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Wang, Ying-Ju (Ph.D., Physics)

An On-Chip Atom Interferometer Using a Bose-Einstein Condensate

Thesis directed by Prof. Eric A. Cornell

This work reports the first demonstration of an on-chip atom Michelson inter-

ferometer employing a Bose-Einstein condensate (BEC). An intra-waveguide optical

standing wave serves to split, reflect, and recombine the BEC while the BEC is con-

fined and propagates in a magnetic waveguide. The combined optical beamsplitter and

magnetic waveguide employed here have allowed us to study the coherence properties

of matter waves confined in a microstructure.

To prove that the interferometer is successfully working, a differential phase shift

is introduced between the two arms of the interferometer with a magnetic field gradi-

ent and alternatively with an initial condensate velocity in a trap with a longitudinal

frequency of 5 Hz. We observe interference when the round-trip propagation time is

relatively short, i.e., less than about 10 ms, and the maximum separation of the split

wave packets is about 120 µm.

This thesis also introduces an alternative way of making a BEC by surface-induced

evaporative cooling. The surface-induced cooling provides a promising technique, which

can be potentially used for a continuous coherent source on the chip.
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Chapter 1

Introduction

Over the past several years, the manipulation of atomic matter waves has become

a dominant theme for atomic physics experiments. The creation of the first Bose-

Einstein Condensate (BEC) in 1995 by E. Cornell and C. Wieman at JILA [1] and W.

Ketterle at MIT [2] has opened up a whole new field of research, namely the study

of coherent matter waves. In the same way as coherent light sources in the form of

lasers have revolutionized modern optics, the manipulation of coherent matter waves

is creating a deep impact on atomic physics. In fact, the analogy between light waves

and matter waves is very fundamental and leads to the idea of atom interferometry, i.e.,

using atomic matter waves for measurement of rotation in a similar way as lasers are

used in laser gyroscopes.

The measurement of rotation rates using a laser gyroscope is based on the Sagnac

effect, in which a phase difference between two interferometer arms arises due to a rota-

tion, whose rotating axis is perpendicular to the interferometer plane. Macek and Davis

firstly recognized in 1963 [3] that photons propagating in different arms see different

path lengths when the rotation happens, thus carry a phase difference, which is given

by

∆φ = ~A · ~Ωrot
Er
h̄c2

, (1.1)

where ~A is the enclosed area of the interferometer, ~Ωrot is the rotation rate, Er = h̄ω

is the energy of the photons, and c is the speed of the light. By detecting this phase
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difference, the rotating motion can thus be measured. Today, optical gyroscopes, such

as ring laser gyros or fiber gyros, are widely used as precise inertial sensors for the

navigation.

Atom interferometry offers an exquisite precision measurement capability with far

greater sensitivity than its photon-based counterpart. For example, the fundamental

limit on the signal-to-noise ratio of an atom Sagnac gyroscope is a factor of 1011 greater

than the optical one, given comparable enclosed areas and particle flux. This amazing

improvement is due to the high relativistic energy of an atom, mc2, as compared to the

photon energy, Er = h̄ω. Besides, atoms can be sensitive to electric and magnetic fields.

Because of this, atom interferometry may be suited to a substantially larger number of

sensor applications despite being sensitive to more detrimental noise sources. Atom

interferometry experiments have revealed promising and sometimes stunning measure-

ment capabilities [4, 5, 6, 7, 8].

Experimental research in the field of BEC has been dealing with two different

aspects. First, experiments have investigated and are continuing to explore the funda-

mental properties of BECs. Second, new technological developments allow us to create

and manipulate BECs in a more and more flexible way. One key element here is the

development of “atom chips”.

Atom chips seek to implement atom-based devices on a small scale [9, 10, 11,

12, 13]. For example, one can incorporate conductors, magnetic elements, and optical

components on a single substrate to produce fields that confine, control, and manipulate

atoms. One can also incorporate atom detection and signal conversion on that same

substrate. Moreover, because the source of the magnetic fields on a chip are close to

the atoms, one can typically apply much larger forces (or use much less power to apply

those forces). Most importantly, the atom chip approach offers substantial control over

the geometry of an atom interferometer.

Most attempts to implement a coherent beamsplitter/recombiner, which is es-
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sential for an interferometer, on a chip have used current-induced magnetic fields to

split a condensate cloud. The magnetic field typically forms a double potential well

that merges and then splits apart either in space, in time, or in both. However, atom-

atom interactions due to high density in the waveguide can cause instabilities during

the splitting or recombining process in such a double-well potential [14] and also reduce

the phase coherence [15]. Various detrimental atom-surface and atom-wire interactions

[16, 17, 18, 19, 20] have been reported. Because of those interactions, the coherence of

the condensate is destroyed during the splitting process and attempts to demonstrate

on-chip interference have been stymied. However, optical beamsplitters using standing

light waves have offered promising potential for coherent manipulation of atoms [6, 7, 8].

The combined optical and magnetic forces have enabled a study of coherence properties

of matter waves confined in a microstructure.

This thesis work brings together the two aspects of modern BEC research by

exploring coherent processes of light-matter interaction and implementing them on an

atom chip to demonstrate the first working on-chip atom interferometer. This work is

done in collaboration with Prof. M. Prentiss at Harvard University.

In this thesis, I will show the first on-chip atom interferometer using a standing-

light wave. The details of the atom chip and the apparatus are described in Chapter 2.

In Chapter 3, we also introduce an alternative way of making a condensate by surface-

induced evaporative cooling . The surface-induced cooling provides a promising tech-

nique, which can potentially be used to produce a continuous-wave (cw) Bose-Einstein

Condensate (BEC) on a chip. Coherent splitting and reflecting of the condensates by

diffraction from a standing light wave are discussed in Chapter 4. An innovative double-

pulse beamsplitter, which offers a simple solution for coherently splitting condensates, is

described in Chapter 5. In Chapter 6, we develop an on-chip Michelson interferometer

to split, reflect, and recombine the condensate and read out interference signals. To

prove that the interferometer is working successfully, a differential phase shift is created
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by a magnetic gradient and alternatively by an initial velocity in a trap with a longitu-

dinal frequency of 5 Hz. This robust interferometer technique could potentially be used

for an atom gyroscope.

In summary, this thesis demonstrates the first realization of a guided atom in-

terferometer on an atom chip, which has been a long-standing goal of research in this

field. The experiments described in this thesis are successful “proof-of-principle” experi-

ments, providing a way for future applications of BEC in the field of ultra-high precision

measurement.



Chapter 2

Experimental setup

Our experiment employs a modular system that consists of three adjoint vacuum

chambers and an atom chip on which a BEC and an interferometer are made [20].

The multiple-chamber design is based on the fact that the vacuum requirements are

different at different cooling stages. In each chamber, the vacuum is sustained by its

own pumping system, which gives us the freedom to control the pressure separately.

The overview of this modular system and the cooling process associated with each

chamber is described in Section 2.1. I will discuss the atom chip that is used to create

a condensate and an interferometer in particular in Section 2.2. The atom chip consists

of lithographically-patterned wires and an integrated prism pair. The wires are used

to produce the magnetic fields for atom trapping/guiding, and the prism pair is used

to produce an optical standing wave for a beamsplitter. At the end of this chapter,

Section 2.3, I will describe the optical setup used to project a laser beam close to the

chip surface to form the optical standing wave.

2.1 Overview of the apparatus for producing a Bose-Einstein Con-

densate

The apparatus consists of the pyramid MOT chamber, pre-evaporation chamber

and application chamber, as shown in Figure 2.1 [20]. The pyramid MOT chamber

includes a pyramid mirror and a pair of coils to provide a magneto-optical trap (MOT)
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Atom chip

Gate Valve

Permanent
magnets

Ioffe-Pritchard coils

Trapping laser

Quadrupole
coils

Pyramid MOT
chamber

(Pressure~10    torr)

Pre-evaporation
chamber

(Pressure~10    torr)

Application
chamber

(Pressure~10     torr)-9 -11 -10

Figure 2.1: Schematic of the apparatus. The apparatus consists of three chamber
separated by pumping stages to support pressure requirements for different cooling
stages.
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for laser cooling and trapping. A 200 mW single laser beam with a diameter of approxi-

mately 10 cm is projected onto a pyramid mirror, which sits at the bottom of the MOT

chamber. Reflections from the pyramid mirror construct the six-beam configuration

required for laser cooling. Atoms that are in the weak-field seeking states would be

trapped in the minimum of a magnetic trap so we use the coil pair in an anti-Helmholtz

configuration generates a quadrupole trap to confine the cold atoms. The coils sit on

a track and can be mechanically moved down to the second chamber to transfer atoms

from the pyramid MOT chamber to the pre-evaporation chamber. A pair of permanent

magnets and four coils in an Ioffe-Pritchard (IP) configuration in the pre-evaporation

chamber generate magnetic fields to form a three-dimensional harmonic trap, a so called

“IP trap”, for evaporative cooling. In the application chamber, an atom chip that con-

tains lithographically patterned wires is installed. The wires generate magnetic fields

that are essential for a microtrap and a magnetic waveguide. A pair of prisms is inte-

grated on the chip to create a standing light wave needed for a coherent beamsplitter.

Because different stages of cooling require different vacuum quality, we built this

modular vacuum system to allow us to modify the pressure in each chamber individually.

Every chamber is connected to a separate ion pump and the conductances between the

chambers are negligible compared to the pumping speed, so that the pressure in each

chamber can be controlled separately. The pre-evaporation chamber and the application

chamber also have Titanium sublimation pumps (TSPs) installed for better pumping

speeds so that the atom cloud has a longer lifetime in those two chambers to support

evaporative cooling. Each two adjoint chambers are connected by gate valves, which al-

lows us to isolate one of the chambers and modify its pressure separately. For example,

by closing the gate valve in between the pre-evaporation chamber and application cham-

ber, we can vent, open the application chamber to replace a chip, and pump down again

after closing it without affecting the ultrahigh vacuum of the pre-evaporation chamber.

This modular system allows us to replace a atom chip and prepare the vacuum typically
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in 4–5 days. Additional details of our apparatus and BEC production can be found in

Ref. [20].

To make a condensate, Rb atoms are first collected and trapped from a vapor

pressure of 10−9 torr in the pyramid MOT chamber. After the atoms are cooled down

to around 500 µK, they are loaded into the magnetic quadrupole trap. Atoms are then

mechanically moved by moving the quadruple coils to the pre-evaporation chamber,

where they are transferred into the IP trap. Rf-forced evaporative cooling is applied to

cool the atoms down to a temperature just above the critical temperature for forming a

BEC. To promote the efficiency of the evaporative cooling, the pre-evaporation chamber

must have a low pressure, i.e., in the range of 10−11 torr. After evaporative cooling,

the cold atoms slide down a potential slope produced by a magnetic gradient, and move

toward the atom chip, which is located in the application chamber. We capture and

load atoms into a microtrap located on the chip surface. Another stage of rf-forced

evaporative cooling is applied to form a BEC on the chip.

2.2 Atom chip with integrated prisms

Our atom chip, the dimensions of which are 5 cm by 2 cm, contains lithograph-

ically patterned copper wires and a pair of prism-shaped mirrors integrated on an alu-

minum nitride substrate, as shown in Figure 2.2. The wires generate the magnetic

fields needed to create the microtrap and magnetic waveguide. The tapered wires at

the entrance side help to capture and load atoms onto the chip. The straight wire and

a transverse bias field (Bt) perpendicular to it provide a magnetic waveguide. The L-

shaped wire in combination with a longitudinal bias field (Bl) creates the longitudinal

confinement to form a microtrap.

The transverse bias field cancels out the magnetic field created by the straight

wire, called “guiding wire”, to form a magnetic potential minimum above the wire,

therefore, a two dimensional confinement is created along the wire, as shown in Figure
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Standing
light waveMirrors

Trapping and splitting regionLanding region

Wires
Tunnel

(a)

(b)

Figure 2.2: (a) Schematic of the atom chip (not to scale). The prism-shaped mir-
rors are integrated with microfabricated wires on an aluminum nitride substrate. The
dimensions of the whole chip are 5 cm by 2 cm. (b) A photo image of the atom chip.
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2.3. The minimum of the field extends along the guiding wire and atoms can be trapped

in two dimensions but are free to move along the wire to form a magnetic waveguide.

The distance (D) of the waveguide from the center of the wire is given by

D =
µ0

2π

I

Bt
, (2.1)

where I is the current in the guiding wire and µ0 is the magnetic permeability. A three

dimensional microtrap can be created by adding a second “trapping wire”, perpendic-

ular to the first wire and also a longitudinal bias field, as shown in Figure 2.4. In

our experiment, we use a “L”-shaped wire that has a perpendicular component to the

guiding wire to create the longitudinal confinement.

The inward-facing surfaces of the two prisms are mirror-coated and aligned per-

pendicular to the magnetic waveguide to produce optical standing waves. When the

atoms are loaded onto the chip, they are typically 115 µm away from the surface so

a 180-µm-high tunnel is created underneath the prism that is located at the entrance

side of the chip to allow for loading the atoms in the microtrap. The cloud is delivered

through the tunnel and captured in the chip’s trapping region, which is located between

the prisms and sits 115 µm away from the surface of the chip. The atoms are then

brought farther away from the surface to the center of the standing light wave, which

is 250 µm above the surface to avoid the tunnel. Next, rf-forced evaporative cooling is

used to form a condensate. The condensate is released into the magnetic waveguide.

We turn on an optical standing wave close to the surface of the chip that splits, reflects,

and recombines the atom clouds to form an atom interferometer.

