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Doublon dynamics and polar molecule production
in an optical lattice
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Polar molecules in an optical lattice provide a versatile platform to study quantum many-body

dynamics. Here we use such a system to prepare a density distribution where lattice sites are

either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting

this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition,

we observe clear effects on pairing that arise from inter-species interactions, a higher

partial-wave Feshbach resonance and excited Bloch-band population. These observations

facilitate a detailed understanding of molecule formation in the lattice. Moreover, the

interplay of tunnelling and interaction of fermions and bosons provides a controllable

platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution

of the atomic gases in the lattice by measuring the inelastic loss of doublons. These

techniques realize tools that are generically applicable to studying the complex dynamics of

atomic mixtures in optical lattices.
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P
olar molecules with long-ranged dipolar interactions are
ideally suited to the exploration of strongly correlated
quantum matter and intriguing phenomena such as

quantum magnetism, exotic superfluidity and topological
phases1–8. The recent observation of the dipole-mediated
spin-exchange interaction in an optical lattice9 and the
demonstration of the many-body nature of the spin-exchange
dynamics10 mark important steps for the use of polar molecules
to study strongly correlated matter. While this initial work was
done with a molecular filling fraction of only B5% in a three-
dimensional (3D) lattice9, more recent work has demonstrated a
quantum synthesis scheme for molecule production in the lattice
that relies on careful preparation of the initial atomic gases11.
This led to a reduction in the final entropy of polar molecules by a
factor of B4, and, correspondingly, a much higher filling
fraction of B25% that opens up the possibility for studying
non-equilibrium, many-body spin dynamics in a quantum gas of
polar molecules where every molecule is connected to others.

The quantum synthesis approach reported in ref. 11 starts by
preparing atomic insulator states that depend on atomic
interactions, quantum statistics and low temperature12.
However, realizing the full potential of this approach requires
not only control over the atomic distributions, but also a detailed
understanding of the molecule creation process.

Here we investigate this important step by leveraging our
capability of molecule production in an optical lattice to
create a clean system of doublons13. This technique allows us
to additionally study 3D Bose-Fermi Hubbard dynamics. After
creating ground-state molecules, we efficiently remove all
unpaired atoms from the lattice and convert the molecules back
to free atoms (in their lowest hyperfine states of 9=2; � 9=2j i for
40K and 1; 1j i for 87Rb, where F;mFj i denotes the hyperfine state
and its projection onto the magnetic field). This realizes a lattice
where the sites are either empty or occupied by individual
doublons that comprise a pair of bosonic and fermionic atoms.
This well-defined initial state allows us to directly address
limitations in the molecule creation process by probing the
efficiency with which these doublons are converted back to
molecules under various experimental conditions that affect
atomic tunnelling rates, higher Bloch-band populations and
the adiabaticity of a magnetic-field sweep through a higher
partial-wave Feshbach resonance. Furthermore, this well-
initialized, non-equilibrium state of a disordered doublon
distribution provides an ideal platform to explore the
many-body dynamics of a lattice-confined Bose-Fermi mixture
in a regime that is beyond the current simulation capabilities.

Results
Preparing the doublons. The experiment proceeds in steps as
depicted schematically in Fig. 1. To prepare the doublons, we
create a sample of molecules in their ro-vibrational ground state
in the lattice as described in ref. 11 and then remove unpaired
atoms with resonant light, so that all lattice sites are either empty
or contain a single molecule. We then transfer the ground-state
molecules back to a weakly bound Feshbach molecule state,
followed by a magnetic-field (B) sweep to above the resonance to
create a clean system of doublons. The solid black line in the
upper panel of Fig. 1 shows schematically B relative to the s-wave
Feshbach resonance (dashed line) that is used to manipulate the
atomic inter-species interactions and to create molecules. After
this preparation, the doublons are left to evolve in the lattice for a
variable time t. Our measurement then consists of sweeping B to
below the resonance to associate atoms into Feshbach molecules
and determining the fraction of K atoms that form molecules.
Specifically, we measure the molecule number using the following

protocol. We first apply radio frequency (rf) to spin-flip the
unpaired K atoms to another hyperfine state, which renders the
unpaired K atoms invisible for subsequent molecular detection.
We then sweep B back above the resonance to dissociate the
molecules, and measure the number of resulting K atoms by spin-
selective resonant absorption imaging. The conversion efficiency
is determined by dividing this molecule number by the total
number of K atoms measured when we do not apply the rf.

