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We propose an approach for the collective enhancement of precision for remote optical lattice clocks and a
way of generating the Einstein-Podolsky-Rosen (EPR) state of remote clocks. In the first scenario, a distributed
spin-squeezed state (SSS) of M clocks is generated by a collective optical quantum nondemolition measurement
on clocks with parallel Bloch vectors. Surprisingly, optical losses, which usually present the main limitation to
SSS, can be overcome by an optimal network design which provides close to Heisenberg scaling of the time
precision with the number of clocks M . We provide an optimal network solution for distant clocks as well as for
clocks positioned within close proximity of each other. In the second scenario, we employ collective dissipation
to drive two clocks with oppositely oriented Bloch vectors into a steady-state entanglement. The corresponding
EPR state provides secret time sharing beyond the projection noise limit between the two quantum synchronized
clocks protected from eavesdropping. An important application of the EPR-entangled clock pair is the remote
sensing of, for example, gravitational effects and other disturbances to which clock synchronization is sensitive.
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Introduction. Optical atomic clocks provide some of the
most precise and accurate physical measurements to date
[1–5]. The precision of optical lattice clocks is presently lim-
ited by the available frequency stability of the best lasers [6–8],
but quantum noise of uncorrelated atoms lurks not far below.
With enhanced laser stability and improved measurement
protocols to reduce the laser noise [9–11], the next frontier
of precision can be advanced by generating entangled states of
the clock atoms. For a small number of atoms N , a maximally
entangled clock operating with Greenberger-Horne-Zeilinger
(GHZ) states can reach the Heisenberg limit of stability much
faster than the best classical schemes [12,13]. Spin-squeezed
states (SSS) [14] are particularly suitable for improving the
precision of optical lattice clocks that operate on large N and
currently hold the record for clock precision [2]. Distant clocks
connected into a spin-squeezed network can provide a higher
collective precision for all users.

Spin squeezing (SS) and entanglement of atomic ensembles
have so far been experimentally demonstrated for single
ensembles of spins associated with atomic states separated by
radio- or microwave frequencies. This was achieved by optical
quantum nondemolition (QND) measurements [15–22], by
mapping squeezed light onto an atomic ensemble [23], by
atomic interactions in a Bose-Einstein condensate [24], and by
engineered dissipation [25]. Improvement to clock precision
beyond the quantum projection noise (QPN) was demonstrated
for microwave clocks [18,20].

Networks of remote clocks offer new possibilities for secret
time sharing, remote sensing, and interferometry that can take
advantage of the unprecedented clock precision. A recent
proposal outlined the probabilistic generation of a GHZ type
of entanglement by single photon communication between
distant clocks, each containing a small number of nq qubits
as discrete quantum variables [12,13]. However, for optical
lattice clocks containing macroscopic numbers of atoms N ,
we encounter continuous variables such as spin-squeezed and
Einstein-Podolsky-Rosen (EPR) entangled states that can be
generated deterministically. QND probing on cyclic transitions
has been identified as the condition for Heisenberg scaling

with N in Ref. [26] and demonstrated for microwave clocks in
Refs. [18,22]. However, Heisenberg scaling with the number of
clocks M in a chain is problematic as SSS have a low tolerance
for losses, in particular, to losses of the optical channel for
optical QND. Here, we demonstrate that an optimal design
of the network of cavity-enhanced optical clocks allows one
to keep Heisenberg scaling with M even in the presence of
substantial channel losses. Optical lattice clocks with their long
coherence times are ideal for the generation of such states.

In the second part of this Rapid Communication, we
present a scenario where an EPR-entangled state of two clocks
is generated by engineered dissipation. Such clocks feature
the “synchronized time” protected from any eavesdropper
and available only for participants working together. Both
proposals are aimed at optical clocks with a macroscopic
number of atoms. As a specific example, we show their
feasibility for Sr clocks with realistic experimental parameters.

Quantum nondemolition measurement in an optical clock.
We consider an optical lattice clock operating on the
1S0(|1〉)-3P0(|2〉) transition with N atoms placed in an optical
resonator. In a normal clock operation, the population of the
two clock states is measured destructively by scattering pho-
tons with the strong 1S0-1P1 transition [Fig. 1(a)], permitting a
QPN-limited probe of the clock transition. A phase-sensitive
probe based on this strong transition was implemented to
enable a less destructive measurement of the state population
[27]. Here, we consider a collective readout of the cyclic
1S0(|1〉)-3P1(|3〉) narrow transition (∼7.4 kHz) in Sr using a
far-detuned probe [Fig. 1(b)].

