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We theoretically study the propagation of light through a cold atomic medium, where the effects of motion,
laser intensity, atomic density, and polarization can all modify the properties of the scattered light. We present
two different microscopic models: the “coherent dipole model” and the “random-walk model”, both suitable for
modeling recent experimental work done in large atomic arrays in the low-light-intensity regime. We use them
to compute relevant observables such as the linewidth, peak intensity, and line center of the emitted light. We
further develop generalized models that explicitly take into account atomic motion. Those are relevant for hotter
atoms and beyond the low-intensity regime. We show that atomic motion can lead to drastic dephasing and to a
reduction of collective effects, together with a distortion of the line shape. Our results are applicable to model a
full gamut of quantum systems that rely on atom-light interactions, including atomic clocks, quantum simulators,
and nanophotonic systems.
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I. INTRODUCTION

Light-matter interactions are fundamental for the control
and manipulation of quantum systems. Thoroughly under-
standing them can lead to significant advancements in quan-
tum technologies, quantum simulations, quantum information
processing, and precision measurements [1–7]. Over the past
decades, cold-atom experiments have provided a clean and
tunable platform for studying light-matter interactions in
microscopic systems where rich quantum effects emerge,
such as superradiance and subradiance, electromagnetically
induced transparency, and nonclassical states of light [8–12].
However, in spite of intensive theoretical and experimental
efforts over the years, long-standing open questions still
remain regarding the propagation of light through a coherent
medium, especially when it consists of large and dense
ensembles of scatterers [13–29]. In fact, by studying small
systems where analytical solutions are obtainable, it has been
realized that atom-atom interactions can significantly modify
the spectral characteristics of the emitted light. These effects
yet need to be understood in large systems [30–34] where
finite-size effects and boundary conditions become irrelevant.
The situation is even more complicated when the coupling
with atomic motion is non-negligible [35,36]. It is timely
to develop theories capable of addressing these questions,
given the rapid developments on cold-atom experiments
and nanophotonic systems. The experiments are entering
strongly coupled regimes, where atom-atom and atom-photon
interactions need to be treated simultaneously and sometimes
fully microscopically [30,37,38].

A widely adopted approach to describe light scattering
consists of integrating out the atomic degrees of freedom and
treating the atoms just as random scatterers with prescribed
polarizability [39–42]. While this approach can successfully
capture some classical properties of the scattered light, it
does not fully treat the roles of atom-atom interactions and
atomic motion [43–46]. An alternative route consists of tracing
over the photonic degrees of freedom. In this case the virtual
exchange of photons induces dispersive and dissipative dipole-
dipole interactions between atoms, which can be accounted for

by a master-equation formulation [13,14]. This approach has
been used to study systems of tightly localized atoms where
the dynamics only takes place in the atomic internal degrees of
freedom. It has been shown to successfully capture quantum
effects in light scattering [18,19,47–50]. However, due to
the computational complexity, it has been often restricted to
weak excitation and small samples [32,33,51,52], and a direct
comparison with experiments containing a large number of
atoms has been accomplished only recently [53,54]. In general,
most theories have not properly accounted for atomic motional
effects and atomic interactions on the same footing and many
open questions in light-scattering processes remain.

Here, we present a unifying theoretical framework based
on a coherent dipole (CD) model [see Fig. 1(a)] to study the
light scattering from cold atoms with possible residual motion.
In the low-intensity and slow-motion regime, we use the CD
to investigate the collective effects in the light scattered by a
large cloud and show the interplay of optical depth (OD) and
density. These results are compared with the random-walk
(RW) model [see Fig. 1(a)] that only accounts for incoherent
scattering and thus ignores coherent dipolar interaction effects.
To address the role of atomic motion, we perform different
levels of generalization of the CD model. With these modified
models, we show that atomic motion not only reduces phase
coherence and collective effects but also impacts the line
shape and line center of the spectral emission lines via photon
recoils. Motivated by a recent experiment at the Joint Institute
for Laboratory Astrophysics (JILA) [see Fig. 1(b)] [53], we
focus our discussions on a J = 0 → J ′ = 1 transition, but the
methods presented here can be extended to more complicated
level structures without much difficulty.

This paper is organized as follows. In Sec. II, we provide the
mathematical description of the CD model, which treats atoms
as coupled, spatially fixed dipoles sharing a single excitation.
Its predictions on the collective properties of the emitted light
such as the light polarization and density dependence of the
line shape and peak intensity are discussed. In Sec. III, we
introduce the RW model and compare its predictions on the
linewidth and peak intensity of the scattered light to the ones
obtained from the CD model. Those comparisons allow us to
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FIG. 1. Scheme. (a) Microscopic models: random-walk model
(left) and coherent dipole model (right). In the random-walk model, a
photon is randomly scattered by the atoms. Scattering events are
characterized by the incident and outgoing wave vectors of the
photons and their corresponding polarizations. In the coherent dipole
model, atoms are coupled by dipole-dipole interactions Gab, and
all atoms contribute to the fluorescence. (b) Experimental setup for
measuring the fluorescence from a cloud of atoms. An incident laser
drives an atomic transition with a spontaneous emission rate �. Atoms
absorb and emit light. The detectors collect scattered photons at an
angle θ measured from the incident beam direction.

explore the role of phase coherence in the atom-light interac-
tion. In Sec. IV, we present extended models to study motional
effects on atomic emission. We first include motion in the CD
model by assuming that its leading contributions comes from
Doppler shifts. Those are accounted for in the frozen model
approximation when we introduce local random detunings for
atoms sampled from a Maxwell-Boltzmann distribution. Then
we go beyond the frozen model approximation and explicitly
include atomic motion by means of a semiclassical approach.
This treatment also allows us to go beyond the low-excitation
regime. We finish in Sec. V with conclusions and an outlook.

II. COHERENT DIPOLE MODEL

A. Equations of motion for coherent dipoles

For an ensemble of N atoms with internal dipole transition
J = 0 → J ′ = 1, the Hamiltonian of the system that includes
the interaction between atoms and the radiation field is [55]

H = �

∑
k,ε

ωkâ
†
kε âkε + �

∑
i,α

ωαb̂
α†
i b̂α

i +
∑

i

D̂i · Ê(r), (1)

D̂α
i = d

(
b̂

α†
i + b̂α

i

)
, (2)

Ê(r) =
∑
kε

gkεk(eik·râkε + H.c.), (3)

where we have used the notation |α〉 to denote the excited
levels and |0〉 for the lower state. For convenience, we choose
the Cartesian basis, |α〉 = |x〉 , |y〉, or |z〉. b̂α†

i = |αi〉 〈0i | is the

raising operator for transition to state |α〉 of the ith atom, and
d is the atomic dipole moment. The field coupling strength is

denoted by gk =
√

�ωk

2ε0V
, k(ε) is the wave vector (polarization)

of the photons, ωk is the frequency of the photons, ε0 is the
vacuum permittivity, and V is the photon quantization volume.
Under the Born-Markov approximation, the photon degrees
of freedom âkε can be adiabatically eliminated, leading to a
master equation for the reduced density matrix ρ̂ of the atoms
[13,30,55] where the effective role of the scattered photons
is to mediate dipole-dipole interactions between atoms. The
master equation for ρ̂ is

i
dρ̂

dt
= −

∑
i,α

	α
[
b̂

α†
i b̂α

i ,ρ̂
] +

∑
i,α


α
[(

eik0·ri b̂
α†
i + H.c.