d-wave Feshbach resonance. We begin by investigating a narrow
d-wave Feshbach resonance14–17 that is located less than 0.1 mT
above the 0.3-mT-wide s-wave resonance that is used for making
molecules (Fig. 2a). With a pair of atoms confined in the same
lattice site, the on-site density is orders of magnitude higher than
that in ordinary optical traps, and thus this narrow Feshbach
resonance can adversely affect the magneto-association process,
where B is swept down from above the s-wave resonance to create
molecules. Crossing the d-wave resonance too slowly will produce
d-wave molecules, which will not be coupled to the ground
state by the subsequent STIRAP laser pulses, as the process is
weak and off resonance. If B is swept sufficiently fast to be
diabatic for this narrow resonance (but still slow enough to be
adiabatic for the broad s-wave resonance), crossing the d-wave
resonance has no impact; however, the high effective densities at
each site in an optical lattice can make it challenging to sweep fast
enough. Although we study here specific resonances for the K-Rb
system, the possibility of having to cross other Feshbach
resonances and the issue of sweep speeds are general to
magneto-association of atoms in an optical lattice.
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Figure 1 | A schematic of the experiment. Starting with a mixture of K, Rb

and doublons (the smaller blue ball, the larger red ball and the pair grouped

with grey background, respectively) in a 3D lattice, we sweep the magnetic

field from above the s-wave Feshbach resonance (at Bres
s ¼ 54:66 mT) to

below the resonance to create Feshbach molecules. These molecules are

then transferred to their ro-vibrational ground state via STIRAP (stimulated

Raman adiabatic passage). After unpaired atoms are removed with resonant

light, the STIRAP process is reversed to transfer the ground-state molecules

back to Feshbach molecules. The field is then swept above Bres
s to dissociate

the molecules and create doublons. After holding for a time, t, at Bhold, we

measure the conversion efficiency when sweeping the field below Bres
s to

re-form Feshbach molecules. To detect molecules, we use a rf pulse to spin

flip the unpaired K atoms to a dark state (ball with black dashed edge)

before dissociating the Feshbach molecules and imaging K atoms. The

bottom panel illustrates possible dynamics of the doublons during Bhold. As

shown schematically, lattice sites populated with a K and a Rb atom have an

interaction energy shift U0
KRb. The K tunnelling energies in the lowest and first

excited bands are denoted by J0
K and J1

K, respectively. Rb tunnelling happens

at a slower rate since it experiences a deeper lattice.
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In the experiment illustrated in Fig. 1, we investigate the
d-wave resonance by varying the rate, _B, and the final value, Bhold,
of the sweep that creates doublons. We then measure the
subsequent molecule conversion efficiency after t ¼ 1 ms using
a fast 1.68-mT ms� 1 magneto-association sweep. Figure 2b
illustrates relevant states, above and below the resonance, for two
atoms in a lattice site18,19: at low fields these are the s-wave
molecule ( 1 ), d-wave molecule ( 5 ) and unbound atoms ( 4 ),
and at high fields these are unbound atoms in the ground band of
the lattice ( 2 ) and atoms with a band excitation in their relative
motion ( 3 ). For simplicity, we illustrate states for a harmonic
potential whose trap frequency o is the same for both atoms, with
eigenstates of relative motion denoted by u ¼ 0; 1; 2. The dashed
arrows show the diabatic ( 1 - 2 ) and adiabatic ( 1 - 3 )
trajectories for the dissociation of s-wave Feshbach molecules
when crossing the d-wave resonance, while the solid arrows show
the diabatic trajectories ( 2 - 1 and 3 - 4 ) for the
subsequent, fast magneto-association sweep.

