background particle density. Very importantly, this concentration

happens on a timescale only an order of magnitude or so longer than the dynamical time Ω−1,

which is faster than radial drift. If the density of the clumps formed is sufficiently high, self-gravity

will take over and collapse the clump down to a gravitationally bound object roughly the size of a

planetesimal. This combination of the streaming instability and self-gravity (SI/SG) has become

the leading candidate for the mechanism of planetesimal formation.

A focus of recent work has been to measure the planetesimal mass spectrum resulting from

the SI/SG mechanism. This mass spectrum is often represented as a simple power law: dN
dM ∝M

−p,

where the power law index p is generally found to be in a range between 1.4 and 1.7. This power law

index is, somewhat surprisingly, largely invariant with respect to the friction time of the particles

(Simon et al., 2017b), the radial pressure gradient (Abod et al., 2018), and the strength of self-

gravity (Simon et al., 2016). These results pose the question: can any effects significantly change

the power law index of this spectrum?

In this chapter, we will explore the effect of a turbulent environment on planetesimal forma-

tion via the SI/SG mechanism. Disks are generally thought to be a turbulent environment, with

viscosity arising from this turbulence playing the dominant role in angular momentum transport

within the disk (Shakura and Sunyaev, 1973). This study will not deal with the physical origin of
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the turbulence, instead choosing to explicitly drive the fluid at an appropriate energy spectrum.

Our investigation has 2 primary goals: 1. Determine the threshold at which the turbulent velocity

dispersion is too high for the SI/SG mechanism be effective. 2. Determine the effect of turbulence

on the mass-spectrum of planetesimals.

This chapter is organized as follows: In §5.2 we describe the numerical algorithm, setup, and

parameter choices for our simulations. In §5.3 we describe the tools and statistical methods we

will use to analyze the planetesimals. §5.4 we measure the effect of Kolmogorov turbulence on

the ability of the SI to form gravitationally-bound clumps. In §5.5, we propose and implement

a new paradigm for measuring planetesimal masses in these types of simulations, and use it to

measure the planetesimal mass spectrum. Finally, in §5.6 we summarize our results and discuss

their implications.

5.2 Methods, Setup, and Testing

In this section we will describe the methods used to perform our coupled particle/gas shearing-

box simulations, define and justify our choices of parameters, and test our scheme for driving

turbulence.

5.2.1 Fluid Algorithm and Parameters

In general, our setup will be very similar to that of recent papers (Simon et al., 2016; Abod

et al., 2018; Bai and Stone, 2010b). We will evolve the equations of hydrodynamics (HD) using

Athena. Athena is a second-order accurate Godunov flux-conservative code that uses third-

order in space piecewise parabolic method (PPM) of Colella and Woodward (1984) for spatial

reconstruction and the HLLD Riemann solver (Miyoshi and Kusano, 2005; Mignone, 2007) to

calculate numerical fluxes. A full description of the Athena algorithm along with results showing

the code’s performance on various test problems can be found in Gardiner and Stone (2005),

Gardiner and Stone (2008), and Stone et al. (2008).

We employ the shearing box approximation to simulate a small, co-rotating patch of an
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accretion disk (Hawley et al., 1995). Taking the size of the shearing box to be small relative to the

distance from the central object, we define Cartesian coordinates (x, y, z) in terms of the cylindrical

coordinates (R,φ, z′) such that x = R − R0, y = R0φ, and z = z′. The box co-rotates about the

central object with angular velocity Ω, corresponding to the Keplerian angular velocity at R0.

The equations governing the gas in these coupled gas-particle simulations in the shearing box

approximation are

∂ρg
∂t

+∇ · (ρgvg) = 0, (5.1a)

∂(ρvg)

∂t
+∇ · (ρvgvg + ¯̄IP ) = ρg

[
2qΩ2x̂i− Ω2zk̂− 2Ωk̂× vg +

(
ρp
ρg

)
vp − vg

tstop

]
. (5.1b)

Here ρg is the gas density, P is the pressure, ¯̄I is the identity tensor, vg is gas the velocity, the shear

parameter defined by q = −d ln Ω/d lnR, which is 3/2 in this case of a Keplerian disk. The last

term in the second equation is the particle feedback term, where ρp is the particle density, vp is the

average particle velocity averaged over a fluid element (i.e. a grid cell), and tstop is the stopping

time for the particles. We will discuss the equations and parameters governing the evolution of

the particles in the next section. Finally, to close the system of fluid equations, we assume an

isothermal equation of state with a constant sound speed cs:

P = ρgc
2
s. (5.2)

We use a standard set of boundary conditions appropriate for the shearing box approximation.

At the azimuthal boundaries we exploit the symmetry of the disk and apply periodic boundary

conditions. At the radial boundaries we apply shearing periodic boundaries, such that quantities

that are remapped from one radial boundary to the other are shifted in the azimuthal direction by

the distance the boundaries have sheared relative to each other at the given time (Hawley et al.,

1995). In the vertical direction, we employ the modified outflow boundary condition of Simon

et al. (2013b), which are the standard outflow boundaries but with the gas density extrapolated

exponentially into the ghost zones. Such outflow boundaries can lead to significant mass loss. To

compensate for this, the density at every point in the box is multiplied by a factor at each time-step

such that the total mass of the box remains constant. In general, these boundary conditions can
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break conservation, so methods described in Stone and Gardiner (2010) are used in order to keep

the correct variables conserved. Furthermore, we employ Crank-Nicholson differencing to conserve

epicyclic energy to machine precision. A full discussion of these methods and Athena’s shearing

box algorithm can be found in Stone and Gardiner (2010).

We run all simulations using a domain size of Lx ×Ly ×Lz = 0.2h× 0.2h× 0.2h, where h is

the scale height, defined here as

h =
cs
Ω
. (5.3)

We assume that the disk is initially in hydrostatic equilibrium. Balancing the vertical component

of gravity from the star with the gas pressure gives a Gaussian density profile:

ρ(z) = ρ0 exp

(
−z2

2h2

)
. (5.4)

We set ρ0 = 1 as the initial density at the mid-plane. We set the constant isothermal sound speed

cs = 1, and choose the angular velocity to be Ω = 1, which gives h = 1.

5.2.2 Particle Algorithm

We co-evolve particles along side the gas using Athena’s hybrid gas-particle scheme as

described in Bai and Stone (2010a). The evolution of the each particle (indexed by i) is given by

∂(v′p,i)

∂t
= 2(v′p,i,y − ηvkep)Ω̂i− (2− q)v′p,i,xΩ̂j− Ω2zk̂−

v′p,i − v′g

tstop
+ Fsg. (5.5)

where the prime indicates a velocity calculated in a frame where the background shear has been

subtracted, vkep is the Keplerian velocity, η is the factor by which the background gas velocity

differs from the Keplerian velocity, tstop is the stopping time, and Fsg is the force due to self-

gravity between particles.

The self-gravity term is calculated in two steps. First, the gravitational potential due to

particle self-gravity (ψp) is calculated by solving Poisson’s equation:

∇2ψp = 4πGρp. (5.6)
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The Poisson equation is solved following the methods described in the appendix of Koyama and

Ostriker (2009). The force on any given particle can then simply be written as

Fsg = −∇ψp. (5.7)

It is important to note that this method for self-gravity prohibits it from acting on distances smaller

than a grid cell. In other words, despite the fact that particles can have any position and are not

restricted to the grid, a clump of particles that collapses due to it’s own self-gravity will not collapse

smaller than about the size of a grid cell. This limitation plays a very important role in interpreting

the results of our study and will be discussed further in the following sections.

