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Observation of dipolar spin-exchange interactions
with lattice-confined polar molecules
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With the production of polar molecules in the quantum regime'?,
long-range dipolar interactions are expected to facilitate under-
standing of strongly interacting many-body quantum systems and
to realize lattice spin models® for exploring quantum magnetism. In
ordinary atomic systems, where contact interactions require wave-
function overlap, effective spin interactions on a lattice can be
mediated by tunnelling, through a process referred to as super-
exchange; however, the coupling is relatively weak and is limited
to nearest-neighbour interactions*®. In contrast, dipolar interac-
tions exist even in the absence of tunnelling and extend beyond
nearest neighbours. This allows coherent spin dynamics to persist
even for gases with relatively high entropy and low lattice filling.
Measured effects of dipolar interactions in ultracold molecular
gases have been limited to the modification of inelastic collisions
and chemical reactions®”. Here we use dipolar interactions of polar
molecules pinned in a three-dimensional optical lattice to realize a
lattice spin model. Spin is encoded in rotational states of molecules
that are prepared and probed by microwaves. Resonant exchange of
rotational angular momentum between two molecules realizes a
spin-exchange interaction. The dipolar interactions are apparent
in the evolution of the spin coherence, which shows oscillations in
addition to an overall decay of the coherence. The frequency of these
oscillations, the strong dependence of the spin coherence time on
the lattice filling factor and the effect of a multipulse sequence
designed to reverse dynamics due to two-body exchange interac-
tions all provide evidence of dipolar interactions. Furthermore,
we demonstrate the suppression of loss in weak lattices due to a
continuous quantum Zeno mechanism®. Measurements of these
tunnelling-induced losses allow us to determine the lattice filling
factor independently. Our work constitutes an initial exploration of
the behaviour of many-body spin models with direct, long-range
spin interactions and lays the groundwork for future studies of
many-body dynamics in spin lattices.

Long-range and spatially anisotropic dipole-dipole interactions
permit new approaches for the preparation and exploration of strongly
correlated quantum matter that exhibits intriguing phenomena such as
quantum magnetism, exotic superfluidity and topological phases®"*.
Ultracold gases of polar molecules provide highly controllable, long-
lived and strongly interacting dipolar systems and have recently attracted
intense scientific interest. Samples of fermionic *°K*”Rb polar mole-
cules, with an electric dipole moment of 0.57 D (ref. 1; 1 D = 3.336 X
107*°Cm), have been prepared near the Fermi temperature, and all
degrees of freedom (electronic, vibrational, rotational, hyperfine and
external motion) can be controlled at the level of single quantum
states”'*'%.

The surprising discovery of bimolecular chemical reactions of KRb at
ultralow temperatures>*” seemed to be a major challenge in creating novel
quantum matter. However, the molecules’ motion, and, consequently,
their reactions, can be fully suppressed in a three-dimensional (3D) optical
lattice, where relatively long lifetimes (>25 s) have been observed". The
long-range dipolar interaction can then play the dominant part in the

dynamics of the molecular internal degrees of freedom, for example by
exchanging two neighbouring molecules’ rotational states. With spin
encoded in the rotational states of the molecule, these dipolar interac-
tions give rise to spin-exchange interactions, analogous to those that
are important in quantum magnetism and high-temperature super-
conductivity'®. In a 3D lattice, where each molecule is surrounded by
many neighbouring sites, this system represents an intriguing many-
body quantum spin system in which excitations can have strong cor-
relations even at substantially less than unit lattice filling'”.

Several features distinguish the interactions in a molecular spin
model from those observed in ultracold atomic systems. For the super-
exchange interaction of atoms in optical lattices*®, the short-range
nature of the interparticle interactions necessitates a second-order
perturbative process to occur in the tunnelling of atoms between lattice
sites. Hence, the energy scale of the superexchange interaction decreases
exponentially with lattice depth. This spin-motion coupling limits
superexchange to nearest-neighbour interactions and requires extre-
mely low temperature and entropy.