Figure 2c shows the measured molecule conversion efficiency
as a function of _B when sweeping across the d-wave resonance
from 54.56 to 56.24 mT (there are no other resonances in this
field range), while Fig. 2d shows the effect of the final field B for a
relatively slow, 0.018-mT ms� 1, sweep. The data are taken for
lattice depths of Vlatt¼ 35ER (circles) and 30ER (diamonds),
where ER¼ :2k2/(2mRb) is the recoil energy for Rb, mRb is the Rb
atom mass, k ¼ 2p=l and l ¼ 1064 nm. For our highest sweep
rates, or when Bhold is below the d-wave resonance, the measured
molecule conversion efficiency is near unity. This high conversion

of doublons20–22 is crucial for the quantum synthesis approach to
producing molecules with a high filling fraction in the lattice. The
near-unity conversion also provides an excellent starting point for
diagnosing potential limitations to molecule production, and the
data in Fig. 2c,d clearly show the negative effect that the d-wave
resonance can have on magneto-association in the lattice.

The lines in Fig. 2c,d show fits used to extract the width (Dd)
and position of the d-wave resonance. We use a Landau-Zener
formalism23 where the probability to cross the d-wave resonance
diabatically, and therefore create s-wave Feshbach molecules in
the subsequent magneto-association step, is P ¼ exp �A= _B

�� ��� �
,

where A depends on the on-site densities and the Feshbach
resonance parameters. By approximating the sites in the deep
optical lattice as harmonic oscillator potentials, we extract Dd

using A ¼ 4
ffiffi
3
p

oHO abgDdj j
LHO

, where oHO is the harmonic trap
frequency for relative motion of the two atoms (see Methods)
and LHO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘=ðmoHOÞ

p
is the harmonic oscillator length with

the doublon reduced mass m (ref. 24) (we note that the right-hand
side of equation (26) in this reference is missing a factor of p).
From an exponential fit (line in Fig. 2c), A¼ 0.110(7) mT ms� 1,
and using a background scattering length of abg¼ � 187(5)a0

(ref. 25), where a0 is the Bohr radius, we extract a width of
Ddj j ¼ 9:3ð7Þ�10� 4 mT. By fitting an error function (line) to the

data in Fig. 2d, we determine the location of the resonance to be
54.747(1) mT, which is consistent with previous experiments
where atom loss was observed14,16.
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Figure 2 | The d-wave Feshbach resonance. (a) The theoretical K-Rb scattering length, aK-Rb, is shown as a function of the magnetic field for the broad s-

wave Feshbach resonance and a narrow d-wave resonance, based on the formula and parameter values described in Methods. (b) Crossing the d-wave

resonance affects the pair states for K and Rb. Dashed and solid arrows show the effect of the variable rate sweep that creates doublons and the

subsequent fast magneto-association sweep, respectively. Dashed vertical lines mark the positions of the Feshbach resonances. (c) Measurement of

molecule conversion efficiency at 35 ER (circles) and 30 ER (diamonds), with the latter data exponentiated by (35/30)3/4¼ 1.12 to account for the expected

dependence on lattice depth. The solid curve shows a fit to a Landau-Zener probability P (see text), which gives a resonance width of 9.3(7)� 10�4 mT.

