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Thesis directed by Prof. Chris H. Greene

In this dissertation, we analyze both many- and few-body systems under external

confinement with tunable interactions. First, we develop a density-renormalization ap-

proach for describing two-component fermionic systems with short-range interactions.

This renormalized zero-range interaction eliminates the instabilities produced by a bare

Fermi pseudopotential and provides a simple description of the interactions from the

weakly interacting BCS region up to unitarity.

In the second part of the thesis, we focus on few-body systems in the BCS-BEC

crossover. To obtain the solutions, we implement two different numerical techniques:

a correlated-Gaussian-basis-set expansion and a fixed-node diffusion Monte Carlo tech-

nique. We also develop an innovative numerical technique for obtaining solutions to the

four-body problem in the hyperspherical representation.

Our solutions provide an accurate description of few-body trapped systems. The

analysis of two-, three-, and four-body systems, for instance, provides a few-body per-

spective on the BCS-BEC crossover problem. The analysis of the spectrum of such

systems allows us to visualize important pathways for molecule formation. We then use

the four-body solutions to extract key properties of the system such as the dimer-dimer

scattering length and the effective range.

We also explore the qualitative change of behavior in the BCS-BEC crossover

by analyzing the spectrum and structural properties. We investigate the dynamics of

these few-body systems and analyze them using a Landau-Zener model. At unitarity, we

study the universal properties of few-body systems and verify the absence of many-body

bound states up to N=6.
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Finally, we present preliminary results on the four-boson system. We analyze

the structure of the spectrum and find a family of four-body states attached to the

three-body thresholds. These four-body states follow the universal scaling properties

of the Efimov states. We explore the collisional implications of these four-body states

and find relations between the atom-dimer and dimer-dimer collisional properties. In

particular, we predict that these four-body states will produce resonances in the dimer-

dimer scattering length.
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7.6 Circles show the excitation gap ∆(N) determined from our FN-DMC

energies. A solid line shows ∆LDA(N). For comparison, triangles show

∆(N) determined from the DFT energies [34]. Figure taken from Ref. [19].180

7.7 Hyperradial potential curves V (R) for equal-mass two-component Fermi

systems with (a) vanishing interactions and (b) infinitely strong inter-

actions as a function of R. The hyperradial potential curves naturally

appear ordered as N increases: Solid lines correspond, from bottom to

top, to N = 4−20 (N even), while dashed lines correspond, from bottom

to top, to N = 3− 19 (N odd). Figure taken from Ref. [185]. . . . . . . 182

7.8 Normalized coefficients C̄N , Eq. (7.25) with ENI replaced by ENI,ETF , as

a function of N ; values for even N are shown by circles and values for odd

N by crosses. The dash-dotted line shows the value ξ = 0.42 obtained

by FN-DMC calculations for the homogeneous system [7, 37], while a

dashed curve shows the value ξ = 0.508 obtained with a renormalization

procedure [183]. The inset shows the same quantities as a function of

1/N instead of N . Figure taken from Ref. [185]. . . . . . . . . . . . . . 182

8.1 Schematic hyperradial potential curve for three identical bosons having

as < 0. The dashed red line corresponds to a quasi-bound Efimov state

above threshold. As the attraction increases, the state becomes bound.

The blue line corresponds to a bound Efimov state. . . . . . . . . . . . . 187

8.2 Spectrum of the four-boson system in a trap. The use of the function

F (x) = sgn(x) ln(1 + |x|) allows to visualize effects at different orders of

magnitude in a single graph. Blue lines correspond to four-body states.

Black lines correspond to trimer+atom thresholds, and red lines corre-

spond to dimer+atom+atom (upper) and dimer+dimer (lower) thresholds.190



xxv

8.3 Lowest pair-correlation functions of the four-boson system at unitarity.

The black solid line corresponds to the lowest four-body state; the dashed

red curve is the second four-body state, and the dash-dotted curve is the

lowest 3+1 state. The lowest 3+1 state has a double-peak structure with

a second peak around aho = 104r0 that does not appear in the figure. . . 191

8.4 Rescaled pair-correlation functions of the 3rd and 4th four-body states.

The pair correlation for |Ψ3〉 has not been rescaled, but the |Ψ4〉 pair-

correlation function is rescaled by eπ/s0 ≈ 22.7. . . . . . . . . . . . . . . 192

8.5 Potential curves in the scattering-length region near a1f ∼ −6r0, where

the first Efimov state appears. (a) Potential curves at as > a1f [as ≈

−5.31] . The three-body bound state has not appear yet. (b) Potential

curves at as & a1f [as ≈ −6.16]. For these scattering length values a

quasi-bound state appears. (c) Potential curves at as < a1f [as ≈ −7.29].

For these scattering length values the attraction increases and the three-

body state becomes bound. . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.6 Lowest potential curves when three-body states are at threshold. Black

curve correspond to the lowest potential curve at the scattering length

value for which the first Efimov state is at threshold. The red curve

is the second potential curve at the scattering length value for which

the second potential Efimov state is at threshold. Green dashed lines

present the linear behavior of the curves (note that the potential curves

are multiplied by 2µR2 and that the x-axis is in logarithmic scale). The

linear behavior of the curves in logarithmic scale is evidence of Eq. 8.2. 196



xxvi

8.7 Lowest three rescaled potential curves Uν are shown as functions of the

four-body hyperradius. The black curve corresponds to the lowest curve.

The blue curve is the second potential curve and the red curve is the

third potential curve. The agreement between the rescaled second and

third potential curves is numerical evidence for the universal behavior of

the four-boson system, as is discussed. . . . . . . . . . . . . . . . . . . . 196

8.8 Potential curves at positive scattering-length values. (a) Potential curves

at as ∼ 37r0. (b) Potential curves at as ∼ 21r0. Solid blue line corre-

sponds to the atom-trimer threshold. Dashed-red line corresponds to the

dimer-dimer threshold, and dashed-green line corresponds to the dimer–

two-atom threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.9 Real and imaginary parts of the dimer-trimer scattering length. Left and

right panels present the real and imaginary parts of the dimer-trimer

scattering length: ar
dd and ai

dd, respectively. The vertical dashed lines

correspond to atrim−dd and atet−dd. Figure courtesy of Jose P. D’Incao. . 203

8.10 Real and imaginary parts of the atom-trimer scattering length. Left and

right panels present the real and imaginary parts of the atom-trimer

scattering length: ar
at and ai

at, respectively. The vertical dashed lines

correspond to atrim−dd and atet−dd. Figure courtesy of Jose P. D’Incao. . 204

C.1 Mass-scaled Jacobi vector for three and four particles. . . . . . . . . . . 228



Chapter 1

Introduction

Superconductivity is a striking phenomenon discovered in 1911 by Heike Kamer-

lingh Onnes [132]. Superconducting materials at very low temperatures are charac-

terized by zero electrical resistance and the expulsion of the magnetic field from their

interior. Since the discovery of superconductivity, important efforts have been devoted

to the theoretical understanding the of mechanism that leads to it. It took more than

40 years until physicists arrived at a solid understanding of this mechanism. During the

1950s, condensed matter physicists developed the phenomenological Ginzburg-Landau

theory [112] and the microscopic Bardeen-Cooper-Schrieffer (BCS) theory [10]. These

theories form the basis of our current theoretical understanding of superconductivity

and superfluidity. Superfluids are neutral gases with analogous properties to supercon-

ductors, i.e., superfluids are irrotational gases with zero viscosity.

The BCS theory in particular was a great triumph since it was able to explain

the microscopic quantum mechanical mechanism that leads to superconductivity. BCS

theory views superconductivity as a macroscopic quantum mechanical effect in which

the interacting particles feel an effective attraction that leads them to form pairs. These

pairs, usually called Cooper pairs [47], would not bind in free space. They are bound

by the influence of the medium, and their binding energy depends on the density of the

system. This binding energy produces a gap in the single-particle excitation spectrum

that is the key for the understanding of many superconducting properties.
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An interesting question arises if we consider what would happen if the attraction

in the superconducting or superfluid system is changed. If the attraction increases

the interacting particles could be bound, possibly even in free space, and the system

would evolve into a system of diatomic molecules. This scenario was first considered by

Eagles [59] and Leggett [113] who realized that the BCS theory could be extended to

any interaction strength; furthermore, it would predict a smooth transition between the

system of particles and the system of molecules. These seminal studies were followed

by Nozieres and Schmitt-Rink [129] and Sá de Melo, Randeria, and Engelbrecht [155]

who also considered temperature effects on these systems.

This transition from an atomic to a molecular system entails a qualitative change

in the system. The constituent particles of the superconducting system described by

BCS theory are fermions. However, when two fermions are bound, they form a bosonic

molecule. An ultracold system of bosons is described by Bose-Einstein condensation

(BEC). Therefore, the transition between interacting particles described by BCS theory

and the system of molecular bosons described by the BEC theory is usually called the

BCS-BEC crossover. Fermions and bosons are characterized by completely different sta-

tistical behaviors. Therefore, the BCS-BEC crossover describes the transition between

two different statistical regimes. For that reason, the BCS-BEC crossover problem is

theoretically both very appealing and very challenging.

For starters, there are no condensed-matter or nuclear systems in nature that

allow the experimental study of the BCS-BEC crossover. An ideal system that would

allow the experimental realization of the BCS-BEC crossover should be cold enough to

reach quantum degeneracy and have interactions that can be externally controlled.

The experimental achievements of BEC [5, 30, 50] and Fermi degeneracy [53, 177]

in ultracold gases opened the door to the analysis of superfluidity in a controllable

manner. In particular, Fermi gases with weak attractive interactions should be described

by BCS theory and exhibit superfluidity. Since fermions of the same component repel
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each other because of Pauli repulsion, it is necessary to create and cool a two-component

Fermi gas to achieve attractive interactions, as it was done in Ref. [53].

In these first experiments, the interactions between fermions were not strong

enough to attain superfluidity. It was necessary to find a way to change the inter-

actions of the system. It was soon realized that interactions in cold atoms could be

experimentally tuned using Fano-Feshbach resonances [69, 70, 74]. In the vicinity of a

Fano-Feshbach resonance, the scattering length, i.e., the parameter that characterizes

the interaction strength, depends strongly on external magnetic field. Therefore, by

making small changes in the external magnetic field, we can widely tune the interac-

tion and even change its sign. Fano-Feshbach resonances were first utilized to tune the

interactions in a bosonic gas [96, 48], but strongly interacting regimes were also soon

obtained in fermionic systems using a Fano-Feshbach resonance [130, 24].

After all this experimental progress, the condensation of atom pairs in a two-

component Fermi gas was observed. The first observations were in the BEC region [82,

99, 194, 25], where the pairs formed real molecules. Next, pairs were also condensed

in the BCS region [144, 195]. After these encouraging results, experimentalist tried to

verify the superfluid nature of the system. Measurement of collective excitations [12,

104] and the pairing gap [44] were consistent with the superfluidity ansatz. However,

those predictions can also be attributed to a normal state. The experimental verification

of superfluidity in a Fermi gas in the BCS-BEC crossover directly probed the irrotational

nature of the fluid by rotating the system and observing quantized vortices [193].

In another remarkable experimental accomplishment, cold atoms were loaded in

optical lattices [81], i.e., strong periodic potentials. These optical lattices provide new

ways to control the system such as changing the distance between the minima of the

periodic potential (usually called the lattice sites), or changing the dimensionality of

the system, or controlling the number of atoms in each lattice site. Most experiments

focussed on the experimental realization of the Hubbard Hamiltonian [81]. However,
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optical lattices were also used to measure properties of a two-body trapped system [168].

The theoretical exploration of the BCS-BEC crossover has also significantly in-

creased in the last few years. In contrast with dilute bosonic systems, for which the

Gross-Pitaevskii equation provides a highly successful many-body theory, fermionic sys-

tems in the BCS-BEC crossover lack a comprehensive many-body theory. Therefore, it

has been necessary to resort to numerical or approximate methods. For instance, an

extension of the BCS theory proposed by Eagles [59] and Leggett [113] is only qualita-

tively correct and has been consistently used as a starting point for most sophisticated

analytical models. One of the most reliable descriptions of this system was obtained

through Monte-Carlo techniques [36, 7]. The Monte-Carlo results are generally used

to test theories or models as well as experimental results. In addition, there is an im-

pressive amount of theoretical work on the BCS-BEC crossover problem that cannot

be covered in this introduction; however this work will be partially explored in this

dissertation.

Our approach to the BCS-BEC crossover problem is unique, since it tries to avoid

conventional many-body approaches and focusses on the few-body physics. In contrast

with many-body theories, which usually focus only on the ground state and have to rely

on approximations, few-body calculations can describe the complete spectrum without

resorting to approximations. From a few-body perspective, the solution of the four-

fermion problem represents the next big challenge -a challenge we partially meet in this

dissertation. Although the three-body problem might be considered as largely “solved”

by existing numerical techniques, only specific and limited solutions to the four-body

system exist. Furthermore, the four-body problem is the smallest system that can

describe most of the physics of the BCS-BEC crossover, from a gas of attractive fermions

to a system of two interacting bound boson pairs. Here, we present such a solution.

However, we do not limit ourselves to the four-body system. We extend our

calculations to smaller and larger systems, in the process providing a comprehensive
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analysis of few-body trapped systems. Our results are organized this thesis as follows:

Chapter 2 presents the theoretical elements that are particularly relevant to this

dissertation. The basic elements of ultracold scattering theory are introduced. The

concept of a zero-range pseudopotential is discussed and applied to the description of

two particles in a trap. A brief description of BCS theory is presented. Finally, the

hyperspherical representation is presented.

Chapter 3 develops three different numerical techniques used throughout this dis-

sertation. Quantum Monte Carlo techniques are described at the beginning of the chap-

ter. Special attention is devoted to the qualitative understanding of the method and the

proper selection of trial wave functions that describe fermionic systems in the BCS-BEC

crossover. Then, the correlated Gaussian (CG) method is discussed. The general ideas

and implementation of the CG method are presented here and many of the details are

included in a set of Appendices. Finally, the implementation of the correlated-Gaussian

hyperspherical (CGHS) method is presented. This method combines the ideas of the

standard CG method with the hyperspherical method. This method was developed near

the end of my thesis research and the results have not yet been published.

Chapter 4 presents our initial attempts to describe two-component Fermi gases in

the BCS region. Analysis of the perturbative regime in an open-shell system is described.

Then, a density renormalization technique is presented. Finally, different mean-field

methods – namely Thomas-Fermi, variational-trial wavefunction, and Hartree-Fock with

bare and renormalized interactions – are used to analyze the behavior of trapped Fermi

gases. The work presented in this chapter has been published in Refs. [148, 149, 183].

Chapter 5 analyzes the topology of the spectrum and dynamics of few-body

trapped systems (N ≤ 4). The spectrum of these few-body systems is analyzed through-

out the BCS-BEC crossover region. Then, the dynamics of these systems are probed by

tuning the scattering length throughout the BCS-BEC crossover region. The numerical

results are analyzed with the Landau-Zener theory and compared with experimental
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results. The results for the four-body system presented here have been published in

Ref. [182], and the rest of the results remain unpublished.

Chapter 6 analyzes more quantitatively the spectrum of few-body trapped sys-

tems. The CG results are compared with Quantum Monte Carlo predictions. From

these calculations, the dimer-dimer scattering length and effective range are obtained.

Finally, structural properties in the BCS-BEC crossover are analyzed. The studies

presented here have been published in Refs. [184, 185].

Chapter 7 focusses on the properties of trapped fermionic systems at unitarity.

The theoretical predictions of the properties at unitarity are reviewed. These properties

are verified using different numerical methods. The numerical calculations are extended

to larger trapped systems using Quantum Monte Carlo methods, and the results are

analyzed using a local density approximation. The excitation gap and the universal

parameter β is extracted. This work has been published in Refs. [19, 185].

Finally, in the last chapter, Chapter 8, we shift gears and present preliminary re-

sults on the four-boson system. We analyze the spectrum as a function of the scattering

length. Then we consider the collisional aspects of the four-boson system: dimer-dimer

collisions and atom-trimer collisions. This work was performed in collaboration with J.

P. D’Incao and Chris H. Greene and has not been published yet.



Chapter 2

Theoretical introduction

2.1 Introduction

In this chapter, we review important theoretical elements used in this dissertation.

First, we review important aspects of ultracold collisions, the definition of scattering

length, and the selection of the appropriate interaction potential for numerical calcula-

tions. Second, we analyze the solution of two particles in a trap interacting through a

zero-range pseudopotential. This solution represents an ideal case because of its sim-

plicity and the way in which scattering-length dependence is introduced. We will use

the two-particle solution extensively throughout the thesis.

Third, we present mean-field BCS theory in Sec. 2.4. The BCS theory is the stan-

dard theory for describing the BCS-BEC crossover from a many-body viewpoint. For

that reason, it is important to consider it here and review its strengths and limitations.

Finally, we introduce the hyperspherical framework. The hyperspherical framework

becomes very useful once some intuition is built around it. A simple analysis of hyper-

spherical potential curves usually provides a qualitative understanding of the system.

Also, an exact solution can be obtained by solving coupled differential equations involv-

ing the hyperspherical potential curves. In additions, properties of strongly interacting

trapped system can be easily understood from the hyperspherical perspective. The

hypersherical representation will be used throughout this dissertation.
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2.2 The interaction potential

In this section, we analyze the collisional properties of ultracold gases with s-wave

interactions. We focus on the single-channel model that is used throughout this thesis.

2.2.1 Scattering properties of ultracold gases

The scattering properties of ultracold alkali atoms can be understood considering

the simple case of two particles interacting with a central potential V (r). Since the

relative coordinate Schrödinger equation has spherical symmetry, the wave function can

be written as

ψk(r) =
uk(r)

r
Ylm(Ω). (2.1)

Here, k is the momentum of the collision, and Ylm(Ω) are the well-known spherical

harmonics. Using Eq. 2.1, the radial Schrödinger equation that describes the collision

takes the form [
− ~

2

2µ

d2

dr2
+ Veff (r)− ~

2k2

2µ

]
uk(r) = 0, (2.2)

where µ is the reduced mass, and energy of this collision is E = k2/2µ. The two particles

feel an l-dependent effective potential,

Veff (r) = V (r) +
~2l(l + 1)

2µr2
, (2.3)

where l is the relative angular momentum between the particles. The second term in

Eq. (2.3) is called the centrifugal barrier.

For each angular momentum l there is a scattering solution to Eq. (2.2), and

all these solutions contribute to the scattering observables. However, at ultracold tem-

peratures only the l = 0 contribution is important. We can neglect higher angular

momentum solutions because the centrifugal barrier introduces an effective repulsion

between the particles. The centrifugal barrier controls particle interaction at large dis-

tances is controlled if the long-range behavior of the bare interaction V (r) decays faster
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than 1/r2. At low energies (ultracold temperatures), particles colliding with l > 0 do

not feel the interaction of the bare potential V (r) because they cannot overcome the

centrifugal barrier. Therefore, particles colliding with l > 0 can be considered noninter-

acting, reducing significantly the complexity of the problem.

The ultracold collisional properties of the two-body system are characterized by

the long-range behavior of the radial-scattering solutions. The asymptotic solutions of

the radial equation take form

uk(r)r→∞ ≈ A(k)
k

sin[k r + δ(k)], (2.4)

where δ(k) is the phase shift that characterizes all the two-body scattering properties.

For example, the scattering cross section for two distinguishable particles is given by

σ(k) =
4π

k2
sin2[δ(k)]. (2.5)

Therefore, it is important to understand the behavior of the phase shift in the ultracold

limit.

The phase shift is characterized by the interaction potential. For alkali atoms,

the long-range behavior of the interaction between is generally described by a van der

Waals force of the form V6(r) = −C6/r6. This r−6 long-range behavior decays fast

enough that it can be treated as a “short-range” potential. Short-range potentials have

nice scattering properties at low energy. In particular, the s-wave scattering phase shift

δ(k) depends linearly in the collision momentum k as it goes to zero. This property

allows us to define the s-wave scattering length as

as = − lim
k→0

tan[δ(k)]
k

. (2.6)

All the scattering properties reduce to a simple expression involving the s-wave scatter-

ing length as, in the ultracold limit. For example, the scattering cross section [Eq. (2.5)]

for two distinguishable particles in the ultracold limit reduces to σ(0) = 4πa2
s, which is

exactly the classical prediction of the cross section for hard spheres with radius as.
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Since all scattering properties depend only on as, the shape of the real potential

of the interacting alkali atoms is irrelevant for describing ultracold scattering. Fur-

thermore, different potentials with the same scattering length will then have identical

scattering properties. Consequently, the behavior of dilute ultracold atoms can be con-

sidered to be universal. Such universal behavior give us some flexibility in selecting a

potential to simplify the numerical calculations. In general, we use a potential of the

form V (r) = V0v(r). Here, v(r) is a purely attractive potential of a simple form like

a Gaussian or a square well, and V0 is the potential depth that can be tuned to the

desired scattering-length value as. The potential v(r) has a range r0, and its ultracold

scattering properties will behave universally if as À r0.

There is also a simple interpretation of the scattering length in terms of the zero-

energy wave function u0(r). In the zero-energy limit, the long range behavior of u0

is

uA
0 (r)r→∞ ≈ uA

0 (r) = A(0)(r − as). (2.7)

Therefore, the asymptotic behavior of u0(r), called uA
0 (r), is a straight line that crosses

zero at r = as. Figure 2.1 provides a qualitative understanding of the scattering length

by analyzing the zero-energy wave function. In Figs. 2.1 (a) and (b), the red curves are

the potential V0(r), which is a Gaussian interaction potential in this case. The black

curves are the zero-energy solutions u0(r), and the dashed blue lines are the extrapolated

asymptotic behavior uA
0 (r). Figure 2.1 (c) presents the behavior of the scattering length

as a function of the potential depth V0.

Another important quantity for the qualitative understanding of the scattering

length is the phase accumulated in the interacting region. This accumulated phase

is related to the “curvature” of u0(r) in that region. For a shallow potential depth,

the phase accumulated is very small since the potential is not strong enough to produce

important changes. Therefore, this potential produces a small curvature in u0(r) leading
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to a negative scattering length [see Fig. 2.1 (a)]. In contrast, for larger values of V0,

the accumulated phase is large enough that u0(r) turns around in the interacting region

and has node at r = as, a positive scattering length. Therefore, there is a critical

accumulated phase, associated with a critical potential depth at which the scattering

length changes from positive to negative. That critical accumulated phase is π/2 and

occurs when the curvature of u0(r) is just enough to produce asymptotic behavior

parallel to the coordinate r. In this particular case, the scattering length diverges, as

shown by the dashed vertical line in Fig. 2.1 (c).

The divergence of the scattering length is also associated with the existence of a

bound state right at the zero-energy threshold. Therefore, for deeper potentials, i.e.,

positive scattering lengths, the potential holds a weakly bound state. The properties of

this weakly bound state only depend on as as long as as À r0. For example, this weakly

bound state has a binding energy of Eb = 1/(2µa2
s) [schematically shown in Fig. 2.1 (c)]

and a size of ∼ as/2.

However, realistic potentials differ significantly from the model potential pre-

sented above. A complete description of ultracold two-body collisions usually requires

the analysis of a multichannel system where the hyperfine splitting is incorporated. In

experiments with ultracold gases, the scattering length as is tuned using Fano-Feshbach

resonances. A description of Fano-Feshbach resonances requires at least a two-channel

model. The incoming collision occurs in the lower channel while the upper channel is

closed. The resonance occurs at the energy at which the uncoupled closed channel has

a bound state. For ultracold systems, the collision energy is very close to threshold.

Therefore, Fano-Feshbach resonances occur when a bound state of the uncoupled closed

channel coincides with the open channel threshold. As in the single channel case, the

bound state at threshold produces divergence of the scattering length. For positive

scattering lengths, the bound state is below threshold. This state is analogous to the

weakly bound state of the one-channel model, i.e., its properties are only characterized
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Figure 2.1: Behavior of the scattering length and the zero-energy wave function as
functions of the potential depth. In panels (a) and (b), the red curve corresponds to
the potential interaction. The black curve is the zero-energy u0(r), and the dashed blue
line represents the extrapolated long range behavior of u0(r) [Eq. 2.4].(c) Schematic
behavior of the scattering length as a function of the potential depth. The solid blue
line is the scattering length, and the dashed green line is the binding energy of the
weakly bound dimer.
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by the scattering length.

Realistic multichannel calculations are important for predicting the interaction

properties of a particular pair of alkali atoms (see e.g. [106]), i.e., the scattering-length

dependence on the magnetic field, the position of resonances, the regions of universality,

etc. Once a large scattering-length region has been theoretically or experimentally iden-

tified for a particular pair of alkali atoms, we can use a simple single-channel potential

to model the interaction. Furthermore, we can even use a zero-range pseudopoten-

tial that explicitly introduces the scattering length dependence. The description of the

zero-range pseudopotential is described in the next subsection.

2.2.2 Zero-range interactions

From the analysis of ultracold collisions with large scattering lengths presented

above, we can understand the zero-range pseudopotential used to mimic the interaction.

This pseudopotential is valid in the universal regime. The universal regime is achieved

in a dilute system 1 when r0 ¿ as. Since this range is very small and does not enter

in the theory, we can replace the realistic potential with a zero-range pseudopotential.

By introducing pseudopotentials that only depend on the scattering length, we make

explicit the universal behavior of the interaction.

To obtain the pseudopotential, we consider the scattering wave function solution.

In the limit of r0 → 0, the asymptotic behavior of the scattering solution, Eq. (2.7), is

valid for all r values. In particular, consider a many-particle system. When two particles

get very close together while other particles remain far apart, then the behavior of the

many-body wave function is controlled by the scattering of the two particles given by

Eq. (2.7). This reasoning leads to the Bethe-Peierls contact condition [15],

lim
rij→0

Ψ(r1, ..., ri, ..., rj , ...) ∝ uA
0 (rij)
rij

= C

(
1
rij

− 1
as

)
. (2.8)

1 Dilute system refers in this case to the condition r0 ¿ rmean, where rmean is the mean interparticle
distance.
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Here, rij is the distance between particles i and j, and C is a smooth function of the

remaining coordinates. The boundary condition of Eq. (2.8) can be achieved through a

zero-range pseudopotential of the form [95]

v(r) =
2π~2as

µ
δ(r)

∂

∂r
r. (2.9)

This pseudopotential, or contact condition, tries to reproduce the long-range be-

havior of the scattering solution. To some extent, it represents an ideal interaction that

has the minimum ingredients for describing an ultracold system.

In the next section, we apply the zero-range pseudopotential to the system of two

trapped particles.

2.3 Spectrum of two particles in a trap

A system of two particles in a trap with tunable interactions provides a qualita-

tive understanding of trap few-body systems and is a useful tool for describing more

complicated systems.

Consider the system of two particles in an harmonic trap with masses m1 and

m2 interacting in the s-wave channel. Both particles experience a trapping potential

characterized by the same frequency. Thus, when we select the appropriate center of

mass and relative vectors, i.e., RCM = (m1r1 + m2r2)/M and r = r1 − r2, the center-

of-mass motion decouples from the system and is characterized by a reduced mass

µ = m1m2/M .

We also assume that the interaction potential V (r) is spherically symmetric and

short range. When the range of the interaction is much smaller than the two-body

scattering length as and the characteristic trap length (aho =
√
~/2µω) that controls

the mean interparticle distance, then the interaction can be replaced by a zero-range

pseudopotential from Eq. (2.9).

The center-of-mass motion is described by a one-particle noninteracting system
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of mass M = m1 + m2, and the energies are ECM = (2n + l + 3/2)~ω, where n and

l are radial and angular quantum numbers. The relative motion also has a spherical

symmetry that allows us to consider each relative angular momentum lrel separately.

However, we are only interested in lrel = 0 solutions since the pseudopotential [Eq. (2.9)]

was designed to describe s-wave collisions. The remaining lrel > 0 solutions can be

considered noninteracting.

Taking advantage of the spherical symmetry, we write the relative wave function

as

Ψ(r) =
1√
4π

u(r)
r

. (2.10)

The radial Schrödinger equation for lrel = 0 collisions is given by

(
− ~

2

2µ

d2

dr2
+

1
2
µω2r2 + v(r)

)
u(r) = Eru(r). (2.11)

There are different techniques for solving Eq. (2.11). In the method outlined in

Ref. [35], the zero-range interaction is interpreted as a boundary condition given by

u′(0)
u(0)

= − 1
as

. (2.12)

Therefore, the system can be described by a noninteracting Hamiltonian, and all the

interaction effects are introduced as the boundary condition given by Eq. (2.12). The ra-

dial wave function u(r) can be then expanded in solutions of the noninteracting system,

i.e., harmonic-trapped solutions. Using properties of the Laguerre polynomials that

describe the harmonic trapped solutions, the imposed boundary condition, Eq. (2.12),

leads to a transcendental equation that relates the energies with the scattering length:

√
2
Γ

(− Er
2~ω + 3

4

)

Γ
(− Er

2~ω + 1
4

) =
aho

a
. (2.13)

Here, Γ is the gamma function. Note that the energies only depend on the ratio a0/aho.

Figure 2.2 presents the spectrum predicted in Eq. (2.13) as a function of aho/as. Interest-

ingly, we observe smooth behavior in the strongly interacting regime [−1 . aho/as . 1].
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In the positive scattering length, we observe the molecule formation described by the

lowest energy curve. The appearance of the molecule affects all the higher states con-

necting the n vibrational trapped state at as ∼ 0− [left extreme of Fig. 2.2] to the n− 1

vibrational trapped state at as ∼ 0+ [right extreme of Fig. 2.2].

−5 0 5
−6

−4

−2

0

2

4

6

8

aho/a

E
r
/
h̄
ω

Figure 2.2: Spectrum of the relative motion of two particles in a trap as a function of
the inverse scattering length aho/as.

It is interesting to analyze the limiting behaviors of the lowest energy of the

system. In the small and negative scattering length limit, the lowest energy is

E0/~ω = 3 +

√
2
π

as

aho
+

2− 2 ln(2)
π

(
as

aho

)2

+ ... . (2.14)

The first term is the noninteracting energy with the center-of-mass contribution in-

cluded. The second term can be obtained using the Fermi pseudopotential and is asso-

ciated with a mean-field effect.

In the small and positive scattering-length region, the ground-state energy is

E0/~ω = −
(

aho

as

)2

+ 3/2− 7
8

(
as

aho

)2

. (2.15)

The first term is the molecule-binding energy, −~ωa2
ho/a2

s = −~2/ma2, and the second

is the zero-point energy of the molecule.

After analyzing the energies, we now consider the wavefunction. The zero-range

pseudopotential approximation also allow us to obtain analytical expressions for the
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wave functions, e.g.,

Ψ(r) = A exp
(
− r2

4a2
ho

)
U

(
− Er

2~ω
+

3
4
,
3
2
,

r2

2a2
ho

)
. (2.16)

Here, U is the confluent hypergeometric function, and A is a normalization constant.

A series expansion of Eq. (2.16) around r ≈ 0 shows that the wave function obeys the

Bethe-Peierls boundary condition where

Ψ(r) ≈ A√
2πa

3/2
ho

(
aho

r
−
√

2
Γ

(− Er
2~ω + 3

4

)

Γ
(− Er

2~ω + 1
4

)
)

+O(r) =
A√

2πa
3/2
ho

(
aho

r
− aho

as

)
+O(r).

(2.17)

Note that we have used Eq. (2.13) to obtain the scattering-length dependence in Eq. (2.17).

A second method for obtaining solutions of the two-particle trapped system is

based on quantum defect theory techniques [17]. Since the potential v(r) is only nonzero

at the origin, the solution u(r) of Eq. (2.11) should be a linear combination of the regular

and irregular solutions of the noninteracting system. This linear combination at a given

energy is chosen so that the logarithmic derivative boundary condition, i.e., Eq.(2.12),

is obeyed. This procedure leads to a transcendental equation equivalent to Eq. (2.13)

and provides an interesting new insight into the problem.

2.4 BCS theory

In 1956, Cooper found that two opposite-spin fermions immersed in a Fermi sea

with arbitrarily weak attractive interactions would form a bound pair [47]. The large

degeneracy of states in the Fermi surface allows such formation. This idea was extended

to many fermion pairs by Bardeen, Cooper, and Schieffer when they developed what is

now known as the BCS theory [10, 11]. An important prediction of the BCS theory was

the existence of an energy gap (pairing gap) in the single particle excitation spectrum.

Cooper pairs and the pairing gap are key ingredients in our modern understanding of

superconductivity and superfluidity.
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A particularly interesting problem arises when interactions in fermionic systems

can be tuned. In such cases, we can access the BCS-BEC crossover. Eagles [59] and

Leggett [113] were the first to realize that BCS theory is capable of qualitatively describ-

ing both limiting behaviors and predicting an smooth transition between them. Here,

we outline the main results relevant to this dissertation.

To arrive at the BCS equations we assume that the wave function takes the

form [113] of

Ψ(r1, ..., rN) = A{ψ(r1,1′), ψ(r2,2′), ..., ψ(rN/2,N ′/2). (2.18)

Next, we consider a system of distinguishable fermions for which the spin part factors

out, and unprimed and primed indices refer to spin-up and spin-down particles, respec-

tively. To obtain the BCS equations, we apply a variational approach using an extension

of Eq. (2.18) where the pair wave function ψ is the variational parameter [113]. The

extended version of Eq. (2.18) does not correspond to definite number of particles, and

the minimization process constrains the wave function to a mean number of particles.

Alternatively, the BCS equation can be obtained by solving the effective BCS Hamilto-

nian using a Bogoliubov transformation. Both methods lead to the same set of coupled

equations. The first equation is usually called the gap equation and relates the gap

∆ and the interaction strength (in this case characterized by the two-body scattering

length as):
m

4π~2as
=

∫
dk

(2π)3

(
1

2εk
− 1

2Ek

)
. (2.19)

Here, we define εk = ~2k2/2m and Ek =
√

∆2 + (εk − µ)2, where µ is the chemi-

cal potential. Note that a momentum renormalization has been carried out to obtain

Eq. (2.19). The second equation describes the one-component density ρ1 as

ρ1 =
1
2

∫
dk

(2π)3

(
1− εk − µ

Ek

)
. (2.20)

The density is written in general as ρ1 = k3
F /(6π2), and the system is then characterized

by a single dimensionless parameter kF as. In Eqs. (2.19) and (2.20), the gap ∆ and the
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chemical potential µ are obtained by fixing the scattering length as and the density µ.

These coupled equations can be solved analytically [123], but the general solution is not

particularly enlightening. Here, we solve these equations numerically.

Several observables can be obtained once ∆ and µ are known. In particular, we

are interested in the energy of the system, which is given by

E0 =
∫

dk
(2π)3

(
εk

(
1− εk − µ

Ek

)
− ∆2

2Ek

)
. (2.21)

The first term describes the kinetic contribution, and the second describes corrections

due to the interactions. The behavior of the energy in the BCS-BEC crossover can be

easily obtained numerically. The numerical results of E0 are presented in Fig. 4.11.

Furthermore, the limiting behaviors of the energy and the first-order corrections can be

obtained analytically. For |kF as| ¿ 1 and as < 0, i.e., in the weakly interacting BCS

limit, the energy is

E0/N =
3
5
EF

(
1 +

40
e4

eπ/kF as

)
. (2.22)

Here, the first term corresponds to the noninteracting energy where EF = k2
F /2m.

The second term is the first-order correction, which is exponentially small in kF as. In

chapter 4 , we will see that the Hartree term, neglected in this approximation, predicts

a first-order correction linear in kF as. Thus, the Hartree term is the leading correction

in the weakly interacting BCS regime.

In contrast, in the weakly interacting molecular BEC limit, i.e., for |kF as| ¿ 1

and as > 0, the energy is

E0/N = − ~2

2ma2
+

3
5
EF

(
5kF a

9π
+ ...

)
. (2.23)

The first term is half the binding energy of the weakly bound molecules. The second

term describes a repulsive interaction between molecules with a dimer-dimer scattering

length of add = 2as. More accurate calculations, like the ones presented in Chapter 6 ,

show that the interaction is indeed repulsive, but the dimer-dimer scattering length is
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add ≈ 0.6as. Therefore, both the BCS and BEC first-order corrections predicted by the

BCS model are incorrect. However, this simple model can still describe the transition

from fermionic atoms to bosonic molecules.

Now we shift gears and we introduce the hyperspherical representation which will

be use to describe both few- and many-body systems.

2.5 Hyperspherical representation

The hyperspherical formulation has been mainly developed to describe few-body

systems [51, 52, 119, 116, 159, 42]. However, some properties of Bose and Fermi gases

have been successfully explained with this formulation within the K harmonic approx-

imation [20, 149]. Therefore, the hyperspherical formulation is particularly suitable

for studying the transition from few- to many-body systems since it provides a unified

framework for treating this transition. The study of both few- and many-body systems

can be, in turn, greatly simplified using an adiabatic approximation. In this approxima-

tion, the description of a many-body system can be reduced to a simple one-dimensional

Schrödinger equation.

The hyperspherical formulation will be extensively used in this dissertation. In

Chapter 3, we present an efficient way to numerically implement the full hyperspher-

ical formulation for few-body systems. In Chapters 5 and 6, we present preliminary

hyperspherical calculations that allow a qualitative interpretation of the spectrum in

the BCS-BEC crossover and the dimer-dimer collisional properties. In Chapter 7, we

verify important properties of unitary trapped systems derived from the hyperspherical

framework. Finally, in Chapter 8, we use the full solution in the hyperspherical frame-

work to analyze the spectrum and collisional properties of the four-boson system. Here,

we outline the hyperspherical method.

The main objective of the hyperspherical method is to solve the time-independent

Schrödinger equation in a convenient and efficient way. To do this, we calculate eigenval-
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ues and eigenfunctions of the fixed-hyperradius Hamiltonian, constructing an adiabatic

hyperspherical representation. These eigenvalues and eigenfunctions are then used to

construct a set of one-dimensional coupled equations in the hyperradius R. The hyper-

radius is a smooth collective coordinate. In a system described by N coordinate vectors

r1, . . . , rN , the hyperradius R is defined by

µR2 =
N∑

i=1

mir2
i . (2.24)

Here, µ is the hyperradial reduced mass, and mi are the masses corresponding to the

particle i. The remaining coordinates are described by a set of hyperangles, generally

called Ω.

The dimension of this system is d = 3 N . The total wave function ψ is rescaled by

R, Ψ = R(d−1)/2ψ, so that the hyperradial equation resembles a coupled one-dimensional

Schrodinger equation. In the adiabatic representation, the wave function ΨE(R, Ω) is

expanded in terms of a complete orthonormal set of angular wave functions Φν and

radial wave functions FνE , such that

ΨE(R, Ω) =
∑

ν

FνE(R)Φν(R; Ω). (2.25)

The adiabatic eigenfunctions, or channel functions Φν , depend parametrically on R and

are eigenfunctions of a 3N − 1 partial differential equation:
(
~2Λ2

2µR2
+

(d− 1)(d− 3)~2

8µR2
+ V (R, Ω)

)
Φν(R; Ω) = Uν(R)Φν(R; Ω). (2.26)

Here, Λ is the grand angular momentum operator, which is related to the kinetic term

by

−
∑

i

~2∇2
i

2mi
= − ~

2

2µ

1
Rd−1

∂

∂R
Rd−1 ∂

∂R
+

Λ2~2

2µR2
. (2.27)

The Uν(R) obtained in Eq. (2.26) are effective hyperradial potential curves of a

set of one-dimensional differential equations:
[
− ~

2

2µ

d2

dR2
+ Uν(R)

]
FνE(R)− ~2

2µ

∑

ν′

[
2Pνν′(R)

d

dR
+ Qνν′(R)

]
Fν′E(R) = EFνE(R).

(2.28)
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These differential equations [Eq. (2.28)] are coupled through the Pνν′(R) and Qνν′(R)

couplings defined as

Pνν′(R) = 〈Φν(R; Ω)| d

dR
|Φν′(R; Ω)〉

∣∣∣
R
, (2.29)

Qνν′(R) = 〈Φν(R; Ω)| d2

dR2
|Φν′(R; Ω)〉

∣∣∣
R
. (2.30)

Since the basis set expansion of the wave function, Eq. (2.25), is complete in

the 3N -dimensional space, Eqs. (2.26) and (2.28) reproduce exactly the original d-

dimensional Schrödinger equation. As in most numerical methods, the solutions are

approximated by truncating the Hilbert space. In this case, the Hilbert space is trun-

cated by considering a finite number of channels in Eq. (2.28). This approximation

can be easily tested analyzing the convergence with respect to the number of channels

included in the calculation.

The utility of the hyperspherical representation relies on the assumption that the

hyperradius R is a smooth variable. In such cases, only a few channels are relevant,

and the couplings are small and have a smooth behavior. Furthermore, a fairly good

approximation to the solutions can be achieved by truncating the expansion in Eq. (2.25)

to a single term:

ΨE(R, Ω) = FνE(R)Φν(R; Ω). (2.31)

This adiabatic hyperspherical approximation leads to an effective one-dimensional Schrödinger

equation, [
− ~

2

2µ

d2

dR2
+ Wν(R)

]
FνE(R) = EFνE(R), (2.32)

where the effective potential is

Wν(R) = Uν(R)− ~2

2µ
Qνν(R). (2.33)

Here, the first term is the hyperradial potential curve, and the second term is the

kinetic contribution of the hyperradial dependence of the channel function, which is

always positive. If the potential curves are well spaced and do not have strong avoided
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crossings, then the adiabatic approximation can be very good. This approximation

comes from a truncation of the Hilbert space and, for that reason, follows the variational

principle. Any energy solution obtained with this method is an upper bound of the exact

energy solution.

Another useful approximation is obtained by neglecting the second term in Eq. (2.33),

i.e., replacing Wν(R) by Uν(R) in Eq. (2.32). This is usually called the hyperspherical

Born-Oppenheimer approximation. As in the standard Born-Oppenheimer approxima-

tion, the approximated energy represents a lower bound of the exact energy [46].

Next, we consider the noninteracting limit.

2.5.1 The noninteracting limit: hyperspherical harmonics

The eigenfunctions of an N -particle system acquire a simple form in the noninter-

acting limit. Since Λ is an operator that acts only on the Ω coordinates, the solutions

of Eq. (2.41), Φν , become independent of R. Therefore, any derivative of the channel

function with respect to R is zero, all the coupling terms vanish, and the adiabatic

approximation becomes exact. In other words, the kinetic operator [Eq. (3.47)] is sepa-

rable in Ω and R and, for that reason, its solutions take the form of Eq.(2.31), with Φν

independent of R.

The solutions of Λ2, Φλ(Ω) are usually labeled by λ and called hyperspherical

harmonics. Here λ is the solution of

[Λ2 − λ(λ + d− 2)]Φλ(Ω) = 0. (2.34)

For each symmetry and each number of particles, there is a λmin and particular

degeneracies corresponding to that problem. To obtain the λmin and degeneracies, we

can compare the energies of the trapped system in both the single particle and the

hyperspherical representation. In the trapped system, the external potential is simply

V (R, Ω) = ω2/2
∑d

i=1 mix
2
i = ω2µR2/2. This potential commutes with the Λ2 operator
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and does not introduce any coupling. Therefore, the channel functions of the free system

Φλ(Ω) also describe a trapped system. Then, the wave functions of the trapped system

take the form

Ψλn(R, Ω) = Fλn(R)Φλ(Ω), (2.35)

where Fλn(R) obeys the effective one-dimensional Schrödinger equation,

(−~2

2m

∂

∂R2
+ Veff (R)

)
R(d−1)/2F (R) = ER(d−1)/2F (R). (2.36)

Here, the effective potential is

Veff (R) =
(d− 1)(d− 3)

8µR2
+

λ(λ + d− 2)
2µR2

+
µω2R2

2
. (2.37)

Defining ` = λ + (d− 3)/2, the effective potential takes the known form

Veff (R) =
`(` + 1)
2µR2

+
µω2R2

2
, (2.38)

which is identical to the radial Schrödinger equation of a particle with angular momen-

tum ` and mass µ in a spherical trap of frequency ω. Thus, the energies are

E`,n = (` + 2nR)~ω =
(

λ +
d

2
+ 2nR

)
~ω. (2.39)

A useful method to obtain the λ values and their degeneracies compares the

solutions of Eq. (2.39) with those obtained from the single particle framework [159]. By

comparing both energy solutions, we obtain the relation

λ + 2nR =
NJ∑

i=1

(li + 2ni). (2.40)

Here, NJ is the number of Jacobi vectors. Considering all the possible options in

the right-hand-side solutions, we can infer the solutions in the left-hand side. The

degeneracy of λ can be obtained by combining all the possible li and ni on the right

hand side of Eq. (2.40) allowed by the symmetrization rules of the wave function.

