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The Effects of Large-Scale Convection on Solar Eigenfrequencies

Thesis directed by Professor Ellen G. Zweibel

We describe and implement an approach for determining the eigenfrequencies of solar

acoustic oscillations (p modes) in a convective envelope. By using the ray approximation, we

transform the problem into one in which we seek the eigenfrequencies of a Hamiltonian sys-

tem. To find these eigenfrequencies we have written a computer program which implements the

method of adiabatic switching. In this technique, we begin with a system with no convective

perturbations for which the eigenmodes and eigenfrequencies are known. The code adiabati-

cally increases the strength of the convective structures, allowing the mode eigenfrequency to

adjust from its initial value to the eigenfrequency of the perturbed state. The ray approximation

restricts our investigations to perturbations which are large compared to the mode wavelength.

For a simple class of structures we test our results against the predictions of semi-classical

EBK quantization and find the two methods agree. We then examine more complicated per-

turbations, concentrating on the dependence of the frequency shifts on the radial and angular

mode numbers as well as the perturbation strength. Among our results, we conclude that the

fractional frequency shift is given by the weighted average of the perturbation over the resonant

cavity. As a result, convective perturbations with horizontally anti-symmetric structures gen-

erate downward frequency shifts which are second-order in the perturbation strength. We also

examine more complex convective structures which we find tend to produce downshifts whose

magnitude scales with the strength of the perturbation. These results may have implications for

resolving the differences between eigenfrequencies derived from solar models and those deduced

from helioseismic observations.
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Chapter 1

Introduction

Plasma in a thin exterior layer, the photosphere, produces all of the observable light from

the Sun; photons generated interior to that layer are unable to escape the Sun without being

absorbed and re-emitted. This limitation restricted early observations, but astrophysicists could,

and did, construct models of the solar interior based on the available data (primarily the Sun’s

mass, radius, luminosity, photospheric composition, and age). Unfortunately, their predictions

of the interior structure could not be directly confirmed. Only in the last 25 years has it been

possible to peer beneath the surface of the Sun and examine its interior structure. The new

source of information is the discipline of helioseismology.

Leighton et al. (1962) used observations of the Doppler shifts of photospheric spectral lines

to detect the first evidence of solar oscillations. (Modern observations use either a modification

of their technique or another method which searches for variations in the total intensity of

emitted radiation.) Although other mechanisms were considered, it was eventually proposed

(Ulrich 1970; Leibacher & Stein 1971) that acoustic waves forming resonant oscillations, or

modes, within the Sun were the source of the signal. Since pressure provides the restoring force

for these oscillations, they are now known as p modes. The Sun, like an organ pipe, is a resonant

structure capable of sounding only particular notes. In general, an object’s structure dictates

which notes, or eigenfrequencies as they are called on the Sun, are generated. For an organ

pipe the key structural element is its length: A pipe with a C fundamental can also sound

the C an octave higher, but will never produce the intervening E�. Similarly, the composition
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and structure (particularly the speed of sound) of the Sun determine its eigenfrequencies. Once

correctly identified, it was quickly realized that p modes provide an excellent mechanism for

directly exploring the solar interior since p-mode frequencies depend on the solar structure much

as organ notes depend on the length of the pipe. Thus, measurements of photospheric quantities

permit the probing of the solar interior. Since terrestrial earthquakes produce acoustic waves

which are subjected to a similar analysis, the new discipline was termed helioseismology.

Although recent helioseismic investigations conclusively demonstrate that modern solar

models closely describe the Sun, there are still statistically significant discrepancies between the

predictions and the observations. In this work, we investigate a probable cause of some of the

discrepancy: large-scale convection as it affects p-mode frequencies. This first chapter is devoted

to the presentation of introductory material. A more detailed outline of the problem is given in

§1.1, while §1.2 describes our attempt to resolve it. In the context of helioseismology, we believe

our methodology is a novel approach to the problem. However, several antecedent works have

attacked the issue from other directions; a review of the relevant literature may be found in §1.3.

Subsequent chapters develop the solution method and its applications. Chapter 2, in

which we discuss the mathematical underpinnings of our work, is a visually imposing but crucial

component, as it delineates the assumptions on which the following chapters are based. In

Chapter 3 we use two unrealistic, but simple, models to illustrate both the implementation of

the method and some general results. The more detailed convective models of Chapter 4 are

simultaneously more interesting and more difficult to interpret. In particular we consider a cell

composed solely of velocity perturbations, a Rayleigh-Bénard model of convective cells, a cold

plume descending in a compressible atmosphere, and a slice of a model of turbulent compressible

convection. Chapter 5 contains a summary of the results as well as our thoughts concerning

future applications of the method.
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1.1 Problem Outline

In broad terms, astrophysicists understand the structure of the Sun. The inner 20%, by

radius, is known as the core and produces essentially the entirety of the Sun’s energy through

thermonuclear fusion. Photons carrying this energy slowly diffuse through the radiative interior

to approximately 0.7R�,1 where a sharp transition occurs. At this radius the Sun becomes

convective, meaning that energy transport occurs primarily through bulk fluid motions rather

than photon diffusion. The convection zone extends to the solar surface, the photosphere,

whereupon photons free-stream outward carrying the Sun’s energy through the solar atmosphere

— the chromosphere and corona — and into space.

Although this basic description of solar structure is almost universally accepted, certain

details remain contentious. After creating a solar model astrophysicists can compare its structure

with the solar structure as inferred from p-mode eigenfrequencies. As can be seen in Figure 1.1,

the differences between the two are small but significant. The largest discrepancies occur in three

distinct regions: near the solar core, at the tachocline (the boundary between the radiative

interior and the convective envelope), and near the solar surface. This work focuses on the

discrepancy near the surface which is thought to be partially a consequence of the incomplete

treatment of convective motions, both in computing the solar models and in analyzing the

helioseismic data. On one hand, solar models based on mixing-length theories of convection

slightly miscalculate the interior solar structure and thus disagree with the true Sun. On the

other hand, inversions of p-mode eigenfrequencies to determine the solar structure ignore the

effects of convective perturbations. Although both effects contribute to the discrepancies seen

in Figure 1.1, we will primarily concern ourselves with the latter in this work.

Solar convection is notoriously difficult to model. Important physical processes occur

on lengthscales varying by at least 6 orders of magnitude and current simulations (Brummell

et al. 1995) fall a factor of more than a billion short of resolving these different scales. Solar

modelers, long recognizing the inadequacy of numerical simulations, developed and embraced a
1 The symbol R stands for radius and the subscript � symbolizes the Sun.
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Figure 1.1: The difference between observationally and theoretically determined values of the
relative squared sound speed versus solar radius. The observational values come from inversions
of p-mode eigenfrequencies while the theoretical values come from a solar model. Courtesy of
SOHO/MDI consortium. SOHO is a project of international cooperation between ESA and
NASA.
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parameterization of the convection zone known as mixing-length theory (see Spiegel 1971, for a

review of the field’s development), in which all of the complex convective motions are collapsed

into one parameter, the mixing length. Mixing-length theory enjoys the dual benefits of being

conceptually simple as well as generally correct — solar models which employ it do a remarkably

good job of matching observations. In reality however, the outer portion of the convection

zone harbors turbulent convection on scales at least as small as granules (1 Mm) and as big as

supergranules (30–50 Mm). In addition, giant cells spanning the entire convection zone (200 Mm)

may exist (Beck et al. 1998). The existence of different scales of motion implies mixing-length

theory is, at some level, inadequate. Since it is reasonable to assume that the solar convection

zone is not precisely described by mixing-length theory, one naturally anticipates disagreements

between observational data and theoretical models of the solar sound speed structure.

The inversion methods which deduce the true solar structure of Figure 1.1 from p-mode

eigenfrequencies contribute a separate set of errors. Although in principle it is possible to use

only the information contained in the eigenfrequencies to reconstruct the solar interior,2 the

process is computationally difficult. In practice, inversions begin with a reference model such

as one of the mixing-length models described above. Eigenfrequencies are computed for the

reference model and compared to the solar data; discrepancies are resolved by perturbing the

structure of the model so that its eigenfrequencies agree more closely with the observations.

Iteration produces the final result, the inverted solar structure (which is hopefully independent

of the initial reference model). Any errors in the model stratification will be corrected in the

iteration and will not affect the inverted structure. However, current inversion techniques ignore

the effects of convective perturbations. Since, as we show in this work, convective structures do

affect p-mode eigenfrequencies, not treating their effects will produce errors in the inversion for

the true solar structure.

Thus, two possible errors can produce the discrepancies of Figure 1.1. Models of the solar

convection zone created with mixing-length theories do not completely describe the average
2 Sound speed and density are the most common variables sought in inversions, but other choices, such as the

helium abundance, are possible.
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interior structure. However, even if models employing mixing-length theory were completely

accurate, the true solar structure to which they should be compared is unknown since helioseismic

inversions do not account for the effects of convective structures on p-mode eigenfrequencies. In

this work we concentrate on the second of these effects and demonstrate that convective motions

change p-mode eigenfrequencies by a helioseismically significant amount.

1.2 Solution Method

P modes are three-dimensional analogues of the standing waves (or modes) formed in an

organ pipe sounding at one of its natural frequencies. To produce a note in an organ, a sound

wave propagates the length of the pipe, reflects from the opposite end and returns down the

tube. If the frequency of the sound wave corresponds to a mode of the pipe, the superposition

of the counter-propagating waves will resonate, producing a standing wave with the proper

frequency. Waves with other frequencies suffer destructive interference and will not produce a

tone. A similar mechanism occurs in the Sun, although complicated by spherical geometry, when

acoustic waves of the proper frequency and structure resonate to form standing waves — the

aforementioned p modes. Unfortunately, this description of p modes, although mathematically

correct, causes difficulties with both visualizations and calculations. Ray theory is an alternative

approach which simplifies each of these concerns at the expense of being only an approximation

to the true, modal, description.

Standing waves are the superposition of traveling waves which can mathematically, to

a good approximation, be represented as plane waves — waves with the same amplitude and

propagation direction in all of space. Since plane waves travel in only one direction, they are

conveniently described by a ray which points parallel to the direction of motion. Interaction of

waves with the sides of any enclosure, such as the organ pipe considered above, will cause this

approximation to break down. However, if the wavelength of the sound wave is small compared

to the dimensions of the enclosure, the effects of the boundary can usually be ignored. Returning

to the solar case, if we consider a Sun where any inhomogeneities are large compared to the
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wavelength of the p-mode (just as the dimensions of the organ pipe are large compared to the

wavelength of the sound wave), then, by analogy, p modes are well approximated by rays.

In the spirit of this approximation, consider a beam of light incident upon a screen with

a hole. When the hole is large compared to the wavelength of light, the ray approximation is a

valid one and the light travels through the hole in a straight line. However, if the aperture is

small compared to the light’s wavelength, the light will diffract as it travels through the hole —

a phenomenon which can only be explained by considering light as a wave. Within the domain

of classical (non-quantum) mechanics, the wave picture will provide the correct description for

both situations. Nevertheless, it can be both conceptually and mathematically simpler to use

the ray approximation when it is valid. One of the reasons we employ ray theory is precisely

this simplicity. Recall that we seek the eigenfrequencies of p modes in a solar model containing

turbulent convection. The governing equations for the complete problem are quite difficult —

as is, by analogy, solving the problem of light traveling through a large hole using wave theory

— particularly for the complex convective motions of the solar interior. By considering p modes

whose wavelengths are smaller than the dimensions of the convective motions, we can utilize the

simplifying ray approximation.

Until this point, we have been deliberatively vague about the nature of the computational

advantages provided by using the ray approximation. Mathematical analysis demonstrates that

the equations describing the ray-like propagation of a p mode are cast in a special form called

Hamilton’s equations. Hamilton’s equations, which are equivalent to Newton’s laws of motion,

describe the time evolution of an object’s position and momentum and can be used, for instance,

to calculate particle trajectories. The correspondence between ray theory and particle propa-

gation may not be surprising after considering the analogy presented above. When light passes

through a large aperture, its path can be treated with the ray approximation and is found to

be straight lines, just as a beam of particles would behave in a similar situation. Extensive

work has focused on systems obeying Hamilton’s equations, in particular on determining the

eigenfrequencies and modes of oscillation of such systems. By connecting the problem under
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consideration (p-mode oscillations in a convective Sun) with Hamiltonian dynamics, we can

directly apply these results to the system at hand.

Certain Hamiltonian systems possess quantities known as adiabatic invariants. In some

systems — including those with which we are concerned — the adiabatic invariants are found

to have special values when the system occupies a mode of oscillation. This property is known

as EBK quantization (Einstein 1917; Brillouin 1926; Keller 1958) and suggests that a profitable

method for finding eigenmodes of complex systems may be a direct search for those rays whose

adiabatic invariants satisfy the quantization conditions. As we will show, this method, although

conceptually useful, is unreliable for calculating the eigenfrequencies of sufficiently complex

convective models.

However, adiabatic invariants possess another special property; as their name suggests,

they are unchanged when the system undergoes slow alterations. We use a technique known

as adiabatic switching (reviewed in Skodje & Cary 1988), which relies on both the invariance

and the quantization of the adiabatic invariants, to determine the eigenfrequencies of p modes

in convective systems. Beginning with a simple model for which theorists can calculate the p

mode eigenfrequencies, we choose a ray corresponding to an eigenmode. Doing so ensures the

ray possesses correctly quantized adiabatic invariants. Next, we impose a slow alteration onto

the envelope in which the ray travels by, for example, gradually increasing the amplitudes of a

complicated set of convective motions. Since the adiabatic invariants remain constant during

slow changes, they continue to satisfy the correct quantization conditions during the alteration

and the ray continues to correspond to an eigenmode. Although the invariants are constant,

the eigenfrequency of the ray is not and it slowly changes from its initial value (known from

the initial calculation) to a final value, which is not known beforehand. Thus, by comparing

the two frequencies, we calculate frequency shifts caused by the convective motions. We will

show that this method successfully generates eigenfrequency shifts for complicated convective

models. We also demonstrate that these shifts offer a possible solution to the discrepancy

between theoretically and observationally based solar models of the structure near the solar
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surface.

1.3 Literature Review

The deleterious effects of neglecting fluid motions has been understood for some time and

several attempts have been made to untangle the intertwined effects of convection and stellar

pulsation (see Baker & Gough 1979, and references therein). Among the first to consider the he-

lioseismic implications was Brown (1984). While considering only vertical velocity perturbations

with a zero horizontal average, his work demonstrated that such perturbations always produce

eigenfrequency downshifts and suggested that these shifts could be of sufficient magnitude to

produce an observable effect. These results are confined to a special subset of photospheric mod-

els (those without perturbations in the horizontal direction or to thermodynamic quantities).

We confirm them in this work and extend our results to more complicated flows.

Others (Balmforth 1992; Rosenthal 1997; Rosenthal et al. 1998) have examined whether

the eigenfrequency discrepancies could be due to other effects, notably turbulent pressure arising

from convective motions. Their analysis shows the discrepancy between theory and observation

can be reduced, although not enough to bring the two data sets into complete agreement. Fur-

thermore, since the f mode (a surface gravity wave which propagates on the density interface

between the photosphere and the chromosphere) is a surface oscillation, it is not affected by

the mechanism they consider even though its observed frequencies do not agree with theoretical

calculations. From this evidence, they acknowledge that the convective effects which we consider

may also be important. They do conclude, however, that the resolution will come from consid-

eration of modal physics, arising from the interaction between p modes and the solar structure,

rather than model effects which arise from inaccuracies in the mean solar structure.

A series of papers (Murawski & Roberts 1993a,b; Murawski & Goossens 1993) addresses

the effects of photospheric flows and a chromospheric magnetic field on the f mode. Although

the oscillation physics of f and p modes are quite different, it is intriguing to note that they find

that random photospheric flow fields lower the f -mode frequencies. Although they work in the
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incompressible fluid limit, they are able to fit the observational data (which show that the actual

f -mode eigenfrequencies are lower than theoretical predictions) with reasonable values for the

flow speeds, and magnetic fields. Both Ghosh et al. (1995) and Duvall et al. (1998) extend this

work, each showing that several features of the f -mode spectrum can be accounted for by the

effects of shearing velocity fields.

More applicable to this work are two papers (Lavely & Ritzwoller 1992, 1993) which

use quasi-degenerate perturbation theory to investigate the effects of steady-state, large-scale

convection on helioseismic linewidths and frequencies. In particular, they find that convection

on the scale of giant cells (at least in one model) has a systematic effect on the linewidths of

p modes and hence that such a signal can be used as a diagnostic tool. Although they also

find a small effect on p-mode frequencies, they consider only small to medium harmonic degrees

(� � 100, where � is defined in §2.1.3) and hence their results do not apply to the same parameter

range as ours.

Gruzinov (1998) also uses an analysis based on perturbation theory, but with an emphasis

on finding analytic expressions for the eigenfrequency shifts. He derives a general result, in terms

of integrals over the flow fields, which he uses to examine turbulent shifts in the f mode. The

results include an unobservably small positive frequency shift for low-degree modes, a negative

frequency shift at high degrees, and a credible fit with observational data. It is not clear,

however, if this method is computationally practical for complicated convective motions.

Also of note is a series of papers investigating acoustic waves in a structured medium

(Zhugzhda & Stix 1994; Zhugzhda 1998; Stix & Zhugzhda 1998). They consider corrections

arising from a single sinusoidal perturbation to the sound speed and the vertical velocity, ignoring

any horizontal flows. Again, they find that the result is a downshift in the eigenfrequencies which

increases with both frequency and mode degree �. Furthermore, for solar-like conditions they

find that velocity, and not sound speed, perturbations have a stronger effect. As will be shown,

our results agree with these although we can extend our analysis to somewhat more complicated

flows.
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Our first attempts at this problem were motivated by Gough (1993), who discusses EBK

quantization (see §2.4) as a means for determining eigenfrequency shifts. He assumes the con-

vective effects are weak, allowing him to use a perturbative expansion and express the frequency

shifts in terms of certain integral constraints. As will be shown below, we ultimately abandon

this technique in favor of adiabatic switching due to the flexibility of the latter in handling

complicated convective motions. Our early work on this subject, portions of Chapters 2–4, has

been published elsewhere (Swisdak & Zweibel 1999).



Chapter 2

Theoretical Justification

This chapter provides the theoretical justification for our approach to the problem. In

§2.1 we discuss the theory of stellar oscillations and derive the governing differential equation.

In §2.2, we describe the WKB solution to this equation and show how it can be cast in terms of

the ray approximation. Section 2.3 outlines the general properties of Hamiltonian systems. The

use of EBK quantization to find Hamiltonian eigenvalues is discussed in §2.4. Finally, in §2.5, we

give a synopsis of the method of adiabatic switching, treating both its theoretical underpinnings

and its application to the specific problem at hand.

2.1 Stellar Oscillations

The theory of stellar oscillations is a well explored field with results ranging far wider

than is necessary for this work. The basic mathematics is well known and we present only a brief

summary of the germane topics; for more details, consult one of the many available references

(Cox 1980; Gough 1993; Christensen-Dalsgaard 1997).

2.1.1 Fluid Equations

To derive the equations governing p-mode oscillations, we begin with the equations of fluid

dynamics; for a derivation of these equations starting from Newtonian mechanics see Fetter &

Walecka (1980). The mass conservation, or continuity, equation is

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)
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where ρ and v are the fluid density and velocity, respectively.1 Solar Reynolds numbers are �

1012 (Brummell et al. 1995), implying that the viscous terms in the Navier-Stokes (conservation

of momentum) equation are unimportant. We note that, even though they are numerically

small, the dissipative effects of viscosity can have significant effects on p modes, particularly in

the outer convection zone. We ignore them here, however, and take

∂v
∂t

+ (v · ∇)v = −1
ρ
∇p + f , (2.2)

where p represents pressure and f is the sum of all body forces per unit mass. In this work, the

only body force we consider is gravity, so f = g where g is the acceleration due to gravity.2 The

gravitational acceleration also satisfies Poisson’s equation,

∇ · g = ∇2Φ = −4πGρ, (2.3)

for the gravitational potential Φ, where G is the Newtonian gravitational constant. A final

relation is necessary to complete the set of equations. Beginning with the first law of thermo-

dynamics and assuming that the fluid motions are adiabatic, it may be shown that the pressure

and density are related by:

dp

dt
=

Γ1p

ρ

dρ

dt
= c2 dρ

dt
, (2.4)

where the adiabatic exponent is

Γ1 =
(

∂ ln p

∂ ln ρ

)
s

, (2.5)

with the subscript s indicating that the derivative is taken at constant specific entropy. Equation

(2.4) also defines the adiabatic sound speed c.