In contrast, long-range dipolar interactions decay with separation, r,
as 1/r°, and interactions beyond nearest neighbours are significant. This
long-range interaction allows exploration of coherent spin dynamics in
very deep lattices where the molecules’ translational motion is frozen
and where the absence of tunnelling would preclude the superexchange
interactions of atoms. We note that the dipolar interaction is also diffe-
rent from that of electrons, for which an effective spin interaction arises
due to the spin-independent Coulomb interaction and the exchange
symmetry of the fermionic electrons. In contrast, the dipolar inter-
action is a direct spin—spin interaction that does not require any wave-
function overlap. In addition to polar molecules, ultracold systems such
as magnetic atoms'>'®** and trapped ions*"** are candidates for reali-
zing coherent, controllable spin models with power-law interactions;
however, spin-exchange interactions have yet to be created and observed
in these systems. In Rydberg atoms, Forster resonances involving multiple
Rydberg states have been observed, albeit with short coherence times™.

The molecular rotational states |N, my), where N is the principal
quantum number and myyis the projection onto the quantization axis,
are the focus of our current investigation of a dipolar spin system. In
general, an external d.c. electric field induces a dipole moment in the
laboratory frame by mixing opposite-parity rotational states. However,
even in the absence of a d.c. electric field, dipolar interactions can be
established using a microwave field to create a coherent superposition
between two rotational states™, labelled |) and ||). In addition, a
microwave field can probe the coherent spin dynamics due to dipolar
interactions.

In the absence of an applied electric field, two-level polar molecules
trapped in a strong 3D lattice (Fig. 1a) can be described using a spin-1/2
lattice model with the interaction Hamiltonian'>'7**
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Figure 1 | Dipolar interactions of polar molecules in a 3D lattice. a, Polar
molecules are loaded into a deep 3D optical lattice. Microwaves are used to
address the transition between two rotational states (red and blue represent
different rotational states). J | characterizes the spin-exchange interaction
energy. b, Schematic energy diagram (not to scale) for the ground and first
excited rotational states. The degeneracy of the excited rotational states is
broken as a result of a weak coupling of the nuclear and rotational degrees of
freedom. We use |0,0) and |1, —1) as our two spin states. ¢, The interaction
energy between any two molecules depends on their relative position in the
lattice. The numbers shown give the geometrical factor —Vaq(r; — ;) for the
dipolar interaction of each site relative to the central site (green), under the
specific quantization axis (B field). Negative values (blue) correspond to
attractive interactions, and positive values (red) correspond to repulsive
interactions.

where S (along with §?) are the usual spin-1/2 angular momentum
operators on site i. The dipolar interaction energy includes a geomet-
rical factor, Vaa(r; — ) = (1 — 3cosz(@,-j))/ |r; — rj\z’, where the vector
r;is the position of the ith molecule in units of the lattice constant a and
0O;; is the angle between the quantization axis, defined by the B field,
and the vector connecting molecules i and j. More generally, polar
molecules realize the full spin-1/2 model with the capability of con-
trolling all relevant interaction parameters. In this work, we isolate the
spin-exchange interaction, which has been difficult to realize in other
systems, by setting the Ising term, which is proportional to 57, to zero
by working at zero electric field. The Hamiltonian reduces to the lim-
iting case known as the spin-1/2 quantum XY model, in which the

spin-exchange interaction is characterized by J; = —dfT / 4mega’,

where ¢ is the permittivity of free space and d; = (||d|1) is the dipole
matrix element between || ) and 7). Physically, this term is responsible
for exchanging the spins of two trapped molecules (Fig. 1a).