As an example, consider the system of three distinguishable particles. We remove

the center-of-mass coordinate and are left with two Jacobi coordinates. Thus, Eq. (2.40)
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is simply

λ + 2nR = l1 + 2n1 + l2 + 2n2. (2.41)

We focus on the L = 0 states. The case λ = 0 is not degenerate and corresponds to

l1 = l2 = n1 = n2 = 0. The next case is λ = 2 (The λ = 1 can only be formed with

L > 0). The single particle representation predicts three cases ( l1 = l2 = n1 = 0 and

n2 = 1; l1 = l2 = n2 = 0 and n1 = 1; l1 = l2 = 1 and n1 = n2 = 0 ). One of these

cases corresponds, in the hyperspherical representation, to a hyperradial excitation of

the λ = 0 case. The other two are degenerate states of λ = 2. The eigenvalue of the Λ2

operator λ(λ + d− 2) = 12. This procedure can be continued to higher λ values.



Chapter 3

Numerical Techniques

3.1 Introduction

In this Chapter, we present the numerical methods used in this Thesis. We focus

initially on the Monte Carlo methods. In the fixed-node diffusion Monte Carlo section,

we pay special attention to the importance of physical intuition for the construction of

the guiding wave functions. In particular, we present the different trial wave functions

used to describe trapped Fermi gases in the BCS-BEC crossover. Then we present

a powerful technique to describe few-body trapped systems where the solutions are

expanded in correlated Gaussian (CG) basis set. Finally, we present an innovating

method which combines the hyperspherical technique with the CG method. This chapter

presents these numerical methods in a general way; and it is complemented with a set

of Appendices: A, B C, D E, F, G.

3.2 Fixed-node diffusion Monte Carlo approach

In 1949, Metropolis and Ulam presented the basic idea of what they called The

Monte Carlo Method [126]. They proposed a general statistical approach to the

study of differential equations. In particular, motivated by the work of Fermi, they

noted that the Schrödinger equation could be expressed as a diffusion equation and

simulated by a system of “particles” that move randomly and multiply themselves.

Since then, quantum Monte Carlo methods, i.e., applications of Monte Carlo
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techniques to solve the Schrödinger equation, have been extensively used and perfected.

There have been important developments such as the implementation of important

sampling [125, 101] and different ways [4, 146, 39, 111] to overcome the limitations of

the Monte Carlo methods to deal with wave functions that have nodes or, equivalently,

changes of sign. These limitations are usually called the “sign problem” and affect the

study of fermionic systems whose ground state wave functions have nodes.

In this section, we present the fixed-node diffusion Monte Carlo (FN-DMC)

method [4] that overcomes the “sign problem” by forcing the ground state solution

to have the same nodes as a suitably-chosen trial wave function. This trial wave func-

tion is crucial for a reliable estimation of the physical observables. Many of the details

of the implementation of the FN-DMC method can be found extensively in the litera-

ture [84]. Here, we present the general ideas that describe the FN-DMC method. Then,

we discuss in detail the trial wave functions used to describe trapped two-component

Fermi gases.

3.2.1 Imaginary time propagation and diffusion Monte Carlo

We present the concepts of imaginary time propagation and its application to

the diffusion Monte Carlo method. Then, we discuss general aspects of the FN-DMC

method.

Consider the time-dependent Schrödinger equation for a Hamiltonian H,

i~
∂Φ(x, t)

∂t
= (H− ET )Φ(x, t). (3.1)

For convenience, we have introduced an energy shift ET . The quantity x = {x1, ...xN}

includes the coordinates of all the particles. The solutions of Eq. (3.1) for a time-

independent Hamiltonian take the form,

Φ(x, t) =
∑

k

CkΨk(x)e−i(Ek−ET )t. (3.2)
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Equation (3.1) can be extended to imaginary time, τ = it, and be written as

−~∂Φ(x, τ)
∂τ

= (H− ET )Φ(x, τ). (3.3)

The solutions of Eq. (3.3) are simply Φ(x, t) from Eq. (3.2) extended to imaginary time:

Φ(x, τ) =
∞∑

k=0

CkΨk(x)e−(Ek−ET )τ . (3.4)

After a propagation in imaginary time, the term with lowest Ek − ET will become the

most prominent term in Eq. (3.5). The lowest energy is, of course, the ground-state

energy E0, and the dominant term would be proportional to the ground state Ψ0. In

particular, we can set ET = E0 in Eq. (3.5) and obtain

Φ(x, τ) = C0Ψ0(x) +
∞∑

k=1

CkΨk(x)e−(Ek−E0)τ . (3.5)

In this case, Φ(x, τ) converges to a steady state proportional to Ψ0(x).

The concept of imaginary time propagation and the derivation in Eqs. (3.1-3.5) are

completely general and independent of the method used to make the propagation. The

diffusion Monte Carlo method takes advantage of these properties of the Schrodinger

equation in imaginary time and its similarities with the classical diffusion equation.

Consider Eq. (3.3) with the Hamiltonian now explicitly written as

∂Φ(x, τ)
∂t

=
~2

2m
∇2Φ(x, τ) + (ET − V (x))Φ(x, τ). (3.6)

If the term (ET−V (x)) is ignored, then Eq. (3.6) is the usual diffusion equation. Ignoring

the kinetic term leads to a first-order rate equation. Both the diffusion and rate processes

can be simulated separately by the Monte Carlo method, but there is no general exact

solution for Eq. (3.6). However, a propagation of Eq. (3.6) in a differential δτ , the

leading order correction can be understood as a sum (or product) of the independent

diffusion and rate processes. In other words, the exact propagation operator factorizes

in a diffusion and rate term in the small time-step limit.
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There is a close analogy between a diffusion Monte Carlo simulation and the

experimental study of the behavior of a gas. To theoretically obtain the temperature

and other global properties of a gas, we solve the corresponding diffusion equation.

Alternatively, we could release the real gas from an initial configuration and wait until it

reaches equilibrium and experimentally measure the temperature and the other global

properties. The second approach is more like the diffusion Monte Carlo simulation.

However, instead of experimentally studying the ”gas,” it numerically simulates a gas

that obeys the diffusion equation [Eq. (3.6)]. The simulation starts from an initial

configuration of an artificial gas, the diffusion Monte Carlo method propagates this gas

until it reaches equilibrium. The gas remains in equilibrium for some measuring time

during which its properties are computed. At equilibrium, the gas describes the ground

state of the system and any observable of the ground state can be obtained.

The constituent parts of this artificial gas are usually called “walkers”, and they

describe a configuration of the N -particle system. For example, a Schrodinger equation

of a 3D N -body system, a walker represents a given configuration of all the bodies, i.e.,

x = {x1, ...xN}, and live in a 3N dimensional space. The diffusion process is simulated

by producing a random displacement of the initial configuration, or walker, with a

probability dictated by the diffusion term in Eq. (3.6). The rate process is simulated

by allowing the walkers to die or to duplicate themselves.

Although solving Eq. (3.6) is in principle possible with the “pure” diffusion Monte

Carlo method, the fluctuations are generally very large. However, the fluctuations can be

greatly reduced by the Monte Carlo technique of importance sampling [125, 101]. In this

procedure, an initial guess ΨT , usually called the trial wave function or guiding function,

is used to bias the “walkers” to reproduce the distribution f(x, τ) = Φ(x, τ)ΨT (x). An

equation similar to Eq. (3.6) describes the imaginary time evolution of f(x, τ) (see

detailed description in Ref. [84]). If ΨT is a good approximation to the exact ground

state, then the fluctuations will be greatly reduced. Therefore, the construction of ΨT
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is a very important step in FN-DMC calculations.

Another vital aspect of the importance sampling technique is that ΨT can be used

to overcome the sign problem. In general, the propagation in imaginary time does not

take into account the symmetry of the wave function. Thus, independently of the type of

particles we are considering, such a propagation will converge to the same ground state,

the nodeless bosonic ground state. This is unsatisfying if we are interested in fermionic

systems. To remedy this difficulty, we can force the wave function to have the same

nodal structure of a guiding wave function, ΨT . This method is usually called FN-DMC.

To within statistical uncertainties, the FN-DMC algorithm provides an upper bound to

the exact ground-state energy, i.e., to the lowest-lying state with the same symmetry as

ΨT . If the nodal surface of ΨT coincides with that of the exact eigenfunction, then the

FN-DMC method produces the exact eigen energy of the system.

An important step in the FN-DMC calculation is the optimization of ΨT . The

variational Monte Carlo (VMC) method is used to test and optimize the trial wave

function. In the VMC method, the energy expectation value of ΨT is evaluated using

Monte Carlo integration techniques. The trial wave function is characterized by a set

of parameters that are optimized by minimizing the energy of the trial wave function.

The optimized ΨT is then used as a guiding function in the FN-DMC process.

A detailed description on how the VMC and FN-DMC methods are implemented

will not be presented here but can be found in Ref. [84].

3.2.2 Trial Wave functions for a Trapped Two-Component Fermi Gas

The selection of the guiding wave function is a crucial step in the FN-DMC calcu-

lations. Physical intuition is used to select a suitable wave function. For homogeneous

two-component Fermi gases, there are a couple of guiding wave functions that have been

used to describe the gaslike ground state at different regimes of the crossover [7, 36].

The “Jastrow-Slater” wave function is used to describe a system in the weakly interact-
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ing BCS limit (as < 0 and |kF as| ¿ 1) while the “paired” wave function describes the

weakly interacting molecular BEC (as > 0 and |kF as| ¿ 1). Here, we extend the use of

such wave functions for trapped systems.

We begin with the Jastrow-Slater wave function,

ΨJ(r1, r2, ..., rN ) =
∏

ii′
J(ri − ri′)ΨNI(r1, r2, ..., rN ) (3.7)

Here, i and i′ correspond to different-spin fermions, and ΨNI is the noninteracting

ground state wave function. Alternatively, we can replace ΨNI by the noninteracting

wave function with an effective oscillator length that can be different from the bare

trap length of the problem. This effective scattering length is used as a variational

parameter. For strongly attractive systems, we find that the optimal effective oscillator

length is smaller than the bare trap length. This reduction of the effective oscillator

length is a consequence of the squeezing of the gas produced by the attraction in the

system.

The Jastrow term, i.e.,
∏

ii′ J(ri − ri′), describes the correlation between spin-

up and spin-down particles. The Jastrow term is constructed to be nodeless for the

trial wavefunction ΨJ . Therefore, the purpose of the Jastrow term in the FN-DMC

calculations is only to reduce the statistical fluctuations. In constrast, in the VMC

calculations, the energies depend on the form of the Jastrow correlations.

Since ΨNI is in most cases degenerate, and there are different ways to construct it.

In Eq. (3.7), the noninteracting wave function is a product of two Slater determinants,

one for each component,

ΨNI = A(φnxnynz(r1), · · · , φnxnynz(rN1)) A(φnxnynz(r1′), · · · , φnxnynz(rN ′
2
)) =

det

∣∣∣∣∣∣∣∣∣∣∣

φ111(r1) · · · φ111(rN1)
...

...

φnxnynz(r1) · · · φnxnynz(rN1)

∣∣∣∣∣∣∣∣∣∣∣

det

∣∣∣∣∣∣∣∣∣∣∣

φ111(r1′) · · · φ111(rN ′
2
)

...
...

φnxnynz(r1′) · · · φnxnynz(rN ′
2
)

∣∣∣∣∣∣∣∣∣∣∣

(3.8)

The determinant form is particularly suitable for numerical evaluation. Furthermore,
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the evaluation of the derivatives can be greatly simplified using the inverse of the Slater

matrix (see e.g., Appendix B in Ref. [84]). Each Slater matrix is formed with the har-

monic oscillator orbitals. In general, it is convenient to use harmonic oscillator orbitals

obtained in Cartesian coordinates, φnxnynz . For closed shells, it is straightforward to

select the harmonic oscillator orbitals. For open shells, the selection of the orbitals

is more cumbersome since the ground state is degenerate. However, this degeneracy

can be broken by perturbation theory with the zero-range Fermi pseudo-potential as

discussed in Sect. 4.2. Thus, ideally we could use the ground state obtained from this

perturbation approach as ΨNI . However, such ΨNI is an expansion of the product of

Slater determinants and is very expensive to compute. Therefore we look for alternative

trial wave functions to describe some of the degenerate noninteracting systems.

Now we turn the discussion to a different type of trial wave function. The behavior

of the two-component Fermi gas on the BEC side is qualitatively different. For attractive

potentials with small, positive as, comparatively strongly-bound two-body dimers exist

and the system is expected to form a molecular Bose gas of dimers. Such a system is

not described even qualitatively correctly by the guiding function ΨJ , which assumes

that every spin-up fermion is “simultaneously” correlated with every spin-down fermion.

Therefore, we use instead a “paired” guiding function ΨP [36, 7],

ΨP (r1, r′1, ..., rN ) = A{
Ψ2(r1, r1′)Ψ2(r2, r2′)...Ψ2(rN/2, rN/2′)

}
, (3.9)

where A is the antisymmetrizer operator. The paired guiding function is much better

suited for describing a Fermi gas that behaves as a weakly interacting molecular Bose

gas. In this case, ΨP correlates the first spin-up fermion with the first spin-down

fermion, the second spin-up fermion with the second spin-down fermion, and so on;

then it antisymmetrizes this “paired state.” For its part, the guiding function ΨP is

expected to accurately describe the system when the size of the dimer pairs becomes

small compared to the oscillator lengths.
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In Eq. (3.9), we have assumed that we have an even-N system where the number

of spin-up and spin-down particles is the same. The other case we are going to consider

is the odd-N system where N1 = N2 + 1. ΨP can be extended to treat odd-N systems

by simply adding a single particle orbital φnl [23, 36],

ΨP (r1, r′1, ..., rN ) = A
{

Ψ2(r1, r1′)Ψ2(r2, r2′)...Ψ2(rN1−1, rN ′
2
), φnl(rN1)

}
. (3.10)

We consider a number of different single particle orbitals φnl in spherical coordinates,

and determine the optimal nl values by performing a series of FN-DMC calculations.

For the lowest n and l (the m quantum number is set to zero), the unnormalized orbitals

are φ00(~r) = e−r2/2b2 , φ01(r) = e−r2/2b2z/aho, φ20(r) = e−r2/2b2(1 − 2(r/aho)2/3) and

φ02(r) = e−r2/2b2(3(z/aho)2 − (r/aho)2). The b parameter can be treated variationally.

If b = aho, the φnl agree with the noninteracting trapped orbitals.

Another important point that must be decided is the angular momentum of the

trial wave function ΨP . Since each pair function Ψ2(r1, r1′) has vanishing relative orbital

angular momentum, the total angular momentum L of ΨP is 0 for even N and N1 = N2.

For odd N , L of ψP is determined by the angular momentum of φnl, i.e., L = l.

Both paired wave functions, Eqs. (3.9,3.10), are constructed in from a two-body

wave function. The two-body wave function, Ψ2, can be obtained from the trapped

two-particle system. Interestingly, the ground-state wave function of two particles in a

trap can be separated exactly into a Jastrow term and noninteracting orbitals, in which

Ψ2(r1, r2) = ψ(r1)ψ(r2)J(r1 − r2), (3.11)

where ψ is the non-interacting ground state orbitals. We will show that this relation

is valid when the center-of-mass wave function and the noninteracting orbitals have a

Gaussian form, like in the trapped system. For this discussion, we will not consider

normalization factors or proportionality constants. If we define RCM = (1/2)(r1 + r2)

and r = (r1 − r2) we know that the pair wave function can be separated in the center-

of-mass and relative-coordinate terms, Ψ2(r1, r2) = Ψ(RCM )φ(r). Also, we know that
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the center-of-mass wave function is unaffected by the two-body interaction and is

Ψ(RCM ) = exp(−R2
CM

a2
ho

) = e
− r21

2a2
ho e

− r22
2a2

ho e
r2

4a2
ho = ψ(r1)ψ(r2)e

r2

4a2
ho , (3.12)

where ψ(r1) = e
− r22

2a2
ho is the 1s (ground-state) orbital. Thus, the total wave function is

Ψ(RCM )φ(r) = ψ(r1)ψ(r2)e
r2

4a2
ho φ(r) = ψ(r1)ψ(r2)J(r), (3.13)

where

J(r) = e
r2

4a2
ho φ(r). (3.14)

The evaluation of the relative coordinate wave function, φ(r), usually requires a numer-

ical calculation.

These two-body solutions are used to build both the Jastrow and the paired wave

function. In the Jastrow wave function, the Jastrow term is expected to describe short-

range correlations. Therefore, the two-body solutions are matched outside the range of

the interaction to a function that decays rapidly to a constant. For our calculations, we

use A exp(−c r) + B. The parameters A and B are selected so that the J(r) and J ′(r)

are continuous at the matching point rm. In general, both c and rm can be used as

variational parameters in a VMC calculation. In the weakly interacting BCS side, we

observe that the results are roughly insensitive to the values of c and rm if we set rm to

a few times the range of the potential. In the noninteracting case, i.e., for as = 0, the

guiding function ΨJ with J(r) = 1 coincides with the exact eigenfunction. For weakly

attractive Fermi systems, the attractive nature of the two-body potential introduces

correlations but does, to a good approximation, leave the nodal surface unchanged. In-

deed, we find that the variational energy for ΨJ in this regime is nearly indistinguishable

from the FN-DMC energies, indicating that the Jastrow product over all pair functions

accounts properly for the two-body correlations of the system. Furthermore, it suggests

that the Jastrow-Slater wave function is very close to the exact wave function in this

regime.
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The exponentially growing term of the Jastrow function [Eq. (3.14)] compensates

the exponential decaying behavior of φ due to the trapping potential. Therefore, J(r)

decays with a power law behavior at as < 0. As we will see in the following this type of

long-range behavior is similar to the Jastrow term obtained from the free system. Thus,

it is sensible to replace the Jastrow term obtained for the trapped system with the one

for the free system.

For the initial calculations for N = 8 in Ref. [183], we used a Gaussian interaction

and the numerical solutions of the trapped system to obtain the Jastrow function.

These simulations can be significantly sped up, if we use a square-well potential and

the analytical Jastrow function of the free system. In this case, the Jastrow function

J(r) is given by the free-space two-body solution [7]. For positive scattering lengths

as, J(r) coincides with the free-space–two-body bound-state solution. For negative as,

J(r) is the free-space scattering solution, calculated at the scattering energy Erel. For

N = 6, 8 at unitarity, we treat Erel as a variational parameter and find a reduction of

the energy of 1 or 2% for a finite Erel compared to Erel = 0. For larger N , we simply

use Erel = 0 which implies that outside the range of the interaction the Jastrow term

goes like J(r) ∝ (1/r − 1/as).

Another description of the system is given by an alternative wave function ΨCB,

proposed by Chang and Bertsch [40]. This wavefunction combines the ideas of Eqs. (3.7,

3.9). For closed shell noninteracting systems, Eq. (3.15) can be written as a single

Slater determinant of paired functions. Finally, the guiding function ΨCB is constructed

following Eqs. (3) and (4) of Ref. [40]. At unitarity, for most N systems either ΨJ or

ΨP provide the lowest energy so we do not use ΨCB. However, for N = 11, we find that

ΨCB gives the lowest energy.

The calculations presented in Sec. 4.6 were done for closed shell (N = 8), and

consequently we used Eq. (3.15). As an example, we compare the energies at unitarity

obtained with the Jastrow-Slater, EJ , and the paired wave function EP . The results
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are EJ = 12.63(2) and EP = 12.58(2). In this case we see that the energies are very

close.

For N=4, the constructed guiding wave function that describes the system on the

BCS side has been inspired by the picture for a homogeneous system, i.e.

Ψ(N=4) ==
∏

ii′
J(ri − ri′)det

∣∣∣∣∣∣∣

ψ(r1)ψ(r′1) cos(kr11′) ψ(r1)ψ(r′2) cos(kr12′)

ψ(r2)ψ(r′1) cos(kr21′) ψ(r2)ψ(r′2) cos(kr22′).

∣∣∣∣∣∣∣
(3.15)

The Jastrow term describes the short-range interactions. The determinant part de-

scribes a nodal surface similar to that of the noninteracting system if the parameter k

is chosen to be very small, i.e., k ∼ 10−5/aho. This trial wave function can be thought

of as a variant of the Chang and Bertsch guiding function. We empirically verified that

such a guiding function produces accurate results (see Sec. 6.2).

Finally, in the strongly-interacting regime, i.e., for |as| → ∞, it is not a priori

clear which of the two guiding functions provides a better description of the system.

3.3 Correlated Gaussian Method

Now we turn to an alternative method for solving the few-body Schrödinger equa-

tion variationally which does not rely on Monte Carlo techniques. Different types of

Gaussian basis functions have long been used in many different areas of physics. In

particular, the usage of Gaussian basis functions is one of the key elements of the suc-

cess of ab initio calculations in quantum chemistry. The idea of using an explicitly

correlated Gaussian to solve quantum chemistry problems was introduced in 1960 by

Boys [26] and Singer [157]. The combination of a Gaussian basis and the stochastical

variational method SVM was first introduced by Kukulin and Krasnopol’sky [110] in

nuclear physics and was extensively used by Suzuki and Varga [179, 178, 180, 181].

These methods were also used to treat ultracold many-body Bose systems by Sorensen,

Fedorov and Jensen [162]. A detailed discussion of both the SVM and CG methods can

be found in Sorensen’s Master’s thesis [161] and, in particular, in Suzuki and Varga’s
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book [173]. In the following, we present the CG method and its application to few-body

trapped systems.

Consider a set of coordinate vectors that describe the system {x1, ...,xN}. In this

method, the eigenstates are expanded in a set of basis functions,

Ψ(x1, · · · ,xN ) =
∑

A

CA ΦA(x1, · · · ,xN ) =
∑

A

CA 〈x1, · · · ,xN |A〉 . (3.16)

Here A is a matrix with a set of parameters that characterize the basis function. In

the second equality we have introduced a convenient ket notation. Solving the time-

independent Schrödinger equation in this basis set reduces the problem to a diagonal-

ization of the Hamiltonian matrix:

H ~Ci = EiO ~Ci (3.17)

Here, Ei are the energies of the eigenstates, ~Ci is a vector form with the coefficients CA

and H and O are matrices whose elements are HBA = 〈B|H|A〉 and OBA = 〈B|A〉. For

a 3D system, the evaluation of these matrix elements involves 3N -dimensional integra-

tions which are in general very expensive to compute. Therefore, the effectiveness of

the basis set expansion method relies mainly on the appropriate selection of the basis

functions. As we will see, the CG basis functions permit a fast evaluation of overlap

and Hamiltonian matrix elements; they are flexible enough to correctly describe physical

states.

To reduce the dimensionality of the problem we can take advantage of its sym-

metry properties. Since the interactions considered are spherically symmetric, the total

angular momentum, L, is a good quantum number. For simplicity, we will restrict

ourselves to L = 0 solutions. This restriction allow us to reduce the Hilbert space by

introducing restrictions to the basis functions. In particular, if the basis functions only

depend on the interparticle distances, then Eq. (3.16) can only describe states with

zero angular momentum and positive parity (LP = 0+). Furthermore, we can consider
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that the center-of-mass motion decouples from the system. In such cases, the CG basis

functions take the form

Φ{αij}(x1, · · · ,xN ) = ψ0(RCM )S


exp


−

N∑

j>i=1

αijr
2
ij/2






 , (3.18)

where S is a symmetrization operator and rij is the interparticle distance between

particles i and j. The set of parameters {αij} are related with the matrix elements of

A. Here, ψ0 is the ground state of the center-of-mass motion. For trapped systems,

ψ0 takes the form, ψ0(RCM ) = e−R2
CM/2aM

ho . Because of its simple Gaussian form, the

ψ0 can be absorbed in the exponential factor. Thus, in a more general way, the basis

function can be written in terms of a matrix A that characterizes them,

ΦA(x1,x2, ...,xN ) = S
{

exp(−1
2
xT .A.x)

}
= S



exp(−1

2

N∑

j>i=1

Aijxi.xj)



 , (3.19)

where x = {x1,x2, ...,xN}, and A is a symmetric matrix. The matrix elements Aij

are directly related with the αij (see Appendix C). Because of the simplicity of the

basis functions, Eq. (3.18), the matrix elements of the Hamiltonian can be calculated

analytically.

The key idea that allows the analytical evaluation of the matrix elements is select-

ing the set of coordinates that simplifies the evaluations. For basis functions of the form

of Eq. (3.19), the matrix elements are characterized by a matrix M in the exponential.

In such case, the matrix element integrand can be greatly simplified if we write it in

terms of the Jacobi vectors that diagonalize that matrix M . This change of coordinates

permits, in many cases, the analytical evaluation of the matrix elements. The explicit

evaluation of the matrix elements can be found in Appendices A and B.

There are two properties of the CG method that worth mentioning. First, the

CG basis set is linearly-dependent and over-complete, so a systematic increase in the

number of basis functions will converge to the exact eigenvalues [161]. Secondly, the

basis functions ΦA are squared integrable only if the matrix A is positive definite. We can
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further restrict the basis function by introducing a real widths dij such that αij = 1/d2
ij .

With this transformation, we make sure that A is positive definite. Furthermore, these

widths are proportional to the mean interparticle distances of the basis function. Thus,

it is easy to select them after considering the physical length scales relevant to the

problem. Even though we have restricted the Hilbert space with this transformation,

we have numerical evidence that that the results converge to the exact eigenvalues.

The linear dependence in the basis set causes problems in the numerical diagonal-

ization of the Hamiltonian matrix equation 3.17. There are different ways to minimize

or eliminate such problems which are explained in the Appendix E.

Finally, we want to stress the importance of the appropriate selection of the

interaction potential. For the problems considered in this dissertation, the interactions

are expected to be characterized only by the scattering length, i.e., to be independent

of the shape of the potential. For that reason, we can select a model potential that

permits rapid evaluation of the matrix elements. We found that a model potential with

a Gaussian form,

V0(r) = −d exp
(
− r2

2r2
0

)
, (3.20)

is particularly suitable for this basis set expansion. If the range r0 is much smaller

than the scattering length, then the interactions are effectively characterized only by

the scattering length. The scattering length is tuned by changing the strength of the

interaction potential, d, while the range, r0, of the interaction potential remains un-

changed. This is particularly convenient in this method since it implies that we only

need to evaluate the matrix elements once and we can use them to solve the Schrödinger

equation at any given potential strength ( or scattering length). Of course, this proce-

dure will give accurate results only if the basis set is complete enough to describe the

different configurations that appear at different scattering lengths.

In general, a simple version of this method includes four basic steps: the gen-
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eration of the basis set, the evaluation of the matrix elements, the elimination of the

linear dependence and the evaluation of the spectrum. The SVM, presented in Ap-

pendix F, combines the first three of these steps in a optimization procedure where the

basis functions are selected randomly.

3.4 Correlated Gaussian Hyperspherical method

Several techniques to solve few-body systems have been developed in the last

decades [68, 173, 121, 190, 119]. Among these method, the Correlated Gaussian (CG)

technique, presented in the previous Section, has proven to be capable of describing

trapped few-body system with short-range interactions. Because of the simplicity of

the matrix element calculation, the CG method provides an accurate description of the

ground and excited states up to N = 6 [19]. However, CG can only describe bound

states. For this reason, it is numerically convenient to treat trapped systems where all

the states are quantized. The CG cannot (without substantial modifications) describe

states above the continuum nor the rich behavior of atomic collisions such as dissociation

and recombination.

The hyperspherical representation, on the other hand, provides an appropriate

framework to treat the continuum. In the adiabatic hyperspherical representation, the

Hamiltonian is solved as a function of the hyperradius R, reducing the many-body

Schrödinger equation to a single variable form with a series of different couple effec-

tive potentials. The asymptotic behavior of the potentials and the channels describe

different dissociation or fragmentation pathways, providing a suitable framework for

analyzing collisional physics. However, the standard hyperspherical methods expand

the channel functions in splines or finite element basis functions [133, 192, 65, 172], and

the calculations become computationally very demanding for N > 3 systems.

Ideally, we would like to combine the fast matrix element evaluation of the CG

basis set with the capability of the hyperspherical framework to treat the continuum.
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Here, we explore how the CG basis set can be used within the hyperspherical frame-

work. We call the use of CG basis function to expand the channel functions in the

hyperspherical framework the CG hyperspherical method (CGHS).

In the hyperspherical framework, we need to evaluate matrix elements of the

Hamiltonian at fixed R. To evaluate such matrix elements, consider first how the matrix

element evaluation is carried out in the standard CG approach.

In the CG method, we select, for each matrix element evaluation, a set of co-

ordinate vectors that simplifies the integration, i.e., the set of coordinate vectors that

diagonalize the basis matrix M which characterizes the matrix element. The flexibility

to choose the best set of coordinate vectors for each matrix element evaluation is key

to the success of the CG method.

This selection of the optimal set of coordinate vectors is formally applied by an

orthogonal transformation from an initial set of vectors x = {x1, ...,xN} to a final set

of vectors y = {y1, ...,yN}: Tx = y, where T is the orthogonal transformation matrix.

The hyperspherical method is particularly suitable for such orthogonal transformations

because the hyperradius R is an invariant under them. Consider the hyperradius defined

in terms of a set of mass scaled Jacobi vectors [51, 52, 172, 124], x = {x1, ...,xN},

µR2 = µ
∑

i

xi
2, (3.21)

If we applied an orthogonal transformation to a new set of vectors y, then

µR2 = µ
∑

i

xi
2 = µyT T Ty = µ

∑

i

yi
2 (3.22)

where we have used that T T T = I, and I is the identity. Therefore, in the hyperspherical

framework we can also select the most convenient set of coordinate vectors for each

matrix element evaluation. This will be the key to reducing the dimensionality of the

matrix element integration. This transformation is the equivalent of saying that, for

each matrix element evaluation, we can select the set of hyperangles (Ω) that simplify

the matrix-element evaluation.
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As an example of how the dimensionality of matrix-element integration is reduced,

consider a three dimensional N -particle system with the center of mass removed and

L = 0 solutions. We will show that this technique reduces a (3N − 7) numerical

integration 1 to a sum over the symmetrization permutation of (N − 3) numerical

integrations (see Sec. 3.4.2 and Appendix G). This result implies that for N = 3 the

matrix element evaluation can be done analytically and that for N = 4, it requires a

sum of one-dimensional numerical integrations.

The next three subsections discuss the implementation of the CGHS. Many of

the techniques used in the standard CG method can be directly used in the CGHS. For

example, the selection and symmetrization of the basis function can be directly applied

in the CGHS. Also, the optimization through the VMS method can be used to optimize

the basis set at different values of the hyperradius R. Subsection 3.4.1 describes how the

hyperangular Schrödinger equation (Eq. 2.26) can be solved using a basis set expansion.

Subsection 3.4.2 shows, as an example, how the unsymmetrized matrix elements can be

calculated analytically for a three particle system (the calculation of the unsymmetrized

matrix elements for N = 4 is presented in the Appendix G). Finally, subsection 3.4.3

discuss in general how this method is implemented.

3.4.1 Expansion of the channel function in a basis set

In the hyperspherical method (see Sec. 2.5), channel functions are solutions of

the adiabatic Hamiltonian HA(R; Ω),

HA(R; Ω)Φν(R; Ω) = Uν(R)Φν(R; Ω). (3.23)
1 The (3N-7) numerical integration results from the following reasoning: initially we have 3N numer-

ical integration but 3 dimensions are removed by decoupling the center of mass motion, 3 dimension are
removed fixing the Euler angles and 1 dimension is removed fixing R.
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The eigenvalues of this equation are the hyperspherical potential curves Uν(R). The

adiabatic Hamiltonian has the form,

HA(R; Ω) =
~2Λ2

2µR2
+

(d− 1)(d− 3)~2

8µR2
+ V (R, Ω). (3.24)

Here, d = 3NJ where NJ is the number of Jacobi vectors.

A standard way to solve Eq. (3.23) is to expand the channel functions in a basis,

|Φµ(R; Ω)〉 =
∑

i

ci
µ(R) |Bi(R; Ω)〉 . (3.25)

Here µ labels the channel function. The |Bi(R; Ω)〉 are the basis functions. With this

expansion, Eq. (3.23) reduces to the eigenvalue equation

HA(R)~cµ = Uµ(R)O(R)~cµ. (3.26)

The vectors ~cµ = {c1
µ, ..., cD

µ }, where D is the dimension of the basis set. HA and O are

the Hamiltonian and overlap matrices whose matrix elements are given by

HA(R)ij = 〈Bi|HA(R; Ω)|Bj〉
∣∣∣
R
, (3.27)

O(R)ij = 〈Bi|Bj〉
∣∣∣
R
. (3.28)

Once the hyperradial potential curves are calculated, we still need to evaluate the

non-adiabatic couplings between the channel functions. The P and Q couplings, defined

in Sec. 2.5, are

Pνµ = 〈Φν(R)| d

dR
Φµ(R)〉 , (3.29)

Qνµ = 〈 d

dR
Φν(R)| d

dR
Φµ(R)〉 . (3.30)

In the basis set expansion, the couplings P and Q can be calculated as matrix multipli-

cation. Using the expansion in Eq. (3.25),

d

dR
|Φµ(R)〉 =

∑

i

dci
µ(R)
dR

, |Bi(R)〉+ ci
µ(R) |dBi(R)

dR
〉 . (3.31)
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For simplicity, we have omitted the angular dependence. The P coupling takes the form

Pνµ =
∑

ij

cj
ν(R)

dci
µ(R)
dR

〈Bj(R)|Bi(R)〉+ cj
ν(R)ci

µ(R) 〈Bj(R)|dBi(R)
dR

〉 (3.32)

which can be written as simple matrix multiplication,

Pνµ = ~cT
νO(R)~̇cµ + ~cT

ν P(R)~cµ. (3.33)

Here and in the following, ~̇c is the derivative of ~c with respect to R and P(R) is defined

in Eq. (3.36). The same procedure can be done for the Q couplings with

Qνµ =
∑

ij

dcj
ν(R)
dR

dci
µ(R)
dR

〈Bj(R)|Bi(R)〉+
dcj

ν(R)
dR

ci
µ(R) 〈Bj(R)|dBi(R)

dR
〉

cj
ν(R)

dci
µ(R)
dR

〈dBj(R)
dR

|Bi(R)〉+ cj
ν(R)ci

µ(R) 〈dBj(R)
dR

|dBi(R)
dR

〉 (3.34)

and can also be written as a matrix multiplication.

Qνµ = ~̇cT
νO(R)~̇cµ + ~̇cT

ν P(R)~cµ + ~cT
ν PT (R)~̇cµ + ~cT

νQ(R)~cµ. (3.35)

In Eqs. (3.33, 3.35) we have used the overlap matrix O and defined the matrices P and

Q whose matrix elements are

P(R)ij = 〈Bj(R)|dBi(R)
dR

〉 , (3.36)

Q(R)ij = 〈dBj(R)
dR

|dBi(R)
dR

〉 . (3.37)

The derivatives of the cj
µ(R) coefficients that form the ~̇cµ are calculated numeri-

cally using the three point rule.

3.4.2 Unsymmetrized Matrix Elements evaluation of three particles

A basis function in terms of the interparticle distances is

Ψ(r12, r13, r23) = exp(− r2
12

2d2
12

) exp(− r2
13

2d2
13

) exp(− r2
23

2d2
23

). (3.38)
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These basis functions do not depend on the center-of-mass coordinate and can only

reproduce the JP = 0+ spectrum. For equal mass systems, we can write Eq.(3.38) in

terms of the following Jacobi coordinates:

x1 =
1√
2
(r1 − r2), (3.39)

x2 =

√
2
3

(
r3 − r1 + r2

2

)
. (3.40)

The basis functions [Eq. (3.38)] can be written as

|A〉 = exp(−xT .A.x
2

) = exp(−x1.x1a11 + 2x1.x2a12 + x2.x2a22

2
) (3.41)

where x ≡ {x1,x2} and A is a 2 by 2 symmetric matrix whose elements are a11 =

2/d2
12+1/2(1/d2

13+1/d2
23) , a12 = a21 =

√
3(1/d2

23−1/d2
13), and a22 = 3/2(1/d2

13+1/d2
23).

In Eq. (3.41), we can clearly see that the state |A〉 depends only on the distances x1,

and x2 plus the angle θ12 between them, cos θ12 = x1.x2/x1x2.

We want to obtain the matrix elements corresponding to these basis function at

fixed hyperradius R. We define the hyperradius to be R2 = x2
1 + x2

2. The integrand of

the overlap matrix element is

B.A = exp(−xT .(A + B).x
2

). (3.42)

We change to the Jacobi basis set that diagonalizes A + B and we call β1 and β2 the

eigenvalues and y ≡ {y1,y2} the eigenvectors. In this new coordinate basis, Eq. (3.42)

has a simple form,

B.A = exp(−β1y
2
1 + β2y

2
2

2
). (3.43)

We integrate over the angles of the vectors y1 and y2 and we fix the hyperradius, so

y1 = R cos θ and y2 = R sin θ. In this set of coordinates, the matrix element at fixed R

is

〈B|A〉
∣∣∣
R

= (4π)2
∫ π/2

0
exp(−β1R

2 cos2 θ + β2R
2 sin2 θ

2
) cos2 θ sin2 θdθ (3.44)
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This integration has an analytical form,

〈B|A〉
∣∣∣
R

= 8π3 exp(−β1+β2

4 R2)
R2(β1 − β2)

I1

(
R2 β1 − β2

4

)
(3.45)

To simplify the interaction matrix element evaluation, we can use a Gaussian

model potential as we have done in the CG method. In this case, the interaction term can

be evaluated in the same way we have calculated the overlap term since the interaction

is also a Gaussian. Each pairwise interaction can be written as Vij = V0 exp(− r2
ij

2d2
0
) =

V0 exp(−xT .M (ij).x/(2d2
0)) (see Appendix C for the definition of M (ij)). Therefore, to

calculate the interaction matrix element, we need to evaluate

〈B|Vij |A〉 = V0

∫
dΩexp(−xT .(A + B + M (ij)/d2

0).x
2

). (3.46)

This integration can be done following the same steps of the overlap matrix element.

Equation (3.45) can be used directly if we multiply it by V0, and β1 and β2 are replaced

by the eigenvalues of A + B + M (ij)/d2
0. Note that for each pairwise interaction, the

matrix M (ij) changes and requires a new evaluation of the eigenvalues.

The third term we need to evaluate is the hyperangular kinetic term at fixed R.

This kinetic term is proportional to the grand angular momentum operator Λ defined

for the N = 3 case as

Λ2~2

2µR2
= −

∑

i

~2∇2
i

2µ
+
~2

2µ

1
R5

∂

∂R
R5 ∂

∂R
. (3.47)

The expression can be formally written as

TΩ = TT − TR, (3.48)

where

TΩ =
Λ2~2

2µR2
, TT = −

∑

i

~2∇2
i

2µ
, and TR = − ~

2

2µ

1
R5

∂

∂R
R5 ∂

∂R
. (3.49)

In typical calculations, TΩ is evaluated by directly applying the corresponding derivatives

in the hyperangles Ω. However, in this case, it is convenient to evaluate TT and TR

separately, and make use of (3.48).
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The integrand of the total kinetic term TT takes the form

B|TT |A = exp(−xT .B.x

2
)

(
−

2∑

i

~2

2µ
∇2

i

)
exp(−xT .A.x

2
). (3.50)

First, we diagonalize A and use the eigenvectors and eigenvalues of A, obtaining,

B|TT |A = − ~
2

2µ

(−Tr[A] + xT .A2.x
)
exp(−xT .(A + B).x

2
). (3.51)

Here Tr is the trace function. We can use Tr[A] = (α1 + α2), where α1 and α2 are the

eigenvalues of A. Now we diagonalize A+B. We call T the matrix with the orthonormal

eigenstates in columns and β1 and β2 are the eigenvalues of A + B. We make a change

of coordinates to the basis set that diagonalizes A + B. We obtain

B|TT |A = − ~
2

2µ
(−3(α1 + α2) + y.G.y) exp(−β1y

2
1 + β2y

2
2

2
), (3.52)

where G = T T .A2.T , and y1 and y2 are the vectors in the new eigen basis. The

integration over the angles of these vectors is trivial. After this integration, we fix the

hyperradius and integrate over the hyperangle θ defined by y1 = R cos θ and y2 = R sin θ,

〈B|TT |A〉
∣∣∣
R

= −(4π)2

2

∫ π/2

0

{
− 3(α1 + α2) + g11R

2 cos2 θ + g22R
2 sin2 θ

}

exp(−β1R
2 cos2 θ + β2R

2 sin2 θ

2
) cos2 θ sin2 θdθ. (3.53)

This integration can be done analytically and the results expressed in terms of the Bessel

functions I1 and I0:

〈B|TT |A〉
∣∣∣
R

= −e−
(β1+β2)R2

2 π3

4(β1 − β2)

{
−8(g11 − g22)I0

[
1
4
(β1 − β2)R2

]
+

8
(β1 − β2)R2

{
8(g11 − g22)

+(β1 − β2)
(−6(α1 + α2) + (g11 + g22)R2

) }
I1

[
1
4
(β1 − β2)R2

]}
. (3.54)

Now we will evaluate TR, the hyperradial kinetic term. It is written as

TR = − ~
2

2µ

(
1

R5/2

∂2

∂R2
R5/2 − 15

4R2

)
. (3.55)

Therefore, the integrand takes the form

B|TR|A = − ~
2

2µ
exp(−xT .B.x

2
)
(

1
R5/2

∂2

∂R2
R5/2 − 15

4R2

)
exp

(
−xT .A.x

2

)
, (3.56)
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We use the property that xT .A.x = R2FA(Ω) to evaluate the derivatives with

respect to R. This allows a simple application of the derivatives in Eq. (3.56), yielding

B|TR|A =
~2

2µR2

[
6xT .A.x− (xT .A.x)2

]
exp

[
−xT .(A + B).x

2

]
. (3.57)

We diagonalize A + B. Defining D = T T .A.T , we obtain

B|TR|A =
~2

2µR2

[
6y.D.y − (y.D.y)2

]
exp

(
−β1y

2
1 + β2y

2
2

2

)
(3.58)

The terms y.D.y and (y.D.y)2 depend on the polar angles of the vectors. The integration

over the polar angles (Ω1 = {φ1, θ1} and Ω2 = {φ2, θ2}) of these terms is
∫ [

6y.D.y − (y.D.y)2
]
dΩ1dΩ2 = (4π)2

{
6d11y

2
1+6d22y

2
2−

[
d2

11y
4
1+(2d11d22+4d2

12/3)y2
1y

2
2+d2

22y
4
2

]}
.

(3.59)

Now we carry out the integration over the hyperangle θ. Using y1 = R cos θ and y2 =

R sin θ, we obtain

〈B|TR|A〉
∣∣∣
R

=
(4π)2~2

2µR2

∫ π/2

0

{
6d11R

2 cos2 θ + 6d22R
2 sin2 θ−

d2
11R

4 cos4 θ − (2d11d22 + 4d2
12/3)R4 cos2 θ sin2 θ − d2

22R
4 sin4 θ

}

exp
(
−β1R

2 cos2 θ + β2R
2 sin2 θ

2

)
cos2 θ sin2 θdθ. (3.60)

This integration has the analytical form

〈B|TR|A〉
∣∣∣
R

= −~
2

µ

e−
(β1+β2)R2

4 π3

4R2(β1 − β2)2
{
−8

[
−8d2

12 +(d11−d22)
(
6(−β1 +β2 +d11−d22)+

(β1 − β2)(d11 + d22)R2
)]

I0

[
1
4
(β1 − β2)R2

]
+

8
(β1 − β2)R2

[
− 64d2

12+

48(d11− d22)(−β1 +β2 + d11− d22)+ 2(β1−β2)(−3β1 +3β2 +4d11− 4d22)(d11 + d22)R2

+(β1 − β2)2(d2
11 + d2

22)R
4
]
I1

[
1
4
(β1 − β2)R2

]}
. (3.61)

Combining Eqs. (3.54, 3.61), we obtain TΩ. The expression for TΩ can be simpli-

fied using the relation G = D2 to write G matrix elements of Eq. (3.54) in terms of the

ones of D.
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A useful test to verify the functional form of the matrix elements is to integrate

them with respect to R, with the corresponding volume element, and compare that

result with the CG matrix elements presented in Appendix B. Another important test

is to verify that TΩ is symmetric under the exchange of the basis functions A and B.

This is not a trivial test since neither TT nor TR are symmetric. Both tests can be

carried out numerically.

3.4.3 General considerations

Many of the procedures of the standard CG method can be easily extended to the

CGHS. The selection, symmetrization, and optimization of a basis follow the same ideas

of the standard CG method (see Appendices A, C, D, F and E). However, the evaluation

of the unsymmetrized matrix elements at fixed R is clearly different. Furthermore, the

hyperangular Hamiltonian [Eq. 3.23] need to solved at different hyperradius R.

There are several properties that makes this method particularly efficient. For

the model potential used, the scattering length is tuned by varying the potential depths

of the two-body interaction. Therefore, as in the CG case, the matrix elements need

only be calculated once; then they can be used for a wide range of scattering lengths.

Of course, the basis set should be complete enough to describe the relevant potential

curves at all the desired scattering length values.