)
,ρ̂

]
+

∑
i �=j,α,α′

gαα′
i,j

[
b̂

α†
i b̂α′

j ,ρ̂
]

+
∑

i,j,α,α′
f αα′

i,j

(
2b̂α′

j ρ̂b̂
α†
i − {

b̂
α†
i b̂α′

j ,ρ̂
})

, (4)

where we have added the term describing the effect of an
external driving laser with polarization α, wave vector k0,
and Rabi frequency 
α . The Hamiltonian is written in the
rotating frame of the laser, with 	α denoting the detuning
between the laser and the transition |0〉 → |α〉. The dipole-
dipole interactions are given by [13,30]

Gαα′
ij = 3�

4

[
δα,α′A(rij ) + r̂α

ij r̂α′
ij B(rij )

]
, (5)

A(r) = −eik0r

k0r
− i

eik0r

k2
0r

2
+ eik0r

k3
0r

3
, (6)

B(r) = eik0r

k0r
+ 3i

eik0r

k2
0r

2
− 3

eik0r

k3
0r

3
, (7)

gαα′
ij = Re

[
Gαα′

ij

]
, (8)

f αα′
ij = Im

[
Gαα′

ij

]
, (9)

where δα,α′ is the Kronecker delta symbol, rij is the relative
separation between atoms i and j , and r̂α = rα/r denotes the
component of the unit vector r/r along the direction α = x,y,
or z. The real and imaginary parts describe the dispersive
and dissipative interactions, respectively. The spontaneous

emission rate is � = k3
0d2

3π�ε0
, and k0 = 2π/λ is the wave

vector of the dipole transition. The dipole-dipole interactions
include both the far-field (1/r) and near-field (1/r2,1/r3)
contributions. The imaginary part encapsulates the collective
dissipative process responsible for the superradiant emission in
a dense sample. The real part accounts for elastic interactions
between atoms which can give rise to coherent dynamical
evolution. These elastic interactions compete with and can
even destroy the superradiant emission [33,56].

When the atoms’ thermal velocity v satisfies k0v � �,
atoms can be assumed to be frozen during the radiation
process. Moreover, in the weak-driving regime, 
 � �, to an
excellent approximation, the master-equation dynamics can
be captured by the 3N linear equations describing the atomic
coherences bα

j = 〈b̂α
j 〉 of an excitation propagating through the

ground-state atomic medium. The corresponding steady-state
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solution can be found from

bα
j = 
αδα,γ eik0·rj /2

	α + i�/2
+

∑
n�=j,α′

Gαα′
jn

	α + i�/2
bα′

n , (10)

where we have specified the polarization of the driving laser
to be along γ . To obtain Eq. (10), we have assumed there
is only one excitation in the system and ignored multiatom
coherences (see Appendix A). This assumption is justified
in the weak-driving-field regime [49,57]. The fluorescence
intensity measured at the position rs in the far field can be
obtained by the summation [13]

I (rs) ∝
∑
jn

e−iks ·rjn

∑
α,α′

(
δα,α′ − r̂α

s r̂α′
s

)
bα′

j bα∗
n , (11)

where bα∗
n is the complex conjugate of bα

n , and rjn = rj − rn.

B. Collective effects in fluorescence

For dilute samples the dipolar interactions are weak,
G ≡ ∑

i �=j,α,α′ |Gαα′
ij |/(N�) � 1, and Eq. (10) can be solved

perturbatively using G as an expansion parameter, bα
j = b

α,0
j +

b
α,1
j + b

α,2
j + · · · (bα,n

j ∝ Gn), which results in

b
α,n
j =

∑
l1 �= j

l2 �= l1
· · · ln �= ln−1
α1,α2, . . . αn

G
αα1
j l1

G
α1α2
l1l2

...G
αn−1αn

ln−1ln

γ δαn,γ eik0·rln

in
(
	α + i �

2

)(
	α1 + i �

2

)
...

(
	αn + i �

2

) . (12)

In the expansion, terms of order n account for nth-order scat-
tering events. For simplicity, in the following we assume the
atomic sample has a spherical shape, with density distribution
n(r) = n0e

−r2/2R2
, unless otherwise specified. However, the

conclusions can be generalized to other geometries. Here,
n0 = N

2π
√

2πR3 is the peak density.
To the zeroth order, the atomic response is driven by only

the external field and is not modified by the scattered light:

b
α,0
j = 
αδα,γ eik0·rj

	α + i�/2
. (13)

Substituting it into Eq. (11), the intensity of scattered light is

I ∝ N + N2e−|ks−k0|2R2
. (14)

There are two contributions to the intensity; the first term
∝ N represents the incoherent contribution, and the second
term ∝ N2 is the collective emission resulting from coherent
scattering processes [17,53]. The phase coherence is restricted
to a narrow angular region around the incident laser direction,
with δθ ∼ 1/k0R. The enhanced emission arises from the
constructive interference of the radiation from N dipoles
[49]. Along other directions, the random distribution of atom
positions randomizes the phases of the emitted light, smearing
out the phase coherence after averaging over the whole
sample [53].

Including first-order corrections, the intensity of the scat-
tered light is given by

I (rs) ∝ N
2

(	 − �Re[G])2 + (� + 2�Im[G])2/4
(15)

for transverse directions, where we have denoted 
 = 
γ and
	 = 	γ and G = ∑

i �=j G
γγ

ij e−ik0·rij /(N�). For the forward
direction, the intensity has the same form, except that the factor
N is replaced by N2 due to the phase coherence. Therefore,
the line shape of the scattered light is Lorentzian, with its
line-center frequency shifted by the elastic interactions [58]
and the linewidth broadened by the radiative interactions. If we
temporarily neglect the effect of polarization, when the atom-
atom separation is large, the dipole-dipole interaction is dom-
inated by far-field terms, i.e., G

γγ

ij ∼ − 3�
4 (1 − r̂γ

ij r̂γ

ij ) e
ik0rij

k0rij
. In

this limit analytical expressions for the linewidth broadening
� and density shift 	 can be obtained: � = 2�Im[G] =
3N�/(8k2

0R
2) = τ

4 �, with τ = 3N

2k2
0R2 being the OD of the sam-

ple (see Appendix B), and 	 = �Re[G] = −�n0k
−3
0 /4

√
2π .