The optical standing wave is generated by two 45-degree-cut prisms on the surface

of the chip. The prisms are commercial BK7 right-angle prisms. The dimensions of the

prisms are 1 cm×1 cm× 1cm and the angle tolerance is less than 3 arc min. The prisms

are glued on to the the chip surface with vacuum-compatible epoxy. The inward surface

of each prism is mirror-coated. A tightly focused beam is incident on and reflected by
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Bt

II

(a) (b)

Figure 2.3: A magnetic waveguide. (a) The solid lines represent the magnetic fields
created by the transverse bias field and the wire. The transverse bias field (Bt) cancels
out the magnetic field created by the straight wire at one point. A magnetic potential
minimum is formed above the wire. (b) The dashed lines are the contours of the magnetic
field. The inner contours represent lower magnetic fields.

Guiding wire
Trapping wire

Magnetic potential

BB l t

Figure 2.4: The magnetic potential of the microtrap. The three dimensional microtrap
is created by two perpendicular wires and two perpendicular bias fields.



12

~200 mm

Figure 2.5: A bevelled prism (side view) (not to scale). The prism edges (marked by
dotted circles) are bevelled to prevent them from chipping.

the mirror that is oriented at 45 degrees with respect to the chip surface. The reflected

beam is parallel to the surface of the chip and the direction of the waveguide. The beam

is retroreflected by the second mirror that is perpendicular to the waveguide and the

surface of the chip. The technical details of the prisms are described in the following

sections.

2.2.1 Preparation and installation of the prisms on the chip

We prepare the prisms by lapping, coating, and cleaning them before installing

them onto the chip. The prisms first need to be lapped down by 100–200 µm. Lapping

is necessary because commercial prisms are usually bevelled on the edges (see Figure

2.5) to prevent damages caused by stress during handling. Those bevelled edges cause

nonuniform reflections of our optical beam because the optical beam is reflected very

close to the chip surface, i.e., the edge of the prisms.

The inward surfaces of the two prisms (see Figure 2.2) are mirror-coated. The

polarization and intensity of the reflected beam are determined by the reflectivity of

the coating and any phase shift introduced by it. To have the best contrast ratio of

the standing light wave, the polarization and the intensity of the incident and reflected

beams must be the same. Therefore, we choose silver as our mirror coating because it

minimizes polarization distortion. Silver coating also has a high reflectivity, typically
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greater than 96% at a wavelength of 780 nm. The first step in the coating process

is to coat the surface with a silver layer of thickness typically 150–200 nm. A thin

protective layer of dielectric material, silicon dioxide (SiO2), is then overlayed to protect

the metallic-mirror coating from abrasion. The SiO2 is sufficiently thin that the phase

shift introduced by it is negligible. We clean the prisms carefully with Acetone and

Dichloromethane after lapping and coating to ensure vacuum compatibility. We then

install the prisms onto the chip.

The first step in installing the two prisms is to apply a thin layer of vacuum-

compatible epoxy (Epoxy Technology, product # 353ND) to the bottom surfaces of the

prisms. Because a tunnel has to be created underneath the prism at the entrance of the

atom chip to allow atoms going through, two small flat pieces of glass with a thickness

of 180 µm and a surface area of approximately 2.5 mm×5 mm serve as spacers between

the prism and the chip. Second, as shown in Figure 2.6, we align the prism precisely to

the marks on the chip using a microscope. The marks are made with copper (Cu) wires

during the lithographic production of the chip. Because the marks are made at the

same time as the guiding and trapping wires, the alignment of the marks with respect

to the waveguide should be good within 1 µm. Finally, the prisms are held down on the

chip with a customized mount after the alignment and the chip assembly is put into an

oven and heated to 100◦ for an hour to cure the epoxy. Because prism alignment is the

most crucial step in this process,we will discuss it in detail in the following section.

2.2.2 Alignment of the prisms

The alignment of the prisms is important because the propagation direction of the

standing-wave light field with respect to the waveguide affects the transverse momentum

of the atoms.

The wave vector of the standing-wave light field needs to be parallel to the waveg-

uide to minimize radial excitations of the BEC from photon scattering. The tolerance
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Alignment marks

Trapping and splitting regionLanding region

Initial position of the BEC

Figure 2.6: Alignment marks for the prism. All the marks (circled by the dotted lines)
are 20-µm wide and 10-µm high. The dashed circle indicates the position where the
Bose-Einstein Condensate (BEC) is formed.
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of the alignment of the prisms with respect to the waveguide can be calculated by com-

paring the transverse momentum kick (δp) due to photon scattering to the transverse

momentum (p0) of atoms in the ground state. To avoid radial excitation, we need the

condition:

δp¿ p0. (2.2)

We assume that the angle of the optical standing wave due to the misalignment with

respect to the waveguide is δθ. The transverse momentum kick from a photon-scattering

process is

δp = nh̄k0 sin δθ, (2.3)

where n is the number of scattered photons and k0 is the wave vector of the photon.

The root-mean-square (rms) of the momentum of non-interacting atoms in the ground

state of a harmonic potential can be written as

p0 =
√

h̄mRbω/2, (2.4)

where mRb is the mass of the atoms and ω is the radial trap frequency. For a given p0 in

Equation 2.4, the angle tolerance of the misalignment δθ is smaller, when n is greater.

The highest order of the diffraction in our experiment is a four-photon scattering process,

which is used to reflect split clouds. Thus, for n=4, if we substitute δp and p0 in Equation

2.2 with Equations 2.3 and 2.4, we have the angle tolerance of the misalignment with

respect to the waveguide as

δθ ¿ sin−1(

√

mRbω/2h̄

4k0
). (2.5)

For a radial trap frequency of 100 Hz and a wavelength of 780 nm, the angle tolerance

of the misalignment is estimated to be 1.2◦ from equation 2.5.

The alignment of the prisms can be done within the required accuracy. We achieve

a position accuracy within the line width (δd) of the marks, i.e., 20 µm, by aligning the

edges of the prisms parallel to the marks under the microscope. The width (D) of the



16

prisms is 1 cm so we have a maximum for the tilted angle less than sin−1(δd/D) = 0.11o

after the alignment. The alignment is also checked after the installation by shining a

laser beam with a waist of about 2–3 mm onto the prisms. We observe a good overlap

of the incident and reflected beams at long distance, e.g., 2–3 m, from the chip. We also

make sure the prisms are aligned parallel to the mark within the same accuracy.

One other concern is the angle tilt introduced by the lapping process if a nonuni-

form layer is removed during the process. During lapping, a layer of maximum 200 µm

thickness is taken off over a length of 1 cm. If the lapping process wasn’t done carefully,

one could get a tilt angle of tan−1(200µm
1cm ) = 1.27◦ in the worst case. However, our

lapping process can control the thickness with a precision of less than 100 µm so that

the tilt angle should be within the tolerance.

2.3 Optical setup of a standing light wave close to the surface

The precisely aligned prisms sit on the atom chip in the vacuum chamber and the

optical beam needs to be brought to the prism pair from outside the vacuum chamber

so we design an optical system to shape the optical beam and project it onto the prisms

(see Figure 2.7).

A frequency-stabilized external-cavity diode laser provides the light source for

the standing wave. The frequency of the laser beam is locked at the 87Rb D2 line,

|F = 2〉 −→ |F = 3〉 transition with a frequency instability of less than 1 MHz. Because

atoms are in the |F = 1〉 state, this frequency is 6.8-GHz red-detuned from the atomic

transition. The laser beam passes through an acousto-optical modulator and we adjust

the acousto-optical modulator to have maximum power in the 1st order output. The

other output orders are blocked by a pinhole. The acousto-optical modulator is used

as a fast switch to create short pulses with pulse widths typically from a few µs to a

few hundred µs. The center frequency of the acousto-optical modulator is 80 MHz so

that the frequency detuning introduced by the acousto-optical modulator is negligible
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compared to -6.8 GHz. The first order output of the is coupled into a single-mode

polarization-maintaining fiber to preserve the polarization stability. The output of the

fiber is shaped into a waist of 110 µm and we inject the beam into the vacuum chamber

from the bottom window.

Note that a Gaussian beam has a divergence angle and therefore, the beam also

has a non-zero transverse momentum spread due to its finite waist. For a beam waist

of 110 µm and a wavelength of 780 nm, the divergence angle is 0.129◦, which is well

within the acceptable tolerance.

The output of the fiber is collimated by the first lens (L1) and passes through two

wave plates: a half-wave plate and a quarter-wave plate. The two wave plates set the

polarization of the beam to be linear and parallel to the chip surface. After the wave

plates, the beam is partially reflected by a 8o wedge. This 5% reflection is collected by

a photodetector, which is used to monitor the intensity of the laser beam. The beam is

shaped by three lenses: L2, L3, and L4. The focal lengths of the three lenses are -25,

75.6, and 500 mm, respectively. Distances between the lenses are 50 and 15 mm. The

first two lenses, L2 and L3, form a telescope that scales the beam from an original waist

of approximately 200 µm to a waist of 1.13 mm. A concave lens is used instead of a

convex lens to decrease the required distance of the telescope. The last lens, L4, focuses

the size down to a waist of 110 µm. The waist of the beam is positioned at the surface

of the second prism corresponding to a Rayleigh length of 4.9 cm, where the Rayleigh

range is the distance in which the beam size increases by a factor of
√

2 [21]. Because

the Rayleigh range is much larger than the distance between the BEC and the second

mirror, i.e., 2 mm, the beam can be considered collimated between the prisms, and the

wave vector of the beam parallel to the waveguide. Mirror M2 sits on a translation

stage that allows us to change beam height from the chip surface.
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Figure 2.7: Schematic f the optical layout for a standing wave on a chip surface (not to
scale). L1, L2, L3 and L4 are lenses. M1, M2, and M3 are metallic mirrors. The output
beam from the fiber is collimated by L1. L2, L3, and L4 focus the beam to a waist of
110 µm. The waist of the beam is located at the surface of the second prism. Two wave
plates create a linear polarization parallel to the chip surface. Approximately 5% of the
output power from the fiber is reflected by a wedge and collected by the photodiode to
monitor the power of the standing light wave.



Chapter 3

Surface-induced evaporative cooling

Conventional evaporative cooling often employs rf radiation. However, evapo-

rative cooling induced by a surface has now provided an alternative way of making a

BEC [22]. If we can apply the surface-induced evaporative cooling on an atom chip,

this new cooling technique can be potentially used to make a continuous coherent atom

source for which a spatial-dependent cooling is required, because the efficiency of the

evaporative cooling near the surface is controlled by the atom-surface separation that

can be spatially varied in a waveguide.

The principle of surface-induced evaporative cooling is very similar to that of the

conventional rf-forced evaporative cooling. In rf-forced evaporative cooling, resonant rf

radiation selects hot atoms and transfers them from a trapped spin state to an untrapped

spin state. After hot atoms, i.e., energetic atoms, fall out of the trap, the average energy

of the remaining atoms decreases after rethermalization through collisions. Similarly,

when atoms are brought close to a surface, high-energy atoms hit the surface first

because of their broader spatial and momentum distribution in a magnetic trap. Hot

atoms are lost from the trap after colliding with the surface, and only colder atoms

remain; therefore, the cloud cools down.

In this chapter, I describe an experiment where we bring a cold normal cloud close

to the chip surface and investigate the surface-induced cooling effect. It is straightfor-

ward to bring an atom cloud close to the surface in our experiment for two reasons.
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First, the distance between the atom cloud and the surface in our experiment is less

than in a conventional chamber because our atoms are captured and trapped on a chip.

The typical distance of the cloud from the surface of the chip is only about 100 µm.

Second, we can change the distance of the cloud from the surface by simply changing

the currents in the wires and the transverse bias field that create the magnetic trap and

the waveguide, as described in chapter 2.

In our experiment, we can bring atoms close to either an aluminum nitride (AlN)

(the substrate material) or copper (Cu) (the wire material) surface. However, either

rf noise from the environment coupled into or thermal noise in the conductor wires

can cause reduction of the lifetime [16, 17, 22, 23]. Moreover, the cold atom cloud

experiences a corrugated potential due to current noise or imperfection of the wires,

such as rough edges or defects. When the variation of the potential is comparable to

the energy of the cloud, the cloud breaks up into pieces and is thus fragmented [18, 19].

Therefore, we use the AlN substrate to investigate surface-induced cooling.

We show that with careful design of the trajectory to bring the atoms close to the

surface, this cooling technique can efficiently create a BEC from an atom cloud with an

initial temperature of 30 µK.

3.1 A simple trajectory for bringing atoms close to a surface

We can use a relatively simple trajectory to bring the atom cloud close to the

chip surface. Atoms are first trapped above a single wire, which we call the “main

wire”. We ramp up or down simultaneously a transverse bias field (Bt) and current of

another wire (I2), which we call the “secondary wire”, to bring the atoms close to the

surface. The secondary wire is parallel to the main wire (see Figure 3.1). The change

of the current and the transverse bias field shifts the bottom of the trapping potential

and moves atoms. The atom cloud is moved to the surface between the two wires by

maintaining a constant distance from the main wire so that the cloud simply rotates
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Figure 3.1: The trajectory of the atom cloud. The cloud starts above the center of the
main wire and then rotates to the center between the two wires at various distances from
the aluminum nitride substrate. θ1 is the angle of rotation, r0 is the distance between
the atoms and the center of the main wire, d is the distance between the two wires and
Bt is the transverse bias field.

from the top to the left side of the main wire, as shown in Figure 3.1.

Because we keep the current of the main wire (I1) constant, the current in the

secondary wire and the transverse bias field can be determined by the angle of the

rotation as follows:

I2 = I1
sin θ1(r

2
0 + d2 − 2dr0 sin θ1)

r0(d− r0 sin θ1)
(3.1)

and

Bt = I1
µ0

2π

d cos θ1
r0(d− r0 sin θ1)

, (3.2)

where θ1 is the angle of rotation, r0 is the distance between the atoms and the center

of the main wire, d is the distance between the two wires, and µ0 is the magnetic

permeability. When θ1 is equal to 0◦, atoms sit above the main wire with a radial trap

frequency of 1.8 kHz. When θ1 is equal to 90◦, the distance of the cloud from the surface

is 5 µm, which is half of the wire thickness, and the radial frequency is 3.6 kHz.