5.2.3 Particle Parameters

The behaviour of the streaming instability (SI) and gravitational collapse of particle clumps

is uniquely defined by 4 dimensionless quantities (Youdin and Goodman, 2005; Simon et al., 2016):

the dimensionless stopping time τs, the solid-to-gas ratio Z, the radial pressure gradient parameter

Π, and the dimensionless particle-self-gravity parameter G̃. In this section we will define each of

these quantities and briefly justify our choice for the parameter. As we wish to be able to compare

our results to previous studies, we will generally adopt similar parameters to these other recent

work.

The dimensionless stopping time is defined as

τs = tstopΩ (5.8)

and represents the time-scale for the velocity of a moving object to be significantly affected by

aerodynamic interactions with the gas. Massive objects like planetesimals are not well coupled

to the gas and will have long stopping times (τs � 1). Small objects like dust particles are

nearly perfectly coupled to the gas and have very short stopping times (τs � 1). We choose an

intermediate value τs = 0.3 for all particles in our simulations. While in principle it is possible to

have particles with a distribution of stopping times, using the same value for all particles simplifies

the interpretation of our results.
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The solid-to-gas ratio (or metallicity) is defined as

Z =
Σp

Σg
, (5.9)

where Σp and Σg correspond to the particle and gas surface densities respectively. We take Z = 0.02,

about twice the solar value. Depending on the value of the other parameters, a low metallicity can

prohibit the growth of the SI completely (Bai and Stone, 2010a). We choose a value that permits

the SI in test simulations while still being well within reason.

Protoplanetary disks have an outward-decreasing pressure profile. This pressure gradient

provides a small, radially-inward force on the fluid, but does not act on particles. This additional

radial force on fluid elements causes the fluid of the disk to rotate at sub-Keplerian velocities. As

a result, particles in a disk experience a “headwind”. This effect is usually parameterized by the

parameter Π as follows:

Π = η
vkep

cs
. (5.10)

We take Π = 0.05, a fairly intermediate value relative to previous studies which should be in a

reasonable range based on most disk models (Abod et al., 2018; Bai and Stone, 2010b).

Finally, G̃ denotes the relative strength of particle-self-gravity as compared to tidal shear:

G̃ =
4πGρ0

Ω2
. (5.11)

The interpretation here is that changing the value of G̃ corresponds to changing the gas density

(and particle density along with it, assuming constant Z), or changing Ω (ie. changing the radius

within the disk). We take G̃ to be 0.1.

These parameters lead to a natural choice for a mass scale: the “Gravitational Mass”, given

by

MG =

√
2

2
π9/2Z3G̃ρ0h

3. (5.12)

Physically, this corresponds to the mass enclosed by a circle with surface density Σp and a diameter

equal to the critical Toomre wavelength for gravitational collapse. Unless otherwise stated, all

masses throughout the paper will be in units of MG.
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5.2.4 Stirring Turbulence: Spectrum of Velocity Perturbations

In order to simplify this problem as much as possible, we will be agnostic to the source

of the turbulence in our simulations and will directly perturb the velocity field of the fluid to

provide turbulence. In order to calculate the velocity perturbations to be applied, we must consider

the desired power spectrum of the fluid’s velocity field. In traditional ”Kolmogorov” turbulence

(Kolmogorov, 1941), the power spectrum of the resulting velocity field scales as a power law with

the spatial wavenumber k as follows:

E1(k) ∝ k−p, p = 5/3 (5.13)

where k is the magnitude of the wavenumber (i.e. |k| =
√
k2
x + k2

y + k2
z in 3D Cartesian coordinates)

and E1(k) is an linear energy density in k-space such that E1(k)dk has units of energy.

Our goal is to set up a turbulent stirring scheme such that we can control the power law index

p of the power spectrum. In reality, we can only control the spectrum of the velocity perturbations;

the resulting power spectrum of the fluid will be some convolution of the seed perturbations and

the turbulent cascade. We will implement a scheme similar to the one used by Dubinski et al.

(1995). Our plan will be to calculate the amplitude of each mode in 3D k-space (kx, ky, kz), assign

each mode a random phase between 0 and 2π, then take the inverse transform of these amplitudes

to find the velocity perturbations to be applied to the fluid. The amplitudes in k-space will be

given by

A(kx, ky, kz) = (rand)(|k|)−b, (5.14)

where A is the amplitude of the mode and ”rand” is a random number drawn from a normal

distribution. The power law index b can be related to p via dimensional arguments. Starting with

E1(k) ∝ k−p (5.15)

and multiplying both sides by dk yields an expression with units of energy:

E1(k)dk ∝ k−pdk. (5.16)
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Considering we are assigning velocity amplitudes in 3D k-space, we need to convert this to be a

volume density (E3) instead of a linear density:

E1(k)dk ∝ E3(kx, ky, kz)dkxdkydkz ∝ E3(k)(4πk2)dk. (5.17)

By inspection, the power law index for E1 must be 2 greater than the power law index for E3:

E3(k) ∝ k−p−2. (5.18)

This is very close to the quantity we want to set the amplitude of the perturbations, but we are

setting them in velocity space, not energy space:

√
E3(k) ∝ A(kx, ky, kz). (5.19)

where A is the amplitude of a velocity mode in 3D k-space, which is by definition a volume-density

in k-space. Finally, combining the two previous proportionalities yields

A ∝ k−b, b =
p

2
+ 1. (5.20)

So if we want E1(k) ∝ k−5/3, then we need to set the velocity modes with amplitude A ∝ k−11/6.

We assign these amplitudes in a 3D lattice for all (kx, ky, kz) such that |k| is between klow

and khigh. We define klow to be the wavenumber such that exactly one mode fits in the box and

khigh to correspond to the Nyquist wavenumber for the given resolution: khigh = (Nx/2)klow.

After these amplitudes are defined in k-space, the inverse Fourier transform is taken to

calculate velocity perturbations with the desired spectrum. The total energy of these perturbations

is then scaled such that the energy injection rate throughout the simulation will be a constant:(
dE
dt

)
drive

.

5.2.5 Stirring Turbulence: Magnitude of Velocity Perturbations

The energy injection rate mentioned in the previous section is our direct control parameter,

but we really want to be able to specify the amount of turbulence in terms of the α parameter
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(Shakura and Sunyaev, 1973). Throughout this chapter, we will very simply calculate this effective

α parameter as follows:

α =
∑

i=x,y,z

(
〈|δvi(x, y, z, t)|〉

)2
, (5.21)

where

δvi(x, y, z, t) ≡ vi(x, y, z, t)− 〈vi〉xy(z, t). (5.22)

The brackets indicate a spatial average, with the xy subscript denoting an average over the x-y

plane. The over-bar indicates an average over time. Note that we are working in units such that

cs = 1, so the velocities in the equations above are already non-dimensionalized. If this was not

the case, all velocities would need to be normalized by cs.

In order to drive our simulations at given effective α parameter, we need to measure the

relationship between the energy injection rate (the parameter we control directly) and the observed

δv of the box. In general, this energy injection rate is in balance with energy lost due to numerical

dissipation. In this simple case the energy injection rate - δv scaling would match the naive guess

based on an energy argument:
(
dE
dt

)
drive

∝ (δv)2. However, we also expect to see outflows through

the top and bottom boundaries of the box (Bai and Stone, 2013a; Ogilvie, 2012; Li et al., 2018),

which add another sink for kinetic energy. To complicate further, we observe that the strength of

the outflow scales with δv. Thus, runs with more turbulence have proportionally more energy loss,

introducing a slight non-linearity into this relation.

We adopt a rather brute-force, yet effective, method to understand the energy injection rate

- δv scaling over the region of parameter space we wish to study. We perform a series of tests at low

resolution in which energy injection rates are varied by factors of 10 over 5 orders of magnitude.