Justification for the assumption of adiabatic fluid motions in the context of p-mode os-

cillations comes from an examination of the relevant timescales. The motion of a fluid element

may be approximated as adiabatic if the element undergoes several oscillations before heat is
1 Appendix A contains a table of important symbols used in this work.
2 Although Lorentz forces arising from magnetic fields could also be included, their effects in the solar con-

vection zone are usually significant only in active regions. We disregard them here.
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transferred between it and the surroundings. In other words, the oscillation timescale must be

shorter than the timescales for radiation and convection, the relevant heat transfer mechanisms

in the Sun. The canonical period of a solar p-mode is 5 minutes. In the solar convection zone

the radiation timescale is ≈ 102 years, which is significantly longer than an oscillation period.3

Convective timescales, however, are much shorter. Observations show that granules have life-

times of ≈ 10 minutes. Larger convective motions such as mesogranules (≈ 1 hour lifetimes)

and supergranules (≈ 1 day lifetimes) have been detected and giant cells persisting for a solar

rotation period of 30 days may also exist. Granules, with lifetimes of ≈ 1−2 oscillation periods,

clearly violate the assumption of adiabatic fluid motions. But, as will be shown below, p modes

rarely occupy the same regions as granules, hence justifying our dismissal of their non-adiabatic

effects.

2.1.2 Perturbations

The amplitudes of solar oscillations are small in comparison to other fluid motions in

the Sun. The first discovery of p modes (Leighton et al. 1962) showed the solar surface to

be tiled with oscillating fluid elements having a characteristic velocity amplitude of 1 km s−1.

Later observations found that these oscillations are the superposition of ≈ 107 p modes with

individual amplitudes of ≈ 1 m s−1. For comparison, the adiabatic sound speed near the

photospheric surface is c ≈ 10 km s−1; in the interior the sound speed rapidly rises while the

oscillation amplitude falls. The resulting Mach numbers, ≈ 10−4 at the surface maximum, imply

p modes are linear oscillations, an assumption we carry throughout this work.

We seek oscillations about a reference state satisfying equations (2.1)–(2.4) and certain

(unspecified) boundary conditions. As p-mode oscillations are small, we use linear perturbation

theory. Assuming the existence of a static,4 spherically symmetric reference model satisfying

equations (2.1)–(2.4), we expand each variable around its equilibrium state. Any variable Q

3 The radiation timescale drastically decreases at the photosphere. However, processes in this region cause
difficulties for several reasons, as will be seen below, and are ignored in this work.

4 Direct observation supports this assumption as the mean solar structure does not vary on the timescales in
question.
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becomes

Q(x, t) = Q0(x) + Q′(x, t), (2.6)

where x is the position vector, Q0 is the variable evaluated in the reference model and Q′ is

an Eulerian perturbation. (For a full description of Eulerian and Lagrangian perturbations, see

Appendix B.)

To continue, we replace the variables in equations (2.1)–(2.4) with their linearized coun-

terparts, dropping the 0 subscripts from reference quantities. The continuity equation becomes

ρ′ + ∇ · (ρδx) = δρ + ρ∇ · (δx) = 0, (2.7)

where δ represents a Lagrangian perturbation, while the momentum equation is

ρ
∂2δx
∂t2

= −∇p′ + ρg′ + ρ′g. (2.8)

From the adiabatic approximation of equation (2.4), the density and pressure perturbations are

connected through

δp = c2δρ. (2.9)

Finally, Poisson’s equation becomes

∇2Φ′ = ∇ · g′ = −4πGρ′. (2.10)

2.1.3 Separation of Angular Variables

Since the reference state is spherically symmetric, it proves helpful to consider the angular

behavior of the independent variables in spherical coordinates (r, θ, φ). After rewriting the

perturbed form of Poisson’s equation (2.10) as

1
r2

∂

∂r

(
r2 ∂Φ′

∂r

)
+ ∇2

hΦ′ = −4πGρ′, (2.11)

we see that derivatives with respect to the angular variables θ and φ appear solely as part of

the horizontal Laplacian

∇2
h =

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2
. (2.12)
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Assuming that ρ′ and Φ′ have the same angular dependence, separation of the angular coordi-

nates, leads to the well known result that the angular eigenfunctions are the spherical harmonics,

Y m
� (θ, φ). To be precise, we have

ρ′(x, t) = ρ′(r, t)Y m
� (θ, φ) (2.13)

Φ′(x, t) = Φ′(r, t)Y m
� (θ, φ), (2.14)

where �, a non-negative integer, is the degree of the harmonic, while m is restricted to the range

−� ≤ m ≤ � and is called the azimuthal order. Given equations (2.13)–(2.14), we can show that

the spherical harmonics are also the angular eigenfunctions of the other scalar perturbations.

Although the spherical harmonics are familiar from other problems of mathematical

physics, it is useful to discuss a few of their properties as they relate to p-mode structure.

A full solution of the eigenvalue problem produces radial eigenfunctions ρ′(r, t) demarcated by

an integer n; the full eigenfunctions ρ′(x, t) are then denoted by three integers: n, � and m. The

radial eigenvalue roughly measures the number of oscillations in the radial direction, � and m

characterize the oscillations on a spherical surface. Hence as n and � increase, the radial and

azimuthal wavelengths decrease.

The solar acoustic structure traps p modes in a radial cavity. Within the cavity the mode

resonates and produces a standing wave, while outside of the cavity the mode is evanescent. The

radial location of the cavity depends on the mode numbers, roughly increasing linearly with �

and decreasing linearly with n. For n = 1, � > 15 the cavity of a p mode is confined within the

solar convection zone (r � 0.7R�) and oscillations with n = 1, � > 80 have a minimum radius

of 0.95R�.

2.1.4 Derivation of a Wave Equation

Equations (2.7)–(2.10) may be recast in a suggestive form through a derivation of Gough

(1993) based on the earlier work of Lamb (1932). Define the variable

χ ≡ ∇ · δx = −δρ

ρ
= − δp

c2ρ
, (2.15)
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where the last two equalities follow from equations (2.7) and (2.9). Substituting equation (2.15)

into the perturbed momentum equation (2.8) yields

ρ
∂2δx
∂t2

= −∇(ρδx · g − ρc2χ) + ρg′ − ρχg − (δx · ∇ρ)g, (2.16)

where we have made use of the equation of hydrostatic equilibrium, ∇p = ρg, and equation

(B.10). Dividing through by ρ and rearranging, we find that

∂2δx
∂t2

= ∇(c2χ + δx · g) + c2χ
∇ρ

ρ
+ δx · g∇ρ

ρ
+ g′ − χg − 1

ρ
(δx · ∇ρ)g. (2.17)

The curl of the equation of hydrostatic equilibrium shows that g and ∇ρ are parallel and allows

us to cancel the third and sixth terms on the right-hand side. After a small rearrangement, we

have

∂2δx
∂t2

= ∇(c2χ + δx · g) + (c2 ∇ρ

ρ
− g)χ + g′. (2.18)

Finally, recall that the reference state was assumed to be spherically symmetric. Denoting

the radial unit vector as r̂ gives g = −g(r)r̂ and defining the radial component of the Lagrangian

displacement as

ξ ≡ r̂ · δx (2.19)

produces

∂2δx
∂t2

= ∇(c2χ − gξ) + (c2 ∇ρ

ρ
+ gr̂)χ + g′. (2.20)

We can proceed further, using equations (2.10), (2.15), and (B.10) to substitute for g′

and obtain an equation for δx only in terms of the parameters of the reference model. A more

fruitful approach comes from making several well motivated and simplifying assumptions which

we discuss below.

2.1.4.1 Cowling’s Approximation

In making Cowling’s approximation we assume that Φ′, the perturbation to the gravita-

tional potential due to the oscillations, is negligible compared to the density variation ρ′ and
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thus that we can neglect g′ in equation (2.20). First demonstrated by Cowling (1941), it arises

from a consideration of the solution to the perturbed Poisson’s equation (2.10) in integral form:

Φ′(r) =
4πG

2� + 1

[
r�

∫ ∞

r

ρ′(x)x1−�dx + r−1−�

∫ r

0

ρ′(x)x�+2dx

]
. (2.21)

The perturbed potential Φ′ may be safely neglected when the spherical harmonic degree is large,

as both integrals contain terms which rapidly decay with increasing �. In addition, Φ′ can safely

be neglected in modes where ρ′ rapidly changes sign, which happens when n is large. Since

factors we discuss in §2.2 restrict our investigation to modes with � � 100, we hereby set g′ = 0

in what follows.

2.1.4.2 Further Approximations

Since we desire oscillatory solutions, we expect the governing equation to be similar in

form to the standard wave (Helmholtz) equation for a scalar variable. After making Cowling’s

approximation, equation (2.20) becomes

∂2δx
∂t2

= ∇(c2χ − gξ) + βχr̂. (2.22)

where

β ≡ c2

ρ

dρ

dr
+ g = −c2N2

g
(2.23)

and N is the Brunt-Väisälä frequency. Modes of high spherical degree occupy a cavity with a

small radial extent near the top of the convection zone. As a simple, but useful, approximation

we take gravity to be constant throughout this region and simplify the governing equations. To

be precise, we assume the variation of gravity on the vertical scale of the oscillations is small

and hence that all derivatives of g with respect to r vanish.5

After applying the divergence operator ∇· to equation (2.22), we have

∂2χ

∂t2
= ∇2(c2χ − gξ) + r̂ · ∇(βχ) +

2βχ

r
. (2.24)

5 To be consistent we should work in the plane-parallel limit r → ∞. However for now we keep terms
depending inversely on r noting that they, by chance, disappear from the final result of equation (2.30). For a
consistent treatment see Appendix C.
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To eliminate the variable ∇2ξ, apply the operator r̂ ·(∇×∇× to equation (2.22). Using various

vector identities we obtain

∂2

∂t2
(r̂ · ∇χ −∇2ξ) = −∇2

h(βχ) − 2βχ

r2
, (2.25)

where ∇2
h is the horizontal Laplacian operator. Combining equations (2.24) and (2.25) gives

∂4χ

∂t4
− ∂2

∂t2

(
∇2(c2χ) + r̂ · ∇ [(β − g)χ] +

2βχ

r

)
+

2βgχ

r2
+ g∇2

h(βχ) = 0. (2.26)

Since this equation contains odd spatial derivatives of χ, it is not quite in the desired Helmholtz-

like form. The substitution Ψ = c2ρ1/2χ = −ρ−1/2δp eliminates the odd-order derivatives and

gives

∂4Ψ
∂t4

−
(

c2∇2 − ω2
c − 2βχ

r

)
∂2Ψ
∂t2

−
(

c2N2∇2
h − 2βgc2

r2

)
Ψ = 0. (2.27)

The acoustic cutoff frequency ωc is defined by

ω2
c ≡ c2

4H2
ρ

(
1 − 2r̂ · ∇Hρ − 4Hρ

r

)
(2.28)

where

Hρ ≡ −
(

d ln ρ

dr

)−1

(2.29)

is the density scale height.

Solar convection is so efficient that the underlying reference state is nearly adiabatically

stratified. Non-adiabatic stratification is a significant effect only in the outer portions of the

convection zone where other aspects of our analysis (primarily the assumption of adiabatic fluid

motions) also break down. Thus N2 (and therefore β) are ≈ 0 in the bulk of the convection

zone, the region of interest in this analysis. Neglecting the appropriate terms in equation (2.27),

we arrive at a modified wave equation

(
∂2

∂t2
+ ω2

c

)
Ψ − c2∇2Ψ = 0. (2.30)

The analysis leading to equation (2.30) required several assumptions. In roughly the

order of occurrence, they are
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(a) Non-dissipative, adiabatic fluid motions

(b) Linear perturbations

(c) Spherically symmetric, non-magnetic, static reference state

(d) Cowling’s approximation

(e) Constant gravity

(f) Adiabatic stratification.

Appendix C discusses the ramifications of relaxing restrictions (e) and (f). Note that the deriva-

tion of equation (2.30) did not assume a plane-parallel geometry, only that variations in the

gravitational acceleration are small over the region of interest. Below we will adopt a plane-

parallel geometry, the only effect of which is to eliminate the final term in equation (2.28).

2.2 Asymptotic Approximations

The ultimate goal is to determine the eigenfrequencies of a solar model which includes

convective motions. In principle this means solving equation (2.30) in a domain where c and

ωc are complicated functions of position — a difficult computational problem which has the

potential to obfuscate the underlying physics within a morass of numerical work. Instead, we

seek the eigenvalues for a particular limit of the general problem, the short-wavelength limit

where the lengthscales of the oscillations are much shorter than those of the other varying

quantities. Since, for example, a p mode with an � = 200 has a typical horizontal length scale of

R�/� = 3.5 Mm, our analysis will only be valid for convective motions of mesogranular scales

and larger. Of course, as granules already violate the assumption of adiabatic fluid motions used

in the derivation of equation (2.30), our mathematical formalism has already implicitly excluded

these motions. On the other hand, granulation near the solar surface is the leading candidate

for the source of p modes and hence would be expected to leave an imprint on the oscillation

frequencies. Our analysis is insensitive to any such signal. The short-wavelength approximation,
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also known as geometrical acoustics or optics, is equivalent to the WKB method used in the

asymptotic analysis of differential equations.

Our assumption of small-wavelength modes allows us to use the well known analogy

between geometrical optics and particle motion to cast the problem in a Hamiltonian formalism.

A method analogous to EBK semi-classical quantization then provides a relatively simple route

to the desired eigenvalues. However, we will demonstrate that this method is difficult, if not

impossible, to implement for the complicated domains under consideration. However, due to the

Hamiltonian nature of the system, a related technique known as adiabatic switching produces

eigenvalues even for complex systems.

Consider, for the moment, an unrealistic solar model where ωc = 0 and c is a constant.

Equation (2.30) reduces to the Helmholtz equation, which has plane-wave solutions

Ψ = Ψ0e
±i(k�x−ωt), (2.31)

where Ψ0 is the constant amplitude of the wave and the wavenumber k and frequency ω are

related by the dispersion relation ω2 = c2k2. These plane waves have the distinctive property

that their propagation directions and amplitudes are the same for all space. In this case, we can

actually ignore the wave nature of equation (2.31) and treat the solution as a one-dimensional

ray, propagating perpendicular to the wavefronts.

Now, consider instead a system where the lengthscale over which equilibrium quantities

(such as c, p and ρ) vary is much longer than the wavelength of a mode. Letting the ratio of these

lengthscales be denoted by Λ (∼ Hρ|k|) — a constant, large parameter used for bookkeeping

purposes — we write the solution to equation (2.30) as a plane wave with varying amplitude,

A, and phase, ϕ (assumed to be real):

Ψ = A(x, t)eiΛϕ(x,t). (2.32)

Although we have not made any approximations in assuming this form for the solution, the

presence of Λ suggests that Ψ rapidly oscillates in comparison to the background state. Thus, it

is reasonable to think of equation (2.32) as describing waves which are locally planar and hence
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amenable to a ray description, albeit one where the rays undergo changes in both direction and

amplitude during propagation. If, as is the case for p modes, an eigenmode is trapped within

a cavity the wavenumber of the solution disappears at the boundaries. There, Λ → 0 and it

is impossible to satisfy the locally planar condition. This difficulty is merely the well known

breakdown of the WKB approximation near the classical turning points of a trajectory.

Using the ansatz of equation (2.32) and following the work of Gough (1993), we expand

equation (2.30) and equate powers of Λ. This process, equivalent to the WKB approximation,

gives the leading equation

(
∂ϕ

∂t

)2

−
(ωc

Λ

)2

− c2 |∇ϕ|2 = 0. (2.33)

In a slightly different form, this is the eikonal equation of geometric optics. Next, making the

analogy between equations (2.31) and (2.32), we define the local frequency ω̃ and wavenumber

k as

ω̃(x, t) ≡ −Λ
∂ϕ

∂t
and k(x, t) ≡ Λ∇ϕ. (2.34)

These identifications allow us to write equation (2.33) in the form of a dispersion relation:

ω(x,k, t) = (c2k2 + ω2
c )

1
2 , (2.35)

where ω differs from ω̃ only in the inclusion of k as an independent variable. Furthermore,

equation (2.34) also implies that

∂k
∂t

+ ∇ω̃ = 0, (2.36)

from which we find that

(
dk
dt

+ ∇ω

)
+

(
∂ω

∂k
− dx

dt

)
· ∇k = 0, (2.37)

where d
dt is the total derivative with respect to time along a ray path. As the grouping of the

terms suggests, this equation is satisfied when each expression is identically zero. The result is

a set of first-order differential equations which describe the trajectory of a ray:

dk
dt

= −∂ω

∂x
and

dx
dt

=
∂ω

∂k
. (2.38)
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Equations (2.38) are Hamilton’s equations for a Hamiltonian ω in terms of the canonical

positions qi = xi and momenta pi = ki. The dispersion relation of the ray, ω(x,k, t), is identified

as the functional form of the Hamiltonian. Using the WKB approximation we have recast the

original problem; instead of solving the eigenvalue problem presented by the partial differential

equation (2.30), we seek the eigenfrequencies of the Hamiltonian given by equation (2.35). This

reworking comes at a price since once we pass to a ray description we lose information concerning

the structure of the eigenmode. However, we are primarily concerned with the eigenfrequencies

which, as we will show, can be determined in a straightforward manner for the Hamiltonian

systems under consideration.

While the appearance of Hamilton’s equations may appear serendipitous, it has been

known since the time of Hamilton himself that the eikonal equation is equivalent to the Hamilton-

Jacobi equation of classical mechanics. As an aside, it is well known in quantum mechanics

(Goldstein 1965) that high-frequency solutions to the wave equation (in other words, solutions

which oscillate rapidly compared to any background variation) follow ray-like trajectories similar

to classical particles. In that case, the semi-classical limit, the inverse of Planck’s constant, h−1,

plays an analogous role to our parameter Λ.

Finally, the dispersion relation of equation (2.35) is not a fully satisfactory description

of ray motion in a convective domain. While it does describe the trajectory of a ray in a Sun

where c and ωc are arbitrary functions of position, any method which wishes to treat realistic

convective structures must also consider the possibility of advective motions. This oversight is

a result of our initial description of the problem: equations (2.7)–(2.10) do not allow for fluid

motions in the reference state and hence they do not appear in the final dispersion relation. To

account for this discrepancy, we will add a term to equation (2.35) in §3.2 which takes the form

of a Doppler shift and accounts for the effects of advective motions.
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2.3 Hamiltonian Systems

The identification with Hamiltonian mechanics allows us to take advantage of the exten-

sive results available for Hamiltonian systems. Before discussing how to find the eigenfrequencies

for such systems, we review several results from Hamiltonian theory which will be of use in later

sections. More details on these subjects can be found in a number of texts on classical mechanics

and Hamiltonian systems (for example Goldstein 1965; Arnold 1978; Lichtenberg & Lieberman

1983; Tabor 1989).

A general Hamiltonian H(q,p, t), satisfies Hamilton’s equations

dq
dt

=
∂H

∂p
and

dp
dt

= −∂H

∂q
(2.39)

for the canonical position vector q and canonical momentum vector p. If the Hamiltonian

is cyclic in one of the canonical positions qi (i.e., the Hamiltonian does not explicitly depend

on that coordinate), then the corresponding canonical momentum pi is also a constant of the

motion:

∂H

∂qi
= 0 implies

dpi

dt
= 0. (2.40)

Furthermore, the time derivative of H is given by

dH

dt
=

∂H

∂t
+

∂H

∂q
dq
dt

+
∂H

∂p
dp
dt

=
∂H

∂t
, (2.41)

where the final equality follows from equation (2.39). Hence, for systems where the Hamiltonian

is not explicitly time-dependent, the Hamiltonian itself is a constant of the motion. Finally, we

note that if a Hamiltonian of degree n does contain an explicit time-dependence, it is possible

to rewrite it as a time-independent Hamiltonian of degree n + 1 in which the time and the old

Hamiltonian become elements of the canonical position and momentum vectors, respectively.