The atom cloud starts from 100 µm above the center of the main wire. The initial

transverse bias field is 20 G, and the longitudinal bias field is 1 G. The currents in the

main wire and the secondary wire are 1 A and 0 A, respectively. The distance between
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Figure 3.2: (a) The calculated distance, (b) transverse bias field ,and (c) current of the
secondary wire as functions of time when the cloud is moved closer to the surface. The
cloud is moved closer to the surface in 25 ms with the final position 5 µm above the
surface.
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the center of the two wires is 200 µm. We change the transverse bias field and the current

of the secondary wire in 25 ms to move the cloud closer to the surface. We change the

cloud position by keeping a constant angular velocity, i.e., dθ1
dt = constant. Therefore,

Equations 3.1 and 3.2 can be expressed as functions of time (t) by substituting θ1 with

constant × t. The change of the secondary-wire current and the transverse bias are

plotted as functions of time in Figure 3.2. The distances from the surface for each time

are calculated by numerically solving for the cloud position , which is at the minimum of

the magnetic potential. Figure 3.2 also shows the calculated distance from the surface

when we bring the cloud to 5 µm above the surface of the substrate.

We observe the temperature of the cloud by imaging its size (σ) after free expan-

sion. The temperature is proportional to the square of the size, T ∝ σ2. The change of

cloud size as a function of distance from the surface is shown in Figure 3.3. The temper-

ature starts to decrease when the distance from the surface is less than approximately

10 µm. Loss of atoms is also observed at the same distance. In contrast to the expected

cooling at even shorter distances, the experimental result shows that the cloud is heated

rapidly when it comes to around 6 µm from the surface.

To examine the source of heating, we perform a second experiment in which we

bring the atom clouds to 5 µm from the surface, hold them at the same distance for

various times ranging from 5–7 ms, and then bring them back to their original positions.

The change in the number of atoms and cloud sizes for various hold times is shown in

Figure 3.4. The cloud heats up for a short hold time, and the cloud temperature reaches

a saturation point for a longer hold time. This heating is due to a nonadiabatic change

in the radial trap frequency arising from potential minima crossing, and the details are

discussed in the following section.
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Figure 3.3: (a–b) Cloud sizes and (c) atom numbers at various heights above the surface.
Atoms are brought to various heights above the surface in 25 ms and then immediately
moved back in another 25 ms to their original position. The cloud size remains constant
at longer distances, starts to decrease as the distance decreases, and rapidly increases
as the distance approaches 6 µm. The atom number also shows a rapid decline when
the distance is within 10 µm from the surface.

Figure 3.4: Cloud sizes for various hold times close to the surface. Atoms are held 5 µm
away from the surface for various time periods. The cloud sizes in both the radial and
axial directions increase for a short period of time and then reach a constant value.
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3.2 Heating due to potential minima crossing

In order to observe surface-induced cooling, we need to understand the origin

of the heating and reduce the heating rate before we can quantitatively study and

improve the cooling efficiency. We carefully investigate the current-ramping process

by evaluating the change of the radial trap frequency when we bring atoms close to

the surface. When we ramp up the current in the secondary wire and ramp down the

transverse bias field, atoms follow the magnetic potential minimum, which is initially

above the center of the main wire and moves toward the surface. However, there is also a

second potential minimum arising from the secondary wire. This second minimum moves

toward the center above the two wires, as shown in Figure 3.5, where the (horizontal

, vertical) positions of the centers of the main wire and the secondary wire are at (0

µm, 5 µm) and (-200 µm, 5 µm), respectively. When the atoms move closer to the

surface, the two minima get closer. Consequently, the potential barrier between the two

minima decreases and the trap becomes loose. The two minima separate again after

they cross each other and the trap frequency then increases again. Figure 3.6 shows

how the calculated radial trap frequency changes as a function of time as we bring the

cloud to 5 µm above the surface in 25 ms. The radial trap frequency decreases from

around 2 kHz down to 1 kHz and then increases to 4 kHz. The rapid change of the

radial trap frequency in such a short time, i.e., 10 ms, causes the cloud to heat up.

Because the potential barrier has a minimum value of 1.4 MHz in the crossing region,

and this minimum is comparable to the initial energy of the cloud (∼ 1.35 MHz), once

the atoms heat up, the hot atoms have enough energy to move across this potential

barrier. As a result, an atom loss is observed. Besides, ongoing evaporative cooling

occurs because the energetic atoms fall out of the trap and only the cold atoms remain.

This ongoing evaporative cooling counteracts the heating, and thus the temperature

reaches a saturation point.
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Figure 3.5: Trajectories of the two minima of the magnetic field. The initial position
of the cloud at one of the minima is at horizontal position 0 µm and vertical position
105 µm. The two minima come closer and then separate as the cloud moves closer to
the surface. The (horizontal, vertical) positions of the centers of the main wire and the
secondary wire are at (0 µm, 5 µm) and (-200 µm, 5 µm), respectively.

Figure 3.6: The radial trap frequency as a function of time as the cloud is moved closer
to the surface. The final position of the cloud is 5 µm from the surface, and the total
time to bring the cloud to the surface is 25 ms.
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3.3 Observation of surface-induced cooling

To reduce the heating of the cloud, we modify the trajectory of the atom cloud

from an arc, which has constant distance from the main wire, to a parabola. The

parabolic trajectory increases the distance between the two minima when they cross

each other and improves the adiabaticity of the ramping process. The relation between

horizontal and vertical position of the cloud, X and Y, can be written as follows:

Y = A×
√
X −B, (3.3)

where A and B are two constants that can be determined by the initial and final position.

First, by substituting the initial and final (horizontal, vertical) positions, (0, h) and (-

d/2,0), into Equation 3.3, we can solve for A and B, where h is the initial distance

between the atoms and the center of the main wire. Second, we substitute r sin θ1 and

r cos θ1 for X and Y in Equation 3.3 and solve for r, the distance between the atoms

and the main wire. The distance from the main wire, r, is no longer a constant but

rather is a function of the rotation angle, θ1, as below:

r =
1

d
h2 sec θ1

2(sin θ1 −
√

d2

h2
cos θ1

2 + sin θ2
1). (3.4)

If we replace the constant r0 in Equations 3.1 and 3.2 with r in Equation 3.4, we obtain

the new trajectory shown in Figure 3.7. In this case, we also change the separation of

the two wires from 200 µm to 300 µm by choosing another wire that is 300 µm away

from the main wire as a secondary wire. This separation provides a better match of the

initial and final radial trap frequencies without changing the current in the main wire.

For a 3 G longitudinal bias field, 1 A main-wire current, and a 20 G transverse bias

field, the cloud with an initial temperature of 30 µK starts initially 100 µm above the

center of the main wire. As a result, the radial trap frequency remains approximately 1

kHz with a variation of less than 0.3 kHz, as shown in Figure 3.8. After employing the

modified trajectory, we observed the size and the atom number of the cloud again by
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Figure 3.7: A Parabolic trajectory of the cloud for surface-induced cooling. The cloud
starts 50 µm above the center of the main wire and then moves in between the two
wires.
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Figure 3.8: The radial trap frequency of a parabolic trajectory as a function of time for
surface-induced cooling.
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varying the distance from the surface, as shown in Figure 3.9 or the hold time close to

the surface, as shown in Figure 3.10. In contrast to the heating observed previously in

Figures 3.3 and 3.4, cooling is observed as results of both decreasing the distance from

the surface (see Figure 3.9) and increasing the hold time close to the surface (see Figure

3.10).

The atom cloud in a harmonic trap has a spatial Gaussian distribution and more

than 84% of the atoms are distributed within the rms size of the cloud. The cooling

effect is observable when a sufficient amount of hot atoms, e.g. 10%, are removed from

the trap. Thus, we expect the cooling effect occurs when the distance is comparable

the rms size of the cloud. For a cloud with an initial temperature of 30 µK in a 1 kHz

trap, the in-trap size is around 7.5 µm. In Figure 3.9, the cooling effect appears when

the distance from the surface is less than 10 µm, which is close to the expected value.

In Figure 3.10, the cooling is also observed as we increase the hold time with the cloud

at 7 µm from the surface. A BEC is achieved with a hold time longer than 140 ms.

A BEC is also made by using a different adiabatic trajectory. We change the

trajectory of the cloud by moving the cloud to the other side of the main wire, which

is farther away from the secondary wire, as shown in Figure 3.11. To increase the

adiabaticity of the current ramping process, we increase the radial trap frequency by

a factor of two, i.e., from 1 kHz to 2 kHz, by decreasing the current in the main wire

from 1 A to 0.5 A. Because the radial trap frequency is proportional to the magnetic

gradient (B′ ∝ B2

t

I ) created by the current in the main wire, when we decrease the

current to half, the radial frequency is doubled. The current of the secondary wire and

the transverse bias field as a function of time can still be determined by Equations 3.1

and 3.2. For a 3 G longitudinal bias field and a 20 G transverse bias field, the cloud is

initially located 50 µm above the center of the main wire. The trajectory also maintains

the same distance from the main wire, which is located at the origin, as shown in Figure

3.11. Consequently, the radial trap frequency remains approximately 2 kHz with a
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Figure 3.9: Cooling of the atoms as a function of height above the surface. Atoms are
brought to various heights from the surface in 25 ms. The cloud size remains constant
until the distance is less than 10 µm. Atom loss is observed in the same distance range
because of the surface-induced cooling effect.

Figure 3.10: Cooling of the atoms for various hold times close to the surface. Atoms are
held 7 µm away from the surface for various times. The cloud sizes in both the radial
and axial directions decrease as the hold time increases. The free expansion time before
taking the images is 10 ms.
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Figure 3.11: An alternative trajectory of the cloud for surface-induced cooling. The
cloud starts 50 µm above the center of the main wire and then moves to outside the
wires.
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Figure 3.12: The radial trap frequency of the alternative trajectory as a function of time
for surface-induced cooling.
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variation of less than 0.6 kHz. The variations of the radial trap frequencies by using

the adiabatic trajectories introduced in this section are much smaller compared to the

relatively simple trajectory introduced in the section 3.1.

We achieve a BEC of around 1.5×105 atoms with a cloud at an initial temperature

of 30 µK. The atom number of the condensate formed by using surface-induced cooling is

larger than the number of the condensate atoms formed by using only the conventional rf

approach, typically ∼7–8×104. While our evaporative cooling still involves rf radiation

in the initial cooling stages, the experimental result demonstrated by D. Harber et.al.

[22] shows that a BEC can be achieved by using only surface-induced evaporative cooling

after the atoms are collected in a MOT and loaded into a magnetic trap. Their result

has proved that the surface-induced cooling can be made very efficient and used to

replace the conventional rf-forced evaporative cooling technique.

In addition, the surface-induced evaporative cooling has two advantages. First,

in contrast of the rf-induced cooling, in which rf radiation only selects the hot atoms

within a certain energy bandwidth and leaves other hot atoms trapped (so-called the

“Oort cloud”) [24], surface-induced cooling drives out all the hot atoms above a certain

energy. Therefore, heating [25, 26, 27, 28, 29] due to the presence of an Oort cloud

is reduced. Second, the surface-induced cooling can be well suited for making a cw

coherent atom source where a spatial-dependent evaporative cooling is required. It is

difficult to apply spatial-varying rf radiation, but it is easy to control the efficiency of the

evaporative cooling near the surface by spatially varying the atom-surface separation in

a waveguide.



Chapter 4

Diffraction of atoms with a standing-light wave

The diffraction of a matter wave by an optical light wave is analogous to the

diffraction of light by a periodic structure, such as a diffraction grating, in optics.

It was predicted in 1933 by Kaptiza and Dirac that electrons can be diffracted by a

standing light wave [30]. It was pointed out later by Altshuler et al. that the diffraction

by standing light waves could also occur for neutral atoms or any other particles that

are capable of scattering photons [31]. The diffraction of atoms was first demonstrated

in free space with a near-resonant standing wave by Pritchard and his colleagues at

MIT [32, 33]. Their observation proved the photon counterpart of matter waves. The

same technique were also demonstrated with a coherent wave packet in 1999 [34] when

Ovchinnikov et al. successfully diffracted a BEC released from a magnetic trap. Later in

2004, Prentiss and her colleagues at Harvard used an optical standing wave pulse to split

a normal cloud longitudinally in a “stadium”-shaped magnetic guide [13]. Therefore,

the diffraction of atoms by a standing wave light field has brought up the possibility of

a coherent beamsplitter, which is essential for an atom interferometer and a standing

light wave is served to split, reflect, and recombine the atoms in our experiment to form

an atom interferometer.

In this chapter, we show an experiment where off-resonance laser light is used to

create a standing light wave to diffract Rb atoms. After interacting with the standing

light wave, atoms are diffracted into different momentum states and propagate with
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different velocities. We discuss the diffraction efficiency of atoms theoretically in two

different regimes, the Raman-Nath regime and Bragg regime, and quantitatively com-

pare it to our experimental results. The diffraction in different regimes allows us to

split or reflect atoms with a high efficiency to make an interferometer. For example,

the splitting of the atoms involves a Roman-Nath pulse and the reflection of atoms

employs a Bragg process. We first demonstrate the diffraction effect of atoms in both

free space and a waveguide using a Raman-Nath pulse. With further control of the light

pulse, e.g. by changing intensity and pulse width, we can use this diffraction effect to

create a coherent beamsplitter for a BEC. We can also use a Bragg pulse to reflect the

atoms in the waveguide so the split cloud could recombine at their origin to form an

interferometer.