Once each simulation reaches a saturated state, the average δv is calculated. The resulting relation

is shown in figure 5.1. As demonstrated in the figure, we create a relation between the energy

injection rate and the resulting velocity perturbation by linearly interpolating between these 5 data

points in log-space. This interpolation tells us the appropriate
(
dE
dt

)
drive

parameter in order to

achieve the desired δv (ie. α) in the saturated state of our high resolution simulations.
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Figure 5.1 The relationship between the driving amplitude dE/dt and the resulting average velocity
perturbation δv. Each black point is generated by averaging over a low-resolution simulation.
The grey lines show an linear interpolation between the black points in log-space. The red lines
demonstrate how the appropriate driving rate is found to produce a simulation with δv = 10−2, ie.
α = 10−4.
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5.2.6 Characteristics of Driven Turbulence

Before considering simulations with particles, we will characterize the properties of our box

of driven turbulence to ensure that our driving algorithm meets several requirements:

• The turbulence is isotropic. The space-time-averaged perturbations of the 3 components

of the velocity are the same.

• The turbulence is homogeneous. The time-averaged velocity perturbations are the same

throughout the box.

• The turbulence has the desired spectrum. The velocity perturbations calculated using the

methods described in §5.2.4 must translate to the intended turbulent power spectrum in

the shearing box.

It is important that we do these tests in the absence of particles for several reasons. First, it

is not obvious that the arguments leading to the Kolmogorov power spectrum hold with particles

feeding back on the gas. In addition, particles tend to settle to the mid-plane, making the physics

of the gas inherently inhomogeneous. Finally, the streaming instability will itself drive turbulence

to some degree, and it is not necessarily true that this turbulence will have a Kolmogorov spectrum.

Figure 5.2 shows a vertical profile of each component of the velocity perturbation averaged

over the horizontal directions and from t = 5Ω−1 to 10Ω−1. While we acknowledge that this is a

fairly short time-average, the box saturates with turbulence quite quickly with this driving scheme

and the majority of our computing time was reserved for simulations with particles. The profile

for each component is relatively flat, confirming that our driving scheme produces homogeneous

turbulence. The 3 components of the velocity are also roughly equal throughout the box, confirming

isotropy, with the possible exception of δvy. We find it plausible that this slight anisotropy in the

y-direction (∼ 10%) is due to the shear velocity in the the box, which is also in y-direction and

introduces an inherently anisotropic effect.

We will now calculate the perturbed kinetic energy power spectrum of the fluid. We will
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Figure 5.2 A demonstration that our stirring algorithm produces a box of homogeneous, isotropic
turbulence. Data is taken from simulations hr moderate np. Time averages are taken from 5Ω−1

to 10Ω−1. The dashed horizontal line shows the expected δv given the strength of the driving.
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follow the methods described in Simon et al. (2009). The Fourier transform of a quantity f(x) is

represented by f̃(k) and is defined as usual:

f̃(k) =

∫ ∫ ∫
f(x)e−ik·xd3x. (5.23)

The kinetic energy density power spectrum is then calculated as follows:

PS

(
1

2
ρ|δv|2

)
(k) =

1

2

∑
i=x,y,z

| ˜√ρδvi(k)|2 (5.24)

In order to arrive at a spectrum that represents a linear density in k-space, we integrate the power

over spherical shells of constant |k|:

PS

(
1

2
ρ|δv|2

)
(k) =

∫
PS

(
1

2
ρ|δv|2

)
(k) 4πk2dk. (5.25)

Here, the convention is that k (not bold-ed) is the magnitude of the vector k. We will plot an

“compensated” version of this power spectrum (Lemaster and Stone, 2009), in which the power is

multiplied by kp, where p is the expected power law index of the spectrum (p = 5/3 in our case).

When plotted in this way the spectra will appear flat if following the power law and any deviations

from this power law become more obvious. After compensation, we normalize the spectra such that

the average is 1.

The power spectra for simulations without particles can be seen in figure 5.3. We see that the

spectra for 3 different driving levels are roughly the same, with slight deviations at large scales. The

compensated spectra show the typical signatures of turbulence: flatter than the expected power

law at low k (appearing upward sloped here), following the expected power law at intermediate k,

and steeper than the expected power law at high k as we approach the dissipation scale. In general,

the mapping of the spectrum of the artificially driven velocity perturbations to the actual observed

perturbations (which are simultaneously undergoing the turbulent cascade) is a very interesting

problem. While this may merit further study and characterization in the future, we are satisfied

that these spectra are Kolmogorov-like enough for our purposes in this study.
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Figure 5.3 A demonstration that our stirring algorithm produces the roughly same spectrum for 3
different levels of driving, and that the spectrum roughly follows a p = −5/3 power law over the
inertial range. The power plotted here is normalized such that the mean is zero. The power is also
compensated with a k ∝ −5/3 dependence, such that a −5/3 power law would appear perfectly
horizontal on this plot. Time averages are taken from 10Ω−1 to 50Ω−1.
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5.2.7 Varied Parameters and Table of Simulations Performed

We perform a series of simulations with two primary goals:

• Determine the ability of the streaming instability to form gravitationally-bound particle

clumps in the presence of Kolmogorov (p = 5/3) turbulence of varying strength.

• In cases which form gravitationally-bound clumps, determine the resulting mass-spectrum

of the clumps that form and compare this spectrum to the case with no driven turbulence.

In order to achieve these goals, we set up a suite of simulations that vary the strength of the driven

turbulence (αdrive). Table 5.1 shows the simulations performed and their parameters. We start

each simulation with no particle self-gravity. During this first phase, the streaming instability will

concentrate particles into clumps (to the extent allowed by the turbulence). We find that 20Ω−1 is

enough time to let the SI saturate, noting that the maximum particle density has reached a roughly

steady state by this point. After 20Ω−1, self-gravity is turned on and any clumps that are dense

enough will collapse due their own self-gravity. We will then measure the characteristics of the

resulting clumps using the methods explained in the next section.

5.3 Analysis Techniques for Clumps and Particles

In this section, we will describe the tools that we will use to measure the characteristics of

clumps in our simulations. This includes identifying gravitationally-bound clumps and carefully

measure the statistics of the gravitationally-bound clumps.

5.3.1 Finding Gravitationally-Bound Particle Clumps

As described in the introduction, modeling planet formation is a many-stage process, starting

with micron-sized grains and ending with Earth-sized objects. We study an intermediate regime

here, hoping to end up with a shearing box full of planetesimal-sized objects. The most useful

way to characterize the properties of these objects to pass along to the next stage of modeling is

to measure the mass-spectrum of the planetesimals that form. This spectrum can also provide a
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Label αdrive resolution Number of Particles tmax

hr control 0.0 5123 5123 29
hr strong 10−3 5123 5123 40
hr moderate 10−3.5 5123 5123 38
hr weak 10−4 5123 5123 30

hr strong np 10−3 5123 0 10
hr moderate np 10−3.5 5123 0 10
hr weak np 10−4 5123 0 10

lr control 0.0 1283 1283 50
lr strong 10−3 1283 1283 50
lr moderate 10−3.5 1283 1283 50
lr weak 10−4 1283 1283 50

lr strong np 10−3 1283 0 50
lr moderate np 10−3.5 1283 0 50
lr weak np 10−4 1283 0 50

Table 5.1 Simulation Parameters.
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useful comparison to the mass spectrum of objects in the asteroid and kuiper belts, which have

been generally found to have a steeper spectrum than is explainable the by the SI (Morbidelli et al.,

2009; Fraser et al., 2010, 2014).