The selection of the basis function generally depends on R. To avoid numerical

problems, the mean hyperradius of each basis function 〈R〉B should be of the same order

of the hyperradius R in which the matrix elements are evaluated. We can ensure that

〈R〉B ∼ R by selecting some (or all) the weights dij to be of the order of R.

We consider two different optimization procedures. The first possible optimization

procedure is the following: First, we select a few basis functions and optimized them to

describe the lowest hyperspherical harmonics. The widths of these basis functions are

rescaled by R at each hyperradius so that they represent the hyperspherical harmonics
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equally well. These basis functions are used at all R, while the remaining are optimized

at each R. Starting from small R (of the order of the range of the potential), we optimize

a set of basis functions. As R is increased, the basis set is increased and reoptimized.

At every R step, only a fraction of the basis set is optimized, and those basis functions

are selected randomly. After a several R-steps, the basis set is increased.

Instead of optimizing the basis set at each R, one can alternatively try to create

a complete basis set at large Rmax. In this case, the basis functions should be complete

enough to describe the lowest channel functions with interparticle distances varying from

interaction range r0 up to the hyperradius Rmax. Such a basis set can be rescaled to any

R < Rmax and should efficiently describe the channel functions at that R. The rescaling

procedure is simply dij/R = dmax
ij /Rmax. This procedure avoids the optimization at

each R. Furthermore, the kinetic, overlap, and couplings matrix elements at R are

straightforwardly related with the ones at Rmax. So, the interaction potential is the

only matrix element that need to be recalculated at each R. This property can be

understood by dimensional analysis. The kinetic, overlap and couplings matrix elements

only depend on R, so a rescaling of the widths is straightforward related to a rescaling

of the matrix elements. In contrast, the interaction potential introduces a new length

scale, so the matrix elements depends on both R and d0, and the rescaling does not

work.

These two methods, the complete basis set or the small optimized basis set, can

be appropriate in different circumstances. If a large number of channels are needed,

probably the complete basis method is the best choice. But, if only a couple of particular

channels are needed, then the optimization might be more efficient.

The most convenient way we have found to optimize the basis function in the

four-boson and four-fermion problem is the following: First we select an hyperradius

Rm that is Rm ≈ 300 d0 where the basis function will be initially optimized. The basis

set is increased and optimized until the relevant potential curves are converged and,
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in that sense, the basis is complete. This basis is then rescaled, as proposed in the

second optimization method, to all R < Rm. For R > Rm, it is too expensive to have a

“complete” basis set. For that reason, we use the first optimization method that allow

a reliable description of the lowest potential curves.

Note that for standard correlated Gaussian calculations, the matrices A and B

need to be positive definite. This condition restricts the Hilbert space to exponentially

decaying functions. In the hyperspherical treatment, this is not necessary since the

matrix elements can be always calculated at fixed R, even for exponentially growing

functions. This gives more flexibility in choosing the optimal basis functions.



Chapter 4

Renormalized Mean-Field Methods

4.1 Introduction

In this chapter, we analyze the behavior of a two-component Fermi gas in the

negative-scattering-length or BCS region. In recent years, the BCS-BEC crossover prob-

lem has become experimentally accessible [82, 99, 195, 104], enabling tests of different

many-body theories. The BCS theory has been successful in explaining superfluidity

in Fermi gases, but this theory is incomplete because it neglects the Hartree term of

the interaction, 4πaρ/m (ρ is the density of one spin component). Comparatively little

research has included the Hartree term in considering Fermi gases [76, 113, 33, 86, 54].

In the cases the Hartree term was included, it was primarily to study the perturbative

regime where ρa3
s << 1. These studies usually analyze the “normal state” of the gas,

and contrasts with the superfluid state that is study with the BCS theory. Quantum

Monte Carlo (QMC) simulations include (in a sense) both the Hartree term and pairing

physics, but a complete theory that contains both ingredients is still required. A recent

approach [54] started from the mean-field BCS theory and reproduced the Hartree term

by including quantum fluctuations. Therefore, this theory succeeded in reproducing

both normal and superfluid contributions. However, its validity in the strongly inter-

acting regime and the importance of higher order corrections are still unclear. This

chapter analyzes mean-field theories with zero-range interactions that reproduce the

correct Hartree term in the perturbative limit.
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The Hartree term can be easily incorporated using a mean field approach and

effective zero-range interactions. When the range of interaction is much smaller than

the interparticle distance, the potential can be replaced by a delta-function interac-

tion. However, this replacement must be done with caution because the delta function

interaction is too singular to be exactly solvable, even in principle. In the weakly-

interacting limit, ρa3
s << 1, the coupling parameter in the delta-function interaction

is proportional to the two-body scattering length as; this interaction is known as the

Fermi pseudopotential [73]. Here, we analyze the first-order corrections introduced by

the Fermi pseudopotential. By including this approximation beyond first-order correc-

tion, mean-field theories have been applied to Fermi gases [33, 149]. However, the use of

this approximation in strongly interacting regimes leads to an unphysical collapse of the

Fermi gas. To go beyond the weakly interacting regime using a zero-range pseudopo-

tential, it is crucial to renormalize the coupling constant. In this Chapter, we introduce

a new and convenient way to achieve this renormalization.

The renormalization strategy presented here is based on a zero range interaction

of the Fermi pseudopotential form but with as replaced by an effective scattering length

aeff . The aeff is then calculated by using the exact energies of few particles in a trap.

We compare many-particle predictions obtained by using the renormalized interaction

potential with diffusion Monte Carlo simulations and alternative mean-field calculations.

We find that our renormalization automatically gives the correct behavior in both the

strong and weak interaction limits, for both positive- and negative-scattering lengths.

This Chapter is organized as follows. In Section 4.2, we review the noninteracting

solutions of the trapped two-component Fermi gas and analyzes corrections introduced

by the Fermi pseudopotential. Section 4.3 describes the general ideas of the density

renormalization. Section 4.4 develops the renormalization procedure and shows that a

simple two-parameter analytical formula can be utilized as an excellent approximation

over the whole range from positive-to-negative–two-body scattering lengths. Section 4.5
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applies the renormalization to many-particle–mean-field theory and presents some of its

predictions. Section 4.6 compares the results obtained using our renormalized mean-

field theory with quantum Monte Carlo calculations and with perturbative mean-field

calculations. Finally, in Section 4.7, we present the conclusions.

4.2 Perturbative behavior of a trapped two-component Fermi gas

In this section, we analyze the weakly interacting Fermi gas in a harmonic trap.

First, we review the solutions of noninteracting Hamiltonian with an arbitrary number

of particles [N1 in component one and N2 in component two]. Then, we discuss the

use of the Fermi pseudopotential to analyze first-order corrections. Finally, we apply

degenerate perturbation theory to analyze open-shell systems.

4.2.1 The noninteracting two-component Fermi gas in a trap

Consider an N -particle system in a spherical trap. In the noninteracting limit, the

Hamiltonian of the N -particle system can be expanded in single-particle Hamiltonians,

e.g.,

H =
N∑

i=1

h(ri), (4.1)

where the single-particle Hamiltonians in spherical coordinates are

h(r) = − ~
2

2m
∇2 +

mω2r2

2
. (4.2)

Here, ω is the frequency of the trap and m is the mass of the particles. The single-

particle Hamiltonian is spherically symmetric and describes a particle in a trap. The

single-particle Schrödinger equation is

h(r)ψnlm = εnlψnlm, (4.3)

where the eigenfunctions ψnlm can be written as

ψnlm(r) =
unl(r)

r
Ylm(Ω), (4.4)



55

where Ylm(Ω) are the standard spherical harmonics, and Ω = {θ, φ} are the angular

coordinates. The radial orbitals are solutions of an effective one-dimensional Schrödinger

equation given by

unl(r) = a
3/2
ho

√
2n!

Γ(n + l + 3/2)
exp(− r2

2a2
ho

)(r/aho)l+1Ll+1/2
n (r2/a2

ho), (4.5)

where aho =
√
~/(mω) is the trap length. The single particle energies are

εnl = (2n + l + 3/2)~ω, (4.6)

where n = 0, 1... is the number of radial nodes, and l = 0, 1, ... is the orbital angular

momentum.

Up to this point, we have omitted the spin dependence in the orbitals. The dif-

ferent components of the Fermi gas can be treated as distinguishable particles which

simplifies the calculation. In this case, the spin part of the many-body wave functions

completely factors out. The spatial part of the many-body wave functions is now an-

tisymmetric in each component but there is no symmetrization between particles of

component one and two. Therefore, the spatial wavefunction of a system with N1 par-

ticles in component 1 and N2 particles in component 2, where N1 +N2 = N ; the spatial

wave function is given by

Ψk
NI = A(φni

1li1mi
1
(r1), · · · , φn1l1m1(rN1)) A(φni

2li2mi
2
(r1′), · · · , φ

nf
2 lf2mf

2
(rN ′

2
)) =

det

∣∣∣∣∣∣∣∣∣∣∣

φni
1li1mi

1
(r1) · · · φni

1li1mi
1
(rN1)

...
...

φ
nf

1 lf1mf
1
(r1) · · · φ

nf
1 lf1mf

1
(rN1)

∣∣∣∣∣∣∣∣∣∣∣

det

∣∣∣∣∣∣∣∣∣∣∣

φni
2li2mi

2
(r1′) · · · φni

2li2mi
2
(rN ′

2
)

...
...

φ
nf

2 lf2mf
2
(r1′) · · · φ

nf
2 lf2mf

2
(rN ′

2
)

∣∣∣∣∣∣∣∣∣∣∣

. (4.7)

Here, unprimed coordinates refer to component 1 and primed coordinates to compo-

nent 2. The quantum numbers {ni
1l

i
1m

i
1} and {nf

1 lf1mf
1} correspond to the first and

last occupied orbitals of component 1. Similarly, the quantum numbers {ni
2l

i
2m

i
2} and

{nf
2 lf2mf

2} correspond to the first and last occupied orbitals of component 2. These sets

of orbitals characterize the wave function that is labeled by a general quantum number
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k. A is the antisymmetrization operator that can be realized by constructing a Slater

determinant [second line of Eq. (4.7)]. The Slater determinant vanishes if an orbital is

doubly occupied. Thus, the wave function Ψi
NI will be nonzero only if all the orbitals

in each Slater determinant are different. This is just a mathematical manifestation of

the Pauli exclusion principle.

Any Ψi
NI constructed as in Eq. (4.7) is an eigenfunction of the Hamiltonian (4.1)

with energy

Ek
NI =

nf
1 lf1mf

1∑

nlm=ni
1li1mi

1

εnl +
nf

2 lf2mf
2∑

nlm=ni
2li2mi

2

εnl. (4.8)

Thus, to construct the ground state, we just need to minimize Eq. (4.8). This is achieved

by simply selecting the N1 and N2 orbitals with the lowest energy.
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Figure 4.1: Orbital energies εnl as a function of the quantum number l. The number of
particles in a closed shell Ncs is written next to each shell.

As in Eq. (4.8), the ground-state noninteracting energy ENI can be evaluated as

the sum of the noninteracting energies of polarized Fermi gases Ep
NI with N1 and N2

particles, i.e., ENI(N) = Ep
NI(N1) + Ep

NI(N2). To select the lowest Ni orbitals, we first

consider Fig. 4.1. Here, the energies of the orbitals as functions of the angular quantum

number l show a clear shell structure. In each shell, the energies of the orbitals are
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(ns + 1/2)~ω and degeneracy of the orbitals is ns(ns + 1)/2. The shells are closed at

the magic numbers

Ncs =
ns(ns + 1)(ns + 2)

6
. (4.9)

The ground-state energy of the polarized system in a closed shell has a simple closed

form
Ecs

NI(ns)
~ω

=
(ns − 1)ns(ns + 1)(ns + 2)

8
+

3N cs

2
. (4.10)

The Ep
NI(Ni) can be written in terms of the shell number ns, the energy of the closed

shell subsystem Ecs
NI(ns), and the corresponding magic number N cs:

Ep
NI(Ni) = Ecs

NI(ns) +
(

3
2

+ ns

)
(N −Ncs)~ω. (4.11)

On the right hand side of Eq. (4.11), the first term is the contribution from the closed-

shell fermions while the second term is the contribution from the fermions in the open

shell. Here, the shell number ns represents the number of closed shells. It can be written

in terms of the number of particles Ni as

ns = Int
[

1
g[Ni]

+
g[Ni]

3
− 1

]
, (4.12)

where

g[Ni] = 3

√
3

(
27Ni −

√
3(243N2

i − 1)
)

, (4.13)

and Int[x] is the integer part of x.

For most N values, the ground-state solutions are degenerate. Only if N1 and N2

correspond to the magic Ncs is the ground state system not degenerate. Such closed-shell

systems are special cases in which all the orbitals couple to zero-angular momentum.

The degeneracy for open-shell systems is generally broken by interactions.

4.2.2 Effective versus exact wave function

Here, we discuss first order corrections to the noninteracting energy and the use of

zero-range potential instead of finite-range potential. Note that the zero-range potential
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presented here provides a qualitatively different treatment of correlations in the system

than the zero-range potential presented in Sect.2.2.

Consider the two-component Fermi gas interacting through a short-range poten-

tial Vint. Consider each component as a distinguishable particle such that the nonin-

teracting wave functions can be written as a product of two Slater determinants, i.e.,

Eq. (4.7). If the system is dilute, the interaction only depends on the scattering length

as. However, the first-order perturbation theory correction is

E1 = 〈Vint〉 =
∫ ∫

ρ1(r1)Vint(r1 − r2)ρ2(r2)dr1dr2. (4.14)

Here, ρ1 and ρ2 are the densities of components 1 and 2, respectively. Clearly, this

correction depends on the shape of the two-body potential Vint. To obtain the scattering

length as dependence we need to include many orders in perturbation theory. In other

words, we have to be able to describe correlations of the order of the range of the

interaction r0. Such a description would imply a large configuration interaction (CI)

expansion. This treatment is impossible in large systems.

An alternative option for describing the correction due to the scattering properties

of Vint can be obtained using a Jastrow term to describe the correlations:

Ψ = J(r11′ , · · · , r22′)ΨNI(r1, · · · , rN ). (4.15)

The Jastrow-Slater wave function was discussed in the fixed-node diffusion Monte Carlo

(FN-DMC) section in chapter 3. In the Jastrow term, all the pair correlations are

explicitly built from the two-body solutions and describe the correct scattering behav-

ior. Thus, the energy correction depends mainly on a and not on the form of Vint.

However, it is very difficult to work with Eq. (4.15), and its exact implementation is

usually restricted to Monte Carlo methods. There are other methods like lowest-order

constrained variational [41, 100] that use Eq. (4.15) as a starting point but require some

approximations to obtain the energy of the system.
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To avoid similarly complicated techniques that deal with real two-body potentials,

Fermi proposed a zero-range pseudopotential that explicitly depends on the scattering

length and not on the shape of the real potential. This pseudopotential is expressed as

VF (r) =
4π~2a0

m
δ(r). (4.16)

Here as is the two-body scattering length, and m is the mass of the particles. The

first-order correction of this potential is

EF
1 = 〈Vp〉 =

4π~2a0

m

∫
ρ1(r)ρ2(r)dr. (4.17)

This first-order correction depends on the scattering length and not on the shape of

the potential. In the dilute limit, both the Jastrow correlations or the CI expansion for

the realistic potential should lead to the same correction expressed in Eq. (4.17). With

this pseudopotential, we are able to reproduce the correct energy correction without in-

cluding the corresponding correlations. Thus, in the Fermi pseudopotential philosophy,

the exact solution is replaced by a mean-field solution. In that way, the many-body

problem is greatly simplified. All the information about the correlations is lost but the

new problem reproduces mean-field properties.

4.2.3 Perturbative behavior of two-component Fermi gas

Here, we use the Fermi pseudopotential to analyze how the degeneracy in open

shells is broken in first-order perturbation theory. The Fermi pseudopotential [Eq. (4.16)]

can be used to describe the atomic ground state in weakly interacting regimes where

|as| ¿ aho. To obtain the correct first-order correction, we use degenerate perturbation

theory. The wave function in a first order correction Ψ(1) is expanded in terms of all

the degenerate noninteracting states as

Ψ(1) =
∑

k {Ek=ENI}
ck Ψk

NI (4.18)
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Here, the sum is over all the states Ψk
NI whose energy corresponds to the ground-

state noninteracting energy ENI . The coefficients ck are obtained by diagonalizing the

degenerate submatrix of the Hamiltonian in this basis. Different Ψk
NI states are coupled

with each other through the Fermi pseudopotential.

We can use the fact that Eq. (4.18) resembles a CI expansion to evaluate the

matrix elements. Since the noninteracting wave functions Ψk
NI are formed with single-

particle orbitals, only states that differ by less than one orbital per component are

coupled. Furthermore, the interaction matrix elements can be easily expanded in matrix

elements of the occupied single-particle orbitals.

Since the potential and interactions are spherically symmetric, the total angular

momentum is a good quantum number. Therefore, we could could couple states Ψk
NI

to a given total angular momentum and diagonalize the Hamiltonian in that reduced

representation. However, since we are only going to consider small N systems, we can

diagonalize the “entire” Hamiltonian matrix and then analyze the angular momentum

of the solutions.
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Figure 4.2: CN1,N2 coefficients divided by ENI as a function of N . Circles correspond
to L = 0 ground states, squares to L = 1 ground states and triangles to L = 2 ground
states. A solid line connects the odd-N values, while a dashed line connects the even-N
values. Figure from Ref. [185].
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Degenerate perturbation theory predicts an energy

E ≈ ENI + ~ω CN1,N2

as

aho
, (4.19)

where CN1,N2 is a dimensionless quantity obtained through diagonalization. When both

N1 and N2 correspond to closed shells there is no degeneracy; then CN1,N2 can be

straightforwardly calculated to be [184]

CN1,N2 = 4πa3
ho

∫
ρNI
1 (~r)ρNI

2 (~r)d~r. (4.20)

Here, ρNI
i (~r) is the density of a one-component non-interacting gas with Ni fermions of

mass mi, normalized so that
∫

ρNI
i (~r)d~r = Ni. Alternatively, one can approximate the

ρNI
i with Thomas-Fermi density profiles. This approximation should be quite accurate

in the large N limit but it cannot describe the splitting of the energies related to the

angular momentum of the states.

To obtain the CN1,N2 for open-shell systems, we apply first-order degenerate per-

turbation theory. This calculation additionally allows us to obtain the angular momen-

tum quantum number L of the ground state. Figure 4.2 and Table 4.1 present the

results for N ≤ 20. The coefficients CN1,N2 increase monotonically with increasing N

and show a slight odd-even staggering. In general, the coefficients CN1,N2 for even N

are comparatively higher than those for odd N , implying a smaller energy for even N

than for odd N and suggesting that, even in the perturbative regime, the odd-even

oscillations are already present. We note that the CN1,N2 coefficients for even N shown

in Fig. 4.2 clearly reflect the shell closure at N = 8.

4.3 Density renormalization idea

The use of the Fermi pseudopotential has been extended beyond first-order per-

turbation theory [20]. This extension has to be done with caution because a full diago-

nalization of a Hamiltonian with an attractive delta-function interaction (in 3D) would
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Table 4.1: Angular momentum L and coefficients CN1,N2 for the ground state of two-
component Fermi gases in the weakly attractive regime. Here, we consider N2 = N1 for
even N and N1 = N2 + 1 for odd N .

N L CN1,N2 N L CN1,N2

2 0 2√
2π

12 0 12.2274
3 1 3√

2π
13 0 13.1651

4 0 13
2
√

2π
14 0 15.2382

5 1 15
2
√

2π
15 2 16.1642

6 0 11√
2π

16 0 18.2445
7 1 12√

2π
17 2 19.1735

8 0 31
2
√

2π
18 0 21.2476

9 0 145
8
√

2π
19 2 1779

32
√

2π

10 0 9.21052 20 0 1945
32
√

2π

11 0 10.1980

always lead to an infinitely bound state. This unphysical collapse can be avoided if the

description of the system is restricted to a mean-field level of approximation.

For example, in Ref. [20], the Gross-Pitaevskii equation with Fermi-pseudopotential

interactions is solved to describe a BEC. The Gross-Pitaevskii equation emerges from

mean-field theory, and, for that reason, the solutions are well behaved. When the scat-

tering length becomes large enough in magnitude and negative, the system collapses.

However, this is not an artifact of the zero-range interaction, but a real physical effect

that has been experimentally verified [151].

A similar approach can be used to analyze fermionic systems. For two-component

Fermi gases, the use of the Fermi pseudopotential can also be extended beyond first-

order perturbation theory. For this system, we would use the Hartree-Fock (HF) level

of approximation, which produces well-behaved results for small as. However, for large

and negative scattering lengths, the HF solutions collapses. This collapse occurs in a

regime where the Fermi pseudopotential approximation is no longer justified. In this

section, we propose a renormalization method to extend the validity of a zero-range

pseudopotential to large scattering lengths.
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For the remainder of the Chapter, we consider a system of fermions in a spherically

symmetric harmonic oscillator trap at temperature T = 0. The Hamiltonian that we

adopt is

H =
∑

i

(
− ~

2

2m
∇2

i +
1
2
mω2r2

i

)
+

∑

i<i′

4π~2aeff

m
δ(ri − ri′). (4.21)

This Hamiltonian cannot be diagonalized exactly, since the delta-function interaction

is too singular and would produce divergent results [62]. Therefore, full diagonalization

of a Hamiltonian with delta-function interactions requires a momentum cut-off renor-

malization even in the weakly interacting limit. This type of renormalization has been

carried out, for example, in Refs.[107, 28, 114, 152, 98, 165, 156, 131, 108], to name a

few such studies. However, such a renormalization is unnecessary at small or modest

scattering lengths when the system is studied at a mean-field level with zero-range inter-

actions. The mean-field theories are well behaved in this limit. To go beyond the weakly

interacting limit of mean-field theory, we propose a density-dependent renormalization

of the coupling parameter that is intended to apply even in the long-wavelength limit.

The idea is to extract aeff from the calculation of a few-body system that can be

solved exactly. The premise is that the renormalized scattering length extracted from

few-body systems will be close to the aeff that governs the large N limit. The level of

approximation we adopt to solve the many-body Hamiltonian is the same one we use

to solve the corresponding Schrödinger equation for a few-body system. For example, if

we want to diagonalize this Hamiltonian in the random-phase approximation (RPA), we

would use RPA for the few-body system and obtain the renormalization by matching

exact and RPA observables.

However, it is important to carefully select the appropriate level of approxima-

tion. An explicitly correlated wave function or an extensive configuration interaction

(CI) wave function can produce divergent results, and a momentum cutoff renormaliza-

tion is necessary. Since we want to obtain and apply a density renormalization without
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the necessity of introducing a momentum renormalization, we need to carefully select

the level of approximation in the wave function. The HF approximation does not intro-

duce explicit interparticle correlations, as the only correlations included are “exchange

correlations” from the Pauli exclusion principle. This makes the HF wave function a

suitable approximation to adopt in our renormalization technique, since it does not

require a momentum renormalization.

Before proceeding with the extraction of aeff , it is important to analyze its func-

tional dependence. Since we want to extract aeff valid in the large N limit, we consider

the homogenous system. Dimensional analysis suggests that, in an infinite, dilute and

uniform Fermi gas the only parameter that characterizes the behavior of the system is

the dimensionless combination kfas of the Fermi momentum kf and as [113]. Through-

out this chapter the Fermi momentum is defined as kf ≡ (6π2ρ)1/3 where the density is

just the one-spin component density. If we were applying the renormalized scattering

length aeff to an infinite uniform system, the only relevant parameter would be kfaeff .

This suggests that kfaeff has to be a function of kfas. So, we propose the following

functional dependence for the effective scattering length:

aeff ≡
ζ(kfas)

kf
. (4.22)

We see below that the renormalization function, ζ(kfas), will have the desired behavior

in the limiting cases, becoming independent of kfas in the unitarity limit (|as| → ∞)

and reproducing the relation aeff = as in the weakly interacting limit (kfas ¿ 1). The

unrenormalized Fermi pseudopotential can be obtained by setting the renormalization

function to ζF (kfas) = kfas. We consider that Eq.(4.22) holds even with the inclu-

sion of a trapping potential. The renormalized scattering length aeff can be viewed

as accounting, to some extend, for the correlations neglected in the mean-field wave

functions.

The renormalization function is intimately related with the equation of state,
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as we will show in using the T-F approximation. Therefore, sophisticated many-body

solutions of the energy per particle in the BCS-BEC crossover can be readily used to

extract the renormalization function. For example, quantum Monte Carlo results from

Ref. [7] provide probably the most reliable solutions to extract ζ. However, it is not in

the spirit of the method presented here to use such a sophisticated method to extract

ζ, but, rather to use simple few-body solution to obtain an approximate ζ.

4.4 Renormalization procedure for two trapped particles

The simplest system that can be used to extract the renormalization function is

two particles in a trap. To obtain the renormalized scattering length we solve (4.21) for

two opposite-spin fermions in the HF approximation. The ground state energies in this

approximation are matched with the exact energies of the system for different values of

the bare two-body scattering length as. From this procedure we extract the functional

dependence of aeff on as. The spectrum of two opposite-spin fermions in a trap having a

specified scattering length as and zero-range interactions can be determined exactly [35,

17, 22, 21]. This solution represents the ideal case in which the spectrum only depends

on as and the density (characterized by the trap length). Then, Eq. (4.21) can be solved

numerically for two particles using a HF wave function.

In choosing to extract aeff from a two-body system, we are implicitly assuming

that two-body correlations are the most important in the many-body system. This

assumption is reasonable for two-spin-component fermions with short-range interactions

because the probability of finding more than two fermions close enough to interact is

significantly reduced by Pauli repulsion.

4.4.1 Exact Energies

The zero-range pseudopotential proposed by Yang and Huang [95] and presented

in Sec. 2.2 has the necessary ingredients to represent the exact solutions. The boundary
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conditions imposed by this pseudopotential produce the correct energies and correlations

of the system. The solutions of two particles in trap interacting through the Yang-

Huang pseudopotential were presented in Sec. 2.3. Here, we select the appropriate

energy branch to generate the renormalization function.

−5 0 5

−2

0

2

4

6

as/aho

E
r
e
l
/
h̄
ω

Figure 4.3: Spectrum Erel as a function of as. The dashed blue line corresponds to the
energy branch selected for the renormalization procedure developed in this study.

Figure 4.3 shows the spectrum of Erel [Eq. (2.13)] as a function of the scattering

length. Since we are interested in describing the ground state solution, we focus on the

lowest energy curves. The lowest curve for a > 0 of the spectrum describes the formation

of a molecule, where interparticle correlations are fundamental. One anticipates that a

HF wave function would be a terrible approximation for such a state in which the two

atoms are bound together to form a molecular eigenstate. However, because we do not

consider molecule formation in this work, we will consider instead the second branch in

Fig. 4.3 for the renormalization. The renormalization for the positive scattering length

will only be valid when the two-body potential does not support a bound state or we

are interested in describing the atomic ground state with no molecule formation. The

energies used for the renormalization are ECM = 3/2~ω and the energy branch where

1/2~ω < Erel < 5/2~ω. This branch of solutions is a smooth curve that gives the correct
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noninteracting energy at as = 0.

4.4.2 Mean-field solution

Next we determine a renormalization function ζ(kfas) that, applied to the system

of two particles in a trap and using the HF approximation, yields the exact results

obtained in the previous section.

To obtain the HF solution of two opposite-spin particles in a trap, we utilize a

product wave function having the same orbital for both particles. Thus, the two-body

spatial wave function is

Ψ(r1, r2) = ψ(r1)ψ(r2), (4.23)

and the spin part is antisymmetric. We introduce this trial wave function into the

Hamiltonian and obtain the energy functional

E(ψ) =
∫ (

2ψ(r)
(
− ~

2

2m
∇2 +

1
2
mω2r2

)
ψ(r) +

4π~2ζ(kfas)
mkf

ψ(r)4
)

dr. (4.24)

Minimization of this energy functional determines the ground-state energy and wave

function. The minimization is done with respect to the orbital ψ(r) as in a standard

HF procedure [66]. But prior to carrying out this minimization of Eq. (4.24), we must

choose how to evaluate kf . Since its formal definition is kf ≡ (6π2ρ)1/3, this means that

kf depends at each r-value on ψ(r). For many-particle systems, we will use local density

approximation to evaluate kf . However, the application of a local density approximation

for a system of two particles does not seem physically correct. Thus, for two particles,

we consider the expectation value of kf to be the more appropriate quantity

kf ≡
∫

kf (r)ψ(r)2dr =
∫

(6π2ψ(r)2)1/3ψ(r)2dr. (4.25)

The minimization procedure leads to a Schrödinger-type equation, where ψ2(r) is the
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1-particle density:
(
− ~

2

2m
∇2 +

1
2
mω2r2 +

4π~2ζ(kfas)
mkf

ψ(r)2+

8π~2(6π2)1/3ρ

3m

(
ζ ′(kfas)as

kf

− ζ(kfas)

k
2
f

)
ψ(r)2/3

)
ψ(r) = εψ(r), (4.26)

where ε is a Lagrange multiplier that represents the chemical potential. The relation

between ε and the energy is not as straightforward as in the HF case, primarily because

of the appearance of ζ ′(kfa0). Note that ψ(r)2/3 is supposed to be evaluated on a branch

for which it is real and positive everywhere. Here and in the following, ζ ′(x) ≡ dζ(x)/dx.

Equation (4.26) corresponds to the Gross-Pitaevskii equation for 2 particles with

a renormalized scattering length aeff = ζ(kfas)/kf . After solving Eq. (4.26) we use

Eq. (4.24) to evaluate the energy. The basic idea is that, for any chosen bare two-body

scattering length as, we need to find ζ(kfa0) such that the energy of the ground state

of Eq. (4.24) matches exactly E0 = ECM + Erel with ECM = 3~ω/2 and Erel obtained

from Eq. (2.13). From our numerical experience, the functional dependence of ζ on kfas

appears to be uniquely defined by the set of equations Eqs. (2.13), (4.24), (4.25), and

(4.26).

There are two self-consistent procedures involved in this calculation. To solve

Eq. (4.26), we follow the standard HF procedure, adopting noninteracting solutions

as the initial guess for the orbitals. Then, we iterate Eq. (4.26) until convergence is

achieved. For this procedure, we need the functional forms of ζ(kfas) and ζ ′(kfas)

over a range of kfas values since kf is changing in each iteration. This means that we

cannot find the exact renormalization function ζ(kfas) at any fixed value of as without

knowledge of the functional form of ζ(kfas) at nearby values. To solve this problem, we

calculate ζ(kfas) self-consistently over the entire range in kfas that is of interest. First,

we select a set of scattering length (as) values that cover the entire range of interest.

For an initial trial ζ(0)(kfas), we solve Eqs. (4.26) and (4.24) at each as, obtaining

the energy E, kf , the wave function and ε. Then, to obtain a new ζ(1)(kfas), we look
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for the value of the scattering length ã0 for which Eexact(ã0) = E, and we generate a

new renormalization function that satisfies ζ(1)(kf ã0) = ζ(0)(kfas). The modification

of the renormalization function is evidently in the abscissa rather than in the ordinate.

This is a convenient way to approach this calculation. Once we have carried out the

matching procedure with the whole set of scattering-length (as) values, we generate the

next iteration for ζ(1)(kfas) and its derivative by interpolation.

In the next iteration, ζ(0)(kfas) is replaced by ζ(1)(kfas), and we repeat the

energy-matching step for the whole set of as values. This procedure is repeated a

few times until it converges to give a single correct renormalization function ζ(kfas).

Note that this iterative procedure determines a “numerically exact” renormalization

function ζ(kfas). Because the iteration procedure is efficient, in five iterations we obtain

nine digits of agreement between Eexact and E over the entire as range. However, it

is important to introduce a sensible initial trial renormalization function ζ(0)(kfas).

Many trial ζ(0)(kfas) functions, like ζ(0)(kfas) = kfas, would produce collapse of the

two-fermion wave function for large and negative as. To avoid this collapse, we propose

an initial trial ζ(0)(kfas) which is close to the correct ζ(kfas). We do this by choosing

a qualitatively correct functional form with a few free parameters, and we then find the

set of parameters that best reproduce the exact two-body energies.

The final numerical results obtained for the renormalization function ζ(kfas) are

accurately approximated by the monotonic functional form ζ0(kfas) = A+B arctan(C+

Dkfas), where A and B are chosen to have the corresponding maximum and minimum

values at as → ±∞, and C and D are chosen to obey ζ(kfas) → kfas for kfas << 1.

The maximum value is ζmax = 2.182, and minimum value is ζmin = −1.392. These

values lead to A = 0.395 and B = −1.138. Getting the correct behavior for kfas << 1

requires C ≡ arctan(−A/B) ≈ 0.362 and D ≡ −(1 + C2)/B ≈ −0.994. Thus there

are only two independent parameters A, and B specified at this level of approximation.

Figure 4.4 compares our numerical results for ζ(kfas) with this arctangent approxima-
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tion:

ζ0(kfas) = 0.395− 1.138 arctan(0.362− 0.994kfas). (4.27)

Figure 4.5 displays the fractional error in ζ0(kfas) defined as (ζ(kfas)−ζ0(kfas))/ζ(kfas)

and shows a maximum error of approximately 5%.

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

kfas

ζ
(
k

f
a

s
)

Figure 4.4: Effective scattering length ζ(kfas) (circles) and its analytical approximation
ζ0(kfas) (solid line). Figure from Ref. [183].

Now that the renormalization function has been determined, other observables

can be tested for the two-particle system. Interestingly, there is a numerically exact

agreement between the the trapping-potential-energy expectation values measured with

the exact wave function and the mean-field-renormalized wave function.However, the

one-particle density profiles calculated using the exact wave functions and the mean-

field-renormalized wave function are only in qualitative agreement, i.e., for scattering

lengths of large magnitude where |kfas| >> 1.

4.5 Application to many-particle systems

This section presents different many-particle approximations for which the renor-

malized scattering length can be used. The renormalization procedure is designed to

be used in the HF approximation. However we will see that simpler approximations
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Table 4.2: Exact numerical values of ζ(x).

x ζ(x) x ζ(x) x ζ(x)
−∞ -1.392 -1.6582 -0.82404 4.9199 1.9248

-11.937 -1.2818 -1.3097 -0.73716 5.2872 1.9426
-11.394 -1.2767 -0.96693 -0.62355 5.6545 1.9581
-10.85 -1.2712 -0.63317 -0.47254 6.0219 1.9717
-10.306 -1.2651 -0.31351 -0.27173 6.3892 1.9838
-9.7626 -1.2584 -0.014329 -0.014242 6.7566 1.9946
-9.2193 -1.251 0.26087 0.2863 7.1239 2.0042
-8.6758 -1.2428 0.51684 0.59122 7.4913 2.0129
-8.1326 -1.2336 0.76339 0.86101 7.8586 2.0208
-7.5895 -1.2231 1.0072 1.0787 8.226 2.028
-7.0467 -1.2113 1.2507 1.2474 8.5933 2.0346
-6.504 -1.1977 1.6166 1.4309 8.9607 2.0406
-5.9617 -1.182 1.9829 1.5585 8.0056 2.0238
-5.4197 -1.1635 2.3497 1.6508 8.9117 2.0398
-4.8782 -1.1416 2.7166 1.7201 9.523 2.04896
-4.3373 -1.1153 3.0837 1.7737 9.8669 2.0536
-3.7973 -1.0829 3.4509 1.8164 10.895 2.0657
-3.2585 -1.0423 3.8181 1.8512 11.311 2.0699
-2.7216 -0.99004 4.1853 1.88 11.998 2.0763
-2.1875 -0.92043 4.5526 1.9042 +∞ 2.182
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Figure 4.5: Fractional error in our analytical approximation to the numerical renormal-
ization function, ζ0(kfas). Figure from Ref. [183].
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like TF or a variational trial wave function will yield equally effective results in the

large N limit. The variational wave function we use is the noninteracting wave function

rescaled in the radial direction by a factor λ [as in Eq. (4.28)], where λ is the variational

parameter. For example, Figure 4.6 a comparison for the ground state energy of a two-

component Fermi gas in an spherical trap in the large N limit. The result obtained with

the approximate ζ0(kfas) in conjunction either with a variational trial-wave function

or with the TF method are in good agreement with the full HF calculation with the

exact ζ(kfas). The difference between the results stems mainly from the replacement

of the exact ζ(kfas) with the approximate ζ0(kfas). If we use the exact ζ(kfas) for all

the methods, the energies agree to at least 3 digits. In systems having a small number

of particles, the HF method is, of course, more reliable than the variational or the TF

method.

4.5.1 Variational

The simplest approximation [148] utilizes a trial wave function that is a simple

radial rescaling of the noninteracting wave function:

Ψλ(r1, r2, ..., rN ) =
1

λ3N/2
ΨNI(r1/λ, r2/λ, ..., rN/λ). (4.28)

The expectation value of the renormalized Hamiltonian (4.21) can be separated into

two terms, E(λ) = EHO(λ) + Eint(λ, as), where

EHO(λ) = 〈Ψλ|
∑

i

(
− ~

2

2m
∇2

i +
1
2
mω2r2

i

)
|Ψλ〉 ,

Eint(λ, as) = 〈Ψλ|
∑

i<i′

4π~2aeff

m
δ(ri − ri′) |Ψλ〉 . (4.29)

The energy of this trial wave function is calculated as a function of the variational-

scale parameter λ for the renormalized Hamiltonian (4.21). The noninteracting wave

function is a Slater determinant formed with the occupied spin orbitals. The EHO

is simple to calculate, as it requires only a change of variables to determine the λ
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dependence in Eq. (4.29) in conjunction with the known results of the noninteracting

ground state, i.e.,

EHO(λ) = ENI

(
1

2λ2
+

λ2

2

)
. (4.30)

When we apply the renormalization locally as a function of the density, the interaction

energy Eint can be written as

Eint(λ, as) =
4π~2

m

∫
ζ(kλ

f (r)as)

kλ
f (r)

ρ2
λ(r)dr. (4.31)
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Figure 4.6: Ratio of the total energy to the noninteracting energy for a spherically
trapped two-component degenerate Fermi gas in the large N limit. The circles cor-
respond to HF calculations for 2280 particles using ζ(kfas), while the solid line cor-
responds to either the variational solution, Eq. (4.33), or the TF solution, Eq. (4.45)
using the approximate renormalization function ζ0(kfas); note that the curves are in-
distinguishable on the scale of the figure. Figure from Ref. [183].

In this equation, ρ is the density of one spin component, and kλ
f (r) ≡ (6π2ρλ(r))1/3.

In the large N limit, the density of the noninteracting wave function can be replaced

by the TF density of the noninteracting system [148]. The density corresponding to our

trial wave function is a simple radial rescaling in which the density in the high-N limit
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becomes

ρλ(r) =





√
6N

3π2a3
hoλ3

(
1− r2

2a2
hoλ2(3N)1/3

)3/2
if r2 < R2

c ,

0 , otherwise.
(4.32)

Here N is the total number of particles, and Rc =
√

2ahoλ(3N)1/6 is the radius of

the Fermi gas. In the large N limit, the total energy can be expressed in units of the

noninteracting energy:

E/ENI =
1

2λ2
+

λ2

2
+

1
λ2

F

(
k0

fas

λ

)
. (4.33)

Here λ is the scaling parameter, k0
f =

√
2(3N)1/6/aho is the Fermi momentum of the

noninteracting system at the trap center, and F is

F (γ) =
44

9π2

∫ 1

0
(1− x2)5/2x2ζ

(
γ
√

1− x2
)

dx. (4.34)

Equations (4.33)and (4.35) can be used to describe either the bare Fermi or the renor-

malized interaction. First, consider the bare Fermi pseudopotential prediction. To

use the Fermi pseudopotential within our renormalization approach, we replace ζ with

ζF (y) = y. Then Eq. (4.35) can be easily solved, e.g.,

F (γ) =
44

9π2

∫ 1

0
(1− x2)5/2x2ζF

(
γ
√

1− x2
)

dx =
4096

2835π2

k0
fas

λ
. (4.35)

Therefore, the energy of the system is given by

E/ENI =
1

2λ2
+

λ2

2
+

4096
2835π2

k0
fas

λ3
. (4.36)

Figure 4.7 (a) presents the energies [Eq. (4.36)] as functions of λ for some selected k0
fas.

We can clearly see that the interaction term, which goes as 1/λ3, is the leading term for

small λ. Therefore, for as < 0, the energy becomes infinitely negative. This is always

true independent of the scattering-length strength. However, for small and negative

k0
fas, there is a metastable state corresponding to a local minimum of E [cf. the red

curve in Fig. 4.7 (a)]. This metastable state is considered the physical gaslike state. For

some critical value of k0
fas ≈ −1.21 the local minimum disappears, which produces a
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collapse of the gaslike state (see, e.g., the green curve in Fig. 4.7 (a)). This reasoning

is similar to the collapse picture of a trapped bosonic system presented in Ref. [20].

However, this analysis is incorrect in our case since the Fermi pseudopotential is only

valid for |k0
fas| ¿ 1. Now, we see how this behavior changes with the introduction of

the renormalized interaction.

The evaluation of Eq. (4.35) for the renormalized ζ function obtained from the

two-body problem must be calculated numerically unless further approximations are

made. The energy results obtained using Eq. (4.33) are shown in Fig. 4.6. We observe

that the energies remain finite for all scattering-length values, and no collapse occurs.

In the unitarity limit, the behavior can be calculated exactly:

F (γ → −∞) =
44ζmin

9π2

∫ 1

0
(1− x2)5/2x2dx =

5ζmin

9π
. (4.37)

Therefore, at unitarity, the energy is:

EU/ENI =
1

2λ2
+

λ2

2
+

5ζmin

9π

k0
fas

λ2
. (4.38)

To illustrate the behavior of the energies obtained with the renormalization, we

show three curves predicted by Eq. (4.33) in Fig. 4.7 (b). For the entire range of

interactions, the energy of the system (the minimum of the curve) remains finite, ranging

from 0.713ENI to 1.33 ENI . Thus our renormalization circumvents the collapse that

would occur for the bare Fermi pseudopotential.

Interestingly, the variational method presented here is similar to the K-harmonic

hyperspherical method developed in Refs. [149, 150]. Furthermore, it was shown in

Ref. [150] that the matrix elements calculated with the variational and K-harmonic hy-

perspherical method are identical in the large N limit if we replace λ by the hyperradius

R. For that reason, Eqs. (4.36,4.38) are equivalent to Eq. (3.11) from Ref. [149] and

Eq. (33) from Ref. [150], respectively. Therefore, the energy curves in Figs. 4.7 (a) and

(b) can be seen as hyperspherical potential curves. This relationship is an informative

new insight.
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Figure 4.7: (a) Variational energy obtained with the Fermi pseudopotential prediction.
Black curve is the noninteracting energy. Blue curve is the prediction for k0

fas = 1.5.
The red and green curves correspond to the negative scattering length side with k0

fas =
0.5 and k0

fas = −1.5, respectively. (b)Variational energy as a function of λ for the
renormalized interaction, in units of the noninteracting total energy. The solid curve
corresponds to k0

fas = 0; the dashed curve corresponds to k0
fas = −∞; the dotted-

dashed curve corresponds to k0
fas = ∞. The minimum of the energy functional for

k0
fas = −∞ occurs at λ = 0.844, which represents the ratio between the cloud radius

at unitarity and the noninteracting cloud radius.
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4.5.2 Thomas-Fermi results

In this subsection we review the TF approximation using the renormalization

function. The TF approximation was previously used to study a two-component Fermi

gas with zero-range pseudopotentials [153], but in that study no renormalization was

considered. As in the previous subsection, all the results presented here can be applied

to the Fermi pseudopotential predictions by replacing the renormalized function by

ζF (y) = y or aeff by as.

TF is a local density approximation in which, at each position r inside the trap,

the single particle orbitals are approximated by plane waves. Since we consider each

component as a distinguishable particle, the wave function at each r is a product of

two Slater determinants, one for each component. The orbitals are characterized by

the vector momentum k. The orbitals are filled uniformly up to a level kf (r), which

is the same for spin-up and spin-down fermions. The value of kf (r) will depend on

the distance r from the trap center, and on the number of particles in the system. For

a uniform system, the value of kf is a constant that characterizes the density of the

system.

To calculate the local energy, we need to sum over all the states at that position.

For example, the kinetic energy term K for the one-spin component is

K =
1

2m

∑

k

〈k|p2|k〉 =
~2

2m

∑

k

k2 〈k|k〉 =
V ~2

2m(2π)3

∫
k2d3k =

V ~2

20π2m
k5

f . (4.39)

Here V is the volume of integration that will disappear when we consider the local

energy. This volume is small in comparison with the external potential (in this case

the trap) characteristic length but is big enough to contain many particles. Thus, kf

and Vext can be considered constant during the integration. The calculation of the

expectation value of an external-trapping potential is then straightforward. We obtain

〈Vext〉 =
V

6π2
Vextk

3
f , (4.40)
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which is just the volume times the density of particles of one component ρ↑ = ρ↓ =

k3
f/(6π2) times the external potential at that position. Now we proceed to evaluate the

interaction term,

〈Vint〉 =
∑

kk′
〈kk′|Vint|kk′〉 =

1
(2π)6

4πaeff~2

m

∫ kf

0

∫ kf

0

∫ ∫
δ(x− x′)dx′dxd3k′d3k

= V
4πaeff~2

m

k3
f

6π2

(kf )3

6π2
= V

4π~2

m

k5
fζ(kfas)
(6π2)2

(4.41)

The second to last equality is simply 4πaeff~2/mV ρ↑ρ↓, which is the Hartree term.

