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We present the first experiments demonstrating absolute frequency mea-

surements of one- and two-photon transitions using direct frequency comb spec-

troscopy (DFCS). In particular we phase stabilized the inter-pulse period and

optical phases of the pulses emitted from a mode-locked Ti:Sapphire laser, creat-

ing a broad-bandwidth optical frequency comb. By referencing the optical comb

directly to the cesium microwave frequency standard, we were able to measure

absolute transition frequencies over greater than a 50 nm bandwidth, utilizing the

phase coherence between wavelengths spanning from 741 nm to 795 nm.

As an initial demonstration of DFCS we studied transitions from the 5S to

5P, 5D, and 7S states in 87Rb. To reduce Doppler broadening the atoms were laser

cooled in a magneto-optical trap. We present an overview of several systematic

error sources that perturb the natural transition frequencies, magnitudes, and

linewidths. These include radiation pressure from the probe beam, AC-Stark

shifts, Zeeman shifts, power-broadening, and incoherent optical pumping. After

careful study and suppression of these systematic error sources, we measured

transition linewidths as narrow as ∼1.1 MHz FWHM and ≥10 kHz linecenter

uncertainties. Our measurements of the 5S to 7S two-photon transition frequency

demonstrated the ability to determine the comb mode order numbers when the

initial transition frequency is not known to better than the comb mode frequency

spacing.

By modifying the spectral phase of the pulses we demonstrated high-resolution

coherent control. Our first coherent control experiment utilized a grating based
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pulse stretcher/compressor to apply a large, ±250,000 fs2, chirp to the pulses. We

measured the two-photon transition rate as a function of linear frequency chirp.

The results illustrate the differences between similar classic coherent experiments

done with a single femtosecond pulse and ours conducted with multiple pulses.

Furthermore, we show that it is possible to reduce the two-photon transition rate

by tuning the comb such that the two-photon amplitudes from all comb mode

pairs destructively interfere.

One of the unique features of DFCS is the large bandwidth over which

atomic coherence may be established. We tuned the comb frequencies to not

only be two-photon resonant, but also resonant with two different intermediate

states separated by 7 THz. In this experiment we demonstrate the phase sensitive

excitation of a closed-loop four-level system in a diamond configuration. Using a

spatial light modulator based pulse shaper, we adjusted the relative phase of the

two different two-photon transition pathways. We measured a sinusoidally varying

two-photon transition rate as a function of the pulse shaper phase, with a fringe

visibility of up to 69%. As a final example of high-resolution coherent control,

we adjusted the spectral phase of the pulses to force constructive interference

between the two-photon amplitudes that arise from the many thousands of mode

pairs detuned from an intermediate state. This resulted in an increase of the

two-photon transition rate by approximately 250%.
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Chapter 1

Introduction

In the last decade it became possible to stabilize the optical phases of the

pulses from a mode-locked laser [1]. This technological achievement, together

with the stabilization of the pulse repetition rate, led to the optical frequency

comb. An optical frequency comb is a set of equally spaced discrete frequency

modes generally spanning 1 to 100 THz with an inter-mode spacing of 100 MHz

to 1 GHz. Perhaps the most revolutionary aspect of this new technology is that

it provides a phase coherent link between microwave and optical frequencies [2].

Whereas previous frequency chains used for the same purpose required immense

resources [3], the frequency comb is a rather simple device providing a vastly more

elegant solution.

The impact of the optical frequency comb in the last decade on the field of

high-precision spectroscopy has been significant [4, 5]. It has enabled the abso-

lute frequency measurement of atomic [6] and molecular transitions [7]. In these

measurements the optical comb served as a frequency ruler with which the ab-

solute frequency of the cw-laser used for spectroscopy was determined. Similarly

the comb can be used to make an optical clock. By locking a comb mode to a

cw-laser, which in turn is locked to an optical transition, the repetition frequency

may be counted electronically to serve as a clock. This has been demonstrated

on a single trapped Hg+ ion [8] and in molecular Iodine [9] as couple of examples.
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Recently a fractional frequency uncertainty of 1 part in 1016 was measured using a

neutral Strontium lattice clock [10]. In this measurement the optical comb served

a second purpose, it allowed for a phase coherent comparison in the optical domain

between the Sr transition frequency and a remote Ca clock optical transition.

We present some of the first experiments demonstrating direct frequency

comb spectroscopy (DFCS). In the previously mentioned applications of optical

frequency combs the atoms or molecules were excited by a cw-laser, the comb was

only used to measure the absolute frequency of the cw-laser. Direct frequency

comb spectroscopy uses the comb itself to excite the atomic transitions. One of

the major advantages of using the comb directly to excite the atoms is the broad-

bandwidth of the comb spectrum. For example, in our experiments we measure

one- and two-photon transitions using wavelengths from 795 nm to 741 nm from

our single Ti:Sapphire laser.

Figure (1.1) shows the time- and frequency-domain pictures of direct fre-

quency comb spectroscopy. The time-domain picture is very similar to Ramsey

spectroscopy extended to multiple phase coherent pulses. For a two-level atom

initially in the ground state the first pulse excites some population, which also

creates an atomic coherence. Between pulses the atomic coherence acquires phase

at natural frequency. Depending on the inter-pulse delay and optical phase the

second pulse will either excite more population or de-excite population. In Fig.

(1.1) the left panels correspond to a comb tuned on-resonance with the two-level

transition, and in the right panels the comb is off-resonance. The middle panels

show the excited state populations after each pulse. After the first pulse there is

an equal amount of population excited regardless of the comb detuning. This is

because the resonance condition is established by the interference between two or

more pulses. When the comb is on-resonance the population grows quadratically

versus the number of excited pulses. Strictly speaking, the quadratic scaling is
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only for small excited population and without any dephasing processes. When the

comb is tuned off-resonance the population excited by the first pulse is de-excited

back to the ground state. Notice in the bottom panels the spectrum after two

pulses is modulated sinusoidally, with peaks separated by the inter-pulse period.

After more than two pulses the peaks become sinc2 functions with a width in-

versely proportional to the total duration of the pulse train. In the limit of an

infinite number of pulses the peaks are given by delta functions, this is the origin

of term frequency comb. The general idea behind using multiple pulses for high-

resolution spectroscopy is that the resolution is no longer limited by the spectral

width of a single pulse, but rather the total coherent excitation time. In principle

the total coherent excitation time is only limited by the natural lifetime of the

atomic transition under study.

This idea of using multiple phase-coherent pulses for high-resolution spec-

troscopy was first proposed in 1976 by Hänsch [11]. In his proposal the atomic

sample was to be placed inside an optical resonator in which the short pulses pass

through the atoms multiple times. By tuning the resonator length the inter-pulse

delay could be adjusted for resonance with a specific atomic transition. Shortly

after this proposal two experimental demonstrations were conducted. In 1977

Salour and Cohen-Tannoudji conducted Doppler-free two-photon spectroscopy of

the 3S to 4D transition in sodium using two phase coherent 5 ns pulses [12, 13].

Peaks in the 4D excitation were observed as a function of the inter-pulse delay,

which was adjusted by an optical delay line. At the same time Teets, Eckstein, and

Hänsch used multiple phase coherent pulses to measure the 3S to 5S two-photon

transition [14]. In their experiment the atoms were excited by multiple passes of

a single 6 ns pulses bouncing between the end mirrors of a variable length Fabry-

Perot cavity. This principle was then applied in 1978 by Eckstein, Ferguson, and

Hänsch to measure the 4d fine-structure splitting in sodium to be 1028 MHz [15].
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Figure 1.1: Time and frequency domain pictures of excitation of a two-level system
by a series of pulses. The top two panels show the time domain picture of the
pulses, the only difference between the left and right side is the optical phase of
the pulses. In the case of the left panels, there is a comb mode on resonance.
For the right panels there is no comb mode resonant. The middle panels show
the excitation in terms of population for the two-level atom. Notice that the
first pulse has the same effect for both on and off-resonance. In the case of the
on-resonance pulse train the second pulse adds to the population. For the off-
resonance case the second pulse de-excites the population. In the bottom panels
we show the positions of the spectral peaks after 1,2,3 pulses in relation to the
atomic transition frequency.
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Perhaps the most closely related experiment to our own was conducted in 1996

by Snadden et. al. [16]. They used a cavity stabilized mode-locked Ti:Sapphire

laser to conduct two-photon spectroscopy of Rb atoms in a magneto-optical trap.

In particular they measured the 5S to 5D and 7S transitions and improved the

estimate of the 7S hyperfine constants for both 86Rb and 85Rb. One very impor-

tant difference between all the above experiments and our own is that they only

conduct relative measurements. In other words only frequency splittings between

closely spaced levels are determined. This is due to the fact that they only stabi-

lize the frequency difference between comb modes, not the absolute frequency of

the modes. We will discuss this important point further in section (2.1.1).

Figure (1.2) shows the two possible configurations for two-photon transi-

tions. So far all of the experimental demonstrations discussed excited a ladder

type configuration, Fig. (1.2)(a). The total two-photon transition frequency is

given by the sum of two comb mode frequencies. So to determine the absolute

transition frequency, the absolute frequency of each mode must be known. Due

to the equal spacing of comb modes if any pair of comb modes is two photon

resonant, then all modes are part of a two-photon resonant pair. In this figure

we give an example where the two-photon transition is twice the frequency of the

N th comb modes. Therefore, the N − 1 and N + 1 modes also form a two-photon

resonant pair. The second configuration is shown in (b), this is known as a Raman

transition. In this case a photon from one mode is absorbed and a second photon

is stimulated to emit into a second mode. The two-photon resonance condition is

only a function of the difference in frequency between two modes. So the abso-

lute frequency of this type of transition may be determined from only the spacing

between comb modes.

In 1981 Mlynek et. al. conducted high-resolution spectroscopy of a Raman

transition in sodium using a mode-locked laser [17]. They achieved very narrow ∼1
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Figure 1.2: (a) Ladder type two-photon transitions in which the total transition
frequency is the sum of two comb mode frequencies. (b) Raman type two-photon
transition in which the total transition frequency is the difference between two
comb mode frequencies. Due to the equal spacing of comb modes if any two
modes are two-photon resonant then all modes in the spectrum are part of a
two-photon resonant pair.
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kHz FWHM two-photon transition linewidths, much narrower than the bandwidth

of the laser used for excitation. This was possible due to the fact the two-photon

transition frequency in a Raman transition is only a function of the inter-mode

frequency spacing. A particularly interesting use of multiple pulses to excite a

Raman transition was conducted in 1991 by Weiner et. al. [18]. They generated

a phase coherent pulse train with a repetition rate of the order 1 THz. This was

done by passing a single femtosecond duration pulse through a pulse shaper with

a sinusoidally varying phase mask. One property of this type of phase mask is

that the single femtosecond pulse becomes a short burst of weaker pulses with

an inter-pulse spacing given by the period of the sinusoidal phase mask. They

conducted selective excitation of Raman transitions in a molecule by adjusting

the inter-pulse period.

The direct frequency comb spectroscopy that we present in this thesis rep-

resents a distinct evolution of these previous experiments. In all of the previously

mentioned experiments the absolute frequency of the comb modes was not known

and subject to drift. This placed a limit on the types of measurements that were

possible to either Raman transitions or only measuring the difference between two

ladder type transitions. We not only stabilize the inter-mode spacing of the comb

but also the absolute frequency of each mode to a cesium reference. This allowed

us to demonstrate high-resolution spectroscopy of ladder type two-photon transi-

tions and measure the absolute transitions frequencies. In chapter (4) we present

an explanation of several sources of systematic error and the DFCS results for

both one- and -two-photon transitions.

Not only can the frequencies of the comb modes be adjusted, but the phases

as well. Recall that for a two-photon transition all modes in the comb may

contribute to the excitation. By adjusting the phases of the comb modes, it is

possible to control the two-photon excitation rate using the interference between
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multiple two-photon transition pathways. Coherent control is the ability to control

the excitation of a particular quantum state by changing the phases of multiple,

interfering, transition pathways. In chapter (5) we demonstrate coherent control of

the excitation to a particular hyperfine level by applying linear frequency chirp to

our pulses. This is an example of quantum interference between many thousands

of two-photon transition amplitudes arising from different optical pathways. Due

to the multi-level structure of Rb, it is also possible to have quantum interference

between transitions via different intermediate states. In chapter (6) we tuned

the comb to be resonant with a particular 5D hyperfine state, via two different

intermediate states. This experiment utilized four resonant comb modes in a

diamond type excitation configuration. By adjusting the phase of the comb modes

near-resonant with one of the intermediate states we controlled the two-photon

transition rate. Much like an optical interferometer we recovered a sinusoidally

varying excited state population with a fringe visibility of 69%.



Chapter 2

Experimental Apparatus

In this chapter we briefly present the basic apparatus used in our experi-

ments. The two main components are the Ti:Sapphire laser with its stabilization

subsystem, and the rubidium MOT. There are many resources for more in-depth

explanations of both the laser system, frequency comb stabilization, and construc-

tion of a MOT. For our coherent control experiments we provide more detailed

explanations of the different pulse shaping apparatus in sections (5.2,6.1).

2.1 Ti:Sapphire Laser

The foundation for all of the experiments presented in this thesis is the

optical frequency comb [19]. In this section the design and frequency stabilization

of our Ti:Sapphire laser will be explained. Our optical frequency comb is generated

from a mode-locked Ti:Sapphire laser. The Ti:Sapphire crystal is pumped with

5.5 Watts of 532 nm light from a Coherent Verdi laser. It uses passive mode-

locking based on the nonlinear refractive index of the Ti:Sapphire crystal itself.

This design is referred to as Kerr lens mode-locking (KLM) because of the role of

the Kerr nonlinearity.

Mode-locking is when many thousands of the longitudinal modes of the

laser are not only lasing but are in phase at some spatial location so a pulse is

formed. The large gain bandwidth of the Ti:Sapphire crystal and intra-cavity
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dispersion compensation allowed us to operate with a FWHM spectrum from 30

nm to 65 nm, depending on the experiment. With such a large bandwidth of

longitudinal modes oscillating in-phase the peak field intensity in the laser can be

very large, particularly in the crystal. Due to the Kerr effect the radial intensity

profile causes a radial index gradient; much like a gradient index lens this causes

focusing. However, for the low peak field of cw-lasing there is no Kerr lens effect.

By offsetting the cavity focusing mirrors to account for the extra Kerr lensing the

laser preferentially lases with high peak fields. Typically we operate the laser such

that the power output is at least 20% higher mode-locked versus cw.

In our cavity design we use a prism pair to compensate for the dispersion

of the Ti:Sapphire crystal. Although it is possible to operate in a soliton mode,

we typically do not have the signature sech2 spectrum of a soliton. Instead the

spectrum usually has a tail to the IR, see for example Fig. (6.4). The typical

output power is about 450 mW mode-locked at a repetition rate of ∼100 MHz

and center wavelength of 778 nm. About 30% of the output power is used for

the interferometer to stabilize the offset frequency, see subsection (2.1.3). Before

detailing the laser stabilization we explain the properties and relevant parameters

of an optical frequency comb.

2.1.1 Optical Frequency Comb

An optical frequency comb is simply an electric field composed of many

equally spaced discrete frequencies (comb modes), typically in the visible to in-

frared regions of the spectrum. The beauty of the optical frequency comb is the

ease with which the comb mode frequencies can be referenced to a microwave ref-

erence such as a cesium. This allows typically >100,000 separate comb modes each

with an absolute optical frequency referenced to a convenient frequency standard.

The frequency spectrum of an ideal (noise and drift free) mode-locked laser
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is an optical frequency comb. In practice, there are noise sources that affect the

time between pulses and optical phase of the pulses on short and long time scales.

So the trick to producing a useful frequency comb is to reduce or counteract the

noise sources. In this section, we focus mainly on counteracting the slow noise

sources, especially slow drift, with a bandwidth of up to ∼5 kHz. Other techniques

for reducing the linewidth of the comb by locking to a stable optical laser or cavity

can be found in reference [20].

Each comb mode frequency is uniquely specified by an integer mode order

number and the two comb degrees of freedom [21]. Strictly speaking a comb has

many more degrees of freedom when one considers the phase of each mode. In our

coherent control experiments, we extend the usual picture of the comb to include

the phases of each mode. However, if the spectral phase of each pulse in the pulse

train remains the same, the comb mode frequencies are unaffected.

Figure (2.1) shows the electric field for a few ultrashort pulses in time domain

(a) and the frequency spectrum corresponding to an infinite train of such pulses

(b). Each pulse in time domain has the same envelope, shown as the dashed

line, under which is the carrier electric field. Notice that the peak of the electric

field for the first pulse is aligned with the peak of the envelope. However, in the

second pulse the carrier electric field is slightly shifted from the envelope peak by

an amount ∆φceo. The carrier-envelope offset phase is defined for each pulse as

φceo, the change of this phase from pulse to pulse is ∆φceo.

The second important parameter is the inter-pulse period labeled τrep, its

inverse is the repetition frequency frep. In frequency domain the comb mode

frequencies are defined by frep and fceo, the two comb degrees of freedom. The

spacing between modes is frep and the offset of any mode frequency from an integer

multiple of frep is fceo. In terms of the rate of change of the carrier-envelope phase

fceo=frep∆φceo/(2π). Note that for the remainder of this thesis the repetition
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frequency is abbreviated to fr, and fceo to simply fo. With this definition of

comb degrees of freedom the frequency of a comb mode with order number N is

νN = N × fr + fo.

We will return to the origin of the carrier-envelope offset phase in the context

of locking fo. However, given the time domain picture of the pulses one can

already understand the effect ∆φceo has on the frequency spectrum. Consider the

interference between the first two pulses. If we take time equal to zero at the

peak of the first pulse, it has a Fourier transform given by the spectral envelope

with a constant zero phase. The second pulse is identical to the first except it is

temporally delayed by (1/fr) and has a phase offset of ∆φceo. Its Fourier transform

has the same amplitude spectrum with a spectral phase given by,

φ(ω) = ω × 1

fr
− ∆φceo. (2.1)

We chose a negative phase offset to be consistent with our definition of fo, it does

not change the frequency spectrum. The interference between these two pulses

will have maxima at every frequency for which φ(ω) = 2πN . Solving the above

equation, we get νN=Nfr + ∆φceofr/(2π) as expected. Note that the frequency

of any comb mode can be defined with either positive or negative fo, we use both

signs in our definition of comb frequencies so the magnitude is always less than

fr/2.

2.1.2 Repetition Rate Stabilization

The repetition rate of the laser is servoed by adjusting the cavity length

directly. The output coupler is mounted on a fast ring PZT such that the beam

passes through the center. Considering our laser center wavelength is about 778

nm and fr is 100 MHz the comb order numbers N are of the order 4×106. So

it is necessary to stabilize fr very well because any phase noise in the repetition
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Figure 2.1: (a) Time domain picture of a pulse train with the relevant degrees of
freedom labeled. ∆φceo is the phase offset of the electric field from the peak of the
envelope, notice the first pulse has no offset phase. The time between pulses is
τrep and is the inverse of the pulse repetition frequency fr. (b) Frequency domain
spectrum (amplitude only) of the comb corresponding to an infinite number of
pulses. fr sets the frequency spacing between modes and fceo is the offset frequency
of every mode from an integer multiple of fr. fceo is given by ∆φceo × fr/(2π) and
the N th comb mode has an optical frequency given by N × fr + fceo.
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frequency is multiplied to the optical domain by N . To achieve better phase

sensitivity, we lock to the 10th harmonic of fr rather than the fundamental.

A small fraction of the output power is reflected off of a Brewster window to

a fast >1 GHz photodiode. The majority of this signal is then bandpass filtered

and amplified before it is mixed with the local oscillator. Some of the power is sent

to a cesium referenced counter that counts the 100 MHz repetition rate for our

adjustments of the comb mode absolute frequencies. Our local oscillator signal

for locking fr is primarily from the 1 GHz output from a Wenzel crystal oscillator.