Certain special Hamiltonians, named integrable systems, have equal numbers of inde-

pendent constants of the motion and degrees of freedom. Such systems permit a canonical

transformation (one which preserves the Hamiltonian nature of the system) in which all of the
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new canonical positions, usually termed angle variables and denoted Θk, are cyclic. The new

canonical momenta are the action variables Ik, and the transformed Hamiltonian H(Ik) satisfies

a certain set of Hamilton’s equations:

dIk

dt
= − ∂H

∂Θk
= 0 and

dΘk

dt
=

∂H

∂Ik
= νk(I), (2.42)

where νk is the characteristic frequency for motion in the kth coordinate.6 Since the angles are

cyclic, each action variable is one of the n independent constants of the motion.

Thus, a Hamiltonian system with n degrees of freedom defines a 2n-dimensional phase

space, but integrability ensures that the phase-space trajectories are confined to (2n − n) = n-

dimensional surfaces. It can be shown both that this surface is topologically equivalent to an

n-dimensional torus and that the action variables may be written as

Ik =
1
2π

∮
Ck

p · dq, (2.43)

for k = 1, . . . , n. The curves Ck are topologically independent closed paths on the n-dimensional

torus. An integrable system is confined to a torus by its initial conditions (which set the values of

the invariant action variables) and does not stray from this torus as long as the system remains

integrable.

A concrete example is provided by a two degree of freedom Hamiltonian; in particular,

we shall consider equation (2.35). In the appropriate notation, the Hamiltonian (ω) is written

as

H(q1, q2, p1, p2) =
√

c2(p2
1 + p2

2) + ω2
c (2.44)

where the sound speed c and the acoustic cut-off frequency ωc are functions of the canonical

positions q1 and q2. The system has two degrees of freedom and thus a four-dimensional phase

space. As the Hamiltonian is independent of time, H itself is a constant of the motion. Further-

more, if we specialize to a system where c and ωc are both independent of one of the position

coordinates, say q1, then the corresponding wavenumber p1 is also a constant of the motion. The
6 These are usually represented as ωk. To avoid confusion with the acoustic cutoff frequency ωc and the

Hamiltonian ω, we adopt this non-standard notation.
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existence of two constants ensures the integrability of the system and restricts phase-space mo-

tions to a two-dimensional surface, topologically equivalent to a familiar two-dimensional torus.

In fact, a family of invariant tori exist, each individual torus corresponding to a particular pair

(H, q1). As the tori do not intersect, initial conditions constrain the system to a particular torus

for all time. To write the Hamiltonian of equation (2.44) in action-angle coordinates requires

the specification of the functional form of c and ωc and would lead us astray at this time. We

return to the subject in Chapter 3.

General Hamiltonian systems, however, are usually non-integrable and thus their trajec-

tories are not confined to n-dimensional phase-space tori. However, special attention has been

given to systems which are nearly-integrable in the sense that they may be written as

H = H0(I) + εH1(I,Θ), (2.45)

where I and Θ are vectors of the action and angle coordinates, respectively, and ε is a small

parameter. The fate of invariant tori in non-integrable systems is addressed by the KAM

(Kolmogorov-Arnold-Moser) theorem. We will return to the implications of this theorem in

later sections, but roughly it states that for sufficiently small values of ε, most invariant tori

are preserved. In other words, for small perturbations from integrability, most sets of initial

conditions remain on invariant tori. However, the destroyed and invariant tori are intermingled

in phase space and as the strength of the perturbation increases, so does the density of the

destroyed tori. For a strong enough perturbation, no invariant tori remain.

2.4 Quantization Conditions

We now return to the question of determining the eigenfrequencies of a convective solar

model. Before deriving the p-mode quantization conditions, we briefly digress with a discussion

of semi-classical EBK quantization as it is formulated in quantum mechanics. Then, we examine

a simple solar model to derive insight into the behavior of the ray solutions. Finally, we determine

the p-mode quantization conditions and discuss their implications.
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2.4.1 EBK Quantization

Prior to the development of wave and matrix mechanics, quantum theory postulated

that the correct description of the quantum world arose from quantizing the classical action

variables. Perhaps the most familiar example is Bohr’s derivation of the hydrogen spectra from

the quantization of orbital angular momentum. The general result is displayed in the Bohr-

Sommerfeld-Wilson quantization condition:

Ij =
∮

Cj

pjdqj = njh, (2.46)

where h is Planck’s constant, nj is an integer, and Cj is the closed contour associated with

the motion in the jth degree of freedom. Disregarding the factor of 2π, this action is slightly

different than that of equation (2.43) since it assumes that motions in different coordinates are

separable. But, it was quickly realized that the separation procedure is not unique: evaluation in

different coordinate systems produces different quantization conditions. As an additional defect,

the zero-point energy (nj → nj + 1/2) found in, for example, the quantum harmonic oscillator,

could not be accounted for with equation (2.46) and was added as an empirical correction.

Einstein (1917) proposed a solution to the first of these problems by noting that since the

quantity p · dq, unlike the individual terms pjdqj , is invariant under coordinate transformations,

the action variable to be quantized should be that given in equation (2.43). Soon thereafter,

modern quantum theory arose and it was discovered that Schrödinger’s wave equation reduced

to the Hamilton-Jacobi equation (and hence classical mechanics) in the semi-classical limit of

h → 0. Brillouin (1926), working in this limit, confirmed Einstein’s supposition concerning the

form of the quantized action variables by requiring that the wavefunction solutions be single-

valued. Finally, Keller (1958) added a term to the quantization condition which accounts for

phase loss at caustic surfaces.7 The result is EBK semi-classical quantization which states that
7 Caustics occur when rays converge onto a lower-dimensional surface. A telescope focus, where a three-

dimensional bundle of rays coalesces to a point, is one example.



28

for quantum phenomena the classical action variable Ik of equation (2.43) is quantized:

Ik =
1
2π

∮
Ck

p · dq = �

(
nk +

sk

4

)
, (2.47)

where nk is an integer and sk, Keller’s contribution, is the number of encountered caustics. It

is interesting to note that the final term can naturally account for the zero-point energy absent

from the Bohr-Sommerfeld-Wilson quantization condition.

2.4.2 A Simple Physical Model

Before deriving the appropriate quantization conditions for p modes, we first examine a

simple system for some physical insight into the procedure. In §2.2 we demonstrated that, in

the small-wavelength limit, the solutions to equation (2.30) are rays. For now we work in plane

polar coordinates (r, φ), use the simplified dispersion relation ω2 = c2k2, and assume that c is

azimuthally symmetric, c = c(r). The equations governing ray motion are found from equation

(2.38):

dr

dt
=

c2kr

ω
and r

dφ

dt
=

c2kφ

ω
, (2.48)

and the raypaths are solutions to

dr

dφ
=

rkr

kφ
= r

√
ω2

c2k2
φ

− 1. (2.49)

In order to proceed, we need to specify several quantities: the form of c(r), a frequency ω (a

constant of the motion as c is independent of time), an azimuthal wave number kφ (another

constant as c is independent of φ), and initial conditions. For a given c, certain combinations

of ω and kφ will yield eigenmodes (we discuss below how to find these combinations), however

raypaths still exist even for non-modal values of those parameters. Choosing a reasonable form

for the sound speed,8 as well as values for ω and kφ, results in the raypath shown in Figure 2.1.

Some general features of the raypath, independent of the initial conditions or specific

values of ω and kφ, are noteworthy. A raypath propagates within a well defined radial cavity
8 Although the actual form is not important, we use a polytrope with c2 ∝ r. Polytropes are discussed further

in §3.1
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Figure 2.1: Acoustic raypaths in a two-dimensional Sun. The caustic at the lower turning point
is clearly visible. Since the dispersion relation does not include an acoustic cutoff frequency, the
upper caustic coincides with the surface. As will be seen later, inclusion of ωc eliminates the
cusps at the upper caustic, producing raypaths which are everywhere differentiable.
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bordered by two caustic surfaces at which kr changes sign. The quadratic dependence of the

dispersion relation on the wavenumber implies that at any point within the cavity two rays, with

kr equal and opposite in magnitude, can exist. However, it will later prove useful to think of the

rays as propagating in a slightly more complicated geometry in which two sheets are connected

at the caustics, one in which kr is restricted to positive values, the other in which kr is negative.

This domain is periodic in both the r and φ directions and is equivalent to the surface of a torus

(unrelated, however, to the phase-space tori of §2.3). The construction of this new domain can

be extended to higher-dimension systems, although visualization is more difficult.

We have not discussed how the values of ω and kφ in Figure 2.1 were picked. In fact, they

were chosen so that the ray corresponds to a p mode although, again, we have not yet indicated

how this was done — indeed, the exact point of this work is to determine ω for arbitrary solar

structures. Note, however, that even though it corresponds to an eigenmode, the ray does not

close on itself. Instead it will eventually fill the entire cavity. Although the raypath itself gives

no visual indication of whether it corresponds to an eigenmode, there is a technique similar to

EBK quantization which allows one to make such determinations.

2.4.3 P Mode Quantization Conditions

We now consider how to determine the eigenvalues of equation (2.30) in the short-

wavelength limit. The result will be almost identical to the EBK condition of equation (2.47),

although the application to non-quantum systems was probably first discussed in Keller & Ru-

binow (1960). Our starting point is the wavefunction form of the solution as written in equation

(2.32)

Ψ = A(x, t)eiΛϕ(x,t), (2.50)

with ϕ real. As seen in the discussion of §2.4.2, the solution is a sum of multiple waves with

opposing wavenumbers, however the forthcoming argument applies to each term individually

and hence we work with a single term. Although this wavefunction is a classical solution, it is
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analogous to a short-wavelength solution to the Schrödinger equation Ψ = A exp(ih−1S) where

S is the action and h−1 is equivalent to Λ. This is the basis for the strong similarity between

the EBK result and the result of this section.

Since the domain is periodic, the wavefunction Ψ is constrained to be single-valued. No

such restriction is placed on either the amplitude A or the phase ϕ. If we imagine traversing a

closed circuit in the domain, the requirement that the solution be single-valued implies

Λ(∆ϕ) = 2πn + i(∆ lnA) (2.51)

for any integer n, where ∆ represents the difference accumulated along the circuit. However, we

can quickly rewrite this condition by noting that

Λ(∆ϕ) = Λ
∮

∇ϕ · dx (2.52)

and thus, from equation (2.34),

∮
k · dx = 2πn + i(∆ lnA). (2.53)

Keller (1958), in the context of EBK quantization, first evaluated the final term of this equation,

realizing that, as in optics, the phase of the amplitude is retarded by π/2 whenever a ray

encounters a caustic. With this contribution, the condition becomes

∮
k · dx = 2π(n +

s

4
), (2.54)

where s is the number of caustics encountered along the path.

Although the quantization condition of equation (2.54) is valid around any closed curve

in the domain, this does not lead to an infinite number of quantum conditions. Instead, there

are as many independent curves, and hence quantization conditions, as there are degrees of

freedom in the system.9 In the example considered in §2.4.2, evaluation of equation (2.54) along

any two independent curves will yield two quantization conditions. Of course, some curves are

more equal than others: wise choices in that case would be a curve at constant r and another
9 Topologically, two curves are independent when they cannot be continuously deformed into each other.
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at constant φ. So, the complete quantization conditions are

∮
Ck

k · dx = 2π(nk +
sk

4
) (2.55)

where the Ck are independent curves and nk and sk are integers.

From our previous work relating k and x to the canonical momenta and positions, we

can rewrite (2.55) in the suggestive form

Ik =
1
2π

∮
Ck

k · dx = nk +
sk

4
, (2.56)

which both connects the quantization condition to the realm of Hamiltonian mechanics discussed

in §2.3 and shows that it is analogous to the EBK result of equation (2.47).

Unfortunately, while (2.56) appears to give a general method for determining eigenfre-

quencies, its use is limited to integrable systems. As Einstein (1917) recognized, in the context

of EBK quantization, for non-integrable systems the curves Ck of equation (2.56) no longer exist

and evaluation of the action variables becomes, in a strict mathematical sense, impossible. This

restriction severely limits the convective structures which can be studied with this technique.

Recall that Hamiltonian systems with two degrees of freedom, such as that of §2.4.2, require two

constants of the motion to be integrable — in that case, ω and kφ. Furthermore, each of these

constants reflects a symmetry in the governing Hamiltonian, time-independence in the first case

and azimuthal symmetry in the second. Although most convective flows can be assumed to be

stationary on the timescale of p-mode oscillations, they do not have azimuthally-independent

structures. Hence, kφ is not a constant of the motion in such flows, the system is non-integrable,

and equation (2.56) is an unsuitable method for determining the system’s eigenfrequencies.

2.4.4 Surfaces of Section

As we will see, adiabatic switching addresses these difficulties. Before its introduction in

§2.5, we briefly consider an aesthetically pleasing interpretation of the quantization conditions

of the previous section. Although Noid & Marcus (1975) used this approach with some success

to find the energy levels of an anharmonically coupled pair of oscillators, it does not extend to
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non-integrable systems and is hence unsuitable for our needs. However, it gives the problem a

geometric interpretation and, in addition, was the path we took on our first explorations of the

subject. Although it can be applied to higher order systems, this method is most useful for a

system with two degrees of freedom. We will avoid a formal treatment and instead concentrate

on the system of §2.4.2; Tabor (1989) has a more general discussion.

Instead of treating equation (2.55) as an integral equation which must be solved to find the

eigenfrequencies, we interpret it as a geometric statement. The Hamiltonian of §2.4.2 possesses

two degrees of freedom and hence a ray propagates in a four-dimensional (r, φ, kr , kφ) phase

space. However the constancy of ω and kφ restrict the trajectory to a two-dimensional surface,

topologically equivalent to a torus. Imagine the trajectory intersecting a plane at an arbitrary

value of φ and making a record of the values of r and kr at each intersection. After sufficient

time, a surface of section will be traced: a closed curve which for our case can be found from

solving the dispersion relation

k2
r =

ω2

c2
− k2

φ. (2.57)

A similar curve arises from considering the values of kφ and φ at the intersection of the torus

with a plane at constant r. Equation (2.55) is thus a statement concerning the area traced out

by these curves: for eigenmodes the areas have certain quantized values. Rays not corresponding

to modes trace out curves enclosing other areas not given by equation (2.55). Hence, one can

determine the eigenmodes of a system by finding those rays which produce surfaces of section

with the proper areas.

For integrable systems with two degrees of freedom, the trajectories are restricted to two-

dimensional surfaces in phase space and hence the surfaces of section consist of smooth curves

enclosing well defined areas. As a system is perturbed from integrability, the KAM theorem

ensures that increasing numbers of invariant tori are destroyed. Rays whose initial conditions

correspond to the destroyed tori are then free to wander in a three-dimensional region of phase

space. A two-dimensional slice through a three-dimensional region of phase space does not
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produce curves which enclose well-defined areas and hence makes the geometric interpretation

of equation (2.55) unclear. The surfaces of section acquire a characteristic “fuzzy” appearance,

an early example of which is seen in the work of Hénon & Heiles (1964). This is a consequence

of the assertion made in §2.4 that the quantization conditions are undefined for non-integrable

systems.

2.5 Adiabatic Switching

Ehrenfest (1917) was among the first to propose the concept of adiabatic switching,

although his work has since been superseded by modern treatments. In essence, his hypothesis

was that if a system is changed in a reversible, adiabatic way, then allowed motions will smoothly

transform to allowed motions. Perhaps the most familiar example is provided by a small-

amplitude pendulum. If the length of a pendulum is slowly increased, the energy, frequency,

and oscillation amplitude will each decrease. However, the ratio of the energy to the frequency

remains constant. In fact, this ratio remains constant for any perturbation, such as changing

the gravitational acceleration or the mass of the bob, as long as it is performed on a timescale

longer than the dynamical period of the system.

For a simple harmonic oscillator, of which the small-amplitude pendulum is an example,

the ratio of the energy to the frequency is the classical action variable of §2.3. In a rough sense,

an adiabatic change smoothly deforms the invariant tori between those of the initial and those

of the final state. This property is of particular interest if a system has eigenmodes, for in this

case the action variables — at least in the semi-classical limit — are quantized. If we start the

system in an eigenmode for which the eigenfrequencies are known and allow it to evolve as the

strength of a perturbation is increased, eventually we are left with a new system for which the

eigenfrequencies were not known beforehand. But, due to the adiabatic nature of the transition,

the action variables remain quantized and hence the original eigenmode has slowly relaxed into

an eigenmode of the new system. Although we lend a degree of formalism to this qualitative

description below, we do not present a complete derivation. A more thorough review of the
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modern implementation of the method of adiabatic switching and its applications can be found

in Skodje & Cary (1988).

Implementing adiabatic switching is fairly straightforward. The non-integrable Hamilto-

nian for which the eigenfrequencies are desired is written in action-angle variables as a sum of

two terms

H(I,Θ) = H0(I) + H1(I,Θ), (2.58)

where H0 is an integrable Hamiltonian for which the eigenfrequencies are known (for instance,

from the quantization procedure of §2.4), and H1 includes the non-integrable terms. We intro-

duce into equation (2.58) a time-dependent switching function λ(t):

H = H0 + λ(t)H1 (2.59)

which satisfies

λ(t ≤ 0) = 0 and λ(t ≥ T ) = 1 (2.60)

for some time T which, in order to ensure that the transition from H0 to H is adiabatic, is

taken to be much longer than other timescales associated with the system (for instance, the

characteristic propagation times of equation (2.42), ν−1
k = [∂H0/∂Ik]−1). In addition the first

few derivatives with respect to t of λ are, to ensure the smoothness of the transition, chosen to

be continuous at t = 0 and t = T . In this work, λ is taken to be

λ(0 ≤ t ≤ T ) =
t

T
− 1

2π
sin

(
2πt

T

)
. (2.61)

Johnson (1985) discusses the effects of different switching functions.

At t = 0 we begin with an eigenmode. That is, our initial conditions are such that

we satisfy the quantization conditions for the Hamiltonian H0. We then numerically integrate

Hamilton’s equations of motion (2.38) under the influence of the Hamiltonian H given in equation

(2.59). As t increases so does λ(t), adiabatically switching on the influence of the non-integrable

term H1, and allowing the eigenfrequency of the system to slowly adjust from its original value.

At t = T we arrive at the eigenfrequency of the non-integrable Hamiltonian H.
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Unfortunately, the mathematical justification of adiabatic switching is complete only for

systems with one degree of freedom. For these systems, which include the pendulum discussed

above, it can be proven (for example Arnold 1978, Section 52F) that the action variable is a

strict adiabatic invariant if the characteristic frequency is never equal to 0. Qualitatively, this

is a reasonable statement. Since the switching is slow, at any instant the system is governed

by a one-dimensional, time-independent Hamiltonian. Such systems are always integrable since

they possess one constant of the motion, the Hamiltonian itself, and hence the phase-space

trajectories are restricted to a one-dimensional closed curve (that is, a one-dimensional invariant

torus). Because of this confinement, a trajectory samples all of the available phase space during

one period of motion and the system can, in a sense, average over the entire disturbance and

keep the action variable constant. The restriction to νk �= 0 is reasonable when one realizes

that if νk = 0 at any point, the period of the system is infinite. It is then impossible for the

switching to occur on a timescale which is long compared to the system’s motion and a complete

exploration of phase space cannot be made.

For systems with n > 1 degrees of freedom, the situation is less certain. A primary

concern is the existence of the invariant tori, as time-independent Hamiltonians are always

integrable only when n = 1. As we briefly discussed in §2.3, the KAM theorem concerns the

existence of these tori. A more formal, although still not rigorous, statement of the theorem is:10

If an unperturbed, integrable system is non-degenerate, then for sufficiently small perturbations,

most non-resonant invariant tori do not vanish. These invariant tori form a majority when the

perturbation is small.