To identify gravitationally bound clumps, we use PLanetesimal ANalyzer (“PLAN” for short),

a code developed by Rixin Li (Li, in prep.). We will briefly summarize the algorithm here. PLAN

uses the same approach as HOP (Eisenstein and Hut, 1998), a code used to identify dark matter

halos in simulations of galaxies and galaxy clusters. First, particles in dense regions are identified

using a Barnes-Hut tree algorithm (Barnes and Hut, 1986) similar to those used in n-body sim-

ulations, which is capable of grouping together physically related particles. For particles whose

immediate surroundings have a particle density greater than a certain threshold, the algorithm

looks for each particle’s densest neighbor. This process is repeated, creating a chain of particles

with each in a denser region than the last, until a true peak is reached. All particles that get

mapped to the same peak are now tentatively considered a single clump. Clump’s whose mass is

smaller than the mass required to achieve a Hill radius of at least one grid cell are discarded. The

mass of each clump is then measured by drawing larger and larger spheres centered on the peak.

For each sphere, the interior particle density is calculated. If this average density exceeds the Roche

density, given by

ρr
ρ0

=
9

G̃
, (5.26)

the clump will be bound by it’s own self-gravity Johansen et al. (2012). The mass contained in then

defined to be the particle mass contained within the largest possible sphere such that the internal

particle density exceeds the Roche density. We note that the Roche density in our simulations

is about 90 ρ0. If turbulence prevents clumps from achieving this density, we expect that this

algorithm will find no clumps at all.

5.3.2 Statistics of the Planetesimal Mass Spectrum

Even with a rigorous algorithm to identify clumps, there is no obvious or universal way to

represent the statistics of these clumps. The mass-spectrum of planetesimals has been represented
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Figure 5.4 Mid-plane slices of the particle density at the onset of the streaming instability in a
simulation with no driven turbulence (hr control).
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in many different ways by different authors, usually taking the form of some variation on a power

law. Our plan will be to try several fits and select the best model using an information criteria

analysis, following the general method of Li, in prep.

To start, we define the differential mass-histogram of the planetesimals following the conven-

tion of Simon et al. (2016):

dN

dMp

∣∣∣∣
i

=
2

Mp,i+1 −Mp,i−1
. (5.27)

where Mp is the planetesimal mass, indexed by i. We also define the cumulative histogram N(> M)

to be the number of planetesimals with mass greater than M.

First, we will consider a simple power-law fit. While this is usually not a particularly good

fit to the spectrum, it has been used by authors in the past and will allow for direct comparison

to these studies (Abod et al., 2018; Simon et al., 2016; Schäfer et al., 2017; Simon et al., 2017b).

It is also very simple to calculate and gives a useful first-order look at the data. In this case, the

differential mass distribution represented as:

dN

dMp
= C1M

−p
p (5.28)

where C1 is a normalization factor and p is the power law index of interest. Note that earlier in

the paper we used “p”, as the power-law index for turbulence, but from this point forward it will

refer to this power law index unless otherwise noted. We will use a maximum likelihood estimator

derived by (Clauset et al., 2009) to determine the power law index and associated uncertainty:

p = 1 + n

[∑
i

ln

(
Mp,i

Mp,min

)]
, σp =

p− 1√
n
. (5.29)

As seen in figure 5.5, the mass-spectra tend to have a downward curvature as M increases,

motivating power law variations that are tapered, truncated, or piece-wise. In this study we will

consider 6 fits to the spectrum (including the simple power law). These functions are usually

expressed as cumulative probability P (> M), which can be trivially converted into a cumulative

histogram (N(> M)) by multiplying by the number of planetesimals. Here, we will give the

functional form and free parameters for all the fits, but will refer the reader to the original works

for the physical motivations and subtleties of each function (also see Li, in prep. for a review).
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Figure 5.5 Typical differential and cumulative mass-histograms of the planetesimals. Data shown
is from hr control at t = 27Ω. The black dashed lines show a simply power law fit to the data.
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The Simple Power Law (SPL) has only one parameter: α. Note that this is the same as the simple

power law fit to the differential histogram with α = p− 1.

P (> M) =

(
M

Mmin

)−α
(5.30)

The Simply Tapered Power Law (STPL, Abod et al. (2018)) has 2 parameters: α and Mexp.

P (> M) =

(
M

Mmin

)−α
exp

[
− M −Mmin

Mexp

]
(5.31)

The Variably Tapered Power Law (VTPL, Schäfer et al. (2017)) has 3 parameters: α, β, and Mexp.

P (> M) =

(
M

Mmin

)−α
exp

[
−
Mβ −Mβ

min

Mβ
exp

]
(5.32)

The Broken Cumulative Power Law (BCPL, Li, in prep.) has 3 parameters: α1, α2, and Mbr.

P (> M) =


(

M
Mmin

)−α1

M < Mbr

M−α2

M
α1−α2
br M

−α1
min

M > Mbr

(5.33)

The Truncated Power Law (TPL, Schäfer et al. (2017)) has 2 parameters: α and Mtr.

p(M) =

(
α

M

)
(M/Mmin)−α

1− (Mtr/Mmin)−α
(5.34)

The Broken Power Law (BPL, Li, in prep.) has 3 parameters: α1, α2, and Mbr.

p(M) =


C0
M

(
M

Mmin

)−α1

M < Mbr

C0
M

(M/Mmin)−α2

(Mbr/Mmin)α1−α2
M > Mbr

, C0 =

[
1

α1
+

(
1

α2
− 1

α1

)(
Mbr

Mmin

)−α1
]−1

(5.35)

We fit all of these models using a maximum likelihood method based on the likelihood func-

tions given in Li, in prep. These functions allow us to determine the likelihood of a model with

some given set of parameters denoted as θ. The parameters of maximum likelihood are then be de-

termined using a nested-grid-search algorithm. To summarize, this algorithm starts by calculating

the likelihood of the model for many parameter sets θ, arranged on large, widely-spaced grid. This

first iteration finds the general vicinity of the maximum likelihood model in this parameter space.

The search is then refined to a smaller grid with tighter spacing, centered around the maximum



140

likelihood parameters from the first search. This process is repeated 5 times, yielding a maximum

likelihood parameter vector θ in which each parameter is optimized with an accuracy better than

a part in 1000.

We use a non-parametric bootstrapping method to determine the uncertainties in the param-

eters (Efron and Tibshirani, 1994a; Burnham and Anderson, 2002a). This involves re-sampling the

sample of clump masses from a given simulation 1000 times and then using the nested-grid-search

to determine the maximum likelihood parameters for each re-sampling. This generates a 1000 point

distribution for each parameter. The 1σ confidence interval is then is then defined to be the region

between the 16th percentile and 84th percentile of this distribution for each parameter.

We evaluate the goodness of fit of the various models using Bayesian and Akaike information

criteria (Kass and Raftery, 1995; Akaike, 1974). These criteria account for the number of fit

parameters in each model, giving an advantage to simpler models. They are defined as follows:

BIC = K lnN − 2 lnL, (5.36)

AIC = 2K − 2 lnL, (5.37)

where K is the number of parameters in the model, N is the number of data points (clump masses in

this case), and L is the likelihood of the maximum likelihood model. These values do not bear much

meaning in isolation, as the likelihood values are affected by arbitrary constant and the sample size.

To define a metric that has physical meaning, we measure the differential between the model with

the minimum BIC/AIC and all other models, defined as

∆BIC = BIC− BICmin, (5.38)

∆AIC = AIC−AICmin. (5.39)

With this definition, the best model will have ∆BIC and/or ∆AIC = 0. In most cases we find

that both criteria identify the same best model. The other models will have some positive value

for these criteria, with higher values corresponding to worse models. While these criteria are

somewhat abstract, as a general rule we consider there to be at least some evidence for models with
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∆BIC(∆AIC) between 0 and 10, and essentially no evidence for models with values greater than 10.

For a more nuanced interpretation of these criteria, we refer the reader to Burnham and Anderson

(2002a).