To allow for easy tuning of fr the 1 GHz Wenzel signal is mixed with the signal

from a direct-digital synthesizer (DDS). We only operated the frequency of the

DDS at about 10 MHz or less. So for example, if we desired a fr of 99 MHz, we

locked the laser to the 990 MHz sideband produced by mixing the Wenzel with

the DDS at 10 MHz. Although our typical fr locking was done no more than

±0.5 MHz from 100 MHz. The error signal produced from mixing the measured

fr harmonic and the local oscillator was then amplified and filtered using a JILA

loop-filter. The output of which was further amplified with a 1 kV PZT driver to

servo the high-voltage PZT and thus change the cavity length.

Clearly this is just an overview of basic fr locking. Reducing the laser

linewidth was not of great importance for our particular spectroscopy applications.

We have locked the laser directly to a Iodine stabilized NPRO:YAG laser with a

short time linewidth of ∼5 kHz at 1 ms. However, this did not improve our

measured two-photon transition linewidths. Primarily because the transition is

power-broadened to just over the spectral resolution limit of our laser linewidth,

see section (4.2) for a details. Tremendously better comb linewidths (<1 Hz) may

be obtained by locking the laser directly in the optical regime to a cavity stabilized

diode laser [22].
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2.1.3 Offset Frequency Stabilization

We used a technique called self-referencing to measure the fo of our fre-

quency comb [23]. This technique gets its name from the fact the fo signal is gen-

erated from the comb itself, rather than from a heterodyne beat with a separate

laser. A typical implementation of self-referencing requires an octave spanning

pulse spectrum. Our implementation uses an f-2f interferometer. The principle

is simple, if the pulse spectrum has two colors that are spaced in frequency by

one octave the long wavelength color may be doubled and mixed with the short

wavelength color, producing a fo beat note. More specifically, suppose we have

two frequencies in the broadened pulse spectrum,

νN = N × fr + fo

ν2N = 2N × fr + fo. (2.2)

If we double the frequency at νN , the heterodyne beat frequency between the

doubled light and ν2N is,

2νN − ν2N = 2(N × fr + fo) − (2N × fr + fo)

= fo. (2.3)

So the trick is to generate a phase coherent pulse spectrum that spans one octave.

It was the development of dispersion modified micro-structured fiber [24,

25] that enabled the first experimental demonstrations of self-referencing [1, 26].

Micro-structure fiber, also called photonic crystal fiber, exhibits two important

features for efficiently producing an octave spanning bandwidth. Micro-structure

fiber gets its name from the regular pattern of air holes that extend the length of

the fiber and surrounding the core, forming a photonic band gap to confine the

light. By tuning the waveguide dispersion of the fiber the net dispersion can be

made zero near the desired input pulse wavelength. Typically such a fiber has a
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core diameter of about 1.7 µm for a zero dispersion point at 800 nm. Confining

the pulse to such a small area can generate extremely large peak intensities, which

due to the zero dispersion property may persist through the fiber with minimal

pulse stretching. This combination of high intensity over a long interaction length

allows for efficient four-wave mixing. In practice we generate the necessary octave

of spectrum using 7-10 cm of fiber with about 150 mW of power.

An alternative approach to generating an octave spanning spectrum is from

the Ti:Sapphire laser itself. With a careful, and perhaps lucky, set of laser optics

and high intra-cavity power people have demonstrated fo detection using the

spectrum directly from the Ti:Sapphire laser [22, 27]. Another technique only

requires 2/3 of an octave spectrum. The fo beat is formed by doubling the high

frequency portion of the comb and mixing it with the tripled light from the low

frequency portion [28].

The design of our f-2f interferometer is based on a prism pair to separate the

two wavelengths we use for our beat note, 532 nm and 1064 nm. After the output

of the fiber the continuum is spectrally dispersed using two prisms. There are

two retro-reflection mirrors in the dispersed beams such that the two wavelengths

are reflected from different mirror. One of the mirrors is on a translation stage

to compensate for the different group delays of 532 nm and 1064 nm, so that

they overlap temporally. After a second pass through the prism pair the two

wavelengths are combined, ideally into one spatial mode. Both wavelengths are

focused through a 1 mm BBO crystal to double the 1064 nm portion of the

spectrum to 532 nm. To filter out all but the desired wavelength the beam is

sent through a 10 nm FWHM optical interference filter centered at 532 nm. Due

to the fact the doubled 1064 nm and original 532 nm are orthogonal polarization

after the BBO crystal we project the two polarizations modes onto a common axis

using a polarizer. The resulting heterodyne beat frequency is then measured on
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a photodiode.

The output of the photodiode is low-pass filtered at 50 MHz to attenuate

the significant amount of RF power at fr, which would saturate our amplifiers.

The filtered signal is then amplified to about -5 to 0 dBm. A directional coupler

is used to divert a small amount of the fo beat to an RF spectrum analyzer to

monitor the beat note. Usually we operate with no less than 35 dB signal to noise

in a 100 kHz resolution bandwidth, the best we’ve obtained is about 55 dB above

the noise floor.

Most of the fo signal is then sent to a digital phase detector and divided

down by 64. We divided down the signal from a typical fo of 18 MHz to about

∼280 kHz. This was done to make phase locking easier, phase excursions from

noise are reduced by 64 so it’s easier to retain locking, although less sensitive.

The phase stability is not as essential for fo as it is for fr, simply because fo is

only multiplied by unity in the comb mode frequency equation.

To understand how to servo the laser and thus control fo we must first

understand the origin of the phase, φce. Recall that φce is defined between the

pulse envelope, which travels at the group velocity vg, and the underlying electric

field, which travels at the phase velocity vp. In the laser cavity, the difference of vg

and vp results in a generally nonzero ∆φce given by ∆φce = lc ωc(
1
vg

− 1
vp

), where

lc is the cavity round trip length and ωc is the carrier frequency.

With this knowledge in mind it is clear that tuning the dispersion of the

cavity will also change fo. This was accomplished by tilting the end mirror of

our cavity, at which point the spectrum is spatially dispersed via the intra-cavity

prisms. The resulting wavelength dependent extra path length changes the group

velocity. Experimentally this was done by mounting the end mirror after the

intracavity prism pair on a split PZT that was driven differentially such that

the mirror tilts in response to the error signal [19]. The error signal generated
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by mixing the measured fo/64 with a local oscillator provided by a DDS was

amplified and filtered like the fr lock. To drive the split PZT this error signal

from the loop-filter was again amplified to ±0-150 V with a PZT voltage driver.

There are two outputs from the PZT voltage driver of equal and opposite voltages.

So that one half of the split PZT contracts when the other expands, causing the

end mirror to tilt. Alternatively, one can change the dispersion of the laser cavity

via control of the pump power [29]. This has the advantage of a much larger servo

bandwidth of ∼100 kHz.

2.2 Magneto-Optical Trap

All of our experiments were conducted on a laser cooled and trapped sample

of 87Rb using a magneto-optical trap (MOT). Many experiments using cold atoms

are conducted with a MOT, in particular using rubidium atoms [30]. There has

been a great deal of literature published on the experimental techniques and the-

oretical treatments of laser cooling. A basic laboratory guide to making a MOT

can be found in reference [31]. Informative references on the classical and quan-

tum theory of Doppler cooling may be found in references [32, 33]. The scaling

laws applicable to a MOT have been studied and presented in reference [34] and

similarly for the dynamics of the trapped atom cloud [35].

In our experiments we used a Rb vapor cell MOT [36], as opposed to a

trap loaded using an atomic beam. Experimentally this is simpler than using an

atomic beam, although typically less atoms are trapped. The atoms are sourced

from Rb getters, Ni-Cr alloy metal containing a salt of Rb atoms [37]. Inside the

glass chamber there are three getters, each can be supplied current separately, so

that when one is depleted another may be used. Typically we operate a single

getter at a current of 3.5 Amps, however, in one experiment this was lowered to

2.75 Amps to reduce the amount of hot background atoms, see section (6.2).
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We used grating stabilized laser diodes for the trap and repump light, with

wavelengths of about ∼780 nm. Both lasers were built by Dr. Adela Marian, who

started the DFCS experiments. I will not detail the design of the lasers in this

section, refer to her thesis [37] for some more detail and reference [38]. Instead I

will provide more of a hands on explanation of the diode laser system.

Both the lasers have two feedback mechanisms. The grating is mounted on

a fast disk PZT, and the diode laser current may be servoed as well. For coarse

adjustments of the laser wavelength the baseplates are cooled via Peltier TECs

below room temperature, however the current control is unipolar so they may

not be heated. Another coarse wavelength adjustment is the grating horizontal

control, which is usually adjusted by hand, but there is a PZT as well for fine

tuning. Finally for optimizing the grating feedback there is the vertical grating

adjustment, also controllable via PZT.

A typical alignment procedure is as follows. Initial coarse adjustments to

set the diode laser operating at the desired wavelength is done using a wavemeter

and the horizontal adjustment of the grating feedback. If in the tuning of the

grating the laser mode hops over the desired operating wavelength the baseplate

temperature should be adjusted, tuning the cavity length. Once this is done it

should be possible to tune the laser wavelength near the desired wavelength using

only the grating horizontal adjustment. The laser current may need to be adjusted

somewhat coarsely ±10 mA to obtain the exact wavelength. The usual current

settings are ∼75 mA for the trap laser and -65 mA for the repump. At this point

the grating feedback should be optimized using the vertical grating adjustment.

After careful adjustment of the vertical tilt the laser threshold current should be

∼24 mA, indicated by a clear jump in laser output power. With a voltage sweep

driving the fast PZT the saturated absorption spectrum is monitored on a scope.

Using both the fast PZT voltage offset and laser current we search for the sub-
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Doppler features. Adjustment of the laser current is usually necessary so that the

full set of hyperfine lines can be swept over without encountering a mode hop.

The trap and repump laser frequencies were stabilized using saturated ab-

sorption spectroscopy [39]. Figure (2.2) provides an example of the measured

sub-Doppler transmission lines using saturated absorption spectroscopy. With a

laser wavelength of about 780 nm, we measured four sets of lines from 5S1/2 to

5P3/2. In our spectrometer vapor cells there are two isotopes, 87Rb and 85Rb. For

each isotope there are two sets of lines separated by the ground state hyperfine

splitting, about 6.8 GHz for 87Rb. We chose to lock our lasers to 87Rb, and thus

optically cool only that isotope. Each line is labeled by its hyperfine quantum

number in Fig. (2.2).

Notice that there are several extra unlabeled transitions, these are referred to

as cross-over transitions and they occur at the average frequency of two hyperfine

transitions. This is due to the Doppler width of the atoms in the vapor cell.

Basically each cross-over line corresponds to saturating a velocity group of atoms

with a Doppler shift equal to half the spacing between two hyperfine levels. For

example, we lock the repump laser to the F=2-F=3 cross-over transition. The

hyperfine spacing between F=2 and F=3 is 156.9 MHz, so the repump laser output

is 78.45 MHz detuned from either hyperfine level for atoms at rest in the lab frame.

We used a few different types of saturated absorption spectrometers over the

course of our experiments. The repump laser was always frequency modulated at

about 4.6 MHz via direct current modulation. So in this case both the pump and

probe beams for the repump laser spectrometer are frequency modulated. For the

trap laser we either used off-set locking or frequency modulated the pump beam.

A side-lock was achieved simply by providing a stable voltage offset to the F=3

transition shown in Fig. (2.2). By adjusting the magnitude of the voltage offset

the detuning of the trap laser from the resonance can be tuned. the drawback
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Figure 2.2: Examples of the four sets of lines measured as transmission peaks using
saturated absorption spectroscopy. In our experiments we always lock to the 87Rb
isotope lines. The spectra correspond to the 5S1/2 to 5P3/2 hyperfine transitions,
there are two sets for each isotope. Unlabeled peaks are from crossover transitions,
as explained in the text. The blue bars in the bottom panel indicate the cross-over
transitions and the corresponding pair of hyperfine transitions.
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of this type of locking is that for a given voltage offset changes in signal size can

alter the detuning. For a more stable detuning we used the frequency modulation

technique, however, in this case the modulation was done using an EOM [40, 41].

In the case of FM spectroscopy the measured signal is demodulated, with the

appropriate local oscillator phase, the resulting lineshape is the first derivative

of those shown in Fig. (2.2). So there is a zero crossing at the peak of the

transmission through the cell, this provides a more stable reference.

To act as a shutter and shift the repump laser to the resonant F=2 transition,

an AOM operating at 78.45 MHz was used in the beam path of the repump laser.

We used the -1 order to shift to F=2 resonance. Similarly for the trap laser we

used two AOMs. The first AOM is operated with low RF power at a frequency

of about 88 MHz and the +1 order beam is sent to the spectrometer. When the

laser is subsequently locked to the atoms its frequency is pushed below that of

the F=3 transition by 88 MHz. The light transmitted through the first AOM is

then passed through a second, operated with the maximum +1 order diffraction

efficiency. By setting the frequency of this AOM to 80 MHz the resulting +1 order

beam is detuned 8 MHz below the F=2 to F=3 cooling transition.

In the context of each experiment we explain the specific MOT operation

timings. However, in general we cooled the atoms for only about 7 ms every 10 ms

using standard Doppler cooling. In our spectroscopy experiments a subsequent

polarization-gradient cooling (PGC) period is used to cool the atoms further to

sub-Doppler temperatures [42, 43]. With careful nulling of the magnetic field at

the atom sample temperatures of 20 µK may be reached using PGC of 87Rb. The

procedure for nulling the field is explained in section (4.2.4). During the PGC

cycle the trapping magnetic field was turned off and the trap laser was attenuated

and far-detuned (∼40 MHz) below the resonant F=2 to F=3 transition. There is

no central trapping force in PGC, however, there is a viscous force [44]. So the
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expansion of the atom cloud is slowed using the PGC cycle.

The description provided in this section is only meant to be an overview. In

actual practice the characteristics of the cooling and trapping were not routinely

measured, such as MOT diameters and number. Instead the alignment of the

trapping beams, magnitude of the trap magnetic field, and trap laser detuning

were optimized by monitoring our two-photon signal. Although for reference some

of the initial MOT characterization was done with a getter current of 3.5 A, a

trap laser detuning of 10 MHz, and a magnetic field current of 4.5 A. In this case

the measured atom number was ∼5×106 in a diameter of ∼0.5 mm [37].



Chapter 3

Theory

In this chapter we present two of the primary approaches used to solve for

the interaction of an optical comb with a multi-level atom. The different models

are best suited for understanding different aspects of our experiments. In the limit

of weak excitation, we used a model based on second-order perturbation theory

to calculate the two-photon transition amplitude. At higher fields we used a non-

perturbative approach based on the numerical solution of the Liouville equation

for the density matrix that includes optical pumping due to spontaneous decay.

When the primary interest is in the population distribution of all the hyperfine

states in the 5S, 5P, and 5D manifolds we used a fourth-order perturbation model

based on the Liouville equation. The following two sections provide a detailed

derivation of the two main models used and the particular situations for which

they are most suited.

There has also been a significant amount of literature published studying

different aspects of pulsed field interactions with atoms. Most of the work done

consisted of theoretical studies of the interaction of a two-level atom with high

intensity ultra-short pulses. In the context of an ultrashort pulse interacting with

a two-level atom, effects beyond the common rotating-wave approximation have

been investigated [45, 46, 47]. Deviations from the classical area theorem have

been predicted for intense ultrashort optical pulses [48]. Using the exact solution
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to the Liouville equation, including the counter-rotating terms, we have checked

that our experimental parameters are not in the range of those studied in the cited

works. Analytic expressions have been obtained for the interaction of a two-level

atom with a train of phase coherent pulses as well [49, 50]. One of the reasons

we present the models in this chapter is because the exact analytic solution for a

simplified system of three-levels and two-modes is complicated. However, we do

recommend the work of Brewer and Hahn [51] for an approximate solution and

Vitanov for a complete solution [52], and also Carroll and Hioe [53].

3.1 Second-Order Perturbation Theory

In this section, we provide a derivation of the equation for the excited state

amplitude in a three-level system under excitation by two-modes. The equation

is derived using second-order perturbation theory with phenomenological decay

included via a modified Hamiltonian. The focus is only on the derivation of

the relevant equation and the approximations made in this section. We use this

equation in subsequent chapters were the primary interest is in the phase of the

two-photon amplitudes corresponding to many different transition pathways. One

of the limitations of this approach is that it does not predict the Stark shift of

the excited state or power-broadening effects. Furthermore, the equation is only

applicable for the steady excited state population. We will address the modeling

of these non-perturbative and transient effects in the context of the Liouville

equation for the density matrix of the system in section (3.2).

The derivation we present follows most closely that found in the text by

Rodney Loudon, The quantum theory of light [54]. There are two key differences,

our derivation includes two time varying electric fields, and phenomenological

relaxation. Our goal is to derive the value of c3(t), the excited state amplitude,

valid to second order in the interaction Hamiltonian for the system shown in Fig.
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(3.1).
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Figure 3.1: Three-level cascade system with two dipole allowed transitions ex-
cited by two modes labeled A and B. For completeness we show all four possible
configurations of excitation, each gives rise to a two-photon amplitude. There is
only one configuration that is resonant with the intermediate and final states, the
amplitude due to this configuration is dominant.
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We start with the Hamiltonian for the system modified to include relaxation,

Ĥ(t) = Ĥo + ĤI(t), (3.1)

with,

Ĥo = (�ω2 − iγ2/2)|2〉〈2| + (�ω3 − iγ3/2)|3〉〈3|

ĤI(t) = −µ12Ẽ(t)|2〉〈1| − µ23Ẽ(t)|3〉〈2| + H.C., (3.2)

where we have defined,

Ẽ(t) =
1

2
(EAe−iωAt + EBe−iωBt). (3.3)

The relaxation is given in terms of the scattering rates for each excited state such

that γi=2π∆νi where ∆νi is the natural linewidth of state i in Hertz. Of course

electric fields are real quantities, so the relevant experimental field is given by,

E(t) = Ẽ(t) + Ẽ∗(t), where the magnitude of the fields are EA and EB.

The amplitude c3(t) is given exactly by the expression,

〈3|e−iĤ(t)/�|1〉, (3.4)

for an atom initially in the ground state. We wish to find the leading order

contribution to this expectation value relevant for three-level system. Within the

dipole approximation the ground state is only coupled to the excited state by a

two-photon interaction. Although we typically excite the 5S to 5D transition in

87Rb we are ignoring the weak quadrupole transition. So the leading order term

for two-photon absorption will be second order in the interaction Hamiltonian,

and thus Ẽ(t).

At this point we introduce a differential equation that is commonly used to

find an arbitrary order solution in perturbation theory. It can be easily verified

by carrying through the differentiation that,

eiĤot/�ĤIe
−iĤt/� = i�

d

dt

[
eiĤot/�e−iĤt/�

]
. (3.5)
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To put the previous equation into a useful form we integrate both sides and after

some rearranging arrive at,

e−iĤt/� = e−iĤot/�

[
eiĤoto/�e−iĤto/� − i

�

∫ t

to

eiĤot1/�ĤI(t1)e
−iĤ(t1)t1/�dt1

]
. (3.6)

If we make the interaction Hamiltonian zero at a time infinitely in the past

and assume all population is initially in the ground state, we can set to=−∞ and

simplify the above equation to,

e−iĤt/� = e−iĤot/�

[
1 − i

�

∫ t

−∞
eiĤot1/�ĤI(t1)e

−iĤ(t1)t1/�dt1

]
. (3.7)

The LHS of the above equation is the correct expression to solve for c3(t), however,

the RHS is a function of the total Hamiltonian Ĥ . At this point a common trick

in perturbation theory is used to arrive at an equation valid for any order of

the interaction Hamiltonian. Equation (3.7) can be substituted into itself for

e−iĤ(t1)t1/�, with the variable of integration changed in the substitution to t2. The

portion of the resulting equation second order in ĤI becomes,

e−iĤt/� =
−e−iĤo(t)/�

�2

∫ t

−∞
eiĤot1/�ĤI(t1)e−iĤot1/�dt1

∫ t1

−∞
eiĤot2/�ĤI(t2)e

−iĤot2/�dt2.