4.1 Theoretical consideration

To evaluate the diffraction efficiency and understand the diffraction mechanism,

we treat the atom motion quantum mechanically. In the electric dipole approximation,

the Hamiltonian for an atom in an electromagnetic field with the wave vector in the

x-direction takes the from

H = H0 +HAF = H0 −−→µ · −→E (x, t), (4.1)

whereH0 = P 2
x

2mRb
+U0 is the unperturbed Hamiltonian describing an atom in the absence

of light, HAF is the atom-photon interaction term, −→µ is the dipole moment of the atoms,

and
−→
E (x, t) = −→ε 2E0 cos(kx) cos(ωt) is the standing-wave field with peak amplitude

2E0, wave number k, frequency ω, and polarization −→ε . A standard method used to

describe and understand this coupled atom-photon system is the so called “dressed

state approach” [35, 36], where the laser field is treated as a quantized field rather

than a classical external field. We transfer the basis into a rotating frame, the rotating

frequency of which is equal to the frequency difference (ω0) between the unperturbed
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excited and ground states, and introduce a Rabi frequency

Ω0 =
−→µ · −→ε E0

h̄
, (4.2)

where the Rabi frequency indicates the strength of the coupling between the ground and

excited states. The coupling is stronger when the electric field is stronger and thus the

Rabi frequency is larger. In most situations, the laser fields are near resonant with the

atomic transitions, and it is an excellent approximation to ignore the rapidly oscillating,

or counterrotating terms. This rotating-wave approximation yields for the interaction

Hamiltonian a simpler form

H
′

AF = Ω0 cos kx =
Ω0

2
(eikx + e−ikx). (4.3)

After scattered by the light field, atoms can be either in the electronic excited

or ground state, so the wave function ψ(x, t) can be expressed as a superposition of an

excited and ground electronic state, | e〉 and | g〉:

| ψ(x, t)〉 = e(x, t) | e〉 + g(x, t) | g〉, (4.4)

where e(x,t) and g(x,t) are the coefficients as functions of position (x) and time (t).

Substituting the wave function into Schrödinger’s equation, ih̄ ∂ψ∂t = Hψ, yields the

coupled equations:

ih̄
∂e(x, t)

∂t
= − h̄2

2mRb

∂2

∂x2
e(x, t) + h̄Ω0 cos(kx)g(x, t) − h̄∆ωe(x, t), (4.5)

and

ih̄
∂g(x, t)

∂t
= − h̄2

2mRb

∂2

∂x2
g(x, t) + h̄Ω0 cos(kx)e(x, t), (4.6)

where ∆ω is the detuning of the light from the atomic resonances. If we know the

intensity of the laser beam, i.e., the Rabi frequency, and the interaction time, we can

solve the coupled equations for the probabilities of the different states. We can further

determine diffraction efficiencies for different momentum states by taking the Fourier

transform of the wave functions.
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The diffraction effects are separated into two different regimes: Raman-Nath and

Bragg regime. In the Raman-Nath regime, the uncertainty of the energy associated with

the interaction time is larger than the energy splitting between the different momentum

states and the energy of the atom-photon system is not conserved in the scattering

process. In contrast, in the Bragg regime, the uncertainty of the energy associated with

the interaction time is smaller than the energy splitting between the different momentum

states, and the energy of the atom-photon system is conserved.

4.1.1 Raman-Nath regime

If the atom cloud is initially at rest, a short pulse enables the diffraction process

by giving atoms both a momentum kick and additional kinetic energy. In the Raman-

Nath regime, the atom-photon interaction time is so short that the Doppler shift of

the resonance frequency due to atom recoil is negligible. In general, the resonance

frequency will have a Doppler shift 4ωDoppler ∝ kp/mRb if the momentum of atoms

(p) is nonzero, so the resonance frequencies of atoms in different momentum states are

slightly different. In the Raman-Nath regime, however, if the atom-photon interaction

time is so short that the frequency width due to the uncertainty arising from finite

interaction time is much larger than the Doppler shift, this Doppler frequency shift can

be ignored. In practice, this means that pulse lengths less than about 133 µs are needed

for Rb atoms. Since the recoil energy of an atom, Erec = h̄ωrec = h̄2k2

2mRb
, is half the

Doppler shift energy, Edoppler = h̄ωDoppler = h̄kp
mRb

, the Raman-Nath regime also implies

that the interaction time is short compared to the inverse recoil frequency. Once we

ignore the Doppler shift, the frequency of the standing-light wave can be considered as

on resonance for all the momentum states.The kinetic energy terms, − h̄2

2mRb

∂e(x,t)
∂x2 and

− h̄2

2mRb

∂g(x,t)
∂x2 , are also negligible based on the same argument. Equations 4.5 and 4.6
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can then be rewritten as

ih̄
∂e(x, t)

∂t
= h̄Ω0 cos(kx)g(x, t) − h̄∆ωe(x, t), (4.7)

and

ih̄
∂g(x, t)

∂t
= h̄Ω0 cos(kx)e(x, t), (4.8)

4.1.1.1 On-resonance standing light wave

If we first consider the simplest case where the standing light wave is on resonance

with an atomic transition, i.e, ∆ω = 0, the last term in Equation 4.7 vanishes. Because

momentum is conserved in the process and photon momentum is quantized, atom mo-

mentum can only be increased by multiples of the photon momentum, h̄k. Therefore,

the partial wave function e(x,t) and g(x,t) can be expanded as

e(x, t) =
∑

m

em(t)ei(
pi
h̄

+mk)x (4.9)

and

g(x, t) =
∑

m

gm(t)ei(
pi
h̄

+mk)x, (4.10)

where pi is the initial momentum of the atoms and em(t) and gm(t) give the probabilities

of diffraction into the mth diffraction orders. For a given initial condition in which atoms

start in the ground state with center of mass motion at rest, em(t) = 0, gm(t) = δm0,

and pi = 0, Equations 4.9 and 4.10 simplify to

ih̄
dcm(t)

dt
=
h̄Ω0

2
[cm−1(t) + cm+1(t)], (4.11)

where

cm(t) =















em(t) m = odd

gm(t) m = even

. (4.12)

The solutions of this equation are the Bessel functions of the first kind [37] so we have

cm(t) = imJm(Ω0t), (4.13)
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and the probability of atoms in one particular momentum state is

pm(t) = J2
m(Ω0t), (4.14)

As shown in Equation 4.14, the probability of atoms in the mth diffraction order can

be evaluated as a Bessel function of order m and depends on standing wave intensity

and atom-photon interaction time. Because Bessel functions have the property that

J−m(x) = (−1)mJm(x), we thus have the probability of the mth order equal to that of

the -mth order and the atom number distributions in the positive and the negative order

are symmetric. Because the atoms are initially in the ground state, they are diffracted

into an electronic excited state after scattering an odd number of photons, i.e., when m

is an odd number, and a ground state after scattering an even number of photons, i.e.,

when m is an even number.

As a result of diffraction, atoms are transferred to different momentum states.

However, this diffraction mechanism with resonant light is not a coherent process. If an

atom absorbs an odd number of photons, it jumps to an excited state. An atom that is

in an excited state will spontaneously emit a photon in an arbitrary direction as it falls

back to the ground state. Thus the atom gains a photon momentum (h̄k) in a random

direction. Consequently, the atom momentum distribution is broad due to spontaneous

emissions.

4.1.1.2 Off-resonance standing light wave

The spontaneous emissions increase the dispersion of the atom momentum and

therefore, destroy the coherence of the wave packets. To reduce this decoherence effect,

we can use an optical standing wave with a frequency detuned from the atomic resonance

to avoid significantly populating the excited state of the atoms. We can expand the

theoretical model to include an off-resonance photon-scattering process. For a large
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detuning

|4ω| = |ω − ω0| À Ω0, ωrec, (4.15)

where ωrec = h̄k2

2mRb
(recoil frequency). Atoms that are initially in their ground state, will

have a negligible probability of being in the excited state after diffraction. For ∆ω < 0,

Equation 4.6 can can also be approximated [35, 36, 38, 34] as

ih̄
∂g(x, t)

∂t
= − h̄2

2mRb

∂2

∂x2
g(x, t) +

h̄2Ω2
0

|4ω| cos(kx)2g(x, t)

= − h̄2

2mRb

∂2

∂x2
g(x, t) + 2h̄Ωeff cos(kx)2g(x, t), (4.16)

where an effective Rabi frequency is defined as Ωeff =
Ω2

0

2|4ω| . By substituting the wave

function in Equation 4.10 into Equation 4.16 and ignoring the kinetic energy, the first

term on the right side of Equation 4.16, due to the short interaction time, we get the

differential equation

ih̄
∂gm(t)

∂t
= [− h̄2

2mRb
(pi +mh̄k)2 + h̄Ωeff ]gm(t)

+
h̄Ωeff

2
[gm+2(t) + gm−2(t)] (4.17)

' h̄Ωeff

2
(gm+2(t) + gm−2(t)), (4.18)

where the term of h̄Ωeffgm(t) is also ignored because it represents a constant phase

evolution, which is the same for all different momentum states. By comparing this

equation to Equation 4.4, we find the solution in the off-resonance case

gm(t) = i
m
2 Jm

2

(Ωeff t), (4.19)

with the probability of atoms in one particular momentum being

pm(t) = J2
m
2

(Ωeff t). (4.20)

The diffraction efficiency in an off-resonance case also has the same Bessel function

behavior except that the diffraction is now a coherent process because the spontaneous

emission is significantly suppressed due to the large detuning.



42

4.1.2 Bragg regime

For an atom cloud that propagates with a nonzero momentum after being diffracted

by a Roman-Nath pulse, the cloud can also be reflected by another optical standing-

wave pulse. The reflecting pulse reverses the propagation direction of the atoms without

changing their speed. The reflection of the atoms can be achieved by a diffracting pulse

in the Bragg regime with a high efficiency, i.e., nearly 100%. In contrast to the Raman-

Nath regime, the Bragg regime refers to the case where the atom-photon interacting

time is comparable to or longer than the inverse of the recoil frequency, ωrec. The

frequency shift due to the different momenta can no longer be ignored and energy con-

servation must be obeyed in the process. If we examine the kinetic energy before and

after the photon scattering process, the change of the kinetic energy (∆Ek) is

∆Ek(m) =
1

2mRb
[(pi +mh̄k)2 − p2

i ]. (4.21)

The only condition that satisfies ∆Ek(m) = 0 is pi = −m
2 h̄k, where m is a multiple

of 2. Atoms maintain their speed but change their direction in the diffraction process,

i.e., momentum of the atoms changes from −m
2 h̄k to m

2 h̄k, with integer m
2 . In a mth-

order Bragg scattering, the conservation of momentum implies that atoms undergo

a 2m-photon scattering process and go through 2m-1 intermediate states (see Figure

4.1). For a first-order Bragg diffraction with a detuned standing wave and an initial

momentum of h̄k, the coupled equations between m = ±1 states are

ih̄
∂g1(t)

∂t
= (h̄ωrec + Ωeff )g1(t) +

h̄Ωeff

2 g−1(t) (4.22)

ih̄
∂g−1(t)

∂t
= (h̄ωrec + Ωeff )g−1(t) +

h̄Ωeff

2 g1(t), (4.23)

For given initial conditions, g1(0) = 1 and g−1(0) = 0, i.e., atoms initially populate the

momentum state |p = h̄k〉, the probabilities in each momentum state are

p1(t) = g1(t)
2 = cos2(

Ωeff t

2
) (4.24)

p−1(t) = g−1(t)
2 = sin2(

Ωeff t

2
) (4.25)
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Figure 4.1: Transition diagram for a mth-order Bragg scattering. Atoms start in a
state with momentum of mh̄k and go through 2m-1 intermediate states in a 2m-photon
Bragg-scattering process. 4ωi is the detuning from the ith intermediate state with
i = 1, 2, . . . , 2m − 1. The vertical axis in this diagram displays the total energy of the
atoms, which consists of the internal energy difference between the electronic excited and
ground states, and the kinetic energy, Ek. Because Ek = h̄2k2

2mRb
, the different momentum

states for a fixed internal energy lie on a parabola in this plot.
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The equations can also be expanded to mth-order Bragg diffraction [39, 40] and

the probability for p = ±mh̄k states are approximated as

pm(t) = gm(t)2 = cos2(
Ωmt

2
) (4.26)

p−m(t) = g−m(t)2 = sin2(
Ωmt

2
), (4.27)

with 2m-photon Rabi frequency

Ωm =
Ω2m

0

2m−1|∆ω1∆ω2 . . .∆ω2m−1|
, (4.28)

where ∆ωi is the detuning from the ith intermediate level (see Figure 4.1), with i =

1, 2, . . . 2m − 1. If the atoms initially populate the |p = mh̄k〉 state, the populations

start to transfer to the |p = −mh̄k〉 state after the standing-wave light pulse is turned

on. After a time t = π
2Ωeff

, the atoms equally populate both states and the Bragg

pulse is called a “π2 ” pulse. After a time t = π
Ωeff

, all the atoms are transferred to the

|p = −mh̄k〉 state, i.e., the population in the |p = mh̄k〉 state is zero, and the Bragg

pulse is called a “π” pulse. For a time 2π
Ωeff

> t > π
Ωeff

, the population of the atoms in

the |p = −mh̄k〉 state would start to decrease and the population of the atoms in the

|p = mh̄k〉 state would thus increase. The frequency with which atoms hop between

two states is the effective Rabi frequency, Ωeff , as defined in Equation 4.6.

In our experiment, we use a standing light wave with a detuning (∆ω) of -6.8

GHz from the D2 line (the 52S1/2 −→ 52P3/2 transition) to minimize the spontaneous

emission because the spontaneous emission will destroy the coherence of the condensate.