5.3.3 When to Measure the Clumps

A issue that is not discussed enough in the literature is the somewhat arbitrary choice of

at what point in time to measure the statistics of the planetesimals. In general, two contrasting

factors must be weighed:

(1) The behaviour that our simulations should accurately capture is the clumping of the stream-

ing instability and subsequent collapse or non-collapse of each of those clumps in isolation.

This is the mass-spectrum that we want to measure. However, not all SI seeded clumps

collapse instantly when self-gravity is turned on. Even with no driven turbulence, the first

clumps become gravitationally bound after a dynamical time or two, and the number of

clumps continues to increase for roughly 10 dynamical times. Giving the clumps more time

to form increases the number of clumps present and makes our statistics more robust.

(2) After some time, the number of clumps will saturate and stay roughly steady while the total

mass of all clumps will continue to increase as planetesimals accrete and merge. A major

difficulty here is that this phase of evolution is not entirely physical. We are restricted by

the grid-scale: in general, clumps will not collapse further than approximately the grid-

scale because there is no sub-grid self gravity. Even at a respectable resolution of 5123 in a

box that is 0.2h on a side, the grid-scale is ∼ 4 ∗ 10−4h. At a radius of 10AU in a disk with

an aspect ratio of h/r = 0.05, this corresponds to a distance of ∼ 3 ∗ 104km. This scale is

about 5 Earth radii, and is on the order of 1000 times larger than a typical planetesimal

(∼ 1 to 100 km). Due to this non-physical scale, we do not expect our simulations to

correctly simulate the evolution of planetesimals after their formation.

The selection of the time to measure the clumps’ statistics involves weighing these two factors:
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we must allow enough clumps to form to do good statistics, but we really don’t want to capture

the post-formation behaviour of the clumps. As a result, we will try to select a time around or

slightly before the number of clumps saturates, but will keep in mind that these statistics are time-

dependent and will comment on their time-dependence throughout the analysis. Additionally, in

§5.5 we propose a better way of measuring the initial masses.

5.4 Results I: Snapshots

In this section we will perform a snapshot-based analysis of the simulations, investigating the

effect that the turbulence has on the formation of clumps. Note that throughout the rest of this

paper, all times will be defined such that the time at which self-gravity is turned on is defined to

be 0.

5.4.1 The Turbulence Threshold for Planetesimal Formation

After running our high resolution simulations through the PLAN algorithm, we find that

some amount of planetesimals (or “clumps”, these words are being used interchangeably in this

work) form in every simulation except one. No gravitationally-bound clumps in the simulation

being driven at α = 10−3 after 20 Ω−1 with self-gravity on. While this is an incredibly simple

and qualitative result, it is probably the most important finding of this work. The simulation

being driven at α = 10−3.5 does form gravitationally bound clumps, meaning that the threshold

for turbulence to disrupt planetesimal formation via the streaming-instability/self-gravity (SI/SG)

mechanism is somewhere between α = 10−3.5 and 10−3. Equivalently, the threshold in terms of

δv/cs would be between 0.018 and 0.032.

This threshold is at a fairly modest value of α, making the implications very interesting. In

general, we expect a fully MRI active disk (ionized throughout) to easily exceed this threshold.

However, for most radii within a disk, we expect non-ideal MHD effects to damp the MRI at the

mid-plane, creating a dead zone. The mid-plane turbulence in dead zones will depend on several

factors including the column density of the disk and ionization state of the gas, but for most disks
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we would expect a level of turbulence less than this threshold, permitting planetesimal formation.

We save a full discussion of the consequences and implications of this threshold for §5.6.

5.4.2 Mass Fraction in Planetesimals

To quantify the extent to which planetesimals form, a simple and useful metric is the total

amount of mass that ends up in planetesimals relative to the total mass of all particles in the simu-

lations: Mplan/Mpar. We find that this ratio is significantly effected by the presence of turbulence.

Table 5.2 shows a summary of the results from our simulations, including the approximate mass

fraction. We should note that this metric suffers from the time-dependence problem explained in

§5.3.3, making it difficult to decide when to measure it. For this section, we select the snapshots to

measure by-eye, with these snapshot times being listed in table 5.2. Figures 5.6 and 5.7 show the

time-evolution of the planetesimal mass fraction and demonstrate the time at which we choose to

measure.

In our control run, about 10% of the mass is contained in planetesimals at the fiducial time,

compared to 6% and 2% at αdrive = 10−4 and 10−3.5 respectively. These smaller mass ratios are

despite waiting longer to make the measurement in the runs with turbulence. This result begs the

question: does turbulence cause smaller clumps to form, or less clumps? The number of clumps

measured is also shown in table 5.2, and seems to scale fairly directly with the mass fraction. This

indicates that all of the simulations tend to form the same size clumps on average, with the major

difference being the number of clumps formed.

5.4.3 Differential Mass Spectra and Simple Power Law Fits

We will now take a first look at the mass spectra by fitting a simple power law to the

differential mass histogram using the maximum likelihood estimator defined in §5.3. These fits to

the control and fiducial runs are shown in figures 5.6 and 5.7 respectively, along with the time-

evolution of the power law index.

As demonstrated by the time-evolution of the power law indices, this is a difficult measure-
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Figure 5.6 An analysis of our control run: hr control, which does not have any driven turbulence.
The top 3 plots from top to bottom show: the time evolution of the slope of the simple power law
fit to the differential histogram (with a 1σ error bar), the mass fraction of planetesimals, and the
number of gravitationally bound clumps. The horizontal dashed lines roughly show the range of
power law indices determined by previous studies. The dashed blue line shows the time at which
we choose to measure the spectrum, with that spectrum shown at the bottom in blue. Similarly,
the red line shows where the the spectrum shown in red is taken. The oval denotes the intermittent
population.
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Figure 5.7 An analogous figure to the previous one for our fiducial run: hr moderate.

Label αdrive tfirst tsnap Nclumps Mclumps/Mp SPL slope

hr control 0.0 1.6 5.3 92 10% 1.462± 0.048
hr weak 10−4 2.0 9.1 54 6% 1.476± 0.065
hr moderate 10−3.5 5.0 16.7 20 2% 1.586± 0.131
hr strong 10−3 never n/a n/a 0% n/a

Table 5.2 High level summary of clumping behaviour in high resolution simulations. tfirst denotes
the time of the formation of the first clump. tsnap shows the time at which we measure the values
for the next 3 columns.
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ment to make, especially picking a frame to measure by-eye. Initially, while there are only a handful

of clumps in the box, the slope is quite steep. The slope comes down rather quickly and approaches

a somewhat constant value, although even this is quite sloppy. In figure 5.6, the slope seems to

almost oscillate between about 1.5 and 1.3. This behaviour is explained by the existence of a low-

mass population of planetesimals, circled in the red histogram but absent from the blue one. This

population is intermittent, with clumps in this regime not being consistently identified by PLAN.

As a result, it is difficult to trust that these are bonafide clumps that should be included in the

analysis, so we try to select a frame in which this population is minimized. This is still somewhat

subjective though, and is part of the reason we will propose a different approach to the analysis in

the §5.5.

In this snapshot-based analysis, we find that the presence of turbulence does not change the

power law index of the spectrum of planetesimals that form due to the SI/SG mechanism. The

power law indices, shown in table 5.2, are all consistent with each other to 1σ. Furthermore, these

indices are also consistent with previous studies of streaming instability clumping that do not have

driven turbulence (Schäfer et al., 2017; Simon et al., 2016; Abod et al., 2018; Simon et al., 2017a),

who find p values in a range from 1.4-1.7.