(3.8)

Strictly speaking, after only one substitution the last term in the above equation

should be, e−iĤt2/�. However, notice that upon one more substitution we would

only retain the first term in Eq. (3.7) for an expression second order in ĤI . So it

is valid to simply substitute e−iĤot2/� for −iĤt2/�. The resulting equation is exactly

what is needed to solve for c3(t) at second order in ĤI . In the derivation of this

equation we dropped several terms that were either not a function of ĤI or only

first order in this operator. It is not an approximation to drop those terms, the

expectation value for c3 given by any operator lower than second order in ĤI is

zero.

Now that we have the appropriate operator equation, the expectation value

can be calculated. This is done by inserting the unity operator as a sum over all
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states in between the two ĤI operators. In other words the equation for c3(t) is

now,

c3(t) =
∑

i

〈3|−e−iĤo(t)/�

�2

∫ t

−∞
eiĤot1/�ĤI(t1)e

−iĤot1/�dt1

×
∫ t1

−∞
eiĤot2/�|i〉〈i|ĤI(t2)e−iĤot2/�dt2|1〉. (3.9)

For the purposes of this derivation we are including only one intermediate state,

so the summation over |i〉 can be dropped. It is of course rather straight-forward

to see that the case for multiple intermediate states is just given by the coherent

sum of the amplitudes calculated using each state separately. After evaluating

the operators given by Eq. (3.2) we arrive at the c-number equation,

c3(t) =
−µ12µ23

�2
e−(iω3+γ3/2)t

∫ t

−∞
dt1

∫ t1

−∞
dt2e

(iω3+γ3/2)t1e−(iω2+γ2/2)t1

×e(iω2+γ2/2)t2Ẽ(t1)Ẽ(t2). (3.10)

Performing the integral over t2 the c-number equation becomes,

c3(t) =
−µ12µ23

2�2
e−(iω3+γ3/2)t

∫ t

−∞
dt1e

(iω3+γ3/2)t1e−(iω2+γ2/2)t1Ẽ(t1)

×
[
EAet1(i(ω2−ωA)+γ2/2)

γ2/2 + i(ω2 − ωA)
+

EBet1(i(ω2−ωB)+γ2/2)

γ2/2 + i(ω2 − ωB)

]
. (3.11)

We can start to interpret this result by noticing the two resonant denomi-

nators. These two denominators correspond to a photon from either mode A or

B exciting the electron from the ground to intermediate state. Considering these

two resonant denominators are to be multiplied by Ẽ(t1) we can see how the four

possible configurations shown in Fig. (3.1) arise. The main reason for mentioning

this is so that we may simplify the expression from this point, the full expression

is complicated and not necessary.

In all of our experiments we are only interested in the near-resonant or

resonant two-photon amplitudes. The two configurations that correspond to two-

photons absorbed from the same mode are in general not two-photon resonant
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and can be safely neglected. This leaves only two configurations, absorption of a

photon from mode A followed by B, and vice-versa. With this simplification the

two-photon amplitude becomes,

c3(t) =
µ12µ23EAEBe−iω3t

4�2

[
ei(ω3−ωA−ωB)

(ω3 − ωA − ωB) − iγ3/2

]

×
[

1

(ω2 − ωA) − iγ2/2
+

1

(ω2 − ωB) − iγ2/2

]
. (3.12)

The above form of the equation is used in the subsequent chapters. Some-

times we approximate this equation further when we are considering only the

ordered absorption from two modes, meaning we retain only one of the intermedi-

ate resonance denominators. The condition of two-photon resonance is met when

ωA + ωB = ω3. In this case notice that the amplitude evolves phase at its natural

frequency of ω3, often this phase evolution is not of importance and therefore

neglected.

This treatment based on second-order perturbation theory proved to be

quite useful in understanding our experimental results. One of the great advan-

tages of this method is that a total two-photon amplitude may be easily con-

structed by coherently summing the c3 calculated for each mode combination and

intermediate state [55]. Furthermore, it is the only model we use explicitly ex-

pressed in frequency domain, so it allows easy interpretation. For example, it is

easy to see the phase dependence of the two-photon amplitude as a function of

intermediate state detuning.
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3.2 Density Matrix Treatment

A state vector in Hilbert space is useful for describing a quantum system in

a coherent superposition of eigenstates. However, it is not sufficient to describe

arbitrary quantum states of an ensemble, which in general may be in a mixed

state.

In our experiments we must treat the population relaxation due to sponta-

neous emission. Suppose at some initial time an ensemble of atoms is prepared

such that every atom is in an excited electronic state. After some period of time,

half of the atoms will have undergone spontaneous emission and the electron in

those atoms will relax to the ground state. In this example, half of the atoms

are excited and half are in the ground state. The probability of finding an atom

in a certain state is entirely classical, as opposed to a quantum superposition of

states. If one considers the subsequent interaction of this system with a resonant

pulse of area π/2 the difference becomes more clear. More generally the state of

an ensemble can be have quantum superpositions and classical distributions, this

is referred to as a mixed state.

To account for incoherent population distribution due to spontaneous emis-

sion, we model the state of our system using a density matrix [56]. In terms of the

amplitudes of the familiar state vector based approach, the elements of the density

matrix are defined as, ρij=〈cic
∗
j〉. So all density matrix elements are defined as

ensemble averages. Matrix elements in which i = j are typically called population

terms, more appropriately they correspond to the probability of the system being

in state i. For a closed system, like ours, the sum of the population terms is unity.

The off-diagonal terms in which i �= j are referred to as the coherences.

Coherences are in general complex numbers that range in magnitude from 0 to

0.5. In our previous example of spontaneous emission causing half of the atoms to
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be in the ground state the coherence term would be zero. The maximal coherence

case of 0.5 would correspond to all the atoms in the ensemble being in an equal

superposition of the ground and excited states with the same phase.

The time evolution of the density matrix is governed by the Liouville equa-

tion. A convenient form of this equation including relaxation can be found in

the text by R. W. Boyd, Nonlinear Optics [57]. In the remainder of this section,

a brief overview of the density matrix model is introduced highlighting points

relevant to our implementation.

We start with the following form of the Liouville equation,

ρ̇ij =
−i

�

∑
k

[Hikρkj − ρikHkj] − 1

2

∑
k

[Γikρkj − ρikΓkj] + FeedingTerms (3.13)

where the sum is taken over all states and the relaxation operator is defined

as Γij = γijδij . The feeding terms account for incoherent population relaxation

from higher energy states to lower energy states. The only loss of population

we expect in our experiment is due to ionization, which over the duration of our

measurements is negligibly small [58]. Therefore with the inclusion to the feeding

terms the total population remains unity.

The full set of Liouville equations for a four-level system in a diamond

configuration are calculated using Eq. (3.13) and listed below. We present the

four-level equations because they include the effect of branching ratios and can

easily be simplified to a two- or three-level system.

Populations:
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ρ̇11 =
iE(t)

�
[µ12(ρ21 − ρ12) + µ13(ρ31 − ρ13)] + (γ2ρ22 + γ3ρ33) (3.14)

ρ̇22 =
iE(t)

�
[µ12(ρ12 − ρ21) + µ24(ρ42 − ρ24)] − γ2ρ22 + γ42ρ44 (3.15)

ρ̇33 =
iE(t)

�
[µ12(ρ13 − ρ31) + µ34(ρ43 − ρ34)] − γ3ρ33 + γ43ρ44 (3.16)

ρ̇44 =
iE(t)

�
[µ24(ρ24 − ρ42) + µ34(ρ34 − ρ43)] − γ4ρ44 (3.17)

Coherences:

ρ̇12 =
−i

�
[ρ12(E1 − E2) + µ12E(t)(ρ11 − ρ22)

−µ13E(t)ρ32 + µ42E(t)ρ14] − γ2

2
ρ12 (3.18)

ρ̇13 =
−i

�
[ρ13(E1 − E3) + µ13E(t)(ρ11 − ρ33)

−µ12E(t)ρ23 + µ43E(t)ρ14] − γ3

2
ρ13 (3.19)

ρ̇14 =
−i

�
[ρ14(E1 − E4) + E(t)(µ24ρ12 − µ12ρ24

+µ34ρ13 − µ13ρ34)] − γ4

2
ρ14 (3.20)

ρ̇23 =
−i

�
[ρ23(E2 − E3) + E(t)(µ13ρ21 + µ43ρ24

−µ12ρ13 − µ24ρ43)] − γ2 + γ3

2
ρ23 (3.21)

ρ̇24 =
−i

�
[ρ24(E2 − E4) + E(t)µ24(ρ22 − ρ44) + E(t)(µ24ρ23

−µ12ρ14)] − γ2 + γ4

2
ρ24 (3.22)

ρ̇34 =
−i

�
[ρ34(E3 − E4) + E(t)µ34(ρ33 − ρ44) + E(t)(µ24ρ32

−µ31ρ14)] − γ3 + γ4

2
ρ34 (3.23)

In the above equations, the energy of state i is Ei and the electric field E(t)

is the real electric field. The equations for the populations contain the previously

mentioned feeding terms. For example, the equation for ρ11 has been modified

with +(γ2ρ22 + γ3ρ33), so all of the population relaxation from states 2 and 3
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branches to the ground state. A slightly different case is for ρ22, this has been

modified with +γ42ρ44. Where γ42 is the decay rate of state 4 multiplied by the

branching ratio to state 2. In this case, the population in state 4 relaxes to the

two intermediate states, so the proper branching ratio must be included. One

thing to note is that the coherences are complex quantities that obey the relation,

ρ12=ρ∗
21.

We use a numerical approach to solving the set of coupled ordinary dif-

ferential equations. Generally a fourth-order Runge-Kutta (RK4) algorithm is

sufficient. However, in the current form of the coherences they evolve phase at

approximately their natural frequencies, i.e. very fast. To significantly reduce

the numerical error it is necessary to make a change of variables. We use the

substitution, ρij=ρ̃ije
iωjit, where ωji=ωj − ωi. Under this change of variables the

natural phase evolution of the coherences is explicitly in the equations of motion.

Even after the change of variables for the coherences the time step setting

for the RK4 algorithm must be less than an optical period. This is due to the E(t)

term. In some of our applications the field in time domain is generated directly

by Fourier transforming the measured pulse spectrum with some arbitrary phase

mask, so it is a numerically generated time series. If this is not the case and we use

an analytic expression for the field, we can invoke the rotating-wave approximation

(RWA). This is done by expressing the field as, E(t) = EoA(t)1
2
(eiωot + e−iωot)

where A(t) is the slowly varying envelope and ωo is the carrier frequency of the

pulse. After this substitution, terms that evolve at ∼ 2×ωo may be dropped from

the equations of motion. Having performed a comparison between the solutions

with and without the RWA, for our typical experimental conditions, the difference

is entirely negligible. After invoking the RWA the time step need only be short

enough in duration to sample the pulse envelope. Note that this explanation is

only valid for transform limited pulses, we did not use the RWA when considering
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chirped pulses.

So far we have only described the approach used to numerically solve the

equations of motion during excitation by a single pulse. To extend this model for

excitation by a coherent pulse train we break up the solution into a numerical part

and an analytic part. Clearly this is necessary considering the time scales of the

problem. The numerical solution evolves the initial density matrix from time zero

to some time after one pulse, where the pulse peak field occurs at the middle of

this time window. The coherences and populations may be solved for analytically

between pulses because the driving field is zero. The analytic evolution of the

coherences is simply free-evolution of phase at the natural frequency and decay

due to spontaneous emission.

Due to the large time between pulses compared to the pulse duration, most

of the incoherent population redistribution occurs between pulses. During this

field-free time, the equations for the populations with E(t)=0 can be analytically

solved. The resulting equations are,

ρ11(t) = (1 − e−γ2t)ρ22(0) +
γ2γ42ρ44(0)

γ2 − γ4
[

1

γ2
(e−γ2t − 1) − 1

γ4
(e−γ4t − 1)]

+(1 − e−γ3t)ρ33(0) +
γ3γ43ρ44(0)

γ3 − γ4

[
1

γ3

(e−γ3t − 1) − 1

γ4

(e−γ4t − 1)]

+ρ11(0) (3.24)

ρ22(t) = e−γ2tρ22(0) +
γ42

γ2 − γ4
ρ44(0)[e−γ4t − e−γ2t] (3.25)

ρ33(t) = e−γ3tρ33(0) +
γ43

γ3 − γ4

ρ44(0)[e−γ4t − e−γ3t] (3.26)

ρ44(t) = ρ44(0)e−γ4t. (3.27)

Where the time, t, is the inter-pulse period and all initial populations are ρii(0).

The initial populations are given by the density matrix after the previous pulse.

This two step process of solving for the density matrix is then simply repeated for

some desired number of pulses.
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For a complex level structure the direct numerical solution for the density

matrix becomes increasingly difficult. The number of equations that must be

solved grows as the square of the number of states. So for example in 87Rb

there are 16 hyperfine levels to consider in the full 5S to 5P to 5D interaction,

this would correspond to solving 162=256 coupled ordinary differential equations.

One alternative is referred to as the quantum Monte Carlo wavefunction approach

[59]. In this type of treatment the number of equations grows linearly with the

number of states. However, it is a stochastic model in which spontaneous emission

events occur at random times. So to obtain high quality results representing an

ensemble of atoms the model must be solved many times.

To model the full set of 16 hyperfine levels we used fourth-order perturbation

theory based on the Liouville equation. I will not present the details of this model

but rather some of the key approximations made in its derivation. The model was

derived and implemented in C-code by one of our very talented collaborators, Dr.

Daniel Felinto [60]. In this model the excitation of the full set of hyperfine levels is

calculated for an impulsive pulse train to fourth-order in perturbation theory. The

impulsive approximation is used when the spectral width of the exciting pulse is

significantly larger than the frequency spread of the hyperfine levels [50]. Clearly

a delta function (impulsive) electric field has an infinitely broad spectrum and

no carrier-frequency need be defined. The only input to this model to describe

the field is an area parameter, which is defined as the pulse area with a dipole

moment given by, µ = eao, where e is the electron charge and ao is the Bohr

radius. It should also be noted that the dipole moments used in the model are

given by the root-sum-of-the-squares of the individual dipole moments for each

magnetic sub-level transition. These are calculated directly in the software, so

either polarization q=(1,0) may be used. However, note that this approximation

forces all dipole moments to be positive, see section (6.2) for an example of when
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this approximation breaks.

One of the useful features of this model is that it does remarkably well at

predicting the population distribution due to incoherent optical pumping. In fact

we used this model to normalize one of our measured lineshapes in section (4.4)

to account for optical pumping effects. An introduction to this model outlining

the general approach may be found in the thesis of Dr. Adela Marian [37].



Chapter 4

Direct Frequency Comb Spectroscopy

In this chapter we present our experiments demonstrating single and two-

photon direct frequency comb spectroscopy (DFCS). We have conducted all of

our experiments using 87Rb atoms trapped and cooled prior to measurement in

a MOT. This choice of atom is not only convenient from an experimental point

of view for laser cooling and trapping, but also the energy level structure of the

5S, 5P, and 5D states is well known from previously published experiments. Fur-

thermore, this is the first experiment to use an optical frequency comb to directly

conduct high-resolution absolute frequency measurements, so we may easily com-

pare our results to those obtained with traditional cw-laser spectroscopy.

The full set of hyperfine levels that may be excited by our Ti:Sapphire laser

spectrum is shown in Figure (4.1). We indicate the 5S1/2F=2 to 5P3/2F=3 to

5D5/2F=4 transition by the red lines. This is a particularly important two-photon

transition, it will be the basis for our experimental demonstration of coherent

accumulation in section (4.1) and our studies of systematic errors in section (4.2).

Not only does this transition have the largest dipole moments, but it is also

closed, meaning all excited population returns to the 5S1/2F=2 ground state. The

broadband nature of DFCS can be understood directly from this figure, notice

the range of wavelengths span ∼54 nm, we in fact measure transitions over all of

the indicated wavelengths. One important wavelength not indicated in this figure
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corresponds to half of the 5S to 5D two-photon transition frequency at 778 nm, we

generally center our spectrum at this wavelength. The 5P3/2 intermediate states

are at ∼1 THz below the half two-photon frequency and the 5P1/2 states at ∼8

THz below. The lifetime of population in a 5P states is taken to be 27 ns, 241 ns

for the 5D states [61], and 88 ns for the 7S states [62]. So the natural linewidths

of the 5P states are 6 MHz, ten times broader than the 5D state linewidth of 660

kHz. Keep these numbers in mind as we will manipulate the comb frequencies

and spectral phases around these real intermediate states.

We use the femtosecond pulses emitted by the mode-locked Ti:Sapphire laser

to directly excite the one or two-photon transition we wish to study. Generally

the laser is operated with a ∼55 nm FHWM spectrum centered at 778 nm that

we approximate to be Gaussian for modeling purposes. At our repetition rate of

fr ∼100 MHz, this yields about 200 nW of power per comb mode near the center

wavelengths used to excite the 5S to 5D transition. To probe the atoms the light

is focused with a 1 m focal length lens to a beam waist radius of ∼160 µm, so the

on-axis per mode intensity is ∼0.8 mW/cm2. These numbers are only meant to

provide a rough idea of the intensities we used, over the course of our experiments

this has changed depending on the particular application. Figure (4.2) illustrates

the basic idea of resonantly enhanced two-photon DFCS. For all of our two-photon

spectroscopy experiments we set the fr and fo of the comb such that only two

modes from the comb laser spectrum were resonant or near resonant with three

states. We will discuss the effect of the many thousands of other comb mode pairs

that are two-photon resonant but detuned from an intermediate state in Chapters

(5) and (6). A comb mode with mode order number N1 has an optical frequency

given by νN1 = N1 × fr + fo and is detuned from the closest intermediate state

by δSP . Similarly a second comb mode N2 completes the two-photon transition.
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Figure 4.1: Energy level structure of all the relevant 87Rb states for our experi-
ments. The three red levels indicate the only closed transition.
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Figure 4.2: Diagram of the optical frequency comb and a near resonant three-
level sub-system of 87Rb. All of the DFCS experiments we present utilize only
two resonant comb modes as shown in this figure. The notation and equations
for the comb mode frequencies νN1 and νN2, and detunings δSP and δSD, are
used throughout this chapter. For two-photon spectroscopy we detect the 420 nm
spontaneously emitted photons indicated by the dashed blue line from 6P to 5S.
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The total two-photon optical frequency is given by,

ν2γ = (N1 + N2) × fr + 2 × fo. (4.1)

The two-photon transition lineshape and frequency is measured by shifting either

fr or fo, and thus changing the excited state detuning δSD. A convenient detection

technique for our 5D and 7S two-photon spectroscopy is via the 5D to 6P to 5S

cascade fluorescence at 420 nm. We count photons using a PMT sensitive to this

420 nm light to infer the 5D or 7S populations, strictly speaking we only need to

know our signal is directly proportional to the excited population, the absolute

value is not essential. In section (4.4) we also measure some 5S to 5P transition

frequencies using single photon DFCS, we measured the 5P fluorescence directly

in those experiments. The details of our data acquisition process vary depending

on the specific measurement, and therefore are discussed in the context of each

experiment.

4.1 Coherent Accumulation Experiment

The first experiment we discuss provides a clear demonstration of the princi-

ple of coherent accumulation to achieve high spectral resolution. Chronologically

this experiment was actually conducted after the spectroscopy experiments pre-

sented later in this chapter. However, it is useful to present this work first because

it sets the conceptual foundation for direct frequency comb spectroscopy. In par-

ticular, we show the quadratic scaling of the excited population versus pulse num-

ber at short times, a characteristic of fully coherent atom-light interaction. We

also measure the two-photon transition linewidth versus the comb offset frequency

fo and total number of accumulated pulses to demonstrate the high-resolution we

obtain with direct frequency comb spectroscopy.