The spontaneous emission rate can be estimated as

γscat =
γ
2s0

1 + s0 + [2(∆ω + ωrec)/γ]2
, (4.29)

where γ is the decay rate of the excited state, s0 = 2Ω2
0/γ

2 is the on-resonance saturation

parameter. γ is 2π·6.1 MHz and the recoil frequency (ωrec) is 2π·3.77 kHz, for 87Rb

D2 line [41]. The recoil energy is velocity dependent and negligible when the detuning
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is large. Because the single-photon Rabi frequency in our experiment is Ω0 =8–80

MHz, the spontaneous emission rate is 4.5–450 Hz, as given by Equation 4.29. The

spontaneous emission rate is negligible during the time when the standing wave is turned

on, typically 1–100 µs.

Our detuning is much larger than both the Rabi frequency and the recoil frequency

such that our experimental condition satisfies the criteria described in Equation 4.15,

and thus our atomic diffraction probabilities by the standing light wave in the Raman-

Nath and Bragg regime are well described by using Equations 4.20 and 4.27.

4.2 Diffraction of atoms in free space

Our first experiment is to observe diffraction of a BEC in a Raman-Nath regime

in free space. Our chip is mounted upside down and atoms are actually trapped below

the chip surface. When we release the condensate, it falls due to gravity. When the

condensate moves close to the center of the optical beams, we turn on an optical standing

wave to diffract the atoms. After diffraction, the cloud splits in the direction along the

standing wave.

4.2.1 Experimental setup

The diffracting beam has a linear polarization and must be turned on and off

quickly to produce a short pulse typically around 1–100 µs. To accomplish this, the

diffracting beam is focused into an acousto-optic modulator to control the timing of the

pulses. The first order output of the modulator goes though an aperture and reaches

the atom chip while the zeroth order is blocked by the aperture (see Figure 4.2). The

frequency shift due to the acousto-optic modulator is much smaller than the detuning

so this frequency shift can be ignored. We adjust the position of the lens (L4) after the

acousto-optic modulator to let the diffracting beam be slowly focused with a waist of

0.6 mm at the retroreflecting mirror (M3). After retroreflection, the diffracting beam
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forms a standing wave. Ideally, the imaging beam would be set up perpendicular to

the diffracting beam in order to observe the maximum separation of the split clouds.

However, our limited optical access forces the diffracting beam and the imaging beam

to be less than 90◦. Both beams go through the same vacuum window with a angle 2ϕ

between them (see Figure 4.2). In this case, the clouds separation in the images (∆x)

and the separation in real space (∆s) are related by

∆x = sin 2ϕ∆s. (4.30)

Because the distance from the center of the chip to the center of window (L) is 7 mm,

and the radius of the vacuum window (W) is 2mm, the angle 2ϕ is given as:

2ϕ = 2 tan−1(W/L) = 2 × 16◦ = 32◦. (4.31)

The imaging beam passes through a pair of lenses, with focal lengths of f1 =100 and

f2 =600 mm, and goes to the CCD (charge-coupled device) camera.

4.2.2 The alignment of the diffracting beam in free space

The alignment of the diffracting beam is very sensitive because the BEC drops

fast in free space and the diffracting beam needs to be centered at the cloud while it is

turned on to diffract the atoms. After setting up the standing wave, we have to verify

that the diffracting beam is aligned with the condensate and the intensity of the incident

and reflected beam are balanced. We change the frequency detuning of the standing

wave and block the retroreflected beam. The photon-scattering rate can be described

using Equation 4.29, which has a maximum value when the frequency is on resonance,

i.e., ∆ω = 0. When atoms absorb photons, they feel a force (F = h̄kγ) in the direction

of the incident beam so that the cloud is pushed by the beam. The scattering rate is

proportional to the intensity. If the pulse width is very short and the atoms do not move

very much when the pulse is turned on, the intensity that atoms experience is nearly
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Figure 4.2: Setup of the imaging system and standing wave in free space. The angle ϕ
between the imaging and diffracting beams is 32◦. The diffracting beam is focused at
an acousto-optic modulator (AOM), which is used to control the timing of the standing
wave pulse. The first-order output from the acousto-optic modulator goes to the chip
and is retroreflected by a mirror, M3, while the zeroth order is blocked by the aperture.
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a constant and the force can be considered constant. The horizontal displacement of

the center of the cloud due to the optical force is proportional to square of the atom-

photon interaction time, t2. After the pulse is turned off, atoms continue to move apart

with a constant velocity, v = Ft
mRb

, before we take an image. The total time of flight

(tTOF ) between when the pulse is turned on and when the image is taken is constant,

so that the total displacement is D = F
mRb

(t · tTOF − 1
2 t

2). We observed this horizontal

displacement by increasing the interaction time, i.e. the pulse width of the standing

light wave. The experimental result is shown in Figure 4.3. We see the displacement

of the center of the cloud is a parabolic function of the interaction time, which agrees

with the expectation. We also observed heating as an increase of the axial size of the

cloud. After absorption, atoms also spontaneously emit photons in random directions.

Consequently, the broadening in the momentum distribution causes the increase of the

cloud size after expansion, i.e., the atoms heat up.

If we unblock the reflected beam, atoms feel another optical force in the opposite

direction and the forces from the incident and reflected beams cancel out. In the exper-

iment, we see that the displacement of the cloud position is reduced as shown in Figure

4.4. However, a nonzero displacement is still visible, particularly for longer interaction

times, and implies that the forces are not perfectly balanced. Because the two beams

have nearly the same size at the location of the cloud, this result indicates that the

power of the reflected beams is weaker than the power of the incident one. The re-

flected power is attenuated by the vacuum windows. The transmission of each vacuum

window is typically around 90–95%. Because the reflected beam passes through the

window twice more than the incident beam before it gets to the atoms, the power of the

reflected beam is only 80–90% of the power of the incident one. When the two beams

are not balanced, the contrast ratio of the standing wave pattern, i.e., the periodical

potential, is reduced so that the diffraction efficiency decreases.

We can make the reflected beam size smaller to compensate for the power atten-
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Figure 4.3: Displacements of the cloud centers and changes of the cloud size induced
by photon absorption. Left: The position of the cloud center plotted is a parabolic
function of the interaction time. The solid circles are the experimental data and the
dotted line is a parabolic fitting curve. Right: The heating due to spontaneous emission
is observed as an increase of the axial size of the cloud as interaction time increases.
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Figure 4.4: Displacements of the cloud centers when the retroreflected beam is on. The
solid circles are the experimental data points when only the incident beam is on and
open circles are the data points when the incident and retroreflected beams are both on.
The displacement is reduced because the optical forces from the two beams partially
cancel out.
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uation and equalize the intensity of the two beams by moving the lens, L3, in Figure

4.2. We move the lens closer to the acousto-optic modulator to increase the focal length

so that the reflected beam is slightly focused after the retroreflecting mirror M3. The

results for the two balanced beams are shown in Figure 4.5. The open circles are the

data with both beams on after we try to balance their intensity and the solid circles are

the data for the single beam. The displacement with two counterpropagating beams is

much smaller than the one with single beams and has only a very small change as the

interaction time increases. When the intensities of the two beams are nearly equal, the

optical forces in the opposite directions cancel so the cloud center doesn’t move as we

increase the interaction time. We also see that the heating due to spontaneous emission

is significantly suppressed when we turn on both beams. If the frequency of the light is

not exactly on resonance, the atoms feel a velocity-dependent force (F
′

= h̄kγscat) due

to the presence of the recoil energy in the scattering rate and this velocity-dependent

force provides a one-dimensional (1D) Optical Molasses (OM) cooling [42, 43, 44, 45, 46]

for the cloud, which overcomes the heating.

4.2.3 Diffraction patterns

Once the standing light wave is centered at the condensate, we change the effective

Rabi frequency or the interaction time of the diffracting beam to vary the diffraction

pattern and compare the observed patterns to the theoretical prediction described in

Equation 4.20.

We change the frequency of the diffracting beam back to -6.8 GHz detuned from

the atomic resonance to avoid spontaneous emissions. The diffracting beam is turned

on 7 ms after the BEC is released from the trap and we image 8 ms after turning on

the diffracting beam to let the clouds propagate and separate.

The first experiment is done by varying the pulse width of the standing wave. For

an input power (P) of 0.61 mW, the output of diffraction is shown in the absorption
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Figure 4.5: Displacements of the cloud centers and axial cloud sizes when the incident
and retroreflected beams are balanced. The solid circles are the experimental data when
only the incident beam is on and open circles mark the data points when the incident
and retroreflected beams are on. Because the intensity of the two beams are equal, the
displacement stays nearly zero as we increase the interaction time. The heating due to
spontaneous emission is also suppressed because of one-dimensional Optical Molasses
(OM) cooling when the beams are both turned on.
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images in Figure 4.6 as the interaction time increases. In those absorption images,

white represents a high density distribution and black is the background where the

density of atoms is zero. We observe a single condensate at t=0. As we increase t, the

clouds start to populate higher momentum states. The clouds are imaged after 8 ms

free propagation such that the atoms in the different momentum states are spatially

separated. The separation between the two second diffraction order clouds is measured

as 185 µm. This separation is close to the 199-µm separation calculated from Equation

4.30.

In this case, it is hard to evaluate the atom number and we couldn’t quantitatively

compare the experimental result with the theoretical model because the separations

between the clouds are not large enough. A larger separation can usually be achieved

by increasing the propagation time. However, atoms fall rapidly due to the gravitational

force and they fall out of the imaging window before the separation becomes large enough

to distinguish different momentum components. Instead of evaluating atom number in

each component, we numerically generate a diffraction pattern based on Equation 4.20

by assuming the cloud size for all the diffraction orders are the same as the initial size of

the cloud and the numbers in each diffraction order are Bessel functions as described in

Equation 4.20. The intensity is used as a free parameter in the model. The theoretical

patterns for a fitting intensity of 80 mW/cm2 are shown in Figure 4.7 and they agree

well with the experimental diffraction patterns shown in Figure 4.6. We evaluate the

averaged intensity of the incoming beam Iavg = P
πw2

0

, where w0 is the waist of the beam

and is measured to be 0.6 mm and find that the averaged intensity over the whole beam

area is about 54 mW/cm2. The peak intensity of the incoming beam is also given by

Ipeak = 2P
πw2

0

' 108 mW/cm2 and the fitting intensity is right in between the averaged

intensity and the peak intensity. When the standing wave is turned on, the atoms are

travelling through the center of the beam where the intensity is higher compared to the

edge of the beam but less than the intensity at the center; therefore, the atoms feel an
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185 mm

Figure 4.6: Absorption images of various interaction times. At zero interaction time,
the condensate starts at zero momentum. When the interaction time increases, atoms
start to populate higher momentum states, which are spatially separated after 8 ms
propagation.
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Figure 4.7: Theoretical diffraction patterns of various interaction times. The cloud sizes
for the different diffraction orders are assumed the same as the size of the initial cloud.
The intensity of the diffracting beam is a free parameter and is chosen to have a value
of 80 mW/cm2 to generate the results.
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intensity which is higher than the averaged value but less than the peak value.

Because the diffraction pattern depends on both the interaction time and the

intensity of the beam, because of the effective Rabi frequency Ωeff ∝ Ω2
0 ∝ E2

0 ∝ I0,

we could also vary the power (P ∝ I) of the diffracting beam to affect the diffraction.

Figures 4.8 shows the diffraction patterns for different powers of the diffraction beam and

those diffraction patterns are similar to the patterns observed as we vary the interaction

time. The interaction time is 4.16 µs and the fractions in the higher orders increase as

we increase the power of the diffracting beam. The maximum diffraction order observed

is the fourth order in Figure 4.8.

From the above experiment results, the diffraction pattern and efficiency qualita-

tively agree with the theoretical model. In order to achieve a quantitative comparison

and also develop a guiding atom interferometer, in the following section we show this

diffraction in the waveguide.

4.3 Diffraction of atoms in a waveguide

One of the main goals of this thesis is the development of a guided atom inter-

ferometer, the key element of which is a coherent beamsplitter for guided atoms. As

I will show in this chapter, the optical beamsplitter described so far does indeed work

for guided atoms. In addition, this also allows us to make a quantitative comparison

with theory, because the guided atoms do not fall due to gravity, so that images can be

taken with larger separation of the clouds.

4.3.1 A splitting pulse in the Raman-Nath regime

We perform the diffraction experiment in the waveguide with the setup described

in Chapter 2. After a BEC is formed in the microtrap on the chip, we reduce the longi-

tudinal confinement and release the BEC into the magnetic waveguide. The diffracting

beam close to the surface is then turned on to split the cloud. After 38-ms propagation
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P=0.00 mW

Power of the
diffracting beam

P=0.43 mW
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Figure 4.8: Diffraction patterns of different powers of the diffraction beam. The inter-
action time is 4.16 µs.
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Figure 4.9: A diffraction pattern in the waveguide. The image is taken after 38 ms
propagation.

in the waveguide, the different diffraction orders are spatially separated as shown in

Figure 4.9. The center component is the zeroth order and we observe the symmetric

higher orders up to the second order diffraction. Because the clouds are now spatially

separated, we can fit each component with a Gaussian profile and evaluate the number

in each diffraction order.

We again vary the interaction time, take a series of images, and then extract

the numbers of atoms in each diffraction order from the images. The efficiency can be

calculated by dividing the number of atoms in each component by the total number.

We plot the number in each order for various times in Figure 4.10. The experimental

data is fit to Bessel functions with the effective Rabi frequency as a variable. We plot

the theoretical curve for different diffraction orders as the solid line shown in the Figure.

In general, the data agrees very well with the prediction with a deviation of less than

20% diffraction efficiency from the theoretical curves. For a longer interaction time, the

energy uncertainty associated with the pulse width becomes comparable to the energy

splitting between the different momentum states and the assumption for a Raman-Nath

pulse is not valid. As a result, we see the experimental data for longer interaction times

in Figure 4.10 deviates from the theoretical prediction.

