pressed index layers on the GVD is observed. However, the
two notch layers are not quite as effective in producing
negative dispersion as is the combination of asymmetry plus
index notch. Since for physical realization the asymmetric
structure is in fact more practical (e.g., cover layer being air),
we can conclude that the four-layer asymmetric guide shown

.in Fig. 1(b) offers the best design possibilities. For example,
aguide with the same parameters as curve g = —16.6 in Fig. 2,
with V = 3.22 at A = 1.3 um, will have D = —55 fs/nm - m (i.e.,
for a 100-nm bandwidth a 2-cm length guide has a total of
—110 fs of negative guide dispersion).

Until this point, we confined ourselves to the TE modes.
For TM modes, the determining equations are more compli-
cated. However, it can be shown*® that, for An « n;, the
universal normalized expressions for TE modes remain valid
provided modified definitions are made for parameters a and
g. These are

ng ni—n?,

a = ’ (11)
™ nt, nZ-nt
4.2 2
nin?—n2
&M= , (12)
™
2
ny
Virm = 2 Virme (13)

0

Thus, the curves shown in Figs. 2-4 can be used for TM
modes as well but for the same values of ng and n—; would
correspond to different values of n; and nys. For example, ng
=924,n-1=1,n; = 2.07,n, = 2.37 gives grm = —16.6 and aym
= 1060. Due to the higher value of a, this TM case would
give somewhat higher negative dispersion for a smaller value
. of notch depth than the g = —16.6, = 32 TE case shown in
Fig. 2. At the same time, it can be seen from Eqs. (12) and
(13) that for the same di/dy value condition (9) remains

unchanged. Thus the TM mode can be more effectively
used to obtain negative GVD.

In conclusion, we have calculated the group velocity dis-
persion for both symmetric and asymmetric planar guides
which are weakly guiding and have depressed index layer(s)
next to the guiding region. We have found that the index
notch is effective in producing negative guide dispersion.
The various parameters make it relatively easy to adjust the
dispersion. Thus, these guides may become useful in the
future for integrated optics manipulation of ultrashort
pulses.
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The geometric rotation of polarization in single-mode
optical fibers is investigated theoretically and experimen-
tally. The measurement results are reported for polariza-
tion rotation due to geometric path variance of single-mode
fibers with the input and output ends of fibers being non-
parallel.

Linear polarized light propagating through a monomode
optical fiber of negligible intrinsic linear and circular bire-
fringence and stress-induced effects will also produce the
rotation of polarization as the geometric path is changed.

This effect was first studied by Ross! and Varnham et al.2
Their theories are based on geometry and the axiom of paral-
lel transport of light. When the input and output ends of
fibers are parallel, the rotation is

output end
¢= —j Tds.
i

nput end
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Here 7 is the torsion of the curve. In a uniform helix, this
leads to ¢ = 2w (1 — P/S), where P is the pitch and S is the
total length of fiber. Chiao and Wu? pointed out another
method which was derived from Berry’s phase factor in the
adiabatic limit of quantum mechanics. When a system
takes an adiabatic transport around a closed path in parame-
ter space, a nonintegral phase factor will result which must
multiply the wave function of the system. As linear polar-
ized light travels along a helically wound optical fiber, a
closed path C will form in momentum or K space and Berry’s
phase v(c) = —aQ(c).* Here ¢ = 1 is the helicity quantum
number of the photon and Q(c) is the solid angle subtended
by curve C with respect to the origin K = 0. The phase factor
is just the rotation angle of polarization. For a single-turn
uniform helix, we have v(c) = —27o(1 — p/s).

Then, how about the nonparallel case? It is obvious that,
when the two ends of fiber are not parallel, a closed curve will
not exist in K space, as shown in Fig. 1.

In Haldane’s article,® the treatment using differential ge-
ometry is purely classical. On the unit K sphere, the initial
and final wave vectors Ko, K; are separated because of the
nonparallel input and output ends. We found a great circle
connecting the two vectors, asshown inFig. 1. Thena closed
curve appears in K space and it spans a solid angle which is
equal to the rotation angle of polarization. This fact is
natural because a path lying along the great circle is a plane
curve which will not raise polarization rotation according to



Fig.1. Spherical surface in Kspace: K, the K vector on the input
end and Kj, the K vector on the output end.

Pol.
Lens
Teflon Sleeve
Fiber Lens
Pol
Laser

Fig. 2. Experimental setup.

the parallel transport of light. So the rotation angle is just
the shaded area shown in Fig. 1. The calculation of this area
could be done as follows (see Fig. 1):

For any curved surface Z = f(x,y), let us suppose df/dx = p,
3f/dy = q, and surface normal is #. Then the surface area is

do
S = = V1 + p? + ¢?dxd
]](n') as(hyé) [f(d) P Texay

= ]j V1 + p? + ¢’rdrde.
(o)

Angle of Rotation of Polarization Plane (rad)

Solid Angle (rad)

Fig.3. Rotation angle of polarization with various fiber configura-

tions: solid line, theoretical prediction; ®, measured for arbitrary

plane curves; O, measured for uniform helices; W, measured for

nonuniform helices; A, measured for the nonparallel case (a segment
of uniform helices).

In the unit sphere in K space, |OM] = |ON| = |OA| = 1 and
curve MBN is the projection of arc MAN in plane - O’E L
MN. Let the angle ZMO'N be written as «. Then

'E =p. —a-l-,
OE rcoe(z)

OF = O’E/cos(«p - g—) .
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Here ¢ = /MO’F is the angular coordinate measured from
O'M.
Because tan(Z0AB) = tan(<0’0A) = O’F/00’, thus

L0/0A = arctan(O'F/O0Y) = arctan| —— <052 ___|,
cos(p - %) 1-r°
0'B=0'F+FB

= OF « 3sin(£0'0A) + AF - sin(£0’OA)
= sin(£0’0A).

So the area of curved surface S is

dRde

7=

2 r 1 0'‘B
=[ dga'f R dR+] dqp[ RdR
0

a o y1-R? 0 y1-R?

@ sin(0’0A)
=(27r—-a)(1-\/1—r2)+f d¢] RdE
0 0 Ji-R?

where R is the radial coordinate.

The integration was worked out by computer. The ex-
perimental setup is quite simple, as shown in Fig. 2.

A 333-mm long monomode fiber was used in this experi-
ment. It should be inserted loosely in a Teflon sleeve which
was wound helically to reduce the torsional stress on the fiber
during winding. Because the two ends of the fiber are non-
parallel, the common transverse direction (Ko X K;)/|1Ko - Kl
should be used to define the total rotation angle of polariza-
tion. A certain kind of refractive oil is smeared at the end of
the input of the fiber to attenuate the cladding modes in
fiber. The intrinsic birefringence (although very small),
torsional stress, and the uncertainty of fiber path in the
sleeve cause the dominant error in the experiment.

Table . Polarization rotation for nonparallel case?

Parameters Radius  3.45 (cm) 1.55(cm) 3.45 (cm)
of helices pitch 3.74 (cm) 19.73(cm) 3.74 (cm)

a (deg) 33.0 14.0 112.0

Measured values (deg) 267.72 36.26 208.57

Theoretical prediction 4.742(rad) 0.623(rad) 3.609(rad)

=271.69 =35.72 =206.77
Error (deg) 3.97 0.54 1.80
2 See points A in Fig. 3.

Besides the nonparallel case, the uniform helix and non-
uniform helix in which the two ends of fiber were kept
identical were also studied. All data obtained in the experi-
ment agreed very well with the theoretical value. The re-
sults are shown in Table I and Fig. 3. Here only the data of
the nonparallel case are presented.
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