Therefore, while the collectively broadened linewidth depends
on the OD of the atomic cloud, the frequency shift depends on
the density.

In a dense medium dipolar interactions are strong, G�1,
higher-order scattering events become important, and the
interplay between the radiative interactions and elastic inter-
actions becomes non-negligible. As a consequence the above
perturbative analysis is no longer applicable. In Figs. 2 and 3,
we show the numerical solution of Eq. (10), which takes into
account all the scattering orders. As shown in Fig. 2(a), most of
the scattered light is distributed within a narrow peak around
the forward direction (laser direction). Outside this narrow
region fluorescence is almost uniformly distributed among
other directions [59]. The forward emission is collectively
enhanced. For low OD it increases as ∼N2 [Fig. 2(b)], while
the transverse intensity increases as ∼N .

Dipolar interactions tend to suppress the rate at which the
intensity grows with N [Fig. 2(c)]. This can be qualitatively
understood from Eq. (15), which predicts that the intensity is
reduced as OD increases. Despite the fact that the perturbative
analysis is only valid in the weak-interaction limit, this
tendency remains and becomes more pronounced in the large-
OD regime, as shown by the numerical solution presented in
Fig. 2(d). Broadly speaking, multiple-scattering events tend to
suppress collective behavior [22,60]. Similar physics is also
observed in the behavior of the linewidth. At small OD, the
FWHM linewidth increases linearly with OD [Fig. 3(a)], and
the line shape is well described by a Lorentzian [Fig. 3(b)], as
expected from Eq. (15). However, when OD is large and the
density is high, in addition to a significant broadening, the line
shape becomes non-Lorentzian [Fig. 3(c)], and the FWHM
increases slowly with OD [Fig. 3(a)]. To further illustrate
this, in Fig. 3(a) we plot the FWHM for the same OD but
with smaller density (by using a larger atom number). The
figure shows that the linewidth indeed keeps increasing until
saturation at a larger value of OD. Another interesting feature is
the double-peak structure observed only at intermediate angles
θ , which arises from the interplay between the stimulated
photon emission driven by the probe field and the scattered
photons emitted via dipolar exchange processes [Fig. 3(c)].

The drastic modifications of the perturbative expectations
from multiple scattering are also present in the frequency
shift of the scattered light. From a mean-field point of view,
the line center of scattered light is shifted according to
the Lorentz-Lorenz shift πn0k

−3
0 � [61]. As shown by the
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(c)
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FIG. 2. CD model: on-resonance intensity. (a) Angular distribution: due to the constructive interference along the forward direction (θ = 0),
the intensity is drastically enhanced within a small angular region. (b) and (c) The intensities for three different directions (θ = 0, π/10, π/2)
are shown as a function of atom number, each normalized to the value at N = 50. All are calculated for a spherical cloud of fixed size. The right
vertical axes label the intensity for θ = π/2, π/10. In (b) the OD and the density are relatively low (when N = 500, τ = 2, n0k

−3
0 = 0.0015).

The transverse intensity increases ∼N , while the forward intensity increases ∼N2, showing a collective enhancement for a small window of θ

around zero. Outside this narrow angular window the enhancement disappears, and the intensity becomes almost θ independent, as indicated
by the identical behavior observed for two different angles, θ = π/10 and π/2. In (c) the OD and density are relatively large (when N = 500,
τ = 10, n0k

−3
0 = 0.017). The rate at which the intensity increases with N slows down in both the forward and transverse directions, with

I ∼ N 1 for θ = 0 and I ∼ N0.5 for θ = π/2, respectively. (d) On-resonance intensity as a function of OD: it is highly suppressed at large OD.
Here, the intensity is normalized to the corresponding value at τ = 25 for each direction.

numerical calculation in Fig. 4 (blue solid line), at small
density, the frequency shift is indeed linear with n0k

−3
0 , but

as density increases, the shift is quickly suppressed [22].
For atom density ∼5 × 1013 cm−3 (reached, for example,
in cold 87Rb atom experiments [62]), the calculated density
shift is approximately a factor of 2 lower than the mean-field
prediction.

The interplay between the imaginary and real parts of the
dipole-dipole interaction has to be carefully accounted for to
compare numerical simulations with experimental measure-
ments by doing finite-size scaling. For typical computation
resources the numerical solution of Eq. (10) is limited to ∼104

atoms. On the other hand, experiments usually operate with
ensembles of tens of millions of atoms. To theoretically model
these large systems a proper rescaling in the cloud size is
necessary. Equation (15) implies that in order to characterize
the effect of radiative interactions one should aim to match the
experimental OD, which scales as ∼N1/2. On the other hand, to
properly reproduce the effect of elastic interactions it is better
to match the dimensionless number n0k

−3
0 , which scales as

N1/3. Therefore, there exist two different ways of rescaling the
cloud size, either by keeping the same OD or the same density.
In Fig. 5 we show the effect of finite N for a moderate range
of atom numbers. Indeed, except from small deviations seen
at very low atom numbers (<1000), the linewidth broadening
can be well captured by keeping the OD constant, while the
frequency shift is well described by using a constant density.
In contrast, if a constant OD is used to compute the frequency

shift, the result would considerably overestimate the shift, e.g.,
by a factor of 10 when the N in numerical simulation is 1/100
the atom number in experiment. The interplay of multiple
scattering and density effects is more prominent for larger
N values. To deal with the OD vs density scaling issues in
comparing with experiments the most appropriate rescaling
procedure that we found is the following: when computing the
linewidth or peak intensity, the theory is rescaled accordingly
with the experimental OD. However, the actual OD value is
not exactly matched to the experimental one but to a slightly
modified value, τ̃ = ητ to account for density effects [53].
For a moderate window of OD values, for example, achieved
experimentally by letting the cloud expand for different times,
η should be kept fixed. For the frequency shift the theory
should be rescaled according to density.