(d) The magnetic field at which this resonance occurs is determined by sweeping up to various fields at 0.018 mT ms� 1, then sweeping down at

0.18 mT ms� 1. The position of the resonance extracted from this measurement at Vlatt¼ 35ER is 54.747(1) mT. All error bars represent 1� s standard error.
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The precise determination of the width of the d-wave
resonance allows us to gauge its significance in molecule creation.
Our typical sweep rate of 0.34 mT ms� 1 for magneto-association,
which has remained the same since the first creation of KRb
molecules in an optical lattice22, gives B70% probability of being
diabatic when crossing the d-wave resonance. This suggests that
we create a substantial fraction of d-wave molecules that are dark
to our detection ( 5 in Fig. 2b). These d-wave molecules may
have played a role in limiting the lattice filling fraction for polar
molecules achieved in ref. 11.

Short-time tunnelling dynamics. Tunnelling dynamics of
doublons in the lattice26 can also affect molecule production.
In the quantum synthesis approach, achieving a high lattice filling
for molecules requires not only the preparation of a large fraction
of lattice sites that have doublons, but also that these doublons are
not lost due to tunnelling and/or collisions prior to conversion to
molecules. In our system, K feels a lattice depth that, in units of
recoil energy, is 2.6 times weaker than for Rb due to differences in
atomic mass and polarizability. Consequently, K tunnels faster
than Rb. While a sufficiently deep lattice can prevent tunnelling
of both K and Rb, practically this may not be possible in all cases,
especially for polar molecule production using two atomic species
that have large differences in mass and polarizability.

Figure 3 illustrates doublon dynamics due to the interplay
between tunnelling and interactions, which we control by varying
the lattice depth, interspecies scattering length aK-Rb and band
population. The fraction of doublons that remain after t is

essentially equal to the measured molecule conversion efficiency
described above. We note that for aK-Rb4� 850a0, the B sweep
crosses the d-wave Feshbach resonance with a _B that varies from
0.5 to 1.9 mT ms� 1. Using our measured width of the d-wave
resonance, the data presented in Fig. 3 have been multiplied by a
factor that increases the doublon fraction to account for the finite
_B when crossing the d-wave resonance. Figure 3a shows the effect
of the lattice depth for t ¼ 1 ms at three different values of Bhold,
corresponding to different values of aK-Rb. This timescale is
relevant for both molecule production and K tunnelling
dynamics. We observe that the remaining doublon fraction is
highly sensitive to the lattice depth for weak interspecies
interactions, for example, aK-Rb¼ � 220a0, with a lower doublon
fraction for shallower lattices that exhibit higher tunnelling rates.
For stronger interactions, the dependence on lattice depth
becomes less significant and almost disappears in the strongly
interacting regime, for example, aK-Rb¼ � 1,900a0. Similar
behaviour is observed if we fix the lattice depth but vary the
interspecies interactions, as shown in Fig. 3b.

Modelling. The data in Fig. 3 clearly show evidence of decay of
doublons due to tunnelling that is affected by both the lattice
depth and interspecies interactions. We can model these doublon
dynamics with the following Hamiltonian:

H ¼ � J0
Rb
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Figure 3 | Interaction and tunnelling dynamics of doublons in the lattice. (a) The remaining doublon fraction is shown for three scattering lengths as a

function of the lattice depth. (b) The doublon fraction is plotted for three lattice depths as a function of the scattering length. (c) The doublon fraction for

1.68 mT ms� 1 sweeps, t ¼ 1 ms and aK-Rb¼ � 220a0 is shown as a function of the lattice depth for the case of higher excited-band fraction (squares) and

lower excited-band fraction (circles). (d) Band-mapping images of the initial K gas are shown for the two different initial temperatures, where image i

corresponds to the red circle data points and ii corresponds to the green square data points in (c). Each image is the average of three measurements. The

colour bar indicates the optical depth (OD). Below the images, we display the OD for a horizontal trace through the image, with averaging from � :k to

þ :k in the vertical direction. All error bars represent 1� s standard error.
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where Z¼ 0 and 1 denote, respectively, the ground and the first
excited lattice bands. The first and second terms are the kinetic

energy of the K and Rb atoms, respectively. Here, ai ayi
� �

is the

bosonic annihilation (creation) operator for a Rb atom at

lattice site i in the lowest band, and ci;Z cyi;Z
� �

is the fermionic

annihilation (creation) operator for a K atom at lattice site i and
band Z. We use i; jh i to indicate nearest-neighbour hopping
between sites i and j with matrix element JZa with a ¼ K or Rb.
The third term describes the inter-species on-site interactions
with matrix element UZ

KRb. The last term is the on-site
intra-species interaction between ground-band Rb atoms with
strength U0

RbRb, with n0
Rb;i as the occupation of site i.