An ensemble of N clock atoms can be described by the
collective pseudospin vector Ĵ of spin-1/2 particles. Jz is
defined by the population difference �N , such that Jz =
1
2 (N1 − N2) = �N/2. Atoms are prepared in a superposition
of the two clock states by a π/2 rotation of Ĵ around the y

axis of the Bloch sphere [Fig. 2(b)]. The population of |1〉 is
measured by a probe detuned by � from the cyclic |1〉-|3〉
transition. Note that this probe does not cause redistribution
of the populations between the clock states, hence Jz is
conserved and is a true QND variable [18,28,29]. After a
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FIG. 1. Clock operation and probe. The atomic-level structure
for the optical lattice clock. (a) Traditional destructive readout of
the clock state populations in |1〉 and |2〉. (b) QND probe of the
clock transition |1〉-|2〉 using a far-detuned probe on |1〉-|3〉. The
wavelengths are given for Sr.

π pulse is applied to swap the clock states, the population
of |1〉 is measured again. Under this operation, the effect of
the imprecision of the π/2 pulse and fluctuations of N are
suppressed. This QND probe will introduce a Stark shift of the
clock transition consisting of a mean value and a random shift
due to the shot noise of the probe (quantum back action of the
measurement). The former can be canceled by choosing the
detuning −� for the second measurement of the population.
We note that the precision of the π rotation should be better
than N−1/2. This sequence results in the creation of an SSS,
shown as an ellipse in Fig. 2(c). Squeezing of Jz is then
converted into squeezing of the coherence between the clock
states through a π/2 rotation around the x axis [Fig. 2(d)]. The
atomic spin is then allowed to precess, as in a standard Ramsey
sequence [Fig. 2(e)]. After a certain precession time, a π/2
rotation around y is applied [Fig. 2(f)], where the population
measurement noise is reduced by squeezing.

The ultimate limit of precision for a clock made of N -
independent atoms is defined by the the angular uncertainty
of a coherent spin state (CSS) of the ensemble (quasi)spin
[30]. CSS is a product state |�〉 = �N

i=1
1√
2
(|1〉i + |2〉i) of

uncorrelated atoms oriented in the same direction, Jx = N/2.
The two other projections of Ĵ have minimal equal variances
allowed by the Heisenberg uncertainty relation Var(Jz) =
Var(Jy) = Jx/2 = N/4. These fluctuations, referred to as
QPN, and shown as a circle in Fig. 2(b), pose a fundamental
limit to the precision of the clock operating on N uncorrelated

FIG. 2. Entangled clock sequence. The sequence of operations
of the clock including generation of a spin-squeezed entangled state.
Details in the text.

atoms [30]. Introducing quantum correlations between atoms
allows one to reduce Var(Jz) to below the QPN limit. For this
SSS, under the condition that

Var(Jz) <
〈J 〉2

N
⇔

ξ = Var(Jz)

〈J 〉2
N = Var(XA)

N

〈J 〉 < 1, (1)

the atoms become entangled [31]. The corresponding signal-
to-noise ratio for spectroscopy is improved by the inverse of ξ

[14], which is the spin-squeezing parameter for metrology.
The canonical operators XA = Jz/

√
J , PA = Jy/

√
J obey

the commutation relation [XA,PA] = i, where J is the length
of the mean pseudospin vector. The quantum-noise-limited
clock precision defined as the minimal detectable angle
of spin rotation for the clock sequence is

√
Var(Jz)/J =√

ξ/N .
Equation (1) shows that ξ is determined by the vari-

ance of the squeezed component of the spin and by the
mean spin J . The effect of the spin-squeezing process on
these variables depends on the mechanism of generation
of the SSS. The atomic population measurement described
above is particularly favorable for the generation of SSS
if the measurement of the population is performed on a
cyclic transition |1〉-|3〉, as in the case for alkaline-earth-metal
atoms.