4.3.2 A reflecting pulse in the Bragg regime

The Raman-Nath pulse can split a single condensate into many wave packets

through a coherent photon-scattering process. In order to make an interferometer, we

need another pulse serving as a mirror to reflect the wave packets so that the wave
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Figure 4.10: Diffraction efficiencies of various interaction times in the waveguide. The
efficiencies for up to the second order are plotted. Solid circles are the experimental
data and the lines are the fitting curves with an effective Rabi frequency of 400 kHz.
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0th 1st 2nd-1st-2nd

Figure 4.11: Diffraction patterns with and without a reflecting pulse. The images are
taken 56 ms after the splitting pulse. The top image shows the diffraction pattern
without applying a reflecting pulse. The bottom image is the diffraction pattern after
applying a reflecting pulse. The reflecting pulse is turned on in between the splitting
pulse and the imaging pulse with equal temporal separations, i.e., 28 ms after the first
splitting pulse. The dashed rectangle marks the atoms that are reflected.

packets can recombine and interfere. This reflecting pulse can be done with a relatively

long pulse in the Bragg scattering regime. A Bragg pulse simply reverses the momentum

of the clouds as described in Section 4.1.2. Bragg scattering is a velocity-sensitive

process because the atoms with different velocities, i.e., in different momentum states,

have different effective Rabi frequencies as described in Equation 4.28. We can use this

velocity-dependent process to reflect only a part of the split cloud, e.g., only the first

order.

We optimize the intensity and the pulse width of the splitting pulse to distribute

atoms in the first and second output orders but not the zeroth order. The first and

second order travel outward with a momentum of ±2h̄k and ±4h̄k, respectively. We

purposely keep the longitudinal confinement on and wait for the atom velocities to slow

down to half of their initial value, i.e., ±h̄k, before applying the Bragg pulse. This

Bragg diffraction is a two-photon scattering process that changes the atom momentum

from ±h̄k to ∓h̄k. The timing of the Bragg pulse can be estimated by the longitudinal

oscillation period as tBragg =
Tperiod

6 ∼ 28 ms, where Tperiod is the oscillation period of

the harmonic trap. After optimizing the intensity and the pulse width of the reflecting

pulse, the experimental result is shown in Figure 4.11. The images are taken 56 ms
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after the splitting pulse and the Bragg pulse is applied at the half time between the

splitting and the imaging pulses, i.e., 28 ms after the splitting pulse. The top image

shows the diffraction pattern without applying a Bragg pulse and the bottom image

shows the diffraction pattern after applying a Bragg pulse. The atoms shown at the

center of the bottom image are the atoms reflected by the Bragg pulse. Theoretically,

the Bragg scattering process could have a 100% coupling efficiency and for a perfect

coupling efficiency, no atoms is left in the two first orders, which are the two components

right next to the center component. However, a significant number of atoms are still

observable in the first orders after fully optimizing the Bragg pulse. We also see the

asymmetric distribution in the two first orders with the right component being stronger

than the left one.

In order to find the origin of this asymmetry, we measure the velocity of each

component at the time when the Bragg pulse is turned on. The velocities for the two

first orders are 0.26 (to the right) and -0.58 (to the left) cm/s and the velocities for

the two second orders are 0.75 and -1.04 cm/s. Those velocities are very different from

what we expected. The momentum of the first and the second order are expected to be

h̄k =0.59 and 2h̄k =1.18 cm/s, so it seems that atoms going to the right side are slower

than the atoms going to the left. We measure the initial velocity of the condensate

before applying any pulse and the initial velocity is observed to have a maximum value

of about 0.5 cm/s. When the cloud has an initial velocity (v0), this velocity is added to

the velocity transferred from the photons. If we consider only the first order diffraction,

the atoms going to the right (or left) will have a net momentum of mRbv0 + 2h̄k (or

mRbv0 − 2h̄k), respectively. The atoms propagating in the opposite direction do not

have the same speeds.

The initial velocity is due to a slosh motion of the center of the condensate in the

trap after the condensate is created. This occurs because we need to move atoms farther

away from the surface so the atom cloud is centered at the standing wave. The center
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of the condensate is shifted by ramping the current in the wires and the transverse bias.

A slosh motion is produced if the ramp is too fast. We can reduce this slosh motion by

ramping the current more slowly or making a condensate far from the surface. After

reducing the initial velocity, the asymmetry of the transfer efficiencies is also reduced.

In addition to the asymmetry in the transfer efficiencies, we also see that the split

clouds slow down more than we expect as they climb up the potential. We attribute this

to the anharmonicity of our longitudinal confinement. In our case, the ideal velocities to

have the best Bragg scattering efficiencies are p = ±h̄k, and we optimize the velocities

of the clouds by changing the timing of the Bragg pulse from 28 ms to 25 ms.

After those adjustments, the velocity of the two first orders are 0.54 and -0.57

cm/s, and the velocity of the two second orders are 1.13 and -1.07 cm/s.

If we keep the pulse width as a constant, e.g., 196 µs, and vary the pulse intensity,

the probability of atoms in the zeroth and first orders will vary in a sinusoidal way. The

fractional numbers in different orders vs various intensities are plotted in Figure 4.12.

The oscillation, which can be observed between the zeroth and first order state up to 3

cycles, is called the Rabi Oscillation, or “Pendellösung” Oscillation [47, 48, 49, 50, 51],

and the number in the second order remains constant as the intensity increases. We can

optimize the coupling efficiency by varying the length and the power of the reflecting

pulse. A nearly 100% coupling efficiency is achieved by a reflecting pulse of 150 µs in

duration and around 6.2 µW in power. This optimized Bragg pulse is used to reflect

the split cloud in an interferometer as discussed in Chapter 6.
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Figure 4.12: Efficiencies of various intensities for a first-order Bragg-diffraction. The
Pendellösung oscillation is visible for up to 3 Cycles.



Chapter 5

An ideal beamsplitter

The diffracting pulse introduced in the previous chapter coherently splits the

atom cloud into many wave packets. The diffraction efficiency to the mth momentum

state is given by a Bessel function of the mth order. If we plot the diffraction efficiencies

for the first three orders, i.e., 0th–2nd order, as functions of the intensity, we find that

more than two wave packets exist for any non-zero intensity. The first diffraction order

has the best efficiency of 34% at Ωeff t =1.84 to observe the interference. However, the

presence of atoms in higher or zero momentum states can reduce the visibility of the

interference, if those atoms are partially reflected and recombined at the origin.

For an ideal beamsplitter, the condensate is equally split into two wave packets

that propagate in opposite directions. A bichromatic standing wave that can reach

an ideal 50/50 splitting ratio has been used in free space experiments [7, 8]. In this

chapter, I will first discuss the application of such a bichromatic beamsplitter on our

atom chip, and then introduce a new scheme developed in this thesis, namely a double-

pulse beamsplitter. While it turns out that the bichromatic scheme is problematic in

our setup, we have been able to successfully employ the double pulse scheme in the

experiment to reach a 50/50 splitting ratio.
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5.1 A double-frequency beamsplitter

Most free-space experiments use a double-frequency Bragg pulse to split BECs

[7, 8]. The Bragg pulse can be made as a π
2 pulse so the BECs are equally split into

two wave packets, which have different momenta, and later recombined to form an

interferometer. The frequencies of the two counterpropagating beams that make the

light waves are detuned from the atomic resonance. A frequency difference is introduced

equal to 4ωrec

2π = 4νrec between the two beams. These two counterpropagating waves

are equivalent to a travelling wave with a beat frequency of 4νrec, which is equal to

the energy spacing between the |p = 0〉 and |p = 2h̄k〉 states. Both the energy and

momentum of the atom-photon system are conserved in the splitting process. As a

result, atoms equally populate the |p = 0〉 and |p = 2h̄k〉 states. This splitting is

not symmetric in terms of the momenta of the clouds, i.e., atoms only populate the

|p = 2h̄k〉 but not the |p = −2h̄k〉 state, because of the asymmetry of the bichromatic

standing wave configuration, as shown in Figure 5.1(a).

On our atom chips, the standing light wave is created by a laser beam retrore-

flected by a mirror. The frequencies of the incident and the reflected beam can not be

controlled separately. We can modulate the amplitude of the rf signal coupled into the

acousto-optic modulator, which is used as a switch for the standing light wave, with a

frequency of ∆f
2 to make a bichromatic standing light wave. This amplitude modulation

creates two sidebands in the spectrum of the standing light wave. The frequencies of

two sidebands are f ± ∆f
2 , where f = ω/2π is the frequency of the laser beam without

the modulation. If we fully modulate the amplitude of the rf signal coupled into the

acousto-optic modulator, the output frequencies will have only the two frequency com-

ponents at f ± ∆f
2 . Therefore, we create a symmetric bichromatic standing light wave

with a frequency difference of ∆f , as shown in Figure 5.1.

The idea to coherently split atoms based on a bichromatic standing light wave was
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Figure 5.1: Bichromatic standing light waves. Bichromatic standing light waves in (a)
an symmetric configuration and (b) symmetric configuration. The frequency difference
between the two components is 4νrec.
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first proposed by Grimm et al. [52]. They suggested creating a ‘blazed’ phase grating

beamsplitter rather than a sinusoidal phase grating. Analogous to an optical grating,

a blazed phase grating has a higher diffraction efficiency than one with a sinusoidal

profile. The function of the bichromatic standing wave that has a spatial phase shift

between the two frequency components can be understood by considering the equivalent

situation of two counterpropagating-travelling waves with time-dependent intensities.

Atoms see the beam from one direction and then from the opposite direction after a

time delay. The best diffraction efficiency occurs when the atoms experience a series

of counterpropagating π pulses [53]. In the first pulse, atoms absorb a photon and

receive a momentum of h̄k in one direction. The next pulse comes after t = π
∆ from

the opposite direction. Atoms are stimulated to emit another photon in the opposite

direction; therefore, atoms gain a net 2h̄k momentum after each cycle. For first-order

diffraction with a momentum of 2h̄k transferred from the photons to the atoms, the

interaction time should be t = 2π
∆ , which is equal to the duration of one cycle.

The case of a bichromatic standing wave was analyzed in detail by Tan et al., [53]

and Johnson et al. [54] who found that the maximum efficiency of splitting can only be

achieved when the spatial phase shift of the two standing waves equal π/2. However, we

cannot reach this spatial phase shift between the two bichromatic standing waves on our

atom chip. Our standing wave is created by the retroreflection from one of the prism

mirrors, and the electric field has a node at the location of the mirror. The distance (d)

from the location of the cloud to the mirror is about 2 mm. To create a π
2 spatial phase

shift at the location of the condensate, a frequency difference of ∆ = 2π c
4d = 2π×37.5

GHz is required, where c is the speed of the light. This required detuning is beyond our

tuning range.
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5.2 A double-pulse beamsplitter

To achieve an ideal beamsplitter, we develop a monochromatic double-pulse scheme,

which involves a relatively simple setup. The details of the double-pulse beamsplitter

are discussed in the following section. The splitting pulse consists of two subpulses

with the same frequency and each pulse works in the Raman-Nath regime. To evaluate

the required pulse width and the intensity, we use the coupled equations described in

Chapter 4.

If the initial velocity of the cloud is zero [55], the probability of atoms in each

momentum state can be described as

ih̄
∂gm(t)

∂t
= (m2h̄ωrec + h̄Ωeff )gm(t) +

h̄Ωeff

2
[gm+2(t) + gm−2(t)], (5.1)

where gm(t) is the probability of the atoms in the mth momentum state. If we choose

a weak intensity (
h̄Ωeff

2 ¿ 16h̄ωrec), we can ignore the probability of finding atoms in

the fourth or higher momentum states, i.e., gm ' 0 when m ≥ 4.

We only consider the coupled equations up to the first order. If we ignore the

constant phase evolution term, h̄Ωeffgm(t), for all the different momentum states, those

coupled equations can be rewritten as

i
∂g0(t)

∂t
=

Ωeff

2
[g2(t) + g−2(t)]

i
∂g2(t)

∂t
= 4ωrecg2(t) +

Ωeff

2
g0(t)

i
∂g−2(t)

∂t
= 4ωrecg−2(t) +

Ωeff

2
g0(t) (5.2)

Based on symmetry, we can define g+(t) = 1√
2
[g2(t) + g−2(t)] (symmetric term) and

g−(t) = 1√
2
[g2(t) − g−2(t)] (asymmetric term). The coupled equations become

i
∂g0(t)

∂t
=

Ωeff√
2
g+(t)

i
∂g+(t)

∂t
= 4ωrecg+(t) +

h̄Ωeff√
2
g0(t)

i
∂g−(t)

∂t
= 4ωrecg−(t). (5.3)
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Figure 5.2: The sequence of a double-pulse scheme. The splitting pulse consists of two
subpulses with the Rabi frequency Ωeff = 2

√
2ωrec, the pulse width ∆t1 = π

4
√

2ωrec
, and

the time interval between the two subpulses ∆t2 = π
4ωrec

.

If all the atoms are initially at |p = 0〉, i.e., g±(0) = 0, g−(t) is zero for any time

t, the last equation vanishes and the coupled Equations are identical with a two-level

system.