C. Anisotropic features of scattered light

For independent atoms radiation along the polarization
of the driving laser is forbidden. However, dipole-dipole
interactions can generate polarization components different
from the driven ones if the atoms exhibit internal level
structure, e.g., degenerate Zeeman levels in the excited state.
This is the case of a J = 0 → J ′ = 1 transition, where, as
shown in Fig. 6, the fluorescence emitted along the laser
polarization direction (z direction, θ = π/2) is nonzero. It
is, however, much weaker than the intensity emitted along
other directions. On the contrary, for two-level transitions
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(a)

(b)

(c)

FIG. 3. CD model: collective broadening. (a) FWHM linewidth
as a function of OD. At small OD, the FWHM increases linearly with
OD, but as OD increases, density effects set in, multiple scattering
events become relevant, and the linewidth dependence on OD is no
longer linear. Two different atom numbers are used for the blue solid
(N = 1000) and black dashed (N = 200) lines, and the OD is varied
by changing the cloud size. For the blue solid line, n0k

−3
0 = 0.14 at

τ = 25 and 0.003 at τ = 2. For the black dashed line, the density at
the same OD is doubled. With smaller density, the linewidth increases
to a larger value in the large-OD regime. (b) The line shape at small
OD values (τ = 2, n0k

−3
0 = 0.002) for different angles θ [θ is defined

in Fig. 1(a)] is mainly Lorentzian. Here, the intensity is normalized
to the on-resonance intensity for each θ . (c) At large OD (τ = 20,
n0k

−3
0 = 0.06), the fluorescence line shape significantly broadens and

stops being Lorentzian. The brown dots for θ = 0 show the Lorentzian
fit, which fails to describe the line shape. At intermediate θ , a double-
peak structure shows up. For all panels, the cloud shape is spherical.

the polarization of the scattered light is conserved, and thus,
the emission parallel to the laser polarization is completely
suppressed. The strong dependence of the scattered light on
polarization and atomic internal structure is most relevant
along the transverse direction. Along the forward direction
those effects are irrelevant, as verified by our numerical
simulations. From Eq. (12), the lowest-order contribution to
the intensity detected along the laser polarization direction
comes from the first-order scattering processes; thus, I ∝

1
(	2+�2/4)2 , which leads to a “subradiant” line shape (i.e., the

FIG. 4. CD model: frequency shift. For small density, the shift
calculated from the coherent dipole model (blue solid line) increases
linearly with density as predicted by the mean-field theory. However,
when density is large, there is a significant deviation from the mean-
field result. When motional effects are taken into account (red dotted
line, Doppler width of 5�, see Sec. IV A), the nonlinear suppression
of the frequency shift with density is less severe.

(b)

(a)

FIG. 5. CD model: finite-size scaling. (a) The linewidth is
calculated for different numbers of atoms at the same OD (τ = 4
for N = 3000) by varying the density (blue line with circles). From
N = 1000 to 5000 the linewidth is not obviously changed. In contrast,
by keeping the same density (n0k

−3
0 = 0.0037 for N = 3000) while

varying the OD (magenta line with triangles), the linewidth keeps
changing. (b) The frequency shift is calculated for different numbers
of atoms. By keeping constant density (magenta line with triangles),
the frequency shift remains almost constant, while for constant
OD (blue line with circles), there is a significant variation of the
frequency shift with N . Here, the cloud aspect ratio is Rx : Ry : Rz =
2 : 2 : 1 [53].
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(c)

(b)

(a)

x

z

y
φ

FIG. 6. CD model: effect of laser polarization. (a) Intensity
distribution in the plane perpendicular to the laser propagation
direction, i.e., θ = π/2 for all φ’s (inset shows the geometry). φ = 0
is the z direction. Here, the incident laser is polarized along z.
The intensity detected along the laser polarization is suppressed
compared to other directions. (b) and (c) show the line shape and
linewidth of light detected at θ = π/2, φ = 0. (b) At small OD, the
FWHM linewidth is below the natural linewidth. (c) As OD increases,
the linewidth is collectively broadened due to multiple-scattering
processes [Fig. 3(a)]. For all panels, degeneracy in excited levels has
been assumed.

FWHM, �FWHM =
√√

2 − 1� < �, is smaller than the one
for independent particles). The analytic result agrees perfectly
with the numerical simulation at low OD [Fig. 6(b)]. As
the OD increases and interactions become stronger, higher-
order scattering contributions lead to a collective broadening
(linewidth larger than �) even along this “single-dipole-
forbidden” direction, as shown in Fig. 6(c).

III. RANDOM-WALK MODEL

In this section we use the random-walk model to investigate
the role of incoherent scattering processes in collective
emission. We focus on the low-intensity regime. Classically,
light transport in a disordered medium can be described by
a sequence of random scattering events experienced by a

e3

er el

e3 = kin

e3 = kout

φ
el

er

er

el

θ

FIG. 7. RW: transformation of Stokes vectors. In the random-
walk model, a scattering event is determined by two consecutive
transformations of local coordinates: {e3,er,el} → {e′

3,e
′
r,e

′
l} via

rotation φ and {e′
3,e

′
r,e

′
l} → {e′′

3,e
′′
r ,e

′′
l } via rotation θ [68].

photon [see Fig. 1(a)] [41,44,60]. The expected number of
scattering events is roughly given by (τp)2, where τp is the peak
optical depth, which depends on detuning 	 as 3N/[k2

0R
2(1 +

4	2/�2)]. For simplicity here we also assume a spherical
cloud. The transmission of light is given by e−τp [63,64].
For the J = 0→J ′ = 1 transition (degenerated J ′ = 1
states), the differential scattering cross section that defines
a scattering event is given by [41,60]

dσ

d

(kin,εin → kout,εout) = 3σ0

8π
|ε∗

in · εout|2, (16)

where kin,out are the incident and scattered wave vectors, εin,out

are the polarizations of the incident and scattered photons
[41,60,65], and σ0 = 3λ2/[2π (1 + 4	2/�2)], with λ being
the wavelength of the driving laser.

To simulate the polarization-dependent scattering events as
dictated by Eq. (16), it is convenient to use the Stokes-Mueller
formalism [66]. A photon in a given state of polarization can
be described by a Stokes vector [67]

S =

⎛⎜⎜⎜⎝
S0

S1

S2

S3

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
|El|2 + |Er |2
|El|2 − |Er |2
E∗

l Er + ElE∗
r

i(E∗
l Er − ElE∗

r )

⎞⎟⎟⎟⎟⎠, (17)

where El , Er are the electric field components projected onto
the two orthogonal axes êl and êr in the plane perpendicular
to the wave vector k. For example, S = (1,1,0,0) represents
a photon linearly polarized along the reference axis êl . A
scattering event kin,εin → kout,εout can be determined by two
angles: θ and φ (see Fig. 7). The change of polarization can be
obtained from the transformation S′′ = M(θ )R(φ)Sin, where
Sin is the incident Stokes vector, S′′ is defined with respect to
the axes ê′′

l , ê′′
r , and ê′′

3 , and then Sout = R(ψ)S′′, transforming
back to the original frame êl , êr , and ê3 [68], with Sout being
the scattered Stokes vectors. The scattering matrix that we use,
M , is the scattering matrix that describes Rayleigh scattering
[60,66]. It is given by