5.4.4 More Sophisticated Fits to the Cumulative-Mass-Spectrum

We will now try a several different functional forms, defined in §5.3, to fit the cumulative-

mass-spectrum. The spectra and fits are shown in figure 5.8, with data again being taken from the

snapshot times in table 5.2. We use the information criteria analysis to determine the best models

and report these models, along with their parameters, in table 5.3.

The spectra in the simulations with no turbulence and weak turbulence favor the broken

power law model based on the information criteria, while the moderate turbulence simulation

favors more “straight” power laws like the TPL and SPL. However, if we compare like-models

across the 3 simulations (for example the STPL and BCPL), we see that the distributions are

generally consistent with each other. This is, in part, due to the relatively large errors on the
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parameters resulting from the low sample size, in particular in the case of moderate turbulence.

So while the favored models may be different, this consistency in parameters leads us to believe

that these distributions are not physically different from one another. Furthermore, these results

are consistent with previous studies that did not include forced turbulence. Abod et al. (2018) fits

the STPL to their distribution, and for our choice of the Π parameter finds that α = 0.29 ± 0.05

and Mexp = 0.35± 0.05, both of which are consistent with all of our simulations. These results in

the presence of turbulence provide even more evidence for a sense of “universality” (Simon et al.,

2017a) to the mass-spectrum. While the number of clumps that form may change, the shape of the

spectrum does not.

5.5 Results II: Clump Tracking

As pointed out in the previous 2 sections, there are problems with drawing conclusions looking

at only single snapshots (or “frames”) of these simulations. In this section, we propose a new

paradigm for measuring the mass spectrum of the clumps that should, in principle, give the most

reliable results for the mass spectrum. We develop an algorithm to track clumps from one frame to

the next and create a mass-history for each clump. From this data, we can then look at every clump

that ever existed in the simulation and measure it’s mass *at the time of formation*. Thus, we

can truly measure an initial-mass-spectrum that does not include any non-physical post-formation

accretion or merger physics.

5.5.1 Methods and Algorithm

Tracking clumps in this way is a non-trivial problem. PLAN can output lists of the particles

belonging to each clump it finds, but does not use a consistent clump labeling scheme from frame

to frame. Thus, at each frame we are provided a list of clumps, and a list of particles belonging

to each clump, but no innate way to say that a clump in one frame is the same clump seen in a

previous frame. We develop an algorithm to look through these particle lists and track clumps over

time, outlined as follows:
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Label Best Fit By... Parameters

hr control

BPL

(BCPL)

(STPL)

α1 = −0.48+0.29
−0.20 α2 = 1.25+0.52

−0.14 Mbr = 0.14+0.10
−0.04

α1 = 0.283+0.083
−0.063 α2 = 1.18+0.38

−0.19 Mbr = 0.100+0.027
−0.052

α = 0.15+0.12
−0.06 Mexp = 0.261+0.087

−0.095

hr weak

BPL

STPL (∆IC = 9.2)

(BCPL)

α1 = −0.80+0.38
−0.25 α2 = 1.48+1.1

−0.21 Mbr = 0.15+0.14
−0.06

α = 0.09+0.19
−0.13 Mexp = 0.23+0.20

−0.12

α1 = 0.21+0.15
−0.03 α2 = 1.19+0.94

−0.05 Mbr = 0.082+0.050
−0.028

hr moderate

TPL

STPL (∆IC = 2.5)

SPL (∆IC = 2.9)

BCPL (∆IC = 6.4)

α = 0.26+0.15
−0.23 Mtr = 0.98+0.00

−0.43

α = 0.35+0.14
−0.18 Mexp = 0.37+0.19

−0.23

α = 0.59+0.13
−0.06

α1 = 0.28+0.15
−0.03 α2 = 0.91+0.38

−0.34 Mbr = 0.045+0.069
−0.021

Table 5.3 Summary of fits to the cumulative mass spectrum of planetesimals based on single snap-
shots from our high resolution simulations. ∆IC denotes the average of the two information criteria
considered. We give the parameters for the STPL and BCPL for all runs regardless of ∆IC as a
way of comparing from run-to-run and because the interpretation of their parameters is intuitive.
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Figure 5.8 Cumulative spectra and models for snapshots of hr control, hr weak, and hr moderate
from top to bottom. Fit parameters to the best models can be found in 5.3. The square points
show the characteristic mass scale relevant to each fit. The bottom histogram shows the true values,
with each plot above offset by a factor of 10 for convenient visualization.
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(1) At the starting frame, read in the particle lists corresponding to each existing clump and

give each clump an internal ID that will be consistent from frame to frame.

(2) Read in the particle lists for each clump in the following frame. For each clump in the

current frame, count the number of overlapping particles of each clump in the new frame.

This presents several possible outcomes:

• Case A: Only one new-frame clump has overlapping particles with the prior clump.

We identify these as the same clump and update the clump’s particle list with the

new-frame particles.

• Case B: Multiple new-frame clumps have overlapping particles with the prior clump,

indicating there has been a split of some sort. In this case, we identify the clump

with more overlapping particles as the same clump and update the clump’s particle

list with the new-frame particles. If the other clump with overlapping particles is

newly-formed this frame and more than 50% of it’s particles came from the parent

clump, it is flagged as a “splitter”. We will track this clump from this frame on, but

it will not be counted towards the statistical analysis.

• Case C: No new-frame clumps have overlapping particles with the prior clump. The

clump has “disappeared”. It could have been destroyed by turbulence or an interaction

with other clumps, or it could have been very marginally gravitationally bound in the

first place such that PLAN would identify it as gravitationally bound in one frame,

but not the next. This happens relatively frequently. In this case, we do not match

this clump with any new-frame clumps and do not update it’s particle list. However,

we will continue to look for this clump in subsequent frames with the old particle list.

(3) At this point we have mapped clumps that existed in the previous frame to the new frame.

Now, we need to deal with new clumps (ie. clumps that are “unclaimed” by clumps that

existed in the previous frame). We read in the particle lists for these new clumps and will

look for their matches in subsequent frames.
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(4) Continue to step through the frames by repeating steps 2 and 3.

This scheme is illustrated graphically in figure 5.9. We would like to emphasize that measuring

initial masses with this method is able to solve 3 problems stemming from the artificially large size

of clumps in these simulations:

(1) Accretion: After formation, clumps will accrete particles at a super-physical rate. Being

able to look only at the initial mass ignores this accretion.

(2) Mergers: Clumps will merge at an enhanced rate. If two clumps merge, a snapshot would

count them as one large clump. In our tracking method, we measure the initial formation

mass of the two separate clumps.

(3) Splits: If a clump was able to fully collapse, one would expect the rate of clumps splitting or

fragmenting to be quite low. However, we see it quite often with our artificially large clumps.

Our algorithm is able to ignore clumps that formed as the result of a split, measuring only

the initial mass of the parent clump.

5.5.2 Results from Clump Tracking

In this section we repeat a a very similar analysis to section §5.4, only this time using only

the initial masses of the planetesimals and ignoring clumps that formed from a split. With this

procedure we not longer have to somewhat arbitrarily select a snapshot by-eye, making the analysis

more robust. Figure 5.10 shows the cumulative spectra along with the series of models we fit to it.

The model parameters are given in table 5.4.