The degeneracy condition is a generalization of the requirement we encountered in the

one degree of freedom case that νk �= 0. It accounts for the possibility that if the characteristic

frequencies are commensurable, a trajectory will not fully explore an invariant torus and hence
10 A precise statement may be found in Arnold (1978), Appendix 8B.



37

will not sample the available phase space. As usually stated, it is written as

det
∣∣∣∣∂2νi(I)

∂Ij

∣∣∣∣ = det
∣∣∣∣∂2H0(I)

∂IiIj

∣∣∣∣ �= 0. (2.62)

This condition is sufficient but not necessary, and the unperturbed system which we consider

in Chapter 3 violates it. For a system with two degrees of freedom, another less stringent

requirement (see Lichtenberg & Lieberman 1983, equation (3.2.12)) states that if the ratio of

the characteristic frequencies is ν2/ν1 = r/s with r and s integers, then

r2 ∂2H0

∂I2
1

− 2rs
∂2H0

∂I1∂I2
+ s2 ∂2H0

∂I2
2

�= 0 (2.63)

is sufficient to ensure the existence of invariant tori under small perturbations. Our unperturbed

state does satisfy this condition.

Although the KAM theorem assures us of the existence of invariant tori (at least for small

perturbations), during the switching we are essentially guaranteed to encounter regions where

the degeneracy condition is violated and hence no tori exist. For a system with two degrees

of freedom, the two-dimensional tori partition the three-dimensional energy shell into an inside

and an outside, effectively blocking the trajectories on destroyed tori from wandering through

all of phase space. However, if our original time-independent system has two degrees of freedom,

the time-dependent switching Hamiltonian of (2.59) is equivalent to a time-independent system

with three degrees of freedom. The complete phase space is six-dimensional with the time-

independent Hamiltonian confining the system to a five-dimensional energy shell. The invariant

tori are three-dimensional and do not partition the five-dimensional space. Therefore, when we

switch through a region violating the degeneracy condition, the trajectory is free to wander in

phase space away from our original family of invariant tori. This process is known as Arnold

diffusion and is ubiquitous in non-integrable systems with more then two degrees of freedom.

Arnold diffusion is of particular importance because it places an effective limit on the size of T

in equation (2.61). As T → ∞ a switched system remains near destroyed tori for longer periods

of time, undergoes more Arnold diffusion, and eventually wanders randomly in phase space. We

discuss our choice for T in §3.2.
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There is the final possibility that the end state to which we switch does not contain any

invariant tori. The KAM theorem merely asserts that most invariant tori exist for small pertur-

bations; as the perturbation strength grows, more and more tori are destroyed until eventually

none remain. This difficulty explains why we were forced to abandon the quantization procedure

of §2.4 and adiabatic switching cannot be completely justified when this occurs.

Although the formal justification for adiabatic switching is incomplete for the systems

under consideration, the empirical evidence for its success is strong. It has been used to in-

vestigate molecular spectra (Patterson 1985; Smith et al. 1987), the energy of nucleon systems

(Brut & Arvieu 1993), and optical cavities (Nöckel & Stone 1997), and in each case performed

well despite violating the strict constraints on its use. One justification is the possibility that

switched systems spend a sufficiently small amount of their time in regions where the procedure

is formally invalid that the final results are only slightly perturbed. Still, the strongest support

comes from its long-standing success, and it is in that spirit that we use it to explore the effects

of convective motions on solar eigenfrequencies.



Chapter 3

Implementation and Tests

Having established the underlying theory, we now turn to a more detailed description of

its application to the determination of convective effects on p-mode eigenfrequencies. In §3.1 we

examine our reference state in some detail. Section 3.2 documents the equations necessary to

implement adiabatic switching as well as the computer program we have written to solve them.

Two tests of the method and our code are discussed in §3.3 and §3.4.

3.1 The Reference State

We are interested in finding the eigenfrequencies of non-integrable systems which can be

written in the form of equation (2.45). Our reference state, corresponding to H0 in equation

(2.45) and which we will show below to be integrable and non-degenerate, is a two-dimensional,

adiabatically stratified, plane-parallel polytrope. The horizontal and vertical unit vectors are x̂

and ẑ, respectively. We also define z = 0 as the level where p = ρ = 0 and take the vertical axis

to increase inwards, opposite the radial axis in a spherical polar coordinate system. Polytropic

systems are those where the pressure p and density ρ are assumed to be related by

p

p0
=

(
ρ

ρo

)1+ 1
µ

, (3.1)

where p0 and ρ0 are constants and µ is the polytropic index, which for an adiabatically stratified

system may be written in terms of the adiabatic exponent defined in equation (2.5) as µ =

1 + 1/Γ1. For models in radiative equilibrium µ = 3, although observations suggest µ = 3.5
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is a better fit for the solar photosphere. We adopt the former value in this work. Enforcing

hydrostatic equilibrium leads to the relations

p

p0
=

(
z

z0

)µ+1

and
ρ

ρ0
=

(
z

z0

)µ

, (3.2)

where z0 is a constant. Finally, the adiabatic sound speed and cutoff frequency can be computed

from equations (2.4) and (2.28) respectively, and are given by

c2 =
gz

µ
and ω2

c =
µ(µ + 2)

4z2
c2, (3.3)

where g is the gravitational acceleration. Assuming the ideal gas law holds, equations (3.2) and

(3.3) imply that the square of the sound speed is proportional to the temperature.

For this system (compare with equation (2.35)), the Hamiltonian is

ω(x, z, kx, kz) =

√
gz

µ
(k2

x + k2
z) +

g(µ + 2)
4z

, (3.4)

where kx and kz are the wavenumbers in the horizontal and vertical directions. As this two

degree of freedom Hamiltonian is independent of time as well as the coordinate x, there are two

constants of the motion: ω and kx. These constraints are enough to ensure that this Hamiltonian

is integrable. A raypath for this system is shown in Figure 3.1. Although this geometry is plane-

parallel rather than spherically symmetric, the raypaths are obviously quite similar to those of

Figure 2.1. In this figure the upper turning point at z ≈ 0.3, an effect produced by the acoustic

cutoff frequency, is clearly visible.

We turn next to the formulation of the reference system in action-angle coordinates.

Combining the expressions for c2 and ω2
c from equation (3.3) with the dispersion relation of

equation (3.4), we may solve for kz:

k2
z =

ω2 − ω2
c

c2
− k2

x =
µω2

gz
− µ2

4z2

(
1 +

2
µ

)
− k2

x. (3.5)

In the extended periodic domain described in §2.4.2 we can integrate along a curve at constant

x and write equation (2.43) as

Iz =
1
2π

∮
kzdz =

1
π

∫ z2

z1

kzdz, (3.6)
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 Raypaths in a Polytrope
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Figure 3.1: A sample raypath in an adiabatically stratified, two-dimensional, polytropic envelope
with µ = 3. This ray corresponds to a mode with n = 1, � = 200. The top panel shows the
entire horizontally periodic cavity with length 2πR�. The large value of � produces the many
oscillations in the horizontal direction. The bottom panel shows an expanded version of the top
panel. Note the two caustic surfaces at the vertical extremes of the cavity.
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where z1 and z2 are the upper and lower turning points of the ray. With kz given by equation

(3.5), and since kx is a constant of the motion, the integral in equation (3.6) can be analytically

computed. The result is

Iz =
1
2

(
µω2

gkx
− µ

√
1 +

2
µ

)
. (3.7)

A similar integral for the horizontal action variable gives

Ix = kxR�, (3.8)

and thus the reference Hamiltonian in action-angle coordinates is

H = ω =

√√√√ 2g

µR�
Ix

[
Iz +

µ

2

(
1 +

2
µ

) 1
2
]
. (3.9)

The characteristic frequencies, derived from equation (2.42), are

νx =
∂ω

∂Ix
=

ω

2Ix
and νz =

∂ω

∂Iz
=

ω

2
[
Iz + µ

2

(
1 + 2

µ

) 1
2
] . (3.10)

Although this Hamiltonian violates the stringent degeneracy criterion of equation (2.62), it

satisfies the looser standard of equation (2.63). Hence the KAM theorem applies to this reference

Hamiltonian.

3.1.1 Reference State Results

Several properties of this polytropic reference state will be of use in later sections. Per-

haps most importantly Christensen-Dalsgaard (1980), beginning with the perturbed structure

equations (2.7)–(2.10), solved for the eigenfrequencies of the system. Their exact values are

ω2 =
2gkx

µ

(
n +

µ

2

)
for n = 1, 2, ... (3.11)

where kx = �/R� and � is an integer which we associate with the spherical harmonic degree.1

The upper and lower turning points of a ray occur when kz = 0. Using equation (3.4) and

the condition given by equation (3.11), the cavity for an eigenmode is bounded in the vertical

1 In the spherically symmetric case, kx =
p

�(� + 1)/R�.
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direction by

z1,2 =
(
n +

µ

2

) R�
�

[
1 ∓

√
1 − µ(µ + 2)

(µ + 2n)2

]
. (3.12)

The midpoint of a modal cavity is merely

zmid =
(
n +

µ

2

) R�
�

, (3.13)

which demonstrates, as noted earlier, that the depth of the cavity scales roughly as n/�.

The evolution of a ray is given by Hamilton’s equations, the general form of which are

given in equation (2.38). Specializing to a polytrope, we have

dx

dt
=

c2kx

ω
(3.14)

dz

dt
=

c2kz

ω
(3.15)

dkx

dt
= 0 (3.16)

dkz

dt
= − ω

2z
, (3.17)

which explicitly contains the invariability of kx.

We can also determine the characteristic periods of motion in each coordinate from equa-

tions (3.10) and (3.11). Doing so, we have

Tz =
2π

νz
=

4π

ω

(
n +

µ

2

)
(3.18)

and

Tx =
2π

νx
=

4π

ω
�. (3.19)

Finally, we arrive at the ratio of the horizontal and vertical periods:

Tx

Tz
=

�

n + µ
2

. (3.20)

For the high-degree modes under consideration the horizontal period is substantially longer than

the vertical. In Figure 3.1, the ratio is 80 : 1.
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3.1.2 Quantization Conditions

Since the reference state is integrable we can apply to it the quantization procedure of

§2.4. As expected, in the appropriate limit it reproduces equation (3.11). Starting with equation

(3.6), and noting that the integration path touches two caustics, equation (2.47) becomes

Iz =
1
2π

∮
kzdz =

1
π

∫ z2

z1

kzdz =
(

n − 1
2

)
for n = 1, 2, . . . (3.21)

with a final result of

ω2 =
2gkx

µ

[
n − 1

2
+

µ

2

(
1 +

2
µ

) 1
2
]

for n = 1, 2, . . . (3.22)

If we also evaluate equation (2.47) on a curve of constant z we encounter no caustics and find

that

Ix =
1
2π

∮
kxdx =

1
2π

∫ 2πR�

0

kxdx = � for � = 0, 1, . . . (3.23)

for which

kx =
�

R�
for � = 0, 1, . . . (3.24)

Although equation (3.24) is the correct horizontal quantization condition, the eigenfrequencies

of equation (3.22) are not the same as those of equation (3.11). Recall, however, that the

derivation of the quantization conditions relies on formulating the solutions as local plane waves,

an approximation which is only valid when the wavelength of the variations in the reference state

is larger than the wavelength of the solution. The limit in which we expect the two results to

agree, then, is that where the eigenfunction rapidly oscillates in the vertical direction; in other

words, when n � 1. In this limit the results agree. It should be noted that even with n = 1 and

µ = 3 the relative error in the eigenfrequencies is ≈ 3%, with agreement improving as either µ

or n increases.

In this case we were able to evaluate the action variables due to the simple form of

the sound speed and acoustic cutoff frequency given in equation (3.3). However, even when

the action variables cannot be derived analytically, the quantization procedure will still work,
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provided the system is integrable. For solar p modes the most realistic condition guaranteeing

integrability is for the sound speed and cutoff frequency to be independent of x, implying that kx

is a constant of the motion. The quantized action variables can then be evaluated numerically

to determine the eigenfrequency ω.

3.2 Adiabatic Switching

Our work in Chapter 2 demonstrated that the dispersion relation of equation (3.4) gov-

erns ray motion. However, this derivation was rather restrictive in that it ignored interesting

effects such as advective motions, magnetic fields, and rotation, all of which contribute terms

to the dispersion relation and can affect ray trajectories. Of the three, only advective motions

are necessary for describing convective structures, and so in this initial examination we ignore

magnetism and rotation. In a frame of reference moving with the ray, advective motions will

contribute a Doppler shift to the ray frequency implying that the correct dispersion relation is:

(ω − k · v)2 = k2c2 + ω2
c (3.25)

where v is the velocity field. We adopt equation (3.25) as the dispersion relation for a ray prop-

agating in a convective atmosphere in the remainder of this work. Note that for the polytropic

reference state of §3.1 equation (3.25) reduces to equation (3.4) if v = 0.

After some algebraic manipulation we can write this Hamiltonian in the form of equation

(2.59):

ω = c0

(
k2 +

µ(µ + 2)
4z2

) 1
2

+ λ(t)

[
(c − c0)

(
k2 +

µ(µ + 2)
4z2

) 1
2

+ k · v
]

, (3.26)

where c0 =
√

gz/µ is the polytropic sound speed, c and v are the sound speed and velocity

field of the convective model, and the cutoff frequency of equation (3.3) replaces ωc. The true

definition of the cutoff frequency, given in equation (2.28), depends on the density scale height

Hρ which, in a self-consistent model, will almost certainly undergo perturbations somewhat

different from those affecting the sound speed. However, this is a minor effect and we assume in
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this work that the only perturbations to the cutoff frequency arise from variations in the sound

speed in the manner shown.

For this more complicated dispersion relation, Hamilton’s equations are

dx

dt
=

c2
0kx

Ω
+ λ(t)

[
c2
0kx

Ω

(
c

c0
− 1

)
+ vx

]
(3.27)

dz

dt
=

c2
0kz

Ω
+ λ(t)

[
c2
0kz

Ω

(
c

c0
− 1

)
+ vz

]
(3.28)

dkx

dt
= −λ(t)

[
Ω
c0

∂c

∂x
+ kx

∂vx

∂x
+ kz

∂vz

∂x

]
(3.29)

dkz

dt
= − Ω

2z
− λ(t)

[
Ω

(
1
c0

∂c

∂z
− 1

2z

)
+ kx

∂vx

∂z
+ kz

∂vz

∂z

]
, (3.30)

where Ω =
√

c2
0(k2

x + k2
z) + ω2

c is the instantaneous polytropic frequency. Note that in the

polytropic limit where c = c0 and v = 0, we return to equations (3.14)–(3.17).

Although we include the function λ(t) in our equations, we have not yet addressed our

choice for the switching time T of equation (2.61). In order to ensure adiabaticity, we must

choose T to be much longer than the longest dynamical timescale associated with the system.

Heuristically, this ensures that the ray has a chance to explore the available phase space during

the switching process. The relevant timescales in this case are the time for the ray to undergo

an oscillation in the vertical and horizontal directions — taking our cue from equation (3.20),

we choose T � Tx. As we discussed in §2.5, the presence of Arnold diffusion in non-integrable

systems sets an upper constraint on the choice of T . Our numerical experiments show that

choosing T ≈ 40Tx offers a satisfactory compromise between the two constraints. This choice

agrees with that made in other implementations of adiabatic switching.

Beginning from different initial conditions should, in principle, lead to identical eigenfre-

quencies for the final state. For sufficiently complex systems our numerical experiments find a

scatter in the results, presumably arising from the combined effects of a finite switching time

and Arnold diffusion. This scatter is observed by other investigators and it has been found

empirically that better results are obtained by implementing the procedure for several randomly

distributed initial conditions and averaging the final eigenvalues (although see the mathematical

justification presented in Skodje & Cary (1988)). This averaging is particularly necessary for the
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systems of §4.3 and §4.4 where we typically find the eigenfrequencies for 20 initial conditions, a

choice which we find suitably constrains the result.

With these considerations, we have written a computer program to implement adiabatic

switching by numerically integrating equations (3.27)–(3.30). As our reference state we choose

an adiabatically stratified, plane-parallel polytrope with an index µ corresponding to the average

stratification of the photospheric model. We approximate the photospheric model itself as a grid

of sound speeds c and velocity vectors v = (vx, vz). Although our current code requires equally

spaced grids, they are not a necessity. Indeed, since the upper portion of the solar convection

zone contains many scale heights of material an adaptive grid spacing would be computationally

beneficial. The spacing of our grid elements represents, as usual, a trade-off between accuracy

and computational speed. Currently we only work with two-dimensional, plane-parallel con-

vective models with thermal and velocity structures, though there is no fundamental barrier to

extending the method to explore other structures including, for example, those with magnetic

fields or three dimensions.

To integrate equations (3.27)–(3.30), the code uses a slightly modified version of the DE

package of Shampine & Gordon (1975): a variable-order, variable-timestep Adams-Bashforth-

Moulton PECE (predict-evaluate-correct-evaluate) method. The modifications include an up-

dating of the code to FORTRAN 90 and an adaptation for horizontally periodic boundary

conditions. Fourth-order central differences are used to evaluate the partial derivatives of the

sound speed and velocity fields everywhere within the cavity, except near the top and bottom

boundaries where fourth-order forward and backward differences are used. The DE package

allows the user to specify tolerances for both the relative and absolute errors. We found that

the integration was sufficiently quick and accurate if both were set to 10−9. Integration times

for a trajectory greatly vary depending on the parameter range and the convective model. For

a n = 1, � = 200 mode propagating in the perturbation of §3.3, integration of one trajectory

takes ≈ 5 minutes to complete on a 194 MHz SGI Power Onyx. A further description of the

code’s history and structure is presented in Appendix D.
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Finally, we have scaled our variables in order to simplify the calculations. Unless otherwise

noted, all lengths are quoted in units of 109 centimeters and all times in units of 102.5 seconds.

So, the solar surface gravity is g = 2.7397, the Sun’s radius is R� = 69.599 and a canonical

5-minute oscillation has a frequency of ω/(2π) = 1.0541.

3.3 A Test of an Integrable System

To test the methodology and our code, we examine an integrable system whose eigen-

frequencies can be computed both with adiabatic switching and through EBK quantization.

Consider the simple, but not particularly realistic, case of a photosphere with no fluid motions

and a sound speed closely related to the polytropic value of equation (3.3):

c =
(

gz

µ

) 1
2

[1 + ε sin(Kz)] , (3.31)

where ε is the amplitude and K the wavenumber of the perturbation. Horizontal invariance

implies that kx is a constant of the motion and hence that the system is integrable at every

point during the switching. For this perturbation, the acoustic cutoff frequency of equation (3.3)

becomes

ωc =
(

g(µ + 2)
4z

) 1
2

[1 + ε sin(Kz)] . (3.32)

As mentioned above, the true expression for ωc, equation (2.28), directly depends on the density

scale height Hρ as well as the sound speed. Equation (3.32) is not fully self-consistent, but we

ignore the resulting discrepancies.

In order to derive the eigenfrequencies from EBK quantization, we must solve the integral

equation

∫ z2

z1

kz dz =
∫ z2

z1

[
µω2

gz[1 + ε sin(Kz)]2
− µ2

4z2

(
1 +

2
µ

)
− k2

x

] 1
2

dz, =
π

2
(3.33)

for the eigenfrequency ω where z1 and z2 are the depths at which the integrand vanishes.

This equation is only valid for the lowest (n = 1) mode; for higher modes the right-hand side

increases by the necessary factors of π. Perhaps the most straightforward method of evaluating
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this equation, and the one we use to derive the results presented below, is a bisection-like

trial-and-error method.

We compute relative frequency shifts ∆ω/ω arising from the sound speed perturbation

of equation (3.31) via adiabatic switching and EBK quantization and list the results in Table

3.1. The unperturbed frequencies, which we list for three of the modes in the first rows, are

not identical for the two methods. For adiabatic switching we use the true eigenfrequencies of

equation (3.11) while for EBK quantization we use the results of equation (3.22). The fractional

frequency shifts do agree, however. The results suggest three separate trends in the frequency

shifts:

(a) The fractional frequency shift increases as n increases.