The tunnelling rates and interaction energies are calculated for
a particular Vlatt and aK-Rb (ref. 27). For example, for Vlatt¼ 10ER,
J0

K=h ¼ 386 Hz, J0
Rb=h ¼ 38:9 Hz. The solid curves in Fig. 3a,b

show the calculations based on the Hamiltonian given in
equation (1), where we have neglected Rb tunnelling by setting
J0

Rb ¼ 0. We start with a single doublon, evolve the K for a hold
time t, and then extract the doublon fraction from the probability
that the K atom remains on the same site as the Rb atom. In this
treatment, we ignore the role of the magnetic-field sweeps.
Calculations for a single doublon (solid lines), where the initial
decay scales as 1� 12ðJ0

K=U0
KRbÞ

2, agree well with the data,
except at doublon fractions below B30%, where the disagreement
arises from the finite probability in the experiment that a K atom
finds a different Rb partner. Simulating a Gaussian distribution of
doublons with 10% peak filling accounts for this effect (dashed
lines) (see Methods). The good agreement of these calculations
with the data shows that tunnelling of K, which is suppressed for
deeper lattices, is the dominant mechanism for the reduction of
the doublon fraction at short (B1 ms) times. The on-site
interaction with Rb suppresses the K tunnelling when the
interaction energy becomes larger than the width of the K Bloch
band28.

When studying doublon dynamics measured for two different
initial atom conditions, we find indirect evidence for excited-band
molecules. Here, we compare results for our usual molecule
preparation using atomic insulators to a case where we start with
a hotter initial atom gas mixture at a temperature above that
for the Rb Bose-Einstein condensation transition. Using a
band-mapping technique, we measure the initial population of
K in the ground and first excited band, as shown in Fig. 3di and ii
(see Methods). We find that 11(2)% of the K atoms occupy the
first excited band for the colder initial atom gas (these conditions
are similar to those in ref. 11 and are used in all the
measurements described in this work, except for the green
squares in Fig. 3c). When starting with the hotter atom gas, we
measure a significantly higher K excited-band population of
31(6)%. When looking at doublon dynamics for these two cases
(Fig. 3c), we observe a lower doublon fraction for the hotter initial
gas for Vlattr25ER. These data are taken for 1.68 mT ms� 1

sweeps, t ¼ 1 ms and aK-Rb¼ � 220a0.
The lower doublon fraction can be explained by excited-band

K atoms, which have a high tunnelling rate (J0
K=h and J1

K=h are
89.3 and 1110 Hz, respectively, for Vlatt¼ 25ER). The presence of
excited-band K atoms suggests that the B sweeps for magneto-
association (and dissociation) couple excited-band K atoms (plus
a ground-band Rb atom) to excited-band Feshbach molecules.
Moreover, the data suggest that the conversion efficiency for the
excited-band Feshbach molecules is still high for Vlattr25ER

since the observed difference in the initial excited-band K atoms
is similar to the observed difference (roughly 20%) in the doublon
fraction (Fig. 3c). Since, in our preparation scheme, the doublons
are directly formed from the dissociation of ro-vibrational

ground-state molecules, these results further indicate that a polar
molecule sample prepared from a finite-temperature atom gas can
contain a small fraction of molecules in an excited motional state
in the lattice. We also observed a Rb excited-band population of
31(5)% after loading the thermal gas in the lattice; however,
even for the excited band, the off-resonant Rb tunnelling is slow
compared to the 1-ms time scale of the measurements presented
in Fig. 3.