In our experiment, we create up to 2 X 10* ground-state KRb mole-
cules in the lowest motional band of a 3D lattice formed by three
mutually orthogonal standing waves with wavelengths of 4 = 1,064 nm.
The lattice constant is @ = /2 and the lattice depth is 40E, in each
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direction, where E, = #*k*/2m is the recoil energy, /1 is Planck’s constant
divided by 2m, k = 21t/ and m is the mass of KRb. We use microwaves
at ~2.2 GHz to couple the |0,0) and |1, —1) states, which form the || )
and |T) two-level system. The degeneracy of the N = 1 rotational states
is broken by the interaction between the nuclear quadrupole moments
and the rotation of the molecules, and in a 54.59 mT magnetic field the
|1,0) and |1, 1) states are higher in frequency than the |1, —1) state by
270 and 70kHz, respectively'* (Fig. 1b). All rotational states used in
this work involve the nuclear spin quantum numbers m{°> =1/2 and
my = —4, following the notation of ref. 14. The quantization axis is set
by the magnetic field, which is oriented at 45° with respect to the X and
Y lattice directions (Fig. 1¢). The polarizations of the lattice beams are
chosen such that the tensor a.c. polarizabilities of the |0,0) and |1, —1)
states are very similar”, so that we create a spin-state-independent
lattice trap (Methods). We address the entire sample with a microwave
field and achieve a m-pulse fidelity of >99%.

The energy scale for our spin-1/2 quantum XY system is characterized
by (J 1 /2)Vaa(r; — ). For our rotational states, ||+ ’ =0.98x0.57/y/3D
and |, /2h| = 52 Hz. Here the additional factor of 0.98 in the trans-
ition dipole matrix element comes from an estimated 2% admixture of
another hyperfine state'*. Each molecule in the lattice will experience
an interaction energy with contributions from all other molecules,
where each contribution depends on molecular separation and angle
0. Figure 1c shows the geometrical factors for nearby sites relative to a
central molecule (green) for our experimental conditions.

We employ coherent microwave spectroscopy to initiate and probe
spin dynamics. Figure 2a shows a basic spin-echo pulse sequence and its
Bloch sphere representation. Starting with the molecules prepared in
|1), the first (m/2),-pulse creates a superposition state (||)+|1))/v/2.
Any residual differential a.c. Stark shift, which gives rise to single-
particle dephasing, can be removed using a spin-echo pulse. After a
free-evolution time of T/2, we apply a (1), echo pulse, which flips the
spins and reverses the direction of single-particle precession. The spins
rephase after another free-evolution time of 7/2, at which time we
probe the coherence by applying a m/2-pulse with a phase offset relative
to the initial pulse. We measure the number of moleculesleftin||)asa
function of this offset phase, which yields a Ramsey fringe (Fig. 2b).

With the single-particle dephasing effectively removed, the contrast
of the Ramsey fringe as a function of T yields information on spin
interactions in the system*’. We note that the spin-echo pulse has no
impact on the dipolar spin-exchange interactions described by equa-
tion (1). The most striking feature evident in the measured contrast
curves (Fig. 2¢, d) is the oscillations on top of an overall decay. We
attribute both the contrast decay and the oscillations to dipolar inter-
actions. Imperfect lattice filling and many-body interactions each give
a spread of interaction energies, which results in dephasing and a
decaying contrast in the Ramsey measurement. Figure 1c illustrates
the different interaction energies coming from Vg, which can be posi-
tive or negative. For low lattice fillings, the interaction energy spectrum
can have a strong contribution from the highest-magnitude nearest-
neighbour interaction. Oscillations in the contrast can then result from
the beating of this particular frequency with the contribution from
molecules that experience negligible interaction shifts. In principle,
there should be several different oscillation frequencies owing to the
differing geometrical factors in the lattice. Although a dominant oscil-
lation frequency is observed, we note that our data does not rule out
additional frequencies.

Because interaction effects depend on the density, we investigate
spin coherence for different lattice filling factors. To reduce the density
of molecules without changing the distribution, we hold the molecules
in the lattice for a few seconds while inducing single-particle losses
with an additional strong optical beam that enhances the rate of oft-
resonance light scattering'®. We fit the measured time dependence of
the Ramsey contrast to an empirical function, Ae"’* + Bcos*(nfT), to
extract a coherence time, 7, and an oscillation frequency, f. As shown in
Fig. 2d, fis essentially unchanged over our accessible range of densities,
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Figure 2 | Coherent spin dynamics of polar molecules. a, A (11/2),-pulse
initializes the molecules in a coherent superposition of rotational states. A spin-
echo pulse sequence is used to correct for effects arising from single-particle
inhomogeneities across the sample, such as residual light shifts. b, The phase of
the final 7/2-pulse is scanned (corresponding to rotations around a variable
axis, #1) to obtain a Ramsey fringe. Two fringes are shown, corresponding to the
short (green circles) and intermediate timescales (orange triangles). ¢, The
contrast of the Ramsey fringe is measured as a function of interrogation time.

but 7 depends on the number of molecules, or filling fraction. This is a
signature of many-body interactions, and the observation agrees with
theoretical calculations using a cluster expansion (Methods).