5.2.1 Bloch diagram representation

This two-level coupling system can be described with a graphical representation

called a ‘Bloch diagram’ [56]. In a Bloch diagram, we use a Rabi vector to represent

the coupling strength, i.e., the Rabi frequency Ωeff , and a state vector to describe how

the quantum states of the atoms evolve. We can get a 100% transfer efficiency from

the |p = 0〉 to |p = ±2h̄k〉 state by applying two identical pulses with Ωeff = 2
√

2ωrec,

pulse width ∆t1 = π
4
√

2ωrec
, and the time interval between the two pulses ∆t2 = π

4ωrec
,

as shown in Figure 5.2. On the Bloch sphere, the two states are on the same axis (see

Figure 5.3) with the north pole representing the first momentum state, |p = ±2h̄k〉, and

the south pole representing the zero momentum state, |p = 0〉. The energy difference

between the zero momentum and the first momentum state is 4h̄ωrec. Atoms start

initially at |p = 0〉, so the state vector points down. When the standing wave is turned
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Rabi vector State vector

Figure 5.3: Bloch diagram for a double-pulse beamsplitter. When the first pulse is
turned on, the Rabi vector points 45◦ and the state vector precesses to a perpendicular
position. After the first pulse, the state vector accumulates a π phase shift until the
second pulse is turned on. During the second pulse, the state vector precesses again
along the 45◦-oriented Rabi vector and points up when the second pulse is turned off.
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on with the Rabi frequency equal to 2
√

2ωrec, the Rabi vector points 45◦ with respect

to the initial state vector. The state vector then precesses along the Rabi vector. After

time t1 = π
4
√

2ωrec
, the state vector becomes perpendicular to the axis, and the atoms

are then in a superposition of the zero and first momentum state, i.e., atoms have equal

probabilities of being in the zero and first momentum states. After the first pulse is

turned off, the phase of the atoms evolve and the second pulse is turned on when a

π phase is accumulated, which is after t2 = π
4ωrec

. During the second pulse, the state

vector precesses again along the 45◦-oriented Rabi vector and more atoms are coupled

into the first momentum state. After the second pulse is turned off, the state vector

points up, which means that all the atoms are now in the first momentum state. The

optimum condition for the two pulses is not unique but using two identical pulses is the

simplest way to obtain a maximum splitting efficiency. The effective Rabi frequency is

this case satisfies the weak intensity condition (
√

2ωrec ¿ 16ωrec), so the populations in

the higher momentum states are negligible. This double-pulse scheme is also expected

to have a very high efficiency even for coupling the atoms to a higher momentum state

and a more detailed discussion is given in Ref. [55].

5.2.2 Experimental results

In our experiment, we obtain an optimized splitting ratio of nearly 100% within

our detection limit as shown in Figure 5.4. No visible atoms remain in the zero momen-

tum state after the double-pulse sequence.

We can also vary the delay between the two pulses to change the population ratio

of the two states. If we let a 2π instead of a π phase accumulate between the two pulses,

the final state vector points down instead of pointing up, because all the atoms go back

to the zero momentum state after the double pulses. If a phase between 0 and π has

accumulated, the final state vector will be off axis causing the atoms to be distributed

in the |p = 0〉 and |p = ±2h̄k〉 states. We expect the atom population will move from
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Figure 5.4: Absorption images of an ideal Beamsplitter. Upper (lower) image shows the
absorption image before (after) applying the double pulse. The dashed line marks atoms
in the zero momentum state. After the double pulse, atoms are equally distributed in
the plus and minus first orders.
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one momentum state to the other and comes back as we increase the delay between

the two pulses. The oscillation period is equal to T = 2π
4ωrec

∼66 µs. The experimental

results are shown in Figure 5.5. The populations in the |p = 0〉 and |p = ±2h̄k〉 states

are anticorrelated with atoms equally distributed in both the |p = 2h̄k〉 and |p = −2h̄k〉

states.

5.2.3 Velocity-dependent splitting ratios

Up to now, I have considered the case where the cloud is initially at rest. The

situation changes when the cloud has an initial velocity. The splitting ratio is affected

by the initial velocity. We consider a cloud with an initial velocity of vin = h̄kin

mRb
and

the coupled equations then become

i
∂g0(t)

∂t
=

Ωeff√
2
g+(t)

i
∂g+(t)

∂t
= 4ωrecg+(t) +

h̄Ωeff√
2
g0(t) +

4kin
k
ωrecg−(t)

i
∂g−(t)

∂t
= 4ωrecg−(t) +

4kin
k
ωrecg+(t), (5.4)

where k is the wave vector of the photons. The asymmetric term, g−(t), is no longer

decoupled from the other two equations. As we increase the initial velocity, the coupling

between symmetric and asymmetric states becomes stronger; therefore at the same time,

the splitting ratio with an initial condition of g0(0) = 1 and g±(0) = 0 becomes more

asymmetric, as shown in Figure 5.6. To achieve an ideal beamsplitter, the initial motion

of the cloud must be minimized. The initial motion can be efficiently reduced usually

by slowly varying the potential when we release the condensate from the trap to the

waveguide and a nearly ideal 50/50 beamsplitting ratio can be achieved. In the next

chapter, I will describe an experiment where an initial velocity is required to observe

the interference and the asymmetry of the beamsplitter needs to be reduced in order

to have a greater contrast ratio. This asymmetry can be suppressed by using shorter

pulses because the energy uncertainty arising from the finite pulse width is larger when
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Figure 5.5: Populations of atoms in the |p = 0〉 and | | p |= 2h̄k〉 states. The populations
in the both states are anticorrelated because of number conservation.
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vin = 0.05 vrec
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vin = 0

Figure 5.6: Asymmetric splitting ratios due to non-zero initial velocities. The asymme-
try increases as we increase the initial velocities.
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the pulse is shorter. Thus the splitting ratio is less sensitive to energy differences

between the two momentum states caused by the initial motion. If the cloud has an

initial velocity of about 0.2 vrec, when we change the pulse width from 50 µs to 10 µs,

the beamsplitting ratio changes from 10\90 to 45\55 after optimizing the intensity to

minimize the number in the zero momentum state. In general, a shorter splitting pulse

is preferred in the experiment so the splitting ratio can be less sensitive to the initial

velocity.



Chapter 6

An atom interferometer on a chip

In the previous chapter, I have described the implementation of a new double

pulse beamsplitter. Here I will show how to extend this scheme to a fully functioning

atom interferometer.

An atom interferometer includes the process of splitting, reflecting, and recombin-

ing the wave packets. We use the double-pulse scheme to create high-efficiency, coherent

splitting, which will be referred to as “a splitting pulse” in the following discussion. A

Bragg pulse serves as a mirror to reflect atoms. After the atoms are recombined, the

two wave packets interfere, and absorption images are taken to observe the interference.

6.1 Interference patterns

After the splitting pulse, atom clouds propagate in opposite directions, each with

a momentum of ±2h̄k. Upon their return, they interfere once they are spatially over-

lapped. However, the two travelling wave packets have a relative velocity of 4h̄k
mRb

. Thus

the interference of the two clouds has a spatial period of λ/4, where λ is the wavelength

of the standing light wave (typically around 780 nm in our experiment). The resulting

200-nm spatial period is much smaller than our imaging resolution so interference is not

visible in our images. Instead of directly imaging the interfered density profile of the

cloud, we apply a pulse to recombine the clouds and read out the interference pattern.

The recombining pulse converts the spatial interference patten into a momentum distri-
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bution. As I will describe below, the beamsplitting pulse can be used as a recombining

pulse to achieve this goal.

The phase accumulated along the path can be expressed in terms of the classical

action S along the path:

φ =
1

h̄
S. (6.1)

The classical action is defined in terms of the Lagrangian, which is

L[x, ẋ] =
1

2
mẋ2 − V (x) (6.2)

for a particle with mass m in a potential V (x). The phase accumulated along each path

then becomes [57, 58, 59]

φ =
1

h̄

∫

L[x(t), ẋ(t)]dt

=
1

h̄

∫

[mv
dx

dt
− (V (x) +

mv2

2
)]dt

=
1

h̄

∫

(pdx−Hdt). (6.3)

where H is the Hamiltonian for the classical motion of the particles. If the potential is

symmetric and the condensate starts from rest, the clouds move apart and come back

to their origin with the same speed. The two split clouds accumulate the same phase

before they overlap again; therefore, when the recombining pulse puts them back to rest,

they constructively interfere in the zero momentum state. We would see the clouds back

at rest as its original position (see Figure 6.1). However, if a nonuniform perturbation

in the splitting direction is added the clouds, e.g., a potential gradient is applied, the

clouds no longer see the same potential. They accumulate different phase when the

gradient is turned on. For the special case where the differential phase shift is equal to

π, the two clouds destructively interfere in the zero momentum state after recombining.

The density of atoms in the zero momentum state is nearly zero because of destructive

interference and the atoms appear in the |p = ±2h̄k〉. For any differential phase shift

accumulated between 0 and π, population will be distributed in both momentum states.
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Figure 6.1: Interference patterns. The fractional numbers in the |p = 0〉 and |p = ±2h̄k
state are anticorrelated. The probability in each state depends on the differential phase
shift.
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Because of number conservation, the population in the each momentum state appears

as an anticorrelation. The probability of atoms in each momentum state is given by

Pp=0(φ) =
1 + cos(φ)

2
(6.4)

P|p|=2h̄k(φ) =
1 − cos(φ)

2
, (6.5)

where φ is the phase difference accumulated between the split clouds.

6.2 A double-pulse interferometer

In order to demonstrate the read-out scheme, we first employ a simplified inter-

ferometer that consists of only two splitting pulses and no reflecting pulse. After the

first pulse splits the condensate into two, the second pulse is turned on after a delay to

recombine them. The delay between the two pulses has to be short enough for the two

split clouds to remain spatially overlapped so they can interfere. Because the clouds

are spatially overlapped, we can not apply a spatially dependent potential to introduce

a phase shift. But we can introduce an initial velocity to create a difference in the

kinetic energies. If the condensate has a zero initial velocity, the two split clouds have

the same kinetic energy. They experience the same potential energy if the potential

is symmetric. No phase difference is accumulated between the two clouds in this case.

If the initial velocity of the condensate is not zero, after the first splitting pulse, one

of the clouds has a higher speed than the other because the momentum is conserved

during the splitting and the two clouds gains a 2h̄k momentum but in opposite di-

rections. Because the clouds have different momenta and kinetic energies, their phases

vary according to Equation 6.3. The phase difference between the clouds propagating in

opposite directions is proportional to the time delay. We observe this differential phase

shift by increasing the delay between the splitting and recombining pulses. We intro-

duce an initial velocity to the condensate by suddenly shifting the bottom of the trap

right before releasing the condensate to the waveguide. This shift of the trap bottom
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is done by applying a magnetic field gradient. Due to an asymmetry in the trapping

field, this leads to an initial velocity of the cloud as described in [20]. The experimental

results are shown in Figure 6.2. The initial velocity is 0.1vrec =0.59 mm/sec, where

vrec = h̄k
mRb

is the recoil velocity. The expected period of the sinusoidal oscillation is 675

µs as we increase the delay between the two pulses, and the measured period is around

660 µs. We also change the period by increasing the initial velocity by a factor of two.

The measured period becomes 280 µs compared to a expectation value of 337 µs (see

Figure 6.3). The measured period is obtained by fitting the experimental data with a

sinusoidal function.

We measure the initial velocity by observing the center displacement of the con-

densate as we increase the propagation time. Because the center displacement of the

condensate is small compared to the cloud size, this measurement gives us a 10% error

in our initial velocity measurement, which contributes to a 10% error in the estimation

of the interference period.

The contrast ratio of the interference signals decays as we increase the delay. The

reduction of the contrast ratio is mainly due to the spatial separation of the two clouds.

After the splitting pulse, the clouds move apart and the spatial overlap of the two split

clouds starts to decrease. As the delay increases, the overlap decreases. Once the clouds

are spatially separated, they do not interfere and the contrast ratio decays to zero. The

contrast ratio can be estimated by calculating the atom number in the overlap region.

Assuming that the clouds have Gaussian density profiles, the contrast ratio, which is

proportional the fractional number in the overlap area, is an error function of the center

separation (x) between the clouds and is given by

η(x) = 1 − erf(
x

2σx
) = 1 − erf(

4vrect

2σx
), (6.6)

where σx is the rms size of the cloud in the splitting direction. The typical rms size of

the cloud is around 25 µm so we apply the modification factor, η(x), to the sinusoidal
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Figure 6.2: Interference signals of various delay times between the splitting and recom-
bining pulses. The interference signals are plotted as the fractional number in the zero
and the first momentum state. The initial velocity of the condensate is 0.1vrec.

Figure 6.3: Interference signals with a different initial velocity of the condensate. The
initial velocity of the condensate is about 0.2vrec.
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interference curve. We compare the theoretical curve to the experimental data of the

fraction of atoms in the zero momentum state in Figure 6.2, and obtain good agreement,

as shown in Figure 6.4. The interference signal has been observed up to around 1 ms

with the double-pulse interferometer, at which point the spatial separation has lead to a

complete loss of contrast. This interferometer also proves that splitting and recombining

are coherent processes, and the coherence of the condensate is preserved during the

pulses. To observe interference for a longer propagation time, we need to include a

reflecting pulse so that we can reflect the split clouds and make them come back to

their initial position.

6.3 A Michelson interferometer

We develop an on-chip Michelson interferometer that employs a splitting pulse,

a reflecting pulse, and a recombining pulse. In analogy to the optical Michelson inter-

ferometer, the splitting and the recombining occur at the same spatial location. Figure

6.5 shows the sequence of the Michelson interferometer. The clouds move apart after

the splitting pulse, and the reflecting pulse reverses the momentum of the clouds. Upon

their return to the original position, the recombining pulse is applied to observe the

interference. We find the optimum splitting occurs when the two subpulses are both 20

µs in duration with a power of around 5.5 µW and the delay between the turning on

time of the two pulses is 63 µs. The reflecting pulse is chosen to be 150 µs in duration

with a power of 6.2 µW.