Combining the expectation value of the kinetic energy, the external potential

energy, and the interaction energy, we obtain the total energy. For the case of two

equally numerous spin components, the local energy (per unit volume) is

E(kf ) = E(kf )/V =
~2

2m

k5
f

5π2
+ Vext

k3
f

3π2
+

4π~2

m

k5
fζ(kfas)
(6π2)2

. (4.42)

In an infinite uniform system, where Vext = 0, the energy is

E(kf ) =
~2

2m

k5
f

5π2
+

4π~2

m

k5
fζ(kfas)
36π4

. (4.43)

Equation (4.43) gives the equation of state for a uniform gas The ratio between the total

energy and the noninteracting energy has a simple form that only depends on kfas:

E(kf )/ENI(kf ) = 1 +
10ζ(kfas)

9π
. (4.44)

Using Eq. (4.42), we construct an energy functional by integrating the local energy over

all space.

E =
∫

dr
(
~2

2m

kf (r)5

5π2
+ Vext(r)

kf (r)3

3π2
+

4π~2

m

kf (r)5ζ(kfas)
36π4

)
. (4.45)

To find the ground state, we have to minimize the energy under the constraint that the

total number of particles is fixed. This constraint can be implemented by introducing

a Lagrange multiplier µ0, which is usually called the chemical potential. Thus, the



79

minimization of Eq. (4.45) for a fixed number of particles is reduced to the minimization

of

Λ ≡ E − µ0N = E − µ0

∫
dr

kf (r)3

3π2
, (4.46)

where the variational parameter is kf (r). The necessary, but not sufficient, condition

for kf (r) to minimize Λ is that
∂Λ

∂kf (r)
= 0. (4.47)
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Figure 4.8: Chemical potential in units of the noninteracting Fermi energy. The black
solid line is the prediction obtained via the renormalization function. The black circles
represent the BCS prediction, and the blue dashed curve is the prediction obtained in
Ref. [43]. Figure from Ref. [183].

This condition leads to a relationship between the local chemical potential, defined

as µ(r) ≡ µ0 − Vext(r), and the local Fermi momentum kf (r):

µ(r) =
~2k2

f (r)
2m

(
1 +

10
9π

ζ(kf (r)as) +
kf (r)as

18π2
ζ ′(kf (r)as)

)
. (4.48)

The value of µ0 fixes the number of particles, and with this relationship, we can calculate

the density profile and the energy of the system. Figure 4.8 shows the chemical potential
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dependence on kfas obtained with the renormalization function and other models. In

Fig. 4.6, we see the energy obtained using Eqs. (4.45, 4.48) in the large N limit.

In the unitarity limit [as → −∞], we obtain

µ =
~2k2

f

2m

(
1 +

10
9π

ζmin

)
. (4.49)

At unitarity, when the scattering length is much larger than the interparticle distance,

the only relevant parameter is the density [85, 130]. Dimensional analysis suggests that

µ ∝ ρ2/3 ∝ k2
f . The expected relation between µ and kf is usually written as

µ =
~2k2

f

2m
(1 + β). (4.50)

From our calculations this relation appears naturally with a universal parameter β =

10ζmin/9π = −0.492. A more detailed discussion about the predictions of renormaliza-

tion and the properties of a unitary Fermi gas will be presented in chapter 7.

It is well established [91, 130, 193] that an ultracold two-component Fermi system

exhibits superfluidity. Even though our renormalization scheme does not explicitly

consider superfluidity, it reproduces a number of properties of the Fermi gas sensibly,

including the equation of state and the chemical potential. Consequently, these results

can be used in a hydrodynamic theory to extract information about dynamics of the

system such as the speed of sound or normal modes of excitation. For example, the

speed of sound in a uniform two-component system is given by [85]

v2 =
~
m

∂

∂ρ

(
ρ2 ∂E/N

∂ρ

)
. (4.51)

Using Eq. (4.44) we can thus evaluate the speed of sound, generating the results shown

in Figure 4.9. The speed of sound results reproduce the expected limiting behaviors. In

the noninteracting limit v = vf/
√

3, while at unitarity v = vf

√
(1 + β)/3 [87]. This is

one example of a nontrivial observable quantity for this system that can be predicted

by the renormalization technique.
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4.5.3 Hartree-Fock method

The HF method for a many-particle system is an extension of the two-particle

calculation done in Section II. Consider a wave function written as the product of two

Slater determinants, as in Eq. (4.7). The HF method looks for the best set of orbitals

that minimize the energy of the system. The expectation value of the energy of the trial

wave function for a Hamiltonian of Eq. (4.21) can be written as

E(ψ) =
∫ 

2
N/2∑

i

ψi(r)
(
− ~

2

2m
∇2 +

1
2
mω2r2

)
ψi(r)

+
4π~2ζ(kf (r)as)

kf (r)m
ρ(r)2

)
dr. (4.52)

Here, the orbitals ψi(r) are the variational parameters, and Eq. (4.52) is the energy

functional to minimize. The density ρ(r) is the one-component density.
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Figure 4.9: The speed of sound as a function of kfas shown in units of the Fermi velocity
vf = ~kf/m for a uniform two-component Fermi gas. Figure from Ref. [183].

In Eq. (4.52), we have considered restricted spin orbitals, which are constrained

to have the same spatial function for spin-up and spin-down orbitals. Also, we focus on

closed-shell systems, which have an even number N of particles, with all particles paired

such that n = N/2 spatial orbitals are doubly occupied. In this situation, the density is
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expected to be spherically symmetric, and the problem becomes spherically symmetric.

Therefore, we can assume that the orbitals also have the spherical symmetry of Eq. 4.4,

i.e.,

ψnlm(r) =
unl(r)

r
Ylm(Ω) (4.53)

Here, the Ylm(Ω) are the spherical harmonics. The radial orbitals unl(r) are not the

noninteracting orbitals of Eq. (4.5) but are obtained from the minimization of the energy.

Using the orbitals of Eq. (4.53), the density and the local Fermi momentum take the

form

ρ(r) =
∑

nl

(2l + 1)
4π

u2
nl

r2
, (4.54)

kf (r) = (6π2ρ(r))1/3. (4.55)

The sum in Eq. (4.54) is over all the n and l of the occupied orbitals of a given shell.

Differentiating Eq. (4.52) over the orbitals, we find that the extreme condition is

fulfilled when the orbitals obey the following set of nonlinear equations:

{
− ~

2

2m

∂2

∂r2
+

l(l + 1)~2

2mr2
+

1
2
mω2r2

+
4π~2

m

[
ζ(kf (r)as)

kf (r)
ρ(r) +

kf (r)
6ρ(r)

(
asζ

′(kf (r)as)
kf (r)

− ζ ′(kf (r)as)
k2

f (r)

)]}
unl(r) = εnlunl(r).

(4.56)

Each of these equations can be seen as a Schrödinger equation of a particle immerse in

a mean-field. The first line of the equation describes the kinetic and external potential

terms. The term in the second line is the interaction with the mean field. The first

term in the square brackets is the standard mean-field term that is proportional to the

density. The second term in the square brackets comes from the density dependence of

the effective scattering length.

Replacing the renormalization function by the Fermi pseudopotential prediction,
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zetaF (y) = y, we obtain the standard HF equation of a normal gas used in Ref. [33].

{
− ~

2

2m

∂2

∂r2
+

l(l + 1)~2

2mr2
+

1
2
mω2r2 +

4π~2a

m
ρ(r)

}
unl(r) = εnlunl(r). (4.57)

The set of coupled equations for the orbitals, Eq. (4.56) or Eq. (4.57), are solved

self consistently. Starting from the noninteracting solution, kf (r) and ρ(r) are evaluated

and introduced on the left hand side of Eq. (4.56) to obtain a new set of orbitals. The

new set of orbitals are then used to obtain new estimates of kf (r) and ρ(r). We repeat

this iteration procedure until we reach convergence. During this procedure, we observe

that the energy of system decreases verifying that equilibrium correspond to a minimum

of energy.

Figure 4.6 shows results for the HF energy of 2280 particles. This approximation

is particulary useful for systems with small numbers of particles, in which the TF

approximation has limited applicability. In Sec. 4.6 below, this method is used to

obtain the energies of eight fermions in a trap.

4.6 Comparison with other approaches

To compare the predictions based on our renormalized scattering length with

other methods, we have carried out fixed-node diffusion Monte Carlo (FN-DMC) sim-

ulations for equal mixtures of different-spin fermions. Interactions are considered only

between different-spin fermions, which are treated here as distinguishable particles. The

interaction potential is a purely attractive Gaussian, and its width d is chosen so that

ρd3 ≈ 10−4. The FN-DMC method was discussed in detail in Sec. 3.2. Since we focus

on the BCS region, the results presented here correspond to the Jastrow-Slater wave

function Eq. (3.7).

We have calculated FN-DMC energies for eight particles in the BCS side of the

crossover. In Fig. 4.10, these energies are compared with HF calculations the include

the first- and second-order corrections in the kfas expansion [95] and with full HF
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calculations that use the renormalized scattering length directly,

Eint/N =
~2k2

f

m

(
kfas

3π
+

6(11− 2 ln 2)
105π2

(kfas)2 + ...

)
. (4.58)

The idea of using this type of expansion to construct energy functionals has been applied

for bosons [16, 28]. The expansion [Eq. (4.58)] can be introduced locally in variational

treatments, yielding an energy functional

E(ψ) =
∫ 

2
N/2∑

i

ψi(r)
(
− ~

2

2m
∇2 +

1
2
mω2r2

)
ψi(r)

+
4π~2a0

m
ρ(r)2 + a2

s

12(11− 2 log(2))
105π2

(6π2)4/3ρ(r)7/3

)
dr, (4.59)

where ρ = ρ↑ = ρ↓. If we only consider the first term in Eq. (4.58), we obtain the Fermi

pseudopotential contribution.
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Figure 4.10: Total energy of eight fermions in a trap shown in oscillator units as a
function of k0

fas. FN-DMC results are shown in open red circles, while the solid blue
line corresponds to HF results using the effective renormalized scattering length. The
dashed and dash-dotted curves correspond to solutions using first-order or first- and
second-order terms in an expansion into powers of kfas. See the discussion of Eqs.
(4.58, 4.59). Figure from Ref. [183].

Previous authors [33, 153] have considered the Fermi pseudopotential approxi-

mation to study the weak interacting limit. This approximation corresponds to the
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first term in the energy expansion (4.58). Applying Eq. (4.58) in the local density

approximation is a convenient way to introduce higher-order corrections to mean-field

theories. We obtain an expansion of the density-dependent renormalization function

using Eq. (4.58);

ζ(kfas) = kfas +
6(11− 2 ln 2)

35π
(kfas)2 + ... . (4.60)

Insertion of this result into Eq. (4.21), with the local density approximation and a

Slater determinant wave function, yields Eq. (4.59).

A power expansion of ζ(kfas) obtained by the renormalization method should

agree with this expansion. The first term is reproduced exactly but the second one

is only in qualitative agreement. While the coefficient of the second-order expansion

in Eq. (4.60) is approximately 0.525, in the density renormalization from Sec. 4.4, the

coefficient is 0.422. This disagreement may be due to the level in approximation of the

density renormalization procedure.

We find very good agreement between the mean-field results calculated using

the renormalized interaction developed in this paper and the FN-DMC (Fig. 4.10).

The variational methods including the perturbative corrections [Eq. 4.59] show good

agreement in the small kfas region, but deviate from the FN-DNC results when the

corrections to the expansion [Eq. (4.58)] become important.

It is also possible to compare our results with other quantum Monte Carlo cal-

culations. For example, Astrakharchik and co-workers [7] have studied a homogenous

doubly degenerate Fermi gas using FN-DMC methods. In their calculations, they con-

sidered up to 60 particles. We compare the energy of this system as obtained using the

density renormalization procedure in Eq. (4.44). A comparison between the two calcu-

lations and a local density BCS result (see, discussion in Sec. 2.4 and Refs. [113, 123])

is shown in Fig. (4.11).

In this section, we compared the predictions of the renormalized interaction with
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FN-DMC , mean-field BCS, and other local-density predictions. We showed that the

renormalization approach is in generally good agreement with the FN-DMC results and

provides a better description of the ground-state energy than the mean-field BCS results.
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Figure 4.11: E/ENI for an infinite homogeneous Fermi gas kfas in the mean-field ap-
proach (solid line). The dashed curve corresponds to the local density BCS solution, and
the circles correspond to FN-DMC results obtained in Ref. [7]. Figure from Ref. [183].

4.7 Conclusions

In this chapter, we have presented different methods for analyzing the Hartree

term correction. Starting with the Fermi pseudopotential, we have analyzed the first or-

der correction in the weakly interacting BCS limit. Then we proposed a renormalization

method to extend the use of zero-range interactions.

The density renormalization method applies the philosophy of many effective

theories. It is the goal of most many-body theoretical studies to derive predictive power

for numerous observables of interest, using simpler methods that bypass the actual

calculation of this ”true” ground-state wave function for the trapped atomic gas. At

the heart of many such treatments are the following two steps: (i) replacement of the

two-body potential energy by a zero-range Fermi pseudopotential, followed by (ii) a
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mean-field wave function ansatz and the computation of observables. The basic level

of description for a Bose gas incorporates no correlations whatsoever. For a Fermi

gas, correlations are generally treated at either the bare minimalist level of exchange

correlations alone, using Slater determinant wave function. A more sophisticated level

is often considered for a system of mutually attractive fermions, which are frequently

described with BCS-type correlations built into the description. One way of visualizing

the value of a Fermi-type zero-range pseudopotential adopted in most such theories is to

remember that it has been specifically designed to give a meaningful interaction energy

for each pair of particles even when the wave function structure is too simplistic to

incorporate any appreciable correlations.

The renormalization scheme presents an alternative implementation of this gen-

eral philosophy. We developed a procedure for renormalizing the coefficient of a zero-

range potential, based entirely on an analysis of the nonperturbative two-body system

solved first with and then without wave-function correlations. When we applied this

procedure to the many-body Fermi gas, we find agreement with the standard dilute gas

limit, an important prerequisite for any realistic theory. But in addition, our procedure

is able to treat higher densities ρ, including the regime |ρas
3| >> 1. We studied a

number of observables that have been explored both experimentally and theoretically

in the BCS-BEC crossover regime, and found good agreement using our renormalized

HF approach all the way to the unitarity limit, as → ∞. Perhaps surprisingly, this

good agreement is achieved without incorporating explicit BCS-type correlations into

the many-body wave function. One result of this study is an approximate expression

for the renormalization function in closed analytical form that may prove to be useful in

other studies of the two-component degenerate Fermi gas. Another interesting result is

that at unitarity, the chemical potential exhibits the expected density dependence char-

acterized by the parameter β = −0.492, which, interestingly, is consistent with recent

experiments [134, 25, 105, 167].
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Unfortunately, the current implementation of the renormalization cannot describe

the BEC side. An possible way to extend the renormalization method to the BEC side

is to treat the dimers as bosonic particles and describe the system with the Gross-

Pitaevskii equation. The renormalized dimer-dimer interaction would be obtained by

matching the two-boson trapped system with the “exact” four fermions calculations

from Chapter 6. This renormalization on the BEC side would complement the renor-

malization presented here for the BCS side. However, the combination of the BCS and

BEC renormalization treatments would not predict a smooth transition in the crossover

region. In order to achieve such smooth transition, we should use a more flexible many-

body wave function which can represent a Fermi gas in the weak interacting region and

a gas of Bose molecules in the BEC region as it is achieved by the BCS wave function.

Such desired theory should also be able to include both Hartree and pairing corrections.



Chapter 5

Spectrum and Dynamics of few-body trapped systems

5.1 Introduction

In this chapter, we analyze the spectrum of fermionic few-body trapped systems

in the BCS-BEC crossover. In particular, we focus on systems with N = 2, 3, 4. We

will also analyze the dynamics of these systems when the scattering length is tuned in

the BCS-BEC crossover.

Few-body systems can provide an alternative approach to the BCS-BEC crossover

problem. A four-body system, made up of two spin-up and two spin-down fermions,

is the smallest system that can describe the BCS-BEC crossover. Since a four-body

system can describe the formation of two atom pairs or two bound molecules, we can

analyze its evolution from an interacting atomic Fermi gas to an interacting molecular

bosonic system.

The BCS-BEC crossover problem is usually studied by many-body theories that

focus mainly on ground-state properties. In contrast, few-body calculations not only

describe the ground state, but also the excitation spectrum. Furthermore, these calcula-

tions do not require the standard approximations applied to many-body systems. Thus,

few-body systems allow exact numerical solutions that can be studied with many-body

theories; they also allow us to test nontrivial behavior.

In this chapter, we first solve the time-independent Hamiltonian for different

scattering length values as. Then we use these solutions to analyze the dynamics of the



90

system. The model Hamiltonian that describes a trapped two-component Fermi gas is

given by

H =
N1∑

i

(
− ~

2

2m
∇2

i +
1
2
mω2r2

i

)
+

N2∑

i′

(
− ~

2

2m
∇2

i′ +
1
2
mω2r2

i′

)
+

N1,N2∑

i,i′
V (rii′). (5.1)

Here, unprimed indices label spin-up and spin-down particles. The interaction potential

V has a purely attractive Gaussian form (see Eq. 3.20). The relevant length scale of

the problem is the trap length aho =
√
~/mω. In Eq. (5.1), the center-of-mass motion

can be decoupled, reducing the dimensionality of the numerical calculations. All the

solutions presented here have the center-of-mass wave function in its ground state.

To obtain the spectrum, we use a correlated-Gaussian (CG) basis-set expan-

sion [157, 180], which allows a simple evaluation of the matrix elements. A diabatization

procedure allows us to reduce the system to a tractable set of eigenfunctions. Then we

solve the time-dependent Schrödinger equation using the adiabatic representation. The

numerical results are then compared with a Landau-Zener model and with experimental

results. Finally, we analyze temperature effects in the two-body system and compare

them with experimental predictions for ultracold Fermi gases.

5.2 Spectrum in the BCS-BEC crossover

In this section we use the CG method to obtain the spectrum of N = 2, 3, 4

systems. All solutions have a relative angular momentum of Lref = 0.

First, we consider the N = 2 system. Solutions for this system are very easy to

find. In chapter 2 we presented semianalytical solutions for a zero-range pseudopotential.

Using this model potential, the dynamics of the system have also been studied [22].

Here, we solve the N = 2 system with a short, but finite, two-body interaction using

the CG method. These solutions help us to test both the CG method used to obtain the

spectrum and the algorithm we use to solve the time-dependent Schrödinger equation.

Our results are compared with the N = 3, 4 systems, yielding a general description of
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few-body trapped systems.
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Figure 5.1: Spectrum of two particles with J = 0 in a trap obtained with CG method.
The black curve corresponds to the ground state that evolves in a dimer configuration.
Red curves correspond to excited states that evolve in a two free-atom configuration.

Figure 5.1 presents the L = 0 spectrum obtained with a CG of two particles

in a trap. This spectrum resembles the zero-range spectrum presented in Fig. 2.2.

Both finite and zero-range results are nearly indistinguishable because the range of the

interacting potentials is much shorter than the scattering length as. In the system of

two particles in a trap, we see a clear topology when the scattering length is tuned across

a resonance. In the weakly interacting regime (small and negative as), the energies are

approximately separated by 2~ω. As as is tuned closer to the unitarity region, a set

of avoided crossings appears that leads to the appearance of a two-body bound state

in the as > 0 region. In free space, this state has a binding energy of ~2/(ma2
s). The

presence of a trap alters this result, leading to a trap energy given by Eq. 2.13. In the

limit as ¿ aho, the two particles form tightly bound dimers of size ∼ as/2, and the

trap energies given by Eq. 2.13 converge to their free-space value of ~2/(ma2
s). Another

interesting point is that the unbound spectrum on the weakly interacting BEC side

reproduces the spectrum of the weakly interacting BCS side.
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We are interested in understanding how this spectrum changes when we con-

sider more particles. Here, we analyze the L = 0 spectra for N = 3 and N = 4 in

the BCS-BEC crossover. To obtain the spectra, we use the CG method to solve the

time-independent Schrödinger equation for different values of as. Like most numerical

methods, this method provides an adiabatic spectrum, i.e., the energies of the spectrum

are labeled according to their energy values as as changes. The N = 3 and N = 4

spectra present a series of crossings or narrow avoided crossings when the scattering

length is tuned in the BCS-BEC crossover. For this reason, it is convenient to use a

representation where these narrow avoided crossings are treated diabatically, and the

spectrum smoothly evolves from the BCS to the BEC side. The diabatic representation

is more relevant from the physical point of view since the diabatic states are usually

associated with good or “approximately good” symmetries of the problem.
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Figure 5.2: Energy spectrum as a function of λ in the unitarity region for N = 4 with
J = 0. The thin solid black lines correspond to the adiabatic spectrum. The wide black
line with circles is the diabatic ground state labeled Ψ1. The blue curve with circles is
the diabatic first-excited state labeled Ψ2, the wide red curve with circles is the diabatic
state Ψ5, and the wide green curve with circles is the diabatic state Ψ13.

To illustrate the diabatization procedure, we consider the spectrum of the N = 4

system in the strongly interacting region as shown in Fig. 5.2. We see a series of crossings
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and avoided crossings when the adiabatic parameter λ ≡ 1/as is tuned in the strongly

interacting region. The avoided crossings can be roughly characterized by their width

∆λ, which is the range where the two adiabatic energy curves are coupled. There are

narrow crossings where ∆λ ¿ 1/aho and there are wide crossings where ∆λ & 1/aho. To

obtain smooth energy values, we use variation of the diabatization procedure presented

in Ref. [88].

The objective of the diabatization algorithm is to make the one-to-one connection

between states and energies in consecutive points of the λ grid that maximize the sum of

the overlaps between connected states. The diabatization procedure starts from the BCS

side of the resonance and connects the states (and their energies) between consecutive

values of λ for which their overlap is maximum. When two initial energies connect to

the same final energy, a refinement of the diabatization procedure is applied.

Diabatization is controlled by the spacing between consecutive values of λ given

by ∆λg. If the width of the avoided crossing is smaller than ∆λg, then that crossing

is diabatized. But if the width of the avoided crossing is larger than ∆λg, then that

crossing is not diabatized. Thus, ∆λg is selected so that narrow crossings are diabatized

and wide crossings remain adiabatic. For example, in Fig. 5.2 we see how this procedure

diabatizes the narrow crossings of Ψ13 of the N = 4 system. However, wide crossings

such as the one between Ψ5 and Ψ13, are still adiabatic in this representation.

This structure of avoided crossings permits a global view of the manner in which

states evolve from weakly interacting fermions at a < 0 to all the different configurations

of a Fermi gas at a > 0, i.e., molecular bosonic states, fermionic states, and molecular

boson-Fermi mixtures. Furthermore, it allow us to visualize concretely the possible

pathways of the time-dependent sweep experiments. Here, we analyze the diabatic

spectrum for N = 3 and N = 4.

The diabatic spectrum of the N = 3 system is presented in Fig. 5.3. The system

of three particles in a trap presents a rich structure of avoided crossings related to the



94

appearance of a bound dimer state. There is a family of states with energies separated

by approximately 2~ω that are attached with the two-body threshold. These states

represent the ground state and excitations of a system formed with a dimer and a

fermion in an L = 0 state. There are other states corresponding to the red energy

curves in Fig. 5.3 that do not form dimer states. These three-atom states reproduce

the three-particle noninteracting spectrum in the BEC limit, i.e., as → 0+. Finally, we

note that no trimer formation occurs.
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Figure 5.3: Energy spectrum of L = 0 three-particle states. The black line with circles
shows the diabatic ground state. The blue curves with circles show the diabatic excited
states, which represent a bound dimer plus an extra particle. The red curves with circles
show the diabatic states where no bound dimer is formed.

We next consider the four-body diabatic spectrum presented in Fig. 5.4. The

structure of avoided crossings is more complicated because of the appearance of two

different thresholds for the dimer and dimer-dimer, respectively. We identify three dif-

ferent families of diabatic states in this spectrum. The dimer-dimer family, represented

by the black and blue curves, describes the ground and excited dimer-dimer states.

These states are approximately separated by 2~ω on the BEC side. The dimer–two-

atom family, represented by the red energy curves, follows the dimer threshold. In the
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BEC limit, the dimer–two-atom family reproduces the degeneracies of three distinguish-

able particles: a spin up, a spin down and a dimer. The third family describes four-atom

systems. In this family, none of the atoms form dimers, and the energy remains positive

in the crossover region. In the BEC limit, the four-atom family reproduces the spectrum

of the noninteracting four-body system.

The evolution of the N = 3 and N = 4 spectra in the BCS-BEC crossover can

be qualitatively understood by considering the important quantum numbers for the

description of the dimer. In the N = 3 system, for each vibrational excitation of 2~ω,

there is one state in the noninteracting limit that diabatically becomes a atom-dimer

state. This atom-dimer state corresponds qualitatively to a states where the relative

angular momentum of a spin-up–spin-down pair is zero [L↑↓rel = 0], and the relative

angular momentum between the pair and the remaining atom is also zero. The spin-

up–spin-down pair is in the lowest vibrational state 1s, that evolves in a weakly bound

dimer. In the weakly interacting BCS limit where the degeneracy of the vibrational

states is broken, such pair-atom states correspond to the lowest states.

A similar effect occurs in the N=4 system. For each vibrational excitation of

2~ω in the noninteracting limit, there is one state that diabatically becomes a dimer-

dimer state. These states correspond qualitatively to states where the relative angular

momentum of two spin-up–spin-down pairs is zero [L↑↓rel = 0], and the relative angular

momentum between the pairs is also zero. The spin-up–spin-down pairs are in the lowest

vibrational state. In the weakly interacting BCS limit, where the degeneracy of the the

vibrational states is broken, pair-pair states correspond to the lowest states.

A direct and more concrete way to visualize the structure of the spectrum is to an-

alyze the evolution of the adiabatic hyperspherical potential curves. Figure 5.5 presents

the N = 4 hyperspherical potential curves Uν(R) as functions of the hyperradius R ob-

tained with the correlated Gaussian hyperspherical method (CGHS). Panel (a) presents

the potential curves in the BCS regime. These potential curves are clearly grouped
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Figure 5.4: Energy spectrum for four particles with J = 0 in the crossover region
(lowest 20 diabatic states). The black curve corresponds to the ground state. The
blue curves are the states that go diabatically to excited dimer-dimer configurations.
The red curves correspond to states that go diabatically to configurations of a dimer
plus two free atoms, and the green curves correspond to states that go adiabatically to
configurations of four free atoms. The lowest green curve is the atomic ground state on
the BEC side of the resonance. Results from Ref. [182].
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Figure 5.5: Hyperspherical potential curves in the BCS-BEC crossover for N = 4 with
J = 0. (a) Potential curves in the BCS regime, as ∼ −0.3aho. (b) Potential curves in
the BEC regime, as ∼ 0.3aho.
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in families. The potential curves belonging to the same family are degenerate in the

noninteracting limit. Thus, the weak interactions in the BCS break the degeneracies of

the potential curves forming these families of potential curves. Panel (b) describes the

system in the BEC regime. In this case, the description of the system is quite clear.

The lowest potential curve is more than twice as deep as the rest of the curves and

is associated with the dimer-dimer threshold. The family of dimer-dimer states lives

mainly in the lowest potential curve. The rest of the potential curves are associated

with the dimer–two-atom threshold. The dimer–two-atom states are mainly described

by this family of potential curves. There is a third family of potential curves, not shown

in Fig. 5.5 (b), that describes four-atom states. This family of potential curves has a

different large R asymptotic behavior.

5.3 Time evolution

The diabatic representation can be used to ramp an initial configuration through

the BCS-BEC crossover, mimicking experiments carried out at different laboratories

at JILA and Rice University. The initial configuration is propagated using the time-

dependent Schrödinger equation

i~
d |Ψ〉
dt

= H[λ(t)] |Ψ〉 . (5.2)

The time dependence of the Hamiltonian comes from the λ(t) term. In our work, we

focus on unidirectional ramps. Starting from the ground state on the BCS side, the

parameter λ is ramped through the resonance to the BEC side at different speeds,

ν = dλ
dt . The relevant dimensionless speed quantity is ξ = ahoν/ω.

To propagate the initial configuration, we use the diabatic representation obtained

previously. First, we divide the BCS-BEC crossover range into sectors. Starting from the

BCS side at λ ≈ λBCS to the BEC side at λ ≈ λBEC , the BCS-BEC crossover is divided

in 40–80 sectors. At the middle of each sector, the time-independent Hamiltonian [Eq.
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(5.1)] is solved using the CG method. For the N = 3 and N = 4 systems, thousands

of CG basis functions are usually needed to describe the spectrum. We could use this

basis set to solve Eq. (5.2) but this large basis would make the numerical propagation

very slow. Instead, we use the diabatic representation obtained at the middle of the

sector to expand the time-dependent wave function through the sector j, i.e.,

|Ψ(t)〉 =
Nd∑

i

cj
i (t) |Ψj

i 〉 . (5.3)

Here, |Ψj
i 〉 is the diabatic basis i of sector j, and Nd is the number of diabatic states

considered. The time dependence only appears on the complex coefficients cj
i (t). Se-

lecting only the lowest 20–100 diabatic states at that point, we reduce the size of the

Hamiltonian matrix in Eq. (5.2). Since the inverse scattering length λ changes very

little in each sector, the relevant diabatic states are well described by this reduced basis

throughout the sector.

The time-dependent Schrödinger equation, Eq. (5.2), is propagated from one ex-

treme of the sector to the other using an adaptive step Runge-Kutta method. When

λ changes from a sector to the following one, the wave function in the basis set is pro-

jected onto the new basis set. It is important to test that no information is lost in

this projection. To avoid this potential problem, the relevant states for the particular

propagation must be well described in each sector. For example, in most of the time

propagations considered here, the ground state at the BCS side, |ΨBCS
1 〉, is propagated

to the BEC side at different speeds. If the velocity is fast enough, the propagation is

almost a projection of the initial states into states at different λ values. In other words,

the propagation is so fast that the initial state does not have time to change, it is simply

projected in the different basis sets as a function of λ. To accurately describe this fast

propagation, the diabatic basis set in each sector should be able to accurately describe

|ΨBCS
1 〉. This state is well described in the BEC side by the lowest atomic state. How-

ever, in the strongly interacting unitarity region, there is no state that qualitatively
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describes |ΨBCS
1 〉.

For that reason, we do observe in the numerical propagations that some proba-

bility is lost during these fast ramps. Also, we observe that most probability is lost in

the strongly interacting region. To avoid this problem, we introduce a new state in our

diabatic basis set at each sector. This new state is orthogonal to the diabatic basis set

and completes the description of the ground state in the BCS side. To obtain this new

state, we apply a Gram-Smith orthogonalization of the ground state on the BCS side

with respect to the diabatic basis set:

|Ψj
Nd+1〉 = N

(
|ΨBCS

1 〉 −
Nd∑

i

〈Ψj
i |ΨBCS

1 〉 |Ψj
i 〉

)
. (5.4)

Here N is a normalization factor. The new state |Ψj
Nd+1〉 ensures that the ground state

in the BCS side is well described at any λ value.

To understand the time propagation of this system, we visualize how the proba-

bilities evolve in the BCS-BEC crossover. At each point of the time propagation, the

probability of being in state i is given by pi(t) = |cj
i (t)|2. Here j denotes the sector that

includes λ(t). We can obtain the probabilities of evolving in a given family by summing

the probabilities of all states belonging to the same family. For two particles, there are

two families, the dimer family, which only includes the lowest state, and the two-atom

family, which includes the rest of the states. In this case, we define pd(t) = |cj
1(t)|2, and

P2a(t) =
∑Nd

i=2 |cj
i (t)|2.

Similarly, for the N = 3 system we can define three families: the ground state,

the excited atom-dimer state, and the three-atom state. For each of these families we

can define a probability: pg(t), pad(t), p3a(t), respectively.

Finally, in the N = 4 system, we can define four families: the ground state,

the excited dimer-dimer states, the dimer–two-atom states, and the four-atom states.

These families are characterized by the probabilities pg(t), pdd(t), pd2a(t), and p4a(t),

respectively.
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Figure 5.6: Probabilities of the N = 4 system during a unidirectional ramp at constant
speed from the BCS to the BEC side. The initial configuration is |ΨBCS

1 〉. The black
curve corresponds to pg(t). The blue curve corresponds to pdd(t). The red curve cor-
responds to pd2a(t), and the green curve corresponds to p4a(t). (a) Probabilities in a
ramping at a speed of χ ≈ 13. (b) Probabilities in a ramping at a speed of χ ≈ 52. (c)
Probabilities in a ramping at a speed of χ ≈ 128

.
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Figure 5.6 presents examples of the numerical time evolution of a N = 4 system

during a unidirectional ramp at constant speed from the BCS to the BEC side. As

expected, the probability of staying in the ground state decreases with speed. The

probability of evolving in the four-atom configuration increases with speed, which is

in agreement with the projection argument. The transfer of probability occurs mainly

in the strongly interacting regime, −2 . aho/as . 2. In this region, the diabatic

states are sometimes mixed, producing jumps in the probabilities. For example, around

aho/as ≈ 1, the red and blue curves have a kink due to an avoided crossing between an

excited dimer-dimer state and a dimer–two-atom state.

We can also study the probabilities at the end of the time evolution as functions

of the speed ξ. Before analyzing these numerical results, however, we must consider the

simple Landau-Zener model that provides insights about our numerical calculations.

5.3.1 The Landau-Zener model and the P-matrix analysis

The Landau-Zener model provides a simple description of nonadiabatic transi-

tions. We review this model and analyze the relationship between the P-matrix between

adiabatic states and the Landau-Zener parameter, as derived in Ref. [45].

We first consider a two-channel model as a function of an adiabatic parameter λ

that is changed at constant speed, i.e., λ = νt. The Landau-Zener model assumes the

following Hamiltonian,

H




ψ1

ψ2


 =




ε1 ε12

ε12 ε2







ψ1

ψ2


 . (5.5)

Following the Landau-Zener model, we set ε1−ε2 = αλ, and we consider ε12 independent

of λ, i.e., dε12/dt = 0. The time evolution of this model can be easily solved. We are

particularly interested in the nonadiabatic transition probability Tna. Tna describes the

probability of evolving to a final adiabatic state different from the initial adiabatic state

after the parameter λ is tuned through an avoided crossing. To obtain this probability,



102

the time-dependent Schrödinger equation is propagated starting at t = −∞ [with ψ(t) =

ψ1] to t = +∞. The nonadiabatic probability is then given by Tna = | 〈ψ(+∞)|ψ2〉 |2.

Landau and Zener solved this problem analytically and showed that

Tna(ν) = e−δ, (5.6)

where δ = 2πε12/(αν).

1

1

++

--

2

2

E

Figure 5.7: Schematic description of the Landau-Zener model. Solid black and red
curves correspond to the nonadiabatic states ψ1 and ψ1, respectively. Dashed blue and
green curves correspond to the adiabatic states ψ− and ψ+, respectively.

Unfortunately, Eq. (5.6) is not very useful in its current form when it comes

to analyzing numerical results. In particular, it requires a knowledge of nonadiabatic

quantities such as α and ε12. In numerical calculations, in which the adiabatic spectrum

is obtained, these quantities cannot be directly calculated. To obtain the coupling ε12,

we can calculate ∆, i.e., the difference between adiabatic energy curves at the closest

approach. In the Landau-Zener model ∆ = 2ε12. However, the quantity α is difficult to

estimate unless you have a very clean avoided crossing (like the one in Fig. 5.7).

Nevertheless, Clark [45] showed how α can be obtained from an analysis of the

adiabatic P-matrix coupling. The P-matrix between two adiabatic states |ψ+〉 and |ψ−〉
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is defined as

P+−(λ) = 〈ψ+|dψ−
dλ

〉 . (5.7)

As we show below, the properties of P+−(λ) depend on ∆ and α. Therefore, by analyzing

the P-matrices, we can extract the Landau-Zener parameters.

To show the relation between the P+−(λ) and ∆ and α, we consider the time-

independent solutions of the Hamiltonian [Eq. (5.5)] to be a function of the adiabatic

parameter λ, where

H(λ)ψ±(λ) = ε±(λ)ψ±(λ). (5.8)

The eigenvalues are given by

ε± =
1
2

(
ε1 + ε2 ±

√
(ε2 − ε2)2 + 4ε212

)
=

1
2

(
ε1 + ε2 ±

√
α2λ2 + ∆2

)
. (5.9)

Here, we set ε1−ε2 = αλ, and ∆ = 2ε12. The adiabatic eigenvectors can be now written

as



ψ+

ψ−


 =




cos θ sin θ

− sin θ cos θ







ψ1

ψ2


 . (5.10)

Next, we consider the P-matrix for this system:

P+−(λ) = 〈ψ+|dψ−
dλ

〉 =
〈ψ+|dHdλ |ψ−〉

ε+ − ε−
. (5.11)

The second equality is a consequence of the Hellman-Feynman theorem, and we use it

to extract P+−(λ). Using Eqs. (5.5) and (5.10), we obtain

〈ψ+|dH
dλ
|ψ−〉 = −α cos(θ) sin(θ) = −α

tan(θ)
1 + tan2(θ)

. (5.12)

Analyzing the eigenvectors and setting ε1 − ε2 = αλ and ∆ = 2ε12, we obtain that

tan(θ) = − ∆
αλ +

√
α2λ2 + ∆2

. (5.13)

Finally, combining Eqs. (5.11-5.13), we obtain

PLZ
+−(λ) =

1
2

( α

∆

) 1
1 + (αλ

∆ )2
. (5.14)
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Thus, the P-matrix only depends on the ratio α/∆. Since the Landau-Zener parameter

depends on ∆2/α, the P-matrix analysis is not enough to extract the Landau-Zener

parameter δ. For that reason, ∆ is extracted from the spectrum. Another interesting

point is that the area under the P-matrix in entirely independent of both α and ∆.

5.4 Landau-Zener analysis of few-body trapped systems.

The N = 2 trapped system can be treated with the two-channel Landau-Zener

model. However, the N = 3 and N = 4 systems are more complicated. Their spec-

tra have several avoided crossings that are potentially important for the unidirectional

ramps considered in this section. Thus, the dynamic of these systems cannot be de-

scribed by a simple Landau-Zener transition. For that reason, we model the transition

probabilities pi of the N = 3 and N = 4 systems with a sequence of Landau-Zener

transitions. Analyzing the spectra and the numerical P-matrices, we can extract the

Landau-Zener parameters δ. Since the P-matrices peak at different λ values, we can use

the positions of the peaks to understand the order in which the Landau-Zener transitions

occur.

We begin by extending the definitions presented in the Sect. 5.3.1 for describing

several Landau-Zener transitions. The Landau-Zener transition probability between the

adiabatic Ψi and Ψj is

Tij(ν) = e−δij = e
− ηij

ξ . (5.15)

The Landau-Zener parameter δij characterizes the transition and has the form δij =

π∆2
ij

2αijν , where ∆ = Ei − Ej is evaluated in the transition region (at the peak of the

P-matrix), and αij is obtained from P-matrix analysis. The transition probabilities Tij

can be conveniently described as functions of the dimensionless speed parameter ξ and

dimensionless quantities ηij that describe the specific transitions.

Similarly, we extend the definitions of the P-matrix to several states. The P-
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matrix between two adiabatic states Ψi and Ψj is

Pij(λ) = 〈Ψi|dΨj

dλ
〉 =

〈Ψi|dHdλ |Ψj〉
Ei − Ej

, (5.16)

where λ is the adiabatic parameter, and Ei and Ej the energies of these states. To

numerically evaluate Pij(λ), we use

H = H0 + V0(λ)Hint and
H
dλ

= V ′
0(λ)Hint. (5.17)

In the CG basis set expansion, H0 and Hint, are matrices and V0(λ) is the potential

depth of the interaction whose derivative is V ′
0(λ). Using Eq. (5.17), the evaluation of

a P-matrix takes the form

Pij(λ) =
V ′

0(λ)
Ei(λ)−Ej(λ)

〈Ψi(λ)|Hint|Ψj(λ)〉 . (5.18)

In Eq. (5.18), we include all the explicit dependence on λ. Note that Hint does not

depend on λ and is only evaluated once before being used to describe the complete

crossover region. For the Gaussian interaction used for these systems, V0(λ) is, to a

good approximation, a linear function, and V ′
0(λ) is then constant. The energies Ei(λ)

and Ej(λ) are extracted from the spectra presented in Figs. 5.1, 5.3, and 5.4. The

term 〈Ψi(λ)|Hint|Ψj(λ)〉 implies just a matrix multiplication of the eigenstates with the

matrix Hint.

Figure 5.8 presents some of the P-matrices we obtained numerically. We observe

that all these Pij have a Lorentzian-like form. The P1,2 has a smooth behavior but the

other Pij are not very smooth. The series of crossings or narrow avoided crossings affect

the P-matrices because the diabatization procedure cannot avoid a possible mixing of

states when the energies are close to becoming degenerate. Nevertheless, as we show

below, the analysis of these P-matrices is possible and provides good estimates of the

Landau-Zener parameters.

According to the Landau-Zener theory presented above, for each transition be-
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tween Ψi and Ψj has a Lorentzian form of

PLZ
ij (λ) =

αij

2∆ij

1

1 +
[

αij(λ−λij)
∆ij

]2 , (5.19)

where ∆ij and αij are the parameters that characterize the Landau-Zener parameter δij .

For Landau-Zener transitions, we can more rigorously define the width of the avoiding

crossing as ∆λij ≡ ∆ij/αij . The position of the PLZ
ij (λ) peaks are given by λij . In the

Landau-Zener formula, the height and width of the Lorentzian are characterized by a

single parameter ∆ij/αij . However, because most of numerical calculations cannot be

described accurately by PLZ
ij (λ), a more flexible function is needed. To fit our numerical

results we propose

P fit
ij (λ) =

aij

2
1

1 +
[

(λ−λij)
bij

]2 . (5.20)

The height of the Lorenztian is given by aij , and the width is given by bij . In principle,

we can use either aij , bij , or a combination of both quantities to estimate ∆ij/αij . We

observe that the extraction of ∆ij/αij using the width of the Lorentzian, bij , usually

gives results closer to the numerical predictions. For the N = 2 case, the Landau-Zener

formula works well, and aij ≈ bij , but in the N = 4 case, the width and height of the

fitted Lorentzian can differ up to a factor of 2.

5.4.1 Numerical results

We first analyze the dynamics of the N = 2 system. Starting at λBEC ≈ −7/aho,

we ramp the interaction at different speeds ν to the BEC side, where λBEC ≈ 7/aho.

The probability of remaining in the ground state (dimer state) is then measured. The

symbols in Fig. 5.9 (b) present the numerical results. The black circles correspond to

the probability of evolving in the dimer state (red energy curves in Fig. 5.1), and the red

circles correspond to the probability of evolving in two-atom states (red energy curves

in Fig. 5.1).
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Figure 5.8: The most important P matrices involved in a ramping that starts at the
BCS side with all the probability in the ground state. The black curve represents P1−2,
the blue P1−5, the red P2−5, and the green P5−13.
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Figure 5.9: Numerical results and Landau-Zener model for N = 2.(a) circles correspond
to P12 obtained numerically. The solid line corresponds to the best fit with P fit

12 . (b)
Transition probabilities as a function of the speed ξ. Black symbols represents evolution
in the dimer family (ground-state). Red symbols represents evolution in the two-atom
family (red energy curves in Fig. 5.1). Black and red lines correspond to p1 and p2

obtained from the Landau-Zener model.
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The simple form of the transition-probability numerical results and the spectrum

suggest that the N = 2 system can be modeled by a single Landau-Zener transition

between the ground state, labeled by 1, and the first-excited state, labeled by 2. We

analyze the numerical P12 and find it has a clear Lorentzian shape [see Fig. 5.9 (a)].

For this P12, the difference between a12 and b12 is less than 15%. Still, the b12 param-

eter provides a better Landau-Zener parameter η12. The Landau-Zener model predicts

probabilities p1 to remain in the ground state and p2 to evolve in the first excited state

as given by

p1 = (1− T1,2), (5.21)

p2 = T1,2. (5.22)

The Landau-Zener parameter corresponding to this transition is η12 ≈ 4.625. For large

speed parameters ξ, we note that the Landau-Zener prediction is slightly higher than

the numerical results. This discrepancy might be due to limitations in the numerical

calculation for predicting a full conversion efficiency. However, we note an excellent

agreement between the numerical results and the Landau-Zener prediction.