(b) The fractional frequency shift decreases as � increases.

(c) The fractional frequency shift increases as ε increases.

In order to explain these results we turn to an analysis based on the work of Gough (1993),

wherein we expand the EBK quantization condition of equation (3.6) around the polytropic

reference state.

From equation (3.31),

c = c0 + ∆c =
(

gz

µ

) 1
2

+ ε

(
gz

µ

) 1
2

sin(Kz) (3.34)

where c0 is the polytropic sound speed. Making similar expansions to ω and ωc, the EBK

quantization condition for the perturbed state is

∫ z2

z1

kzdz =
∫ z2

z1

[
(ω0 + ∆ω)2 − (ωc,0 + ∆ωc)2

(c0 + ∆c)2
− k2

x

] 1
2

dz =
π

2
, (3.35)

where quantities with a 0 subscript correspond to the polytropic reference state. Next, assuming

that ∆ω, ∆c, and ∆ωc are small parameters, we expand and discard higher-order terms. After

rearranging, we have

∫ z2

z1

kz,0

[
1 +

2
c2
0k

2
z,0

(
ω0∆ω − ω2

0

∆c

c0
+ ω2

c

∆c

c0
− ωc∆ωc

)] 1
2

dz =
π

2
, (3.36)
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Table 3.1: Frequency shifts for a vertical sound speed perturbation. Some entries have been
repeated in order to display trends.

na �b εc Kc [∆ω/ω]AS
d [∆ω/ω]EBK

e

1f 200 3.622 3.576
2 200 4.286 4.247
1 400 5.123 5.057
1 200 0.04 0.05 1.7× 10−3 1.7× 10−3

2 200 0.04 0.05 2.4× 10−3 2.4× 10−3

3 200 0.04 0.05 3.1× 10−3 3.0× 10−3

4 200 0.04 0.05 3.8× 10−3 3.7× 10−3

1 100 0.04 0.05 3.4× 10−3 3.4× 10−3

1 200 0.04 0.05 1.7× 10−3 1.7× 10−3

1 400 0.04 0.05 8.7× 10−4 8.7× 10−4

1 800 0.04 0.05 4.4× 10−4 4.4× 10−4

1 200 0.01 0.05 4.1× 10−4 4.2× 10−4

1 200 0.02 0.05 8.4× 10−4 8.5× 10−4

1 200 0.04 0.05 1.7× 10−3 1.7× 10−3

1 200 0.08 0.05 3.4× 10−3 3.4× 10−3

1 200 0.16 0.05 6.8× 10−3 6.8× 10−3

a Vertical mode number.
b Horizontal mode number.
c Perturbation parameter from equation (3.31).
d Relative frequency shifts from adiabatic switching.
e Relative frequency shifts from EBK quantization.
f The first three rows give unperturbed frequencies for comparison purposes.
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where kz,0 is the positive root of equation (3.5) and is thus a function of only unperturbed

quantities. We expand again, ignore any perturbations to the cavity boundary (which we will see

below are small), and cancel the zeroth-order term leaving, after some algebraic simplifications,

∆ω

ω0
=

[∫ z2

z1

∆c

c0

dz

kz,0c2
0

] [∫ z2

z1

dz

kz,0c2
0

]−1

. (3.37)

Note that we can derive the same result by expanding the horizontal quantization condition

as well. In this case
∮

kzdz is simpler to evaluate than
∮

kxdx since the former includes the

constant k2
x within the integrand while the latter would include terms proportional to ∆kz .

Thus, the fractional frequency shift is the weighted average of the fractional sound speed

perturbation over the cavity. A mathematically satisfactory explanation for the trends noted

above could come from integrating equation (3.37) analytically for the perturbation given in

equation (3.34). However that approach is only possible for simple perturbations and so, in

preparation for the results of Chapter 4, we cast our arguments in a more physically motivated

form.

First, ∆c/c0 = ε sin(Kz) ≈ εKz when, as is the case for the parameters we consider,

Kz is small. Since the perturbation is positive and depends linearly on ε, it is not surprising

that the fractional frequency shifts seen in Table 3.1 are always positive and scale linearly with

the perturbation strength. The other two effects are somewhat more subtle as they arise from

changes in the depth of the acoustic cavity. From equation (3.13), we see that the location of a

cavity varies inversely with � and linearly with n + µ/2. As n and � change, a ray encounters

perturbations of different strengths which impart different frequency shifts. In this case the

perturbation strength depends linearly on depth and we expect the fractional frequency shift

to decrease inversely with � and increase as n + µ/2. These trends are reproduced by adiabatic

switching.

We conclude that for vertically dependent sound speed perturbations, the fractional fre-

quency shift depends linearly on the strength of the perturbation. The variation with the mode

parameters depends on the functional form of the perturbation. For ∆c/c0 ∝ zp, we expect the
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Figure 3.2: A raypath and the evolution of he eigenfrequency for the perturbation of §3.3.
Results for a n = 1, � = 200 mode and the sound-speed perturbation of equation (3.31) with
ε = 0.16, K = 0.05 are plotted. See the text for further discussion.
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fractional frequency shifts to vary as (n + µ/2)p and �−p.

Finally, we present the perturbed raypaths and the modification of the frequency during

adiabatic switching in Figure 3.2. The top panel shows two raypaths in a portion of the acoustic

cavity. The dotted line is a raypath in the polytropic reference state while the solid line is a

raypath in the perturbed model whose structure is given by equation (3.31). The cavity in the

perturbed model is shifted slightly toward the surface due to the increased sound speed. The

second panel shows the evolution of the ray frequency as a function of switching time. The

smooth transition occurs when switching between integrable systems and, as we will see, does

not occur for more complicated perturbations.

3.4 Doppler Shifts

As a final test before turning to non-integrable systems, we consider the effect of a

constant horizontal flow on the eigenfrequencies. From equation (3.29) we see that a sufficient

condition for kx to be constant (thus maintaining integrability) is ∂c/∂x = ∂vx/∂x = ∂vz/∂x =

0. In particular this occurs for the stringent criteria that vx is a non-zero constant, vz = 0,

and c = c0. Other selections also maintain integrability, but this choice of parameters leads to

results which are easily interpreted.

Table 3.2 shows the frequency shifts from EBK quantization as well as those from adia-

batic switching. We see that:

(a) The fractional frequency shift decreases as n increases.

(b) The fractional frequency shift increases as � increases.

(c) The fractional frequency shift increases as vx increases.

Notice that the shifts for � and n are of the opposite sense than for the sound speed perturbation

of §3.3.

To explain these trends we can expand the EBK quantization condition as we did in the

previous section. In this case, however, the simplicity of the perturbation (a constant vx acting
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Table 3.2: Frequency shifts for a horizontal velocity perturbation. Some entries have been
repeated in order to display trends.

na �b vx
c [∆ω/ω]AS

d [∆ω/ω]EBK
e

1f 200 3.622 3.576
2 200 4.286 4.247
1 400 5.123 5.057
1 200 0.01 7.9× 10−3 7.9× 10−3

2 200 0.01 6.7× 10−3 6.7× 10−3

3 200 0.01 5.9× 10−3 5.9× 10−3

4 200 0.01 5.3× 10−3 5.3× 10−3

1 100 0.01 5.6× 10−3 5.6× 10−3

1 200 0.01 7.9× 10−3 7.9× 10−3

1 400 0.01 1.1× 10−2 1.1× 10−2

1 800 0.01 1.6× 10−2 1.6× 10−2

1 200 0.005 4.0× 10−3 4.0× 10−3

1 200 0.01 7.9× 10−3 7.9× 10−3

1 200 0.02 1.6× 10−2 1.6× 10−2

1 200 0.04 3.2× 10−2 3.2× 10−2

1 200 0.08 6.3× 10−2 6.3× 10−2

a Vertical mode number.
b Horizontal mode number.
c Horizontal velocity.
d Relative frequency shifts from adiabatic switching.
e Relative frequency shifts from EBK quantization.
f The first three rows give unperturbed frequencies for comparison purposes.
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on a constant kx) allows us to write down the correct result. The fractional frequency shift is

give by a Doppler shift:

∆ω

ω
=

kxvx

ω
= kxvx

[
2gkx

µ

(
n +

µ

2

)]− 1
2

, (3.38)

where we have used equation (3.11) to substitute for ω. Since kx ∝ �, the dependencies noted

above are correctly explained by equation (3.38).

In Figure 3.3 the top panel shows two raypaths in a small portion of the acoustic cavity.

The dotted line is a raypath in a polytropic atmosphere while the solid line is a raypath in the

model including the horizontal flow. The effect of the flow in advancing the raypath motion

is clearly visible. The second panel shows the evolution of the ray frequency as a function of

switching time. Again, the shift between integrable systems is quite smooth.
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Figure 3.3: A raypath and the evolution of the eigenfrequency for the perturbation of §3.4.
Results for a n = 1, � = 200 mode and a Doppler shift perturbation with vx = 0.08. See the
text for further discussion.



Chapter 4

Convective Structures

The sound speed and velocity fields of the solar convection zone do not form an integrable

system. Within this chapter we introduce several models of convective structures containing non-

integrable perturbations and examine their effects on p-mode eigenfrequencies. Although the

model of §4.1 contains only velocity perturbations, its simple structure provides insight into the

behavior of more complex convective structures. In §4.2 we examine a two-dimensional Rayleigh-

Bénard convective model which contains both sound speed and velocity perturbations. More

realistic convective simulations appear in §4.3 where we treat a model of a cool, compressible

plume and §4.4 where we consider a two-dimensional slice of a three-dimensional simulation of

compressible convection.

4.1 Cell-like Velocity Perturbation

As a first attempt we choose to model convective cells as velocity perturbations super-

imposed on a polytropic temperature stratification. Our velocity field is derived from a stream

function

ψ = ε sin
(

2πx

L

)
sin

(
2πz

L

)
, (4.1)

where L = 2πR� is the horizontal length of the cavity and ε is the perturbation strength.

Although this parameterization unphysically assumes an incompressible fluid, we are more con-

cerned with the physical insight we can derive from this model than its self-consistency. With
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the normal stream function relations (v = ∇ × ψŷ where ŷ is a unit vector perpendicular to

our other coordinates), equation (4.1) gives the velocity field

vx =
ε

R�
sin

(
x

R�

)
cos

(
z

R�

)
and vz = − ε

R�
cos

(
x

R�

)
sin

(
z

R�

)
. (4.2)

We plot streamlines for this flow in Figure 4.1.

Given this perturbation, we use adiabatic switching to investigate the dependence of

eigenfrequencies on the parameters ε, n, and �. Our results are shown in Table 4.1 and suggest

the following trends:

(a) The fractional frequency shift decreases as n increases.

(b) The fractional frequency shift increases as � increases.

(c) The fractional frequency shift increases as ε increases.

Although the sense of these trends are the same as for the Doppler shift of §3.4, the functional

form of the shifts is different. Notably, the frequency shift does not linearly depend on ε; instead,

it is quadratic in ε.

To explain these relations, we turn, with an important caveat, to the mathematical

framework developed in §3.3. We are no longer working with an integrable system and hence

the quantization conditions of equation (2.47) are not well defined. For example, consider the

vertical quantization condition for the lowest mode:

∮
kzdz =

∮ [
(ω − k · v)2 − ω2

c

c2
− k2

x

] 1
2

dz = π. (4.3)

In earlier applications the integrand depended solely on z and the integral was performed at an

arbitrary value of x. Now kx depends on both x and z and is no longer a constant of the motion;

hence, the integral depends on the x at which it is evaluated. The condition is ill-defined, but

the KAM theorem and the empirical success of adiabatic switching suggest that the quantization

conditions are accurate for small perturbations. In this spirit, we average equation (4.3) over

the horizontal dimension while acknowledging that we should use the results for guidance, and

not absolute statements, concerning the eigenfrequency shifts.
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Figure 4.1: Streamlines for the velocity perturbation of §4.1. The two dashed lines near the top
of the plot delineate the resonant cavity of the n = 1, � = 200 polytropic mode shown in Figure
3.1. The WKB criterion is clearly met in both directions. In order to resolve the cavity, the
closure of the streamlines at lower depths is not shown.



60

Table 4.1: Frequency shifts for convective cells composed of velocity perturbations. Some entries
have been repeated in order to display trends.

na �b εc [∆ω/ω]d

1 200 0.04 −1.3× 10−3

2 200 0.04 −9.0× 10−4

3 200 0.04 −7.0× 10−4

4 200 0.04 −5.7× 10−4

5 200 0.04 −4.8× 10−4

1 100 0.04 −6.3× 10−4

1 200 0.04 −1.3× 10−3

1 300 0.04 −1.9× 10−3

1 400 0.04 −2.5× 10−3

1 500 0.04 −3.2× 10−3

1 800 0.04 −5.1× 10−3

1 200 0.01 −7.9× 10−5

1 200 0.02 −3.2× 10−4

1 200 0.04 −1.3× 10−3

1 200 0.05 −2.0× 10−3

1 200 0.08 −5.1× 10−3

a Vertical mode number.
b Horizontal mode number.
c Perturbation strength.
d Relative frequency shifts from adiabatic switching.
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Our system contains no perturbation to the sound speed, and thus none to the acoustic

cutoff frequency, but now we must include both the Doppler term of equation (3.25) as well as

a perturbation to kx. So,

∮
kzdz =

∮ [
(ω0 + ∆ω − k0 · v)2 − ω2

c,0

c2
0

− (kx,0 + ∆kx)2
] 1

2

dz = π, (4.4)

where quantities with a 0 subscript correspond to the polytropic reference state and are thus

independent of x. Averaging in the horizontal direction, treating k0 · v as a small parameter,

and performing the same expansion as in §3.3, yields

∆ω

ω0
=

1
L

∫
dx

[∮
k0 · v

ω0

dz

kz,0c2
0

+
∮

kx,0

kz,0
∆kxdz

] [
1
L

∫
dx

∮
dz

kz,0c2
0

]−1

, (4.5)

where L is the horizontal extent of the domain. From equations (3.14)–(3.17), Hamilton’s

equations for the unperturbed state, we can rewrite the final term in the first set of brackets as

∮
kx,0

kz,0
∆kxdz =

∮
∆kxdx. (4.6)

From the quantization conditions this term is identically zero, leaving as a final result

∆ω

ω0
=

[∫
dx

∮
k0 · v

ω0

dz

kz,0c2
0

][∫
dx

∮
dz

kz,0c2
0

]−1

(4.7)

which should be compared to equations (3.37) and (3.38). Again, we find that the frequency

shift depends on the weighted average of the perturbation over the cavity. As an aside, we note

that a similar treatment beginning with the horizontal quantization condition yields

∆ω

ω0
=

[∮
dz

∫
k0 · v

ω0

dx

kx,0c2
0

] [∮
dz

∫
dx

kx,0c2
0

]−1

. (4.8)

As we now show, these quantization conditions predict that the velocity perturbation of

equation (4.2) produces no first-order frequency shift. The sole x-dependence in the integrands

of equation (4.7) arises within v. This dependence is sinusoidal for the perturbations we are

considering and hence the horizontal integral of equation (4.7) is identically zero. Somewhat

more generally, we see that this result holds for any convective model where, at every depth,

the velocity components satisfy

∫ L

0

vxdx =
∫ L

0

vzdx = 0. (4.9)
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In such a flow, a ray whose frequency is boosted at a given point suffers a frequency retardation

at a complementary point elsewhere in the domain. To first order, there is no net effect.

Only a small subset of flows exhibit the symmetry necessary for equation (4.9) to be true.

However, equation (4.7) allows us to make a much more general statement about the effects of

flows on eigenfrequencies. The shift produced by the vertical component of a flow is

∆ω

ω0
=

[∫
dx

∮
vz

ω0

1
c2
0

dz

][∫
dx

∮
dz

kz,0c2
0

]−1

, (4.10)

where the dependence on kz,0 has been cancelled in the first term. This cancellation is vital as

the path integral in the numerator is now

∮
vz

ω0

1
c2
0

dz =
∫ z2

z1

vz

ω0

1
c2
0

dz +
∫ z1

z2

vz

ω0

1
c2
0

dz = 0, (4.11)

where z1 and z2 are the vertical boundaries of the acoustic cavity. Thus, the vertical component

of any advective flow produces no net first-order effect. This is not the case for horizontal flows

which, as we saw in §3.4, can produce first-order shifts.

The asymmetry arises from the observation that rays are trapped in the vertical direction

but not in the horizontal.1 Since a ray never reverses its horizontal motion, the horizontal

wavenumber kx of any ray maintains the same sign along its trajectory. Conversely, the vertical

wavenumber kz changes sign at each caustic. Because of this asymmetry, the expressions
∮

dx

and
∮

dz have very different mathematical meanings:

∮
dx =

∫ L

0

dx = L while
∮

dz = 0. (4.12)

For a more physical explanation, consider that during an ideal switching (of infinite extent in

time) a ray comes arbitrarily close to any point in the cavity. The horizontal velocity field at a

given point interacts with rays with only one sign of kx and imparts a net frequency shift. At

the same point the vertical flow will encounter two manifestations of every ray, differing only in

the sign, but not the magnitude, of kz . To first order the effect of the vertical flow on these two
1 It is possible to construct flows where a ray is trapped in the horizontal direction as well, however they do

not correspond with reasonable solar flows and we do not consider them here.
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rays will be equal and opposite, leaving no net frequency shift.2

For the flow under consideration, the horizontal contribution to the frequency shift is

zero, to first order, from the argument summarized by equation (4.9). The effects of vertical

flows are negated, to first-order, by either equation (4.9) or (4.11). Regardless of the causal

agent, we expect a non-zero second-order frequency shift, as can be shown by the following

argument, originally due to Brown (1984).

A region containing anti-symmetric flows produces no first-order frequency shift. How-

ever, a ray will take more time to traverse a region when traveling against the flow (k · v < 0)

than to cross a region where the ray and the flow are co-directional (k · v > 0). The difference

in crossing times between the two regions is of order k · v/ω, while the frequency shift in the

counter-propagating region is −k · v/ω. The result is a fractional frequency shift

∆ω

ω
∝ −

(
k0 · v

ω

)2

. (4.13)

With this result we can anticipate the frequency shifts from a domain including the flow

of equation (4.2). First, we expect to observe a fractional frequency shift proportional to ε2.

From equations (3.24) and (3.11) we note that k is proportional to � while ω2 is proportional

to � and to (n + µ/2). Hence, we also expect a fractional frequency shift which is proportional

to �, and inversely dependent on n. As we see in Table 4.1, adiabatic switching confirms these

expectations.

Although we have worked solely with advective flows in this section, our results can be

extended to sound speed perturbations. The shift from a perturbation with both horizontal and

vertical dependencies can be written as

∆ω

ω0
=

[∫
dx

∮
∆c

c0

dz

kz,0c2
0

] [∫
dx

∮
dz

kz,0c2
0

]−1

, (4.14)

which reduces to equation (3.37) in the appropriate limit. Thus, any antisymmetric perturbation

2 In earlier calculations involving integrals over z, such as equation (3.6), the positive and negative branches
of kz prevent the cancellation of the integral.
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to the sound speed satisfying

∫
∆c dx = 0 (4.15)

at every depth produces no first-order frequency shift. We saw in §3.3 that first-order shifts from

sound speed perturbations are not impossible. However, if symmetry dictates that the frequency

shift vanishes to first order, a second-order downward shift will arise for a reason analogous to

that described above: rays propagate faster in, and hence spend less time traversing, regions

with higher sound speeds.

In the top panel of Figure 4.2 we show a sample raypath after the system has undergone

adiabatic switching. The large perturbation to the acoustic cavity occurs despite the small

change in the eigenfrequency (compare this to the behavior in Figure 3.2 where the opposite is

true). Our EBK analysis of the frequency shifts does assume that perturbations to the acoustic

cavity have negligible effects. In this case, the horizontal average of the perturbation to the

cavity is zero and we ignore it in the calculations leading to equation (4.7). Presumably there

are higher-order effects which we do not consider.