We observe oscillation frequencies in the range 48 = 2 Hz for mole-
cule numbers in the lattice that vary by threefold. The fact that this
frequency is consistent with the largest nearest-neighbour interaction
energy, |/, /2h| = 52Hz, supports the conclusion that the contrast
oscillations come from nearest-neighbour dipole-dipole interactions.
Because this frequency is determined by the lattice geometry and the
dipole matrix element, it does not depend on the lattice filling factor.
We also confirm that the oscillation frequency does not depend on the
lattice depth from 20E, to 50E, (Methods). For the coherence time, we
observe a strong dependence on the filling factor (Fig. 2e). Density
dependence is a classic signature of interaction effects, and we con-
clude that the coherence time in the deep lattice is limited by dipole-
dipole interactions. For higher filling factors, the increasing probability
that molecules have multiple neighbours means that more spin-exchange
frequencies will contribute to the signal, which leads to faster dephasing.

Multipulse sequences, as well as single spin-echo pulses, are exam-
ples of dynamical decoupling, which is widely used in NMR*” and

Because the molecules’ spin states are initially all in phase, at very short times,
T <2h/] , the contrast decay curve should be quadratic'’, as shown in the
inset. d, The contrast of the Ramsey fringe versus interrogation time is shown
for two different filling factors, characterized by the initial molecule number. In
addition to the density-dependent decay, we observe oscillations, which arise
from spin-exchange interactions between neighbouring molecules. e, The spin
coherence time decreases for increasing molecule number. The solid line shows
a fit to C + A/N, where C and A are constants. Error bars, 1 s.d.

quantum information processing® to remove dephasing and extend
coherence times. Although a spin-echo pulse cannot mitigate the con-
trast decay that arises from dipole-dipole interactions, a multipulse
sequence can. In particular, the pulse sequence® shown in Fig. 3a is
designed to remove dephasing due to two-particle dipolar interactions
(Methods). Analogous to how a spin-echo pulse works, this pulse
sequence swaps the eigenstates of the dipolar interaction Hamiltonian
(equation (1)) for two isolated particles to allow for subsequent rephasing.

Figure 3b summarizes the decay of the Ramsey contrast for three
different pulse sequences. With a simple two-pulse Ramsey sequence
(with no spin-echo pulse), the coherence time of the system is very
short, with the fringe contrast decaying within 1 ms (Fig. 3b, triangles).
With the addition of a single spin-echo pulse, the single-particle
dephasing time can be extended to ~80 ms (measured for our lowest
molecular density). However, this coherence time is reduced drastic-
ally with increasing molecule number in the lattice, and we observe
oscillations in the contrast signal (Fig. 3b, circles). When we apply the
multipulse sequence, the oscillations in the contrast are suppressed
and the data fit well a simple exponential decay with a coherence time
slightly longer than that of the spin-echo case (Fig. 3b, squares). The
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Figure 3 | Multipulse sequence and decoupling of pairwise dipolar
interactions. a, The multipulse sequence is designed to suppress both single-
particle dephasing and the effect of pairwise dipole-dipole interactions. b, The
contrast decay is displayed as a function of time for three different pulse
sequences. Without a spin-echo pulse, single-particle inhomogeneities result in
a Ramsey coherence time of ~1 ms (triangles). The spin-echo pulse effectively
removes the single-particle dephasing, such that spin-exchange interactions

play the dominant role in the contrast decay (circles). The multipulse sequence
suppresses the contrast oscillations and slightly improves the coherence time

(squares). Inset, the difference in contrast between the multipulse sequence and
the spin-echo case shows oscillations. Error bars, 1s.d. ¢, The probability of a
particular molecule having zero, one or more than one neighbours (within the
cube shown in Fig. 1¢) is plotted as a function of a uniform lattice filling factor.
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differences in the measured contrast oscillations and decay for the
usual spin-echo and multipulse sequence highlight the spin-exchange
dynamics driven by pairwise dipolar interactions (Fig. 3b, inset).