Things get more complicated as we turn the discussion to a N = 3 system.

Figure 5.10 presents the numerical results and the Landau-Zener prediction. In this case,

we cannot describe the transition probabilities with a single Landau-Zener transition;

instead we propose a sequence of Landau-Zener transitions. Even so, we want to restrict

our model to the simplest possible case. Since in the N = 3 system there are three

families of states, we consider only three states, one for each family, in describing this

system in the Landau-Zener approximation. Analyzing the spectrum and the numerical

P-matrices, we observe that the most important P-matrices describe transitions between

the lowest energy states of each family. These states correspond to the ground state

(labeled as 1), the first-excited state (labeled as 2), and the state corresponding to the

lowest red energy curve in Fig. 5.3. This last state is the second-excited state in the
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BCS regime, and we label it as 3. Analyzing the P-matrices, we note that the first

transition is 1 → 2, the second transition is 1 → 3, and finally the third transition is

2 → 3. This order in the transitions implies probabilities

p1 = (1− T1,2)(1− T1,3), (5.23)

p2 = T1,2(1− T2,3), (5.24)

p3 = T1,2T2,3 + T1,3(1− T1,2). (5.25)

It is easy to test whether the total probability is conserved, i.e., p1 + p2 + p3 = 1.
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Figure 5.10: Probability of evolving in a given configuration as a function of the dimen-
sionless speed parameter χ. The symbols correspond to the numerical evolution, while
the curves correspond to the Landau-Zener theory. Black curve and symbols correspond
to the ground state. Blue curve and symbols corresponds to the excited atom-dimer
configuration, and red curve and symbols corresponds to the three-atom configuration.

Analyzing the spectrum and the P-matrices, we obtain Landau-Zener transitions

of η12 ≈ 9.1, η13 ≈ 13.4, and η12 ≈ 2.5. The probability pi results from the Landau-

Zener model are presented as solid lines in Fig. 5.10. From the figure we can see that the

Landau-Zener model qualitatively describes the numerical results. However, we can also

clearly see the limitations of this model, including important deviations between it and

the numerical results. In particular at large ξ, the conversion efficiency for three-atom
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states according to the Landau-Zener model is much higher than the numerical results.

We carried out several tests of the numerical calculations that confirmed the results

presented in Fig. 5.10. We observe that the P-matrices have large overlaps and their

peaks are very close together. As a result, the approximation of a sequence of isolated

Landau-Zener transitions fails. A theory that takes into account multiple simultaneous

transitions will be needed. Such theory is beyond the scope of this dissertation.

Finally, we consider the N = 4 system. Figure 5.11 (b) displays our numerical

results. The black symbols correspond to the dimer-dimer ground state. The blue

symbols correspond to the excited dimer-dimer family, the red symbols to the dimer–

two-atom family, and the green symbols to the four-atom family. For slow ramps (small

ξ), the probability of forming a condensate, i.e., remaining in the ground state, is large.

For intermediate ramps, the greatest probability is breaking one bond and ending up

with a dimer plus two particles. For fast ramps (large ξ), the probability of staying in

the atomic ground state on the BEC side is the most important. The probability of the

system evolving in an excited dimer-dimer configuration remains small for all ramping

speeds.

To analyze these transitions within the Landau-Zener approximation, we label the

diabatic states according to their energies in the BCS regime. This labeling is arbitrary

since many of the states are almost degenerate. To select the potentially important

states, we consider the possible pathways according to the P-matrix couplings. Starting

from the ground state, we note that |Ψ1〉 has important couplings with states |Ψ2〉

and |Ψ5〉. Here, |Ψ2〉 is the first excited dimer-dimer state, i.e., the lowest state of the

excited dimer-dimer family. State |Ψ5〉 is the first excited state of the dimer–two-atom

configuration. Since an important probability is transferred to states |Ψ2〉 and |Ψ5〉, we

analyze the couplings of these states to follow the flow of probability. State |Ψ2〉 has

an important coupling with |Ψ5〉, and state |Ψ2〉 has an important coupling with |Ψ13〉.

Here, |Ψ13〉 is the lowest state of the four-atom configuration, i.e., the atomic ground
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Figure 5.11: (a) Energy in the BCS-BEC crossover of the important states in the
Landau-Zener approximation. The black curve corresponds to |Ψ1〉 which represents
the ground state configuration. The blue curve corresponds to |Ψ2〉 which represents
the excited dimer-dimer configuration. The red curve corresponds to |Ψ5〉 which rep-
resents the configuration of a dimer plus two atoms. The green curve corresponds to
|Ψ13〉 which represents the four-atom configuration. (b) Probability of evolving in a
given configuration as a function of the dimensionless speed parameter χ. The symbols
correspond to the numerical evolution, while the curves correspond to the Landau-Zener
theory. The colors follow the same convention of Figure (a). Results from Ref. [182].
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state in the BEC side. Figure 5.11 (a) presents the energy curves of these four states.

Conveniently, each of these states represents a different configuration. For that reason,

this is the minimal set of states that can describe the numerical results. We could

include more states in our analysis but we restrict ourselves to the simplest possible

case.

Figure 5.8 presents the relevant numerical P-matrices. The order of the peaks

reveals the following sequence: the first transition is 1 → 2, then 2 → 5, then 1 → 5,

and finally 5 → 13. The Landau-Zener prediction for this sequence is

p1 = (1− T1,2)(1− T1,5),

p2 = T1,2(1− T2,5),

p5 = ((1− T1,2)T1,5 + T2,5T1,2)(1− T5,13), (5.26)

p13 = ((1− T1,2)T1,5 + T2,5T1,2)T5,13.

Again, the sum of all these probabilities is, by construction, 1. The Landau-Zener

parameters obtained from the P-matrix analysis are η12 ≈ 5.4, η15 ≈ 6.6, η25 ≈ 2.1

and η5,14 ≈ 13.8. We note that the P-matrix P5−13 in Fig. 5.8 is only in qualitative

agreement with the Lorentzian form, so the uncertainty in η5,13 is large. However, the

sequence of Landau-Zener transitions in the model shows very good agreement with the

numerical results even though many possible transitions were neglected. In comparison

with the N = 3 case, the sequence of transitions is better defined, suggesting a reason

for the better agreement with the numerical results.

5.5 Comparison with experimental results.

In this section, we compare our few-body calculations with experimental results

obtained with ultracold Fermi gases. First, we compare the molecule fraction as a

function of the speed of the ramping. Then, we analyze atom-molecule coherence.

Finally, we study conversion efficiency as a function of temperature.
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5.5.1 Molecule fraction as a function of the speed

To compare our results with Fermi gas experiments, we have to find a way to relate

few-body calculations with many-body calculations. We first consider a homogeneous

system where λ is tuned from λ = −∞ (BCS) to λ = +∞ (BEC). The only relevant

quantities of this system are the speed ν, the density ρ, and the mass of the particles m.

Therefore, the dimensionless speed parameter that characterizes the ramp is χ = m
~ρ

dλ
dt .

This is the relevant parameter for comparing homogeneous systems at different densities,

ramp speeds ν, or masses. We also consider χ to be the relevant parameter for comparing

our calculations to larger, experimentally accessible systems.

Here, we consider that it is the density of the system (and not the trap length as

in ξ) that characterizes both few- and many-body systems. The trap only plays a role

in confining the gas to a given density. In other words, to relate a large Fermi gas with

a few body calculation, we solve the few-body system in a trap tight enough so that

the average density of this few-body system is the same as the average density of the

Fermi gas in the experiment. This strategy is similar to the frequency-scaling method

presented in Ref. [22].

This strategy allows us to write Eq. (5.27) in terms of the parameter χ, i.e.,

Tij(χ) = e
−κij

χ , (5.27)

where κij are now dimensionless parameters. In the experiments carried out at JILA

and Rice, the Landau-Zener parameter for atom-molecule transitions is usually written

as δexp = β
(

dB
dt

)−1
[143]. If the dependence of as on the magnetic field can be approx-

imated by as(B) = abg

(
1 + w

B−B0

)
, then β has been theoretically predicted [77] to be

β = cρwabg/m, where c is a proportionality constant, w is the width of the resonance,

and abg is the background scattering length.

The same results can be obtained from our dimensional analysis arguments. Using

as(B), we can write χ in terms of the experimental parameters. Then, the Landau-Zener
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parameter κexp/χ = β
(

dB
dt

)−1
, where β = cρwabg/m. Thus, by considering χ as the

relevant dimensionless parameter, we obtain agreement in the functional dependence

of the Landau-Zener parameter with Ref. [77]. The dependence of δexp on ρ has been

experimentally verified [90]. Like in the experiments, we use the average density on the

weakly interacting BCS side to evaluate χ. Using noninteracting wave functions, we

obtain ρ2 = 2/(
√

2πaho)3 ≈ 0.127/a3
ho and ρ4 = 29/(12(

√
2πaho)3) ≈ 0.153/a3

ho.
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Figure 5.12: Molecular fraction as a function of χ. The dashed red curve is the N = 2
prediction, and the black solid line is the N = 4 prediction.

The molecule fraction, i.e., the fraction of particles that become molecules after

the ramping procedure, is probably the most relevant quantity to compare with ex-

periments. Only even-N systems can produce full conversion efficiency and, for that

reason, are considered for molecule-fraction analysis. In the N = 2 system, the molecule

fraction is just the probability of staying in the ground state. For N = 4 systems, the

molecule fraction is defined as the probability of evolving in a dimer-dimer configura-

tion plus one-half the probability of evolving in a dimer plus two-atom configuration.

In Fig. 5.12, we compare the two-body prediction with four-body predictions.

In the experiments, the molecule fraction is fitted with a Landau-Zener function,

fm(1 − e−κmol/χ), where fm is is the conversion efficiency that depends on tempera-

ture. Whether a Landau-Zener function is the correct functional form to describe the
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molecule-formation fraction in large systems remains a question that existing experi-

ments have not resolved [136, 3, 189]. The Landau-Zener model presented in this work

for four particles does not predict a single Landau-Zener function but rather a combi-

nation of different Landau-Zener terms. However, the final molecule fraction predicted

by this model and the numerical results for the molecule-formation fraction can be ap-

proximately fitted by the Landau-Zener function, leading to κmol4 ≈ 59± 6; this value

is higher than the two-body prediction of κmol2 ≈ 39. This result is consistent with

the experimental Landau-Zener parameter obtained of Ref. [145] for 40K. The fit of the

experimental data to a Landau-Zener formula predicted a β = 20± 6 µs/G, which can

be expressed in terms of the dimensionless form. For the experimental conditions, this

result gives a value of κexp ≈ 62 ± 15. Note that this experiment was carried out at

T/TF = 0.33 where a conversion efficiency of approximately fm = 0.6 was observed.

In contrast, our calculations are at T = 0 where the conversion efficiency is 100%. In

addition, the experiments carried out at Rice measured the Landau-Zener parameter

of β = 1.3 ms/G for 6Li [170]. Taking into account the experimental conditions and

properties of the 6Li Feshbach resonance at B ≈ 543.8, we estimate a κexp ∼ 90. In

this second experiment, the conversion efficiency was of the order of fm = 0.5, and

the estimated temperature T ≈ 0.1TF . Both experiments are in qualitative agreement

with the four-body predictions, suggesting that χ is the relevant quantity for comparing

few-body results with many-body results.

Up to this point, we have only considered unidirectional ramps. However, more

sophisticated ramp schemes can be implemented. Next, we consider ramps scheme that

manifest the atom-molecule coherence in the system.

5.5.2 Atom-molecule coherence

Another interesting phenomenon studied experimentally is atom-molecule coher-

ence. For bosonic condensates, atom-molecule oscillations [58], or quantum beats [22],
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have previously been explored. Fermionic systems near a narrow Fano-Feshbach res-

onance have been also predicted to exhibit aatom-molecule coherence [6]. Here, we

analyze atom-molecule oscillations in the N = 4 system.
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Figure 5.13: (upper panel) Molecule fraction as a function of the delay ∆t in the ramp
scheme. (lower panel) Fourier transform of the upper panel figure. The peaks of the
spectrum correspond to the most important energy transitions. Figure from Ref. [182].

To study atom-molecule coherence in a Fermi gas, we proposed the following

ramping scheme. Starting in the ground state on the BCS side, we ramp at medium

speed (χ ≈ 32) to the BEC side. We stop at a value λstill, we wait a time ∆t, and

then we go back with the same speed to the BCS side. Finally, we slowly ramp λ to

the BEC (χ ≈ 2) side, and we measure the molecule fraction. The molecule fraction as

a function of ∆t is shown in Fig. 5.13 (upper panel). This ramping scheme produces a

large molecule-fraction oscillation that varies from 0.2 to 0.8. To analyze the frequencies

involved in the molecule-fraction oscillations, we Fourier transform the molecule fraction,

as shown Fig. 5.13 (lower panel). The peaks in the Fourier transform can be easily

related with the most important transition at λstill. The peaks around ω ≈ 28ω0

correspond to transitions between configurations that have one extra or one fewer dimer.

For example, the highest peak is a transition between Ψ5 and Ψ13, while the second
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highest is a transition between Ψ1 and Ψ5. The peaks around ω ≈ 57ω0 correspond to

a transition between Ψ1 and Ψ13 as well as Ψ2 and Ψ13. In the real experiment, where

the atom-molecule transitions are much larger than the trap frequency, this multipeak

structure in the Fourier transform around the atom-molecule transition frequency will

disappear, yielding only a single peak.

5.5.3 Conversion efficiency as a function of temperature.

In the experiments with Fermi gases carried out at JILA, the maximum molecule

fraction was measured versus temperature [90]. To explore the dependence of the

molecular-formation probability on the initial temperature, we have carried out a two-

body calculation in the canonical ensemble.
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Figure 5.14: Molecule fraction as a function of T/TF . The black circles are the exper-
imental results showing the maximum molecule fraction as a function of the tempera-
ture [90]. The blue and curves are the theoretical predictions from two particles in a
trap using T 2b

F and T TF
F , respectively. Experimental data courtesy of Cindy Regal.

We assume there is complete adiabaticity during the ramping with regard to the

molecular formation process. However, the ramps were not so slow as to allow thermal

equilibrium to be reached at each moment during the ramp. Therefore, we can deduce

the molecule fraction by simply “counting” the states that would form molecules in the
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initial thermal distribution. The resulting molecular fraction is extracted as a function

of initial temperature by starting from the initial thermal distribution and counting the

states that, in a completely adiabatic ramp, would form molecules. For this study, we

begin from thermal equilibrium in a weakly interacting gas on the BCS side. The two-

body states under study are filled accordingly to Boltzmann factors, and the partition

function is

Z(T ) =
∑

q

e
− Eq

kBT . (5.28)

Here, kB is the Boltzmann constant, and Eq are the eigen energies of the N = 2 system

labeled by the collective quantum number q. Separating in relative and center-of-mass

coordinates and solving the noninteracting system in spherical coordinates, the energy

of the N = 2 system can be written as

EnCM ,lCM ,nr,lr = ECM + Er = (2nCM + lCM + 2nr + lCM )~ω. (5.29)

Only those atom pairs that are in the relative coordinate ground state will form molecules.

This pairs have nr = lr = 0. Both the partition function, Eq. (5.28), and the sum over

the pairs that form molecules can be solved analytically. These calculations lead to a

molecule fraction given by

F (T ) = e−3~ω/kBT
(
e~ω/kBT − 1

)3
. (5.30)

To compare this two-body prediction with experimental results, we plot the results as a

function of T/TF . Since TF ultimately depends on the density, this technique involves

a density scaling.

Considering the highest occupied orbital energy, T 2b
F = EF /kB = 3~ω/(2kB),

where EF is the Fermi energy. However, the Fermi energy EF for small N systems

depends strongly on the shell effects. For that reason, we propose to use a smooth

semiclassical Fermi energy obtained from a Thomas-Fermi approximation, i.e., ETF
F ≈

1.211~ω. Therefore, T TF
F ≈ 1.211~ω/(kB). Figure 5.14 presents the comparison between
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the experimental results and the N = 2 prediction. The red curve is obtained using

T 2b
F , and the blue curve is obtained using T TF

F . Both predictions are in good agreement

with the numerical results.

The experimental results presented in Fig. 5.14 were successfully described by a

many-body model proposed by Cornell [90] in 2005. This model is based on similar

arguments. As in our N = 2 calculation, the conversion efficiency only depends on the

initial conditions before the adiabatic ramp. According to Cornell’s model, two particles

of the gas would form a molecule depending on their “distance” in phase space δps. For

distances δps smaller than some cutoff δc
ps, the particles would form a molecule, and for

δps > δc
ps, the particles would not form a molecule. This simple idea was implemented

using Monte Carlo methods and δc
ps as a fitting parameter to the experimental results.

Excellent agreement was obtained between the theory and the experiment. In contrast,

our theory does not have fitting parameters besides the uncertainty in defining the most

relevant EF .

5.6 Conclusions

In this chapter, we have presented an accurate description of few-body trapped

systems. First, we showed how the N = 2, N = 3, and N = 4 spectra evolve in the

BCS-BEC crossover. These results were used to propagate in time trapped atoms in

the ground state from the BCS region through the crossover, while investigating the

important nonadiabatic transitions. Even though the spectra present a rich structure

of avoided crossings, we have shown that a simple Landau-Zener model approximately

describes the dynamics of unidirectional ramps.

Finally, we compared our few-body results with experimental measurements. We

find reasonable agreement in molecule-fraction predictions as functions of the speed of

the ramping and temperature. We also investigated atom-molecule coherence using a

novel ramping scheme. These results show that few-body calculations can successfully
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describe an appreciable fraction of many-body experimental results.



Chapter 6

BCS-BEC Crossover of few-body trapped Systems

6.1 Introduction

In this chapter, we analyze the energetics and structural properties of fermionic

few-body trapped systems in the BCS-BEC crossover. In particular, we focus on systems

with N = 3, 4.

The systems considered here are relevant for experiments in optical lattices. In

a deep three-dimensional optical lattice, the tunneling probability between lattice sites

is negligible, and each lattice site can be considered an harmonic trap. Therefore, the

optical lattice becomes an ensemble of microscopic harmonic traps in which the few-

body properties can be probed.

Interestingly, in some cases few-body physics controls the many-body phenomena

in an optical lattice. A clear example is an optical lattice with N = 3 particles in

each site. The ground state changes its angular momentum from L = 1 for small and

negative scattering lengths to L = 0 for small and positive scattering lengths. This

change produces a quantum-phase transition in the optical lattice as the scattering

length is tuned in the BCS-BEC crossover [103]. In addition, if the optical lattice is

not that deep and the tunneling probability is small but not negligible, then few-body

trapped solutions can be used as starting point in perturbative treatments of many-body

theories.

Solving the Schrdinger equation for more than a few fermions by first-principles
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methods is, despite the increasing available computer power, still a challenging task.

Monte Carlo methods are one of the most suitable methods for such studies. Unfor-

tunately, however, assessing the accuracy of the assumptions going into Monte Carlo

calculations, such as the nodal surface employed in the FN-DMC approach, remains a

challenge. Our calculations for N = 3, 4, which use the CG and FN-DMC approaches

in parallel, benchmark the strengths and limitations of the nodal surface employed in

the FN-DMC calculations and validates, to some extent, the FN-DMC for N > 4.

The calculations for trapped systems can also be used to extract properties of

the free systems. If the range of the interactions and the scattering length are much

smaller than the trapped size, then the trapping potential provides confinement without

significantly affecting the few-body physics. Consequently, the trapped results can be

related with those of the free systems. When the magnitude of scattering length is

similar to the trapping potential, then the confinement plays a major role affecting the

energies and the correlations.

The main objective of this chapter is to obtain and interpret solutions of few-body

trapped systems. The model Hamiltonian that describes these systems is given by

H =
N1∑

i=1

(−~2

2m1
∇2

i +
1
2
m1ω

2~r2
i

)
+

N2∑

i′=1

(−~2

2m2
∇2

i′ +
1
2
m2ω

2~r2
i′

)
+

N1∑

i=1

N2∑

i′=1

V (rii′). (6.1)

Here, unprimed indices label mass m1 and primed indices mass m2 fermions, and N is

assumed to be even, ω denotes angular trapping frequency, and ~ri the position vector

of the ith fermion. The interaction potential V has a purely attractive Gaussian form

(see Eq. 3.20). The mass ratio κ is defined by m1/m2, and throughout the analysis

we assume m1 ≥ m2. For each specie or component, there is a trap length associated

a
(i)
ho =

√
~/miω. We also define a trap length associated with the pair aho =

√
~/2µω,

where µ = m1m2/(m1 + m2). For equal mass systems, aho = a
(1)
ho = a

(2)
ho .

For N = 3 systems, there are two types of systems: the two heavy and one light

particle system [N1 = 2 and N2 = 1] and the two light and one heavy particle system
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[N1 = 1 and N2 = 2]. For N = 4 systems, N1 = 2 and N2 = 2.

In the following section, we first analyze the spectrum of Eq. (6.1) as the scat-

tering is tuned in the BCS-BEC crossover. Then, we compare the correlated Gaussian

(CG) lowest energy results with both the fixed-node diffusion Monte Carlo (FN-DMC)

predictions and the theoretical predictions in the limiting behaviors. Next we study

the lowest state in the BEC side and extract collisional properties of these systems.

Then we show how a simple two-channel model can describe qualitatively the BCS-

BEC crossover. Finally, we analyze the structural properties of these few-body trapped

systems. Most of the work in this chapter was done in collaboration with D. Blume and

presented in Refs. [184, 185].

6.2 Energy crossover curves for N = 3 and N = 4

This section analyzes in detail the ground-state energy of N = 3 and N = 4

systems. The calculations are extended to unequal mass systems, and comparisons

between CG results and FN-DMC results are presented.

Consider initially the N = 4 system. From the ground-state energy, we construct

the energy crossover curve Λ(κ)
4 , defined in Refs. [184, 185] as

Λ(κ)
4 =

E(2, 2)− 2E(1, 1)
2~ω

. (6.2)

Here E(2, 2) is the ground-state energy of the four-particle system and, E(1, 1) is the

ground-state energy of the two-particle system. Both energies depend on the mass ratio

κ and the scattering length. The energy crossover curve is convenient for comparisons

because any effects of finite-range interactions on the two-body binding energy are

significantly reduced by the subtraction in Eq. (6.2). Therefore, even though both E(4)

and E(2) are not completely universal, Λ(κ)
4 is universal.

The energy crossover curve Λ(κ)
4 is shown in Figure 6.2 for four fermions as a

function of a
(2µ)
ho /as calculated by the CG and FN-DMC approaches for (a) κ = 1 and
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(b) κ = 8. Here, the oscillator length a
(2µ)
ho is defined in terms of the reduced mass

µ = m1m2/(m1 + m2), i.e., a
(2µ)
ho =

√
~/(2µω). The solid lines in Fig. 6.2 are obtained

using E(4) calculated by the CG approach, while the circles and crosses are obtained

using E(4) calculated by the FN-DMC approach using ΨN=4 and ΨP , respectively. The

ranges r0 of the two-body potentials used in Fig. 6.2 are much smaller than the oscillator

lengths, i.e., r0 ≈ 0.01a
(2µ)
ho . From our CG energies for different r0, we estimate that the

Λ(κ)
N curves shown in Fig. 6.2 deviate by at most 1% from the corresponding curves for

zero-range interactions. For m1 = m2, e.g., the energy at unitarity calculated by the CG

approach for the Gaussian interaction potential is E = 5.027~ω for r0 = 0.01a(2µ)
ho and

E = 5.099~ω for r0 = 0.05a
(2µ)
ho . For comparison, the FN-DMC energy for the square

well potential with r0 = 0.01a(2µ)
ho is E = 5.069(9), which is in good agreement with the

energies calculated by the CG approach.

0

0.5

1

Λ
(
1
)

4

−6 −4 −2 0 2 4 6
0

0.5

1

a
(2µ)

ho
/as

Λ
(
8
)

4

(a)

(b)

Figure 6.1: Energy crossover curve Λ(κ)
4 as a function of a

(2µ)
ho /as for (a) κ = 1 and (b)

κ = 8. Solid lines are calculated by the CG approach, and circles and crosses by the
FN-DMC method using ψN=4 and ψP , respectively. Figure from Ref. [184].

As expected, the energy-crossover curve smoothly connects the limiting values

of one on the BCS side and zero on the BEC side. Importantly, the lowest FN-DMC

energies and the CG energies agree well, implying that the functional forms of Ψ(N=4)
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and ΨP are adequate. For equal masses [panel (a)], the FN-DMC energies at unitarity

calculated using the two different trial wave functions agree approximately. In contrast,

for unequal masses [panel (b)], the nodal surface of ψ(N=4) leads to a lower energy at

unitarity than that of ψP , and the crossing point between the energies calculated using

Ψ(N=4) and ΨP moves to the BEC side. The normal Ψ(N=4) describes the system in a

wider region which can be understood by realizing that the densities of the heavy and

light particles do not overlap fully, leading to a reduced pairing.

The good agreement between both numerical methods suggests two things. First,

Λ(κ)
4 is indeed universal. Second, numerical methods accurately described the BCS-BEC

crossover of the four-body system.

We continue our analysis by studying the crossover curve for N = 3 for different

mass ratios κ. Here, the behavior of odd N systems is rich and, in many cases, qualita-

tively different from that of even N systems. One characteristic of odd N systems is a

possible change of the angular momentum of the ground state as the scattering length is

tuned through the BEC-BCS crossover region [103, 166, 185]. The ground state in the

BCS region can have nonzero angular momentum (see Sec. 4.2), but in the BEC limit,

the ground state has always L = 0. Therefore, to obtain the ground-state energy for

odd N systems, we need to consider L > 0. This is a problem since CG only describes

L = 0 states. This problem was overcome in Refs. [19, 185]) by introducing a spectator

particle that couples to L = 0 in the N particle system. This method allows one, in

principle, to obtain the spectrum of the N particle system with an arbitrary L. We will

explore this method in more detail in chapter 7.

As in the the N = 4 system, we can define an energy-crossover curve. The energy

crossover curve for the N = 3 systems takes the form

Λ(κ)
3 =

E(3)− E(1, 1)− 3~ω/2
~ω

, (6.3)

where E(3) is the ground state energy of the N = 3 system and corresponds to E(2, 1) for
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two heavy and one light atoms and E(1, 2) for two light and one heavy atoms. For equal

masses E(3) = E(2, 1) = E(1, 2). The definition of Λ(κ)
3 is sometimes convenient because

it depends on the ground state E(3) regardless of its angular momentum. However, to

see the energy crossings between states, it is more convenient to analyze the lowest states

for each angular momentum L. Figure 6.2 shows the three-particle energy E, with the

energy E(1, 1)+3~ω/2 subtracted for L = 0 (solid lines) and L = 1 (dashed lines). The

upper panel shows results for κ = 1, and the two lower panels for κ = 4 [panels (b)

and (c) consider the three-particle system with a spare heavy and a spare light particle,

respectively]. The ground state has L = 1 for aho/as → −∞ and L = 0 for aho/as →∞.

These limiting behaviors are independent of κ and independent of whether the spare

particle is heavy or light. For equal masses, the change of symmetry occurs at as ≈ aho.

In contrast, for κ = 4 it occurs at as ≈ 0.3aho if the extra particle is a heavy atom

[panel (b)] and at as ≈ 3aho if the extra particle is a light atom [panel (c)]. The dashed

and solid lines shown in Fig. 6.2 coincide with the normalized crossover curve Λ(κ)
3 ,

Eq. (6.3), in the region where the ground state of the three-particle system has L = 1

and 0, respectively. The normalized crossover curve Λ(κ)
3 changes from 1 in the weakly

interacting molecular BEC regime to 0 in the weakly interacting BCS regime.

We find that the normalized L = 1 energy curve for two heavy atoms and one

light atom [Fig. 6.2(b)] depends on the range of the underlying two-body potential if the

scattering length as is positive. For example, the normalized energy curve changes by as

much as 20% if the r0 of the two-body potential changes from 0.01aho to 0.02aho. This

comparatively large dependence on r0 indicates that the properties of the system with

two heavy atoms and one light atom are not fully determined by the s-wave scattering

length for the ranges considered. In the r0 → 0 limit, the κ = 4 system is expected to

behave universally [140, 102]. We speculate that the comparatively strong dependence

of the normalized energy curve on the range for as > 0 is related to the fact that the

three-particle system supports weakly bound states for sufficiently large κ.
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Figure 6.2: Normalized energy (E − E(1, 1) − 3~ω/2)/~ω for N = 3 as a function
of aho/as calculated by the CG approach (lines). E denotes the three-body energy
for L = 0 (solid lines) and for L = 1 (dashed lines). (a) Equal-mass atoms [κ = 1,
E = E(2, 1) = E(1, 2)]. (b) Two heavy atoms and one light atom [κ = 4, E = E(2, 1)].
(c) Two light atoms and one heavy atom [κ = 4, E = E(1, 2)]. The normalized energy
crossover curve Λ(κ)

3 , Eq. (6.3), coincides with the dashed and solid lines, respectively,
depending on whether the three-particle ground state has L = 1 or 0. In the CG
calculations, the range r0 of the two-body potential is fixed at 0.01aho. For comparison,
crosses and circles show selected FN-DMC energies for L = 0 and L = 1, respectively.
Figure from Ref. [185].
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For comparison, circles and crosses in Fig. 6.2 show selected three-particle energies

calculated by the FN-DMC method for L = 0 and L = 1, respectively. The good

agreement with the CG results (lines) indicates that the FN-DMC method can be used

to accurately describe different symmetry states.

Our CG energies for equal-mass systems interacting through short-range poten-

tials presented in Fig. 6.2(a) can be compared with those of Kestner and Duan [103]

obtained for zero-range interactions. Our L = 1 energy curve agrees with that of Kest-

ner and Duan for all scattering lengths as considered. The L = 0 energy curve, however,

only agrees for as < 0. For as > 0, our results are noticeably lower than those of Kestner

and Duan. As shown below, our as > 0 results for L = 0 predict the correct atom-dimer

scattering length, suggesting that our energies should be very close to those for r0 = 0

and that the disagreement is not due to finite-range effects. We speculate that the

results of Kestner and Duan might not be fully converged for as > 0 although other

possibilities cannot be excluded.

Now, we compare our numerical results with the theoretical predicted limiting

behaviors. As presented in Sec. 4.2, the first order corrections in the BCS- and BEC-

limiting behaviors can be obtained using the Fermi pseudopotential. In general, we find

good agreement between the numerical results and these theoretical predictions. Fur-

thermore, the numerical results can be used to extract information about the collisional

aspect of these systems. As an example, consider the equal mass N = 3 system. On

the weakly interacting BCS side,

E(3) ≈ ENI + ~ω
3√
2π

as

aho
. (6.4)

The first term corresponds to a zero order correction, the noninteracting energy. The

second term is a first-order correction corresponding to the Hartree term of the Fermi

pseudopotential.

In the weakly interacting molecular BEC side, the N = 3 system behaves as a
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dimer and an atom interacting with a short-range potential characterized by a scattering

length aad. Therefore,

E(3) ≈ E(1, 1) +
3~ω
2

+ ~ω
√

2
π

aad

a
(ad)
ho

. (6.5)

The first two terms correspond to the energy of the dimer and the atom, respectively,

and the third term corresponds to the first-order correction proportional to aad.
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Figure 6.3: Limiting behavior of the ground-state energy for N = 3 equal mass fermions.
(a) Energy correction ∆E = E(2, 1) − E(1, 1) − 3~ω/2 on the BEC side. Circles show
the CG results, while the solid line shows the first order correction for aad ≈ 1.2as. (b)
Energy E(2, 1) on the BCS side. Circles show the CG results while the solid line shows
the first-order correction on the BCS side. Figure from Ref. [185].

Figures 6.3(a) and (b) present the BCS- and BEC-limiting behaviors for an equal

mass system with N = 3. The perturbative expression, Eq. (6.5), on the BEC side

is expected to be applicable if r0 ¿ as ¿ aho; thus, we choose a small r0, i.e., r0 =

0.005aho, in the CG calculations. The energy in this region is determined by the atom-

dimer scattering length aad. The CG energies change linearly with as, showing that

aad is proportional to as, i.e., aad = cadas. A simple linear fit to the CG results

predicts cad ≈ 1.21, in good agreement with previous studies [158, 138], which found

aad ≈ 1.2as. A solid line in Fig. 6.3(a) shows the resulting linear expression. (A more
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sophisticated analysis accounting for the energy-dependence is presented presented in

the next section.) On the BCS side, the first-order correction varies also linearly with as.

Circles in Fig. 6.3(b) show the CG results, while the solid line shows the prediction from

Eq. (6.4). Good agreement is observed in both limiting behaviors. We perform a similar

analysis of the BCS- and BEC-limiting behaviors for the N = 4 system. Again, good

agreement is obtained between the numerical results and the theoretical predictions.
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Figure 6.4: Excitation gap ∆(N) for N = 3 as a function of aho/as calculated by the
CG approach for κ = 1 (solid line) and κ = 4 (dashed line). Circles present the BEC
limiting behavior 3~ω/2−E(1, 1)/2 which is independent of κ. The inset shows a blow-
up of the region where ∆(3) is smallest; in this region, the dependence of ∆(3) on κ is
most pronounced. The dash-dotted line shows the limiting behavior for κ = 1 obtained
by approximating the E(N) in Eq. (6.6) by their perturbative values, Eq. (6.4). Figure
from Ref. [185].

Finally, we turn the discussion to analyze the odd-even staggering in the N =

2, 3, 4 systems. Our CG energies for N = 2, 3 and 4 can be readily combined to

determine the excitation gap,

∆(3) =
E(2, 1) + E(1, 2)− E(2, 2)− E(1, 1)

2
. (6.6)

Figure 6.4 shows the excitation gap ∆(3) as a function of aho/as for two different mass

ratios, i.e., κ = 1 and 4. In the weakly-interacting molecular BEC regime, the excitation

gap approaches 3~ω/2−E(1, 1)/2 (circles), independent of the mass ratio. In the weakly-
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interacting BCS regime, however, the excitation gap depends on the mass ratio (see inset

of Fig. 6.4). For equal masses, ∆(3) is very well described by the perturbative expression

for as . −0.5aho (dash-dotted line in the inset). Figure 6.4 shows that ∆(3) is smaller

for κ = 4 than for κ = 1. Intuitively, this might be expected since the radial densities

of the two species do not fully overlap for unequal masses (recall, we consider the case

where species one and two experience the same trapping frequency). Thus, the pairing

mechanism is expected to be less efficient in the unequal-mass system, especially on the

BCS side, than in the equal-mass system. The next chapter discusses the behavior of

the excitation gap at unitarity in more detail.

In this section, we showed that the CG and FN-DMC numerical results agree and

behave universally, describing a smooth crossover for the N = 4 system. For N = 3,

we showed that the ground state of the systems changes its angular momentum in

BCS-BEC crossover. Finally, we verified that the theoretical BCS- and BEC-limiting

behaviors are reproduced.

6.3 Extraction of dimer-dimer collisional properties

The four-body problem of two-component Fermi system in the BEC side was first

considered by Petrov et al. 2004 [139]. Their solution showed that the system of bosonic

dimers is stable and that the interaction between dimers is characterized by an effective

scattering length of add = 0.6as. This value was later derived using diagrammatic

techniques [115, 31]. Here, we extract the dimer-dimer scattering length and its first

energy correction, the effective range from the four-body spectrum. These calculations

are extended to two fermionic species with unequal mass ratio.

In the BEC limit, the lowest N = 3 states behave as a dimer and an atom.

Similarly, the lowest N = 4 states describe different vibrational states of a dimer-dimer

configuration. Therefore, both the N = 3 and N = 4 systems can be treated effectively

as two-particle systems. A comparison between the two particle solutions with the
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N = 3 or N = 4 solutions allows us to extract information on the effective atom-dimer

or dimer-dimer interactions.

The two-particle system is much simpler to solve than the corresponding N = 3

or N = 4 systems. However, we do not know the form of the dimer-dimer or atom-

dimer effective potentials. A simple way to deal with this problem is to approximate

the effective potentials with zero-range pseudopotentials. Since the size of the dimers

are of the order of a, we expect that the range of the effective potentials should also

be of order of a. Thus, we consider including effective range effects using an energy

dependent scattering length. We recognize that the inclusion of the energy dependence

of the scattering length notably extends the validity regime of the zero-range pseudopo-

tential when applied to the description of the scattering of two atoms with finite-range

potentials under external confinement [17, 21].

Therefore, we opt to use the zero-range pseudopotential two-particles solutions

found in Sec. 2.2 to describe these effective two-body systems. In the zero-range solu-

tions, we include the energy dependence of the scattering length by using the effective

range expansion

− 1
aErel

≈ − 1
af

+
1
2
k2reff . (6.7)

Here, aErel
is the energy-dependent scattering length parameterized by the (zero-energy)

scattering length af and the effective range reff . The momentum k is associated with

the relative kinetic energy of the dimer. Thus, k2/2µ = Erel where Erel = E3b−E2b for

N = 3 and Erel = E4b−2E2b for N = 4. For N = 4, relative mass µ is µdd = M/2, where

M is the mass of the bosonic molecules, M = m1 + m2. For N = 3 we only consider

the equal mass case [m1 = m2], thus relative mass µ is µad = Mm/(M + m) = 2m/3,

where M = 2m.

Using the effective range expansion [Eq. (6.7)], the regularized zero-range poten-

tial V (r) [95] takes the form V (r) = g(E)δ(~r)(∂/∂r)r. The scattering strength g is
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parameterized by the scattering length a0 and the effective range reff , i.e.,

g(E) =
2π~2 af

µ

[
1− µErelreffaf

~2

]−1

. (6.8)

As presented in Sec. 2.3, the L = 0 spectrum of the two particle system is then given

by

√
2
Γ

(
−Erel

2~ω + 3
4

)

Γ
(
−Erel

2~ω + 1
4

) =
a

(µ)
ho

aErel

. (6.9)

Equation (6.9) is a transcendental equation that can be easily solved numerically. The

solutions of Eq. (6.9) are obtained as functions of the af and reff parameters and

fitted to the numerical results. The calculation can be carried out at different values

of the two-body scattering length as and, in this way, one can obtain a more reliable

estimation of af and reff . To compare calculations at different values of as, we have to

first understand the dependence of af and reff on as.

To relate af and reff with the two-body scattering length as we can use dimen-

sional analysis considerations. If the particles interact through short-range interactions

characterized by a scattering length as, both the size of the dimers and the atom-atom

interaction only depend on as. For this reason, we expect that the effective dimer-atom

or dimer-dimer interactions only depends on as and not on the details of the short-range

interactions. This implies that aad, add, rad, and rdd should be proportional to the two-

body scattering length as. Therefore, we propose aad = cadas, add = cddas, rad = dadas,

and rdd = dddas. The parameters cad and dad are obtained by fitting the zero-range

two-particle solution to the atom-dimer states of the N = 3 system. Similarly, the

parameters cdd and ddd are obtained by fitting the zero-range–two-particle solution to

the dimer-dimer states of the N = 4 system.

First, we analyze the equal-mass atom-dimer system. Considering the three lowest

energy levels on the BEC side, we obtain aad ≈ 1.18(1)as and rad ≈ 0.08(1)as. The

atom-dimer scattering length agrees with that of Refs. [158, 138, 154]. As discussed

earlier [141], the atom-dimer system can be characterized by a soft-core repulsion with
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Figure 6.5: Four-body energies of the three energetically lowest-lying dimer-dimer states
as a function of as/a

(M)
ho for κ = 8. Panel (a) shows the energetically lowest lying

energy level (i = 0), panel (b) the energetically second lowest (i = 1) and panel (c)
the energetically third lowest state (i = 2). Circles and crosses show our CG and FN-
DMC results, respectively. Solid lines show the zero-range model results. Figure from
Ref. [184].
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range of the order of as; our calculations support this general picture but predict a

range about 10 times smaller than as.

Second, we analyze the dimer-dimer states of the N = 4 systems. To illustrate

the fitting procedure, the circles in Figs. 6.5(a)–(c) show three energetically lowest-

lying dimer-dimer energy levels, referred to as Ei(4), where i = 0–2 with the center-of-

mass energy and the dimer-binding energy subtracted. The results of Figs. 6.5(a)–(c)

correspond to κ = 8 and where obtained by the CG approach Solid lines show the

energy levels obtained by fitting these four-body energies to the two-boson energies

obtained using the energy-dependent zero-range pseudopotential. We find that inclusion

of the effective range rdd extends the validity regime over which the four-fermion system

can be described by the two-boson model and additionally allows for a more reliable

determination of add. Figure 6.5 illustrates that the two-boson spectrum reproduces

the dimer-dimer states of the four-fermion spectrum well over a fairly large range of

atom-atom scattering lengths, as.

For comparison, crosses in Fig. 6.5(a) show the corresponding FN-DMC energies

for the energetically lowest-lying dimer-dimer state. In the application of Blume’s FN-

DMC, we do not attempt to construct a guiding function that would allow for the

determination of excited dimer-dimer states. We find that the FN-DMC energies are

slightly larger than the CG energies and that the deviation increases with increasing as.

Presumably, this increasing deviation can be attributed to the functional form of the

nodal surface used in the FN-DMC calculations, which should be best in the very deep

BEC regime. The increasing deviation between the FN-DMC and CG energies with

increasing as explains why the effective range predicted by the analysis of the FN-DMC

energies is somewhat larger than that predicted by the analysis of the CG approach (see

discussion of Fig. 6.6 below).

Formation of trimers or tetramers can affect this dimer-dimer analysis. If we

use short-range Gaussian two-body potentials that support no two-body–s-wave-bound
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state for negative as and one two-body–s-wave-bound state for positive as, the four-

body energy that enters the calculation of the energy crossover curves shown in Fig. 6.2

is the true ground state of the system, i.e., no energetically lower-lying bound trimer

or tetramer states with LP = 0+ symmetry exist. For larger mass ratios, bound trimer

states exist. The mass ratio at which these nonuniversal trimer states appear depends

on the range r0 of the two-body potential employed. In the regime where three-body

bound states exist, the four-body spectrum calculated by the CG approach also contains

universal states that are separated by approximately 2~ω; they can be best described

as two weakly interacting composite bosons. For fixed as (as > 0), the energy of these

“dimer-dimer states” changes smoothly as a function of κ even in the regime where

bound trimer states appear. In the following, we use these dimer-dimer states to extract

the dimer-dimer scattering length as a function of κ up to κ = 20.

Our analysis of the dimer-dimer states is carried out for selected values of the

mass ratio κ. Table 6.1 summarizes the results. Circles and crosses in Fig. 6.6 show the

resulting dimer-dimer scattering lengths, add, extracted from the energies calculated by
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Figure 6.6: Circles and crosses show add/as as a function of κ extracted from the four-
fermion CG and FN-DMC energies, respectively. For comparison, a solid line shows the
results from Fig. 3 of Ref. [140]. Diamonds and squares show rdd/as extracted from the
four-fermion CG and FN-DMC energies, respectively. Figure from Ref. [184].

the CG and the FN-DMC approach, respectively, as a function of κ. For all mass ratios
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Table 6.1: Dimer-dimer scattering length, add, and dimer-dimer effective range, rdd,
obtained using (a) the CG spectrum and (b) the FN-DMC energies. The reported
uncertainties reflect the uncertainties due to the fitting procedure; the potential lim-
itations of the FN-DMC method to accurately describe the energetically lowest-lying
gaslike state, e.g., are not included here (see Sec. IIIB of Ref. [184]).

κ add/as (a) add/as (b) rdd/as (a) rdd/as (b)
1 0.608(2) 0.64(1) 0.13(2) 0.12(4)
4 0.77(1) 0.79(1) 0.15(1) 0.23(1)
8 0.96(1) 0.98(1) 0.28(1) 0.38(2)
12 1.10(1) 1.08(2) 0.39(2) 0.55(2)
16 1.20(1) 1.21(3) 0.55(2) 0.60(5)
20 1.27(2) 1.26(5) 0.68(2) 0.74(5)

considered in Fig. 6.6, we include up to three dimer-dimer energy levels in our analysis

of the CG results and only the lowest dimer-dimer level in our analysis of the FN-DMC

results. Our dimer-dimer scattering lengths agree well with those calculated by Petrov

et al. within a zero-range framework [140] (solid line in Fig. 6.6). The calculations

by Petrov et al., performed for the free and not the trapped four-fermion system,

terminate at κ ≈ 13.6, beyond which a three-body parameter is needed to solve the

four-body equations within the applied framework. Our calculations show the existence

of deeply-bound “plunging” states, that consist of a trimer plus a free atom. These

states signal a qualitative change of the energy spectrum, in agreement with Petrov et

al. [140]. At the same time, our calculations for finite-range potentials predict that add

continues to increase smoothly when the mass ratio κ exceeds 13.6. This can possibly

be explained by the fact that the presence of the external confining potential may “wash

out” some of the features present in the free-space system. As already mentioned, the

study of the stability of the four-fermion system, consisting of two dimers, with large

mass ratios is beyond the scope of this work. Nevertheless, a recent theoretical study

found good agreement with our predictions beyond 13.6 [122].