First we will just consider the effect of this analysis on the distribution in the control simu-

lation. Comparing to the snapshot analysis, we see that the masses of the clumps have generally

decreased by a factor of 3 or 4, with the average clump mass changing from 0.55 to 0.18MG. The

characteristic masses found by the models change by similar factors as well. This is quite signifi-

cant, and implies that previous studies have over-predicted the masses of planetesimals formed by
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Figure 5.9 An illustration of our particle tracking scheme. The example shown here is intended to
be demonstrative of our scheme and does not represent actual data from a simulation. Each circle
represents a gravitationally-bound clump. Red corresponds to a new clump, gray to a previously
found clump that was identified again, white to a clump that was not found (but will continue to
be looked for in future frames), and blue to a new clump that formed from a split. Clumps are
consistently labeled from frame to frame. Clumps that merge are given 2 labels and are continued
to be tracked as both clumps. In taking statistics, we use the masses of all of the red clumps.
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the SI/SG mechanism due to super-physical accretion and merging. This is well quantified by α1

of the BCPL model shown in the tables, which changes from 0.283 in the snapshot for the control

run to 0.065 with then new analysis. In fact, the low-mass slopes of the BCPL are all within a few

σ of zero. This effect is mostly due to the removal of clumps that form as the result of splits, which

are a non-physical process in these simulations and lead to an over-abundance of planetesimals at

the low-mass end of the spectrum.

We will now consider the original point of this study using this new analysis: does turbulence

change the mass-spectrum of planetesimals? Inspecting the parameters in table 5.4, we find that

the clump tracking results generally confirm the null result found in the previous section. In this

case, the clumps in each simulation favor a broken power law description, and the parameters of

the BPL are consistent across the 3 simulations with the exception of Mbr, which shows a fairly

unremarkable deviation for the moderate turbulence case in comparison to the control.

While the nature of this new analysis technique makes meaningful comparisons to previous

studies somewhat moot (as they did a different analysis), we would like to emphasize that it

is possible that this measurement of strictly the initial masses might change the conclusions of

prior work on the SI/SG mechanism. While prior studies have generally confirmed that the mass

spectrum is invariant with respect to most parameters that control the behaviour of the SI, it is

possible that their measurement of the spectrum is dominated by post-formation evolution of the

clumps. This post formation evolution is not necessarily dependent on the SI parameters in the

same way that the initial masses are, and as a result these studies may have been missed relevant

effects that do influence the true initial mass spectrum.

5.6 Conclusions and Discussion

Our primary results from this chapter are as follows:

(1) Turbulence at the level of α = 10−3 does not permit the formation of gravitationally bound

particle clumps via the SI/SG mechanism. Due to the velocity dispersion, the SI is unable
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Figure 5.10 An analogous figure to figure 5.8, again for hr control, hr weak, and hr moderate from
top to bottom. In this figure, only the initial mass of each clump is used, as determined by our
clump tracking algorithm. The square points show the characteristic mass scale relevant to each
fit.
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Label Best Fit By... Parameters

hr control

BPL

(BCPL)

(STPL)

α1 = −1.54+0.17
−0.23 α2 = 1.612+0.18

−0.14 Mbr = 0.04204+0.0042
−0.0044

α1 = 0.065+0.021
−0.017 α2 = 1.06+0.14

−0.07 Mbr = 0.0189+0.0024
−0.0025

α = −0.0474+0.0080
−0.0094 Mexp = 0.0463+0.0028

−0.0043

hr weak

BPL

(BCPL)

(STPL)

α1 = −1.72+0.54
−0.38 α2 = 1.35+0.45

−0.11 Mbr = 0.040+0.013
−0.015

α1 = 0.0834+0.033
−0.019 α2 = 1.20+0.18

−0.13 Mbr = 0.027+0.002
−0.012

α = −0.012+0.082
−0.038 Mexp = 0.078+0.033

−0.041

hr moderate

BPL

(BCPL)

(STPL)

α1 = −1.70+0.49
−0.47 α2 = 1.63+0.30

−0.27 Mbr = 0.0377+0.002
−0.027

α1 = 0.09+0.16
−0.02 α2 = 1.25+0.46

−0.07 Mbr = 0.0226+0.0051
−0.0152

α = −0.046+0.051
−0.034 Mexp = 0.047+0.006

−0.034

Table 5.4 Summary of fits to the cumulative mass spectrum of planetesimals based on the initial
masses of each clump from our clump-tracking analysis. We give the parameters for the STPL
and BCPL for all runs regardless of ∆IC as a way of comparing from run-to-run and because the
interpretation of their parameters is intuitive. For all cases here, no fits other than the BPL had
∆IC < 10 For reference, the SPL fits to the differential spectra for this method are 1.372 ± 0.023,
1.357± 0.035, and 1.380± 0.047 for the 3 runs shown from top to bottom, respectively.
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to concentrate particles to a sufficient density for clumps to be bound by their own self

gravity. The threshold of turbulence above which planetesimals do not form is somewhere

between α = 10−3.5 and α = 10−3, or equivalently δv = 0.018 and 0.032.

(2) Intermediate turbulence (α = 10−4 to α = 10−3.5) permits the formation of planetesimals,

but they form more slowly, are fewer in number, and contain less total mass than those

that form in the control simulation.

(3) The mass spectrum of planetesimals is not greatly affected by the presence of turbu-

lence. However, clumps in moderate turbulence show a preference for ”straight” power

laws whereas clumps in weaker turbulence or no turbulence are better fit by broken power

laws.

(4) Due to the time-variance of the planetesimal characteristics and the non-physical post

evolution behaviour of clumps in these simulations, analyzing snapshots is not a very good

way of measuring the initial mass spectrum. We propose a method in which clumps can

be tracked, allowing us to measure only the true initial masses and ignore non-physical

processes. This method reveals that other studies have likely overestimated masses by a

factor of ∼ 3, and that the slope of the mass spectrum at low masses is actually shallower

than previously determined.

As stated previously, the most striking result from this work is the turbulence threshold for

disrupting the SI/SG planetesimal formation mechanism. The α = 10−3 threshold is at a fairly

“intermediate” value of α, making the implications very interesting. We will consider a few scenarios

here, assuming that the main driver of turbulence in protoplanetary disks is the MRI, and keeping

in mind that the SI/SG mechanism is occurring at the mid-plane of the disk. First, we consider

a region of a disk that is ionized throughout it’s vertical extent. This is expected to be the case

very close to the star, and will result in MRI activity throughout the whole column. In this case,

the expected level of turbulence at the mid-plane is about α = 10−2, or possibly greater if a strong
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net-vertical-field exists (Simon et al., 2013a; Salvesen et al., 2016). Based on our threshold, the

SI/SG mechanism cannot form planetesimals in a fully ionized region of the disk. This provides

evidence in favor of migration scenarios (Masset and Papaloizou, 2003; Beaugé and Nesvorný, 2012)

over in situ formation arguments (Batygin et al., 2016) for very close in planets like hot Jupiters.

As discussed in all other chapters of this thesis, non-ideal MHD effects are expected to greatly

change the behaviour of the MRI if the disk is not sufficiently ionized. This introduces the “dead

zone” (DZ) paradigm: the disk will have MRI-driven turbulence at it’s radiatively ionized regions

at high |z|, and a DZ at the mid-plane due to non-ideal effects damping or stopping the MRI (see

chapters 2 and 4). In general, we expect the DZ to be dominated by the Ohmic term at higher

densities (smaller radii) and the Ambipolar term at lower densities (larger radii). As seen in chapter

2, Ohmic DZs can have interesting fluid motions that are not necessarily well characterized by a

single parameter like α. We find that smaller disks tend to have more active mid-planes due to

trickle-down-turbulence from the active regions, but still only reach roughly α ∼ 10−4, or possibly

up to a few ×10−4 if the large scale-velocity patterns are included. As a result, we expect the

SI/SG mechanism to be able to form planetesimals fairly efficiently in an Ohmic DZ for disks of

most masses, but may struggle slightly in the smallest disks.

In chapter 4, we considered fully ambipolar disks as well as disks with MRI-active upper layers

and an ambipolar damping region. As a reminder: Am is the parameter we use to characterize

the ionization level, with smaller Am values corresponding to less ionization and more damping.