We excite the 5S1/2F=2 to 5P3/2F=3 to 5D5/2F=4 resonant two-photon
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transition versus a variable number of femtosecond pulses and fo settings. This

excitation is achieved by locking the Ti:Sapphire with fr=100.41356730 MHz and

fo=18.14 MHz. For this set of comb mode frequencies, mode number 3,826,456

is resonant from 5S1/2F=2 to 5P3/2F=3, and mode number 3,847,566 is resonant

from 5P3/2F=3 to 5D5/2F=4 within ∼ ±20 kHz. All other allowed two-photon

transitions within the ∼30 nm FWHM power spectrum of the laser are detuned

at least 8 MHz, and at least 13 MHz for single photon transitions. Given the ∼6

MHz 5S to 5P transition linewidth and 660 kHz 5S to 5D linewidth the mentioned

comb modes may be considered exactly resonant with the respective transitions.

This particular transition is used quite a bit in our experiments, for example

all the characterization of our systematic errors is conducted on this transition.

Due to the single photon transition hyperfine selection rule, ∆F=0,±1, this tran-

sition may only be excited via the 5P3/2F=3 intermediate state. More importantly

5D5/2F=4 may only decay back to 5P3/2F=3 or 6P3/2F=3, both of which may only

decay to 5S1/2F=2. We refer to this as a closed transition because all the excited

population relaxes back to the same ground state. All other one and two-photon

transitions from this ground state may relax to the 5S1/2F=1 state, thus reducing

the signal. This process of incoherent pumping to the off-resonant ground state

will be discussed further in the context of our spectroscopy experiments.

A second advantage of this two-photon transition is that it has the largest

dipole moments. We probe with linearly polarized Ti:Sapphire light in a nominally

zero magnetic field, so we can assume to excite only ∆mF =0 transitions. This type

of ∆mF =0 selection rule is often referred to as a transition with q=0. As opposed

to transitions with ∆mF =±1, which correspond to q=±1. The process of zeroing

the magnetic field is explained in subsection 4.2.4. There are in fact a total of 5

separate transitions from 5S1/2F=2 to 5D5/2F=4 corresponding to mF =±2,±1,0.

As mentioned in section 3 we do not model all of these states in our density
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matrix, but rather treat all the magnetic sub-levels as a single hyperfine level.

Each transition in this model then has an effective dipole moment given by the

root-sum-of-the-squares of each individual transitions dipole moment. Implied in

this approximation is that the magnetic sub-levels are uniformly populated, and

the signs of the dipole moments are irrelevant, an approximation that will be lifted

in section 6.2.

The timing diagram for this experiment is shown in Fig. (4.3). Similar to

the rest of our experiments we form a MOT for 7 ms every 10 ms. This means the

trap and repump lasers are turned on at time zero and the current to the anti-

Helmholtz coils is turned on for the trapping magnetic field. At 7 ms the trap

and repump lasers are turned off in ∼3 µs via AOMs and the current to the anti-

Helmholtz coils is turned off. For the next 2 ms the atoms are freely expanding as

the magnetic field turns off, refer to section ?? for a description of the magnetic

field systematics. During part of the remaining 1 ms the data acquisition occurs.

This 1 ms window is split up into many identical probing windows each of total

duration 5.09891 µs, which is equal to ∼ 512× 1
fr

. At the beginning of each ∼5 µs

sub-window the Pockels cell, used to turn on/off the Ti:Sapphire laser light to the

atoms was switched on. A variable duration TTL signal generated by a SRS-535

digital delay generator was used to trigger the Pockels cell high voltage driver, and

thus transmit a variable number of femtosecond pulses to the atoms, denoted as

M-pulses in Fig. (4.3). To ensure that the number of transmitted pulses remains

constant the SRS-535 was triggered synchronously with every 512th femtosecond

pulse. This was done by digitally dividing down the fr signal directly from the

Ti:Sapphire laser so the Pockels cell trigger was always phase locked to the 512th

sub-harmonic of fr. We only conducted this experiment with total transmitted

pulse numbers between 1 and 150, so the longest the Ti:Sapphire was ever on

during the 5 µs sub-window is 1.5 µs. That means there is at least 3.5 µs for the
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Figure 4.3: Timing diagram for the coherent accumulation experiment. The 1
ms duration measurement window is divided into separate excitation periods and
photon counting periods. During the first part of the 5 µs window the atoms are
excited by M femtosecond pulses transmitted via the Pockels cell. Immediately
following this period of excitation the laser is switched off and photons are counted.
This 5µs excitation and probing window is then repeated for 1 ms before another
MOT is formed.
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atoms to fully relax between sub-windows, many times the 5D and 6P excited

state lifetimes.

The signal for all of our two-photon excitation experiments is obtained by

counting 420 nm photons from the 6P to 5S spontaneous emission with PMT

as shown in Fig. (4.2). In this experiment we used a multichannel SRS-430

photon counter to count and temporally bin our signal. It was operated with

2048 sequential bins each of duration 40 ns, with the first bin triggered 500 ns

before the first Pockels cell trigger. So we measured the signal during the first

81.92 µs of the 1 ms window when the MOT optical and magnetic fields were off.

Each 5.09891 µs sub-window then corresponds to about 127.5 bins. With an error

of about 20 ns, or one-half a bin duration, we can then assign a time stamp to

each bin modulo 5.09891 µs. Although it is possible to plot the data as a function

of time, we are only interesting in the total integrated fluorescence after excitation

by M pulses.

To transmit a variable number of femtosecond pulses we used a four-crystal

KD∗P Pockels cell model 25D manufactured by Conoptics Inc as a high speed

shutter. It is designed to operate with a low half-wave voltage, which allows high

repetition rate switching. The advertised rise and fall times are ∼ 7.5 ns, which

is just slightly less than our 10 ns inter-pulse period. Our model Pockels cell has

one high quality polarizing beam splitter cube on the output, so it is necessary to

ensure high quality linear polarization of the input light. There are two voltage

settings on the high-voltage drivers itself, the bias voltage and maximum switched

voltage. Our high-voltage drive only supplies 175 Volts peak, slightly less than

the half-wave voltage. So depending on the bias voltage setting it can be operated

to either optimally attenuate power, or transmit the most power. We chose to

operate with the bias voltage set to minimize the transmitted power when the

cell is switched off. With the switched voltage set to maximum, the transmitted
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power is approximately 90% of the input power and the steady state on/off power

ratio is 100:1, using the entire 30 nm FWHM spectrum.

The pulse picking performance was measured with a fast-photodiode on a

suitably fast oscilloscope. While observing the photodiode voltage on the scope

the trigger delay and duration to the Pockels cell was adjusted for the best single

pulse transmission performance. We found that the best performance we could

achieve was to actually set the trigger duration to 53 ns with a 3 ns delay, the

delay is dependent on the cable lengths, so this is only relevant to our setup.

With this 53 ns duration trigger one pulse was transmitted with the two adjacent

pulses down by a factor of 6.5 in power, and all other pulses down by a factor

of 100. It is not clear why the single pulse trigger duration is so much more

than 10 ns, however, increasing the duration by N×10 ns transmits N additional

pulses. Although the dispersion of the Pockels cell, including the output PBS, is

approximately 6400 fs2 we do not compensate for this chirp. The effect of this

amount of chirp on the excited 5D5/2F=4 population is small, refer to section (5.4)

for more details.

The first result we present is the measured signal scaled to the theoretical

5D5/2F=4 population versus pulse number. The data shown in Fig. (4.4) shows

the scaled signal as squares for pulse numbers from 1 to 140. This data was taken

with the probe laser split into two equal power beams using a non-polarizing

beam splitter. Just prior to the beamsplitter the Ti:Sapphire light passed though

a 1 m focal length lens. These two probe beams were then counter-propagated

through the Rb atoms with careful attention to overlapping the beams spatially,

although not necessarily temporally overlapping in the atom cloud. Figure (4.4)

shows two theoretical predictions corresponding to the experimental peak electric

field strength of Eo∼107 V/m (solid line), and asymptotically low power Eo¡¡107

V/m (dashed line). Where Eo corresponds to the peak electric field strength
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Figure 4.4: Measured signal (squares), scaled to theoretical 5D population (solid
line), versus pulse number. Asymptotically low power signal (not to scale) versus
pulses is shown as the dashed line.
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assuming a transform limited Gaussian pulse. From this data we can already see

the 5D population reaches steady state at the experimental electric field strength

of 107 V/m sooner than for asymptotically low power. After approximately 80

accumulated pulses the mean 5D population is constant, this saturation is the

time domain signature of power broadening. Figure (4.5) shows the first 15 pulses

of this data set to illustrate the scaling law versus pulse number at times short

compared to the 5S-5D coherence time of ∼480 ns. In this figure the solid line is

not theory but a fit to a function of the form c1M2, where M is the pulse number,

the purpose of this fit is to illustrate the quadratic scaling law.

For a two-level system driven on resonance the population exhibits the fa-

miliar process of Rabi flopping in the absence of any decoherence. We define the

accumulated pulse area from time t=0 to t=t’ to be,

A(t′) =
µ

�

∫ t′

0

Eo(t)dt (4.2)

where µ is the relevant dipole moment and Eo(t) field envelope magnitude. With

this definition of the pulse area the excited population varies as sin(A(t′)
2

)2, for

example, a pulse area of A(t′) = π inverts the population. If we extend this defini-

tion of pulse area to include multiple phase coherent pulses, the total accumulated

pulse area after M pulses is simply M×A(tpulse), where A(tpulse) is the total area of

a single pulse. So for small total accumulated pulse area, M×A(tpulse) << π, the

dependence of the excited population on pulse number goes as M2. This analogy

holds true for two-photon excitation as well in the case of intermediate and final

state resonance. The population in the 5D5/2F=4 state is proportional to M2,

however, the exact dependence is more complicated than in the two-level case so

we don’t have an analytic expression. We have checked this scaling law in the

case of weak excitation of 5D5/2F=4 driven by a series of phase coherent pulses

using our three-level density matrix model. So by considering the familiar case
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Figure 4.5: Measured signal (squares) versus number of accumulated pulses for
short times, the data is fit to a function of the form C1M

2 where M is the pulse
number.
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of a coherently driven two-level atom we can understand the quadratic scaling of

the excited population for accumulated pulse numbers < 15 in Fig. (4.5). One in-

teresting conclusion from this analysis and experimental result is for a given laser

power a higher repetition rate comb excites more 5D population. In frequency

domain this can be understood by considering a higher repetition rate comb has

more power per comb mode. Our results in section (5.4) demonstrate that this

quadratic scaling law holds true for chirped pulse excitation as well.

The second part of this experiment is to demonstrate high-resolution spec-

troscopy. In general there are two ways to change the detuning from two-photon

resonance, either by shifting fr or fo. Figure (4.6) shows the signal scaled to the

theoretically calculated 5D5/2F=4 population versus two-photon detuning for 4

sets of accumulated pulse number. In this result we scanned fo, due to the fact it

is a two photon transition, the detuning is given by

δ2γ = 2 × (18.14 − fo) [MHz] (4.3)

where fo=18.14 MHz is the resonance condition. The measured lineshapes after

10, 15, 20 total accumulated pulses is shown with the corresponding 5D5/2F=4

population on the left y-axis, similarly the population after 80 pulses is on the

right axis.

This result simply provides a clear picture of how the measured lineshape

narrows as more pulses are used for excitation, or in other words how we obtain

high-resolution from coherent pulse accumulation. There are a few things that

in general can limit the linewidth of the measured transition in our experiments.

For the results presented in Fig. (4.6) the linewidth is limited by probing time,

or the number of pulses, for less than ∼80 pulses. After ∼80 pulses have been

used to excite the transition the linewidth no longer continues to decrease due to

power-broadening, recall that the population after 80 pulses was in steady state.
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Figure 4.6: Measured signal (squares), scaled to theoretical 5D population (solid
line), versus fo and for several values of accumulated pulse number.
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Traditionally most high resolution spectroscopy has been done with cw-lasers.

A line-broadening phenomena common to cw-laser spectroscopy is transit time

limiting. This occurs when the duration of excitation of the atom is limited,

usually by motion through the probe beam, to be less than either the electronic

or laser dephasing times. In this sense excitation by only 10, 15, 20 pulses is

analogous to transit time broadening. We chose to operate with the most laser

power possible for this experiment to increase the signal, particularly for the

measurements taken with very few pulses. In principle the resolution obtainable

with direct frequency comb spectroscopy is only limited by the natural linewidth

of the excited state. Experimentally the narrowest linewidth we have achieved

was ∼1.1 MHz FWHM, most likely limited by power-broadening.

4.2 Systematic Effects

In this section we discuss several of the most important sources of error

that may either broaden or shift the lineshapes we measure using DFCS. In gen-

eral we are not interested in determining the natural linewidths of the transitions

we measure so the main reason to reduce line-broadening is to improve our line-

center estimates. In particular, we will discuss the effect of radiation pressure

on the atoms due to the probe laser, Zeeman shifting of the ground and exited

states, probe laser linewidth, and Stark shifts. Power-broadening of the excited

state linewidth was already discussed briefly in section (4.1). After careful mini-

mization of the systematic effects presented in this section we generally measured

power-broadened linewidths ranging from 1.1 MHz to 2.5 MHz in our spectroscopy

results.

Before addressing the previously mentioned systematics, it is worth estimat-

ing the effect of the atomic cloud temperature on the linewidths. As discussed

previously we conduct all of our experiments on a sample of 87Rb laser cooled in
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a MOT. All of the one and two-photon spectroscopy results we present were con-

ducted after an additional ∼ ms polarization gradient cooling (PGC) stage while

the trapping magnetic field was turning off. Although we did not measure the

atomic cloud temperature directly, we can estimate the range of Doppler widths

we expect for temperatures from 20 µK for excellent PGC, to 100 µK without

PGC. In the range of these temperatures, we expect the Doppler widths for single

photon transitions from 5S to 5P to be ∼130 to 300 kHz, much less than the 6

MHz transition linewidth. The Doppler width for the two-photon transitions is

approximated to be twice that of the single photon case, ∼260 to 600 kHz. A

reasonable approximation considering the resonant wavelengths are typically very

similar. So we can expect that the 660 kHz natural linewidth of the 5S to 5D tran-

sition will be slightly Doppler broadened, however even at 100 µK the Doppler

width is still less than the typical power-broadened linewidths we measure.

A common misconception people have about the effect of the intermediate

state on the two-photon transition is that it may broaden the measured linewidth.

In our experiments we generally set the comb frequencies such that a mode is

single photon resonant with an intermediate state, and another resonant from

that state to the excited state. As mentioned previously, we measure the two-

photon transition linewidth by scanning either fr or fo, which shifts not only the

excited state detuning but the intermediate state detuning as well. So if we scan

the excited state detuning by ±4 MHz using fo, we recover most of the ∼2 MHz

FWHM lineshape, and the intermediate state detuning only changes by ±2 MHz.

Considering the intermediate state natural linewidth of 6 MHz the detuning is not

very significant. The effect of changing the intermediate state detuning as we scan

the two-photon lineshape does not broaden the line, but it does in fact change

the lineshape slightly. For example, using Eq. (3.12) to estimate this effect, the

deviation from a Lorentzian lineshape between ±2 MHz detuning is at most 5%,
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qualitatively the effect is to make the tails of the lineshape approach zero faster

than that of a Lorentzian lineshape.

4.2.1 Laser Linewidth

To conduct high-resolution DFCS it is important to ensure the linewidth

of each comb mode is sufficiently narrow. Recall that the order numbers of the

resonant modes, corresponding to ∼ 780 nm, are of order 4×106. So any noise in

fr is multiplied up in the optical domain by this factor. We typically locked the

comb fr by phase stabilizing the 10th harmonic of fr to the Wenzel low phase noise

crystal oscillator, as described in section (2.1). With the comb fr locked to the

Wenzel oscillator and fo locked via self-referencing we can measure the linewidth

of an individual comb mode by forming a beat note with a stable cw-laser.

We have done this measurement using two different cw-lasers, an Iodine

stabilized NPRO-YAG laser, which typically has a narrow 5 kHz linewidth at

1 ms [9]. And also a cavity stabilized diode laser with a significantly narrower

linewidth [63]. In both cases the linewidth of the cw-lasers is much less than

that of the comb over our measurement time. Figure (4.7) shows a typical beat

signal between the comb and the cavity stabilized diode laser at 698 nm. Using a

Lorentzian fit to the data we extract a 638 kHz FWHM comb linewidth measured

at 698 nm. Similarly when we measured the beat between the comb and the

NPRO-YAG at 1064 nm, we recovered a 330 kHz FWHM linewidth. In both of

these measurements the required wavelength to form a beat with the cw-lasers

was generated from supercontinuum generation in a highly nonlinear fiber; we are

assuming negligible extra phase noise in this process.

It has been shown that the spacing between comb modes is extremely uni-

form [64]. In other words the frequency noise of different comb modes is highly

correlated and is generally due to noise in fo and fr. Neglecting the smaller fo
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noise we can attribute the measured linewidths primarily to fluctuations of fr and

estimate the comb linewidth at 780 nm. Under these approximations the comb

linewidth at 780 nm is between 570 kHz, using the 698 nm measurement, and

450 kHz using the 1064 nm measurement. One thing to note is that these mea-

surements were conducted about two years apart so the difference in estimated

linewidths may be attributed to differences in the fr lock. Although the linewidth

of our comb modes is relatively wide, it does not present a problem due to the fact

we conduct most of our experiments with sufficient intensity to power broaden the

two-photon transition linewidth to about ∼1.5-2.2 MHz.

4.2.2 Radiation Pressure

One of the most important systematic effects in our experiments is due to

radiation pressure exerted on the atoms by the probe beam itself. The radiation

pressure we consider in this section is due to the momentum imparted on an atom

from incoherent photon scattering out of the probe laser mode. Coherent photon

scattering, responsible for the dipole force, gives rise to a much weaker force that

we ignore in this section. When an atom is excited it receives a momentum kick in

the direction of the probe beam propagation, however, the spontaneously emitted

photon imparts a momentum kick of the same magnitude but with a random

direction. The net effect on an ensemble of atoms probed from one direction is

primarily to increase the mean velocity in the direction of the probe. Due to the

random directions of emissions and number of photons scattered after some period

of time, the width of the velocity distribution of the atom ensemble also increases.

These two effects lead to a Doppler shift of the measured center frequency of a

transition and an increased linewidth due to Doppler broadening.

In the case of our two-photon transition measurements with a resonant in-

termediate state this effect is quite significant. Recall that the linewidths for the
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Figure 4.7: Comb linewidth measured by the beat frequency linewidth between a
comb mode and a cavity stabilized diode laser, solid line is a Lorentzian fit with
638 kHz FWHM.
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5P states is 6 MHz, ten times larger than for the 5D states. Furthermore, the

two-photon excitation probability ρ5D arises at second order in perturbation the-

ory and is in general much less than the one-photon excitation probability ρ5P .

The total incoherent scattering rate from a particular state is,

γ′
i = 2π∆νiρii (4.4)

where ∆νi is the linewidth of state i and ρii is the population. So the incoherent

scattering rate from the resonant 5P state is much larger than the 5D, typically by

a factor of at least 100. In other words for every 420 nm photon emitted from the

5D-6P-5S radiative cascade there are on average at least 100 photons scattered

from the resonant intermediate 5P state. On average for every photon scattered

from 5P at 780 nm the atom obtains a recoil velocity kick of,


vr =
�
k

m
(4.5)

where m is the 87Rb mass, and 
k is the probe laser wavevector. Substituting for the

laser wavevector and atomic mass we find the recoil velocity is about 5.88 mm/s,

which causes a Doppler shift at 780 nm of 7.54 kHz. Clearly the accumulated

Doppler shift from many photon recoils can amount to a significant shift of the

measured linecenter frequencies.