We now turn to an analysis of the effective range results. Diamonds and squares

in Fig. 6.6 show the effective range, rdd, extracted from our CG and FN-DMC energies,
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respectively. We estimate the uncertainty of rdd obtained from the CG approach to be

about 10%; this uncertainty is quite a bit larger for that extracted from the FN-DMC

energies. Figure 6.6 shows that the ratio rdd/add increases from about 0.2 for κ = 1

to about 0.5 for κ = 20. While earlier work already suggested that the dimer-dimer

potential may be best characterized as a broad soft-core potential [140], implying a

non-negligible value for the effective range of rdd, our work makes the first quantitative

predictions for rdd as a function of κ. The large value of rdd suggests that effective-range

corrections may need to be considered in analyzing the physics of molecular Fermi gases.
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Figure 6.7: Hyperspherical potential curves Uν for a scattering length as = 100r0.
The dashed red curve is the dimer threshold and the dashed blue curve is the dimer-
dimer threshold. Therefore, the blue curve is a dimer-dimer potential curve and the red
curves are dimer–two-atom potential curves. Dashed-black curves are predictions from
Ref. [56].

The development of four-body hyperspherical methods allows an analysis of the

full energy dependence of the dimer-dimer scattering length. Figure 6.7 presents the

four-fermion potential curves obtained with correlated Gaussian hyperspherical (CGHS).

The lowest curve represents the dimer-dimer channel and the rest represent different

dimer–two-atom channels. Standard multichannel scattering techniques, like the R-

matrix method, can be applied to solve the hyperspherical coupled differential equa-
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tions. This analysis was performed in a recent study by D’Incao et. al. [56] where

energy dependence of the dimer-dimer scattering length for equal mass systems was

obtained. Black dashed curves in Figure 6.7 represent the potential curves of Ref. [56].

As we can see, the CGHS method presented in this dissertation predicts very similar

potential curves. The dimer-dimer potential curves obtained with the different methods

are almost indistinguishable. For dimer–two-atom potential curves, the CGHS predicts

lower potential curves suggesting that the CGHS calculation is slightly better. At large

R, the asymptotic behavior of both methods agree. This is very encouraging since in

D’Incao et. al. method, the asymptotic behavior of the channels is correct by construc-

tion but in the CGHS implies an important nontrivial test. Preliminary calculations

with the CGHS potential curves predict a similar energy dependence of the dimer-dimer

scattering length. Therefore, we consider that the CGHS opens the possibility for accu-

rately analyzing four-body scattering events, as we will see in the four-boson problem

presented in chapter 8.

To conclude, we have shown that few-body trapped systems can be used to extract

information on the collisional properties of free systems. Atom-dimer and dimer-dimer

scattering lengths can be extracted by analyzing the trapped few-body spectrum for

different two-body scattering length values. Furthermore, energy-dependent corrections

to aad and add can also be obtained with this method.

6.4 A two-channel model for the BEC-BCS crossover.

We observed in Sec. 3.2, that the BCS- and BEC-limiting behaviors can be de-

scribed by completely different wave functions. The BCS-limiting behavior is described

by a Jastrow-Slater type of wave function, while the BEC behavior is described by a

paired wave function. These type of wave functions where discussed from a technical

point of view in the FN-DMC section of chapter 3 to construct the appropriate trial wave

function. Here, we use these two trial wave functions to propose a simple interpretation
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of the BCS-BEC crossover problem.

Since the BCS and BEC regimes are described by qualitatively different wave

functions, it is natural to suspect that the BCS-BEC crossover can be understood as

an avoided crossing between these two limiting cases. This interpretation suggests a

crossover from a normal to a superfluid state. The paired wave function is consistent

with superfluidity because of its long-range correlations, while the Jastrow-Slater wave

function only contains short-range correlations that are characteristic of a normal state.

Therefore, the crossover would imply an avoided crossing between a normal and a su-

perfluid state.

Here, we propose a two-channel model to qualitatively describe the BCS-BEC

crossover. In this model, the trial wave function ansatz is a linear combination of the

Jastrow-Slater wave function and the paired wave function. We apply it to the four-

fermion system and compare our model to the full CG results.

To implement this model, we have to construct the paired and Jastrow-Slater

states and evaluate the matrix elements in this reduced two-state Hilbert space. Next,

we solve the Schrödinger equation for this two-channel system. The paired wave function

for four particles takes the form,

ΨP (r1, r2, r1′ , r2′) = A{ψ2p(r1, r1′), ψ2p(r2, r2′)}

= Np (ψ2p(r1, r1′)ψ2p(r2r2′)− ψ2p(r1, r2′)ψ2p(r2, r1′)) . (6.10)

Here Np is a normalization constant, and ψ2p is the two-body solution of the trapped

system. The Jastrow-Slater wave function is

ΨJ(r1, r2, r1′ , r2′) =
∏

i,i′
J(rii′)ΨNI(r1, r2, r1′ , r2′). (6.11)

The correlations in the Jastrow-Slater term are usually obtained by using the small-

r region of the zero-energy solution matched to a fast-decaying function (for example

with an exponential decay). In the negative scattering length, the Jastrow-Slater term
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does not have nodes, but in the positive scattering length region, each Jastrow-Slater

correlation has a node that describes the zero-energy correlations of the excited atomic

state, but not the weakly bound molecular ground state. Thus, the total wave function

describes the atomic ground state in both the BCS- and BEC-limiting cases.

We use the two-body solutions of two particles in a trap to construct ψ2p. These

solutions can be separated in center-of-mass and relative coordinates, RCM and r, as

ψ2p(r1, r2) = e−2R2
CM/a2

hoφ(r). (6.12)

The evaluation the matrix elements requires the evaluation of multidimensional

integrals. Thus, it is convenient to use a correlated-Gaussian expansion that allows an

analytical computation of the matrix elements. To obtain the paired wave function,

we first solve the two-body Schrödinger equation in the relative coordinate using CG,

then we use the ground-state–two-body solution to expand Eq. (6.10) in a CG basis

functions.

To construct the Jastrow-Slater wave function, we use a different approach. In

practical terms, it is not very convenient to construct the Jastrow-Slater wave function

from the two-body solution and the noninteracting wave function. This solution would

produce an unnecessarily large CG basis-function expansion. Instead, it is easier to solve

the exact Hamiltonian in the perturbative regime where we know that the exact solution

has the form of Eq. (6.11) and then use that solution in the two-channel model. Here, it

is assumed that the Jastrow term does not depend strongly on a and that we can use a

solution at one a value for a wide region of the crossover. This assumption is considered

valid in the BCS and BEC regimes but not in the strongly interacting region where

an extra node appears in the correlations. Thus, Jastrow terms in the BCS and BEC

side are significantly different because the appearance of that extra node. Therefore, we

use the perturbative solution on the BCS side to describe the BCS-unitarity region and

we use the peturbative solution on the BEC side to describe the BEC-unitarity region.
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This approximation seems to be sensible for our qualitative two-channel model.

Figure 6.8 present the results of the two-channel model. The black solid lines

correspond to the noninteracting energy [E = 8~ω] and the energy of the paired wave

function. The blue dashed lines correspond to the solutions of the two-channel model.

The red lines with circles corresponds to the exact ground state obtained with the CG

method, and green lines with circles corresponds to the state that diabatically becomes

the “atomic ground state” in the BEC. First, we note that the paired state represents a

diabatic state that crosses the trapped states in the BCS regime and correctly describes

the dimer-dimer states in the BEC regime. The lowest dashed curve, which is the ground

state of the two-channel model, follows closely the true ground state. As expected, the

deviations of the two-channel model solution to the exact solution are maximal in the

strongly interacting unitarity regime. Another important result is that the excited

solution of the two-channel model describes the atomic ground state in the BEC side.
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Figure 6.8: Comparison of exact calculations with the two-channel model. Solid black
lines correspond to the noninteracting energy and the pair-state energy, respectively.
Blue dashed curves correspond to the two-channel model solutions. Red and green lines
with circles correspond to the exact CG results for the ground state and the lowest
atomic state in the BEC side, respectively.

Finally, we have shown that the two-channel model qualitatively describes the

BCS-BEC crossover providing, an alternative interpretation to the crossover physics.



143

6.5 Structural properties

The analysis of the spectrum in the BCS-BEC crossover can be complemented

with the analysis of the wave functions and their structural properties. Here, we obtain

the one-body densities and pair-distribution functions of two-component Fermi systems

in the crossover regime for different κ. We determine the averaged radial densities,

ρi(r), normalized so that 4π
∫

ρi(r)r2dr = Ni; 4πr2ρi(r)/Ni tells one the probability of

finding a particle with mass mi at a distance r from the center of the trap. If N1 = N2

and m1 = m2, the radial one-body densities ρ1(r) and ρ2(r) coincide. If m1 and m2

or N1 and N2 differ, however, the radial one-body densities ρ1(r) and ρ2(r) are, in

general, different. We also determine the averaged radial pair distribution functions

Pij(r), normalized so that 4π
∫

Pij(r)r2dr = 1; 4πr2Pij(r) tells one the probability of

finding a particle of mass mi and a particle of mass mj at a distance r from each other.

For notational simplicity, we refer to the radial one-body densities as one-body densities

and to the radial-pair distribution functions as pair-distribution functions in from now

on.

To compute these structural properties we use CG. Since the CG method only

calculates L = 0 states, all the structural properties extracted from CG are spherically

symmetric. When N + 1 systems are studied to obtain solutions for the N system

with L > 0, the N -particle system and the spectator particle are coupled to L = 0.

Therefore, even though the structural properties of the N -system are not spherically

symmetric, the structural properties obtained from the N +1 calculation are spherically

symmetric. We can recover the corresponding angular dependence by multiplying the

CG result by the corresponding spherical harmonic. However, for plotting purposes, it

is convenient to present the spherically symmetric CG results, which is equivalent to

averaging over the angular degrees of freedom.
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To evaluate the structural properties, we calculate

4πr2F (r) = 〈Ψn|δ(x− r)|Ψn〉 =
∫

dr1...drNδ(x− r)|Ψn(r1, r1′ , ..., rN1 , rN2)|2. (6.13)

Here, F (r) is a generic structural property, i.e., the density profiles ρ1 or ρ2, the inter-

species pair-correlation function P12, or the intraspecies pair-correlation functions P11

or P22. x is the length of the coordinate vector that describes the structural property.

For ρ1 and ρ2, x = r1 and x = r1′ , respectively. For P12, x is the interparticle distance

between opposite-spin or different species, x = r11′ . For P11 and P22, x is the same-spin

or same species interparticle distance, with x = r12 and x = r1′2′ , respectively. To

evaluate 4πr2F (r), we expand Ψn in the CG basis set. The integral in Eq. (6.14) can

be carried out analytically for the CG basis functions (see Appendix G).

6.5.1 Analysis of the validity of the numerical structural properties

The first question that we want to answer is how reliable are our structural

properties. To answer this question, we first compare structural properties obtained

by CG and FN-DMC methods. Then, we analyze how well these structural properties

reproduce the expected behavior from a zero-range pseudopotential.

Figures 6.9 (a) and (b) compare the pair distribution functions P12(r) for the

three-particle system with L = 1 and the four-particle system with L = 0, respec-

tively, calculated by the CG and the FN-DMC methods. The pair correlation functions

P12(r) at unitarity allow the most stringent comparisons between the CG and FN-DMC

predictions. The correlations between opposite spins or different species describe a non-

trivial behavior controlled by the properties of the short-range interactions. Therefore,

these correlations depend strongly on the scattering length as, and the shape and range

of the interaction r0. Since we use different short-range potentials in CG and FN-

DMC, the good agreement in Figs. 6.9(a) and (b) suggest that these correlations are

mainly described by the scattering length. Another important point is that we make
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the comparison at unitarity in the strongly interacting regime where the correlations

are nontrivial.

The agreement between the pair-distribution functions calculated by the CG

method (solid lines) and the FN-DMC method (circles) is very good, supporting both

numerical results. This is particularly important for the FN-DMC results since it sug-

gests that the construction of the nodal surface of the trial wave function ψT is close to

the exact one. Furthermore, the good agreement suggests that the technique used to

extract the FN-DMC results, i.e., the evaluation of the mixed estimator, provides struc-

tural properties very close exact ones estimator (see discussion on the mixed estimator

in Chapter 3). This agreement is very encouraging. In particular, it suggest that the

N > 4 structural properties obtained in Ref. [185] with FN-DMC are reliable.
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Figure 6.9: Pair-distribution functions P12(r), multiplied by r2, at unitarity for equal
mass Fermi systems with (a) N = 3 (L = 1) and (b) N = 4 (L = 0) atoms calculated
by the CG method (solid lines) and by the FN-DMC method (circles). The agreement
is excellent. Figure from Ref. [185].

The second question we want to answer is how these numerical results compare to

the zero-range pseudopotential predictions. The comparison presented in Figures. 6.9(a)

and (b) made the first step in this direction by showing that the numerical solutions
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are, to a good approximation, independent of the model potential used. To further

investigate the universal behavior of the structural properties we analyze zero-range

predictions. For zero-range pseudopotential, the opposite-spin pair-correlation function

obeys a boundary condition [118, 76]

[rP12(r)]′r=0

[rP12(r)]r=0
= − 2

as
. (6.14)

This boundary condition is a consequence of the Bethe-Peierls boundary condition.

Equation (6.14) can be derived by taking into account that the wave functions obey

the boundary condition [r12Ψ(r12)]′r12=0/[r12Ψ(r12)]r12=0 = −1/as. The factor of 2 in

Eq. (6.14) can be understood by noticing that the pair correlation is proportional to the

square of the wave function, i.e., P12(r) ∝ Ψ(r12)2. A direct consequence of Eq. (6.14)

is that at unitarity, i.e., when |a| = ∞, r2P12(r) has zero slope as r → 0. This condition

is qualitatively fulfilled in the numerical results presented in Figs. 6.9 (a) and (b).
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Figure 6.10: Pair-distribution functions P12(r), multiplied by r2, for equal-mass–two-
component Fermi systems with N = 2 (dashed lines) and N = 4 (solid lines). The
N = 2 pair-correlation function has an arbitrary norm selected to match the N = 4
pair correlation in the small r regime.

The numerical verification of Eq. (6.14) is very difficult. For systems with finite

range interactions, Eq. (6.14) is valid in a narrow regime of r values. For as < 0,

Eq. (6.14) is valid when r is much larger than the range of the potential and much
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smaller than the mean interparticle distance, i.e., the r0 ¿ r ¿ aho regime. For as > 0,

Eq. (6.14) is valid when r is much larger than the range of the potential and much

smaller than the size of the dimer (given by a) and the mean interparticle distance, i.e.,

the r0 ¿ r ¿ min[as, aho] regime. This regime is almost nonexistent for our numerical

calculations, which consider only the aho/r0 = 100 case.

An alternative procedure is to compare the numerical results with the two-body

analytical results of the zero-range pseudopotential presented in Sec. 2.3. This compar-

ison is more convenient because the two-body analytical results include corrections to

Eq. (6.14) for trapping effects and finite r. Figure 6.10 presents the N = 2 and N = 4

pair correlation r2P12(r). The calculations are done on the BEC side [as = aho], where

both the N = 2 and N = 4 pair correlations in the small r region are controlled by

molecule formation (see discussion below). The good agreement between the N = 2

and N = 4 pair correlations in the small r region suggests that the N = 4 numerical

results correctly describe the zero-range pseudopotential limit.

6.5.2 Structural properties along the BEC-BCS crossover

Here, we analyze how structural properties change in the BCS-BEC crossover.

We focus in particular on the structural properties of the ground state for N = 4 and

the lowest N = 3 state with L = 0, 1.

Figure 6.11 shows the pair distribution function P12(r) for N = 3 (dash and

dash-dotted lines correspond to L = 0 and 1, respectively) and N = 4 (solid lines) along

the crossover for equal mass systems [κ = 1]. Panel (a) shows results for as = −aho,

panel (b) for 1/as = 0 and panel (c) for as = 0.1aho. Interestingly, the pair distribution

functions for N = 3 and N = 4 show a similar overall behavior. In the BCS regime

[Fig. 6.11(a)], the quantity P12(r)r2 shows a minimum at small r (for very small r,

P12(r)r2 goes smoothly, but steeply, to zero; this rapid change of P12(r)r2 is hardly

visible on the scale shown in Fig. 6.11). At unitarity [Fig. 6.11(b)], P12(r)r2 shows a
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maximum at small r and a second peak at larger r. In the BEC regime [Fig. 6.11(c)],

the two-peak structure is noticeably more pronounced. The peak at small r indicates

the formation of weakly bound dimers (one dimer for N = 3 and two dimers for N = 4),

while the peak between 1 aho and 2 aho is related to the presence of larger atom-atom

distances set approximately by the atom-dimer distance for the three-body system and

the dimer-dimer distance for the four-body system. This interpretation suggests that

the three-particle system has one small and one large interspecies distance, and the four-

particle system has two small and two large interspecies distances. Indeed, integrating

P12(r) for N = 3 and N = 4 from 0 to the r value at which P12(r)r2 exhibits the

minimum, we find that the likelihood of being at small distances (forming a molecule)

and being at large distances is the same. Finally, we note that in the BCS-BEC crossover

the slope of r2P12(r) at small r changes from positive to zero to negative as predicted

by Eq. (6.14).

We now analyze the pair distribution function P12(r) for N = 4 more quanti-

tatively. Dash-dotted lines in Figs. 6.12 (a) and (b) show the pair-distribution func-

tion, P12(r), multiplied by r2, for two trapped atoms with as = 0.1aho (normalized

to 1/2). This dimer curve is essentially indistinguishable from the small r part of

the four-particle pair distribution function (circles). To describe the large r part of

the four-particle pair-distribution function, we consider two bosonic molecules of mass

2m, which interact through an effective repulsive potential with dimer-dimer scattering

length add ≈ 0.6as [140, 184]. The dashed line in Fig. 6.12 (a) shows the pair-distribution

function for this system under external confinement. This dashed curve is essentially

indistinguishable from the large r part of the pair-distribution function for the four-

particle system. For comparison, a dotted line shows the pair-distribution function for

two noninteracting trapped bosons of mass 2m. Figure 6.12 indicates that the effective

repulsive interaction between the two dimers is crucial for accurately reproducing the

structural properties of the four-body system. Our analysis shows that the entire pair
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Figure 6.11: Pair-distribution functions P12(r), multiplied by r2, for equal-mass–two-
component Fermi systems with N = 3 and L = 0 (dashed lines), N = 3 and L = 1
(dash-dotted lines), and N = 4 and L = 0 (solid lines) obtained by the CG approach
for three different scattering lengths, as: (a) as = −aho (BCS regime), (b) 1/as = 0
(unitarity), and (c) as = 0.1aho (BEC regime). The pair distribution function for N = 4
and as = 0.1aho [solid line in panel (c)] is shown in more detail in Fig. 6.12. Figure
from Ref. [185].

0 0.05 0.1 0.15 0.2
0

2

4

6

8

4
π
r
2
P

1
2
(
r
)
/
a
−

1

h
o

r/aho

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4 (a)

(b)

Figure 6.12: (a) Circles show the pair-distribution function, P12(r), multiplied by r2, for
as = 0.1aho (BEC regime) calculated by the CG approach for N = 4 and κ = 1 [note,
this quantity is also shown by a solid line in Fig. 6.11(c)]. For comparison, the blue dash-
dotted line shows P12(r)r2 for two atoms of mass m with the same scattering length but
normalized to 1/2, the red dashed line shows P12(r)r2 for two trapped bosonic molecules
of mass 2m interacting through a repulsive effective potential with add = 0.6as, and
the green dotted line shows P12(r)r2 for two trapped noninteracting bosonic molecules
of mass 2m. Panel (b) shows a blow-up of the small r region. Figure from Ref. [185].
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distribution function, P12(r), of the four-body system in the weaklyinteracting molecular

BEC regime can be described quantitatively in terms of a “dimer picture.”

The pair-correlation function P12(r) also reflects the ground-state symmetry inver-

sion of the N = 3 system (see Sec. 6.2). In the BCS regime and at unitarity [Figs. 6.11 (a)

and (b)], P12(r) shows less structure for L = 1 than for L = 0. In the weakly-interacting

molecular BEC regime [Fig. 6.11(c)], the pair-distribution function for L = 0 nearly co-

incides with that for L = 1 at small r, but is more compact than that for L = 1 at large

r.
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Figure 6.13: Pair-distribution function P12(r), multiplied by r2, for two-component
Fermi gases with κ = 4 for different scattering lengths as: (a) as = −aho (BCS regime),
(b) 1/as = 0 (unitarity), and (c) as = 0.1aho (BEC regime). Dashed and dash-dotted
lines show P12(r)r2 for N = 3 (two heavy particles) with L = 0 and 1, respectively.
Circles and squares show P12(r)r2 for N = 3 (two light particles) with L = 0 and 1,
respectively. Solid lines show P12(r)r2 for N = 4 with L = 0. Figure from Ref. [185].

Next, we analyze how the behaviors of the pair distribution functions P12(r) for

N = 3 and 4 change along the crossover if the mass ratio is changed from κ = 1 to 4.

Figure 6.13 shows the pair distribution functions for κ = 4. For N = 3, we consider

three-particle systems with either a spare light particle or a spare heavy particle. The

pair distributions for the three-particle system with two light particles and one heavy
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particle are notably broader than those for the three-particle system with one light

particle and two heavy particles. We attribute this behavior to the fact that a
(1)
ho > a

(2)
ho .

Besides this, a comparison of the pair-distribution functions shown in Fig. 6.13 for κ = 4

and those shown in Fig. 6.11 for κ = 1 reveals that the overall behavior of the P12(r) is

similar.
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Figure 6.14: One-body densities ρ1(r) and ρ2(r) for N = 4 and (a) κ = 1 and (b) κ = 4
for different scattering lengths as [for κ = 1, ρ1(r) and ρ2(r) coincide and only ρ2(r)
is shown]: Circles and solid lines show ρ1(r) and ρ2(r) for as = 0, squares and dashed
lines show ρ1(r) and ρ2(r) for 1/as = 0, and triangles and dash-dotted lines show ρ1(r)
and ρ2(r) for as = 0.1aho. Note, ρ2(r) for κ = 4 and as = 0 [solid line in panel (b)] is
multiplied by a factor of three to enhance the visibility. Figure from Ref. [185].

The analysis of the pair correlation function is complemented with the analysis of

the one-body densities. Figures 6.14(a) and (b) show the one-body densities for κ = 1

and 4, respectively. In the noninteracting limit [the solid lines show ρ1(r) and the circles

show ρ2(r)], the sizes of ρ1(r) and ρ2(r) are determined by a
(1)
ho and a

(2)
ho , respectively.

As is evident in Fig. 6.14, the density of the light particles extends to larger r than

the density of the heavy particles. The density mismatch for κ = 4 between the two

one-body densities decreases as as is tuned through the strongly-interacting regime to

the weakly-interacting molecular BEC side. In the weakly-interacting molecular BEC
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regime, two molecules consisting each of a heavy and a light particle form. In this

regime, the size of the system is determined by the molecular trap length and the

densities ρ1(r) and ρ2(r) [triangles and dash-dotted line in Fig. 6.14(b)] nearly coincide.

Furthermore, the densities are to a very good approximation described by the one-body

density for two bosonic molecules of mass m1 + m2 interacting through an effective

repulsive interaction characterized by the dimer-dimer scattering length (add ≈ 0.77as

for κ = 4 [140, 184]).
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Figure 6.15: Ground and excited dimer-dimer states for as = 0.1aho.(a) Pair-distribution
function 4πr2P11(r) for the lowest dimer-dimer states (b) Lowest two-body solutions,
4πr2φn0(r), of a noninteracting trapped system of bosonic particles of mass 2m.

On the weakly interacting molecular BEC side, where the size of the molecules

is much smaller than the trap length, aho, P11 of the dimer-dimer states describes, to

a good approximation, the molecule-molecule pair-correlation function. To understand

why, consider the molecule-molecule pair-correlation function. If we treat the dimers

as point particles, the molecule-molecule pair correlation function would measure the

density probability as a function of the distance between the center of mass of two

different dimers. But since the dimers are very small in comparison with the dimer-dimer

distance, measuring the dimer-dimer distance from the center of masses or from each
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of the spin up particles yields almost identical results. For this reason, on the weakly

interacting molecular BEC side, P11 describes the molecule-molecule pair-correlation

function.

As an example, consider the P11(r) for as = 0.1aho. Figure 6.15(a) shows P11(r)

of the ground and excited dimer-dimer states. For comparison, Fig. 6.15(b) presents

the square of the relative-coordinate wave functions φnl of two noninteracting particles

of mass M = 2 m in a trap. The pair-correlation function of the N = 2 system is

simply the square of relative-coordinate wave functions. Since the dimer-dimer states

of the N = 4 system describe vibrational states with dimer-dimer angular momentum

l = 0, Fig. 6.15(b) presents the l = 0 two-body solutions. The number of nodes in the

P11(r) and φ2
nl correspond to the number of vibrational excitations. The good agreement

between panels (a) and (b) in Fig. 6.15 confirms that the dimer-dimer P11(r) in the BEC

side describes the molecule-molecule pair-distribution function.

6.6 Conclusions

In this chapter, we have presented an accurate description of few-body trapped

systems. First, we showed how the N = 3 and N = 4 spectrum evolves in the BCS-

BEC crossover. Then, we analyzed more quantitatively the ground state energies and

compared them both theoretical predictions and FN-DMC numerical results.

We also showed that the spectrum in the BEC regime reveals atom-dimer and

dimer-dimer collisional properties such as scattering lengths and effective-range correc-

tions. We have also presented calculations of the hyperspherical potential curves for

N = 4. The analysis of the hyperspherical potential curves for free systems allows a

direct measurement of the collisional properties. For this reason, the development the

CGHS for four-body systems opens the possibility to deeper understanding of dimer-

dimer collisional properties.

Finally, we analyzed the structural properties of N = 3 and N = 4 systems. We
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showed how the qualitative change in the behavior of the systems in the BCS-BEC

crossover is reflected in the structural properties.



Chapter 7

Unitary Gas

7.1 Introduction

In many-body systems, the strongly-interacting region is characterized by kF |a| &

1. In this region, the scattering length becomes larger than the interparticle distance,

which, in turn, is much larger than the range of the two-body potential. Thus, the gas

is both dilute and strongly interacting. This unusual situation is difficult to study phys-

ically since there is no small parameter for perturbation analysis. Even understanding

the stability of such systems is challenging. Bosonic systems in such conditions are

known to collapse, and fermionic systems, even though they are expected to be more

stable because of Pauli repulsion, are not guaranteed to be stable. Sophisticated nu-

merical simulations and experimental observations are required to show that fermionic

systems are indeed stable.

Similarly for few-body trapped systems, the strongly-interacting region is also

characterized by kF |a| & 1, which is equivalent to |a| & aho. In the few-body case,

difficulties similar to those of the many-body problem arise. There is no small parameter

for perturbative treatments and there exist semianalytical solutions only for some cases

of N ≤ 3 [35, 187]. For N > 3, computationally demanding numerical techniques, like

the ones presented in this chapter, have been used to analyze such systems.

A particular point in the strongly-interacting region, where the s-wave interaction

strength reaches its maximal value, is usually called unitarity. Therefore, this regime is
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characterized by a universal behavior of the scattering amplitude:

f0(k) =
i

k
. (7.1)

Unitarity is alternatively characterized by a divergent s-wave scattering length, |a| = ∞.

In this situation, if the range of the interaction is much smaller than the typical interpar-

ticle distance and the scattering length is divergent, then there is no relevant length scale

that characterizes the interaction. This situation is similar to the noninteracting limit,

where the absence of interactions implies, of course, the absence of a length scale that

describes the interaction. The absence of a length scale that describes the interaction

allows us to extract the functional form of different quantities via dimensional analysis.

Furthermore, it allows us to relate quantities at unitarity to those in the noninteracting

limit.

For example, in the homogenous system at unitarity, the only relevant length

scale is the interparticle distance of the noninteracting system, or, equivalently, k−1
F .

Therefore, the energy and the chemical potential of the system at unitarity should be

proportional to those of the noninteracting system. In general, this relation is written

as

µU = (1 + β)µNI , (7.2)

EU = (1 + β)ENI . (7.3)

Here, the subscripts U and NI refer to the unitary and noninteracting limits, respec-

tively, and E is the energy per unit volume. The relation between these unitary and

noninteracting quantities is characterized by the parameter β. This parameter is uni-

versal, i.e., it is the same for any equally populated two-component Fermi gas and

is independent of the nature of the interaction. An equivalent parameter, defined as

ξ = 1 + β, has been extensively used in the literature. The same proportionality con-

stant, (1 + β), relates the noninteracting and unitarity pressures of the system. Also,
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other quantities are related by powers of this constant. For example, the speed of sound

(c) and the size of a trapped cloud R(s) are related as [75, 87]

cU =
√

1 + βcNI , (7.4)

R
(s)
U = (1 + β)1/4R

(s)
NI . (7.5)

Because of these relationships, much effort has been expended to obtain the parameter

β. The value of β has been calculated by, among other methods, numerical simulations

using quantum Monte Carlo techniques [7]. Section presents a table with many different

theoretical and experimental values for β. Other properties of unitary homogenous

systems have been determined using dimensional analysis arguments [89].

The same dimensional analysis arguments used in homogeneous systems can be

extended to few- and many- body systems using the hyperspherical framework. Dimen-

sional analysis becomes particularly interesting in the hyperspherical framework of a

free system, where the hyperradius is the only coordinate with units of length. Since

the potential curves have units of energy and the only length scale is given by R, then

it follows that VU (R) ∝ 1/R2. This is equivalent of saying that VU (R) ∝ VNI(R), since

the noninteracting potential curves have the form 1/R2(see Sec. 2.5). The inclusion of

a trapping potential discretizes the spectrum and introduces similar scaling properties

which influence the topology of the spectrum. We will analyze such universal properties

of the trapped system in Sec. 7.2, where we will also explore their consequences.

However, not every system at unitarity obeys these universal properties. There

are some cases where the short-range physics needs to be included to obtain converged

results. A typical example is the three boson system. In this case, the lowest potential

curve has an attractive 1/R2 form. This type of dipole interaction is too divergent as

R → 0. Therefore, the zero-range model predicts an unphysical Thomas collapse [176],

i.e., there is no lower bound to the ground state, and there is an infinite number of

bound states with divergent binding energies. The introduction of more-realistic short-
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range physics is crucial for remedying this unphysical situation, because realistic short-

range physics introduces a lower bound to the series of weakly bound states known

as Efimov states [60, 61]. Thus, a new length scale that describes the short-range

physics is necessary for describing the system. Consequently, the properties obtained

by dimensional analysis are no longer valid for the all the solutions, but, they remain

valid for some of the solutions.

The universal behavior of a system and its stability are closely related. The

collapse of a trapped system is a many-body effect. Nevertheless, the existence or

absence of weakly bound few-body systems clearly influence the stability of a system.

For example, a clusterization process, i.e., formation of continuously enlarging bound

systems, would also lead to a collapse. On the other hand, if, there is no weakly bound

state for N < Nc but there exists a weakly bound Nc-body state, then it is required

that Nc + 1 particles get close together to form a Nc-body state. Therefore, the larger

Nc is the more unlikely the clusterization process will occur 1 .

The need for a short-range physics length scale, the appearance of an attractive

1/R2 potential, and the formation of weakly bound states appear to be related. Veri-

fication of these scaling properties can tell us if a system behaves universally or if the

formation of weakly bound molecules occurs. As we said before, formation of weakly

bound molecules has consequences for the stability of the system.

7.2 Universal properties in trapped systems

In this section, we review the universal properties of trapped systems at unitarity.

These properties, and the derivation presented in this Section, were obtained by Werner

and Castin [38, 186].

As presented in the Introduction, short range interactions with large scattering
1 In this discussion we are omitting the possible formation of tightly bound molecules which are also

unlikely.
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lengths can, in some cases, be replaced by a zero-range pseudopotential as in Eq. (2.9).

The pseudopotential is equivalent to the Bethe-Peierls boundary condition [15] that, at

unitarity, takes the form

lim
rij→0

Ψ ≈ F

rij
+O(rij). (7.6)

Here rij is any of the distances between interacting particles, and F is a smooth function

of all coordinates except the interparticle distance rij . This unitary condition implies

that when two particles get very close together, the wave function should behave as the

scattering solution at unitarity, i.e., Ψ ∝ 1/rij .

Except for these boundary conditions in the vicinity of coalescent points, i.e.,

rij is much smaller than the typical interparticle spacing, the wavefunction obeys the

noninteracting Schrodinger equation H0Ψ = EΨ. The Hamiltonian is

H0 =
∑

i

− ~2

2mi
∇2

i +
1
2
miω

2r2
i . (7.7)

This Hamiltonian is identical to that of an ideal gas. The effects of interactions are

included in the above boundary conditions, Eq. (7.6), which introduces a great mathe-

matical difficulty to the problem.

To analyze this problem we use hyperspherical coordinates. We define the hyper-

spherical vector R = {r1, ..., rN}. R describes all the coordinates of the system and can

be divided into the hyperradius R = |R| and a set of angles encapsulated in a single

coordinate called Ω. The contact conditions at unitarity do not have a length scale asso-

ciated with them, since a →∞. Thus, they become invariant under the rescaling of the

spatial coordinates. This behavior implies that for any wave function ψ that obeys the

contact conditions, Eq. (7.6), we can define a rescaled wave function ψλ(R) = ψ(R/λ)

that also obeys the contact conditions. Here λ > 0 is the scaling factor.

In free space, this scale invariance implies that if ψ is an eigenstate of energy

E, then there is an eigenstate of energy E/λ2 for any λ. This relationship implies the

absence of bound states in free space which otherwise would be an unphysical continuum
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of states. In the trapped system, the appearance of a length scale, the trap length aho,

breaks down the scale invariance properties of the eigenstates. However, as we will see

in the following, a similar scale invariance analysis can be applied to trapped systems

to extract unique universal properties.

To analyze the properties of a trapped system, consider the evolution of an ini-

tial stationary state Ψ0 when the frequency of the external potential becomes time

dependent, i.e., ω = ω(t). Castin proposed the following ansatz for the time-dependent

wavefunction,

Ψ(R, t) = N(t)eimR2
jλ′(t)/2~λ(t)Ψ0(R/λ(t)) (7.8)

where the scaling factor λ(t) and the normalization N(t) need to be determined. To

verify to the validity of Castin’s ansatz, we first note that Eq. (7.8) obeys the boundary

condition, Eq.(7.6). Eq. (7.8) also obeys the time-dependent Schrödinger equation gov-

erned by the Hamiltonian of Eq. (7.7) provided that the time evolution of λ is described

by

λ′′ =
ω2(0)

λ3
− ω2(0)λ. (7.9)

In analyzing the perturbative time-dependent behavior of a stationary state of

energy E, Castin showed that there exist states with energies E±2~ω [38]. Furthermore,

in this time-dependent analysis, the operators responsible for ±2~ω are obtained, and

can be associated with raising and lowering operators [186]:

L+ =
3N

2
+ R∂R +

H

~ω
− mωR2

~
, (7.10)

L− = −3N

2
−R∂R +

H

~ω
− mωR2

~
. (7.11)

The commutations relations of H, L+ and L− have the structure of the SO(2,1) Lie
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algebra;

[H, L+] = 2~ωL+, (7.12)

[H, L−] = −2~ωL−, (7.13)

[L+, L−] = −4H/~ω. (7.14)

From this point on, all the machinery for raising and lowering operators can be applied.

By successively applying the lowering operator to any eigenstate, we obtain a new

eigenstate with arbitrary negative energy. To avoid this unphysical scenario, we have

to impose the condition that for some eigenstate ψ0,

L− |ψ0〉 = 0. (7.15)

Without a loss of generality, we assume that the energy of ψ0 takes the form

Eν,0 = (sν + 3/2)~ω. (7.16)

Here, ν is a general quantum number that labels the state and its energy. In addition,

Eq. (7.15) can be easily solved in hyperspherical coordinates. We obtain,

ψν,0(~R) = Rsν+3(N−1)/2e−R2/2a2
hoΦν(Ω). (7.17)

The state ψ0 is the lowest of a ladder of eigenstates |ψq〉 = Lm
+ |ψ0〉 with energies

Eν,m = (sν + 3/2 + 2m)~ω, (7.18)

where m is a positive integer. The coefficients sν dictate the beginning of the ladder,

and to obtain them, we have to solve the complete many-body Schrodinger equation.

Even though we do not know where these ladder of state begin, we showed that the

structure of the spectrum consists of families of eigenstates, labeled by ν, with energies

separated by 2~ω.

The functional form of the unnormalized states obtained by successive applica-

tions of L+ to the lowest state are

ψν,m(~R) = Rsν+3(N−1)/2e−R2/2a2
hoLsν+1/2

m (R2/a2
ho)Φν(Ω). (7.19)
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These eigentates are separable in the hyperspherical coordinates (R, Ω). In the hy-

perspherical framework, the separability of the eigenstates implies that the adiabatic

approximation is exact [119]. Furthermore, the channel functions Φν do not depend on

the hyperradius. Since the L+ only acts on the collective coordinate R, the 2~ω spacing

is associated with collective or breathing mode excitations.

From the functional form of the eigenstates [Eq. (7.19)], we can infer the effective

hyperradial potentials. We define the hyperradius wave function Fν,m with the correct

normalization, ψν,m(~R) = R1−3N/2Fν,m(R)Φν(Ω). The hyperradial wave functions have

the same functional form as the noninteracting system, so we expect that the functional

form of the hyperradial potentials should also agree. This agreement can be verified by

inserting the wavefunction solutions of Eq. (7.19) into the hyperspherical Schrodinger

equation [Eq. (2.32)]. This procedure leads,

(
− ~

2

2m

∂2

∂R2
+

mω2R2

2
+
~2sν(sν + 1)

2mR2

)
Fν,m = Eν,mFν,m. (7.20)

The effective potential curves include a trapping term and a term proportional to 1/R2

that includes the kinetic energy and the effects of the two-body interactions. By taking

the limit ω → 0 in Eqs. (7.19,7.20) we can verify that the 1/R2 term remains unchanged

in the absence of a trap. In this limit, the trapping potential disappears and all the

trapping states from Eq. (7.19) tend to the zero energy eigenstate of the free system.

We can now easily show that these state obey a virial theorem [175, 186]. Consider

the expectation value of the external potential Vtrap = mω2

2

∑
i r

2
i over an eigenstate,

〈ψν,m|Vtrap|ψν,m〉 =
mω2

2
〈ψν,m|

∑

i

r2
i |ψν,m〉 =

mω2

2
〈ψν,m|R2|ψν,m〉 . (7.21)

Equation 7.21 can be evaluated analytically in hyperspherical coordinates. The integra-

tion over the hyperangles is trivial since the eigenstates are separable in this coordinates

and Vtrap does not depend on Ω. We are then left with a one dimensional integration

over R, using the properties of the Laguerre polinomials we obtain the virial theorem
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relation

〈ψν,m|Vtrap|ψν,m〉 =
Eν,m

2
. (7.22)

Since all the eigenstates obey the virial theorem, a thermal distribution would also obey

the same virial theorem.

All the properties presented above are valid for both few- and many-body systems.

For large N systems, it is convenient to introduce variables rescaled by the noninter-

acting quantities. If one defines x = R′/R′
NI and ενn = Eνn/ENI , the hyperradial

Schrödinger equation can be rewritten as

(
− 1

2µeff

d2

dx2
+

sν(sν + 1)
2µeffx2

+
1
2
x2

)
F̄νn(x)

= ενnF̄νn(x), (7.23)

where µeff = E2
NI/(~ω)2. RNI in the above definition of x denotes the rms radius

of the non interacting system. The virial theorem [Eq. 7.22] implies that RNI can be

expressed in terms of the energy ENI of the non-interacting two-component Fermi gas,

RNI =
√
〈R2〉NI =

√
~

Mω

√
ENI

~ω
. (7.24)

The dimensionless coefficient CN is defined by

CN =
s0(s0 + 1)

µeff
=

s0(s0 + 1)~2ω2

E2
NI

(7.25)

and it characterizes the ground state of the system at unitarity. The scaled hyperradius

x and the scaled energies ενn remain finite in the large N limit. For example, in the

limit N →∞,

ε00 ≈
√

C∞ or E00 ≈
√

C∞ENI . (7.26)

Here, we have used that CN converges to a finite value C∞ in the large N limit. Thus, the

scaled quantities are particularly well suited to discussing the large N limit. For small

systems, in contrast, some properties of the system can be highlighted more naturally

using the unscaled hyperradius R.
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Finally, all the properties explained in this section remain valid if the center-of-

mass motion is removed and the particles have different masses. Both for a system

with the center of mass decoupled and for an unequal mass system, there exists a set

of Jacobi vectors which obey the boundary condition of Eq. (7.6) and transform the

Hamiltonian to that of the form Eq. (7.7), reproducing the problem considered above.

The coefficients sν describe both the trapped and free systems and are related to

the universal parameter ξ of the homogeneous system [19, 174]. Thus, the hyperspherical

framework connects few- and many-body quantities and allows one to bridge the gap

between atomic and condensed matter physics.

7.3 Numerical verification of universal properties for trapped sys-

tems

It cannot be known a priori in which cases the theory presented in the previous

section is valid. The theory can only say that, if the system behaves universally, then

it has the mentioned properties. To verify that a particular system is universal we need

to solve the complete problem, i.e., we have to obtain solutions of the spectrum and

wavefunctions and test whether the universal properties are fulfilled.

For example, a two-component Fermi gas is expected to behave universally. Pauli

repulsion is considered responsible for stabilizing the system against collapse and avoid-

ing clustering. On the other hand, bosonic systems with attractive interactions are

known to collapse and form cluster systems. Therefore, it is clear that bosonic systems

are not universal. However, there can be part of the bosonic spectrum that follows these

universal properties.

The stability of two-component Fermi gases is supported by experimental results

and numerical simulations. The most relevant numerical results are obtained by FN-

DMC, which shows that the energy of a homogenous Fermi gas at unitarity is positive

[36, 7]. However, these results do not constitute proof that the two-component Fermi
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gas is universal. Furthermore, FN-DMC calculations have important limitations due to

the nodal constraint, so we cannot know for sure that the E = (1 + β)ENI is the true

ground state (for a zero-range pseudopotential) or just the lowest “gas-like” state. In

addition, unphysical purely attractive potentials, used in these FN-DMC calculations,

produce many-body bound states for large N systems. It is not completely clear what

would happen with these many-body bound states if the potentials would get replaced

by realistic potential or by zero-range pseudopotentials.

In this section, we analyze the few-body two-component Fermi gas at unitarity

by solving the many-body Schrodinger equation with the CG method. The universal

properties described in the previous section are valid with and without the inclusion of

the center-of-mass motion [186]. In the numerical calculations, we removed the center-

of-mass motion to reduce the computational demands. The center-of-mass motion is

described by a simple one-particle harmonic oscillator wave function and can be trivially

included after the numerical calculations.

For even systems, we consider N1 = N2 = N/2, while for odd systems we consider

N1 = N2+1. As we noted in the Introduction, the perturvative BEC and BCS behaviors

of the even N systems predict an L = 0 ground state while for odd N systems L can

be different from zero. This is consistent with the pairing arguments that suggest that

an even N system should have all the pairs couple to L = 0. Therefore, we expect that

even at unitarity the even-N systems should have L = 0. However, to analyze odd N

systems we have to consider L > 0 solutions. The CG method as implemented above

only describes L = 0 states [182].

To obtain L > 0 states, we introduce a spectator particle. Specifically, we solve

an (N + 1)-atom system. This spectator particle does not interact with the rest of the

particles but couples to them to form an L = 0 state. Through this introduction of an

extra particle to an N particle system, the wave function will now describe “solutions of

the N -particle”+ “solutions of the extra particle” coupled to zero angular momentum.
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Even though the extra particle does not interact at all with the N -particle system, the

constraints of the wave function force it to be coupled with the N -particle system to

zero angular momentum. Thus, if the extra particle has angular momentum L, then

the N -particle system has also angular momentum L so they couple to zero angular

momentum. To know the angular momentum of the N system, we measure the energy

of the spectator particle, which should agree with the energy of one particle in a trap.

From the energy of the spectator particle, we can deduce the angular momentum of

the system. For example, consider that we want to extract the spectrum of the N -

particle system with L = 1 from the L = 0 spectrum of the N + 1-particle system.

In such case, we know that the L = 1 ground-state energy of the extra particle in a

trap is 5/2~ω. Therefore, by measuring the energy of the extra particle, we can know

the angular momentum of the N -particle system, and we can predict its energy, via

EN = EN+1 − 5/2~ω. Table 7.1 summarizes a few selected results for N = 3− 6.