The bottom panel of Figure 4.2 shows the evolution of the ray frequency as a function of

switching time. The large oscillations are a characteristic of adiabatic switching in non-integrable

systems.

4.2 Rayleigh-Bénard Boussinesq Convection

While the cell studied in the previous section was helpful in shaping our intuition, it

was unrealistic in that it did not include perturbations to the sound speed. In this section we

explore a model which includes horizontal and vertical variations in both the sound speed and

the velocities. Our reference state remains the adiabatically stratified, plane-parallel polytrope

described above. We take our parameterization for the convective state from Shirer (1987). It

is a two-dimensional, nonlinear model of steady Rayleigh-Bénard convection derived from the

Boussinesq fluid equations. We consider the solution with the lowest mode numbers, two cells
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Figure 4.2: A raypath and the evolution of the eigenfrequency for the perturbation of §4.1.
Results for a n = 1, � = 200 mode and the velocity perturbation of equation (4.2) with ε = 0.05.
See the text for further discussion.
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in the horizontal direction and one in the vertical.

After converting Shirer’s parameterization to our notation, the sound speed is

c2 =
gz

µ
+ α1 cos

(
2πx

L

)
sin

[
π

(
1 − z

zT

)]
− α2 sin

[
2π

(
1 − z

zT

)]
, (4.16)

where L = 2πR� is the length of the domain, zT is the vertical extent of the cell, and α1 and

α2 are functions of the product of the thermal diffusivity and the kinematic viscosity, κν. The

velocity perturbations are given by

vx = γ1 sin
(

2πx

L

)
cos

[
π

(
1 − z

zT

)]
and vz = γ2 cos

(
2πx

L

)
sin

[
π

(
1− z

zT

)]
,

(4.17)

where γ1 and γ2 are functions of κ and the product κν. The nonlinear nature of the convection

arises from the final term in equation (4.16) which is independent of x. For a linear cell, the

perturbation would oscillate in x. Figure 4.3 shows streamlines for the velocity profile given by

equation (4.17) as well as the isotherms for the temperature perturbation given by the final two

terms of equation (4.16). The standard picture of rising warmer fluid and sinking cooler fluid is

seen to hold.

The coefficients of equations (4.16) and (4.17) are

α1 =
gzT

µ

√
8

π Ra
a2 + 1

a
(Ra − Rac)

1
2 (4.18)

where

a =
2zT

L
, Ra =

gz3
T

κνπ4
, and Rac =

(a2 + 1)3

a2
(4.19)

are twice the aspect ratio of the convective domain, the Rayleigh number, and the critical

Rayleigh number for the onset of convection, respectively. The parameter α2 is defined as

α2 =
gzT

µ

1
π Ra

(Ra − Rac) (4.20)

We also have

γ1 =
π
√

8
zT (a2 + 1)

κ (Ra − Rac)
1
2 (4.21)
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 Streamfunction for velocity perturbation

0 100 200 300 400
 x (Scaled Units)

5

4

3

2

1

0

 z
 (

S
ca

le
d 

U
ni

ts
)

Isotherms of temperature perturbation
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Figure 4.3: Streamlines and isotherms for the convective perturbation of §4.2. The top panel
shows streamlines and the bottom panel displays isotherms. Both connect at lower depths. The
boundaries of the polytropic cavity of Figure 3.1 are shown as dashed lines.
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and

γ2 =
aπ

√
8

zT (a2 + 1)
κ (Ra − Rac)

1
2 . (4.22)

From equations (4.18)–(4.22) we can see that a critical parameter governing the size of the

perturbations is

(Ra − Rac) =
[
gz3

T

π4

1
κν

− (a2 + 1)3

a2

]
. (4.23)

To continue, we must specify three free parameters which we take to be zT , κ, and

(Ra − Rac). Mindful of the constraint that the lengthscales of the fluid motions should be

much larger than the lengthscales of the oscillation, we work with the largest possible convective

cells, ones the approximate depth of the solar convection zone, and take zT = 0.3R�. These

convective motions, then, have similar dimensions to solar giant cells.

Estimates of κ and (Ra − Rac) in the solar convection zone vary widely over many

orders of magnitude. Noting this uncertainty, we choose these parameters so that the size of

the perturbations when compared to the ambient sound speed is small. In justification, we note

that the velocities of giant cells in the solar convection zone are, if they exist at all, much smaller

than even those of supergranules and hence significantly subsonic. Since we are exploring the

parameter regime near the boundary of convective instability, small changes in the parameters

will have large effects on the size of the perturbations.

From the discussions in §3.3 and §4.1 we can draw some general conclusions about the

dependency of the frequency shifts on the parameters. We first consider the velocity perturba-

tions. The sinusoidal structure exhibited in equation (4.17) leads us to expect that the advective

perturbations will generate a second-order frequency shift. Since equations (4.21) and (4.22)

demonstrate that the magnitude of the vertical velocity is a ≈ 0.1 times the horizontal velocity,

we may safely neglect any shift arising from the vertical component. From the arguments of

§4.1, the fractional frequency shift must be of the form

∆ω

ω
∼ −

(
kxvx

ω

)2

. (4.24)
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Equation (3.11) allows us to write the dependency in terms of the mode parameters, yielding

∆ω

ω
∼ − k2

x

ω2
κ2 (Ra − Rac) ∼ − �

n + µ/2
κ2 (Ra − Rac) . (4.25)

Again, as in §4.1, the fractional frequency shift depends quadratically on the strength of the

perturbation (κ (Ra − Rac)
1
2 ), linearly on �, and inversely on n.

The frequency shift arising from the sound speed perturbation is somewhat more com-

plicated as it combines a strong perturbation whose periodic horizontal structure ensures its

effects vanish to first order — the second term of equation (4.16) — and a weak perturbation

which will enter at first order — the third term of that equation. After expanding equation

(4.16) we find that the shifts produced by the two terms are of equal magnitude and produce a

net downshift of

∆ω

ω
∼ −Ra − Rac

Ra
, (4.26)

independent of � and n. A further expansion shows that there is an additional downshift of

lesser magnitude given by

∆ω

ω
∼ −z2 Ra − Rac

Ra
∼ − (n + µ/2)2

�2

Ra − Rac

Ra
, (4.27)

where we have used equation (3.13) to write the dependence of the depth of the acoustic cavity

on the mode parameters. Equations (4.25) and (4.26) exhibit different dependencies on the

strength of the convective perturbation. Hence, by varying κ and keeping Ra − Rac constant,

we can choose whether the sound speed or the velocity perturbations make the predominant

contribution to the frequency shift.

We first choose parameters which make the horizontal velocity perturbation the dominant

term and use adiabatic switching to find the eigenfrequencies. The results are shown in Table

4.2. As expected, we see a linear dependence on � and an inverse dependence on n. Also, as

expected from equation (4.25), there is a linear dependence on (Ra − Rac) and a quadratic

dependence on κ.
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Table 4.2: Frequency shifts for convection cells with dominant horizontal velocity perturbations.
Some entries have been repeated in order to display trends.

na �b κc (Ra − Rac)d [∆ω/ω]e

1 200 1 0.1 −1.5× 10−2

2 200 1 0.1 −1.1× 10−2

3 200 1 0.1 −8.7× 10−3

4 200 1 0.1 −7.3× 10−3

5 200 1 0.1 −6.2× 10−3

1 100 1 0.1 −7.9× 10−3

1 200 1 0.1 −1.5× 10−2

1 300 1 0.1 −2.2× 10−2

1 400 1 0.1 −3.1× 10−2

1 500 1 0.1 −3.8× 10−2

1 200 1 0.03 −4.9× 10−3

1 200 1 0.1 −1.5× 10−2

1 200 1 0.3 −4.7× 10−2

1 200 0.5 0.1 −4.4× 10−3

1 200 1 0.1 −1.5× 10−2

1 200 2 0.1 −6.2× 10−2

a Vertical mode number.
b Horizontal mode number.
c Thermal diffusivity. Scales strength of convective perturbation.
d See equation (4.23). Scales strength of convective perturbation.
e Relative frequency shifts from adiabatic switching.
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As a second example we consider parameters such that the sound speed and velocity

perturbations impart approximately equal frequency shifts. The results are shown in Table 4.3.

From our analysis above, we expect the fractional frequency shifts to behave as a combination

of the dependencies in equations (4.25), (4.26), and (4.27). This is the case, as is most strikingly

seen in the dependence on � in which the fractional frequency shift reaches a minimum value. Two

effects contribute to this behavior. The velocity perturbation, from equation (4.25), produces

shifts proportional to � and the sound speed perturbation, see equation (4.27), generates shifts

proportional to �−2. The location of the minimum, at � ≈ 250, arises from our particular

choices for κ and (Ra − Rac) and can be roughly predicted when more careful track is kept of

the constants in equations (4.25) and (4.27). A similar dependence occurs for n, although in

this case the minimum occurs at n ≈ 1.5 and is hence not apparent in Table 4.3.

Finally, in the top panel of Figure 4.4 we show a sample raypath after the system has

undergone adiabatic switching. The acoustic cavity has again undergone a significant perturba-

tion which we have ignored in our analysis. The bottom panel shows the evolution of the ray

frequency as a function of switching time.

4.3 Compressible Plume

Solar convection only superficially resembles the Rayleigh-Bénard model of the previous

section. Rather than symmetric velocity structures, rapid changes in the pressure and density

scale heights near the solar photosphere produce convective structures with broad, gentle upflows

and narrow, fast downflows. To gain some insight into the effects of such structures, we consider

the interactions of p modes with a model of a cool plume descending into an adiabatically

stratified compressible envelope (Rast 1998). In the Sun such plumes are believed to be generic

features found at the edges of convective cells of all scales.

Pictured in Figure 4.5 are the sound-speed perturbations for the simulation we choose

as our convective model. The vertical velocities have nearly an identical structure and the

horizontal velocities are significant only at the bottom of the plume. Although we work with
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Table 4.3: Frequency shifts for convection cells with equal strength horizontal velocity and sound
speed perturbations. Some entries have been repeated in order to display trends.

na �b κc (Ra − Rac)d [∆ω/ω]e

1 200 0.03 0.1 −8.94× 10−4

2 200 0.03 0.1 −9.06× 10−4

3 200 0.03 0.1 −9.25× 10−4

4 200 0.03 0.1 −9.48× 10−4

5 200 0.03 0.1 −9.74× 10−3

1 100 0.03 0.1 −9.24× 10−4

1 200 0.03 0.1 −8.94× 10−4

1 300 0.03 0.1 −8.94× 10−4

1 400 0.03 0.1 −9.00× 10−4

1 500 0.03 0.1 −9.06× 10−4

1 600 0.03 0.1 −9.10× 10−4

1 700 0.03 0.1 −9.15× 10−4

1 800 0.03 0.1 −9.21× 10−4

1 900 0.03 0.1 −9.26× 10−4

1 1000 0.03 0.1 −9.30× 10−4

a Vertical mode number.
b Horizontal mode number.
c Thermal diffusivity. Scales strength of convective perturbation.
d See equation (4.23). Scales strength of convective perturbation.
e Relative frequency shifts from adiabatic switching.



73

 Rayleigh-Benard Raypath

0 100 200 300 400
 x (Scaled Units)

2.0

1.5

1.0

0.5

0.0

 z
 (

S
ca

le
d 

U
ni

ts
)

 Frequency During Shift

0.0 0.2 0.4 0.6 0.8 1.0
Switching Time (t/T)

3.6180

3.6190

3.6200

3.6210

3.6220

3.6230

3.6240

ω
 (

S
ca

le
d 

U
ni

ts
)

Figure 4.4: A raypath and the evolution of the eigenfrequency for the perturbation of §4.2.
Results for a n = 1, � = 200 mode with κ = 0.05, (Ra − Rac) = 0.1. See the text for further
discussion.
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a snapshot of a time-dependent structure, by the time this configuration has been reached the

neck of the plume has nearly reached a steady-state. The majority of the interaction between

the ray and the plume is with this feature rather than the head which is still rapidly evolving

on oscillatory timescales.

Our model is one realization of Rast’s Case B1 at a time, in the non-dimensional units of

his paper, of 112.4. Rast’s Table 1 fully documents the model parameters, but we note that for

this simulation the Reynolds number is 100 and the Prandtl number is 0.1. The calculation was

performed on a stretched grid of 1024×1024 data points covering a 60×60 domain where the

units of length are measured in terms of the full width at half maximum of the applied Gaussian

temperature perturbation at the top of the atmosphere. We interpolate onto a evenly spaced

grid for our use. The polytropic index is µ = 3/2 and the acceleration of gravity is g = 5/8, to

be compared to the values of 3 and 2.7397, respectively, which were used in earlier sections.

The top boundary of Rast’s model occurs at a temperature of T = 1 where a cold Gaussian

temperature perturbation with a 30% amplitude is maintained. This level corresponds to z = 4

for a polytrope with the above stratification and zero boundary conditions. To complete the

atmosphere, we attach to the top of the simulation a µ = 3/2 polytrope extending from z = 0

to z = 4. This addition generates discontinuities in the sound speed and horizontal velocity

perturbations at z = 4, but they are primarily confined to a small region near the plume center.

In order to investigate the effects of the plume strength on the eigenfrequencies, we isolate

the perturbations (both velocity and sound speed) by subtracting off the ambient polytropic

stratification. After scaling all of the perturbations by a constant factor we then add them back

to the ambient stratification.

Our choice of mode parameters is somewhat limited by the characteristics of the model.

The plume extends vertically from z = 4 to z ≈ 30 and we must choose n and � so that the

acoustic cavity encompasses these depths. Within this constraint we must also choose an � large

enough to satisfy the WKB approximation. The combination of these constraints is restrictive

and dictates our choice of n = 10 and � = 10.
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Figure 4.5: Sound speed perturbations for the plume of §4.3. Cooler regions have slower sound
speeds and are darker in color. The background stratification has been subtracted and the entire
60×60 computational domain is shown.
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Unfortunately the narrow width of the plume implies that � = 10 only marginally satisfies

the WKB requirement. Although we are strictly violating one of the approximations we made

in changing to a ray description, we suggest that employing the method of adiabatic switching

allows us, in a loose sense, to do so. Recall that we made the WKB approximation in order to

pass from a modal to a ray description of the eigenmodes. Since a mode is a three-dimensional

object while a ray is merely one-dimensional, the WKB approximation is necessary to ensure

that a given ray fully samples the background state. If the background varies on lengthscales

which are small compared to the wavelength of the ray, those features which are not directly

in the path of the ray will not be included in the determination of the mode eigenfrequency.

However, when we employ adiabatic switching a single ray passes through a cavity multiple

times. With an infinite switching time a ray will sample every point in the cavity; for the finite

switching times we consider the ray will still explore structures on much smaller wavelengths

than is possible in any one traversal of the cavity. In essence, adiabatic switching allows the ray

to construct a detailed picture of the entire cavity and adjust its eigenfrequency accordingly.

Armed with this heuristic argument, we apply adiabatic switching despite the formally invalid

nature of the WKB approximation.

Before turning to the eigenfrequency shifts, in the top panel of Figure 4.6 we show a

sample raypath in the atmosphere including the plume. The plume itself is not shown, but is

centered at x = 30 and extends from z = 4 through the bottom of the displayed region. As we

can see, the raypaths are quite different than in previous examples. Unlike Figures 4.2 and 4.4,

the raypaths do not possess well defined caustics. Moreover, in several locations there appear

to be more than two rays passing through a single point.

What causes this behavior? Recall the KAM theorem, which states that for sufficiently

large perturbations a non-integrable system will contain no invariant tori. When a trajectory

passes through a destroyed torus, it is left free to wander in phase space. We believe that the

perturbation of the plume is strong enough for that to be the case here. Since the ray is no longer

confined to an acoustic cavity, given enough time it will eventually diffuse onto a path which
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departs the computational domain. In the bottom panel of Figure 4.6 we show the evolution of

the frequency during the switching process. The jagged transition is also much different than

we have seen for earlier examples and is also a consequence of the large perturbation provided

by the plume.

In Figure 4.7 we plot the dependence of the fractional frequency shift on the plume

strength which was adjusted by the scaling process discussed above. The error bars are a

direct result of the diffusion of the ray in phase space. Since the final state does not reside

on an invariant torus, the ray undergoes Arnold diffusion during the switching process. When

not being switched, the eigenfrequency is a constant of the motion, however during adiabatic

switching the ray frequency is not constant, and can also drift in phase space. As we discussed

in §3.2, we deal with this possibility in our computer code by beginning with several randomly

chosen initial conditions and averaging the final eigenfrequencies. The error bars are merely

the standard deviations of the mean. Increasing the strength of the plume increases the rate of

diffusion, thus explaining the trend in the size of the error bars. Presumably such errors also

occur for the non-integrable systems of §4.1 and §4.2, however, we neglected them in those cases

because they are much smaller than our quoted results. We also note that the probability that

a ray will diffuse out of the computational domain during the switching process increases as

the perturbation strength increases. If this occurs, we ignore that ray and proceed to the next

initial condition. Hence for stronger plumes we must sample more initial conditions to achieve

the same number of completed switchings.

In Figure 4.8 we plot the perturbed quantities from a horizontal slice of the plume.

This cut is taken within the acoustic cavity of the unperturbed ray and slices at other depths

within the cavity are similar, differing primarily in amplitude. As can be seen, the horizontal

velocity profile possesses the symmetry necessary to make the associated frequency shifts cancel

to first order. From our earlier arguments, we expect the vertical velocity, despite its significant

horizontal integral, to also produce no first-order shift. Both velocity perturbations will produce

second-order downshifts. Since the horizontal integral of the sound-speed perturbation is non-
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Figure 4.6: A raypath and the evolution of the eigenfrequency for the perturbation of §4.3.
Results are for a n = 10, � = 10 mode. The plume is 0.3 times its original strength and is
centered on x = 30 in the top panel. See the text for further discussion.
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Figure 4.7: Fractional frequency shift versus strength of the plume of §4.3. Results are for an
n = 10, � = 10 mode. The source and significance of the error bars is discussed in the text.
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Figure 4.8: Horizontal slices of the plume of §4.3. The slice is at z = 10 and the three plots
show the sound speed, horizontal velocity and vertical velocity perturbations, respectively.
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zero, we expect it to contribute a first-order frequency downshift. For the parameters we are

considering, the first-order fractional sound-speed perturbation is larger than the second-order

vertical velocity perturbation and so we expect the former to be the dominant term. Since the

perturbation is negative, we expect any ray interacting with this plume to undergo a first-order

shift which scales with the strength of the plume and is always downward. This expectation is

mirrored in Figure 4.7.

4.4 Turbulent Compressible Convection

For our final example, we consider a two-dimensional slice of a snapshot of a time-

dependent, three-dimensional model of turbulent compressible convection due to Brummell et al.

(1996). It incorporates all of the features we have explored in earlier sections and is the closest

approximation to solar convection that we consider. The perturbations for this slice are shown

in Figure 4.9. Plumes are seen at either end of the horizontally periodic domain while the center

contains a gentler region of upflow.

The complete parameters for this model are listed in Table 1 of Brummell et al. (1996) as

case R0,3 although we note that the Prandtl number is 0.1 and the root-mean-square Reynolds

number is 932. The computational domain is a plane-parallel box of 192×192×130 equally

spaced grid points covering an aspect ratio of 4:4:1 in the horizontal and vertical coordinates,

respectively. To set the length scale, the depth of the box is taken to be unity. The initial

stratification corresponds to a polytropic index of µ = 1 and an adiabatic exponent of Γ1 = 5/3,

which here is not equal to 1 + 1/µ. The acceleration of gravity is g = 20. As was the case for

the plume, the top boundary of the model lies at a fixed temperature of T = 1 and supports no

vertical velocity perturbations.