To better understand and develop a model of the radiation pressure effects

we studied the 5S1/2F=2 to 5P3/2F=3 to 5D5/2F=4 transition using excitation

from only one direction. As mentioned previously the large dipole moments and

closed nature of this transition makes it the best choice for studying systematic

effects. The experiment is simply to measure the signal at 420 nm versus excitation

time under three different initial detuning conditions. Figure (4.8) shows the

relevant three-level system and the two comb modes nearest to resonance. The

detuning of this comb mode pair from 5P3/2F=3 is denoted as δSP . For this
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5S1/2F=2

5P3/2F=3

5D5/2F=4

776 nm

780 nm
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Figure 4.8: Energy level diagram of the relevant three-level system for studying
the radiation pressure. All detunings are relative to atoms stationary in the lab
frame, radiation pressure will Doppler shift the light and therefore change the
detunings.
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experiment we initially set fr and fo such that δSP =0 and the comb modes are

resonant. By shifting fo by either 1 MHz or 2 MHz we make the detuning from

5D5/2F=4 either 2 MHz or 4 MHz. When we conducted this experiment we did

not have the Pockels cell as a shutter. Instead the Ti:Sapphire was switched

on or off using a liquid crystal shutter with a much slower, ∼30 µs, response

time. Our measurement results are shown in Fig. (4.9) as symbols, together

with the theoretical predictions of our model (solid lines). The three detuning

cases correspond to the initial detunings from 5P3/2F=3, or more specifically to

atoms at rest in the lab frame. Note that a positive detuning corresponds to blue

detuning from intermediate resonance, so the atoms will eventually be Doppler

shifted into resonance.

Considering we only measure the 420 nm fluorescence from the two-photon

transition, it can be thought of as a probe for the mean velocity of the atoms.

When the Doppler shift is equal to ∼2δSP the 5D5/2F=4 state is resonant and

starts to fluoresce. With this in mind the characteristic shapes of the results

in Fig. (4.9) may be interpreted. For an initial detuning δSP =0 the LC shutter

slowly turns on for the first ∼40 µs, when the shutter is completely on the signal is

a maximum. The signal then rapidly decays over ∼150 µs as the mean velocity of

the atom ensemble Doppler shifts atoms off of two-photon resonance. Similarly for

the blue detuned cases, initially the signal is essentially zero due to the 5D5/2F=4

detuning, however at later times the atoms are Doppler shifted onto two-photon

resonance. The two initially detuned cases show significantly broader peaks than

the δSP =0 case due to the fact the atoms have undergone more heating.

To go beyond simply a qualitative understanding of the radiation pressure

we developed a more comprehensive model. We have already discussed two of the

key pieces to our model, the incoherent scattering rate Eq.(4.4), and the single

photon recoil velocity Eq.(4.5). Due to the fact the radiation pressure is almost
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entirely from 5P3/2F=3 incoherent scattering, and the time scale for accumulating

a significant Doppler shift is much larger than the 5P lifetime, we only need to

consider the steady state value of the 5P3/2F=3 population. Solving for the density

matrix of a two-level system using the Optical Bloch Equations in steady state

[30], we calculate the scattering rate to be,

γ′
5P =

γ

2

so

1 + so + (2(δ+ωD)
γ

)2
(4.6)

where so is the on-resonance saturation parameter, δ is the angular frequency

detuning of the laser, ωD is the Doppler shift, and γ=2π∆ν5P . The on-resonance

saturation parameter can be written in terms of the saturation intensity, Is, as

so=
I
Is

where Is=2.5 mW/cm2 for linearly polarized light. The detuning δ is the

detuning for an atom at rest in the lab frame. It is defined as, δ=ωl-ωa, where

the subscripts refer to the laser and atom angular frequencies. The Doppler shift

is given by the familiar formula, ωD=-
k ·
v, where 
k is the probe beam wavevector

at 780 nm.

Ultimately we are interested in deriving an equation for the velocity of an

atom versus time given some initial conditions. Recall that the change in velocity

of an atom after one incoherent photon scattering event is ��k
m

. Equation (4.6)

gives us the rate at which the photons are scattered. So the differential equation

for the rate change of velocity as a function of time is simply,

dv(t)

dt
=

�kγ

2m

so

1 + so + (2(δ−kv(t))
γ

)2
(4.7)

where we have simplified the vectors to scalars by only considering the probe beam

propagation direction. Given an initial velocity along the probe beam direction

this equation can be solved to calculate the detuning from 5D5/2F=4 versus time.

Finally, the equation for the two-photon transition amplitude from second-order

perturbation theory, Eq. (3.12), may be used to calculate the expected signal

versus time.
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It is possible to solve Eq.(4.7) analytically for the velocity versus time as-

suming the initial velocity of the atom is zero. This method correctly predicts

the positions of the peaks in Fig. (4.9), however, it does not account for several

effects that broaden the peaks observed in our results. One of the most impor-

tant simplifications made is assuming a constant on probe beam intensity. In our

experiment we expect to have a radial intensity dependence due to the Gaussian

mode of the beam, in the focal plane the intensity varies as,

I(r) = Ioexp[−2
r2

w2
o

] (4.8)

where Io corresponds to the on-axis intensity (∼0.8 mW/cm2) and the beam waist

radius wo is ∼ 130 µm. If we assume a constant radial density of atoms and a

two-photon transition rate that varies as I2, it is possible to calculate the signal

strength versus radial displacement. The number of atoms in a thin ring at fixed

radius is proportional to r, so the radial dependence of the signal is proportional

to rI(r)2.

To incorporate the radial intensity variation into so and several other stochas-

tic processes we turn to a numerical simulation based on Eq. (4.7). Although we

also modeled the longitudinal dependence of the signal, due to absorption and

beam focusing, it is sufficient to consider only the radial degree of freedom to gen-

erate the results in Fig. (4.9). We divided the radial direction into 20 segments

from r=0 to r=3wo, and each segment had 20 atoms. Each atom was assigned

an initial velocity, assuming a Maxwell-Boltzmann distribution at T=20 µK. The

atom velocity, and two-photon signal weighted by r∆r, was solved for versus time

to 300 µs in 100 steps. To incorporate the stochastic nature of the number of pho-

tons scattered per unit time, ∆t, each atom obtained a random velocity kick in

each time segment. The magnitude of the random velocity kick is 2×vr multiplied

by a random number from a Normal distribution of standard deviation
√

N , where
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N is the mean number of photons scattered given by γ′
5P ∆t, see Eq.(4.6). Sum-

ming over the predicted two-photon signal from each atom at each radial segment

provides quite a good estimate of the total signal versus time. However, one final

stochastic process that was included is the variation of the probe laser frequency

given by the comb linewidth. We assumed the laser noise to be a slow process

compared to 300 µs, meaning for each of the above 300 µs simulations the laser

was at a fixed frequency in the lab frame. The final theory result shown in Fig.

(4.9) was generated by repeating the above simulation 50 times, and randomly

selecting a laser frequency consistent with the Lorentzian comb mode linewidth.

Clearly the agreement between this model and the measured signal versus time in

quite good.

For all of our spectroscopy experiments we would like to reduce the net

momentum transfer to the atoms as much as possible. We do this by balancing

the radiation pressure on the atoms along the probe beam direction with another

counter-propagating probe beam at the same intensity. Before the Ti:Sapphire

beam enters the MOT chamber it is focused with a 1 m lens then split into two

equal intensity beams with a non-polarizing 50:50 beam splitter. By far the most

tedious alignment issue with this experiment is overlapping these beams at the

atoms to optimally balance the radiation pressure. One of the reasons this is

tedious is that to have sufficient signal to noise in our two-photon signal requires

∼1 s of real time data acquisition, or 100 MOT cycles. First, the signal from

one beam is maximized by finding the center of the atom cloud, adjustments of

the focusing lens may also be necessary for this step initially. Then the spatial

overlap of the two beams in the center of the atom cloud is found by maximizing

the two-beam signal. To obtain our best results we would then further optimize

by scanning a two-photon transition line and adjusting the beam overlap so as to

measure the narrowest linewidth. Figure (4.10) shows the measured two-photon
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Figure 4.9: Measured signal and theoretical prediction versus probing time for
three detuning configurations. Detunings are from the intermediate 5P3/2F=3
state, the 5D5/2F=4 detuning is twice as large.
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transition lines (symbols) together with a Lorentzian fit (solid lines) under counter-

propagating and single beam excitation. We set the two channel photon counter

to record the signal from 0-20 µs and also 100-120 µs to observe the linecenter

and width after some probing time. Clearly the use of well overlapping counter-

propagating beams significantly reduces the linecenter shift versus time seen in

the single direction excitation. Despite the fact the net momentum transfer to

the atoms is nearly zero, there is still heating of the atoms, which appears as an

increase of the linewidth versus time in the counter-propagating case.

4.2.3 AC Stark Shift and Power Broadening

Ideally we would like to measure the frequency and linewidth of a particular

two-photon transition without any perturbations. In this section we discuss two of

the most important fundamental perturbations from the probe light itself, the AC-

Stark shift and power-broadening. Unlike the case of an ideal two-level system, for

a two-photon transition in a three-level atom there is almost always a Stark shift of

the excited state. In the case of 87Rb this is due to the fact that the intermediate

state is shifted ∼1 THz from exactly half of the two-photon transition frequency.

So if we were to try and resonantly excite a 5D state with two-modes, of equal

or dissimilar frequencies, there is always a mode detuned from intermediate state

resonance, resulting in an AC-Stark shift. Figure (4.11)(a) shows a diagram of

the relevant three-level system with a pair of one and two-photon resonant modes.

Only one configuration of the modes is resonant with the 5P intermediate state,

the other configuration is detuned and causes a Stark shift. In this case the second

configuration, while two-photon resonant, is detuned from 5P3/2F=3 by 2 THz.

The near intermediate resonance Stark shift has been studied using two-mode

excitation in Alkali vapors by Liao and Bjorkholm [65].

To study the Stark shift and power-broadening we measured the 5S1/2F=2
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Figure 4.10: Measured signal (symbols) and Lorentzian lineshape fits (solid lines)
under counter-propagating and single direction excitation. The color of the sym-
bols and lines correspond to different measurement delays after the probe beam
is turned on; red for zero delay and blue for 100 µs delay. The fo for two-photon
resonance of zero velocity atoms is 18.14 MHz.
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Figure 4.11: (a) Three-level system under two mode excitation, due to the 1 THz
offset of the 5P3/2 states from half the two-photon frequency there are two different
mode pair configurations. (b) Same three-level system under four mode excitation
illustrating the possibility to approximately cancel the Stark shift arising in (a).
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to 5D5/2F=4 transition frequency and linewidth with three different intermediate

resonance conditions. We have already discussed the fr and fo frequencies for

excitation with one and two-photon resonance. In addition to the on intermedi-

ate resonance set of comb frequencies we also used two other pairs of fr and fo

corresponding to ±4 MHz 5P3/2F=3 detuning. For all three cases of varying in-

termediate state detuning the 5D5/2F=4 state is two-photon resonant. Note that

for these experiments we used counter-propagating probe beams in an attempt

to balance the radiation pressure, however, there is some residual imbalance. We

also used the LC shutter in this experiment to turn on/off the Ti:Sapphire, so for

the first 40 µs of data the probe power is increasing to its maximum value.

Figure (4.12) shows the measured linecenter shift versus probing time for the

three cases of intermediate state detuning. The 420 nm fluorescence was counted

using the SR-430 multichannel photon counter to obtain time resolution. For each

case of intermediate state detuning, fo was scanned to measure the two-photon

transition lineshape. Using this record of signal versus both fo and time we fit each

line with a Lorentzian function and extracted the linecenter and FWHM linewidth.

Clearly after 40 µs of probing time the ±4 MHz detuned cases exhibit much less

of a lineshift versus time. This decrease is due to the reduced 5P population

and thus radiation pressure compared to the on-intermediate-resonance case. To

obtain the best possible estimate of the unperturbed linecenter frequency for our

spectroscopy results we extrapolated to zero probing time.

We model the effect of the Stark shift and power-broadening due to the

comb excitation using the three-level density matrix theory discussed in section

(??). The driving field was a Gaussian envelope electric field with a 35 fs pulse

duration. Although we have developed a version of this model that uses excitation

by counter-propagating pulses, we only used excitation from one direction for this

numerical study. The reason being that properly treating the counter-propagating



70

Figure 4.12: Measured linecenter shifts from the literature value of the S1/2F=2
to 5D5/2F=4 two-photon transition frequency versus time and intermediate state
detuning. During the first ∼40 µs the LC shutter is opening and therefore the
power is increasing.



71

pulse excitation requires an added spatial integration. Computationally this is

too lengthy considering the fact we wish to vary fo and the peak field strength

independently. Another shortcoming of this three-level model is that the magnetic

sub-levels are not included. Table (4.1) contains the angular part of the reduced

dipole moments for transitions relevant with linear polarized light.

Intermediate State µ′
gi µ′

if µ′
giµ

′
if

5P3/2F=3 mF =2 1
3

√
3
35

0.0976

5P3/2F=3 mF =1
2
√

2
5

3

√
3
7

2
0.1380

5P3/2F=3 mF =0 1√
5

2√
35

0.1512

Table 4.1: The angular part of the reduced dipole matrix elements for the
5S1/2F=2 to 5P3/2F=3 to 5D5/2F=4 transition with linear polarized light (q=0).

Due to the large variation of the dipole moment products between different

mF levels, optical pumping could potentially change the two-photon transition

rate. Instead of running the model for each mF level and incoherently summing

the populations we used the average dipole moments. Analytic expressions for

the Stark shift and power-broadening have been derived for a three-level system

driven by two-modes by Brewer and Hahn [51]. However, to arrive at an analytic

expression several simplifications were made, such as equal Rabi frequencies for

each transition step.

Figure (4.13) shows the predicted linecenter shift versus peak field strength

for each 5P detuning case. The linecenter shifts at 107V/m seen for ±4 MHz

detuning agree well with the ± ∼150 kHz shift measured in the experiment. For

the case of zero intermediate state detuning the Stark shift is significantly reduced.

We attribute this to the fact all comb modes are equally spaced, so the shift from

the pair detuned N×fr below 5P3/2F=3 is canceled by the shift from the pair

tuned symmetrically above 5P3/2F=3.

At large electric field strengths even the on-intermediate-resonance case
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Figure 4.13: Theoretical predictions for the AC-Stark shift of the 5S1/2F=2 to
5D5/2F=4 two-photon transition frequency versus peak field strength and inter-
mediate state detuning. We used a 35 fs FWHM Gaussian driving field centered
at 778 nm to drive our three-level density matrix model.
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starts to exhibit some Stark shift, this appears to be due to the finite spectral

width and center wavelength. For example, the Stark shift using a peak field

strength of 3×107 V/m is (-148 kHz, -98 kHz, -36 kHz, 30 kHz, 89 kHz) for center

spectrum wavelengths (776 nm, 778 nm, 780nm, 782 nm, 784 nm). Referring

back to Fig. (4.11)(b), in the case of four mode excitation it is possible to cancel

some of the Stark shift. We discussed the 5P resonant two mode case previously,

in that case the Stark shift arises from a mode pair detuned by 2 THz from the

intermediate state. If we introduce two more modes of equal strength detuned 2

THz below intermediate resonance, canceling that particular source of Stark shift.

In this four-mode example, the Stark shift arises from a mode pair detuned 4 THz

above the intermediate resonance, and gives rise to less of a shift. The Stark shift

cancellation due to comb excitation may be thought of as an extension of this four

mode example, although with >100,000 modes in the ∼55 nm FWHM Gaussian

spectrum. This explanation is only meant to provide a conceptual picture. Fur-

ther study is required to understand the extent to which the Stark shift differs

between two-mode and comb-based two-photon excitation.

We also measured the power-broadening versus time and intermediate state

detuning in the same experiment. Figure (4.14) shows the measured FWHM

linewidths from the Lorentzian fits of each line versus time. Similar to our study

of Stark shifts the on-intermediate-resonance case exhibits an increasing linewidth

versus time even after the LC shutter is fully opened. This is due to the heating

caused by the counter-propagating probe lasers discussed in subsection (4.2.2).

At the expense of an increased Stark shift we can retain narrower linewidths by

detuning from intermediate resonance, seen in the ±4 MHz detuned results. We

observe what appears to be a signature of Doppler cooling, or more accurately

suppressed heating, in the case of -4 MHz (red) detuning from the intermediate

state. This is evident in the reduced linewidth measured with red detuning ver-
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Figure 4.14: Measured linewidths of the S1/2F=2 to 5D5/2F=4 two-photon tran-
sition versus time and intermediate state detuning. During the first ∼40 µs the
LC shutter is opening and therefore the power is increasing.
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sus equal blue detuning. Of course regardless of intermediate state detuning all

linewidths tend to increase versus time so there is still heating of the atomic en-

semble due to the 5S-5P incoherent photon scattering. At very short times, before

the radiation pressure has caused significant heating, the linewidths corresponding

to ±4 MHz intermediate state detunings are narrower than the on-resonance case.

This is indicative of reduced power broadening, and is due to a reduced resonant

enhancement of the two-photon transition rate.

The theoretical prediction for power-broadening was obtained in the same

manner as the previously discussed Stark shifts. Figure (4.15) shows the results of

our theoretical model for a range of peak electric fields. For the on-intermediate-

resonance case the power-broadened FWHM linewidth at 107 V/m is 1.1 MHz.

This serves to provide an estimate of the effect of power-broadening only, the

experimental results for this case exhibit a large line-broadening due to heating

as well. Unfortunately this set of experiments was among the first conducted and

we did not have the Pockels cell yet. Perhaps better agreement would be obtained

between theory and experiment if the peak field strength was not a function

of time, due to the slow turn on of the LC shutter. Then power-broadening

could be more clearly separated from radiation pressure effects which take time to

accumulate. Note that the coherent accumulation experiment presented in section

(4.1) was conducted with a Pockels cell, in that case we observed good agreement

between theoretically predicted and experimentally measured power-broadened

linewidths. But the atoms were excited for at most ∼13 µs, corresponding to the

80 pulse excitation case.

4.2.4 Zeeman Shift

There are two primary sources of magnetic field that may Zeeman shift the

atomic energy levels. The anti-Helmholtz magnetic field used to trap the atoms
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Figure 4.15: Theoretical predictions for power-broadened linewidth of the
5S1/2F=2 to 5D5/2F=4 two-photon transition versus peak field strength and inter-
mediate state detuning. We used a 35 fs FWHM Gaussian driving field centered
at 778 nm to drive our three-level density matrix model.
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in the MOT and the ambient magnetic field, for example from the Earth. Ideally

we would like to conduct spectroscopy in a magnetic field free environment so

we use three sets of large Helmholtz coils to compensate for the ambient field.

These Helmholtz coils are mounted around the MOT and oriented to provide

three relatively homogeneous orthogonal static magnetic fields.

To adjust the three pairs of Helmholtz coil magnetic fields we probe the

5S1/2F=2 to 5P3/2F=3 to 5D5/2F=4 two-photon transition with left and right

circular polarized light. This particular two-photon transition is well suited for

this study because the population will tend to be pumped to the stretched states,

mF =±F, under σ+ or σ− excitation.

As we discussed previously, the trapping magnetic field is turned off before

we probe the atoms, however, this process takes some time. We determined a

reasonable delay between the time we turned off the trapping magnetic field and

probe the atoms. This was done by turning on the Ti:Sapphire and measuring

the linecenter shift at various delays after the trapping magnetic field was turned

off. At times less than ∼0.5 ms we observed large linecenter shifts, from 4 MHz

at zero delay to 100 kHz at 0.5 ms delay. To be certain the Zeeman shift from the

trapping magnetic field was negligible we measured all of our data with at least a

2 ms delay.