A property of the even-N systems that is important for numerical calculations

is the symmetry under the exchange of spin-up and spin-down particles. In the equal-

mass case, the different spin components are treated as distinguishable, particles and

there is only interaction between spin-up and spin-down particles. Therefore, both the

Hamiltonian and the symmetry of the wave function remain unchanged if we replace

all the spin-up particles with spin-down particles and vice versa. This exchange oper-

ation reveals a symmetry of the problem that we call “spin exchange” symmetry. The

eigenfunctions have to be even or odd under this symmetry transformation. The ground

state of an even-N system is expected to be even under spin exchange, since the “odd

spin” wave function is forced to have an extra node. In the N = 4 system, we test

this property. First, we calculate the complete L = 0 spectrum, and then we calculate

the even-spin spectrum imposing the even-spin symmetry in the wave function. The

even-spin spectrum accurate reproduces the ground state and part of the excitation

spectrum. For the N = 6 calculations presented in Table 7.1, we use this property to
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enforce the even-spin symmetry to the wave function. This significantly reduces the

Hilbert space and allows an accurate description of several states.

Table 7.1: CG energies Eνn for N = 3 − 6 (the range r0 of the Gaussian potential
is 0.01aho for N = 3 and 4, and 0.05aho for N = 5 and 6). Finite range effects are
expected to be ≈ 0.02~ω and 0.1~ω for r0 = 0.01~ω and 0.05~ω, respectively. Results
from Ref. [19].

N Lrel E00/(~ω) E01/(~ω) E02/(~ω) E10/(~ω) E20/(~ω)
3 0 4.682 6.685 8.688 7.637 9.628
3 1 4.275 6.276 8.279 6.868 8.229
4 0 5.028 7.032 9.039 7.464 8.051
4 0 7.11 7.19 7.74
5 0 8.03 10.04 12.06 8.83 10.38
5 1 7.53 9.13
6 0 8.48 10.50 12.52 10.44 11.00

The 2~ω spacing reported in Table 7.1 strongly suggests the validity of the uni-

versal properties. However, as the energy increases, there is a large quasi-degeneracy of

states and the states separated by 2~ω are hard to identify. The difficulty to identify the

2~ω spacing occurs even more if we consider the numerical uncertainty of the energies

and the finite range effects. Therefore, it would be convenient to compute an inde-

pendent observable that would also reveal the universal properties and complement the

spectrum analysis. Hence, we analyze the behavior of the hyperradial density F 2
ν,n(R).

The numbers of nodes tell us the number of 2~ω excitations and the analytical forms

of the hyperradial densities are known, see Eq. (7.19). The analytical solutions can

be directly compared with the numerical results. The combination of the analysis of

the spectrum with the verification of the functional forms of the hyperradial densities

provides strong numerical evidence of the universal nature of the spectrum.

To obtain the hyperradial densities, we integrate the square of the wave function

over all the hyperangles. This multidimensional integration would be computationally

difficult using standard integration techniques. Accordingly, we use two unconventional

numerical techniques that work remarkably well for this specific problem. We use the
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first technique for N ≤ 4 and take advantage of the properties found in correlated

Gaussian hyperspherical method (CGHS). As explained in Sec. 3.4, the overlap matrix

element of two basis functions can be reduced to an analytical expression for N = 3 or to

a one-dimensional numerical integration for N = 4. Thus, by using the basis expansion

of the wave function we can significantly reduce the computational demands of the

integration. As the number of particles N increases, the dimension of the numerical

integration goes as N − 3, so this method becomes very computationally demanding for

N > 4.
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Figure 7.1: Dash-dotted lines show V (R) as a function of R/aho for (a) N = 4 with
ν = 0, (b) N = 4 with ν = 1, and (c) N = 6 and ν = 0. Circles and solid lines show
the corresponding F 2

νn determined numerically and analytically, respectively. Dashed
horizontal lines show the energies Erel

νn . Results are from Refs. [185, 19].

The second method uses Monte Carlo techniques to carry out the integration. The

universal wavefunctions [see Eq. (7.19)] are separable in hyperradius and hyperangles.

Therefore, if the numerical solutions are of the form of Eq. (7.19), we could simply

fix the hyperangles Ω to some value, and evaluate the square of the wavefunction as a

function of the hyperradius. That procedure should give us a function proportional to

F 2
ν,n(R). However, our numerical solutions are not exactly separable in hyperspherical
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coordinates because of the finite range of the interaction. Also, numerical limitations

can affect the separability in hyperspherical coordinates. Therefore, instead of selecting

a single set of hyperangles and extracting the square of the wave function, we can

repeat this process for many different sets of hyperangles and average over them. The

different sets of hyperangles are selected randomly, and this process is equivalent to a

Monte Carlo integration. Since the numerical solutions are approximately separable in

hyperspherical coordinates, we do not need a large number of randomly selected sets

of hyperangles to converge the solution. In other words, the standard deviation of the

numerical integration goes to zero as the separability becomes exact.

Figure 7.1 presents numerical results for N = 4 and N = 6 hyperradial densities

and compares them to the analytical solutions. The analytical solutions are obtained

by extracting the sν values from the numerical energies shown in Table 7.1. The N = 4

solutions were obtained with the basis set expansion technique while the N = 6 method

is obtained with the Monte Carlo technique. In both cases, good agreement is obtained

between the numerical and the analytical solutions.

The analysis of the universal properties can be extended to unequal mass systems.

The universal properties predicted in Sec. 7.2 are also valid for universal systems of two

fermionic species with arbitrary mass ratio so long as all the particles feel the same

trapping frequency. Here, we analyze the spectrum of four trapped fermions, two for

each fermionic species, characterized by a mass ratio κ. In Fig. 7.2, the spectrum

is analyzed as a function of the mass ratio. The circles correspond to the numerical

spectrum. We can clearly identify families of solutions separated by 2~ω. To identify

these families, we generate a series of solid lines that correspond to E00 +2n~ω, a series

of dashed lines that correspond to E10 + 2n~ω, and a series of dash-dotted lines that

correspond to E20 + 2n~ω. The energies (circles) that agree with the lines correspond

to the same family. The energies Eν0 determine the coefficients sν of the hyperradial

potential curves Vsν (R). Table 7.2 summarizes the three smallest coefficients for various
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κ.
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Figure 7.2: Four-body energy spectrum for L = 0 at unitarity as a function of κ.
Circles correspond to the numerical results obtained by the CG approach. Solid, dashed
and dash-dotted lines show the energies Eν0 + 2n~ω for ν = 0, 1 and 2, respectively
(n = 0, 1, · · · ). Results are from Ref. [185].

From the numerical results presented in this section, we have indirectly verified

the form of the hyperspherical potential curves. The 2~ω spacing clearly suggests the

universality of the potential curves and the 1/R2 free-space hyperspherical potential.

The development of the CGHS method allows us to carry out a hyperspherical calcula-

tion for the four-fermion problem and to directly verify the form of the hyperspherical

potentials. Also, it allows us to analyze deviations from the zero-range solutions due to

finite-range effects.

The 20 lowest four-body potential curves 2µR2Uν(R)/~2 for the equal-mass sys-

tem are presented in Figure 7.3. We can identify three regimes in these potential curves.

The region R . r0 is controlled by the kinetic energy. The kinetic energy effects are more

important than the interaction energy and the potential curves are well approximated

by the non-interacting potential curves. In other words, 2µR2Uν(R)/~2 ≈ Λ2 + 12 and

the eigenchannels are well approximated by the hyperspherical harmonics (see Sec. 2.5).

For that reason, there is a large degeneracy in the R . r0 region which corresponds to
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Table 7.2: Coefficients sν of the hyperradial potential curves Vsν (R), Eq. (7.18), for the
N = 4 system with L = 0 for various mass ratios κ. Results are from Refs. [185].

κ s0 s1 s2 κ s0 s1 s2

1 2.03 4.46 5.05 8 2.45 3.81 5.29
2 2.09 4.41 4.88 9 2.45 3.74 5.35
3 2.18 4.27 4.90 10 2.42 3.68 5.39
4 2.27 4.15 4.98 11 2.37 3.62 5.39
5 2.34 4.04 5.06 12 2.29 3.57 5.30
6 2.40 3.95 5.15 13 2.17 3.51 5.18
7 2.43 3.88 5.22
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Figure 7.3: Hyperspherical potential curves for the 4-fermion system multiplied by
2µR2/~2. The solid lines represent the predictions from analyzing the spectrum obtained
with the CG method. The symbols correspond to direct evaluation of the potential
curves with the CGHS method. Unpublished results.
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the degeneracy of the Λ2 operator. Furthermore, the potential curves are, to a good

approximation, proportional to 1/R2. The second region is r0 . R . 20r0. In this

region both the kinetic and the interaction terms are important and finite range effects

are important. In the third region, R & 20r0, the potential curves recover their univer-

sal behavior. The potential curves are, again, approximately proportional to 1/R2. As

R/r0 increases, finite range effects tend to zero and we obtain the zero-range potential

curves at unitarity. Therefore, in this region, the eigenvalues of 2µR2Uν(R)/~2 are ap-

proximately sν(sν + 1). Thus we can compare these results with the ones deduced from

trapped calculations for r0/aho = 0.01 presented in Table 7.2. The red, blue and green

solid lines correspond to s0(s0 +1), s1(s1 +1) and s2(s2 +1) respectively. There is good

agreement between the predictions from the trapped system and the direct computation

of the potential curves.

To quantify this last statement, we analyze the value of s0. Several groups [182,

40, 184, 2, 166] have tried to benchmark the four-body value of E00, which is straight-

forwardly related with s0. The calculations from Ref. [2] use zero-range interactions

explicitly.and they report a value of E00 ≈ (5.045 ± 0.003)~ω. To extract the s0 value

in the zero-range limit, we carry out two different calculations. First, we study the

E00 energy obtained with CG as a function of the range of the two-body interaction

and then we extrapolate to zero-range limit. This method was previously applied for

the three-body system and the numerical results agreed with the analytical predictions

up to 7 digits [185]. The same procedure applied to the four-body system, leads to

s0 ≈ 2.0096. The second calculation analyzes the long-range behavior of the potential

curves. To eliminate finite-range effects, we extrapolate the potential curve U0(R) to

R/r0 → ∞. In this limit, U0(R) is characterized by a value s0 ≈ 2.0092. These two

different methods provide a value of s0 which agrees in four digits. These values are

slightly lower than s0 ≈ 2.045± 0.003 predicted in Ref. [2]. Therefore, we consider that

the uncertainty in Ref. [2] is underestimated.
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7.4 Renormalization and unitarity

The dimensional arguments of the unitary system have been taken into account

in functional form of the effective scattering length. The effective scattering length is

assumed to take the following functional form [183],

kfaeff = ζ(kfas). (7.27)

If the renormalization ζ function remains finite in the as →∞ limit, the interaction at

unitarity is only characterized by the Fermi momentum,

aeff = ζmin/kf . (7.28)

In the Thomas-Fermi approximation, the renormalization technique leads to

µU =
~2k2

f

2m

(
1 +

10
9π

ζmin

)
, (7.29)

EU/ENI =
(

1 +
10
9π

ζmin

)
. (7.30)

Here, ζmin is the asymptotic behavior for as → ∞. In this renormalization approach,

the β parameter is intimately related with the value of the renormalization at unitar-

ity. Comparing Eq. (7.2) to Eq. 7.29 we obtain β = 10ζmin/9π. The renormalization

procedure described in Sec. 4.4 leads to a β ≈ −0.492. Table 7.3 shows different ex-

perimental and theoretical values of β. Experimental groups, like Thomas and Hulet

groups, measure the ratio of the size of the Fermi cloud at unitarity, RU , and in the

noninteracting limit, RNI [134, 105]. In the Thomas-Fermi approximation, the ratio is

RU/RNI = (1 + β)1/4 [75]. This relation was obtained previously using dimensional

arguments [75] and appears naturally using the renormalization approach.

The renormalization applied to the hyperspherical method has predicting power

also. Rittenhouse and Greene [150] showed that a renormalization of the form of

Eq. (7.27) applied in the K-harmonic approximation leads to a hyperspherical potential
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Table 7.3: Experimental and theoretical predictions of β.

β

Experiments −0.54(5)1 −0.64(15)2 −0.49(4)4

Experiments −0.68+0.13
−0.10

3 −0.54+0.05
−0.12

5

QMC −0.58(1)6 −0.56(1)7

Padé asymptotes -0.6748 −0.4329

Green’s function −0.54510 −0.59911

BCS∗——ε Expansion† −0.4112 ∗ −0.52513 †

Other methods −0.314 −0.56415 −0.49216

1Ref. [134] 2Ref. [25] 3Ref. [13] 4Ref. [105] 5Ref.[167] 6Ref. [7] 7Ref. [41] 8Refs. [9, 85]
9Ref. [9] 10Ref. [137] 11Ref. [92] 12This is a well known result, see for example Ref. [137]
13Ref. [128] 14Ref. [32] 15Ref. [43] 16Result obtained using the renormalization function
of this thesis (and from Ref. [183])

at unitarity of the form,

V (R) =
~2(1 + β)
2MR2

, (7.31)

where β = 10ζmin/9π. Here, the hyperradius can be understood as a measure of the

global size of the cloud and breathing mode oscillations can be understood as small

oscillations at the bottom of this potential curve. Therefore, oscillations in R are collec-

tive oscillations. For a spherically symmetric trap, the functional form of the potential

[Eq. (7.31)] predicts ω0 = 2~ω, in agreement with the universal properties presented in

Sec. 7.2 and several other many-body predictions.

The renormalization function is applied at the mean-field level of approximation,

which does not take into account pair correlations. The pair correlations are essen-

tial for the description of the superfluid nature of the system. For that reason, this

renormalization approach cannot predict whether the system is superfluid or not; it

cannot describe superfluid observables. However, it does predict the correct relation

between chemical potential µ and the density ρ that control the collective excitations

in the hydrodynamic theory [49, 93]. These collective excitations have been measured

experimentally and are in good agreement with theory.



175

7.5 Monte Carlo calculations for trapped systems: β parameter

and the gap

For systems with a large number of particles, the calculation of the complete

spectrum using a method such as the CG becomes computationally prohibitive. In

contrast, quantum Monte Carlo simulations can be extended to larger systems and

allow a reliable determination of the β parameter and the excitation gap for a two-

component Fermi gas. For example, the first calculations, carried out in 2003, considered

a homogenous system and used both variational and fixed-node diffusion Monte Carlo

techniques (VMC and FN-DMC). The universal parameter was determined to be β =

−0.56(1) [36]. These calculations were followed in 2004 by the authors of Ref. [7] in

which the BCS-BEC crossover was considered; a similar parameter was obtained, with

β = −0.58(1). Another important parameter calculated with FN-DMC is the excitation

gap. The excitation gap ∆ of the homogenous system was calculated by Carlson and

Reddy [37] to the ∆ = 0.84(5)EFG, where EFG denotes the energy per particle of

noninteracting homogeneous Fermi gas.

Initial calculations of the energy of trapped two-component Fermi gases were

reported in Ref.[183]. These calculations were significantly improved and extended

to larger systems by Chang and Bertsch [40] and D. Blume who performed the FN-

DMC calculations in Refs. [184, 19]. I participated in the implementation FN-DMC

simulations for different trial wave functions and in the analysis of the results. Using

my own implementation of FN-DMC method and considering more flexible trial wave

functions, I was able to reproduce some of D. Blume results. In some cases, more

flexible trial wave functions predict lower energies than those of Ref. [184, 19]. However,

the improvement was usually less than 2%, very small considering the computational

demands of my calculations. For detailed discussion of Monte Carlo methods in general

and the trial wave functions considered in the trapped two-component Fermi gas, please
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see Sec. 3.2. Here, we analyze the numerical results.

Figure 7.5 presents the total energy at unitarity as a function of the number of

particles N . We can clearly see an odd-even behavior in the energies as a function of N

that is related, as we will see later, to the excitation gap.
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Figure 7.4: Circles and crosses show the fixed-node diffusion Monte Carlo (FN-DMC)
energies E(N) in units of ~ω as a function of N at unitarity. Circles correspond to
even-N systems and crosses correspond to odd-N systems. Solid lines show a fit of the
even FN-DMC energies to Eq. (7.34). Numerical results are from Refs. [184, 19].

For sufficiently large N , the energy of the trapped system at unitarity can be

calculated using the homogeneous result of Eq. (7.2) in a local density approximation

(LDA). As with Eq. (7.2), we obtain an equation that relates the noninteracting energy

of the trapped system E
(T )
NI with the energy at unitarity of the trapped system E

(T )
U :

E
(T )
U (N) =

√
1 + βE

(T )
NI (N). (7.32)

Equation (7.32) allows us to extract β from the energy of trapped system at unitarity.

The noninteracting energies E
(T )
NI present a shell structure. However, the energies at

unitarity up to N = 30 show little shell structure and can be described to a very good

approximation by a smooth function. Therefore, for Eq. (7.32) to actually work in the

small N (N < 30) region, we have to approximate E
(T )
NI by a smooth function. Such
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an approximation can be accomplished by applying the extended Thomas-Fermi (ETF)

model [29] to E
(T )
NI so that

E
(T )
NI,ETF ≈ ~ω

(3N)4/3

4

(
1 +

(3N)−2/3

2
+ · · ·

)
. (7.33)

Using ETF in Eq. (7.32), we obtain

E
(T )
U ≈

√
1 + βE

(T )
NI,ETF . (7.34)

Fitting our energies to Eq. (7.34) and treating β as a variational parameter, we find

β = −0.535. Our β extracted from the trapped system is about 10% larger than that

determined for the bulk system, i.e., ξ1 = 0.58(1) [7, 37], suggesting that one has to go to

somewhat larger trapped systems to extrapolate to the bulk β with high accuracy within

the LDA. Although the β obtained from the fit to the energies of the trapped system

is larger than the corresponding bulk value, it is worthwhile to note that the simple

functional form given in Eq. (7.34) provides an excellent description of the energies of

the trapped system even for small N -particle systems.

The Monte Carlo calculations for odd and even systems can be combined to obtain

the excitation gap ∆(N) for the trapped unitary Fermi gas as a function of N . The

definition of the excitation gap for the homogeneous system [36], which equals half the

energy it takes to break a pair, can be readily extended to the trapped system [40, 34]

where

∆(N) = E(N)− [E(N − 1) + E(N + 1)]/2. (7.35)

The excitation gap ∆(N) obtained from our FN-DMC energies is shown in Fig. 7.6 (cir-

cles). ∆(N) increases from ≈ 0.75~ω for N = 3 to ≈ 1.5~ω for N = 29. For comparison,

we show the excitation gap ∆(N) calculated using the DFT energies (triangles) obtained

recently by Bulgac [34]. The agreement between Bulgac’s ∆(N) and our results is quite

good.
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Alternatively, the excitation gap can be deduced from the excitation spectrum.

According with pairing theories, the ground state of even N systems has all the particles

paired up and it is separated of the excited states by the energy necessary to break

the pair. In contrast, odd N system have one unpaired particle and the spectrum

does not reveal the excitation gap. In nuclear systems, the excitation gap is observed

by comparing the excitation spectrum from odd and even nucleon systems (see e.g.

Ref. [147]). In two-component trapped systems, the gap for small N -system is of the

same order of the trapping excitation energy ~ω. Therefore, it is more difficult to identify

the effects of the excitation gap in the excitation spectrum. Despite these difficulties,

we analyze the behavior of the excitation spectrum for N = 3, 4 and 5.
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Figure 7.5: Excitation spectrum for N = 3, 4 and 5 at unitarity. Black circles correspond
to L = 0 states and red circles correspond to L = 1 states.

Figure 7.5 presents the L = 0 and L = 1 excitation spectrum for N = 3, 4, 5.

The states corresponding to the same hyperspherical potential curve are separated by

2~ω. Clearly, these excitations are not associated with the excitation gap. To see

the effects of the excitation gap, we consider the energy difference between the lowest

L = 0 and L = 1 states for odd and even N systems. Here, we assume that the
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change of angular momentum ensures the breaking of the pair in the even N system.

Considering Table 7.1, we see that the N = 4 has an energy difference much larger than

the N = 3 and N = 5 systems. To estimate the excitation gap we consider that the

energy difference |EN=4
L=0 − EN=4

L=1 | has two contributions: the energy for breaking the

pair and the energy for the change of symmetry. In this picture, the odd systems have

only the contribution from the change of symmetry. Therefore, we can estimate the

gap, i.e., half the energy for breaking the pair, as

∆(4) =
1
2

(
|EN=4

L=0 − EN=4
L=1 | −

1
2
[|EN=3

L=0 −EN=3
L=1 |+ |EN=5

L=0 − EN=5
L=1 |]

)
. (7.36)

The second term correspond to the energy due to the change of symmetry for N = 4

which is estimated averaging over the N = 3 and N = 5 values. Using the energies

from Table 7.1, we estimate ∆(4) ≈ 0.81~ω which is close to ∆(3) ≈ ∆(5) ≈ 0.75~ω

obtained with Eq. (7.35). This qualitative agreement support the assumption that the

odd-even behavior is a consequence of pairing physics. Unfortunately, the analysis of

the spectrum can only be done for N ≤ 5. For larger systems, only the ground state is

known and we need to use Eq. (7.35). Next, we consider the dependence of the gap on

N and its large N limit behavior.

To analyze the large N limit behavior of the excitation gap, we use LDA and

obtain

∆LDA(N) = 3αhom (3N)1/3 ~ω/(8
√

1 + β). (7.37)

The universal parameter α describes the even-odd oscillations and αhom equals 0.85

for the bulk system [37]. Using α as a fitting parameter we find αtr = 0.60 for the

trapped system. The ∆LDA(N) with the ξtr and αtr parameters, shown in Fig. 7.6 by a

solid line, provides a good description of our FN-DMC results. It is the fact that αtr is

noticeably smaller than αhom which suggests that the extra particle is not distributed

uniformly throughout the cloud; rather it has a greater probability of residing at the

surface of the cloud where the gap is smaller. Indeed, our density profiles for N & 11
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(not shown) indicate that the extra particle sits near the surface of the cloud [185]. The

unpaired particle location is verified by comparing the density profiles of the spin-up

and spin-down particles. In general, the LDA is expected to describe the center region

of the trap well, but to fail in the surface region, raising questions about the validity

of our LDA treatment [Eq. (7.37)]. Recently, Son reached similar conclusions [160]. In

his analysis, the gap increases with N1/9 as N → ∞. A fit of our results for ∆(N) for

N ≥ 9 shows consistency with the N1/9 dependence but does not conclusively confirm

it.
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Figure 7.6: Circles show the excitation gap ∆(N) determined from our FN-DMC ener-
gies. A solid line shows ∆LDA(N). For comparison, triangles show ∆(N) determined
from the DFT energies [34]. Figure taken from Ref. [19].

The FN-DMC energies provide interesting insights on the evolution from few- to

many-body systems. Such evolution can be studied in the hyperspherical framework.

We can use the FN-DMC energies to extract the lowest hyperspherical potential curves

that describe these systems. The ground-state energies E(N) determine the coefficients

s0 [see Eq. (7.16)] of the hyperradial potential Vs0(R) [see Eq. (7.20)]. Figures 7.7 (a)

and (b) show the lowest hyperradial potential curves V (R) [V (R) = Vs0(R) + Vtrap(R),

where Vtrap(R) = 1
2µNω2R2 and µN = m] for N = 3−20 in the noninteracting limit and

at unitarity, respectively. The small R behavior of V (R) is dominated by Vs0(R), while
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the large R behavior of V (R) is dominated by Vtrap(R). Comparison of Figs. 7.7 (a)

and (b) shows that the attractive interactions lead to a lowering of the potential curves

at unitarity compared to those of noninteracting system. Furthermore, the V (R) at

unitarity appear to be “staggered,” i.e., odd-even oscillations are visible, reflecting the

finite excitation gap at unitarity. In the noninteracting limit, in contrast, the excitation

gap [Eq. 7.35] is zero and no odd-even staggering of the hyperradial potential curves is

visible.

Another important aspect of these potential curves is their relation to the pa-

rameter β. As was pointed out previously by Tan [174] and was shown using the

renormalized hyperspherical approach [150], the small R behavior of the wavefunction

and the hyperspherical potential curves in the large N limit are intrinsically related to

the universal parameter β. To analyze the large N limit, we use the rescaled coefficients

C̄N presented at the end of Section 7.2. Figure 7.5 shows the normalized coefficients

C̄N . As in our analysis of the energies EU , we find it useful to smooth the energies

ENI). Therefore C̄N stands for CN from Eq. (7.25) with ENI replaced by ENI,ETF , as

a function of N . The coefficients C̄N oscillate between two smooth curves, a curve for

even N (circles) and a curve for odd N (crosses), reflecting the odd-even staggering. As

N increases, the difference between the two curves decreases. In the large N -limit, the

value of C̄N for two-component Fermi gases at unitarity should approach the universal

parameter ξ = 1 + β [19]. This relationship can be shown by comparing the ground-

state energy obtained within the hyperspherical framework, Eq. (7.26), to the LDA

prediction, or by applying renormalized zero-range interactions within the hyperspher-

ical framework [150]. The dash-dotted and dashed lines in Fig. 7.5 show the ξ value

obtained by FN-DMC calculations for the homogeneous system (ξ = 0.42) [7, 37] and

the ξ value obtained with a renormalization procedure (ξ = 0.508) [183], respectively.

For comparison, our energies for the trapped system predict ξtr = 0.467. The circles in

Fig. 7.5 approach this value. The fact that ξtr is larger than the corresponding value
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Figure 7.7: Hyperradial potential curves V (R) for equal-mass two-component Fermi
systems with (a) vanishing interactions and (b) infinitely strong interactions as a func-
tion of R. The hyperradial potential curves naturally appear ordered as N increases:
Solid lines correspond, from bottom to top, to N = 4− 20 (N even), while dashed lines
correspond, from bottom to top, to N = 3− 19 (N odd). Figure taken from Ref. [185].

0 5 10 15 20 25 30
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

N

C̄
N

0 0.05 0.1 0.15
0.35

0.4

0.45

0.5

0.55

1/N

C̄
N

Figure 7.8: Normalized coefficients C̄N , Eq. (7.25) with ENI replaced by ENI,ETF ,
as a function of N ; values for even N are shown by circles and values for odd N
by crosses. The dash-dotted line shows the value ξ = 0.42 obtained by FN-DMC
calculations for the homogeneous system [7, 37], while a dashed curve shows the value
ξ = 0.508 obtained with a renormalization procedure [183]. The inset shows the same
quantities as a function of 1/N instead of N . Figure taken from Ref. [185].
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of the bulk system, i.e., ξ = 0.42, might be attributable to the fact that comparatively

small system sizes (N ≤ 30) are considered in our analysis. If finite size effects are re-

sponsible for such disagreement, we would expect the circles in the main part of Fig. 7.5

to turn around at larger N values approaching to the homogeneous prediction ξ = 0.42

(dashed-dotted curve). Nevertheless, we cannot rule out that the nodal surface entering

our FN-DMC calculations might not be optimal. Even though the trial wave functions

for the trapped system are analogous to the wave functions of the homogenous case [7],

trapping effects and the shell structure might affect differently the trapped calculations

and more sophisticated trial wave functions might be required.

7.6 Conclusions

The verification of the universal properties of few-body systems has important

consequences in the understanding of the unitary regime. In the two-component Fermi

gas, we show quantitatively that the system behaves universally up to N = 6. This result

implies that there are no weakly bound states for N ≤ 6 which explains, from a few-body

perspective, the stability of two-component Fermi gases. The FN-DMC calculations do

not exclude the presence of negative energy states; but, we do not find evidence of such

states. The stability of the FN-DMC calculations reveals, to some extent, the stability of

the system [18]. If the system is unstable, the walkers evolve into cluster configurations

with very large and negative energies which produces an instability of the simulation.

This effect does not occur in the two-component Fermi gas. The FN-DMC simulations

are remarkably stable, suggesting that the state described is also quite stable.



Chapter 8

Four Bosons with large scattering length

8.1 Introduction

The behavior of few-body bosonic systems with finite range interaction potentials

and large scattering lengths is quite different from fermionic systems. A remarkable

prediction by Efimov [60] in 1970 stated that a system of three bosonic particles with

resonant interactions, but without a two-body bound state, has an infinite family of

weakly bound three-body states. The existence of weakly bound Efimov states implies

a completely different topology of the spectrum as compared to fermionic systems. In

bosonic systems, for example, a “three-body parameter” is required to describe these

weakly bound states. Therefore, two parameters are needed to describe the system:

the scattering length as and the three-body parameter. When the scattering length

diverges, the three-body bound states obey interesting scaling properties. The energies

and sizes of two consecutive states are related to each other by a scaling factor that is

independent of the nature of the interaction.

Fundamental questions arise when another particle is added to such a system.

Does the four-boson system have an equivalent to the three-body Efimov effect? Does

the system requires a new parameter, i.e., a “four-body” parameter? Unfortunately, only

limited or approximate solutions to the four-boson problem exist [1, 163, 142, 83] because

of the complexity of such systems and these questions have not yet been resolved.

Here, we present solutions to the four-boson system obtained by using the correlated-
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Gaussian (CG) and correlated-Gaussian-hyperspherical (CGHS) methods. In contrast

with previous calculations, these methods essentially do not rely on any approximation;

thus limited only by numerical convergence.

We show that when a three-body Efimov state is at the zero-energy threshold,

there is only a finite number of four-body states. From this perspective, we conclude

that there is no four-body Efimov effect. However, when two-body interactions are

resonant, i.e., when the two-body bound state is at threshold, there is a family of four-

body bound states that are intercalated in energy with the family of three-body Efimov

states and this four-body family follows the same scaling properties. These results are

consistent with the prediction from Ref. [83] that no four-body parameter is needed.

Other important phenomena concern the effects of Efimov physics on the col-

lisional properties of four-boson systems. We know that Efimov physics significantly

affects the collisional aspects of identical bosons with tunable interactions producing

striking features in the three-body recombination [63, 27]. These features were experi-

mentally observed for the first time in 2006 in an ultracold gas of cesium atoms [67, 109].

Here, we use our solutions to the four-boson problem to predict the consequences of Efi-

mov physics in dimer-dimer collisions. We show that for particular scattering length

values, an atom-trimer mixture can be obtained with high efficiency by colliding dimers.

We have also been able to study atom-trimers collisions which will help deduce the life-

time of the atom-trimer mixture.

In this chapter, we first review the three-body Efimov effect from the hyperspheri-

cal point of view. This solution will help us understand the four-boson system. Next, we

use the CG method to extract information about the spectrum and structural properties

of the four-boson system. We then apply the CGHS method and extract the four-body

hyperspherical potential curves. We use these results to confirm the topology of the

spectrum and study dimer-dimer and atom-trimer collisions. The results presented in

this chapter are preliminary, and the research on the four-boson system is still underway.
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8.2 Efimov physics in a three-body system.

In this section we analyze the Efimov effect from the hyperspherical perspec-

tive. This perspective reduces the description of the Efimov effect to an analysis of the

functional form of the relevant hyperspherical potential curve.

In the hyperspherical representation, the Efimov effect is revealed in the form of

the adiabatic hyperspherical potential curve W0(R). In the region where r0 ¿ R ¿ |as|,

the lowest potential curve behaves like

W0(R) ≈ −s2
0 − 1/4
2µR2

, (8.1)

where s0 = 1.0062378 [55, 127]. This attractive 1/R2 potential resembles that of a

charge-dipolar interaction [80, 79, 78, 65, 71, 191]. At unitarity, when the scattering

length diverges, the 1/R2 behavior of the potential extends all the way up to R → ∞.

This long-range behavior is known to have an infinite series of bound states [61]. This

infinite series of states becomes finite on both sides of the unitarity point, where the

1/R2 behavior is only valid up to approximately |as|. Beyond that point, the potential

becomes repulsive [for as < 0] or converges quickly to the dimer-binding energy [for as >

0]. The bound states whose sizes are much greater than r0 are mainly controlled by 1/R2

behavior and are therefore considered universal, i.e., independent of the nature of the

interaction. Note that this universality is slightly different from the universal behavior

of fermions discussed previously. Here, two parameters are necessary to characterize the

Efimov states: the scattering length as and a three-body parameter. The three-body

parameter is related to the range of the two-body potential (not to be confused with

the two-body effective range), and it controls the size and energy of the “first” Efimov

state.

The form of the potential curve at unitarity is responsible of certain scaling prop-

erties. The energy ratio between consecutive states is given by En/En−1 = e−2πs0 ≈

1/515, while the ratio of the mean sizes rn/rn−1 = eπs0 ≈ 22.7. These scaling laws only
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depend on s0 which is a universal quantity. The value of s0 only depends on the nature

of the particles and their corresponding symmetry. The value of s0 = 1.0062378 is only

valid for three identical bosons.
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Figure 8.1: Schematic hyperradial potential curve for three identical bosons having
as < 0. The dashed red line corresponds to a quasi-bound Efimov state above threshold.
As the attraction increases, the state becomes bound. The blue line corresponds to a
bound Efimov state.

An interesting phenomenon, called “Efimov-like shape resonance” [63], occurs in

the negative scattering length region when an Efimov state is about to appear. The

attractive 1/R2 is valid up to R ∼ |as|. Beyond that point the interaction diminishes,

and the effective potential is controlled mainly by the kinetic energy which produces

a repulsive 1/R2. This change of behavior produces a potential curve of the form in

Fig. 8.1. In the outer region, there is a potential barrier. This potential barrier appears

ar R ∼ as and controls the size of the trimer. Therefore, even at threshold, the size of

the trimer remains finite. As the attraction increases, this state becomes bound.

8.3 Analysis of the four-boson system with the correlated Gaussian

method

In this section, we present the analysis of the four-boson spectrum using the CG

method. We also analyze the pair-correlation functions and extract information on the
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structure of the four-body states.

The study of the four-boson systems is significantly more challenging than the

four-fermion system. The scaling laws of the three-boson subsystem should appear in

some form in the four-boson system. Thus, to describe a few Efimov states, we have to

be able to accurately represent states whose sizes varies by couple order of magnitudes.

For example, to produce three bound Efimov states in a trap, we have to make weak

enough so that the trap length at least 103r0, where r0 is the range of the two-body

interaction. Even for such a weak trapping potential, the size of the 4th Efimov state is

too big to fit in the trap.

To analyze the spectrum, we introduce an external trapping. We are interested

in understanding not only the bound states in the four-boson system but also the quasi-

bound states above the continuum described by three-body Efimov states and the extra

particle. Thus, the inclusion of a trapping potential is convenient for the numerical

analysis with CG since it allows us to discretize the continuum. However, numerical

limitations do not allow us to converge the complete spectrum. For example, for a trap

size of 104r0, the binding energy of the lowest Efimov state is of the order of 107~ω.

The 3+1 states formed by an Efimov state and an extra particle can be treated as two

particles in trap; they are spaced in energy by approximately 2~ω. So, between the

lowest three-body threshold and the zero of energy there would be about 107 states. Of

course, we cannot describe accurately all these states. As the numbers of nodes increases,

the wave function becomes more difficult to describe. Numerically, we observe that only

a few of these 3 + 1 states at each three-body threshold are accurately described while

the rest remain unconverged. Intercalated with these unconverged states, there are

quasi-bound four-body states. In general, these quasi-bound four-body states are easier

to converge than the 3+1 states.

To extract the quasi-bound four-body states from the complete spectrum, we

have to be able to distinguish them from the 3+1 states. To do that, we first analyze
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the convergence of the spectrum as an optimization procedure is applied. In a standard

optimization procedure, the states converge according to their energy. The lowest states

converge faster than the highly excited states. However, in trapped four-body systems,

the quasi-bound four-body states converge much faster than any 3+1 state of the same

energy. As we increase and optimize the basis, we can observe how unconverged 3+1

states plunge down, crossing the quasi bound-body states that remain remarkably stable.

By analyzing the convergence of the spectrum, we can distinguish unconverged states

from stable states that are good candidates for describing quasi-bound four-body states.

Next, we analyze the pair-correlation function of the states. The 3+1 pair corre-

lation function presents two peaks. The first peak describes the trimer, while the second

peak describes the trimer-extra particle correlation. Unconverged states produce un-

physical pair correlation functions, while stable quasi-bound states have smooth and

well-behaved pair correlation functions.

The combination of these analyses allows us to identify the quasi-bound four-body

states. Of course, this semiempirical method does not guarantee the extraction of all

the quasi-bound four-body states. Unconverged four-body states cannot be detected by

this method.

Figure 8.2 presents the four-boson energy spectrum as a function of the inverse

scattering length. Here, we introduce a function F (x) = sgn(x) ln(1 + |x|) that allows

us to deal with the logarithmic nature of the Efimov scaling. The blue lines are the

four-body states; the black lines correspond to three-body thresholds; the red lines

correspond to dimer and dimer-dimer thresholds.

The first thing we notice is that there are two four-body states below the lowest

Efimov threshold across the entire range of scattering length values considered. At

unitarity, the deeper 4-body state has an energy E4b
1 ≈ 5.88E3b

1 , while the second has

an energy E4b
2 ≈ 1.10E3b

1 . These ratios were also calculated by Platter et al., who

obtained 5 and 1.01, respectively [83]. Note that even though the our values differ
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quantitatively from those of Platter et al., the structure of the bound four-body system

is similar, with one ”tight” bound state and another state very close to the three-body

threshold.
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Figure 8.2: Spectrum of the four-boson system in a trap. The use of the function
F (x) = sgn(x) ln(1 + |x|) allows to visualize effects at different orders of magnitude in
a single graph. Blue lines correspond to four-body states. Black lines correspond to
trimer+atom thresholds, and red lines correspond to dimer+atom+atom (upper) and
dimer+dimer (lower) thresholds.

To understand the form of these states, we analyze the pair-correlation function.

The pair correlation function for the lowest four-body and 3+1 states are presented in

Fig. 8.3. The sizes of these three- and four-body states are of similar order to the range

of the interaction; thus they are mainly nonuniversal. The mean interparticle distance

in the lowest four-body state is 1.76r0 clearly showing that this has a size too small to

be a universal state. The lowest three-body state has a mean interparticle distance of

2.55r0.

The second four-body state has an energy very close to the first three-body state.

Analyzing the pair correlation functions of these three- and four-body states we observe

that the four-body state can be understood as a three-body Efimov state with the 4th

particle weakly bound to it. The four-body pair correlation function presents a peak



191

at around 2 r0 with a fairly long tail that extends out to approximately 10 r0. The

small-r region of the four-body–pair-correlation function describes the 3-body Efimov

state, while the long tail describes the correlation between the three-body state and the

4th particle. The mean distance between the three-body state and the 4tth particle is

∼ 8 r0.
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Figure 8.3: Lowest pair-correlation functions of the four-boson system at unitarity. The
black solid line corresponds to the lowest four-body state; the dashed red curve is the
second four-body state, and the dash-dotted curve is the lowest 3+1 state. The lowest
3+1 state has a double-peak structure with a second peak around aho = 104r0 that does
not appear in the figure.

The rest of the four-body states are more weakly bound and behave universally.

Since they are above the lowest three-body threshold, these four-body states are quasi-

bound. There is one quasi-bound four-body state below each Efimov threshold. These

states are universal and follow the same scaling law of the three-body Efimov physics;

they are characterized by a scaling factor of eπ/s0 ≈ 22.7. The binding energy of this

series of four-body states (E4b
i ) are proportional to the three-body states (E3b

i ) and

follows the relation E4b
i+1 ≈ 4.4E3b

i for i > 1 at unitarity.

We have numerically shown that pair-correlation functions follow the same Efimov-

scaling law. Figure 8.4 compares the rescaled pair-correlation functions of the 3rd and
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4th four-body states at unitarity. Within the accuracy of the CG calculations, we note

that pair-correlation functions of four-body states follow the same scaling law as the

three-body pair-correlation functions of the Efimov states.
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Figure 8.4: Rescaled pair-correlation functions of the 3rd and 4th four-body states. The
pair correlation for |Ψ3〉 has not been rescaled, but the |Ψ4〉 pair-correlation function is
rescaled by eπ/s0 ≈ 22.7.

8.4 Analysis of the four-boson system in the hyperspherical repre-

sentation

In this section, we analyze the four-boson system within the hyperspherical rep-

resentation. Here, we consider an untrapped system. Using the correlated-Gaussian

hyperspherical method (CGHS), we obtain channel functions and hyperspherical poten-

tial curves.

Figure 8.6 presents the hyperspherical potential curves in the as region where the

first three-body Efimov states appear. It is useful to consider the situation in the three-

body system (depicted in Fig. 8.1) in order to understand the qualitative behavior of

the four-body potential curves. Figure 8.6 (a) corresponds to the case where the three-

body system does not support a bound or quasi-bound state. Figure 8.6 (b) corresponds
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to the case where the three-body system supports a quasi-bound state (schematically

described by the dashed red line in Fig. 8.1). This quasi-bound state produces a series of

avoided crossings in the four-body potential curves that describe an effective potential

curve converging to the quasi-bound threshold. Finally, Fig. 8.6 (c) describes the case

where the bound state lies below zero-energy threshold1 (schematically described by

the solid blue line in Fig. 8.1). The series of avoided crossings disappears, and the lowest

potential curve is now seen to converge to the three-body bound-state threshold.

200 400 600
−5

0

5

10
x 10

−4

R/r0

50 100
−0.02

0

0.02

0.04

0.06

0.08

0.1

R/r0

U
ν
(
R

)
m

r
2 0
/
h̄

2

50 100
−0.02

0

0.02

0.04

0.06

0.08

0.1

R/r0

(a) (b) (c)

Figure 8.5: Potential curves in the scattering-length region near a1f ∼ −6r0, where the
first Efimov state appears. (a) Potential curves at as > a1f [as ≈ −5.31] . The three-
body bound state has not appear yet. (b) Potential curves at as & a1f [as ≈ −6.16].
For these scattering length values a quasi-bound state appears. (c) Potential curves at
as < a1f [as ≈ −7.29]. For these scattering length values the attraction increases and
the three-body state becomes bound.

In this region of scattering lengths, the lowest four-body potential curve supports

a bound state. In fact, as the magnitude of scattering length is being increased, two

bound states are formed before the first three-body state appears. This finding is in

agreement with the results obtained with the CG method (see Fig. 8.2). Therefore,

when the three-body state is right at threshold, the number of four-body states is finite.

In this sense, there is no “four-body” Efimov effect.
1 In the energy scale used here, the zero is selected at the four-body breakup threshold
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The absence of a four-body Efimov effect can be understood by considering the

qualitative differences between the three- and four-body systems. The three-body Efi-

mov effect occurs when the weakly-bound dimer is right at threshold. The size of the

dimers is very large, with their wave functions decaying as 1/r, where r is the interpar-

ticle distance. These long-range correlations are responsible in part for the long-range

1/R2 behavior of the lowest hyperspherical potential curve that produces the Efimov

effect.

In contrast, in the four-body system, the size of the three-body state remains finite

at threshold. The potential barrier schematically presented in Fig. 8.1 constrains the

state to have a finite size. Therefore, for R much greater than the size of the trimer, the

channel function describes an atom-trimer two-body system that decays much faster

than 1/R2. This situation is qualitatively different than the three-body case in that

no attractive 1/R2 potential occurs. However, in an intermediate region, we observe

numerically that the potential takes the form

W0(R) ≈ A ln(R/as) + B

2µR2
. (8.2)

Here, A is a positive constant, and B is a negative constant such that W0(R) is negative

in that region. This behavior is observed for ranges from R ≈ 6r0 to R ≈ 36r0 for

the three-body first Efimov state and over the range from R ≈ 230r0 to R ≈ 1000r0

for the second Efimov state. In both cases, the long-range behavior changes after this

intermediate region, converging fast to the asymptotic threshold. Equation (8.2) is only

valid when the trimer energy is very close to threshold. Once the three-body Efimov

state becomes more tightly bound, this intermediate behavior [Eq. (8.2)] is no longer

valid.

As the magnitude of as increases, a second three-body bound state appears. In

this as region, the energy of the first three-body bound state is quite deep. Therefore,

the lowest potential curve has a deep threshold in comparison with the rest of the
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potential curves. The remaining potential curves behave qualitatively as in Fig. 8.6.

The behavior of the second potential curve in this as region is qualitatively described

by the lowest potential curve of Fig. 8.6.

As in the lowest potential curve, the second potential curve supports two bound

states when the second three-body bound state is at the zero-energy threshold. The

second of the four-body bound states belonging to the second potential curve was not

identified in the CG calculation because of the limitations of the method. This second

bound state (included in Fig. 8.2) appears before the second Efimov state and becomes

very shallow as the scattering length approaches unitarity. In the adiabatic approxi-

mation this state disappears. However, a coupled-channel calculation suggests that the

state may reappear if these couplings are included. The binding energy of such a state

would be less than 1% lower than the three-body threshold. The existence of this state

very close to the trimer threshold should greatly influence the atom-trimer scattering

length.