Although the initial stratification of the simulation corresponds to a µ = 1 polytrope,

convective motions alter the temperature structure so that in this realization it is better charac-

terized by µ = 1.42. We use the latter value for the polytrope we attach to the top of the domain
3 A lower resolution version of the same simulation appears as Case 3 in Cattaneo et al. (1991).
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Figure 4.9: Sound speed and velocity perturbations of the convective model of §4.4. From top
to bottom, the sound speed, horizontal, and vertical velocity perturbations in a slice at y = 0.26
in the dimensions of the model. Light colors represent hotter material and stronger flows. The
true aspect ratio is 4:1.
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in order to extend it to z = 0. Since the temperature stratification is much larger in this model

than for the plume of §4.3, the addition is much smaller in extent, covering 0 < z < 0.12. Unlike

the plume, the top boundary for this model has a constant temperature and hence there are no

discontinuities in the sound speed or vertical velocity perturbations. The horizontal velocity is

discontinuous at z = 0.12, but the effects are small. Finally, just as for the plume, we isolate,

scale, and return the perturbations to the background stratification to test the dependence of

the frequency shift on the amplitude of the motions.

The strong temperature stratification allows us be somewhat more lenient in choosing

the mode parameters than we were in §4.3. Due to the the highly turbulent nature of the

convection we have almost no hope of strictly satisfying the WKB approximation for all scales

of the convective structures. However, the argument made in §4.3 suggests that adiabatic

switching will allow us to sample smaller structures than might be expected. As a compromise

between sampling a significant portion of the cavity and satisfying the WKB condition, we work

with an n = 1, � = 10 mode. A sample raypath and the evolution of the switched frequency are

shown in Figure 4.10. Qualitatively, the results are similar to those presented in §4.3 leading us

to conclude that the perturbation is strong enough to destroy all of the invariant tori.

We plot horizontal slices of the plume showing the perturbed quantities at a depth of

z = 0.3 in Figure 4.11. Unlike the plume of §4.3, slices at other depths differ both in amplitude

and in structure from those shown. However, we can still make some general statements about

the expected frequency shifts. The horizontal velocity perturbation always has a nearly zero

horizontal integral implying that it contributes a second-order downshift. For reasons we have

previously discussed (see §4.1), the vertical velocity perturbation, regardless of form, will also

contribute a second-order downshift. The form of the sound speed perturbation varies from

depth to depth and we expect that over the entire convective domain it will average to zero.

However, for the particular acoustic cavity we consider, the integral of the perturbation is

positive. Hence, it will produce a first-order frequency upshift, although other modes occupying

other acoustic cavities will undergo frequency downshifts.
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Figure 4.10: A raypath and the evolution of the eigenfrequency for the perturbation of §4.4.
Results are for an n = 1, � = 10 mode with the convection at 0.1 times its original strength. See
the text for further discussion.
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Figure 4.11: Horizontal slices of the plume of §4.4. The slice is at z = 0.3 in the units of
the model and the three plots show the sound speed, horizontal velocity, and vertical velocity
perturbations, respectively.
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The net frequency shift is a combination of these different shifts. A rough order-of-

magnitude estimate suggests that the velocity perturbations contribute the dominant terms.

This is not surprising since the Prandtl number (the ratio of the viscosity to the thermal diffu-

sivity) of this simulation is less then unity — in this case, 0.1. Low Prandtl numbers imply that

temperature perturbations (and hence sound speed perturbations) are smoother and weaker

than velocity perturbations. Since the velocity perturbations contribute the dominant terms,

we expect the fractional frequency shift to be downward and quadratic in the strength of the

perturbation.

In Figure 4.12 we plot the dependence of the fractional frequency shift on the strength

of the convection for an n = 1, � = 10 mode. The error bars again arise from averaging the

results from different initial conditions and signal the presence of destroyed phase-space tori.

The frequency shift, while always negative, scales approximately as ε1.5, where ε is the strength

of the perturbation. This dependency is likely a combination of the linear frequency shift arising

from the sound speed perturbation and the quadratic perturbation arising from the advective

motions.
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Figure 4.12: Fractional frequency shift versus strength of the convective model of §4.4. The
results are for a mode with n = 1, � = 10.



Chapter 5

Conclusions

Adiabatic switching provides a powerful tool for predicting the effects of convective struc-

tures on p-mode eigenfrequencies. In §5.1 we summarize a few of our key results and in §5.2 we

outline several possibilities for future applications and extensions.

5.1 Results

In the ray approximation, p modes are Hamiltonian systems. The canonical positions

and momenta are the position and wavenumber, respectively, while the dispersion relation is

the functional form of the Hamiltonian. We have shown that time-independent, horizontally

invariant convective models form integrable systems. Their eigenfrequencies can be predicted

with adiabatic switching as well as an independent method, semi-classical EBK quantization.

The results from the two methods agree. However, we have also shown that adiabatic switching

is a viable method of finding the eigenfrequencies of non-integrable systems (in this context,

those with horizontal variations), a domain in which EBK quantization can only offer guidance

and not precise results.

From our investigations we draw some general conclusions concerning the effects of con-

vection on p-mode eigenfrequencies. Foremost, the fractional frequency shift is the weighted

integral of the perturbation over the resonant cavity of the eigenmode. For cases such as the

sound-speed perturbation of §3.3 and the Doppler shift of §3.4 where the perturbation is mono-

tonic over the acoustic cavity, the shift is linear in the perturbation strength.
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Of more physical interest are examples where the perturbations oscillate in sign. For

horizontally antisymmetric perturbations, such as those of §4.1 and §4.2, we have argued on both

physical and mathematical grounds that the frequency shift vanishes to first order. Adiabatic

switching confirms this result. Furthermore, it demonstrates that a second-order perturbation

does exist, resulting from the ray spending extra time in regions of retarding material. We have

also shown that vertical velocity perturbations always produce second-order fractional frequency

shifts, independent of the perturbation structure.

We also treated even more complex perturbations such as a plume in §4.3 and a two-

dimensional slice of a convective model in §4.4. In these complex models, over large enough

scales, we expect every perturbation to average to zero — cold, narrow plumes are balanced

by broad, warm upflows. If p-mode cavities extended over large scales we would always expect

second-order downshifts as any first-order shifts will cancel. However, acoustic cavities have a

limited vertical extent and hence may sample a region in which the perturbations do not fully

cancel. In that case, the dominant perturbation cannot necessarily be predicted. But, it is

known that solar convection is characterized by low Prandtl numbers, implying that velocity

perturbations are generally larger in amplitude than sound speed perturbations. Within a

typical acoustic cavity, velocity perturbations will be the dominant effect. In the majority of

cases, then, we expect second-order frequency downshifts arising from velocity perturbations.

For the simpler perturbations of §4.1 and §4.2 we investigated the dependence on radial

mode number n and angular degree �. First-order velocity perturbations vary roughly as
√

�

and 1/
√

n and second-order perturbations as the square of these quantities. For sound speed

perturbations whose amplitude increases with depth, the fractional frequency shifts generally

increase with n and decrease with �. The exact dependency of the shift, however, depends on

the functional form of the perturbation.

In addition, we have demonstrated that even mild perturbations can significantly change

the structure of the resonant cavity of an eigenmode despite producing only small frequency

shifts. As the perturbation strength increases for realistic convective models, the ray trajectories
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diffuse and are no longer confined within an obvious cavity. It is an open question as to what

extent this occurs in the Sun, particularly as results from time-distance helioseismology imply

that ray-like entities which follow predictable trajectories do exist.

It is intriguing to note, as discussed in Gough et al. (1996) and seen in Figure 1.1, that

current solar models predict larger sound speeds in the outer portion of the convection zone than

are suggested by p-mode observations. Since p-mode eigenfrequencies are proportional to the

sound speed, the implication is that theory predicts higher eigenfrequencies than are actually

produced by the Sun. We have shown in this work, however, that one effect of convective struc-

tures is to lower p-mode eigenfrequencies. This effect is not accounted for in current theoretical

solar models and is a potential source of the discrepancy.

Not only is the effect of the proper sign, it has the proper magnitude to explain the

difference. As we saw in Chapter 4 the scaling of the frequency shift from convection depends

on the integral of the perturbation over the cavity. To make a conservative estimate, we assume

that any frequency shift is second-order in the velocity:

−∆ω

ω
∼ v2

c2
. (5.1)

Evaluating c at the midpoint of an acoustic cavity gives

−∆ω

ω
∼ v2

gR�
� ∼

( v

400

)2

�, (5.2)

where v is the convective velocity in km/s, � is the mode degree, and we have suppressed

terms of order 1. For typical supergranular photospheric outflow velocities of 0.5 km/s, the

fractional frequency shift is ≈ 3×10−4. This result is a conservative lower limit: higher � values,

higher velocities, and lower-order frequency shifts will all produce larger shifts. Observational

determinations of p-mode eigenfrequencies quote error bars of ∆ω/ω ≈ 3 × 10−4. Hence we

conclude that convective structures will, at the minimum, produce detectable shifts.
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5.2 Future Work

Although adiabatic switching is an attractive method for finding p-mode eigenfrequencies,

care must be taken to apply it to problems for which it is valid. In the Sun, the true excited

objects are global modes. But, inherent in our methodology is the assumption that in the small-

wavelength limit these modes may be approximated as one-dimensional rays. We did not discuss

the transition between mode and ray. However, one may form a ray by superposing eigenmodes

into a wavepacket whose dynamics are then governed by the ray equations (2.38). Bogdan (1997)

has shown that, due to the finite number of excited solar p modes, a truly one-dimensional ray

cannot be formed. Instead, the smallest wavepacket which can be constructed is ≈ 30 Mm in

size. This dimension, characteristic of supergranules, suggests a lower size limit to the structures

which can be explored using adiabatic switching. Unfortunately this limit is somewhat more

stringent than the WKB criteria, which sets the lower size limit at ≈ 400/� Mm. It may be

possible, as was discussed in §4.3, to show that the method of adiabatic switching loosens these

constraints. Although it is not clear how to frame this argument in a rigorous manner, further

investigation into the limitations of the WKB approximation is certainly warranted. In any case,

the smallest convective structures cannot strictly be treated within our present formulation of

adiabatic switching. As discussed in §1.3, other methods, such as the inclusion of a turbulent

pressure in the governing equations, must be employed.

A conceptually simple, although perhaps computationally expensive, extension to our

work would be the incorporation of a third dimension into the plane-parallel geometry. The

system would gain another degree of freedom, however the reference state would remain inte-

grable since another constant of the motion (ky) would also be added. The transition from

two to three dimensions is accompanied by two important geometric effects. As an example

of the first, consider the plume of §4.3. In two dimensions it is impossible for rays to avoid

the plume; with every traversal of the cavity they pass through the heart of the disturbance.

In three dimensions a one-dimensional ray can easily bypass a plume-like structure. Second,
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convection in three dimensions is vastly different than in two dimensions. Even highly turbulent

two-dimensional convection is organized in cell-like structures such as those of §4.2. Addition of

a third dimension results in a much more complicated system. In §4.4 we attempted to account

for the second of these differences by taking two-dimensional slices of a three-dimensional model,

but a full treatment involves extending our method to include the propagation of rays in three

dimensions.

Working in a spherical, rather than plane-parallel, geometry would complement the ad-

dition of a third dimension. The solar convection zone extends to a depth of ≈ 0.7R� and so

we expect the effects of curvature to be small. However, we would be able to explore recent

spherical shell simulations of the convection zone (Elliott et al. 1998, for example).

Both rotation and magnetic fields can be expressed as additional terms in the governing

dispersion relation (Gough 1993). The primary effect of rotation is known: it breaks the spherical

symmetry and introduces a dependence of the frequency on m, the azimuthal order in the

spherical harmonic decomposition. Magnetic effects are not as well understood. One of the most

intriguing, as well as most difficult, questions is the effect of active regions on the eigenfrequency

spectrum. Magnetic field strengths reach equipartition in sunspots, becoming strong enough to

suppress convective motions as well as have significant impacts on ray propagation. We can also

investigate the signatures of a buried magnetic field on the p-mode eigenfrequencies. Detections

of such signals would permit predictions of the appearance of magnetic flux at the solar surface.

Finally, power spectra of the solar oscillations show that p modes possess intrinsic line

profiles, the source and shape of which is not completely understood. Previous works (Kumar

et al. 1994; Roxburgh & Vorontsov 1995; Rast & Bogdan 1998) have treated the effects of

intrinsic damping, noise, and source structure on the line profiles. Intriguingly, the error bars

of Figures 4.7 and 4.12 can also be interpreted as linewidths. They arise from the drift of the

eigenfrequency in phase space as the ray passes through time-dependent convective structures

(in this case, during the switching process). In the Sun, time-dependent convective motions,

even those lasting for timescales which are long compared to a p-mode period, will broaden the
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mode eigenfrequencies via the process of Arnold diffusion discussed in §2.5. A closer exploration

of the error bars we discuss in §4.3 and §4.4 will likely yield insight into the nature of p-mode

linewidths.
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Appendix A

Table of Important Symbols

Table A.1: Important symbols. Referenced pages give the location of either the first appearance
or a definition.

Symbol Page Description

∇2
h 15 Horizontal Laplacian

ˆ 17 Unit vector
′ 102 Eulerian perturbation

a 66 Aspect ratio

a 101 Marker identifying a fluid element

A 21 Varying plane-wave amplitude

B1, B2, B3, B4 110,110,110,111 Functions of χ

c 13 Adiabatic sound speed

c0 45 Polytropic adiabatic sound speed

C 25 Integration curve

f 13 Force per unit mass

g,g 17,13 Scalar and vector gravitational acceleration

G 13 Newtonian gravitational constant

h 23 Planck’s constant

H,H0,H1 24, 35, 35 General, integrable, and non-integrable Hamiltonian

Hρ 19 Density scale height

I, Ix, Iz 25, 42, 40 General, horizontal, and vertical action variable of
action-angle coordinates

kr, kφ, kx, kz 28, 28, 40, 40 Radial, azimuthal, horizontal, and vertical wavenum-
bers

k 21 Wavevector

continued on next page
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Table A.1 continued

Symbol Page Description

K 48 Perturbation wavenumber

� 16 Spherical harmonic degree

L 57 Horizontal dimension of computational domain

L1, L2, L3 112 Differential operators

m 16 Azimuthal order of spherical harmonic

n 16 Radial mode number

N 18 Brunt-Väisälä frequency

p 13 Pressure

p 23 Canonical momentum

q 23 Canonical position

Q 101 Generic variable

r 4 Radius

R� 3 Solar radius

Ra,Rac 66 Rayleigh number, critical Rayleigh number

s 28 Number of encountered caustics

S 31 Action

t 12 Time

T 35 Switching time

Tx, Tz 43, 43 Periods of horizontal and vertical motion

vx, vz 46, 46 Horizontal and vertical velocity

v 12 Velocity

x 39 Horizontal coordinate

x 21 Position vector

Y m
� 16 Spherical harmonic

z 39 Vertical coordinate

z1, z2 43 Minimum and maximum depths of acoustic cavity

zmid 43 Average depth of acoustic cavity

zT 66 Depth of convective cell

α1, α2 66, 66 Sound speed perturbation amplitudes

β 18 Adiabatic stratification parameter

γ1, γ2 66, 68 Horizontal and vertical velocity perturbation ampli-
tudes

Γ1 13 Adiabatic exponent

continued on next page
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Table A.1 continued

Symbol Page Description

δ 102 Lagrangian perturbation

∆ 31 Generic difference

ε 26 Small parameter

θ 15 Polar angle

Θ 25 Angle variable of action-angle coordinates

κ 66 Thermal diffusivity

λ 35 Switching function

Λ 21 Ratio of lengthscales

µ 39 Polytropic index

ν 66 Kinematic viscosity

νk,νx, νz 25, 42, 42 Generic, horizontal, and vertical characteristic fre-
quencies of motion

ξ 17 Radial component of the Lagrangian displacement

ρ 12 Density

φ 15 Azimuthal angle

ϕ 21 Varying plane-wave phase

Φ 13 Gravitational potential

χ 16 Divergence of the Lagrangian displacement

ψ 57 Streamfunction

Ψ 19 Scalar variable in wave equation

Ψ0 21 Constant plane-wave amplitude

ω 21 Frequency

ω̃ 22 Local frequency

ωc 19 Acoustic cutoff frequency

Ω 46 Polytropic frequency



Appendix B

Fluid Descriptions and Perturbations

At sufficiently small scales all matter is discrete, separated into atoms and molecules.

However, for a large class of substances, termed fluids, this discretization is not apparent. In-

stead, the mean free path of atomic and molecular motion is much smaller than any other relevant

lengthscale (for example, the density scale height or the diffusion length). This separation of

lengthscales allows one to average over many particles and thus approximate a fundamentally

discrete object as a continuous medium. In this appendix, we outline the Eulerian and La-

grangian descriptions of a fluid. While both are valid representations, most of fluid dynamics,

including the standard forms of the fluid equations, is conceived and written using the Eule-

rian description. However, as is seen below, the Lagrangian description occasionally provides

simplifications. We also describe the Eulerian and Lagrangian perturbations (which are closely

related to their respective fluid descriptions) and demonstrate their commutation properties

with respect to three mathematical operators.

As their names suggest, these descriptions are not new. Instead of breaking new ground,

this appendix is merely our own organization of the material. Other treatments may be found

in Chandrasekhar (1987) and in Chapter 5 of Cox (1980).

B.1 Descriptions

The choice of independent variables differentiates the Eulerian and Lagrangian fluid de-

scriptions. The position vector x and time t are the independent variables in an Eulerian fluid
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and any quantity Q is written as Q(x, t). This representation is completely general since, in

principle, the value of a variable at any point is uncorrelated with the value at a neighboring

point (ignoring, for the moment, constraints imposed by the fluid equations).

In contrast, the Lagrangian description divides a fluid into tiny parcels. The independent

variables are the time t and a quantity which uniquely identifies a particular fluid element. Often

this quantity is taken to be the position of the fluid element at some reference time, but other

choices are possible. To acknowledge this ambiguity, I follow the notation of Cox (1980) and

denote the identifying marker as a. Variables are associated with parcels of fluid, not points in

space, and are denoted by Q(a, t).

By supposing the existence of fluid parcels, the Lagrangian description appears, by the

application of Ockham’s razor, to be inferior to the Eulerian. The need for fluid parcels requires,

at some level, that the fluid be smooth enough for neighboring points to share the same physical

description; the Eulerian picture does not require this precondition. To resolve this apparent

difficulty, recall that, by definition, every fluid possesses a lengthscale where averaging over many

particles is permissible. The Lagrangian description is valid when this lengthscale is larger than

the size of a fluid parcel. As both descriptions are equally valid, other considerations will dictate

which to use for a given problem.

B.2 Mathematical Operations

Due to the choice of independent variables, the usual gradient operator ∇ = ∂
∂x is a

useful operation in the Eulerian picture. This is not the case in the Lagrangian description

where position is not an independent variable; instead x = x(a, t). The appropriate spatial

derivative is then ∇a = ∂
∂a .

As time is exclusively an independent variable, ∂
∂t is useful in both the Lagrangian and

Eulerian pictures. However, it is not the same useful operator in both descriptions. In the
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Eulerian frame,

∂

∂t
=

∂

∂t

∣∣∣∣
x

, (B.1)

while in the Lagrangian frame,

∂

∂t
=

∂

∂t

∣∣∣∣
a

, (B.2)

with the notation |j indicating that j is to be held constant during differentiation. For the

Eulerian description the time derivative is taken at a point while in the Lagrangian description

it is taken with respect to a particular fluid parcel.

The derivative of equation (B.2) is given a special name: the advective, or Stokes, deriva-

tive. In the Eulerian description it is often denoted D
Dt .