The Helmholtz coils used to compensate for the ambient field are oriented

such that it is relatively easy to probe the atoms with a beam parallel to the

generated magnetic field. For example, there is a pair of Helmholtz coils oriented

to create a vertical magnetic field, to adjust this field we probe the atoms with

the Ti:Sapphire beam vertically. For each of the three directions we record the

two-photon transition lineshape with left and right circular polarized light versus

the current applied to the Helmholtz coil. Experimentally great care was taken to

ensure the quality of the polarization, meaning we reduced the ellipticity as best
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we could.

Figure (4.16) shows the resulting linecenter shift from some arbitrary value

versus the applied magnetic field. The magnetic field at the atoms is weak so

we are in the anomalous Zeeman regime, meaning the linecenter shift is a linear

function of magnetic field. The optimal field value is given by the crossing of two

linear fits to the data, one for left circular the other for right circular. This process

is repeated at least once for all three directions, in practice we did each direction

twice to ensure the best results.

4.2.5 Incoherent Optical Pumping

Incoherent optical pumping is a particularly important, and complicated,

process in DFCS. Recall that the only closed two-photon transition is 5S1/2F=2

to 5P3/2F=3 to 5D5/2F=4. Population excited to either the intermediate or final

state in this transition will eventually spontaneously decay back to the 5S1/2F=2

ground state. We are simplifying the optical pumping process somewhat here

by ignoring the magnetic sub-levels, the populations of which are determined

by incoherent optical pumping as well. With the exception of this one closed

transition, the signal size of all the other transitions is influenced by incoherent

optical pumping.

In general all of the two-photon resonant transitions are resonant from only

one of the two 5S1/2 hyperfine levels. So the signal strength depends on the

amount of population in the resonant ground state. Because of the significantly

faster scattering rate of the 5P states compared to the 5D states, most of the

optical pumping occurs due to decay from the 5P states. For our typical probe

intensity the two ground states reach a steady state population distribution in a

time of order ∼1-10 µs. So any initial state preparation we may do with the trap

or repump laser before probing is quickly undone.
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Figure 4.16: Example linecenter crossing for σ+ and σ− excitation of the 5S1/2F=2
to 5D5/2F=4 two-photon transition.The x-axis scaling is calculated from the line-
center shifts and atomic properties.
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In our early experiments we noticed many lines were missing from our mea-

surements. Suspecting incoherent optical pumping to the off-resonant ground

state we employed a repuming scheme interleaved with our data collection. In-

stead of recording data continuously we gated the photon counter to only record

data for 2.5 µs every 5.0 µs, over a total time of 0.5 ms for every MOT cycle.

After each 2.5 µs counting window we turned on the repump laser for 2.5 µs

to pump population from 5S1/2F=1 back to 5S1/2F=2. Figure (4.17) shows the

lines we measured by scanning fo with and without the interleaved repumping

scheme. Clearly this greatly increases our signal for all but the one closed tran-

sition. The reason that the incoherent optical pumping process is complicated

to predict is that it is not only due to the decay from the resonant intermediate

state. The steady state population distribution is also a function of the rate at

which the comb itself repumps population. This point will be made quite evident

in subsection (4.4) where our optical pumping model plays a key role.

4.3 Two-Photon Spectroscopy Results

With a clear understanding of the systematic effects we now proceed to use

the comb for direct frequency comb spectroscopy. There are two unique advan-

tages of using the comb directly for spectroscopy. The first and perhaps more im-

portant is that we may determine the absolute frequencies of the transitions with

reference to the cesium standard. Initially we studied two-photon transitions to a

set of hyperfine 5D5/2 and 5D3/2 hyperfine levels. As this was the first experimen-

tal demonstration of DFCS these transitions served as excellent proof-of-principle

measurements because all of them had been measured previously by conventional

cw-laser spectroscopy. In fact the uncertainty in the previous measurements of

these transitions was 10-16 kHz, much less than our laser fr. This allowed us to

determine the comb mode order numbers without additional measurements. We
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Figure 4.17: Measurement of several two-photon transitions illustrating the effect
of incoherent optical pumping. Black symbols are measurements made with inter-
leaved repumping, blue symbols without repumping. The only closed transition,
5S1/2F=2 to 5P3/2F=3 to 5D5/2F=4 is unaffected by the repumping.



82

also conducted measurements of the 5S to 7S two-photon transitions, the frequen-

cies of which were not known to better than 100 MHz. To resolve the absolute

transition frequencies for 7S we had to determine the mode order numbers using

multiple measurements. A second advantage of DFCS is the broad spectrum of

the femtosecond pulses. We show that simply scanning fr over ∼26 Hz excited

all allowed two-photon transitions within the comb spectrum.

4.3.1 Repetition Rate Scan

After reducing the systematic errors such as Zeeman shifts and radiation

pressure by studying the strong transition to 5D5/2F=4 we scanned fr of the

laser to observe the full set of two-photon transitions. The two-photon transition

frequency to all of the 5D states is ∼770.5 THz, as a very rough estimate. The

resonance criteria for two-photon transitions is given by,

ν2γ = fr × (N1 + N2) + 2 × fo (4.9)

where N1 and N2 are the integer mode order numbers. Of course this equation has

many solutions within the spectrum of the comb. However, the sum N1 +N2 is the

same for all mode pair combinations with a given fr and fo. Considering we use

fr ∼100 MHz, the sum of mode order numbers N1 + N2 ∼7.7×106. Similarly for

the intermediate state transitions the mode order number is ∼3.8×106. Because

of the fact fr/3.8 × 106 ∼26 Hz, changing fr by 26 Hz shifts the comb such that

the one-photon transition is resonant with the next comb mode, N1 − 1. In the

case of the two-photon transitions the change of fr needs to only be 13 Hz before

the two-photon resonance condition is again satisfied. Therefore when we scan

the comb fr we expect the two-photon transitions to repeat every 13 Hz and the

single-photon transitions to repeat every 26 Hz. Of course this is not true if fr is

changed so much that the resonant mode order numbers change appreciably.
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In Fig. (4.18) we present the measured signal versus fr over a range of 28

Hz with a fixed fo=-19.0 MHz. This result provides a very clear demonstration

of the versatility of DFCS for measuring many different transition frequencies.

Between the two ground hyperfine levels and eight 5D hyperfine levels there are a

total of 14 allowed two-photon transitions. Considering we know the frequencies

of these transitions from previous measurements it is possible to identify each of

the 14 transitions in this result. There are also two extra small peaks in this data

set that do not correspond to any 5S to 5D transition, we attribute these to 5S

to 7S transitions and will discuss these in further detail in subsection (4.3.2).

The largest peak corresponds to when the comb is resonant from 5S1/2F=2

to 5D5/2F=4 with perfect intermediate state resonance with 5P3/2F=3. For this

particular experiment we used a value of fo and scanned fr over a range such that

this three-level resonance would occur. There is a second clearly identifiable peak

corresponding to a transition to the same final state, however in this case the

two-photon resonant comb pair is detuned from the intermediate state. Notice

there are two peaks that appear virtually identical in signal size and width at

∼0.8 Hz and ∼26.8 Hz. These peaks are due to both the two-photon and single

photon resonance conditions repeating after a change of fr by 26 Hz.

4.3.2 Absolute Frequency Measurements

To conduct high-resolution absolute frequency measurements of several two-

photon transitions we need to focus on individual lineshapes. We have selected 5

two-photon transitions from 5S to 5D to measure as an initial test of DFCS. After

we successfully measured these transitions we shifted the center wavelength and

expanded the spectral width of our Ti:Sapphire laser to be able to measure the

5S to 7S transitions. We will discuss how to determine the relevant mode order

numbers in the context of our 7S measurements.
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Figure 4.18: Full two-photon transition spectrum recovered by scanning fr by 26
Hz. The strongest peak is for intermediate and final state resonant excitation of
the 5S1/2F=2 to 5D5/2F=4 transition. The two nearly identical peaks at ∼0.8 Hz
and ∼26.8 Hz correspond to the same excited hyperfine level and intermediate
state detuning.
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As was discussed previously we know the frequencies of all of the 5P and 5D

hyperfine levels from previously published literature measurements. So instead

of scanning fr over all of the transitions we calculate specific values of fr and

fo such that the comb is not only two-photon resonant but also resonant with an

intermediate state. This allows us to reduce the Stark shift discussed in subsection

(4.2.3). With a fixed value of fr we measure the two-photon lineshape by scanning

fo around the resonant frequency.

To estimate the linecenter frequency corresponding to a relatively unper-

turbed atom we record the signal versus time and estimate the linecenter using

a fit to the data. Specifically we counted photons using the SR430 multichannel

photon counter with a per bin duration of 160 ns. We then post-process the data

into new bins yielding a moving average, this was done by adding up 40 bins of

160 ns duration each and shifting by 5 bins. So the end result is a set of bins

each with a 6.4 µs in 800 ns intervals. These times were chosen so that there is

enough signal to noise in each 6.4 µs bin to reasonably fit the data to a Lorentzian

lineshape and extract the linecenter.

Due to the fact the power transmitted through the LC shutter is a function

of time we can not simply extrapolate the linecenter data to zero time using a

linear fit function. Instead we fit the linecenter data minus the expected linecenter

value with a function of the form,

∆ν ′(t) = c1 + c2 × P (t) + c3 × (P (t) × t) (4.10)

where ∆ν ′(t) is the linecenter shift from the expected value versus time, P (t) is

the power versus time measured after the LC shutter, and t is the time after data

collection initiates. The coefficient c1 is the estimate of the unperturbed linecenter

frequency shift from some reference frequency. The last two coefficients are used

to empirically model the Stark shift and radiation pressure Doppler shift of the
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linecenter frequency. We expect the Stark shift to be solely a function of power

for a fixed probe beam mode and intermediate state detuning, so it is modeled as

c2 × P (t). The Doppler shift due to radiation pressure on the other hand is an

accumulated effect, at short times we expect this to vary linearly with power and

time, so it is modeled as c3 × (P (t) × t). This type of fitting function assumes

that the atom is not Doppler shifted from intermediate state resonance, as we

discussed in subsection (4.2.2), the actual shift versus time is nonlinear. Initially,

when the LC shutter is just beginning to transmit the probe light the signal to

noise ratio is not sufficient to reasonably fit the lineshape data. For this reason

we only fit the linecenter data with Eq.(4.3.2) from about 20 µs to 100 µs. This

data analysis technique proved quite successful, the one-sigma uncertainty in our

estimates of c1 ranged from ∼11 kHz to ∼50 kHz.

Conducting direct frequency comb spectroscopy of the 5S to 7S transition

required several additional considerations beyond our 5D measurements. The

first of which is that the optimum Ti:Sapphire center wavelength is different. Like

our previous measurements, we wish to conduct two-photon spectroscopy with a

resonant intermediate state. The resonant wavelengths are shown in Fig. (4.1),

it can be seen that to excite 7S via a 5P3/2 state requires 780 nm and 741 nm

light. To provide more power at the 741 nm wavelength the center wavelength of

the Ti:Sapphire was shifted to 770 nm. Unfortunately further blue shifting of the

spectrum deteriorates the fo beat signal too much.

A second important difference in our 7S measurements is that the two-

photon transition frequency was not initially known to better than ∼ fr/2, there-

fore we must determine the resonant mode order numbers. Recall the equation

for the two-photon transition frequency is,

ν2γ = fr × (N1 + N2) + 2 × fo. (4.11)
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We know the 5S to 5P3/2 transition frequencies very well and can therefore assign

a mode order number to N1. The question is how do we determine N2 ? If

the measured two-photon transition linecenter frequency had zero uncertainty

we could simply measure the line with a slightly shifted fr and the peak would

appear at a shifted fo. Clearly the frequency shift of ν2γ is a function of N2 so this

would allow the determination of N2. The problem is that there is uncertainty

in our linecenter frequency measurements. So differentiating between say, N2 and

N2+1 requires a change of fr by at least the uncertainty in our estimate of fo

corresponding to the linecenter.

From previous measurements of the 5S to 7S transition we know that the

frequency is of order ∼788.8 THz. This corresponds to an estimated N1 + N2 of

7.888×106, so the two-photon resonance condition repeats every ∆fr ∼12.6775 Hz

for an fr ∼100 MHz. In our experiment we measured the two-photon transition

linecenter at two values of fr separated by 600 kHz. Considering this change in

fr is much greater than 12.6775 Hz, the resonant mode order numbers changed

between the two measurements. In principle one could measure the change in

mode order numbers between the two measurements by observing how many times

the peak repeats as fr is scanned over 600 kHz. This is of course very tedious

experimentally. Fortunately for the 5S to 7S measurements we can determine the

change of mode order number N2 based on previously published cw-laser based

measurements.

Suppose we define the integer M=N1 + N2 where we know N1, and N2 is

to be determined. We denote our uncertainty in the linecenter frequency as δfo.

The two equations we have to solve for the change in M are,

ν2γ = fr × (M) + 2 × (fo + δfo)

ν2γ = (fr + ∆fr) × (M + ∆M) + 2 × f ′
o (4.12)
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where f ′
o=fo + δfo + ∆fo + δf ′

o. We have introduced ∆fo to denote the change in

fo between the two measurements and δf ′
o is the error in our linecenter frequency

estimate. Note that the change in fr is given by ∆fr and can be measured at the

sub-mHz level. The above set of equations can be solved for ∆M , the change in

total mode order number,

∆M = −M∆fr + 2∆fo + δf ′
o

fr + ∆fr
. (4.13)

Considering the denominator is a large number of order 108 and ∆M must be

an integer we can interpret this equation. We know 2∆fo well, by definition the

error is given by δf ′
o, so we can calculate the ∆M from this contribution. Our

uncertainty in the second linecenter estimate, δf ′
o, is 120 kHz or less, so when

divided by (fr + ∆fr), is much less than an integer. The remaining term is,

− M∆fr

fr + ∆fr
. (4.14)

Because of the fact ∆fr << fr any uncertainty in our estimate of M is suppressed.

Using numbers from our experiment, fr ∼100 MHz and ∆fr ∼600 kHz, it would

take an uncertainty in M of the order ∼160 to cause a shift of ∆M by 1. Given

our laser repetition rate of 100 MHz this would correspond to a 16 GHz initial un-

certainty in the two-photon transition frequency. Fortunately this is not the case

for the 5S to 7S transitions which have been roughly measured [66]. For further

reading on how to estimate an absolute transition frequency using a frequency

comb refer to references [67, 68].

Now that we have estimated ∆M it can be used to solve Eqs. (4.12) un-

ambiguously for M and thus the two-photon transition frequency ν2γ . Of course

there is still the uncertainty δfo in our lineshape fit which can not be avoided,

so our knowledge of ν2γ is limited to δfo. Experimentally the exact value of fr

is not known perfectly, however, we generally measure it on a Cesium referenced
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counter. If we count long enough to reduce the uncertainty in fr to the 1 mHz

level the resulting error in the two-photon linecenter is of order ∼7.7 kHz, less

than our lineshape fit uncertainty.

The resulting absolute frequency measurements for several 5D and 7S hy-

perfine levels are shown in Table (4.2). We report the linecenter frequencies we

determined from the previously discussed fit to the linecenter versus probing time,

along with the one-sigma uncertainty in our estimate. The quoted literature val-

ues were all measured using traditional cw-laser spectroscopy. Absolute frequency

measurements of the 5S to 5D transitions are reported in reference [69]. In the

case of the 5S to 7S transitions an optical frequency comb was used to measure

the absolute frequencies of the cw-lasers used to excite the transitions [70]. Our

study agrees well with this cw-laser based study which was conducted and pub-

lished about the same time we made our measurements. This provides strong

validation of our technique for determining the mode order numbers and thus ab-

solute transition frequencies. Note that all of the reported two-photon transition

frequencies, with the exception of 7S1/2F=1, are via the 5P3/2F=3 intermediate

state. Therefore the 5S to 5P transition is closed and we obtained a better signal

to noise than for the 7S1/2F=1 transition, which was via 5P3/2F=1.

Transition Measured Frequency (kHz) Literature Frequency (kHz)
5S1/2F=2→5D5/2F=2 770 569 184 527.9 (49.3) 770 569 184 510.4 (16)
5S1/2F=2→5D5/2F=3 770 569 161 560.5 (11.1) 770 569 161 555.6 (16)
5S1/2F=2→5D5/2F=4 770 569 132 748.8 (16.8) 770 569 132 732.6 (16)
5S1/2F=2→5D3/2F=3 770 480 275 633.7 (12.7) 770 480 275 607.6 (10)
5S1/2F=2→5D3/2F=2 770 480 231 393.9 (38.1) 770 480 231 385.2 (10)
5S1/2F=2→7S1/2F=2 788 794 768 921.4 (44.5) 788 794 768 878.0 (40)
5S1/2F=1→7S1/2F=1 788 800 964 199.3 (121.9) 788 800 964 042.0 (40)

Table 4.2: Measured absolute two-photon transition frequencies and comparison
to reported values from literature. Note that all of our reported values and fit
errors are from the extrapolation to ∼0 probing time and power.
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4.3.3 Two-Photon Selection Rules

Our measurements of the two-photon transitions from 5S to 7S are particu-

larly well suited for a discussion of two-photon transition selection rules. Previous

picosecond [16] and cw-laser based measurements [66] of this two-photon tran-

sition did not observe any transition corresponding to 5S1/2 to 7S1/2 in which

the hyperfine quantum number changed by 1. In other words the only change

in total hyperfine quantum number observed was ∆F=0. However, we observed

weak ∆F=±1 transitions, and other authors have as well with S-S transitions in

Sodium [71]. The explanation of this two-photon selection rule in the literature

is rather incomplete. Essentially it amounts to a two-photon transition selection

rule that is dependent on the intermediate state detuning, however, no explicit

dependence is given. The only observed ∆F=±1 transitions occurred when the

two-photon transition was resonantly enhanced via an intermediate state.

A good question is, how does this effective two-photon transition selection

rule vary as a function of intermediate state detuning? The answer to this ques-

tion provides a good example of how to treat two-photon transitions via multiple

intermediate states when comb mode pairs are detuned from any intermediate

resonance, an important aspect of our experiment in chapter (6).

For the purpose of this explanation we will discuss only excitation by linear

polarized light, so we may use q=0 selection rules. It is important to first under-

stand any two-photon transition between 5S and 7S is via an intermediate state,

in this case the 5P states need only be considered. In other words, regardless

of the intermediate state detuning, this two-photon transition is the sum of sev-

eral two-photon transition amplitudes via the different intermediate states. Using

standard single photon selections rules, in particular ∆F=±1,0, we can determine

the possible intermediate states for a transition from 5S1/2F=1 to 7S1/2=2 as an
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example. Table (4.3) shows the angular part of the reduced dipole moment matrix

elements for the first and second step of the two-photon transition as a function

of mF and intermediate state.
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Table 4.3: Angular part of the reduced dipole moment matrix element for each
possible q=0 transition from 5S1/2F=1 to 7S1/2=2.

The first term in each parenthesis corresponds to the 5S to 5P part of the

transition and the second term to the 5P to 7S step. For any given mF and

intermediate state, the corresponding two-photon transition amplitude goes as

the product of dipole moments of each single photon step. The total two-photon

transition amplitude can be calculated using these dipole moments and Eq. (3.12)

based on second-order perturbation theory. Clearly for the mF =0 transitions, via

any intermediate state, this two-photon transition is not allowed. Suppose we

only use two-modes to excite this transition, then the two-photon amplitudes

due to each intermediate state would be a function of the mode detuning. So

for large intermediate state detunings, compared to the 5P3/2F=2 to 5P3/2F=1

hyperfine splitting of ∼160 MHz, the two-photon transition amplitudes would

be weighted equally for both 5P3/2F=2 and 5P3/2F=1 transition pathways. The

important thing to notice is that for linear polarized light the product of dipole

moments for the F=2 and F=1 intermediate states (for either 5P1/2 or 5P3/2)

are equal and opposite. So the total two-photon transition amplitude is zero due

to complete destructive interference. This approach to calculating the total two-

photon transition amplitude from 5S1/2F=1 to 7S1/2=2 can be used for arbitrary
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intermediate state detunings. And of course, if the detuning in comparable to the

hyperfine splitting the two-photon amplitude from one intermediate state will be

stronger than the other, leading to incomplete destructive interference. Note that

the same cancellation occurs for the other possible ∆F �=0 transition, 5S1/2F=2

to 7S1/2=1.