The second potential curve in the as region is quantitatively different from the

lowest potential curve of Fig. 8.6. The lowest potential curve of Fig. 8.6 is more attrac-

tive, and the bound states are comparatively deeper than the levels in of the second

potential curve. Furthermore, the second state in the second potential curve seems to

disappear as as is tuned closer to unitarity while the second state continues to exist

at unitarity and in the ranges where 1/as > 0. These differences can be understood

by considering finite attractive interaction effects. The lowest potential curve has a

minimum around R ≈ 2r0 where the effects of the two-body attractive interaction are

still visible. The second potential curve has a minimum around R ≈ 16r0, and it is not

significantly affected by the two-body interaction. For this reason, we expect the second

and higher potential curves to be universal in the R À r0. To verify this statement, we

now analyze the potential curves right at unitarity.

Figure 8.7 presents the lowest three potential curves rescaled by the length and
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Figure 8.6: Lowest potential curves when three-body states are at threshold. Black
curve correspond to the lowest potential curve at the scattering length value for which
the first Efimov state is at threshold. The red curve is the second potential curve at
the scattering length value for which the second potential Efimov state is at threshold.
Green dashed lines present the linear behavior of the curves (note that the potential
curves are multiplied by 2µR2 and that the x-axis is in logarithmic scale). The linear
behavior of the curves in logarithmic scale is evidence of Eq. (8.2).
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Figure 8.7: Lowest three rescaled potential curves Uν are shown as functions of the
four-body hyperradius. The black curve corresponds to the lowest curve. The blue
curve is the second potential curve and the red curve is the third potential curve. The
agreement between the rescaled second and third potential curves is numerical evidence
for the universal behavior of the four-boson system, as is discussed.
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energy scaling factors eπ/s0 and e−2π/s0 , respectively. We can clearly see that the lowest

potential curve (black symbols) is different from the second and third potential curves.

However, the second and third rescaled potential curves (blue and red symbols) agree

very well. Therefore, they are considered universal. This agreement strongly suggest

that the three-body scaling factor appears in the four body problem as an scaling factor

of the potential curves. This universal behavior of the four-body system is consistent

with the speculations of Platter et. al [83]. Our results are also consistent with Platter

et. al prediction that no four-body parameter is needed to renormalize the four-body

system.
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Figure 8.8: Potential curves at positive scattering-length values. (a) Potential curves
at as ∼ 37r0. (b) Potential curves at as ∼ 21r0. Solid blue line corresponds to the
atom-trimer threshold. Dashed-red line corresponds to the dimer-dimer threshold, and
dashed-green line corresponds to the dimer–two-atom threshold.

Using the adiabatic hyperspherical approximation [Eq. (2.32)], we obtain the

four-body energies. Since each potential curve supports one bound state, there is a

family of quasi-bound four-body states which follow the same scaling relations of the

potential curves. Therefore, the energies of the four-body bound state obey E4b
n−1/E4b

n =

e2π/s0 , which is the same relation between the energies of the three-body Efimov states.
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Table 8.1: Lowest three- and four-body energies at unitarity. All the energies are in units
of ~2/(mr2

0). The three-body energies (left column) where calculated with CG without
a trapping potential. The N = 4 energies were calculated with CG (center column) and
CGHS in the adiabatic approximation (right column). The CG provides exact results
for true bound state (E3b

1 , E3b
2 , E3b

3 , E4b
1 , and E4b

2 ) but it is only approximated for quasi-
bound states (E4b

3 and E4b
4 ). The adiabatic approximation provides a rigorous upper

bound of the exact energies. Therefore, the most reliable E4b
3 and E4b

4 are obtained with
the CGHS in the adiabatic approximation.

N = 3 (CG) N = 4 (CG) N = 4 (CGHS)
E3b

1 = −0.11922 E4b
1 = −0.7014 E4b

1 = −0.69998
E3b

2 = −0.2257 10−3 E4b
2 = −0.1311 E4b

2 = −0.1285
E3b

3 = −0.438 10−6 E4b
3 = −0.99 10−3 E4b

3 = −0.1035 10−2

E4b
4 = −0.17 10−5 E4b

4 = −0.205 10−5

However, the three-body system hyperspherical scenario is quite different since all the

states belong to the same hyperspherical potential curve. A comparison of the energies

of the three- and four-body systems leads to the relation E4b
i+1 ≈ 4.6E3b

i . This relation is

slightly different than the one obtained with CG. Since both calculations are variational

and the adiabatic calculation predicts lower energies, we consider this second relation

more accurate. Table 8.1 summarizes CG and CGHS results.

Finally, we consider the positive scattering length region. In Fig. 8.2, we ob-

served how different two- and three-body thresholds crossed each other as the scattering

length was tuned. Figure 8.8 shows the potential curves for two different scattering-

length values. The blue line corresponds to the energy of the second Efimov trimer

(trimer+atom threshold), the dashed-red line corresponds to the dimer-dimer thresh-

old, and the dashed-green line corresponds to the dimer threshold. There is a also deeper

potential curve that converges to the deep atom-trimer threshold that is not shown in

the figure. Figure 8.8 (a) presents the case where the trimer threshold is below the

dimer-dimer threshold. As the scattering length is decreased, the dimer-dimer thresh-

old and the atom-trimer threshold cross each other. Figure 8.8 (b) shows the case where

the dimer-dimer threshold lies energetically below the trimer+atom threshold. In both
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figures, a four-body bound state is contained in the attractive region of the lowest poten-

tial curve. If we continue decreasing the scattering length, the dimer+atom+atom and

trimer thresholds approach each other, and the atom-trimer potential curve smoothly

becomes a dimer+atom+atom potential curves.

The crossing of thresholds and formation or destruction of a four-body bound

state have important consequences in the collisional properties of the four-boson system.

These consequences will be explored in the next section.

8.5 Scattering properties

From the potential curves obtained in the previous section, we can analyze the

scattering properties of the four-boson system. In particular, we focus on the dimer-

dimer and atom-trimer collisions.

Sharp features in ultracold collisional observables are expected when a bound or

quasi-bound state crosses a fragmentation threshold or when two different fragmentation

thresholds coincide. By analyzing the two-, three- and four-body spectrum (Fig. 8.2),

we can deduce important scattering-length values in which sharp features would occur

in collisional observables. There is one value of the two-body scattering length where

the dimer energy equals one of the trimer energies. At this scattering-length value, we

expect a pole in the atom-dimer scattering length. Similarly, when a four-body-state

energy equals twice the dimer energy, we expect a pole in the dimer-dimer zero energy

scattering length. Another sharp feature in the dimer-dimer scattering length should

occur when the trimer energy equals twice the dimer energy and the thresholds of the

atom-trimer and dimer-dimer potential curves coincide.

We define atrim−d as the two-body scattering-length value where the trimer and

dimer energies are equal. We also define atrim−dd as the two-body scattering-length value

where the trimer energy equals twice the dimer energy. Similarly, we define atet−dd as the

two-body scattering-length value where the tetramer (four-body) energy equals twice
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the dimer energy. These three scattering lengths depend on the three-body parameter

that controls three- and four-body state energies. Using the semi-analytical solutions

from the three-body system [27], it can be shown that the ratio atrim−d/atrim−dd is

independent of the three-body parameter. Similarly, since the four-body state has the

same universal properties of the three-body system, the ratios atrim−dd/atet−dd and

atet−dd/atrim−d should also be independent of the three-body parameter.

These ratios can be used to identify these sharp features experimentally. If the

position of one of the scattering length values is known, then the other two can be

deduced. An observation of these three sharp features in the atom-dimer and dimer-

dimer collisions that obey the ratios predicted for atrim−d, atrim−dd ,and atet−dd would

be experimental verification that these features are a consequence of three and four-

body states. Such experimental verification of Efimov physics would be much simpler

than directly verifying the eπ/s0 ≈ 22.7 scaling law, which would require control of the

scattering length over a couple orders of magnitude.

From an experimental point of view, it is also important to find atet−dd. In the

vicinity of atet−dd, there is a pole in the dimer-dimer scattering length that can be

used to tune dimer-dimer interactions. These bosonic dimers can have both positive

and negative scattering lengths. Therefore, the wide tunability of the dimer-dimer

interaction opens the door to studying new phenomena of bosonic dimers with attractive

interactions.

To obtain atrim−d, atrim−dd and atet−dd, we analyze the bound states associated

with the third Efimov state. We select these three- and four-body states because they

are much larger than the range of the interaction and are expected to behave universally

at all scattering length values.

Our analysis of the two-, three- and four-body spectrum determines the following
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values:

atrim−dd ≈ 720r0, (8.3)

atrim−d ≈ 105r0, (8.4)

atet−dd ≈ 254r0. (8.5)

These scattering lengths lead to the ratios

atrim−dd

atet−dd
≈ 2.84,

atet−dd

atrim−d
≈ 2.41. (8.6)

To obtain atet−dd, we calculate the four-body energy using the hyperspherical adiabatic

approximation. These energies are more accurate than the ones obtained by the CG

(see Sec. 8.3).

The atrim−dd and atrim−d only depend on two- and three-body physics. Therefore,

we can use all the machinery that has been built to obtain an independent verification of

the atrim−dd and atrim−d values. In particular, we use the semi-analytical formulas from

Ref. [27]. From the three-body energy of our third Efimov state at unitarity we extract

the three-body parameter that characterizes the system. With this single parameter,

we calculate atrim−dd and atrim−d to be

atrim−dd ≈ 720r0, (8.7)

atrim−d ≈ 107r0. (8.8)

We find very nice agreement, with corrections of less than 2% in atrim−d. This results

show that our numerical calculations behave universally to a good approximation. Also,

they give us confidence in our numerical procedure.

These scattering length ratios can be used to identify the sharp features but we

do not know the shape of these features. To directly observe the sharp features in the

dimer-dimer scattering length, we carry out scattering calculations using the hyper-

spherical representation and the R-matrix method [8] (these calculations were carried
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out by Jose P. D’Incao). The third Efimov state is quite large and scattering calcula-

tions would be very difficult. Instead we analyze the two-body scattering-length region

where the second Efimov and its four-body state crosses the dimer-dimer threshold.

These states are affected by finite range corrections. For example, the trimer energy

never crosses the dimer threshold 2 , and the ratio atrim−dd/atet−dd ≈ 3.47 instead of

2.84. Nevertheless, we consider that the behavior of the dimer-dimer scattering length

qualitatively describes universal behavior.

Figure 8.5 shows the real and imaginary part of the dimer-dimer scattering length

add as a function of the two-body scattering length. The real part of the scattering

length describes elastic scattering, while the imaginary part describes losses. The units

are selected such that r0 = 100(a.u.), which is close to the Cs van der Waals length. The

red lines and symbols correspond to the numerical results. The dashed vertical lines

correspond to atrim−dd and atet−dd. At atet−dd, we observe a pole in the real-part of

scattering length, and at atrim−dd we observe a discontinuity in the real part. For as >

atrim−dd, the dimer-dimer scattering length converges to approximately add ≈ 1.3as.

However, it is not clear if this behavior is universal.

The imaginary part of the scattering length [right panel of Fig. 8.5] represents

inelastic scattering processes. The peak around atrim−dd ∼ 2900 a.u. describes the

conversion of two dimers into trimer and an atom. The second peak around 800 a.u.

represents important losses close to the atet−dd.

Finally, we focus on atom-trimer collisions. Figure 8.10 presents the real and

imaginary part of the atom-trimer scattering length. The main feature is the pole in

the real part of the scattering length at as ∼ 6r0. The pole is due to the appearance

of a four-body state in the atom-trimer channel. This four-body state occurs at small

scattering-length values, and it is not universal. Also, a sharp feature occurs at atrim−dd

2 According to the atrim−dd value and the universal ratios [Eq. 8.6], atrim−d should be approximately
4r0. Clearly, scattering lengths around this value are not large and the behavior of the system is not
universal.
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Figure 8.9: Real and imaginary parts of the dimer-trimer scattering length. Left and
right panels present the real and imaginary parts of the dimer-trimer scattering length:
ar

dd and ai
dd, respectively. The vertical dashed lines correspond to atrim−dd and atet−dd.

Figure courtesy of Jose P. D’Incao.
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where an atom and a trimer can decay into two dimers. An understanding of this feature

will require a deeper analysis of the atom-trimer collisional properties.
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Figure 8.10: Real and imaginary parts of the atom-trimer scattering length. Left and
right panels present the real and imaginary parts of the atom-trimer scattering length:
ar

at and ai
at, respectively. The vertical dashed lines correspond to atrim−dd and atet−dd.

Figure courtesy of Jose P. D’Incao.

8.6 Conclusions

We have presented a preliminary analysis of the four-boson problem using the CG

method and the hyperspherical representation. The system at unitarity is described by

a set of potential curves that are related via the Efimov scaling factor. Each of these

potential curves contains a four-body state that follows the same scaling laws of the

three-body system.

At positive scattering lengths, Efimov physics can be probed with dimer-dimer

collisions. The four-body states produce poles in the scattering length that can be used

to tune dimer-dimer interactions. Also, for scattering lengths slightly above atrim−dd,

dimer-dimer collisions can be used to obtain a trimer-atom mixture without significant

losses.



Chapter 9

Summary and Outlook

The first objective of this dissertation was to develop a renormalized interaction

that would eliminate the artificial instabilities that produce the Fermi pseudopotential

in mean-field theories. The density renormalization obtained from two-particle solutions

succeeds in this objective. It provides a simple model that both reproduces the Hartree

term in the weakly attractive Fermi gas system and the expected functional form in the

strongly interacting unitarity regime. This model has proven to be useful in Hartree-

Fock, Thomas-Fermi, and hyperspherical calculations. However, the description of the

system is limited. Pair correlations are not included, and the excitation gap is not

reproduced. Also, the energy of the system at unitarity is slightly high in comparison

with more sophisticated calculations such as fixed-node diffusion Monte Carlo (FN-

DMC). In addition, the model presented here cannot be extended to Bose-Binstein

condensation (BEC) because it does not incorporate the necessary pair correlations to

describe molecule formation. Incorporating pair correlations would be the logical next

step but this would require a completely new approach, one closer to standard BCS

theory.

The second and primary objective of this dissertation was to obtain an appropriate

solution to the four-body fermionic system in the BCS-BEC crossover. To this end, we

developed and implemented a variant of the correlated-Gaussian (CG) method. The

solutions obtained with CG accurately describe four trapped fermions. These solutions,
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extended to N = 2 and 3, are described in chapter 5. They were first used to analyze

the behavior of the spectrum as the interaction was tuned in the BCS-BEC crossover.

Later, we solved the dynamics of few-body systems as the scattering length was tuned

to produce different types of ramping schemes.

A nice extension to the calculations presented in chapter 5 would be the gener-

alization to arbitrary angular momentum. Even though few-body solutions with L = 1

were obtained in chapters 6 and 7, the method used to obtain these solutions is lim-

ited and would not be appropriate for calculating the complete spectrum for arbitrary

angular momentum. There are ways to extend the CG method to treat systems with

arbitrary angular momentum [173]. Such extensions of the CG method could be useful

in obtaining few-body solutions with arbitrary angular momentum.

The calculation of the spectrum and dynamics of a few-body system with different

angular momenta would allow the study of temperature effects. At a finite tempera-

ture, states with any angular momentum can be populated. Therefore, to describe the

dynamics of systems at any temperature, we need to consider all angular momentum

cases.

In chapters 6 and 7, we quantitatively analyzed the spectrum and the structural

properties of such a system. We extracted the dimer-dimer scattering length and effec-

tive range for different mass ratios. We verified universal properties of unitarity systems.

We also showed that no weakly bound state exists for two-component Fermi systems

with L ≤ 6. These calculations were extended to larger systems using FN-DMC, which

connected few- and many-body perspectives. All solutions obtained with CG and FN-

DMC were restricted to describing bound systems. This restriction allowed us to extract

collisional properties only in an indirect way, as was done in chapter 6. The correlated

Gaussian hyperspherical (CGHS) method introduced a more suitable way of analyzing

collisional properties.

The development of the CGHS method was a major numerical accomplishment
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of this dissertation. This method opens up the possibility of studying the continuum

and collisional properties of four-body systems using hyperspherical coordinates. Fur-

thermore, it provides results more accurate than the standard CG method. We present

examples of four-body fermionic potential curves obtained with CGHS in chapters 5, 6,

and 7. In chapter 8, we also solve the four-boson system using CGHS. In addition to

its great success, this method can be improved and extended.

The creation of the CGHS basis set can be improved upon by using the CG

solutions of subsystems. These CG solutions can be selected to construct a particular

channel function. For example, if we want to describe an atom-trimer channel, we can

obtain the trimer state with CG and use it to construct the basis functions of the atom-

trimer form. With a few of those solutions, we might be able to accurately describe

the atom-trimer channel. Similarly, the dimer-atom-atom and dimer-dimer channels

can be generated using the CG two-body solutions. These solutions would have several

advantages. By construction, they would describe correctly the asymptotic behavior of

the channels. And, we can introduce the channels in a controllable way, identifying the

importance of each channel and obtaining a deeper understanding of the system.

Another major improvement would be the extension of CGHS method to describe

L > 0 solutions. We might be able to use the ideas applied to standard CG to extend

CGHS calculations to L > 0.

In chapter 8, we used both CG and CGHS methods to solve the four-boson sys-

tem with tunable interactions. We showed that potential curves and energies follow

Efimov-scaling relationships. We found that three- and four-body energies at unitar-

ity also follow a scaling relationship. We then analyzed the effect of these four-body

states in atom-dimer and dimer-dimer collisional properties. Finally, we showed that

abrupt changes in the atom-dimer and dimer-dimer scattering properties occur at two-

body scattering-length values whose ratios are independent of the three-body param-

eter. These scattering ratios can be useful in experimentally identifying poles in the
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dimer-dimer scattering length.

The four-boson scaling relationships suggest that the system behaves universally.

To verify universality, we could introduce a different short-range potential. If the sys-

tem’s behavior follows the same scaling relationships, then we would have demonstrated

universality in the four-boson system.

Other studies would complement the results from chapter 8. The analysis of

the collisional properties for as < 0 has not been carried out yet. We expect that

sharp features in the four-body recombination would appear at two-body scattering-

length values where the four-body states are at zero-energy threshold. The ratio of

these scattering-length values would be independent of the three-body parameter. In

addition, we could analyze atom-trimer collisions at unitarity to better understand the

expected lifetime of atom-trimer mixtures.

Finally, it would be interesting to analyze collisional properties of other four-body

systems. In particular, we could use the CGHS method to study a Bose-Fermi mixture.

In this system, Efimov states can be formed with two bosons and one fermion. Therefore,

we expect that Efimov physics would have important consequences in a Bose-Fermi

mixture. Boson-trimer and fermion-trimer collisions could be analyzed by considering

three bosons and a fermion or a two-boson-two-fermion system. Also, fermionic dimers

could be formed with one boson and one fermion. The analysis of dimer-dimer collisions

would require the extension of CGHS method to treat L = 1 systems.
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[35] T. Busch, B.-G. Englert, K. Rza̧żewski, and M. Wilkens. Two cold atoms in a
harmonic trap. Foundations of Phys., 28(4):549, 1998.

[36] J. Carlson, S. Y. Chang, V. R. Pandharipande, and K. E. Schmidt. Superfluid
Fermi gases with large scattering length. Phys. Rev. Lett., 91:050401, 2003.

[37] J. Carlson and S. Reddy. Asymmetric two-component fermion systems in strong
coupling. Phys. Rev. Lett., 95(6):060401, 2005.

[38] Y. Castin. Exact scaling transform for a unitary quantum gas in a time dependent
harmonic potential. C. R. Phys., 5(3):407, 2004.

[39] D. M Ceperley and B. J. Alder. Quantum Monte Carlo for molecules: Greens
function and nodal release. J. Chem. Phys., 81:5833, 1984.

[40] S. Y. Chang and G. F. Bertsch. Local-density-functional theory for superfluid
fermionic systems: The unitary gas. Phys. Rev. A, 76(4):021603 (R), 2007.

[41] S. Y. Chang, V. R. Pandharipande, J. Carlson, and K. E. Schmidt. Quantum
monte carlo studies of superfluid fermi gases. Phys. Rev. A, 70:043602, 2004.

[42] X. Chapuisat. Principal-axis hyperspherical description of N-particle systems:
Quantum-mechanical treatment. Phys. Rev. A, 45(7):4277, 1992.

[43] C. Chin. Simple mean-field model for condensates in the BEC-BCS crossover
regime. Phys. Rev. A, 72(4):41601, 2005.

[44] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H. Denschlag, and
R. Grimm. Observation of the Pairing Gap in a Strongly Interacting Fermi Gas.
Science, 305(5687):1128–1130, 2004.



212

[45] C. W. Clark. Resonant Photodetachment of the Positronium Negative Ion. Phys.
Lett., 70A(13):295, 1979.

[46] H. T. Coelho and J. E. Hornos. Proof of basic inequalities in the hyperspherical
formalism for the n-body problem. Phys. Rev. A, 43(11):6379–6381, Jun 1991.

[47] L. N. Cooper. Bound Electron Pairs in a Degenerate Fermi Gas. Phys. Rev.,
104(4):1189–1190, 1956.

[48] P. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar.
Observation of a Feshbach Resonance in Cold Atom Scattering. Phys. Rev. Lett.,
81(1):69–72, 1998.

[49] Marco Cozzini and Sandro Stringari. Fermi gases in slowly rotating traps: Su-
perfluid versus collisional hydrodynamics. Phys. Rev. Lett., 91(7):070401, Aug
2003.

[50] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle. Bose-Einstein Condensation in a Gas of Sodium Atoms.
Phys. Rev. Lett., 75(22):3969–3973, 1995.

[51] L. M. Delves. Tertiary and general-order collisions. Nucl. Phys., 9:391, 1959.

[52] L. M. Delves. Tertiary and general-order collisions. Part II. Nucl. Phys., 20:275,
1960.

[53] B. DeMarco and D. S. Jin. Onset of Fermi Degeneracy in a Trapped Atomic Gas.
Science, 285(5434):1703, 1999.

[54] Roberto B. Diener, Rajdeep Sensarma, and Mohit Randeria. Quantum fluctua-
tions in the superfluid state of the bcs-bec crossover. Phys. Rev. A, 77(2):023626,
2008.

[55] J. P. DIncao and B. D. Esry. Scattering Length Scaling Laws for Ultracold Three-
Body Collisions. Phys. Rev. Lett., 94(21):213201, 2005.

[56] J. P. D’Incao, Seth T. Rittenhouse, N. P. Mehta, and Chris H. Greene. Dimer-
dimer collisions at finite energies in two-component Fermi gases. arXiv:0806.3062,
2008.

[57] J. Dobaczewski, P. Magierski, W. Nazarewicz, W. SatuÃla, and Z. Szymański. Odd-
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Appendix A

Symmetrization of the basis functions and evaluation of the matrix

elements

The CG basis functions take the form

ΦA(x1,x2, ...,xN ) = S
{

exp(−1
2
xT .A.x)

}
. (A.1)

The symmetrization operator S can be expanded in a set of simple particle permutations,

|S(A)〉 =
Np∑

i=1

sgn(Pi) |Pi(A)〉 . (A.2)

Here, Np is the number of permutations that characterize the symmetry S. Each of

these permutations, Pi, has a sign associated, sgn(Pi), and is a given rearrangement of

the spatial coordinates

Pi(ΦA(x1, ...,xN ) = ΦA(xPi(1), ...,xPi(N)) (A.3)

The label i characterizes the rearrangement. This rearrangement of the spatial coordi-

nates is equivalent to a rearrangement of the interparticle widths {dij} (or the {αij}),

Pk({dij}) = {dPk(ij)}. (A.4)

Therefore, permutation operations can be easily applied and become transformations of

the matrix A.

In general the evaluation of the symmetrized matrix elements of an operator O

is,

〈S(A)|O|S(B)〉 =
Np∑

i=1

Np∑

i′=1

sgn(Pi)sgn(Pi′) 〈Pi′(A)|O|Pi(A)〉 , (A.5)
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which implies an N2
p evaluation of unsymmetrized matrix elements. Fortunately, if

S(O) = O then,

〈S(A)|O|S(B)〉 = Np 〈A|O|S(B)〉 = Np 〈S(A)|O|B〉 . (A.6)

This property significantly reduces the numerical demands since the left hand side of

Eq.(A.6) implies N2
p permutations, while the right-hand side only implies Np permuta-

tions. All operators of the Hamiltonian are invariant under the S, operator and their

matrix elements obey Eq.(A.6).

To obtain density profiles and pair-correlation functions, we use the delta function

operator. A single delta function operator in a given coordinate is not invariant under

this transformation; for this reason, the computational evaluation is more expensive.

Alternatively, we can create a similar operator as a sum of delta functions. If the sum

of delta functions reflects the symmetry of the problem, the this new operator would be

invariant under S.

The permutation operator clearly depends on the problem under consideration.

In this work, we consider bosons and two-component fermions. For identical bosons and

fermions,

S =
Np∑

i=1

αiPi, (A.7)

where Np = N ! and αi = 1 for bosons and αi = (−1)p; p = 0, 1 is the parity of the

operator Pi. For two-component systems (boson-boson, fermion-fermion, or a Bose-

Fermi mixture),

S =
Np1∑

i1=1

Np2∑

i2=1

αi1αi2Pi1Pi2 , (A.8)

where Np1 = N1!, Np2 = N2!, and N1 and N2 are the number of particles in component

1 and 2, respectively.

The symmetrization operation, if it involves a permutation with a negative sign,

can significantly reduce the accuracy of matrix elements. In certain cases, the un-

symmetrized matrix elements can be almost identical. Because of the negative sign
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of the permutation, the symmetrized matrix elements can become a subtraction of

very similar numbers. Therefore, accuracy is reduced. These basis functions are

usually unphysical, so it is convenient to eliminate them. To do this, we evaluate

| 〈S(A)|S(A)〉 |/max(| 〈Pi(A)|Pi(A)〉 |). If this is a small number, then the accuracy of

the matrix elements is reduced. So, in general, we introduce a tolerance of the order of

10−3 to determine whether to keep or discard the basis functions.



Appendix B

Evaluation of unsymmetrized basis functions

For convenience, we introduce the following simplify notation,

|A〉 = exp(−1
2
xT .A.x). (B.1)

As a simple example, consider the overlap matrix element

〈A|B〉 =
∫

dx1..dxN exp(−1
2
xT .(A + B).x). (B.2)

Since the matrix A + B is real and symmetric, there exists a set of eigenvectors y =

{y1, ...,yN} with eigenvalues {β1, ..., βN} that diagonalize the matrix. In this set of

coordinates, Eq. (B.2) takes the simple form,

〈A|B〉 = (4π)N

∫ ∞

0
dy1y

2
1e
−β1y2

1/2...

∫ ∞

0
dyNy2

Ne−βNy2
N/2 =

(
(2π)N

det(A + B)

)3/2

. (B.3)

Here, we used the product β1.β2...βN = det(A + B). These basics steps can be followed

to evaluate the remaining matrix elements.

To evaluate the kinetic energy, we use the following property,

〈A| − ~2

2m
∇2

xi
|B〉 =

~2

2m
〈∇xiA|∇xiB〉 . (B.4)

This property can be simply proven by applying an integration by parts. Also, it

simplifies the matrix element evaluation and provides an expression which is symmetric

in A and B. Then, the matrix element takes the form,

〈A| − ~2

2m

N∑

i

∇2
xi
|B〉 =

~2
2m

3Tr((A + B)−1A.B) 〈A|B〉 (B.5)
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Another important matrix element, which is similar to Eq.( B.5), is

〈A|xT Cx|B〉 =
~2

2m
3Tr((A + B)−1C) 〈A|B〉 . (B.6)

Here, C is an arbitrary matrix. This matrix element is used to calculate the trapping

potential energy. In such case, C = mω2I/2, where I is the identity matrix.

Finally, we calculate the matrix element for a two-body central force:

〈A|V (ri − rj)|B〉 =
∫

d3rV (r) 〈A|δ(bT
ijx− r)|B〉 = Gcij [V ] 〈A|B〉 , (B.7)

where ri − rj = bT
ijx, c1

ij = bT
ij(A + B)−1bij , and Gc[V ] is the Gaussian transform of the

potential

Gc[V ] =
( c

2π

)3/2
∫

d3rV (r)e−cr2/2. (B.8)

These matrix elements are enough to describe few-body systems.



Appendix C

Jacobi vectors and CG matrices

In this Appendix, we present the construction of the matrices that characterize the

basis functions in terms of the widths dij . In the following r = {r1, ..., rN} correspond

to Cartesian coordinates, while ρ = {ρ1, ...,ρN−1} correspond to mass-scaled Jacobi

coordinates. First, consider the basis function with the center of mass included

|A〉 = Ψ0(RCM ) exp


−

∑

j≥i

(r1 − r2)2

2d2
ij


 = exp(−1

2
rT .A.r). (C.1)

In the equal-mass case for N particles, it is more convenient to simply use Cartesian

coordinates. The ground-state–center-of-mass wave function of particles in a harmonic

trap takes, conveniently, a Gaussian form Ψ0(RCM ) = e−NR2
CM/2a2

ho . Thus, Ψ0(RCM )

can be written as Ψ0(RCM ) = e−rT .MCM .r/2, where MCM is the center-of-mass matrix

whose matrix elements are MCM
kl = 1/(Na2

ho) for all k and l. Then, for each interparticle

distance rij , there exists a matrix M (ij) so that r2
ij = rT .M (ij).r. The matrix elements

of the M (ij) matrices are M
(ij)
ii = M

(ij)
jj = 1, M

(ij)
ij = M

(ij)
ji = −1; the rest are zero,

yielding

A = MCM +
∑

j≥i

1
d2

ij

M (ij). (C.2)

In some cases it is important to include the center-of-mass motion. For example,

this allows one to extract single-particle observables such as density profiles.

If the center of mass is not included, then Eq. (C.2) can be written as,

A =
∑

j>i

1
d2

ij

M (ij). (C.3)
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In the next subsections we present the mass-scaled Jacobi vectors (see Fig. C.1)

and the corresponding form of the matrices M (ij).

Figure C.1: Mass-scaled Jacobi vector for three and four particles.

C.1 Mass-scaled Jacobi vectors for three particles

A three-particle system can be described by the set of vectors [52]

ρ1 = (r1 − r2)/d, (C.4)

ρ2 = d

(
r3 − m1r1 + m2r2

m1 + m2

)
, (C.5)

RCM =
m1r1 + m2r2 + m3r3

m1 + m2 + m3
, (C.6)

where

µ =
(

m1m2m3

m1 + m2 + m3

)1/2

, (C.7)

d =
√

m3

µ

(
m1 + m2

m1 + m2 + m3

)1/2

. (C.8)

In Eq. (C.4) ρ1 and ρ2 are mass-scaled Jacobi vectors and RCM is the center-of-mass

vector.

All the interparticle vectors can be written in terms of the Jacobi vectors ρ1 and

ρ2:

r2 − r1 = dρ1, (C.9)

r3 − r1 =
dm2

m1 + m2
ρ1 +

1
d

ρ2, (C.10)

r3 − r2 = − dm2

m1 + m2
ρ1 +

1
d

ρ2. (C.11)
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As is presented in the next subsection, all the M (ij) matrices can be obtained

from Eqs. (C.9,C.10,C.11).

C.2 Mass-scaled Jacobi vectors for four particles

To present the mass-scaled Jacobi vectors for four particles we introduce the

following definitions,

µ =
(

m1m2m3m4

m1 + m2 + m3 + m4

)1/3

, (C.12)

µ1 =
m1m2

m1 + m2
, (C.13)

µ2 =
m3m4

m3 + m4
, (C.14)

µ3 =
(m1 + m2)(m3 + m4)
m1 + m2 + m3 + m4

, (C.15)

d1 =
√

µ1/µ, d2 =
√

µ2/µ, d3 =
√

µ3/µ. (C.16)

Here, the value of µ is just selected by convention. Actually, µ can be left as an arbitrary

mass factor.

This is usually called the H tree for the form of the Jacobi vectors,

ρ1 = d1(r1 − r2) (C.17)

ρ2 = d2(r3 − r4) (C.18)

ρ3 = d3

(
m1r1 + m2r2

m1 + m2
− m3r3 + m4r4

m3 + m4

)
(C.19)

RCM =
m1r1 + m2r2 + m3r3 + m4r4

m1 + m2 + m3 + m4
(C.20)

Here, ρ1, ρ2 and ρ3 are the mass-scaled Jacobi vectors and RCM is the center-of-mass

vector

The interparticle distances can be written in terms of transformations of the three
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Jacobi vectors:

r1 − r2 = ρ1/d1, (C.21)

r1 − r3 =
√

µ3

µ

(
ρ3 +

µ1d3

m1d1
ρ1 −

µ2d3

m3d2
ρ2

)
, (C.22)

r1 − r4 =
√

µ3

µ

(
ρ3 +

µ1d3

m1d1
ρ1 +

µ2d3

m4d2
ρ2

)
, (C.23)

r2 − r3 =
√

µ3

µ

(
ρ3 −

µ1d3

m2d1
ρ1 +

µ2d3

m3d2
ρ2

)
, (C.24)

r2 − r4 =
√

µ3

µ

(
ρ3 −

µ1d3

m2d1
ρ1 +

µ2d3

m4d2
ρ2

)
, (C.25)

r3 − r4 = ρ2/d2. (C.26)

For both the N = 3 and N = 4 systems, the interparticle distances can be written

in terms of the Jacobi vectors

ri − rj =
∑

k

c
(ij)
k ρk. (C.27)

Now we can write the matrices M (ij) in these Jacobi vectors that describe an interpar-

ticle distance. The matrix elements of these matrices are simply M
(ij)
kl = c

(ij)
k c

(ij)
l .



Appendix D

Selection of the basis set

There are different strategies for selecting a basis set. If the numbers of dimensions

of the system we are studying is not that large, then we can try to generate a large

basis set that is complete enough to describe several eigenstates at different interaction

strengths.

The Gaussian widths dij are selected randomly and cover a range of values from

d0 to the trap length aho. Specifically, the dij are selected randomly using a Gaussian

distribution of range 1 and then scaled to three different distances: d0, an intermediate

distance
√

d0aho, and aho. These three distances are fixed once the interparticle potential

range d0 is fixed.

The basis set selection depends on the correlation we want to describe. So, the

selection process changes depending whether the particles are bosons or fermions. For

fermions, when there is no trimer formation, basis functions with more than two particles

close together are not important.

For example, the algorithm for the selection of the basis functions for a two-

component four-fermion system divides the basis into three parts: the first subbasis

generates dij , which are all of the order of aho; they are useful for describing weakly

interacting states. The second subbasis generates two dij of the order of d0 or
√

d0aho

and the rest of the order of aho; they are useful to describe dimer-dimer states. The

third subbasis has one dij of the order of d0 or
√

d0aho and the rest of the order of aho.
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They are useful to describe dimer–two-free-atom states.



Appendix E

Controlling Linear dependence

The CG basis set is over complete. This, and the fact that the basis functions

are chosen semi-randomly can introduce linear dependence problems in the basis set.

There are several ways to control or eliminate these linear dependence of the basis set.

The first way is to simply eliminate the linear dependence. After wselecting the

basis set and evaluating the matrix elements, we reduce the linear dependent basis set

to a smaller basis set without linear dependence.

To do this, we first diagonalize the overlap matrix and then eliminate the eigen-

states with negative or low eigenvalues. The remaining eigenstates form an orthonormal

basis set. Finally, we transform the Hamiltonian to the new orthonormal basis set.

The threshold for the elimination can be selected automatically taking into ac-

count the lowest eigenvalue. If the lowest eigenvalue O1 is small and positive, the

tolerance can be selected as, for example, 103O1. If O1 is negative and the magnitude

is large, then the basis set has a lot of linear dependence, and it is more convenient to

change the initial basis set.



Appendix F

Stochastical variational method

The SVM has been developed in the context of nuclear physics to solve few-body

problems [178, 179, 180]. It allows a systematically improvement of the basis set. A

detailed discussion of the implementation of the SVM will not be presented here but

can be found in Refs. [161, 173]. In the following, we present the main concepts of the

SVM.

The SVM is based on the variational nature of the spectrum obtained by a basis

set expansion. Consider a basis set of size D with eigenvalues {ε1, ..., εD}, if we add a new

basis function then the new eigenvalues {λ1, ..., λD+1} obey λ1 ≤ ε1 ≤ λ2...εD ≤ λD+1.

Here, we assume that both set of eigenvalues are arranged in increasing order. Thus, by

adding a new basis, all the D eigenvalues should decrease or remain the same. Therefore,

the lower the new eigenvalues are the better the improvement of the basis set. Thus we

can test the utility of the added basis function by considering the improvement in the

eigenvalues.

In most cases, we are not interested in improving the complete spectrum. To

select which states or energies we want to improve, we can construct an appropriate

minimization function. This function would depend only on the energies we want to

improve and is minimized by the SVM.

In order to optimize the basis set, the SVM utilizes a trial an error procedure.

Starting from an initial basis set of size D, several basis functions are selected stochas-



235

tically and added, one at a time, to the basis set. For each D + 1 basis set, the new

eigenvalues are evaluated. The basis function that produces the best improvement of the

selected energies is kept while the remaining basis functions are discarded. The initial

basis function is then increased by one and the trial an error procedure is repeated.

If this procedure is continued indefinitely the size of the basis set has become large

and the calculations become forbiddingly slow. Therefore, it is convenient to increase

the basis up to a reasonable size and then continue the optimization process without

increasing the basis size. This optimization can be carried out by a refinement process.

Instead of adding a new basis function, we test the importance of the basis functions of

the basis set. The trial and error procedure is then applied to each of the functions of

the basis set.

For the SVM procedure to be efficient, the evaluation of both the matrix elements

and the eigenvalues need to be fast and accurate. It is particularly important to obtain

very accurate matrix elements because the improvement due to a single basis function

is usually very small and can only be evaluated reliably if the matrix element are very

accurate. The matrix element evaluation in the CG and CGHS is both fast and accurate

making these methods particularly suitable for SVM optimization.

Also, the evaluation of the eigenvalues can be significantly speeded up in the

trial and error procedure. The basis functions are added or replaced one by one which

allowing us to reduce the evaluation of the eigenvalues to a root finding procedure. This

root finding procedure is much faster than any diagonalization procedure.

The SVM automatically takes care of the selection of the basis function. Also, it

tries to avoid linear dependence in the basis set by constraining the normalized overlap

between any two basis function, i.e., O12/
√

O11O22, to be below some tolerance Omax.

The tolerance Omax is usually selected between 0.95 and 0.99. For example, the size of

the basis set of N = 3 and 4 can be increased up to 700 and 8000 respectively without

introducing significant linear dependence.
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CGHS unsymmetrized matrix elements for four particles

The same strategy for evaluating the matrix elements in the N = 3 case can be

extended to the N = 4 system. The N = 4 system can be described by three Jacobi

vectors, x ≡ {x1,x2,x3}, once the center-of-mass motion is decoupled.

To evaluate the overlap matrix element, we change to the coordinate basis set

that diagonalizes A + B. We call β1, β2 and β3 the eigenvalues and y ≡ {y1,y2,y3} are

the eigenvectors. In this new coordinate basis set the overlap integrand takes the form

B.A = exp
(
−β1y

2
1 + β2y

2
2 + β3y

2
3

2

)
. (G.1)

We integrate over the polar angles of y1, y2, y3, obtaining

〈B|A〉
∣∣∣
R

=
(4π)3

R8

∫
exp

(
−β1y

2
1 + β2y

2
2 + β3y

2
3

2

)
y2
1y

2
2y

2
3dy1dy2dy3

∣∣∣
R
. (G.2)

To integrate over the remaining hyperangles, we fix the hyperradius such that y1 =

R sin θ cosφ, y2 = R sin θ sin(φ) and y3 = R cos θ; yielding

〈B|A〉
∣∣∣
R

= (4π)3
∫

exp
(
−R2(β1 sin2 θ cos2 φ + β2 sin2 θ sin2 φ + β3 cos2 θ)

2

)

sin5 θ cos2 θ cos2 φ sin2 φdθdφ. (G.3)

The integration over one of the angles can be carried out analytically. Introducing a
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variable dummy y, the overap matrix element takes the form

〈B|A〉
∣∣∣
R

=
(4π)3π

2R2(β1 − β2)

∫ 1

0
exp

(
−R2

4
[(β1 + β2)(1− y2) + 2β3y

2]
)

I1

[
R2 (β1 − β2)(1− y2)

4

]
y2(1− y2)dy. (G.4)

Next we calculate the angular kinetic energy. To do this, we calculate the total

kinetic energy and the hyperradial kinetic energy. These two matrix elements are not

symmetric, but the angular kinetic energy, i.e., the total kinetic energy minus the hy-

perradial kinetic energy, is symmetric. To obtain an explicitly symmetric operator, we

symmetrize the operation 〈B|TΩ|A〉 |R = (〈B|TT − TR|A〉 |R + 〈A|TT − TR|B〉 |R)/2 and

obtain

〈B|TΩ|A〉
∣∣∣
R

=
(4π)3

R8

∫
exp

(
−β1y

2
1 + β2y

2
2 + β3y

2
3

2

)
TAF (y1, y2, y3)y2

1y
2
2y

2
3dy1dy2dy3

∣∣∣
R
,

(G.5)

where

TAF (y1, y2, y3) =
1
2

{
3∑

i=1

[
−3βi +

(
β2

i − 2(A.B)ii +
dβi

R2

)
y2

i

]

−
(

3∑

i=1

βiy
2
i

R2

)2

+
(~y.A.~y)(~y.B.~y)

R2



 . (G.6)

It is easy to show that (A.B)ii =
∑3

j=1 aijbij since A and B are symmetric matrices.

Here the bar sign indicates the integration over the angular degrees of freedom of y1, y2,

and y3. We then divide the total result by (4π)3. Making these integrations analytically

we obtain

(~y.A.~y)(~y.B.~y) =
3∑

i=1

aiibiiy
4
i +

3∑

i>j

(
aiibjj + biiajj +

4
3
aijbij

)
y2

i y
2
j . (G.7)

Using spherical coordinates for y1, y2, and y3. We observe that one of the integrations in

Eq. (G.5) can be done analytically. To simplify the notation, we introduce the following
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variables,

xx = R2 1
4
(β1 − β2)(−1 + y2), (G.8)

c1 = −9(β1 − β2)2 − 12(−4a12b12 + 3(a11 − a22)(b11 − b22)), (G.9)

c2 = −6a13b13 + 6a23b23, (G.10)

c3 = (3β2
1 − 3β2

2 − 6β1β3 + 6β2β3 − 6a11b11 + 6a33b11

+8a13b13 + 6a22b22 − 6a33b22 − 8a23b23 + 6a11b33 − 6a22b33), (G.11)

c4 = (3β2
2 − 6β2β3), (G.12)

c5 = (3β2
1 − 6β1β3), (G.13)

c6 = 3(2a12b12 + a13b13 + a23b23), (G.14)

c7 = 6a12b12, (G.15)

c8 = 3(a13b13 + a23b23), (G.16)

c9 = (3β2
3 − 3a11b11 + 3a33b11 + a13b13 − 3a22b22+

3a33b22 + a23b23 + 3(a11 + a22 − 2a33)b33). (G.17)

The final expression for TΩ is

TΩ = − 512π4

3(β1 − β2)5R8

∫ 1

0

1
(−1 + y2)3

exp

[
−xx

(
(β1 + β2)(1− y2)− 2β3y

2
)

(β1 − β2)(−1 + y2)

]

xx2y2
{

2(−1 + y2)
[
c1(1− y2) + 4xx(c2 + c3y

2)
]
Ic[xx]

+ xx
[
c4(−1 + y2)

(
3− (9− 4xx)y2

)
+ c5(−1 + y2)

(− 3 + (9 + 4xx)y2
)

+8xx
(
c6 − c7y

2 + c8y
4 − c9(y2 − y4)

)]
I1(xx)

}
dy, (G.18)

where we defined

Ic[xx] =
xx

2
I0[xx]− I1[xx]. (G.19)

We still need to evaluate the matrix elements corresponding to the couplings

PBA(R) = 〈B| d

dR
|A〉

∣∣∣
R
, (G.20)

QBA(R) = 〈dB

dR
|dA

dR
〉
∣∣∣
R
. (G.21)
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Using the standard tricks, we obtain

PBA(R) = −(4π)3

R9

∫
exp(−β1y

2
1 + β2y

2
2 + β3y

2
3

2
)~y.D.~yy2

1y
2
2y

2
3dy1dy2dy3 (G.22)

QBA(R) =
(4π)3

R10

∫
exp(−β1y

2
1 + β2y

2
2 + β3y

2
3

2
)((~y.K.~y)(~y.D.~y))y2

1y
2
2y

2
3dy1dy2dy3

(G.23)

where D = T T .A.T and K = T T .B.T and

~y.D.~y = d11y
2
1 + d22y

2
2 + d33y

2
3, (G.24)

(~y.K.~y)(~y.D.~y) =
3∑

i=1

kiidiiy
4
i +

3∑

i>j

(
kiidjj + diikjj +

4
3
dijkij

)
y2

i y
2
j . (G.25)

Equations (G.22, G.23) can be written in spherical coordinates, and one of the integra-

tions can be done analytically leading to equations similar to Eq. (G.18).
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