To understand the dynamics of this spin system, a key ingredient is
the filling fraction of molecules in the 3D lattice, because the Ramsey
contrast decay depends sensitively on the molecular density (Fig. 2e).
Figure 3¢ shows the probabilities of a particular molecule having zero,
one or more than one neighbours. The probability of having two or
more neighbours is non-negligible even for relatively low fillings. The
contrast oscillation is dominated by contributions from pairs of mole-
cules, whereas interactions of multiple molecules contribute mainly to
the contrast decay.

To provide an independent determination of the filling fraction, we
have measured tunnelling-induced loss at reduced lattice depths.
Molecules are initially prepared in || ) in a 40E, lattice. For our fermionic
molecules, the chemical reaction rate is much larger between molecules
in distinguishable internal states>. Moreover, Pauli blocking strongly
suppresses the tunnelling of molecules in the same spin state into the
same lattice site. Therefore, we create a 50:50 incoherent spin mixture of
|1) and |1) by applying a 7t/2-pulse and waiting 50 ms. We then quickly
(within 1 ms) lower the lattice depth along only a single direction (Y, as
shown in Fig. 4a) to allow tunnelling and loss due to on-site chemical
reactions®®’. We then measure the remaining number of molecules in
the ||) state as a function of the holding time. Figure 4b shows example
loss curves for two different lattice depths along Y.

In our system, the on-site loss rate, Iy, is proportional to the chemi-
cal reaction rate between the |0,0) and |1, —1) molecules”:

Iy= ﬁJ |W(X,Y,Z)[*dX dY dZ (2)
Here f=9.0(4) X 10 " cm®s™! (parenthetical error, s.d.) is the two-
body loss coefficient (Methods) and W(X, Y, Z) is the ground-band
Woannier function. We can modify 77 by changing the lattice depth;
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Figure 4 | Quantum Zeno effect for polar molecules in a 3D lattice. a, The
lattice depths along X and Z are kept at 40E,, whereas the lattice depth along Y
is reduced to allow tunnelling along the ¥ direction at a rate J/4. Once two

molecules in different spin states tunnel to the same site, they are lost owing to
chemical reactions occurring at rate 7. b, Number of | | ) molecules versus time
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however, for our measurements, the system always remains in the
strongly interacting regime, in which I'y > Ji/h, where J, is the tunnel-
ling amplitude. This is the regime of the continuous quantum Zeno
effect®*’, where dissipation in the form of measurement or loss can lead
to suppression of coherent processes such as tunnelling. Thus, increas-
ing I actually decreases the effective two-body loss rate between
neighbouring molecules, which is given by

2(J,/h)*
I, (3)

The number of | | ) molecules, N|(#), can then be described with a two-
body loss equation

I =

dN|(t) K
T le(t)z (4)

where N is the initial number of ||) molecules and the loss rate
coefficient is given by k =4qI” effgﬁ) ny 0. Here 2n o = ny is the initial
filling fraction in the lattice, g = 2 is the number of nearest-neighbour
sites in our one-dimensional tunnelling geometry and gﬁ) is the cor-
relation function of different spin states for nearest-neighbouring sites
iandj: gy = (i —48:5)) / (i)
iand S; the spin-1/2 vector operator. In our case, we assume that the
molecules are initially randomly distributed in the | |) and |1) states, so

2 . .
, with 71; the number operator at site

that gﬁ) = 1. Because the redistribution of molecules due to losses and

tunnelling can modify gﬁ) , we fit the data to the solution of equation (4)
for short times, where the number has changed by less than 50%.