The QND interaction H ∝ XAXL [28] leads to the input-
output relation for photonic canonical variables XL and PL,

P out
L = P in

L + κXA, (2)

with κ = √
dηe−η the interaction constant, d the resonant

single-pass optical depth, and η = ndr (γ /�)2σ/A a parameter
describing spontaneous emission caused by the probe, which
leads to the reduction of coherence as J = e−ηN/2. σ is the
resonant dipole cross section, A is the beam cross section,
γ,� are the natural linewidth and the detuning of the optical
transition, respectively, and ndr is the photon number in the
QND probe. For a QND on a cyclic transition, the degree of
spin squeezing is

ξ = 1

e−η (1 + κ2)
. (3)

This results in ξmin = √
e/κ2

opt = 2e/d ∝ N−1 achieved for
η = 1/2 and the optimal κopt = √

d/2 valid for d � 1, and
the Heisenberg scaling of the clock precision

√
ξ/N with the

atom number. For microwave Cs clocks such scaling has been
predicted theoretically [26] and demonstrated experimentally
[18] by the QND probing of the clock levels using cyclic transi-
tions. A microwave clock probed on two cyclic transitions has
been demonstrated in Refs. [18,32]. A similar approach led to
the recent demonstration of SSS for the Rb ground state [22].

The unique energy-level structure of alkaline-earth-metal
atoms provides an ideal configuration to implement a QND
protocol based on a cyclic transition now in an optical clock.
The optical lattice clock operates on the 1S0(|1〉)-3P0(|2〉)
transition and the collective QND readout is performed on
the cyclic 1S0(|1〉)-3P1(|3〉) narrow transition (∼7.4 kHz) in Sr
using a far-detuned probe [Fig. 1(b)].
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FIG. 3. Entangled clock sequence. (a) Cavity QED used for QND
probe of the clock states. (b) The eigenfrequency spectrum for
103 Sr atoms distributed in an optical lattice inside a 5-cm cavity
with F = 105. The single-atom effective vacuum Rabi frequency is
16 kHz. (c) A cascaded cavity system to entangle multiple indepen-
dent spin-squeezed clocks.

A network of clocks in a collective squeezed state. Towards
our aim of demonstrating Heisenberg scaling with the number
of distant clocks in a clock chain, we consider first a single
lattice clock placed in an optical resonator [Fig. 3(a)] [29].
In the following, we assume that the detuning of the atom
and cavity resonances is much greater than the vacuum Rabi
frequency �, which in turn is much greater than the atomic
(γ ) and the cavity (�) linewidths.

We consider a standing-wave cavity with input/output
mirror power transmission coefficients T1,T2, single-pass
intracavity losses L, and the detuned probe single-pass
absorption d�. The cavity power transmission coefficient on
resonance for small L,d� is 4T1T2/(T1 + T2 + 2L + 2d�)2 =
4T1T2/(T1 + T2 + 2L)2[1 − 2Fd�/π ], where F = 2π/(T1 +
T2 + 2L) is the cavity finesse. Thus, d�, as well as the
corresponding phase shift, is enhanced by a factor 2F/π .
Depending on the details of the experimental realization, the
optimal measurement is achieved either in reflection from a
single-ended overcoupled cavity with T1 � T2,L,d� or with
a symmetric cavity in transmission. The atomic absorption,
d� = N/2n at the optimal η = 1/2, can be reduced by using
larger � and photon number n.

Equation (2) is modified in the presence of the cavity. With
n photons detected during the interaction time, the observed
probe phase shift consists of two terms:

ϕ = n−1/2 +
√

de−ηn (γ /�)
√

σ/A2F/πXA. (4)

The first term is the shot noise of detected light, and the second
term represents the cavity-enhanced phase shift. To derive the
cavity-based input-output equation we multiply both sides of
Eq. (4) with

√
n,

P out
L = P in

L + κcavXA

= 1 +
√

dne−ηn (γ /�)
√

σ/A2F/πXA. (5)

Here, κcav = √
dne−η(γ /�)

√
σ/A2F/π = √

dηne−ηn2F/π

is the cavity-enhanced atom-light interaction constant and ηn

corresponds to the detected photon number n. The relation
between the spontaneous emission rate in the cavity and
in free space is ηcav = ηnF/π for small L. Equation (3) is
then modified with substitutions η → ηcav = 1/2 and κopt →

κcav = √
4dFηcave−ηcav/π =

√
2dFe−1/2/π with the optimal

value η = 1/2. For the case of large optical depth and/or
finesse, 4dηnF

2/π2 � 1, we arrive at the squeezed-spin vari-
ance ξmin = √

e/κ2
cav = eπ/(2dF ) ∝ (FN )−1 achieved for

ηcav = 1/2, valid for dF � 1. The clock precision is then√
ξmin/N = √

2πeA/(σF )N−1. Note that our treatment is
limited to σF/A < 2πe, otherwise the Holstein-Primakoff
approximation breaks down when the size of the antisqueezed
component becomes comparable with N .