M(θ ) = 3

4

⎛⎜⎝cos2θ + 1 cos2θ − 1 0 0
cos2θ − 1 cos2θ + 1 0 0

0 0 2cosθ 0
0 0 0 2cosθ

⎞⎟⎠. (18)
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(c)

(b)(a)

FIG. 8. RW model. (a) Distribution of on-resonance intensity
in the plane θ = π/2. Along the direction where single-scattering
events are forbidden (φ = 0), the light intensity is suppressed. (b)
The FWHM linewidth increases linearly with τp in a dilute medium.
The linewidth along the direction parallel to the laser polarization
can drop below � for small τp (purple squares). (c) Line shapes for
different τp’s and angles of observation. The line shape is Lorentzian
for low τp but gets distorted and develops a double-peak structure as
the τp increases. Here, for all angles, the signal is collected within
a small angular region δθ = 5◦. The intensity is normalized to the
value at zero detuning for θ = 0 and τp = 0.3, and the width of laser
beam is 5 times the Gaussian width of the atomic cloud. Here, all τp

are labeled as the value at 	 = 0.

The matrix R(φ) is the rotation matrix that rotates the incident
axis êr to ê′

r (perpendicular to the scattering plane),

R(φ) =

⎛⎜⎝1 0 0 0
0 cos(2φ) sin(2φ) 0
0 −sin(2φ) cos(2φ) 0
0 0 0 1

⎞⎟⎠, (19)

and R(ψ) is the rotation matrix that transforms the coordinate
system ê′′

l , ê′′
r , and ê′′

3 back to the original coordinate system
êl , êr , and ê3 and can be found from θ and φ. The polarization
of the photons is encoded in the Stokes vector. The probability
of a scattering event can be directly calculated from S ′′

0 /S in
0 .

Complete trajectories of the photons can be found from Monte
Carlo sampling of scattering events. As the phase information
of photon is not kept in this approach, it is more suitable for
describing classical media or hot atoms where phase coherence
is not important.

The polarization of the incident photon is randomized
after multiple-scattering events. Since the intensity detected
along the polarization direction of the incident photon requires
at least two scattering events, it is suppressed compared to
other directions but nonzero [Fig. 8(a)], and the linewidth at
small τp also drops below the natural linewidth [Fig. 8(c)]
along this direction. For the other directions, the intensity
distribution is roughly homogeneous and does not exhibit the
collective enhancement along the forward direction observed
in the coherent dipole model. The FWHM linewidth for
different directions increases linearly with OD up to a moderate

value of OD [see Fig. 8(b)] and displays a polarization
dependence similar to the prediction of CD. Under this
classical treatment more scattering processes are expected
to occur with increasing τp, and those processes tend to
inhibit the transmission of light. As the scattering becomes
more frequent, forward scattering decreases, and more light is
scattered backwards [44]. Since τp is maximum at resonance,
	 = 0, the linewidth develops a “double-peak” profile as the
medium becomes denser [Fig. 8(c)]. Before the distortion
in line shape develops, the FWHM linewidth also linearly
increases with τp. We note that a similar double-peak structure
also appears in the coherent dipole model. However, there, it
only happens at specific small angles [see Fig. 3(c)] and never
happens along the forward direction, where the stimulated
photon emission dominates, or the transverse direction, where
the photons scattered via dipolar exchange dominate. We
attribute the appearance of the double-peak structure to the
interplay between these two types of emissions. In summary,
despite the fact that the RW model does not include coherent
emission mechanisms, it is able to reproduce the collective
broadening observed with increasing optical depth and the
subnatural linewidth present in the direction parallel to the laser
polarization at relatively small optical depths. The RW model,
on the other hand, ignores coherent elastic dipolar interactions
and thus does not predict a density shift.

IV. ROLE OF ATOMIC MOTION

An assumption made in Sec. II is that the position of the
atoms remains fixed. This assumption is valid only when atoms
move at a rate slower than the radiative decay rate. When
motion is significantly faster, e.g., hot atomic clouds, the coher-
ence during radiation is smeared out, and classical approaches,
such as the RW model, are usually satisfactory [40,42] to de-
scribe collective light emission. However, many experiments
operate in an intermediate regime where coherences cannot be
totally disregarded, and it is not a good approximation to treat
atoms as frozen. For example, for the 1S0 → 3

P1 transition
of 88Sr atoms, the Doppler broadening at ∼1μK, 	D ≈ 6�,
and recoil frequency ωr = �k2

0/2m ≈ 0.6�, both comparable
to the natural linewidth [69,70]. Consequently, for a proper
description of light scattering one needs to account for both
photon coherences and atomic motion on an equal footing.
Below we present two approximate ways to accomplish this.

A. Modified frozen dipole model

In this section, we discuss a simple way to include the
effects of atomic motion on light scattering via a modified CD
model. For a single atom, to leading order, a major modification
from motion in the emitted light intensity is the Doppler shift, a
velocity-dependent modification of the effective laser detuning
experienced by an atom (see Appendix C). We include
this effect in the many-body system by introducing random
detunings for each atom, i.e., 	 → 	 + δν, and by sampling
them according to a Maxwell-Boltzmann distribution P (δν) =

1√
2π	̃D

exp(− δν2

2	̃2
D

) that accounts for the Doppler shifts [22].

Here, 	̃D = 	D/
√

8ln2. We denote this approximation as the
modified frozen dipole model. The random detunings modify
atomic coherences as (for simplicity we assume a single beam
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(b) 

(a) 

FIG. 9. Modified frozen dipole model: peak intensity. (a) Col-
lective forward enhancement: forward intensity normalized by the
transverse intensity as a function of Doppler width. (b) Intensity
detected along different directions at Doppler width 	D = 6� as a
function of atom number for fixed cloud size (when N = 500, τ = 2,
n0k

−3
0 = 0.0015). I ∼ N1.6 for θ = 0, and I ∼ N0.7 for θ = π/2.

The right vertical axis labels the intensity for θ = π/2,π/10.

illumination)

bj = 
eik0·rj

(	 − δνj ) + i�/2
. (20)

Using Eq. (20), the intensity along a generic direction becomes

Iincoh = 1√
2π	̃D

∫
dδνj |bj |2e−δν2

j /2	̃2
D . (21)

On the other hand, the coherent scattering in the forward di-
rection which takes into account pairwise atomic contributions
becomes

Icoh = 1

2π	̃2
D

∫
dδνjdδνj ′bjb

∗
j ′e

−δν2
j /2	̃2

De
−δν2

j ′ /2	̃2
D . (22)

The on-resonance enhancement factor is thus

Icoh

Iincoh
=

√
π
2 e

1
8	̃2

D/�2 erfc
(

1
2
√

2	̃D/�

)
2	̃D/�

, (23)

where erfc is the complementary error function. This induces
an exponential suppression of the forward interference that
depends on 	̃D/� [53], as shown in Fig. 9(a).