Inspecting figures 4.4 and 4.5, we can see that, for a mid-plane of a fully ambipolar disk to be below

the δv threshold we have established here, Am must be about 0.1 or less. For a disk with FUV

ionized layers, figure 4.9 shows that δv/cs is about 0.04 or 0.05 at the mid-plane, just barely above

the threshold for planetesimal formation via SI/SG. Am turns out to be an interesting control

parameter for planet formation in this scenario, motivating further chemical and dust modeling

(perhaps similar to Zhu et al. (2015)) to determine the appropriate Am value at the mid-plane of

the outer disk.
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Summary and Looking Forward

This thesis has discussed several important topics relating to protoplanetary disks. Chapters

2-4 each take a close look at phenomena associated with non-ideal MHD effects in disks, while

chapter 5 places important constraints on the conditions of the disk that permit planetesimal

formation. Here, we will briefly summarize the conclusions of each chapter of this thesis and then

consider some of the most exciting prospects for the future of disk and planet formation theory.

6.1 Summary

In chapter 2, we perform a shearing box study investigating Ohmic dead zones and the

interaction between the active region and the dead zone. We find that the Reynolds stress at the

mid-plane of the disk scales strongly with the thickness of the dead zone (ie. the total mass of the

disk), with very thick dead zones having effectively negligible stresses and thin dead zones having

turbulent stresses on the order of α ∼ 10−4. We also find that, while the fluid in the dead zone has

a considerable amount of kinetic energy, most of this energy is contained in non-turbulent motions

that do not transport angular momentum transport. We identify these large-scale motions as the

largest scale “r-modes” Lubow and Pringle (1993), found by considering the modes in a purely

hydrodynamic disk. While these modes may be amplified in a shearing box compared to a real

disk, we note that they would produce an interesting warping effect on settled particle layers.

In chapter 3, we construct a 1D model that couples a classic Shakura-Sunyaev-like disk model

for the steady state of the disk with time evolution models for the net magnetic field and surface
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density of the disk. We use this model to study the interaction between the stellar magnetic cycle

and the disk, and specifically the ability of the cycle to produce EXor-like events as proposed by

Armitage (2016). We find that this mechanism is able to produce cyclic outbursts in disks with

sufficiently low accretion rates (∼ 10−8 M�/yr or less ). These outbursts produce disk-luminosity

enhancements of roughly an order of magnitude lasting a quarter of the stellar magnetic cycle period

or less. While these results are somewhat promising at a “proof of concept” level, the accretion

rates required are quite low and more modeling is needed to account for the erratic behaviour of

small stars.

In chapter 4, we use shearing boxes to study turbulence in the outer regions of PPDs, where

ambipolar diffusion is the dominant non-ideal effect. Our simulations with FUV-ionized surface

layers demonstrate that one should use caution in constructing 1D models of disks that assume each

constant-z-slice of the disk can be treated as local, obeying already established physics at a given

density and ionization fraction (Bai, 2011b). Vertical transport within the disk plays an important

role. For mid-planes with Am < 1 the behaviour of the fluid is qualitatively different than in

unstratified simulations or simulations with no FUV layers: Magnetic stresses are dominated by

large scale fields and the mid-plane has a magnetic field strength in excess of that producible by

the local MRI. This indicates the the MRI is completely arrested and is not even acting in it’s

damped capacity. Finally, we show that toroidal magnetic field from the FUV layers is able to be

transported to the mid-plane via diffusive effects for Am < 10, despite magnetic buoyancy trying

to carry magnetic flux away from the mid-plane.

Finally, in chapter 5 we study the effect of turbulence on the formation of planetesimals via

a combination of the streaming instability and self gravity. While in general the mass spectrum of

planetesimals does not change drastically based on the level of turbulence, we see that the total

amount of mass the goes into planetesimals does change drastically, with no planetesimals forming

at a turbulence level of α = 10−3. We also point out several flaws in the way that these types

of simulations are typically analyzed, relying heavily on the statistics of single snapshots that are

selected by-eye. We propose and implement a better way of measuring the planetesimals that
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involves tracking each gravitationally-bound-clump over time and measuring only it’s initial mass.

This generally reduces the masses found by a factor of ∼ 3. In addition, this method yields a flatter

slope in the cumulative mass spectrum at the lowest masses, finding that many of the planetesimals

formed in that regime were the result of a splitting event, which will occur at a super-physical rate

in these simulations.

6.2 Looking Forward

This is an exciting time in protoplanetary disk and planet formation theory. For many

years, theorists in this field worked without ever seeing a spatially resolved image of a disk in any

capacity, and with only one example of a planetary system. Both of these things has changed in

the past 10 years. Thanks to advances in interferometry, spatially resolved images of disks now

available (ALMA Partnership et al., 2015), along with incredible measurements of disk properties

like turbulent velocity (Flaherty et al., 2015, 2017, 2018) and the distribution of various chemical

abundances throughout the disk (Schwarz et al., 2016; Huang et al., 2018; Cleeves et al., 2015).

In addition, thanks to monumental efforts by many groups all around the world, we have now

found and characterized hundreds of exoplanet systems, a huge increase in sample size compared to

“one”, which was the case for most of the history of planet formation theory (for a review, see Winn

and Fabrycky (2015)). These advances have sent theorists back to the drawing board on several

topics including determining the primary mechanism of angular momentum transport in disks (the

weak turbulence problem) and understanding key aspects of planet formation and planetary system

evolution.

Thinking in this very broad context, I hope that this thesis has made meaningful contributions

to these areas in which much theory work is yet to be done. I would hope that chapters 2 and

4 of this work has contributed to the addressing the weak turbulence problem by pinning down

some of the finer points relating to non-ideal MHD effects in disks and their effect on the MRI and

turbulence. In chapter 5, our work has for the first time studied planetesimal formation via the

streaming insatiability in a more realistic context with turbulence, placing important constraints
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on the conditions of planetesimal formation. This result also re-emphasizes the importance of

understanding non-ideal MHD effects and the level of turbulence within dead zones.

In the world of disk simulations, it has long been impossible to perform simulations that are

both global and high enough resolution to resolve relevant small-scale physics like the MRI. These

types of simulations are now entering the realm of possibility (eg. Zhu and Stone (2018); Hu et al.

(2019)), thanks to advances in both algorithms (Felker and Stone, 2018) and raw computational

power. Over the next several years, non-ideal global MHD simulations are likely to be incredibly

helpful in linking local and global disk physics and will hopefully give further insight into the

relative roles of winds and MRI turbulence in transporting angular momentum.

While there are many aspects of planet formation that remain active areas of research, the

planetesimal formation process remains one of the most interesting and puzzling problems. We

are near a point of saturation for studies similar to chapter 5, due to the inherent limitations of

simulations on a uniform grid and the implementation of the self-gravity solver. The next generation

of simulations must have either sub-grid self gravity, adaptive mesh refinement (Felker and Stone,

2018), or some other method that allows the full gravitational collapse of planetesimals. This is

not an easy problem, as self-gravity is inherently non-local, computationally expensive, and hard

to parallelize efficiently. However, simulations of this type have become necessary to make further

progress on the topic of planetesimal formation.



Bibliography

C. P. Abod, J. B. Simon, R. Li, P. J. Armitage, A. N. Youdin, and K. A. Kretke. The Mass and Size
Distribution of Planetesimals Formed by the Streaming Instability. II. The Effect of the Radial
Gas Pressure Gradient. arXiv e-prints, October 2018.

H. Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic
Control, 19:716–723, 1974.

V. Alexiades, G. Amiez, and Pierre-Alain Gremaud. Super-Time-Stepping acceleration of explicit
schemes for parabolic problems. Communications in Numerical Methods in Engineering, 12:
31–42, 1996.
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