The green dashed curve in Fig. 3c shows the theoretical results
for a K excited-band fraction of 24%. For comparison, the red
solid curve, which is the same as the red curve in Fig. 3a, includes
no excited-band population. The estimated excited band fraction
ignores the effects of harmonic confinement on tunnelling, which
are more significant for the hotter initial atom gas, where the
resulting molecular cloud is also larger. For the hotter initial atom
gas, the green dashed curve overlaps the data at the shallower
lattice depths, but deviates from the measured doublon fraction
at larger lattice depths (the excited band fraction of the initial
K gas is independent of lattice depth). This may be expected
since in the limit of a very deep lattice and a fully adiabatic
magneto-association sweep, one expects that only the heavier
atom (Rb) in excited bands (plus a ground-band K atom) will
couple to excited-band Feshbach molecules. Future studies of the
magneto-association process in a lattice for systems such as K-Rb
where centre-of-mass and relative motion are coupled29 would be
interesting and relevant to polar molecule preparation.

Long-time tunnelling dynamics. In Fig. 4, we present data taken
for t up to 40 ms, in order to look for the effects of Rb tunnelling.
Measurements of the remaining doublon fraction are shown for
two lattice depths (10ER and 15ER) and two values of aK-Rb

(� 910a0 and � 1900a0). In Fig. 4, the doublon fraction has been
normalized by the measured value for t ¼ 1 ms in order to
remove the effect of the shorter-time dynamics that are presented
in Fig. 3a,b. Similar to the shorter-time dynamics, at the longer
hold times we observe a reduction in the doublon fraction that is
suppressed for a deeper lattice and for strong inter-species
interactions. Modeling these dynamics is theoretically
challenging, and the lines in Fig. 4 are exponential fits that are
intended only as guides to the eye. Compared to doublons
composed of identical bosons13 or fermions in two-spin states30,
the heteronuclear system has the additional complexities of two
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particle masses, two tunnelling rates and two relevant interaction
energies. For example, for large aK-Rb, the interspecies
interactions will strongly suppress Rb tunnelling from a
doublon to a neighbouring empty site. Similarly, tunnelling of a
doublon to an empty lattice site is a slow second-order process at
the rate Jpair ¼ 2J0

RbJ0
K=U0

KRb due to the energy gap of U0
KRb (Fig. 4

inset i). However, Rb tunnelling between two neighbouring
doublons, which creates a triplon (Rb-Rb-K) on one site and a
lone K atom on the other site (Fig. 4 inset ii), may occur on a
faster time scale due to a much smaller energy gap of U0

RbRb,
which is smaller than the K tunnelling bandwidth. While the
theoretical description is complicated, we observe that the time
scale of the doublon decay roughly matches 1= 2pJpair

� 	
.

Measuring atomic distributions with doublon detection. The
studies discussed thus far demonstrate that the Feshbach mole-
cule conversion that we use to detect doublons could potentially
underestimate the doublon fraction. For example, the conversion
efficiency of doublons containing excited-band atoms is compli-
cated to calculate and is likely to be less than 1. In addition, the
efficiency of converting doublons to Feshbach molecules depends
on the magnetic-field sweep rate, and, as shown in Fig. 2c, a very
slow sweep does not always yield a unity conversion efficiency.
Finally, Feshbach molecules can suffer losses from inelastic col-
lisions with other Feshbach molecules or unpaired K atoms31,
which could reduce the measured number. Given these factors
and the importance of measuring the doublon fraction as a
powerful diagnostic for optimizing molecule production from
ultracold atoms in a lattice, we have implemented a second,
complementary approach for measuring the doublon fraction
using inelastic collisional loss in the initial atomic mixture,
without the molecular purification step. In our system, inelastic
collisions are initiated by transferring the Rb atoms from the
1; 1j i to the 2; 2j i state. Collisions of the 2; 2j i Rb atoms with K

can result in spin relaxation back to the Rb F¼ 1 manifold. At
B¼ 55 mT, the 2; 2j i state is higher in energy by h� 8.1 GHz; this
inelastic collision releases a large amount of energy compared to
the trap depth and therefore results in atom loss from the trap. At
a collision energy corresponding to 1 mK, the calculated inelastic

collision rate using the coupled channels model of ref. 15 is
b ¼ 6�10� 12 cm3 s� 1, and using the on-site densities in a
Vlatt¼ 25ER lattice, the resulting doublon lifetime is B2 ms.