1 Since the derivative is taken with

respect to a fluid parcel, the position varies with time. Thus for any Eulerian variable Q asso-

ciated with the element:

D

Dt
Q(x, t) ≡ ∂

∂t

∣∣∣∣
a

Q(x(a, t), t) =
∂Q

∂t

∣∣∣∣
x

+
∂x
∂t

· ∇Q =
∂Q

∂t
+ v · ∇Q (B.3)

where v is the fluid velocity. In short, for derivatives taken along the motion of a fluid parcel

D

Dt
=

∂

∂t

∣∣∣∣
a

=
∂

∂t

∣∣∣∣
x

+ v · ∇. (B.4)

B.3 Perturbations

Of course, fluids do not always occupy equilibrium configurations. Here we discuss the

application of the Eulerian and Lagrangian descriptions to fluid states which are slightly per-

turbed away from an reference state. Linear perturbation theory postulates that a variable Q

in the perturbed state may be expressed as

Q = Q0 + ∆Q (B.5)

where Q0 is the variable in the reference state and ∆Q is a generic perturbation which is small

compared to Q0.
1 Occasionally the more confusing d

dt
is used.
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Just as both the Eulerian and Lagrangian descriptions can be used to represent fluids,

the perturbation of equation (B.5) can be written in different ways. We will discuss two forms,

the Eulerian and Lagrangian perturbations, which are closely related to their respective fluid

descriptions. As we will see, both perturbations can be considered in either the Eulerian or

Lagrangian description. Unfortunately, the literature has not settled on standard symbols for

the perturbations. We follow the notation of Cox (1980) and signify the Eulerian and Lagrangian

perturbations to a quantity Q by Q′ and δQ, respectively.

Figure B.1 illustrates both the Eulerian and Lagrangian perturbations. Position, normally

a three-dimensional vector, has been collapsed to one dimension and plotted on the vertical axis;

time is shown on the horizontal axis. The slanted lines are streamlines for three parcels of fluid.

The dotted lines are streamlines in the reference state (denoted by y0) while the solid line is a

streamline in the perturbed state (denoted by y). Each streamline is further delineated by the

position at time t1 of a fluid parcel (serving as the a in the Lagrangian description). Thus, in

the reference state, a fluid parcel which occupied position x2 at time t1 follows the streamline

labeled y0(x2). Finally, representative parcels of fluid are shown on the streamlines. So, y0(x2)

and y(x2) are streamlines for the same fluid parcel, the first tracing the path of the parcel in the

reference state, and the second in the perturbed fluid. Although the reference and perturbed

states are shown occupying the same positions at time t1, in general this need not be the case.

Note that the streamlines, although linear in this sketch, are, in general, curved.

An Eulerian perturbation to a variable Q is the difference at the same point and time

between the perturbed and reference fluid states. We first treat this perturbation in the Eule-

rian description. Suppose the two fluid parcels following the streamlines y0(x4) and y(x2) are

described by the variable Q. They are different fluid parcels, as indicated by their different

positions at time t1, yet at time t2, they occupy the same position, the latter in the perturbed

and the former in the reference model. At this location and moment, the Eulerian variation is

Q′(x = x3, t = t2) = Q(x = x3, t = t2) − Q0(x = x3, t = t2), (B.6)
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Figure B.1: A pictorial demonstration of the Eulerian and Lagrangian perturbations. See the
text for details.
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where we have included the independent variables to make it clear we are in the Eulerian

description. In general form:

Q′(x, t) = Q(x, t) − Q0(x, t). (B.7)

From equation B.7, we see that x′ = 0.

A Lagrangian perturbation is the difference between identical fluid parcels, one in the

reference state and one in the perturbed system. This perturbation is most naturally described

in the Lagrangian description (see below), but it proves useful to examine it in the Eulerian

description as well. In the specific case of Figure B.1, we have:

δQ(x = x3, t = t2) = Q(x = x3, t = t2) − Q0(x = x1, t = t2). (B.8)

Note the distinction between x3 and x1 in the final two terms; it forms the crucial difference

between the Eulerian and Lagrangian perturbation. In the reference state the variable is eval-

uated at x = x1 because this is the location at t = t2 of the reference state parcel which, at

t = t1, coincided with the parcel in the perturbed state.

Equation (B.8) gives δx = x3 − x1. In general δx depends on both the time and position

of the observation, so extension to the general case yields

δQ(x, t) = Q(x, t) − Q0(x − δx(x, t), t), (B.9)

where we again include the independent variables to make it clear these results apply in the

Eulerian description.

As both equations (B.7) and (B.9) are written in the Eulerian description, we may sub-

tract to find

δQ − Q′ = Q0(x, t) − Q0(x − δx(x, t), t) ≈ δx · ∂

∂x
Q0 = δx · ∇Q0, (B.10)

where the approximation is made to first-order in smallness. At this level of accuracy, Q0 may

be replaced by Q.

Although the Lagrangian description is not as intuitive, it is possible to express both

perturbations in its formalism. Recall that the independent variables are no longer time and
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position, but time and a marker identifying the fluid parcels (in the case of Figure B.1, initial

position). The Lagrangian perturbation in the Lagrangian description is, from Figure B.1,

δQ(a = x2, t = t2) = Q(a = x2, t = t2) − Q0(a = x2, t = t2). (B.11)

Or, in general form

δQ(a, t) = Q(a, t) − Q0(a, t). (B.12)

Note the symmetry between this expression and the Eulerian perturbation in the Eulerian

description of equation B.7. A simple application of equation (B.12) demonstrates δa = 0.

Finally, consider an Eulerian perturbation in the Lagrangian description. From Figure

B.1

Q′(a = x2, t = t2) = Q(a = x2, t = t2) − Q0(a = x4, t = t2). (B.13)

Since the Eulerian perturbation (usually) compares different fluid parcels, the two terms on the

right-hand side of equation (B.13) are evaluated at different a. In order to generalize this result,

notice that a′ = x2 −x4 in this example. In general, a′ is a function of both time and the initial

position of the fluid parcel. So,

Q′(a, t) = Q(a, t) − Q0(a − a′(a, t), t). (B.14)

As might be expected, this result is quite similar to equation (B.9). Evaluating the difference

between equations (B.12) and (B.14) shows that

δQ − Q′ = Q0(a − a′(a, t), t) − Q0(a, t) ≈ −a′ · ∂

∂a
Q0 = −a′ · ∇aQ0 (B.15)

Again, Q may be substituted for Q0 in the last term without affecting the result.

B.4 Commutation Relations

Using the formalism of the preceding sections, we examine the commutation properties

of the perturbations with three mathematical operators. In particular, we demonstrate that

[∇, ′] =
[

∂

∂t

∣∣∣∣
x

, ′
]

=
[

D

Dt
, δ

]
= 0 (B.16)
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and

[∇, δ] �= 0,
[

∂

∂t

∣∣∣∣
x

, δ

]
�= 0,

[
D

Dt
, ′

]
�= 0, (B.17)

where the commutation symbol [ , ] is defined for two operators F and G as [F ,G] ≡ FG−GF .

Although we can easily extend the results to treat the operator ∇a, it is rarely used in the

literature and so we neglect it here.

B.4.1 Eulerian Perturbation, Commuting Operators

First, consider the Eulerian perturbation. It is simple to prove the two equalities of

equation (B.16) using the Eulerian description of equation (B.7). Applying the two operators

to the perturbation yields

∇(Q′) = ∇Q − ∇Q0 and
∂

∂t

∣∣∣∣
x

(Q′) =
∂

∂t

∣∣∣∣
x

Q − ∂

∂t

∣∣∣∣
x

Q0, (B.18)

while applying the perturbation to the operators gives

(∇Q)′ = ∇Q − ∇Q0 and
(

∂Q

∂t

∣∣∣∣
x

)′
=

∂Q

∂t

∣∣∣∣
x

− ∂Q0

∂t

∣∣∣∣
x

. (B.19)

The right-hand sides of equations (B.18) and (B.19) are clearly identical, thus proving the first

two commutation relations.

B.4.2 Eulerian Perturbation, Non-Commuting Operators

To prove the inequality of equation (B.17), recall from equation (B.4) that the advective

derivative is the same as a derivative at constant a. In light of this fact, it is easiest to consider

the Eulerian perturbation in the Lagrangian description. Expanding equation (B.14) to first-

order, the Eulerian perturbation becomes

Q′(a, t) = Q − Q0 + a′ · ∇aQ0. (B.20)

So, remembering that a′ = a′(a, t)

∂

∂t

∣∣∣∣
a

(Q′) =
∂

∂t

∣∣∣∣
a

Q − ∂

∂t

∣∣∣∣
a

Q0 +
(

∂

∂t

∣∣∣∣
a

a′
)

· ∇aQ0 + a′ · ∂

∂t

∣∣∣∣
a

(∇aQ0). (B.21)



108

Applying the operations in the opposite order gives

[
∂Q

∂t

∣∣∣∣
a

]′
=

∂Q

∂t

∣∣∣∣
a

− ∂Q0

∂t

∣∣∣∣
a

+ a′ · ∇a
∂Q0

∂t

∣∣∣∣
a

. (B.22)

Switching the order of differentiation in the last term of either equation (B.21) or (B.22), sub-

tracting, and changing to the notation of equation (B.4)

[
D

Dt
, ′

]
=

D

Dt
(Q′) −

[
DQ

Dt

]′
=

∂a′

∂t

∣∣∣∣
a

· ∇aQ0. (B.23)

In general, the Eulerian perturbation and the advective derivative do not commute.

B.4.3 Lagrangian Perturbation, Commuting Operators

Next, consider the Lagrangian perturbation δ. To prove the equality of equation (B.16),

use equation (B.4) and the form of the perturbation given in equation (B.12).

∂

∂t

∣∣∣∣
a

(δQ) =
∂

∂t

∣∣∣∣
a

(Q) − ∂

∂t

∣∣∣∣
a

(Q0) (B.24)

and

δ

(
∂Q

∂t

∣∣∣∣
a

)
=

∂Q

∂t

∣∣∣∣
a

− ∂Q0

∂t

∣∣∣∣
a

. (B.25)

The right-hand sides of equations (B.24) and (B.25) are equal, proving that the Lagrangian

perturbation commutes with the advective derivative.

B.4.4 Lagrangian Perturbation, Non-Commuting Operators

The inequalities of equation (B.17) are best treated in the Eulerian description. Expand-

ing equation (B.9) to first-order,

δQ(x, t) = Q − Q0 + δx · ∇Q0. (B.26)

Working first with the ∇ operator and recalling that δx = δx(x, t),

∇(δQ) = ∇Q − ∇Q0 + (δx · ∇)∇Q0 + (∇Q0 · ∇)δx + ∇Q0×(∇×δx). (B.27)
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The final three terms result from applying a vector identity to ∇(δx · ∇Q0). Applied in the

reverse order, the operations produce

δ(∇Q) = ∇Q − ∇Q0 + (δx · ∇)∇Q0. (B.28)

Hence,

[∇, δ] = ∇(δQ) − δ(∇Q) = (∇Q0 · ∇)δx + ∇Q0×(∇×δx). (B.29)

Finally, consider the commutation properties of the Lagrangian perturbation and the

partial with respect to time at constant x.

∂

∂t

∣∣∣∣
x

(δQ) =
∂

∂t

∣∣∣∣
x

Q − ∂

∂t

∣∣∣∣
x

Q0 +
(

∂

∂t

∣∣∣∣
x

δx
)

· ∇Q0 + δx · ∂

∂t

∣∣∣∣
x

∇Q0, (B.30)

but

δ

(
∂Q

∂t

∣∣∣∣
x

)
=

∂Q

∂t

∣∣∣∣
x

− ∂Q0

∂t

∣∣∣∣
x

+ δx · ∇ ∂Q0

∂t

∣∣∣∣
x

(B.31)

Again, by switching the order of differentiation in the last term of two preceding equation and

subtracting,

[
∂

∂t

∣∣∣∣
x

, δ

]
=

∂

∂t
(δQ) − δ

(
∂Q

∂t

)
=

∂δx
∂t

∣∣∣∣
x

· ∇Q0. (B.32)

Equations (B.29) and (B.32) show that the Lagrangian perturbation commutes with neither the

gradient operator nor the partial derivative with respect to time at constant position.
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Alternate Forms of the Wave Equation

In §2.1.4, several approximations were made to arrive at the final form of the wave

equation (2.30). For this appendix, we relax two of these assumptions, constant gravity and

adiabatic stratification, and derive the resulting wave equations.

The starting point is equation (2.22), the perturbed momentum equation under Cowling’s

approximation:

∂2 δx
∂t2

= ∇(c2χ − gξ) + (c2 ∇ρ

ρ
+ gr̂)χ. (C.1)

Our previous assumptions of constant gravity allowed us to write expressions such as ∇2(gξ) =

g∇2ξ. In the general case, we cannot make such a statement. Instead we have four parameters

(the three components of δx and χ) and thus need four separate equations to reduce the equation

to one in terms of χ only. Of course, since χ = ∇ · δx the four variables are interrelated. We

proceed by applying four operators to (C.1), yielding the following equations:

(a) ∇·

∇2(gξ) = ∇2(c2χ) − ∂2χ

∂t2
+ r̂ · ∇(βχ) +

2βχ

r
, (C.2)

(b) r̂ · ∇ × ∇×

∂2

∂t2
∇2ξ = ∇2

h(βχ) +
2βχ

r2
+

∂2

∂t2
(r̂ · ∇χ), (C.3)

(c) ∇h·(horizontal component)

∂2

∂t2

(
∂ξ

∂r
+

2ξ

r

)
−∇2

h(gξ) =
∂2χ

∂t2
−∇2

h(c2χ), (C.4)



111

(d) r̂·

∂2ξ

∂t2
+ r̂ · ∇(gξ) = r̂ · ∇(c2χ) + βχ. (C.5)

Equations (C.2) and (C.3) are the same as equations (2.24) and (2.25), respectively.

From our work in §2.1.3, we know that the angular parts of the perturbation variables

are given by spherical harmonics. Hence, we are free to make the substitution

∇2
h = −�(� + 1)

r2
. (C.6)

With this simplification, equations (C.2)–(C.5) are four linear equations for the four unknowns

ξ, ξ̇, ξ̈, and χ where a dot represents a derivative with respect to the radial coordinate r. Simple

substitution quickly reduces the equations to the form

[(
g̈ − 2ġ

r

)
∂2

∂t2
− 2�(� + 1)

r2
gġ

]
ξ =

∂2

∂t2
B1(χ) − gB2(χ) − 2ġB3(χ) (C.7)

and

[
∂4

∂t4
+

(
ġ − 2g

r

)
∂2

∂t2
− �(� + 1)

r2
g2

]
ξ = −gB3(χ) +

∂2

∂t2
B4(χ), (C.8)

where B1(χ), B2(χ), B3(χ), and B4(χ) are the right-hand sides of equations (C.2)–(C.5), re-

spectively.

In order to eliminate the partial derivatives with respect to time, we work with only one

Fourier component of the solution and hence make the substitution ∂
∂t → −iω. Although it

is possible to produce a final partial differential equation without any further restrictions, the

algebra is quite involved. This is why the simplifying assumptions of §2.1.4 were made: they

illuminated the underlying physics without clouding the result with mathematical complications.

In that spirit we consider a looser set of assumptions, with a better physical rationale, than

those considered in the main text. From the spherical symmetry of the reference state, we

already know that g = g(r). However, the solar mass distribution is centrally condensed —

the convection zone accounts for only 2% of the total mass despite occupying the outer 30% by

radius. Furthermore, p modes of large spherical degree traverse only the outermost regions of the
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convection zone. Thus, gravity for the p modes under consideration is well approximated by a

free-space potential. Under this assumption, there is a simple relation between the gravitational

acceleration and its radial derivatives,

ġ =
−2g

r
and g̈ =

6g

r2
. (C.9)

We first consider a system with an adiabatic stratification (in other words, β = 0), but

gravity as specified in (C.9). Equations (C.7) and (C.8) can be reduced to the following form:

(
∂4

∂t4
− 4g

r

∂2

∂t2
+ g2∇2

h

)[
∂2χ

∂t2
−∇2(c2χ) + gr̂ · ∇χ

]
−

(
4g

r

∂2

∂t2
− 6g2

r2

)[
∂2χ

∂t2
−∇2

h(c2χ)
]

+
(

10g

r2

∂2

∂t2
− 4g2

r
∇2

h

)
r̂ · ∇(c2χ) = 0, (C.10)

where equation (C.6) and the correspondence between ∂
∂t and −iω have been used to put the

result in a form similar to (2.26). To compare to our previous results, we take the plane-parallel

limit (r → ∞). Doing so yields

[
∂2χ

∂t2
−∇2(c2χ) + gr̂ · ∇χ

]
= 0, (C.11)

which is equivalent to equation (2.26) in the limit of adiabatic stratification.

Although equation (C.10) contains odd derivatives of χ, we cannot transform it into a

Helmholtz-like form, as we did with equation (2.27), due to the final terms on the left-hand side.

Defining the differential operators

L1 =
∂4

∂t4
− 4g

r

∂2

∂t2
+ g2∇2

h, L2 =
4g

r

∂2

∂t2
− 6g2

r2
, and L3 =

10g

r2

∂2

∂t2
− 4g2

r
∇2

h, (C.12)

and making the same substitution as before, Ψ = c2ρ1/2χ, we find that

L1

[
∂2Ψ
∂t2

− c2∇2Ψ + ω2
cΨ

]
− L2

[
∂2Ψ
∂t2

− c2∇2
hΨ

]
+ L3

[
c2r̂ · ∇Ψ +

gΨ
2

]
= 0, (C.13)

where the acoustic cutoff frequency ωc is the same as defined in equation (2.28). Again this

form is equivalent to equation (2.30) in the plane-parallel limit. If desired this equation can be

placed in the form of a dispersion relation analogous to equation (2.35), although the expression

is somewhat complicated.
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Finally, for completeness, we present the governing equation for the more general case

where β �= 0 and where derivatives of the gravitational acceleration are of the form given in

equation (C.9). After some algebra, and in terms of Ψ, the result is

L1

[
∂4Ψ
∂t4

−
(

c2∇2 − ω2
c − 2βχ

r

)
∂2Ψ
∂t2

−
(

c2N2∇2
h − 2βgc2

r2

)
Ψ

]
−

L2

[
∂4Ψ
∂t4

− c2 ∂2

∂t2
∇2

hΨ
]

+ L3

[
∂2

∂t2

(
c2r̂ · ∇Ψ +

gΨ
2

)
+ β

∂2Ψ
∂t2

]
= 0. (C.14)

The first term in square brackets is identical with equation (2.27) and in the appropriate limits

this form reduces to our previous results.



Appendix D

The Computer Code

Originally written in IDL during 1995 to implement the method described in §2.4.4, the

code has undergone several revisions since then. In 1997 it was translated into FORTRAN90

when it was realized that the benefits of IDL’s graphical capabilities did not outweigh FOR-

TRAN’s greater speed and numerical precision. We first used adiabatic switching in a fashion

similar to the current version in 1998. For structural reasons, the code has been broken into

modules, each of which is described in the table below.
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Table D.1: Modules used in our adiabatic switching code. Files above the line are necessary
while those below the line generate test data, but are not required for use.

File (*.f90) Function

constants Defines useful constants such as the polytropic index, gravitational accelera-
tion, domain size, and the switching period.

eureka The top level of the integration routines from Shampine & Gordon (1975).
This routine allocates storage for variables and calls subsequent programs.

func Defines and evaluates the differential equations used by the ray-tracing routine
— in other words, the right-hand-side of Hamilton’s equations.

main The top-level program. It sets the initial conditions, writes useful data to a
file for later reference, and calls the integration routines.

mod1 Part of the integration routine. It supervises the integration and evaluates its
success or failure.

mod2 The heart of the integration routine, it uses the Adams PECE formulas to solve
Hamilton’s equations. The code adjusts its order and step size to control the
error.

mod3 The final part of the integration routine. After previous parts of the code
approximate the solution with a polynomial, this subroutine finds the solution
at the desired point.

sound On the first call it loads the mesh of sound speeds into memory for quicker
access. On all subsequent calls it calculates the sound speed and directional
derivatives at a point in the domain.

switching Defines and evaluates the form of the switching function.
velocity On the first call it loads the mesh of advective velocities into memory for

quicker access. On all subsequent calls it calculates the velocity and directional
derivatives at a point in the domain.

c func Defines and evaluates the functional form of the sound speed when creating a
grid of values.

make c Creates a grid with a given spacing (set in constants.f90) of sound speeds.
make v Creates a grid with a given spacing (set in constants.f90) of advective ve-

locities.
v func Defines and evaluates the functional form of the advective velocity when cre-

ating a grid of values.