The reduced light scattering probability, on the other hand,
competes with dephasing since it suppresses multiple scatter-
ing and, as a consequence, promotes collective enhancement.
Effectively, it brings the system closer to the small-OD regime
[Fig. 2(b)]. The motion-induced suppression of multiscattering
processes is also signaled in the frequency shift (Fig. 4)

[22,27], which keeps increasing until a larger value of density
in the presence of motion.

B. Semiclassical approach

Laser-light-mediated forces on atoms are a fundamental
concept in atomic physics and lay the foundations of laser
trapping and cooling [64,71]. They can be accounted for at
the semiclassical level by explicitly including the position ri

and the momentum pi degrees of freedom of the atoms and
solving for their dynamics while feeding those back into the
quantum dynamics of the internal degrees of freedom. An
explicit description of this procedure is presented below.

For simplicity we will assume a two-level transition. This
condition is achievable in experiments, for example, by apply-
ing a large magnetic field to split apart (|	α − 	γ | � G�)
the excited-state levels and thus energetically suppressing
the population of the ones not directly driven by the laser.
For driving the atoms we will consider the case of two
counterpropagating lasers with wave vector ±k0, propagating
along x, and Rabi frequency 
. The internal atomic variables
evolve according to (see Appendix A)

dbj

dt
= i
 cos(k0 · rj )sj −

(
�

2
+ i	

)
bj

+ i
∑
l �=j

sj bl(gjl − ifjl), (24)

dsj

dt
= 2i
 cos(k0 · rj )(bj − H.c.) − �sj

− 2i
∑
l �=j

(gjl − ifjl)b
∗
j bl + 2i

∑
l �=j

(gjl + ifjl)b
∗
l bj ,

(25)

where 	 = 	α and the last terms describe the effect of dipole-
dipole interactions g(r) and f (r) (see Appendix A). In general
the position of atoms can also change with time as

drj

dt
= pj

m
, (26)

so the response to the local driving field and dipole-dipole
interactions in Eqs. (24) and (25) change accordingly. The
momentum changes due to not only the force exerted by the
driving laser but also the long-range forces gj l = −∇gjl and
fj l = −∇fjl , which originate from the dispersive and dissi-
pative dipole-dipole interactions, respectively (see Appendix
A), and depend on the instantaneous atomic coherences and
positions:

dpj

dt
= −2�k0
sin(k0 · ri)Re{bi(t)}

+
∑
l �=j

[gj l(bjb
∗
l + H.c.) − ifj l(bjb

∗
l − H.c.)]. (27)

The atomic coherence and external motion are now coupled
together, so Eqs. (24)–(27) need to be solved simultaneously
to obtain the dynamics. In deriving Eq. (27), we have ignored
the role of momentum diffusion (see Appendix A). We have
verified in our numerical simulations that it can be safely
ignored for the parameters of interest presented in this work.
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FIG. 10. Semiclassical model: single-atom line shape. The exci-
tation line shape is calculated for three different driving strengths,
each normalized by 
2. The atomic motion is allowed to be one-
dimensional and parallel to the laser propagating direction. Here, we
used ωr = 0.6� (the value of the 1S0 → 3

P1 transition of Sr [69]).

In previous sections, it has been shown that except for a
narrow cone around the forward direction, the fluorescence
intensity is I (rs) ∝ ∑

i si (also see Appendix C). Since we
expect motion to further reduce the effect of coherence, we
will focus on the transverse scattering and compute

∑
i si .

Figure 10 shows the line shape of a single atom for different

 calculated from the semiclassical approach.

As a result of atomic motion, the laser-atom system is not
in a stationary state. We show the results for driving time
t = 5/�. When 
 � �, the line shape is a Voigt profile with
the Doppler width determined by the velocity. When 
 ∼ �,
there is a distortion in the line shape, with more intensity at
	 < 0. This is because for 	 < 0 the laser force decelerates
the atom, while for 	 > 0 the atom is heated up. With
reduced (increased) velocity, the atom is, on average, more
(less) excited, resulting in a distorted line shape. The center of
the line is therefore shifted to the red.

Motion can significantly modify the interactions between
atoms [72]. We study the effect of motion on the frequency shift
in Fig. 11. Dipolar-induced frequency shifts were previously
discussed in Sec. II. Since we focus on low driving fields,
again we neglect momentum diffusion in these calculations.
The calculations show that unless 	D is very small, atomic

FIG. 11. Semiclassical model: effect of motion on frequency
shift. Two atoms are driven by a pair of counterpropagating lasers,
with 
 = 0.1�, ωr = 0.6�. The red dashed line shows the result of
the semiclassical model where motion is allowed in three dimensions.
The blue solid line shows the result from the modified CD. The center
of the excitation line shape is calculated at t = 5/� for different
Doppler widths for both models.

motion leads to a fast suppression of the frequency shift. Only
when 	D � � can the frequency be increased by motion, and
this is the regime where the modified frozen dipole model is
qualitatively valid; recall that it predicts always an increase
of density shift with Doppler broadening. We note that at
	D → 0 the frequency shift obtained using the modified
frozen dipole model is slightly smaller than that obtained
from the semiclassical approach. This is a consequence of
the distortion caused by laser cooling or heating, which
additionally shifts the spectral line. For 	D � � motion needs
to be properly accounted for, and the modified frozen dipole
model is not reliable.

V. CONCLUSION

We theoretically studied the propagation of light through a
cold atomic medium. We presented two different microscopic
models, the coherent dipole model and the random-walk
model, and analyzed how the light polarization, optical depth,
and density affect the linewidth broadening, intensity, and line-
center shift of the emitted light. We showed that the random-
walk model, which neglects photonic phase coherence, can
fairly capture the collective broadening (narrowing) of the
emission linewidth but, on the other hand, does not predict a
density shift. Due to the limitation of computation capacity,
the numerical simulation of CD is usually restricted to ∼104

atoms, which is much smaller than that in some cold-atom
experiments [9,62]. Nevertheless, the understanding of the
underlying physics allowed us to perform an appropriate
rescaling in the cloud size which we used to compare with
experiments [53]. We further developed generalized models
that explicitly take into account motional effects. We showed
that atomic motion can lead to drastic dephasing and reduction
in the collective effects, together with a distortion in the line
shape. While the modified frozen dipole model predicts a
monotonic increase of the density shift with increasing motion,
the semiclassical model, which properly accounts for recoil
effects, predicts that this behavior holds only at slow motion
	D � �. Instead, as atoms move faster, motional effects start
to become dominant, the cloud expands, and the frequency
shift decreases. None of the presented theoretical models,
however, can explain the large density shift measured in the
1S0 → 3