Although we don’t present the dipole moments relevant for circular polarized

light, q=±1 transitions, a similar cancellation occurs. However, in it is not be-

tween hyperfine levels of a particular fine-structure intermediate state, but rather

between different fine-structure states. So the cancellation only occurs when the

intermediate state detuning is much larger than the 5P fine-structure splitting of

7 THz.

A final interesting observation from this analysis is that a single femtosecond

pulse, with a spectrum that does not cover the 5P1/2 to 7S transition, should not

excite any population from 5S1/2F=1 to 7S1/2=2. This is somewhat at odds

with the idea that the two-photon selection rule is solely a function of detuning.

In this case the spectrum is of course equally resonant with both intermediate

states, however, the two-photon transition amplitudes via 5P3/2F=2 and 5P3/2F=1

should be equal and opposite and still cancel out. Further discussion on two-

photon transition selection rules may be found in [72].

4.4 Single Photon DFCS

We have also performed direct frequency comb spectroscopy of single photon

transitions in 87Rb. There are some advantages and disadvantages of single photon

DFCS relative to our previous two-photon measurements. A significant advantage

is that the single photon transition rate is much higher than the two-photon

transition rate. Recall in the context of the radiation pressure, subsection (4.2.2),

we estimated that the 5S-5P incoherent scattering rate is at least 100 times that



93

of the 5S to 5D. However, the fluorescence that we measure as our signal is at

either 795 nm for the 5P1/2 states or 780 nm for the 5P3/2 states. Both of these

wavelengths are of course in the bandwidth of the Ti:Sapphire laser, after all

that is how we excite the transitions. So we had to alter our data acquisition

technique and apparatus to avoid measuring scattered Ti:Sapphire light. The last

aspect of the 5P measurements we will discuss is how to use the intermediate

state enhancement of a two-photon transition to determine a 5P lineshape and

linecenter frequency indirectly.

Similar to our two-photon spectroscopy measurements we still used a 100

Hz MOT cycle. For the first 7.5 ms the trap and repump lasers and magnetic field

were on to load and cool atoms in the MOT. For the next 2 ms while the trap

magnetic field was turned off the atoms were further cooled using polarization

gradient cooling (PGC), meaning the trap laser was attenuated and detuned from

the cooling transition. This period of PGC cooling is primarily intended to hold

the atoms in optical molasses, the temperature gives rise to negligible Doppler

broadening relative the the 5P 6 MHz linewidth. Finally, the atoms are probed

and the 780 nm or 795 nm fluorescence counted on a PMT for 0.5 ms, after

allowing the the trap and repump lasers to fully extinguish.

We had to use a somewhat more complicated probing cycle for the mea-

surements at 780 nm and 795 nm to avoid saturating the PMT with scattered

Ti:Sapphire light. The imaging apparatus before the PMT was modified so that

an image of the atom cloud was formed on a ∼1 mm aperture. After the aperture

the light was passed through a 3 nm bandwidth optical interference filter centered

at the desired detection wavelength, and finally focused onto the PMT. This com-

bination of spectral filtering and imaging helped reduce the amount of scattered

Ti:Sapphire light incident on the PMT.

Unfortunately with the design of our MOT chamber there is a lot of scattered
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Ti:Sapphire light, so we also have to time gate the data acquisition to avoid

saturating the PMT. This was accomplished by using a fast high voltage switching

circuit to drive the PMT. The total 0.5 ms data collection window for each MOT

cycle was divided into sub-windows of total duration 3.2 µs. Using the Pockels cell

to switch the Ti:Sapphire laser we only transmitted the probe light and excited

the atoms during the first 200 ns of this sub-window. During the next 400 ns

the PMT was switched on and we counted photons as the excited 5P population

decayed. Due to the relatively long turn-off time of the PMT the next 2.6 µs

was simply a delay before turning on the Ti:Sapphire again. This data acquisition

cycle was repeated for the first 200 µs of the 0.5 ms window before the MOT fields

were turned back on. A typical signal was the result of repeating this process for

hundreds of MOT cycles, or several seconds per point.

Using this direct detection technique we measured the transition frequencies

from 5S1/2F=2 to 5P3/2F=3 and 5P1/2F=2. One simplification over the 5S to

5D transition frequency measurements is that we no longer used the slow turn-

on LC shutter but rather the Pockels cell to switch the Ti:Sapphire light. So

the probe power was constant versus time for all of these measurements. Again

using the multichannel SR-430 photon counter we measured the signal versus

fo as we scanned over the transition lineshape. From this data the linecenter

was estimated from a Lorentzian fit versus time and the unperturbed linecenter

frequency determined by linear extrapolation to ∼0 probing time. We measured

an absolute transition frequency for the 5S1/2F=2 to 5P3/2F=3 transition of 384

228 115 271 (87) kHz. This agrees well with a previously published cw-laser

based measurement of 384 228 115 203 (7) kHz in reference [73]. Similarly for

the 5S1/2F=2 to 5P1/2F=2 transition we measured an absolute frequency of 377

105 206 563 (184) kHz. An improvement from a cw-laser based measurement

reporting a value of 377 105 206 705 (400) kHz in reference [74].
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4.4.1 5P Measurements via Two-Photon Transitions

In this subsection we present an alternative technique for measuring the 5P

lineshapes and center frequencies. Instead of measuring the 5P-5S fluorescence

directly we infer the intermediate state lineshape based on changes in the 420

nm fluorescence from the 5D states. Recall that in Eq. (3.12) the two-photon

transition amplitude is enhanced as a function of the intermediate state detuning.

Therefore if we measure the two-photon transition rate for various intermediate

state detunings while maintaining two-photon resonance we can infer information

about the intermediate state.

One of the complications of this technique is determining a set of fr and

fo values corresponding to exact two-photon resonance but with varying inter-

mediate detunings. The second complication was alluded to in subsection (4.2.5)

concerning incoherent optical pumping to the off-resonant ground state. Unlike

the 5P3/2F=3 state, the 5P1/2F=2 state population may decay to the off-resonant

5S1/2F=1 ground state.

Using our knowledge of the 5P and 5D energy levels we created a list

of fr and fo pairs corresponding to different intermediate state detunings from

5P3/2F=3, but all two-photon resonant with 5D5/2F=4, see Table (4.4). We also

selected only those combinations of fr and fo such that all other intermediate and

final states were detuned at least ∼2.5 linewidths.

The above set of comb fr and fo was used to measure the 5P3/2F=3 lineshape

via the two-photon transition 5S1/2F=2 to 5D5/2F=4. Another set of fr and fo

frequencies were used to measure the 5P1/2F=2 lineshape via the two-photon

transition 5S1/2F=2 to 5D3/2F=3.

Initially one may expect that fr and fo may be simply scanned together in

a smooth fashion to achieve the desired two-photon resonance and intermediate
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Detuning (MHz) fr (MHz) fo (MHz)

-13 99.89260605 -16.4737
-10 99.92066423 -22.4503
-9 99.93474869 -16.2599
-4 99.92482030 -9.9189
-3 99.93890785 -11.1280
-2 99.91518350 -21.3653
+1 99.94325356 -24.2433
+3 99.86747878 -22.2673
+4 99.88155032 -24.0872
+5 99.89562280 -14.1944
+9 99.84803930 -11.4370
+12 99.84303590 -24.3973

Table 4.4: Set of fr and fo pairs with varying detunings from the intermediate
5P3/2F=3 state and two-photon resonant with 5D5/2F=4.

state detuning. While this is true in a three-level system, it becomes complicated

by the many other possible transitions the comb may excite in an actual Rb atom.

More specifically, take the 5P3/2F=3 lineshape measurement as an example. This

intermediate state is offset from half the two-photon transition frequency by 1

THz, so considering we use fr ∼100 MHz, the difference in resonant comb mode

order numbers is ∼104. So a change of fr by ∆fr only results in a differential

change of frequency between the two resonant modes of ∼104 × ∆fr. Suppose

that we wish to have a 10 MHz intermediate state detuning, this would require

changing fr by ∼1 kHz. This change is large enough that the detunings from the

many other intermediate and final states will in general change, and may become

resonant with other comb modes. It is for this reason extra care must be taken in

selecting the values in Table (4.4).

In Chapter (3) we briefly discussed one of our theoretical models based on

fourth-order perturbation theory using the Liouville equation. Due to the fact

that this model includes all of the 5S, 5P, and 5D states it is ideal for calculat-

ing the effects of incoherent optical pumping. In fact, as we will show below,
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Figure 4.19: Theoretically predicted population distribution between the two hy-
perfine ground states for ±4 MHz detuning from 5P3/2F=3. Note that the inter-
mediate state detuning was set using values of fr and fo to ensure two-photon
resonance with 5D5/2F=4 and reduce excitation to all other transitions.
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it is essential for our indirect 5P1/2F=2 measurement. Figure (4.19) shows the

theoretically predicted population distribution between the two hyperfine ground

states for ±4 MHz detuning from the 5P3/2F=3 state. We expect the majority

of the population to be in the F=2 ground state initially. From this theoretical

prediction we see that there is some optical pumping, due to other intermediate

states. However, the amount of population that remains in the F=2 state is es-

sentially independent of the 5P3/2F=3 detuning. Using the set of fr and fo pairs

shown in Table (4.4) we measured the 5P3/2F=3 lineshape via its enhancement

of the two-photon transition. With this indirect measurement technique we esti-

mated the 5S1/2F=2 to 5P3/2F=3 transition frequency to be 384 228 115 309 (63)

kHz, within ∼40 kHz of the frequency measured with the direct single photon

technique at 780 nm.

Figure (4.20) shows the same simulation for the resonance with the 5P1/2F=2

intermediate state. Recall that population in this state may decay to the off-

resonant ground state, 5S1/2F=1. Clearly in this case optical pumping is an

important effect, not only does most of the ground state population end up in

F=1, but it depends on the intermediate state detuning. Note that in both cases

the intermediate state detuning was achieved using our predetermine fr and fo

values, like in Table (4.4). The steady state value of the ground state population

distribution is not only determined by the optical pumping rate from F=2 to F=1,

but also the rate for the reverse process, which in general occurs at a different

rate. One of the reasons the incoherent optical pumping is different between the

±4 MHz detuned cases is the optical repumping due to the comb itself from F=1

to F=2. Of course if there was no optical repumping all the population would

eventually end up in the F=1 ground state.

Unfortunately the measured 5P1/2F=2 appears noisy due to the apparently

random ground state population distribution for different fr and fo pairs. To
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Figure 4.20: Theoretically predicted population distribution between the two hy-
perfine ground states for ±4 MHz detuning from 5P1/2F=2. Note that the inter-
mediate state detuning was set using values of fr and fo to ensure two-photon
resonance with 5D3/2F=2 and reduce excitation to all other transitions.
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improve the quality of our signal, meaning make the lineshape closer to Lorentzian,

we normalized all of our measured 5P1/2F=2 data. This was done by dividing the

signal measured at each intermediate state detuning by the theoretically predicted

value of (1-ρF=1), where ρF=1 is the population in the off-resonant ground state

5S1/2F=1. Note that this is not the same as normalizing by ρF=2 because some

population is excited. The raw lineshape measured prior to normalization is shown

in Fig. (4.21)(a). After applying our normalization scheme the improvement in the

Lorentzian fit is quite dramatic, see Fig.(4.21)(b). Using the normalized linshape

we estimate the 5S1/2F=2 to 5P1/2F=2 transition frequency to be 377 105 206 939

(179) MHz, close to the single photon direct measurement. Although this provides

an alternative means to measure an intermediate state it is not an improvement

over the direct measurement technique applied in the previous section. However,

it does provide a remarkable validation of the theoretical model used to calculate

the optical pumping effects.
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Figure 4.21: (a) Raw signal versus intermediate state detuning measured using
the 420 nm fluorescence enhancement from the 5D3/2F=2 state. (b) Improved
lineshape recovered by normalizing the raw data by the theoretically predicted
values of (1-ρF=1) to compensate for the variable optical pumping to the F=1
ground state.



Chapter 5

High-Resolution Coherent Control: Chirp

5.1 Chirped Pulses

A simple non-transform limited pulse shape to consider is a pulse in time-

domain with a linear frequency sweep. This means that the instantaneous fre-

quency of the pulse is either increasing or decreasing versus time at a constant

rate. Although the time domain definition is intuitively clear, the pulse shaping

and atomic physics we wish to discuss are best considered in frequency domain.

We use a frequency domain definition of chirp given be the Taylor expan-

sion of the phase of a Gaussian field envelope pulse about some center frequency.

With our convention, changing the chirp of the pulse only changes the quadratic

component of the phase in frequency domain, the power spectrum remains unal-

tered but the temporal duration is increased. The quadratic spectral phase term

is given by,

φ′′ =
1

2

∂2φ

∂ω2
|ω=ωo (5.1)

where ωo is the center angular frequency of the pulse spectrum. This term is

sometimes also called the group velocity dispersion, usually in the context of

material dispersion, because it represents a change of group velocity as a function

of frequency. With the given definition of chirp, lower frequencies precede higher

frequencies for positive chirp, and vice-versa for negative chirp.
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A Gaussian pulse with arbitrary chirp has an electric field given by,

E(ω) =
√

πEoToe
−(ω−ωo)2T 2

o /4eiφ′′(ω−ωo)2 (5.2)

where 2To is pulse duration defined by the 1/e values and Eo is the peak field

magnitude of the transform limited pulse. In time domain this field becomes,

E(t) = Eo

√
To

T ′ cos((ωo + αt)t + φceo)e
−t2/T ′2

(5.3)

with

T ′ = To

√
1 + (4φ′′2/T 4

o ) (5.4)

and

α =
2φ′′

T 4
o + 4φ′′2 . (5.5)

It can be seen from Eq.(5.3) that the instantaneous frequency changes at a con-

stant rate given by α, and for either sign of α the chirped pulse duration, T′, is

greater than the transform limited pulse duration To. This expression for the elec-

tric field in time domain is used when solving numerically for the density matrix

of the atomic system.

5.2 Pulse Stretcher Compressor

To generate pulses with large, tunable linear frequency sweep we use a grat-

ing based pulse stretcher and compressor [75]. Typically grating based pulse

shapers are used to compress pulses after long travel through dispersive fiber [76]

or for reducing the peak intensity of a pulse in a chirped-pulse-amplifier system

[77]. In prism and grating based pulse shapers, the vast majority of the disper-

sion arises due to the angular dispersion, as opposed to the material itself. It

was shown in [78] that angular dispersion normally gives rise to negative group-

velocity dispersion, but by using a telescope in the pulse shaper it is possible

to have both negative and positive dispersion. The large positive and negative
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dispersion possible with a telescopic grating-based pulse shaper is ideal for our

experiments, which required of order ±100,000 fs2 chirp.

It is worth going through a brief derivation of the second-order dispersion

of a grating pair stretcher/compressor, just to highlight one of the subtleties. As

mentioned previously, the second-order dispersion, responsible for the chirp of a

pulse, is defined as the second frequency derivative of the optical phase. Therefore

we must derive an expression for the phase as a function of frequency. Figure (5.1)

shows a diagram of a basic two grating pulse stretcher/compressor with two input

rays of the center wavelength λo used to approximate a finite width plane wave.

There are three lengths defined: Lperp is the distance between gratings along the

grating perpendicular direction, Lλ is the distance traveled by a ray of wavelength

λ, and y is the extent of the beam along the second grating.

The total optical phase arises from two parts, the path length defined as

ABCD and an extra phase due to phase matching. The grating equation for first

order diffraction is,

sin(θi) + sin(θr) =
λ

d
(5.6)

where the incident θi and reflected θr angles are defined in Fig. (5.1) and d is the

groove spacing. Using the grating equation it is not hard to determine that the

wavelength dependent path length ABCD, now defined as l, is

l = Lperpsec(θr)(1 + cos(θi − θr)). (5.7)

The second contribution is due to phase matching, and is somewhat less

obvious, for this explanation we must consider two parallel input rays of the same

frequency. There are two dashed blue lines perpendicular to the optical rays in

Fig.(5.1) that denote the optical phase fronts, or in other words planes of constant

phase. Notice that one of the rays must travel further than the other, denoted as

the dashed red segments of the ray path. For the phasefronts to be at constant
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Figure 5.1: Grating pair diagram for the derivation of the second-order dispersion.
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phase there must be an extra phase included due to the grating. This extra phase

can be determined by calculating the extra path length, given by the two dashed

red segments. With some geometry this extra length can be shown to be,

lextra = y(sin(θr) + sin(θi)). (5.8)

Notice that the previous equation can we rewritten using the grating equation as,

φextra = 2π
y

d
, (5.9)

with φextra ≡ 2π lextra

λ
. This can be interpreted as an extra phase shift of 2π per

groove covered on the second grating. Note that due to the fact the beam has not

been spectrally dispersed before the first grating, we need to only consider this

effect after reflection from the second grating. Combining the results for l and

lextra and noting that y = Lperptan(θr) the total phase as a function of frequency

can be written as,

φ(ω) =
ωLperpsec(θr)(1 + cos(θi − θr))

c
+ 2πLperp

tan(θr)

d
. (5.10)

After taking two frequency derivatives, substituting for Lperp, the second-order

dispersion is found to be,

φ′′ = −4π2c

d2ω3
o

Lλo

cos(θr)2
. (5.11)

From this formula it can be seen that the chirp is a linear function of dis-

placement �Lλ. Further calculations for grating pair pulse effects can be found in

the literature for beams of finite size [79], Gaussian beams [80], and distortions

due to misalignment [81].

We used a grating with 1400 lines per mm in a folded 2f geometry, see

Fig.(5.2). Although the telescope can be used with a magnification of greater than

unity to increase the dispersion of the shaper, we used a magnification of unity for

the purpose of allowing both signs of chirp. The apparatus was constructed with
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Figure 5.2: Double pass grating pulse stretcher / compressor. This figure shows
the design used in the our experiments with a telescope of unity magnification.
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both the lens and the retro-reflection mirror mounted on one rigid platform that

could be translated along the optical axis via a long travel micrometer. Using

a long focal length lens allows large excursions of the lens+mirror pair from the

grating, and thus a large range of ±∆x. In this geometry the grating separation

Lλ used in Eq. (5.10) must be substituted with ∆x [78]. Figure (5.2) illustrates

the offset of wavelengths that occurs after one pass through a grating pair. The

input ray contains all wavelengths, but the rays corresponding to wavelengths λo

and λ1 traverse different paths due to the angular dispersion of the gratings and

exit with a spatial offset. Spatial chirp, or wavelength dependent propagation

directions, is an issue for our experiments. We focused the Ti:Sapphire beam

into the atom cloud, if the modes corresponding to different wavelengths do not

overlap well in the focal plane there will be reduced interference in the atomic

excitation. Fortunately, the spatial chirp incurred by one pass through the shaper

can be canceled out by a second pass. In our case the retro-reflection mirror shown

in Fig.(5.2) is tilted slightly such that a pick-off mirror can be used outside the

shaper to reflect the beam back for a second pass, note that this also doubles the

total dispersion of the pulse stretcher.

For alignment purposes a 3 nm bandwidth optical interference filter was

used at 778 nm, the center wavelength of the pulse, before the beam entered

the pulse stretcher. The grating was rotated such that the specular reflection

directly retro-reflected onto itself, this allows for a reference position to determine

the angle of incidence. From this position the grating was then rotated to set the

angle of incidence for optimum diffraction efficiency, approximately 90%. To align

the grating grooves to the beam polarization the full spectrum of the pulse was

used. This is done by ensuring the dispersed spectrum remains horizontal to the

table, the grating mount allows for the tilt of the grooves to be adjusted.