A differential phase shift has been introduced by two different ways: a magnetic

gradient or an initial velocity of the condensate in a potential well. Experimental results

are presented in the following sections.
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Figure 6.4: A comparison of the theoretical prediction and experimental measurement
of interference signals. The solid circles are the fractional numbers of the atoms in
the zero momentum state, as shown in Figure 6.2. The dashed line is the expected
interference signal with the decay of the contrast ratio due to the spatial separation of
the clouds.
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Figure 6.5: A Michelson interferometer. (a) The splitter pulse is turned on at t=0. (b)
The condensate is split into two wave packets that propagate in the opposite direction
at 0<t<T/2. (c) The reflection pulse is turned on at t=T/2. (d) The wave packets
propagate back toward to the center of the waveguide at T/2<t<T. (e) The recombining
pulse is turned on at t=T when the clouds are overlapped.
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6.3.1 A phase shift introduced by a magnetic gradient

In the first experiment, we introduce a differential phase shift by a magnetic gra-

dient. This magnetic gradient is provided by a current-carrying wire (called a “gradient

wire”) that is perpendicular to the waveguide. The gradient wire sits 3 mm below the

chip surface and is 2 mm offset horizontally from the initial location of the condensate.

The total distance from the gradient wire to the condensate is 3.8 mm. The gradi-

ent wire produces a field B(r) = µ0
I

2πr , but since the cloud separation used in this

experiment is small compared to the distance from the wire, the field can locally be

approximated as a linear gradient B ′. After the condensate is split by the first pulse,

we apply a magnetic gradient pulse for a very short time. The differential phase shift

is given by

φ =
1

h̄
µB′

∫ t2

t1
x(t)dt. (6.7)

The differential phase is proportional to the separation of the clouds x(t), magnetic

gradient B′, and magnetic pulse width. For a larger separation, we get a better sen-

sitivity of the differential phase shift. The interference of the condensates after 1 ms

propagation time is shown in Figure 6.6. The maximum separation of the split clouds

for a 1 ms total-propagation time in the waveguide is 12 µm which is the distance right

before they are reflected. The splitting, reflecting, and recombining pulse are turned on

at t =0, 0.5, and 1.0 ms, respectively. The magnetic pulse is turned on 250µs before

the reflecting pulse for 500 µs. Because the split clouds are moving when the magnetic

pulse is turned on, the separation between the clouds is changing during the magnetic

pulse. This average separation of the cloud during the magnetic pulse is 8.82 µm. The

period of the interference is expected to be 3.5 G/cm, which is close to the measured

period of 3.8 G/cm within 10%. When we change the timing of the magnetic pulse,

the average separation of the clouds during the magnetic pulse changes so that the pe-

riod changes. Figure 6.7 shows the interference fringes after changing the timing of the
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Figure 6.6: Interference after 1 ms propagation.The average separation of the clouds is
8.82 µm when the magnetic pulse is turned on. The expected period is 3.5 G/cm and
the measured period is 3.8 G/cm.
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magnetic pulse. The average separation of the clouds is estimated to be 6.94 µm and

the expected period is 4.5 G/cm, which is also close to the measured period, 5.7 G/cm,

with an error of 20%.

The measured periods are longer than the estimates because the actual separation

is less than what we expect. The underestimation of the cloud separation is due to an

unexpected residual harmonic trap. Ideally, the waveguide potential is homogenous in

the guiding direction, but in practice, we find that a residual 5 Hz trap exits even after

we turn down all the currents that provide the longitudinal confinement. This 5 Hz trap

is likely caused by the imperfection of the guiding wire that creates a corrugated mag-

netic potential. The residual trap slows down the split clouds such that the separation

between the clouds decreases. After accounting for the 5Hz trap, the expected periods

for the data in Figure 6.6 and Figure 6.7 become 3.7 G/cm and 5.3 G/cm, respectively,

which agree well with the experimental results within less than 10% in both cases.

In addition to the residual trap, we observe an antisymmetric interference pattern

in some of our experimental data. Figure 6.8 shows one example. In contrast to the

expected symmetric density distribution in |p = ±2h̄k〉 states, we see that a ‘second’

interference component appears in the |p = ±2h̄k〉 states with a frequency of half of

the normal interference frequency. This second interference component is due to an

initial velocity of the cloud. When the cloud has a nonzero initial velocity, the splitting

ratio is no longer 50/50 as described in Chapter 5, and a small number of atoms are

also left in the zero momentum state after the splitting pulse. These leftover atoms

are coupled into the |p = ±2h̄k〉 states after the recombining pulse. They interfere

with the atoms remaining in the |p = ±2h̄k〉 after the three-pulse sequence causing the

second interference component to occur. The leftover atoms stay at the origin when

the magnetic pulse is turned on and the separation from the leftover atoms to the split

clouds is only half the distance between the them. Therefore, the differential phase shift

of this second interference effect is only half the normal phase difference between the
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Figure 6.7: Interference after 1 ms propagation with the magnetic pulse turned on at a
different time. The average separation of the clouds during the magnetic pulse is 6.94
µm when the magnetic pulse is turned on. The expected period is 4.1 G/cm.
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Figure 6.8: Antisymmetric interference patterns of the |p = 2h̄k〉 and |p = −2h̄k〉 states.
The number populations in the |p = ±2h̄k〉 states have an antisymmetric distribution
caused by an initial velocity of the condensate.
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two split clouds, and the period of the second interference is twice the normal period.

For an initial velocity of 0.2vrec, we numerically solve the coupling equations and

find that about 10% of the atoms are left in the zero momentum state. Because the

residual trap is slightly offset from the magnetic trap that is used to make a condensate,

we create a slosh motion if the longitudinal confinement is turned down too rapidly

when releasing that atoms from the trap to the waveguide. The theoretical interference

curves after the whole sequence are plotted in the Figure 6.9, and the curves agree well

with the experimental data.

6.3.2 Collisional heating

Besides the second interference effect, we observe significant collisional heating if

the total number of atoms is greater than 2×104. The absorption image in Figure 6.10

shows thermal atoms caused by collision. They are seen in between the peaks of the

density distribution after the recombining pulse. The number of collisions per atom can

be estimated by a simple formula:

Ncollision ≈ N × σcross
πσ2

r

(6.8)

for a cloud with total number N, radial size σr, and s-wave scattering cross section

σcross = 761nm2. If we have 20000 atoms with a radial cloud size of 1 µm, the number

of collisions per atom is around 0.54. In this case, half of the condensate atoms collide

when they pass through each other. The collisions happen when the condensate splits

and again when the split clouds recombine. The number of collision decreases when we

have fewer atoms and a weaker radial confinement, which gives us a larger radial size.

To reduce the collisional heating, we typically use a condensate with a number less than

104 and a weak radial trap of 102 Hz.
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Figure 6.9: Theoretical interference curves of a condensate with a nonzero initial veloc-
ity. The solid circles are the experimental data points, as shown in Figure 6.8, and the
solid lines are the theoretical curves for an initial velocity of 0.2vrec.

Figure 6.10: Collisional heating. Thermal atoms caused by the collisions are seen in
between the peaks of the condensates after the recombining pulse.
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6.3.3 Degradation of the contrast ratio

For most of our experimental data, the interference washes out for a propagation

time longer than 4 ms. Figure 6.11 shows a plot of the contrast degradation as we

increase the propagation time.

The coherence time increases by roughly a factor of two when we do a ‘round-trip’

experiment. Instead of recombining the clouds as they return, we let the clouds pass

through each other and apply a second reflecting pulse. The clouds then turn around

again and are finally recombined upon their second return to the origin. The interference

signals are still observable at 4 ms propagation time with a contrast of around 40%.

This suggests that the decay of the contrast ratio is spatially dependent rather than

time dependent, possibly due to velocity dispersion caused by the residual trap or the

atom-atom interaction.

When the cloud climbs up the trap, different parts of the cloud see different slopes

causing different decelerations. A velocity gradient arises across the cloud and so does a

phase gradient. When the two clouds interfere upon their return, if the phase gradient

is large enough, i.e., greater than π, it creates a rapidly varying density profile because

some parts of the cloud interfere destructively while others interfere constructively. After

we integrate over the whole cloud to evaluate the number, the interference signals due

to the introduced phase shift are averaged out.

On the other hand, an atom-atom interaction also create a phase gradient. We

use a condensate with about 10000 atoms. For a 100 Hz radial confinement and a 5 Hz

residual longitudinal confinement, the chemical potential is 215 Hz. After the splitting

pulse, the atoms experience a higher interaction energy at the place where the the clouds

still overlap due to the locally higher density so that their phase evolves faster. A phase

gradient is then built up across the cloud. When the two clouds recombine, the atoms

that experienced higher interaction energy during the splitting process overlap first,
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Figure 6.11: Degradation of the contrast ratio. The contrast ratio decays rapidly as we
increase the propagation time.
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causing more phase gradient to be accumulated. The upper limit of the phase gradient

is estimated to be 2π×215 Hz× 4 ms=1.72π for a 4 ms propagation time, which is

greater than the required π phase gradient.

Some other technical noises such as mechanical vibration and current noise can

also cause decoherence. If the standing wave grating shifts half of its period, i.e., 200

nm between the splitting and the recombining pulses, the interference pattern would

change from a constructive to a destructive interference. However, we have measured

the integrated vibration amplitude to be less than 20 µm by using an accelerometer

during the time of our experiment. In addition, our condensate has a lifetime longer

than 10 s so the heating caused by the current noise is also negligible on the time scale

of the interferometer (∼10 ms).

In summary, the degradation of the contrast could be mainly due to the atom-

atom interaction and the residual confinement. A more quantitative study is still re-

quired to gain a better understanding and improvement of the contrast ratio for a longer

propagation time.

6.3.4 A phase shift introduced by an initial velocity

In the experiment described so far, a magnetic gradient was used to introduce a

phase shift and test the interferometer. As an alternative, we can also use the residual

5 Hz trap to create a phase shift. For this, an initial velocity of the condensate is

created in the trap with a longitudinal frequency of 5 Hz. The two split clouds have

different velocities after applying the splitting pulse. The clouds climb up the potential

well to different heights and experience different potentials during the total propagation

time, which is equivalent to an effective gradient. As a result, a differential phase shift

accumulates as we increase the total propagation time. The atoms are given an initial

velocity of 0.445 mm/sec and the differential phase shift is observed by changing the

total propagation time in the waveguide. The result of the interference is shown in
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Figure 6.12. The best contrast ratio of the interference at 10 ms, with maximum cloud

separation of about 120 µm, is 20%.

6.4 Prospect for the future work

Our interferometer technique can be used to develop an atom gyroscope. Because

the cloud is split in the longitudinal direction, if we can transfer the atoms from a linear

waveguide to a ring-shaped waveguide after the condensate is made, the atoms will

propagate in the ring waveguide in both clockwise and counterclockwise directions after

the splitting pulse. The split clouds will recombine and interfere at their origin after a

round trip. The interferometer is thus a gyroscope, which is sensitive to rotation and

time-dependent acceleration. With the current linear waveguide design, we can also

move the waveguide in time, e.g., up and down, after the condensate splits to make the

atoms trajectory form a closed loop to create a atom gyroscope. For 10 ms coherence

time, the clouds have a maximum separation of 120 µm so the radius of the gyroscope is

60 µm and the enclosed area is π(60µm)2. The scaling factor is about 31 rad/(rad/sec)

and for a π shift, the sensitivity of the rotation is 0.1 rad/sec. Because the sensitivity of

the gyroscope is proportional to the enclosed area, which is proportional to the square

of the coherence time, the sensitivity can be increase significantly by increasing the

coherence time.

As I mentioned before, the spatially dependent decoherence could be due to the

velocity dispersion caused by the residual trapping potential or the atom-atom inter-

action. To get a longer coherence time, we first need to reduce the inhomogeneity of

the potential caused by the imperfection of the wires. Vuletic et al. at MIT has found

that the variation of the wires width can be reduced by using a different fabrication

process. The variation of the wire with a width of 3.5 µm can be reduced to less than

100 nm by using the “lift-off” technique and this technique has a tenfold improvement

compared to the electroplating process which is currently used in our fabrication. Other
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Figure 6.12: Interference after different propagation times in the residual trap. The
atoms are given an initial velocity of 0.445 mm/sec to introduce a differential phase shift
that develops during the propagation time. The maximum separation of the clouds is
120 µm, at which the clouds are spatially separated.
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efforts to improve the quality of the microfabricated wires include using multiple-wire or

multilayer designs and making smaller wires to reduce the variation of the wire width in

combination with improving the thermal conductivity of the chip to support sufficient

current. Second, we need to reduce the atom-atom interaction. One simple way is to

reduce the number of atoms in the condensate, however, the signal to noise ratio of the

interferometer is also reduced at the same time. Another way is to create a so called

“Feshbach resonance”. Magnetically induced Feshbach resonances have been used to

alter the scattering properties of the condensates [60, 61, 62, 63, 64]. , where the atom-

atom interaction is tuned by a external magnetic field. The Feshbach resonance can also

be induced by using optical or rf fields [65, 66, 67]. It has also been proposed that in a

waveguide structure, where the atoms can be considered as an one-dimensional system,

the atom-atom interaction can be tuned with a strong radial confinement [68]. The

presence of the strong radial confinement and the low linear density of the atoms create

a “Tonks gas”— a one-dimensional gas of impenetrable bosons, and thus changes the

scattering property. For Rb atoms, the one-dimensional scattering length would change

sign at a radial confinement of 3 MHz in the Tonks gas regime.

In conclusion, this work reports the first demonstration of an on-chip atom Michel-

son interferometer employing a Bose-Einstein condensate (BEC). An intra-waveguide

optical standing wave serves to split, reflect, and recombine the BEC while the BEC is

confined and propagates in a magnetic waveguide. The combined optical beamsplitter

and magnetic waveguide employed here have allowed us to study the coherence proper-

ties of matter waves confined in a microstructure. The interference is observed up to a

round-trip propagation time of 10 ms with the maximum separation of the split wave

packets about 120 µm. Our technique can be used to make an atom gyroscope with

an estimated sensitivity better than 0.1 rad/sec and this sensitivity can be potentially

increased by improvement of the coherence time.
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