P1 transition of 88Sr atoms [69]. It will be intriguing
to determine what the actual physical processes are that cause
this large shift.
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APPENDIX A: LONG-RANGE DIPOLE-DIPOLE
INTERACTION, FORCE, AND DIFFUSION

Here, we derive the form of dipole-dipole interactions and
the corresponding forces for two-level moving atoms, with
ωa = k0c being the frequency of transition and d being the
dipole moment. We include motion in the dipolar coupling
after eliminating the electromagnetic vacuum modes. The
Hamiltonian, including the atoms and free-space electromag-
netic field, is

H = �ωa

∑
j

b̂
†
j b̂j +

∑
k,ε

ωkâ
†
kε âkε −

∑
j

∑
k,ε

gk

× (d · ε̂k)[(eik·rj âkε + H.c.)(b̂†j + H.c.)]. (A1)

The atomic dipoles and field modes evolve according to

dâkε

dt
= −iωkâkε + i

�

∑
j

gk(dj · εk)[e−ik·rj (b̂j + H.c.)],

(A2)

db̂j

dt
= −iωab̂j + i

∑
k,ε

gk

�
(dj · ε̂k)[eik·rj âkε ŝj + H.c.],

(A3)

dŝj

dt
= −i

∑
k,ε

gk

�
(dj · ε̂k)[eik·rj âkε b̂

†
j − e−ik·rj â

†
kε b̂j

− eik·rj âkε b̂j + e−ik·rj â
†
kε b̂

†
j ], (A4)

where ŝj = b̂
†
j b̂j − b̂j b̂

†
j and sj = 〈ŝj 〉 gives the inversion

of the j th atom. We have assumed that internal operators
commute with external operators and neglected the diffusion
of the atomic wave packet. Equation (A2) can be formally
integrated to obtain

âkε(t) = âkε(0) − i
∑

j

gk

�
(dj · ε̂k)

∫
dt ′eik·rj +iωk(t ′−t)

× (b̂j + H.c.). (A5)

Assuming the external motion is much slower than the internal
dynamics relevant inside the integral, so that rj (t ′) ≈ rj (t),
and the interaction between atoms and the field modes is weak
so that b̂j (t ′) ≈ b̂j (t)e−iωa (t ′−t), and substituting Eq. (A5) into
Eq. (A3), we obtain the equation for the quantum averaged
quantities:

db̂j

dt
= −iωab̂j + ŝj

∑
l

∑
k,ε

g2
k

�2
(dj · ε̂k)(dl · ε̂k)

×
{
eik·rj l

[
b̂
†
l

(
πδ(ωk + ωa) − iP

1

ωk + ωa

)
+ b̂l

(
πδ(ωk − ωa) − iP

1

ωk − ωa

)]
− e−ik·rj l

[
b̂
†
l

(
πδ(ωk − ωa) + iP

1

ωk − ωa

)
+ b̂l

(
πδ(ωk + ωa) + iP

1

ωk + ωa

)]}
, (A6)

where we have utilized the fact that 〈âkε(0)〉 = 0 and assumed
that atomic motion is classical [73,74]. Changing

∑
k =

V
(2π)3

∫
d
dkk2 and applying a rotating-wave approximation,

we have

db̂j

dt
= −iωab̂j + i

∑
l �=j

ŝj b̂l(gjl − ifjl) − �

2
b̂j , (A7)

with f (0) = �, and

g(r) = −3�

4

[
z1(θ )

cosk0r

k0r
+ z2(θ )

(
cosk0r

k3
0r

3
+ sink0r

k2
0r

2

)]
,

(A8)

f (r) = 3�

4

[
z1(θ )

sink0r

k0r
+ z2(θ )

(
sink0r

k3
0r

3
− cosk0r

k2
0r

2

)]
,

(A9)

where z1(θ ) = sin2θ and z2(θ ) = (3cos2θ − 1). These expres-
sions can also be obtained from Eqs. (5)–(9) by keeping only
a single α component. We further assume that multiatom
correlations can be factorized, 〈ŝj b̂l〉 ≈ 〈ŝj 〉〈b̂l〉, so that the
atomic coherence evolves as

dbj

dt
= −iωabj + i

∑
l �=j

sj bl(gjl − ifjl) − �

2
bj , (A10)

where O = 〈Ô〉 for any atomic operator Ô. It is coupled to sj ,
the equation of which can be derived in a similar way and is
given by

dsj

dt
= −�sj − 2i

∑
l �=j

(gjl − ifjl)b
∗
j bl

+ 2i
∑
l �=j

(gjl + ifjl)b
∗
l bj . (A11)

If we consider very low external driving field and sj ≈ −1,
Eq. (A10) is decoupled from sj and can be reduced to the form
of Eq. (10). For the momentum,

dp̂j

dt
= −∇Ĥ

= −
∑
k,ε

gk(dj · εk)(ikeik·rj âkε b̂
†
j − ike−ik·rj â

†
kε b̂j

+ ikeik·rj âkε b̂j − ike−ik·rj â
†
kε b̂

†
j ). (A12)

After substituting Eq. (A5), taking the quantum average, and
performing an integration procedure similar to that above, we
obtain

dpj

dt
=

∑
l �=j

[gj l(bjb
∗
l + H.c.) − ifj l(bjb

∗
l − H.c.)], (A13)

with gj l = −∇gjl and fj l = −∇fjl . As the dispersive force
gj l is a steep function of rjl , it dominates at short distances,
and atoms are drastically accelerated or decelerated. Both the
dispersive and dissipative forces are anisotropic and couple
motion along different directions.

Due to the presence of spontaneous emission and radiative
interactions, the atomic momentum also diffuses over time,
which can be described by including classical noise dξα

i in the
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equation of motion for pα
i . The components of these noises

are correlated and are characterized by the diffusion matrix

E
[
dξα

i (t)dξ
β

i (t ′)
] = δα,β

2 − δα,z

10
�

2k2
0�(si + 1)δ(t − t ′),

(A14)

E
[
dξα

i (t)dξ
β

j (t ′)
] = −2�

2k2
0∇α∇βf (rij )Re[b∗

i bj ]δ(t − t ′),

(A15)

where E[·] denotes the expectation value.
The momentum diffusion matrix can be found from

Dj l = d〈p̂j p̂l〉
dt

− 〈pj 〉d〈pl〉
dt

− d〈pj 〉
dt

〈pl〉 (A16)

=
∑
k1,ε1

∑
k2,ε2

gk1gk2 (dj · ε1)(dl · ε2)(ik1e
ik1·rj âk1ε1 b̂

†
j

− ik1e
−ik1·rj â

†
k1ε1

b̂j

+ ik1e
ik1·rj âk1ε1 b̂j − ik1e

−ik1·rj â
†
k1ε1

b̂
†
j )

× (ik2e
ik2·rl âk2ε2 b̂

†
l − ik2e

−ik2·rl â
†
k2ε2

b̂l

+ ik2e
ik2·rl âk2ε2 b̂l − ik2e

−ik2·rl â
†
k2ε2

b̂
†
l )

= −2�
2k2

0∇∇fij Re[b∗
j bl]. (A17)

In dense clouds momentum diffusion from radiative in-
teractions can give rise at long times to significant heating.
This heating was reported to be one of the main limiting
mechanisms in laser cooling [74,75]. At short times, t� ∼ 1,
with low densities and weak probes, 
 < �, the momentum
diffusion is not prominent, and since this is the regime we are
interested in this work, we ignore momentum diffusion in our
calculations presented in the main text.