In Fig. 5a,b, we show example data for the number of Rb atoms
as a function of time after a 2.1-ms rf sweep that transfers Rb
atoms to the 2; 2j i state. We observe a fast loss on the time scale
of a few ms, followed by slower loss. We attribute the fast loss to
inelastic collisions of Rb atoms in lattice sites shared with K, and
the slow loss to tunnelling of atoms followed by inelastic
collisions. The dashed lines in Fig. 5a,b show a fit to the sum of
two exponential decays with different time constants. We can
extract the fraction of Rb that is lost on the short timescale from
the fits. We compared this technique with Feshbach molecule
formation, and found that the two measurements generally agree.

As a further demonstration of the inelastic collision technique,
we use this to probe the initial atomic distribution in the lattice
before molecule formation, providing quantitative information on
the Rb Mott insulator. Figure 5c shows the fraction of Rb atoms
that are lost quickly from a Vlatt¼ 25ER lattice after the Rb atoms
are transferred to the 2; 2j i state. For these data, we vary the
initial number of Rb atoms that form a Mott insulator in the
optical lattice prior to molecule creation. In Fig. 5c, the blue
diamonds correspond to the data shown in Fig. 5a,b. For the data
shown in circles, the fraction lost is determined by comparing the
Rb number measured before to that measured 8 ms after the rf
transfer. The solid curve shows a calculation of the expected loss
for a Mott insulator with a temperature T=J0

Rb ¼ 15 and a total
radial harmonic confinement of 33 Hz for Rb. At low Rb number,
where we expect only one Rb atom per site in the Mott insulator,
the fraction lost is just the K filling fraction, assuming no double
occupancy for K. For higher Rb number, double (and eventually
triple and higher) occupancy in Mott shells causes a reduction in
the fractional loss under the assumption of one Rb and one K lost
per inelastic collision. The shaded area indicates a 10%
uncertainty in the harmonic trapping frequency and 30%
uncertainty in T. From the fit, we extract a K filling fraction of
0.77(2), which is in excellent agreement with the measured peak
K filling reported in ref. 11. We note the previously measured
fraction of Rb converted to Feshbach molecules at low Rb atom
number was significantly less, at about 0.5(1) (ref. 11). This
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disagreement may now be attributed to the large number of K
atoms present in the lattice after molecule formation, which can
induce losses through inelastic collisions, and to the effect of the
d-wave resonance when making molecules, as discussed above.

Discussion
Our investigation of heteronuclear doublons and their conversion
to molecules by magneto-association reveals the important roles
played by the lattice depth for both atomic species, the inter-
species interactions, the population in excited motional states of
the lattice and the magnetic-field sweep rate. The doublon
dynamics uncovered in this study provides insights into the
universal mechanism of their decay and atomic mixture dynamics
in a 3D optical lattice, and allows preparation of optimal
conditions for producing polar molecules. The highly non-
equilibrium state of doublons that we use for these studies also
provides an intriguing system for exploring the Hubbard dynamics
of a Bose-Fermi mixture, where the behaviour of the many-body
system can depend on two different tunnelling rates and two
different interaction strengths28,32. This system sets the stage for
performing benchmarking experiments in 1D for theory, and
investigating the thermalization of an isolated many-body
quantum system, including novel phases such as quasi-
crystallization and many-body localization in higher
dimensions33–36.