We verify the scaling of the continuous quantum Zeno effect by
measuring the dependence of the loss rate, «, on I, and Ji. To study the
dependence on I, we set the lattice depth along Y to be 5. 4(4)E,,
which fixes J,, and then increase the lattice depths along the X and Z
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is shown for lattice depths along Y of 8.1E, and 15.1E,. ¢, The number loss rate,
K, has a 1/I", dependence (fit shown), which is consistent with the quantum
Zeno effect. d, The number loss rate, i, has a ]t2 dependence (fit shown), as
predicted from the quantum Zeno effect. Error bars, 1s.d.

©2013 Macmillan Publishers Limited. All rights reserved



directions. This compresses the wave function W(X, Y, Z) at each lat-
tice site, and thus increases Iy. As expected for the quantum Zeno
regime, the measured « decreases as [, increases, and the data are
consistent with x oc 1/17 (Fig. 4c). To study the dependence on J;, we
vary the lattice depth along Y, while adjusting the X and Z lattice
depths to keep I fixed. As shown in Fig. 4d, the measured « exhibits
a quadratic dependence on J; as predicted by equation (3). For these
loss rate measurements, all parameters are known except the initial
filling fraction, #1y. From measurements of the loss rate at several lattice
depths, our simple model gives 1y = 25(5)% for 2 X 10* molecules.
However, a more complete theory that incorporates interaction-modi-
fied Wannier functions in the lattice will lower this value. We note that
calculations of the Ramsey fringe contrast decay using a cluster expan-
sion give an estimated ny of ~10% (Methods), which is more consist-
ent with an estimation of the filling based on direct imaging.

Although it is desirable to increase the lattice filling to explore
interesting phases such as quantum magnetism or exotic superfluidity,
we have seen that the modest filling factors achieved in our experiment
already enable the observation of dipolar interaction effects in a 3D
lattice spin model. Furthermore, this work prepares us for the study of
non-trivial dynamic processes such as many-body localization of spin
excitations. Adding an external electric field would further increase the
variety of spin models that can be realized with this system.

METHODS SUMMARY

Webegin with ~1 X 10°*Rbatoms and 2.5 X 10° *°K atoms in a far off-resonance
dipole trap at 1,064 nm. The trap frequencies are 25 Hz radially and 185 Hz axially
for Rb, where the axial direction is along Z. The Rb gas is a Bose—Einstein con-
densate with T/T.~ 0.5 and the K Fermi gas is at T/Tz =~ 0.5, where T, is the
transition temperature for the condensate and Tr. is the Fermi temperature. We
smoothly ramp on a 3D lattice over 100 ms to a final depth of 40E, (16 and 7 recoil
energies for Rb and K atoms, respectively). The X and Y lattice beams have waists
0200 um and the Z beam has a waist of 250 pm. The lattice depth is calibrated with
parametric heating of the molecular gas®® and has an estimated uncertainty of 5%.
After turning on the lattice, we lower the intensity of the dipole trap to zero in
50 ms, and then ramp a magnetic field from 54.89 to 54.59 mT in 1 ms to create
weakly bound KRb Feshbach molecules. We then use two-photon stimulated
Raman adiabatic passage to transfer the Feshbach molecules to the rovibrational
ground state. The unpaired Rb and K atoms are removed using resonant light
scattering. From band-mapping measurements, we find that the fraction of mole-
cules in higher bands is consistent with zero within our detection limit of 5%. To
measure the number of ground-state molecules in the lattice, we reverse the two-
photon stimulated Raman adiabatic passage to recreate Feshbach molecules, and
then take an absorption image using light resonant with the K cycling transition.

Full Methods and any associated references are available in the online version of
the paper.
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LETTER