APPENDIX B: OPTICAL DEPTH OF A CLOUD WITH
GAUSSIAN DISTRIBUTION

We consider an atomic cloud with a Gaussian dis-

tribution n(x,y,z) = n0e
− x2

2R2
x
− y2

2R2
y
− z2

2R2
z , where n0 satisfies∫

dxdydz n(x,y,z) = N and N is the total number of atoms.
Along the line of observation, e.g., x̂, the on-resonance optical
depth is related to the resonant scattering cross section, which
for the J = 0 → J ′ = 1 transition is σsc = σ0(	 = 0) = 6π

k2
0

,

and the column density averaged over the profile perpendicular
to this direction [19,47],

τ =
[∫

dydz n(y,z)

]−1 ∫
dydz n(y,z)τ (y,z)

=
[∫

dydz n(y,z)

]−1 ∫
dydz n(y,z)

∫
dxn(x,y,z)σsc

=
[∫

dydz n(y,z)

]−1

dydz n(y,z)e
− y2

2R2
y
− z2

2R2
z

×
∫

dx n0e
− x2

2R2
x σsc

= 3N

2k2
0RyRz

= 3N

2k2
0R

2
⊥

. (B1)

With laser detuning 	, the optical depth is τ/(1 + 4	2/�2).

APPENDIX C: EFFECT OF MOTION ON SINGLE-ATOM
FLUORESCENCE

Here, we derive the fluorescence intensity emitted by a
weakly driven atom, using a full quantum approach with the
motional effect included. We consider the states including at
most one excitation, and label the relevant quantum states by
|pα,0〉 , |pg,kε〉, with α = {e,g}, p being the momentum of
the atom, and k(ε) being the momentum (polarization) of the
photon in vacuum (|pα,0〉 stands for no photon). For generality
we assume here that two counterpropagating lasers are used to
drive the atoms, carrying momenta k0 and −k0, respectively.
The Hamiltonian is [76]

Ĥ = p̂2

2m
+ �ωab̂

†b̂ + �
[cos(k0 · r)(e−iωLt b̂† + H.c.)]

+
∑
k,ε

�ωkâ
†
kε âk,ε − �

∑
k,ε

(d · ε̂k)gk[eik·râkε b̂
† + H.c.].

(C1)

The state vector of the system is

|ψ〉 =
∑

α

∫
dp |pα,0〉Aα0(p,t)e−i(Eα+Ep)t/�

+
∑
k,ε

∫
dp |pg,kε〉 Bgkε(p,t)e−i(Eg+Ep+�ωk )t/�,

(C2)

where Eα = ωaδα,e, Ep = p2

2m
, |Aα0(p,t)|2 represents the

population in the state α possessing momentum p, and
Bgkε(p,t) is the amplitude of having a photon k with
polarization ε. The state of the system evolves according
to

i
dAg0(p,t)

dt
= 
Ae0(p + k,t)ei(ωL−ωa )t e−iEp+k0 ,pt/�

+
Ae0(p − k,t)ei(ωL−ωa )t e−iEp−k0 ,pt/�,

(C3)

i
dAe0(p,t)

dt
= −

∑
k,ε

(d · ε̂k)gkBgkε(p − k,t)

× e−i(ωk−ωa )t e−iEp−k,pt/�

+
Ag0(p − k,t)e−i(ωL−ωa )t e−iEp−k0 ,pt/�

+
Ag0(p + k,t)e−i(ωL−ωa )t e−iEp+k0 ,pt/�,

(C4)

023612-11



BIHUI ZHU, JOHN COOPER, JUN YE, AND ANA MARIA REY PHYSICAL REVIEW A 94, 023612 (2016)

i
dBgkε(p,t)

dt
= Bgkε(p,t) − (d · ε̂k)gkAe0(p + k,t)

× ei(ωk−ωa )t e−iEp+k,p t/�, (C5)

where Ep1,p2 = p2
1−p2

2
2m

. The first term in Eq. (C4) describes the
effect of vacuum photons, which, according to the Wigner-
Weisskopf approach, leads to the spontaneous decay with rate
� and can be rewritten as [77]

i
dAe0(p,t)

dt
= −i

�

2
Ae0(p,t) + 
Ag0(p − k,t)

× e−i(ωL−ωa )t e−iEp−k0 ,pt/�

+
Ag0(p + k,t)e−i(ωL−ωa )t e−iEp+k0 ,pt/�.

(C6)

Consider the initial condition Bgkε(p,0) = 0, Ag0 =
δ(p − p0), where p0 is the initial momentum of the atom.
The steady-state solution is

Ae0(p,∞) = 
[δ(p0 − p + k0) + δ(p0 − p − k0)]

	L + Ep0,p + i �
2

, (C7)

with 	L = ωL − ωa . Thus, the atomic excitation Ae =∫
dp|Ae0(p,∞)|2 indicates two Lorentzians with FWHM

equal to � and centered at ωr ± k0·p0

m
. The photon emission

rate along a given direction ks is

Iks
= V �c

(2π )3

∫
dkk3

∑
ε

∫
dp lim

t→∞
|Bgkε(p,t)|2

t
, (C8)

with k = kk̂s . We consider the transverse intensity case, where
k · k0 = 0, and for atomic transitions ωr,p0 · k0/m � ωL;
then

Iks
≈ ω4

L

c3

d2
2

8π2ε0

[
1(

	 − ωr + k0·p0

m

)2 + �2

4

+ 1(
	 − ωr − k0·p0

m

)2 + �2

4

]
. (C9)

The emitted light intensity exhibits the same profile as the
atomic excitation Ae.

As indicated by the above expression, motion modifies the
emitted light intensity by adding two natural corrections: a
Doppler shift ∝ k0·p0

m
, modifying the effective laser detuning,

and a velocity-independent recoil shift ωr , which physically
accounts for the fact that to compensate for the energy imparted
to the atom via photon recoil, the incident laser needs to have
a higher frequency to be resonant with the atomic transition.
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