Methods
Optical trapping potentials. The preparation of the atomic gas in a 3D lattice,
with a wavelength of 1,064 nm, as well as the creation of ground-state polar
molecules, follows the procedures described in ref. 11. The lattice is superimposed
on a crossed-beam optical dipole trap that is cylindrically symmetric. The dipole
trap alone has an axial trap frequency of oz ¼ 2p�180 Hz in the vertical direction
and a radial trap frequency of or ¼ 2p�25 Hz for Rb. The measured optical trap
frequencies for K are 2p�260 Hz and 2p�30 Hz.

Width of the d-wave resonance. The scattering lengths reported in Fig. 3 have
been calculated using aK�RbðBÞ ¼ abg½1�Ds=ðB�Bres

s Þ� with abg¼ � 187(5)a0,
Bres

s ¼ 54:662 mT and Ds¼ 0.304 mT (ref. 25). Including the d-wave resonance,
the scattering length can be parameterized by aK-RbðBÞ ¼ abg½1�Ds=ðB�Bres

s Þ�
Dd=ðB�Bres

d Þ� (ref. 37). Using the relation DdooDs, we can write aK-Rb Bð Þ �
a0bg 1�D0d= B�Bres

d

� 	� �
near the d-wave resonance, where a0bg ¼ abg 1�Ds=½

ðBres
d �Bres

s Þ� and D0d ¼ Dd=½1�Ds=ðBres
d �Bres

s Þ�. This has the form of
an isolated resonance and we can apply the findings of ref. 24, namely that

A ¼ 4
ffiffiffi
3
p

oHO a0bgD
0
d

���
���=LHO, to determine Dd ¼ a0bgD

0
d=abg ¼ ALHO=ð4

ffiffiffi
3
p

oHOabgÞ.
We note that ref. 17 predicts D0d ¼ � 6:3�10� 4 mT, which is larger than our
determination of D0d ¼ � 2:0ð2Þ�10� 4 mT.

In this determination, we ignore the coupling between the centre of mass and
relative motion that arises from the fact that K and Rb experience different

trapping potentials in the optical lattice. We use an effective trap frequency oHO ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mRbo2

K þmKo2
Rb

� 	
= mRb þmKð Þ

q
that governs the dynamics in the relative

coordinate. Here, mRb and mK are the masses of the Rb and K atom, respectively.
The trap frequency for Rb is given by oRb ¼ 2ðER=‘ Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vlatt=ER

p
, and for the

1,064 nm lattice the trap frequency for K is oK � 1:4oRb. For Vlatt¼ 35ER,
oHO ¼ 30:4 kHz.

Density distribution of doublons. The dashed lines in Fig. 3a,b have been
obtained by random sampling of initial doublon positions according to a Gaussian
probability distribution of the filling fraction. A peak filling of 10% and widths
sx¼sy¼ 6.5sz¼ 21 sites have been used, corresponding to NE2,000 sites
occupied with a doublon. The experimentally determined cloud sizes are slightly
larger (sx¼ 25-42 sites), but we confirmed that the resulting doublon fraction is
converged with respect to the cloud size. In-situ absorption images of the cloud are
consistent with a Gaussian distribution of 5–10% peak filling. Tunnelling of Rb is
neglected in the model, where initially each K atom is localized on a site containing
a Rb atom and the doublon fraction is defined as the probability to find the K atom
on a site with Rb after the evolution time t.

Band mapping. To measure the excited-band fraction of the initial K atoms, we
use a band-mapping technique (Fig. 3d). Starting with the K atoms in the 3D lattice

plus optical dipole trap potential, we turn off the lattice in 1 ms and allow the the K
gas to expand in the optical dipole trap for a quarter trap period38. We image the
cloud with a probe beam that propagates along the vertical direction.

References
1. Baranov, M. Theoretical progress in many-body physics with ultracold dipolar

gases. Phys. Rep. 464, 71–111 (2008).
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