METHODS

Preparation of molecules in a 3D optical lattice. We begin with ~1 X 10°> *’Rb
atoms and 2.5 X 10° *°K atoms in a far off-resonance dipole trap at 1,064 nm. The
trapping frequencies are 25 Hz radially and 185 Hz axially for Rb, where the axial
direction is along Z. The Rb gas is a Bose~Einstein condensate with T/T, = 0.5, and
the K Fermi gas is at T/T =~ 0.5, where T is the transition temperature for the
condensate and T¥ is the Fermi temperature. We smoothly ramp on a 3D lattice
over 100 ms to a final depth of 40E, (16 and 7 recoil energies for Rb and K atoms,
respectively). The X and Y lattice beams have waists of 200 im and the Z beam has
a waist of 250 pm. We calibrate the lattice depth through parametric heating of the
molecular gas®, which results in an estimated uncertainty of 5%. After turning on
the lattice, we lower the intensity of the dipole trap to zero in 50 ms, and then ramp
a magnetic field from 54.89 to 54.59 mT in 1 ms to create weakly bound KRb
Feshbach molecules. We then use two-photon stimulated Raman adiabatic pas-
sage to transfer the Feshbach molecules to the rovibrational ground state. The
unpaired Rb and K atoms are removed using resonant light scattering. After
molecules are created in the lattice, we can perform band-mapping measurements
by turning off the lattice in 1 ms. We find that the fraction of molecules in higher
bands is consistent with zero within our detection limit of 5%. To measure the
number of ground-state molecules in the lattice, we reverse the two-photon sti-
mulated Raman adiabatic passage to recreate Feshbach molecules, and then take
an absorption image using light resonant with the K cycling transition.
Differential light shift in a 3D optical lattice. Molecules have complex internal
structure; hence, there are a number of different approaches to finding a ‘magic’
trap that matches the polarizabilities of two different internal states. Because the
polarizability of molecules is anisotropic, tuning the angle between the quantiza-
tion axis and the polarization of the light field can change the polarizabilities*. For
a 3D lattice, there are three different polarization vectors. The lattice geometry in
our experiment is shown in Fig. 1c. We choose the X and Y lattice beams to have
their polarizations along the horizontal plane, at angles of =45° relative to the
magnetic field. The Z lattice polarization is the same as that of the X lattice.
Following our previous work™, the energy shifts for the |1,0), |1, —1) and |1,1)
states are determined by finding the eigenvalues of the Hamiltonian

H=—0(45)Ix —a(—45")Iy —o(45°)I; + diag(e1,62,¢3) (5)

where Iy, Iy and I, are respectively the intensities of lattice beams along the X, ¥
and Z directions, o is the polarizability matrix defined in ref. 25, and &y, ¢, and ¢,
are respectively the bare energies for |0,0), |1, —1) and |1, 1).

Supplementary Fig. 1 shows the differential light shift (with respect to |0, 0)) of
[1,0), |1, —1) and |1, 1) as a function of the lattice depth. The state |1, —1) has the
smallest intensity dependence, which corresponds to minimal inhomogeneity due
to spatial variations of the light shift. The inset shows an expanded plot for |1, —1).
The red points are the experimentally measured transition frequencies for differ-
ent lattice depths, which agree well with theory. When the lattice depth is ~40E, in
each direction, the differential light shift is zero. We measure the transition fre-
quency between |0,0) and |1, —1) in a 40E, lattice to be 2.22778338(8) GHz, which
agrees with the measured frequency, 2.22778335(4) GHz, in the absence of any
optical potentials. At this lattice depth, the slope for the differential light shift is
120 Hz/E,. The total variation of the light shift across the sample is less than
500 Hz, as estimated from the Ramsey decay time in absence of spin echo.

This residual light shift limits the coherence time of our standard Ramsey
measurement to ~1 ms (triangle data points in Fig. 3c), and so we use a spin-echo
pulse to mitigate the effects of single-particle dephasing. However, spatial varia-
tions of the differential light shift can in principle still influence the spin dynamics.
Site-dependent shifts of the resonance frequency would appear in the Hamiltonian
asan inhomogeneous ‘magnetic field’ term, 9,S;, which can suppress spin exchange.
For the conditions used in our experiments, we estimate that the spatial variations
of the differential light shift are small enough that spin exchange remains near-
resonant. On the basis of the measured Ramsey coherence times and the details of
our system (optical lattice beams and the molecular ensemble), we calculate a
system-averaged nearest-neighbour bias ({|0; — d,+1|)/h) of 6 Hz, which is well
below the expected exchange coupling, |J, /2h| = 52 Hz. For neighbours separated
by v/2a and 24, the corresponding shifts are 9 and 13 Hz, respectively. To demon-
strate that the oscillation frequency in the Ramsey fringe contrast does not sensi-
tively depend on the optical intensity, we made Ramsey contrast measurements

(Supplementary Fig. 2) for values of the lattice depth between 20E, and 40E, and
found very good agreement among them.