In a realistic design for cavity QED with Sr atoms [33], we
envision F = 105, a length of 5 cm, and N = 1000. The atoms
in state |1〉 are collectively coupled to a single mode of this
cavity through state |3〉. The bare cavity mode is dressed by
the presence of the |1〉 atoms and the resonance spectrum is
determined by the atom-cavity detuning (�) and the collective
vacuum Rabi splitting (�) that depends on the number of atoms
in |1〉 [Fig. 3(b)]. The estimated � = 500 kHz, which is to be
compared with � = 29 kHz and γ = 7 kHz. The collective
cooperativity factor �2/(�γ ) = d F = 1200, leading to an
estimated 20 dB of metrologically useful spin squeezing. For
Sr with a cyclic optical transition, the actual value of � does
not play a fundamental role, but � � � can be useful if large
values of n are desired.

It follows from the above discussion that in the case of
a lossless optical channel connecting M identical clocks, a
collective QND probe of the whole network leads to a precision
that is a factor of M better than each clock, as opposed to
uncorrelated clocks for which the precision improves by a
factor of

√
M . Figure 3(c) shows an optical probe field passing

through a chain of successive optical cavities, followed by a
single quantum measurement performed at the output. Such
an interaction generates a collective squeezed state of the
entire system of M clocks. A channel with finite losses can be
accounted for by the substitution κ = √

4dFηe−η/π → κi =√
4dFiηie−ηi e−ri /π , with the probe-induced decoherence for

the ith clock ηi , where e−ri describes the optical channel
transmission from the ith clock to the detector (subscript cav
omitted for brevity). The noise of the measurement is still the
shot noise of the detected probe whereas the signals due to the
spin projection from all clocks add up, so that S/N for the
chain is

∑M
i=1

√
Nκie

−ηi/2 = ∑M
i=1

√
4dNFiηie−2ηi e−ri /π .

Maximal collective spin squeezing for the chain can be
found by optimizing this expression, given the clock pa-
rameters and the channel transmission properties. Consider,
for example, M clocks connected with a channel with
equal transmission e−r between each pair of clocks [ri =
(M − i)r and total channel transmission is t = e−(M−1)r ].
With the optimal value ηi = neri (γ /�)2σ/AFi/π = 1/2,
the collective S/N becomes

√
4dNFM/πe

∑M
i=1 e−(M−i)r =√

4dNFM/πe(e−Mr − 1)/(e−r − 1) where the fixed value of
ηi dictates that the cavity finesse is maximal for the last clock
in the chain, Fi = FMe(i−M)r .

Assuming a sufficiently dense chain of distant
clocks (r 
 1 but Mr � 1), we reach the precision
for the chain (S/N )−1 = (4dNFM/πe)−1/2M−1 | ln t |∝
(NM)−1| ln t |. The expression in parentheses is limited to

 N because the size of the antisqueezed quadrature must
be 
 N . Within this limit we obtain Heisenberg scaling of
the precision of the chain with both N and M for any given
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FIG. 4. Transitions driving two clocks into an EPR-entangled
pair. Clock 1 and clock 2 are driven with four phase-locked classical
fields (solid arrows). Forward scattered quantum fields (dashed
arrows) generate entanglement corresponding to the two clock Bloch
vectors being exactly antiparallel despite their individual quantum
noise.

channel transmission t . For example, four clocks probed by
QND measurement through a channel with t = e−(M−1)r = 0.5
(3 dB total losses) provide precision improvement of 3.1, and
eight clocks in the same channel give the improvement by 6. If
the ultimate performance of each clock dictates an upper limit
on N due to, e.g., atomic interactions [34], a chain of entangled
clocks may provide an optimal solution. Distant clocks in a
collective SSS may offer an opportunity for testing sensitive
relativistic effects [35].

EPR-entangled clocks. SSS discussed above allows for the
determination of one of the two quantum projections of the
Bloch vector to better than

√
J/2, which is sufficient for

improved clock precision. However, for a pair of suitably
designed clocks, a more intriguing state is possible where
both projections are defined better than this limit with respect
to each other. Clock comparison can thus run significantly
better than the conventional synchronous mode [34,36,37].
Such a state of two Bloch vectors (spins) is a special case
of the EPR state with the entanglement condition Var(Jy1 +
Jy2) + Var(Jz1 + Jz2) < 2J [28]. It can be realized when the
mean spins of the two ensembles are oriented in opposite
directions, J = Jx1 = −Jx2, as demonstrated for collective
magnetic spins [17]. For optical clocks the requirement of
oppositely oriented mean spins means that the two clocks
should be initialized in two opposite clock states (Fig. 4).

When the Bloch vector describes a pair of states separated
by an optical transition, the conventional QND method of gen-
erating an EPR state is not applicable because it would require
a direct measurement of the oscillations at an optical frequency.
However, as demonstrated for magnetic spin oscillators [38],
the EPR state can be generated by a common dissipation
process provided by forward scattering of indistinguishable
photons that does not involve any measurement. The interac-
tion Hamiltonian between two atomic ensembles and light that
generates an EPR state of the atomic operators b

†
1 and b

†
2 is

H ∝ μ1a
†
+b

†
1 + ν1a

†
−b1 + μ2a

†
−b

†
2 + ν2a

†
+b2 + H.c. The first

(last) two terms describe the creation of photon fields a+,a−
and corresponding creation and annihilation of the collective
atomic excitation b1 (b2). For an optical clock these operators
correspond to the collective excitation generated in the lower

(upper) state of clock 1 (2). Entanglement is generated under
the following conditions [38]: Photons scattered from the two
clocks into mode a+ are indistinguishable (the same for mode
a−) and μ1 = μ2, ν1 = ν2.

The challenge of the realization of such an interaction for
an optical clock transition (or for any collective excitation
scheme realized on an optical transition) is that, due to the
selection rules, the above conditions are not feasible with a
standard Raman transition (four-wave mixing). It turns out,
however, that these conditions can be fulfilled using a six-wave
mixing process shown for a specific example of a Sr optical
clock in Fig. 4. The use of two-photon driving fields (blue,
red, black, and green solid arrows) allows one to fulfill the
condition of indistinguishability for photons a+ (a−) emitted
by the two ensembles by choosing the two-photon detunings
δP ,δD to be the same in both clocks and by phase locking of
the lasers (solid arrows). The condition μ1 = μ2, ν1 = ν2 for
scattering amplitudes in the Hamiltonian can be met by tuning
the one-photon detunings δS1, δS2, δP 1, δP 2. Similar to SS,
the degree of entanglement scales with the optical depth thus
benefiting from cavity enhancement as well.

An ideal entangled state of this kind corresponds to the two
clock Bloch vectors being exactly antiparallel (Fig. 4). This is
to be contrasted with the case of SSS where the Bloch vector
direction is defined better than QPN only in the plane in which
the squeezing axis lies.

The EPR state can be used for secret time sharing analogous
to the quantum key distribution. The clock sequence resembles
the standard clock sequence with an important inset in Fig.
2(d). At this step the two clock owners randomly choose
either to apply or not to apply the π/2 rotation around x

axis. They then publicly exchange the choice with respect to
the π/2 pulses, but not the results of the clock interrogation.
The procedure is repeated several times. In close analogy to
the quantum key distribution, we can use the measurements
in which we have made the same choice of rotations for the
relative time measurements with high precision. Each of the
clock owners acting separately will achieve a much worse
precision, compared to QPN, since one half of the EPR state is
a noisy thermal state. If an eavesdropping attempt is made, the
combined two-clock precision will be compromised as well.

Another attractive feature of the EPR-entangled clocks
is the improved capability to check any clock disagreement
quickly, enabling an efficient approach for characterization
of systematic effects of an unknown clock (2) using a well-
calibrated clock (1).

Perhaps the most important application of an EPR pair
of clocks is for remote sensing. The EPR correlation can be
used to map out the electromagnetic field from site 1 to site 2
remotely. Namely, one can slave clock 2 to clock 1 by matching
the conditions of clock 1 to that of 2. In fact, this might be the
best tool to explore gravitation potential-induced decoherence
such as described in Ref. [39], and it can also serve a potentially
important role for a future long-baseline atom interferometer
for gravitational wave detection [40].
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