Multipulse sequence. It is straightforward to understand how the multipulse
sequence works for the case of two particles. With two molecules initially prepared
in [|]), an initial (/2),-pulse transfers them to

1 1 1

7 ﬁ(\lHIT)) SUDHID+HAD+TD)  (6)
Because of the spin-exchange term, ||1) and |]|) are not eigenstates of the
Hamiltonian in equation (1). However, the three triplet states ||]), |T1) and
(UMY +11))/v/2 are eigenstates of the Hamiltonian, with eigenenergies 0, 0
and ], /2, respectively. We note that a single (1/2),-pulse can swap the states
[L1)+|71) and || 1) + |1]), and can thus act as an effective spin echo for these
contributions to the two-particle wavefunction.

During the first free-evolution time, of duration 7/8, || |) and |11) accumulate

no phase, whereas (||1)+|1]))/v/2 accumulates a phase e ~"V+/7/16 At this
point the state is entangled. We then apply a (—m/2),-pulse to swap the contribu-
tions from || 1) + |T|) and || |) + |11). This can alternatively be viewed as swap-
ping the accrued phases. After another free-evolution time, of 7/4, the (1/2)-pulse
swaps the phases again. This state then freely evolves for another time 7/8, after
which both [[1)+|1]) and [|])+|17) have accumulated the same phase,
e {L/MT/8 and the state is, as a result, no longer entangled. In this way, the
dephasing due to pairwise dipole-dipole interactions is cancelled. The centre
(1) -pulse and another pair of (—m/2),- and (1/2),-pulses are necessary for remov-
ing the single-particle inhomogeneity in addition to rephasing the dipole-dipole
interactions. The effects of dipole-dipole interactions beyond that of isolated pairs
of molecules are not removed by this particular multipulse sequence.
Interspecies two-body loss coefficient. To determine the appropriate two-body
loss coefficient to describe the recombination of molecules in distinguishable
rotational states, we measured losses for an incoherent mixture of [0,0) and
1,—1) molecules in an optical dipole trap, as presented in Supplementary
Fig. 3. We find a two-body loss coefficient of 9.0(4) X 10 "*cm®s™" for the mix-
ture of rotational states that support resonant dipolar interactions®'. This exceeds
the value for molecules in different nuclear (hyperfine) states® (with no resonant
dipolar coupling) by a factor of ~5.
Theoretical modelling of the spin dynamics. Theoretical modelling of the spin
dynamics observed with Ramsey spectroscopy shows similar oscillations and
coherence times as our measurements, and the comparison can be used to estimate
a filling factor of 5-10% for 10* molecules. Although exactly treating the many-
body dynamics is intractable, at sufficiently small filling a ‘cluster expansion’ can
be quite accurate. Here we separate N molecules into clusters, each containing at
most 10 molecules, and solve exactly the spin dynamics within these clusters,
neglecting intercluster interactions®?’.

Results on the oscillation frequency, amplitude and decay time for the Ramsey
contrast produced by the cluster expansion are all consistent with the experimental
observations. We find that the cluster expansion depends relatively weakly on the
assumed spatial distribution of the molecules (which we know only roughly), and
that the main dependence of the contrast decay comes from the assumed filling,
such that the filling estimate stated in the main text is reliable in this regard. A
discussion of the convergence of the cluster expansion is far beyond the scope of
the present work, but its uncertainties are the main source of the uncertainty in the
estimated filling fraction.

The cluster expansion also indicates that the Ramsey contrast decay arises from
many-body interaction effects other than either nearest-neighbour interactions or
summing the dynamics of pairs of molecules. Although summing pairwise
dynamics leads to a contrast decay time, 7, that decreases with increasing filling
fraction, this 7 is significantly larger than the cluster expansion results and requires
unreasonably high lattice filling to match experimental results.

(H+mMe
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