The lens plus retro-reflection mirror, both mounted on a rigid platform on
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a translation stage, was set such that the center wavelength of 778 nm traveled

directly along the optical axis of the lens. The lens and retro-reflection mirror

were both mounted on tip-tilt stages such that the 778 nm impinges normally

onto the lens and is reflected slightly down from the mirror, allowing the beam

to be picked off after one or two passes. A second short travel translation stage

was used to mount the retro-reflection mirror, thus allowing fine tuning of the

lens to mirror distance to be one focal length. As mentioned previously the beam

was sent twice through the pulse stretcher by reflection from a pick-off mirror, to

reduce spectral walk-off.

Any residual spatial chirp of the pulse must be reduced. This was accom-

plished by diverting the full spectrum beam onto a card about 8 meters after two

passes through the pulse stretcher. Then the retro-reflection mirror position was

adjusted via micrometer until the Ti:Sapphire mode dimmed uniformly as differ-

ent spectral components were blocked in the fourier plane of the lens. When there

is significant spatial chirp a dark line can be observed in the mode, the position

of which depends on the color blocked.

Finally the remaining calibration was to determine the necessary grating

offset, ∆x, to compensate for the dispersion of the optics such that the pulse was

transform limited at the atomic sample. For this we optimized the two-photon

photocurrent on a GaAsP photodiode. The beam was diverted from the MOT

chamber and focussed onto the photodiode. As the distance of the grating from

the lens+mirror system was scanned via micrometer a clear peak was observed

in the photocurrent corresponding to an approximately transform limited pulse.

Note that for this experiment the variations in excited population we observe are

on the scale of many thousands of fs2 chirp, so a rough calibration is sufficient.
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5.3 Dressed Atom Picture

The dressed atom picture is a useful tool for visualizing and estimating some

of the basic physics involved with chirped pulse excitation of a three-level atom. In

the case of large positive chirp the excitation of rubidium by one or more chirped

pulses there is a characteristic oscillation of the excited population versus chirp.

This characteristic oscillation was the main effect observed in the original single

pulse experiments and also appears in our comb experiments. The first period of

this oscillation can clearly be seen in our results presented in Fig. (5.5) of section

(5.4). Theoretical calculations indicate that it continues beyond the range of chirp

used in our experiment, which was limited by our pulse stretcher/compressor.

An intuitive derivation of the rough dependence of the oscillation period, in

terms of chirp, can be arrived at from a dressed atom picture. Figure (5.3) shows

the dressed energy levels of a three-level atom in a cascade configuration. We are

interested in the interference between the two paths indicated by the red dashed

arrows in the figure. Both paths start from the ground state before the pulse and

end in the excited state after the pulse, however, one path passes through the

triangle defined by ABC and the other goes directly from A to C. The path via

ABC is said to be diabatic because the state vector passes between two dressed

eigenstates, this will be referred to as path i. The other path is adiabatic because

the state vector remains in the same dressed state, this will be referred to as

path ii. In the actual experiment both paths are traversed simultaneously for

the range of chirps and intensity used in our experiment. Clearly the energy of

the state-vector changes as a function of laser frequency and thus time. We are

interested in the difference in phase acquired, calculated from the energy of the

wavefunction, between the two paths.

The dashed lines in Fig. (5.3) represent the dressed levels in the limit of very
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weak instantaneous intensity, such that the Rabi frequency between adjacent levels

is low and thus the coupling. In the limit of large chirps, this condition of weak

coupling is satisfied and the dressed states, indicated by the solid lines, approach

the energies given by the dashed lines. In this limit the difference between the

two paths is just the triangle ABC. The total phases acquired along the two paths

is given by,

φi =

∫ t′

0

ωi(t)dt (5.12)

φii =

∫ t′

0

ωii(t)dt

where t′ is the time it takes to sweep the frequency between points A and C, and

ωi,ii(t) is frequency of the wavefunction along path i or ii. Note, ωii(t) is constant

and equal to ω2 and that,

ωi(t) = ω2 + αt, (5.13)

between times t=0 to t= t′
2
. The phase difference can be simplified to

∆φ = 2α

∫ t′/2

0

tdt. (5.14)

As noted previously the rate change of frequency of a Gaussian envelope pulse for

large chirps is given by α. The difference in frequency between points A and C is

given by δ, the difference in frequency between the first and second transitions.

So the time t′, is just δ
α

. In the limit of large chirps, Eq. (5.5) for the frequency

sweep rate gives the relation α = 1
2φ′′ . Using these substitutions and solving for

∆φ = 2π gives the amount of chirp φ′′ corresponding to one oscillation period,

φ′′ =
4π

δ2
. (5.15)

So from this rather simple interfering paths argument assisted by the dressed atom

picture we arrive at the correct dependence of the characteristic oscillation period

on δ.
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Figure 5.3: Diagram representative of the dressed atom states and the two inter-
fering paths from the ground to excited state.
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5.4 Chirped Pulse Experiment

One of the most common and simplest applications of coherent control is

called ladder climbing. Ladder climbing refers to the subset of coherent control

techniques relying upon a linearly chirped broadband pulse to excite some target

state via one or more intermediate states. In general this type of multi-photon

transition can be in either a cascade (ladder) type or Raman type configuration,

the theory being nearly identical for the two cases. Ladder climbing has found ap-

plication in molecular systems [82] for dramatically increasing dissociation. Some

work has been conducted demonstrating a frequency selectivity much narrower

than the bandwidth of the pulse(s) used in the experiment [83, 84]. If the chirp is

sufficiently large, and the intensity high, the state vector follows some eigenstate

adiabatically, this regime is referred to as adiabatic following [85]. Efficient pop-

ulation transfer in a three-level system can be achieved using two time delayed

transform limited pulses, referred to as stimulated Raman adiabatic passage (STI-

RAP) [86], or a single chirped broadband pulse [87]. At pulse intensities such that

adiabatic following is not present the interaction of a single broadband chirped

pulse with a three-level system has been studied in rubidium [58], and Sodium

[88, 89].

In this section we describe our first experiment demonstrating high-resolution

coherent control. This experiment extends the previous work done on chirped

pulse excitation of a three-level atom to the multi-pulse regime by using a fem-

tosecond comb. All previous experiments studying the interaction of a shaped

femtosecond pulse with an atomic or molecular system have been limited to only

a few pulses with temporal separations of much less than a nanosecond. For ex-

ample, pump probe experiments generally use an optical delay line to generate

the time between pulses, significantly limiting the delay. Due to the relatively
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long coherence time of the phase stabilized Ti:Sapphire laser we are not limited to

short inter-pulse delays. As demonstrated in section (??), as long as the interac-

tion between the femtosecond pulse train and the atom electronic states remains

coherent the resolution obtained increases versus pulse number. We use this fact

to study the effects of a series of linearly chirped pulses with a three-level sub-

system of rubidium levels at high-resolution. In particular we excite only the

5S1/2F=2 to 5P3/2F=3 to 5D5/2F=4 cascade transition, see Fig. (5.4), all other

allowed transitions are detuned by at least a few linewidths.

Figure (5.4) shows the resonant two comb mode wavelengths at approxi-

mately 776 nm and 780 nm and the frequency offset of the intermediate level

from exactly half the two-photon transition frequency, we refer to this as δ. The

comb was locked with an fr of 100.41356730 MHz and fo of 18.14 MHz, which

results in the required resonance condition of one comb mode directly resonant

with the 5S1/2F=2 to 5P3/2F=3 transition and another 5P3/2F=3 to 5D5/2F=4.

As mentioned in the context of spectroscopy given the two degrees of freedom for

the comb frequency spectrum it is possible to satisfy the above resonance condi-

tion exactly. Unlike our previous spectroscopy experiments, the entire spectrum

of the femtosecond pulse plays a role in this experiment.

Next let us consider the role of the hundreds of thousands of remaining comb

modes detuned from an intermediate state. The two-photon transition frequency

from 5S1/2F=2 to 5D5/2F=4 is ν2γ = 770.569132733400 THz. Due to the fact it

is a two-photon transition the sum of comb mode frequencies must add to this

frequency such that,

ν2γ = fr(N1 + N2) + 2fo (5.16)

where N1 and N2 are two integer mode order number of order 4 million. Note

that adding a constant quadratic spectral phase to each pulse does not change the
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Figure 5.4: Energy level diagram of resonant states for chirped pulse experiment.
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frequency spectrum of the comb, only a change in spectral phase as a function

of time would modify the spectral content. From this equation it can be seen

that if any particular pair of modes add to two-photon resonance then due to the

equal spacing of comb modes all modes in the spectrum are part of a resonant

pair. In this set of chirped excitation experiments the spectrum was approxi-

mated as Gaussian with a FWHM of 30 nm centered at 778 nm. This results in

roughly a 15 THz FWHM spectral width supporting approximately 150,000 comb

modes. If we take each separate possible two-photon transition amplitude to be

from an ordered pair of modes there are ∼300,000 two-photon resonant transition

amplitudes within the FWHM of the comb spectrum.

Each two-photon resonant transition amplitude is proportional to,

CN1,N2 ∝
|EN1 ||EN2|ei(φN1

+φN2
)

i(ωgf − 2π(N1 + N2)fr − 4πfo) + π∆νf
× (5.17)

1

i(ωgi − 2π(N1)fr − 2πfo) + π∆νi

where |EN(1,2)| and φN1,2 are the magnitude and phase of the N1 and N2 modes,

ωgf(ωgi) are the transition frequencies from ground to final(intermediate) states,

and ∆νi(f) are the intermediate(final) state linewidths. Note that this simplified

form of the equation is for the N1 mode from the ground state, i.e. it constitutes

the first step in a specific ordering of absorption. The other possible ordering has

N2 exciting the 5S to 5P transition. The full formula is not necessary to explain

the relevant physics for this section.

Inspection of Eq. (5.17) reveals that the phase of the excited state ampli-

tude is a function of the phases of the two modes and also the detuning from

intermediate state resonance. In particular we notice that for a transform limited

pulse, if the frequency of the N1 mode is much less(greater) than ωgi the phase of

the amplitude is -90o(+90o). The nearest mode pairs off-resonant from the inter-

mediate state are detuned by ±fr ∼100 MHz, for a transform limited pulse these



117

give rise to transition amplitudes of equal magnitude but ∼180o out of phase and

therefore destructively interfere. All other modes are detuned further than 100

MHz from the intermediate state and therefore give rise to two-photon amplitudes

with a phase of ±90o as well. Altering the spectral phase from that of a transform

limited pulse (constant phase) by introducing chirp, changes the phases of the

two-photon amplitudes corresponding to different wavelengths.

Due to the fact the spectrum is centered at 778 nm, close to the 5S1/2F=2

to 5P3/2F=3 transition wavelength of 780 nm, it is a good approximation to say

that for a transform limited pulse all mode pairs detuned from the intermediate

resonance completely destructively interfere. Of course there is a second reason

why the mode pairs detuned from an intermediate resonance can be ignored to a

first approximation. The second term in Eq. (5.17) predicts the amount of reso-

nant enhancement of the two-photon transition as a function of intermediate state

detuning. So any mode pair detuned from the intermediate state has a greatly

diminished amplitude compared to the intermediate state resonant transition am-

plitude.

In this chirped excitation experiment we are interested in the effect of the

hundreds of thousands of mode pairs detuned from intermediate resonance. The

experimental apparatus used in the section is very similar to that of the spec-

troscopy experiments. In particular the Pockels cell is used as a pulse picker in

the same manner as section (4.1). As mentioned previously the Ti:Sapphire is

operated with a spectral width of approximately 30 nm FWHM, at a center wave-

length of 778 nm, resulting a transform limited pulse duration of about 80 fs. The

average power at the MOT was measured to be approximately 55 mW. This beam

was focused into the MOT, from one direction only, to a beam waist estimated to

be about 160 µm. The peak transform limited electric field resulting from these

beam parameters is approximately 1.3×107 V/m.
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The MOT was operated in 10 ms cycles like our previous experiments. It

was loaded for the first 7 ms, then the trapping and repump lasers and magnetic

field were turned off for the remaining 3 ms. In the last 200 µs the atoms were

probed with the Ti:Sapphire laser. Due to the fact the atoms were probed from

one direction only there is a significant momentum transfer to the atoms. We only

probed the atoms from one direction because we want all the atoms to be excited

by the same exact pulse shape. We will discuss the effect of counter-propagating

pulses in the context of coherent control in section (6.1). For this reason the data

was collected during only the first 80 µs of the 200 µs window. This 80 µs was

divided into two windows of equal 40 µs duration. During the first 40 µs the atoms

were excited by the Ti:Sapphire laser that passes through the Pockels cell and the

pulse stretcher, this is the chirped beam. During the second 40 µs window the

Pockels cell is in the off position, during this time the Ti:Sapphire laser is diverted

out the side exit of the cell and bypasses the pulse stretcher. This diverted beam

is chirped from the Pockels cell and general optics, but remains at constant chirp

throughout the experiment. We used this constant chirp beam as a reference to

reduce the effect of MOT atom number fluctuations during the data collection

process. Using a SR-400 two-channel photon counter we were able to normalize

the counts taken on channel A during the first 40 µs to those taken on channel B

during the second 40 µs. Each data point was taken at a set displacement of the

lens and retro-reflection mirror, ∆x in Fig. (5.2), and is the sum of 20,000 MOT

cycles, 200 s of operation time, or 0.8 s of atom interrogation time.

The main result of this experiment is presented in Fig. (5.5). We scanned

the displacement, ∆x, of the pulse stretcher from 22 mm to -33 mm. Using Eq.

(5.10) for the dispersion of a single pass through the stretcher and multiplying by
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two for double pass we get the dispersion per unit ∆x,

φ′′(∆x) = −6.774 × 106∆x. [fs2] (5.18)

This range of displacements gives -150,000 to 225,000 fs2 chirp, enough to ob-

serve the characteristic oscillation. Figure (5.5) shows a theoretical calculation

(red lines) for both the single pulse response (not to scale) and the asymptotic

steady state 5D5/2F=4 population versus chirp. The measured signal is shown as

open squares and has been scaled to the theoretically predicted population by one

global scale factor that takes into account things such as photon collection effi-

ciency and atom number. Although the dressed state approach and second-order

perturbation theory yield useful information about the physics, the theory model

used here is based on solving for the density matrix of the three-level system. In

particular we solve for the density matrix of the system numerically as outlined

in section (3.2) of chapter (3) for a series of linearly chirped femtosecond pulses.

There are two main features of the data in Fig. (5.5) that separate our

comb experiment from previous single pulse experiments. The first of which is

the large difference in the excited population between one pulse and 100 pulses

for negative chirps. Intuitively the very low population predicted for a single

negatively chirped pulse can be understood from the order of frequencies that

arrive at the atom.

For a rubidium atom the 5S to 5P wavelength is less than that of the 5P

to 5D wavelength. Initially the electron is in the 5S1/2F=2 ground state, with no

probability to be in the 5P states. So the natural time ordering of wavelengths

to excite an electron from 5S to 5P then 5D, is longer to shorter (positive chirp).

In fact that is exactly what previous experiments in Na and Rb found for single

pulse excitation [88, 58]. If the intermediate level lies above the two-photon half

frequency then the ordering would need to be reversed.
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Figure 5.5: Steady state measured signal and calculated excited state population
versus chirp and the single pulse theoretical response.
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Coherent excitation by multiple pulses, like in our experiment, results in a

significant 5D population at negative chirps. Initially we did not expect this result.

However, after some thought this is a nice example of how coherent interaction

with a chirped comb differs from a single pulse. This effect is due to the 5S1/2F=2-

5P3/2F=3 electronic coherence that persists between pulses, with a coherence time

of about 50 ns. This coherence essentially ties together the electric field from

several pulses. So despite the fact individually the pulses are chirped from short

to long wavelengths, between the end of the first pulse and the beginning of the

second the field jumps from long to short wavelengths. This inter-pulse frequency

jump is similar to a positively chirped field, and is therefore capable of exciting

the 5S to 5P to 5D transition in the proper time ordering. To demonstrate this

effect we measured the 5D population versus the number of femtosecond pulses

at ± 67,000 fs2 chirp. Our results are shown in Fig. (5.6) starting from a single

pulse excitation by 1 to 9 pulses. The theoretical predictions are the lines through

the data points, which are shown as symbols. At both large positive and negative

chirps the population grows as the square of the number of pulses, a signature of

coherent accumulation. However, the scale factor for the negative chirp results is

less population transfer than that of the positive. Unfortunately the single pulse

signal is dominated by noise so the single pulse versus two pulse response does

not show the dramatic increase expected from theory.

The second feature of significance is indicative of the high-resolution ob-

tained in our experiment. Recall that the oscillation of the excited population is

predicted to occur with a period of 2π
δ2 . Where δ is the detuning of the interme-

diate state from half of the two-photon transition frequency. In previous single

pulse experiments there are two main sets of intermediate states due to the fine

structure splitting, for example the 5P states in Rb. Excitation of Rb by a single

pulse will result in population transfer to both the 5D3/2 and 5D5/2 excited states.
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Figure 5.6: Measured signal and calculated excited state population versus pulse
number for large positive and negative chirps.
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The 5D3/2 excited state manifold is accessible via both the 5P1/2 and 5P3/2 states.

These two sets of intermediate states have very different detunings from half the

two-photon transition frequency. The 5P3/2 states have detunings, δ, in the range

of 1 THz and the 5P1/2 states have much larger 7 THz detunings. Therefore it

is expected that there should be two different periods for the oscillation of 5D

population versus chirp, these different periods were observed in the Sodium sin-

gle pulse experiment [88]. The high-resolution of the comb allows us to tune to

specific transition pathways. In this particular experiment we chose the 5S1/2F=2

to 5P3/2F=3 to 5D5/2F=4 transition. Nearly all of the measured signal can then

be attributed to population solely in the 5D5/2F=4 state, which is only accessi-

ble from the 5P3/2F=3 intermediate state. We measured an oscillation period of

φ′′
2π=14.5×104 fs2, very close to the theoretical value of φ′′

2π=14.3×104 fs2. Note

that if transitions via the 5P1/2 states contributed to the signal, there would also

be a much shorter oscillation period of φ′′
2π=2.4×103 superposed on the result.

To further demonstrate the capability of using a comb for high-resolution

coherent control we conducted a final chirped pulse experiment in which we sig-

nificantly reduced the nonlinear absorption. As explained previously the phase

dependence as a function of intermediate state detuning predicted by Eq. (5.17)

results in destructive interference. Specifically, recall that for a transform limited

pulse the two-photon amplitude from a comb pair detuned below an intermediate

state is canceled by an equal and opposite amplitude from a pair detuned sym-

metrically above the intermediate state. This prediction is especially valid for

our choice of two-photon transition, 5S1/2F=2 to 5P3/2F=3 to 5D5/2F=4. As was

discussed in section (4.1) this transition has a closed excitation pathway and is

therefore a reasonable approximation to a three-level system, if we can ignore the

mF sublevels. So for a transform limited pulse all of the excitation is essentially

due to only those two modes that are exactly resonant with a transition step. In
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this experiment we demonstrate phase sensitive cancellation of the excited state

population due to this interference effect.

By shifting the offset frequency fo of the comb by −fr/2 to -31.86 MHz, two-

photon resonance is maintained, but there is no mode resonant from 5S1/2F=2 to

5P3/2F=3. All mode pairs are symmetrically detuned around the intermediate

resonance by fr × (1/2 + N), where N is an integer from zero. Figure (5.7) shows

the resulting 5D population as a function of chirp between the range of about -

75,000 to 150,000 fs2. Like our previous chirped excitation results the theoretically

predicted value is shown as a solid red line and the measured data points are

symbols. The figure inset is a diagram depicting the detuning of comb mode pairs

that are two-photon resonant but symmetrically detuned around 5P3/2F=3. There

are two reasons why the signal is reduced in this experiment from our previous

chirped excitation results shown in Fig. (5.5). First and foremost, is that the

resonant enhancement of the two-photon transition is significantly reduced. For

example, the ratio of the resonant enhancement from a mode pair directly on

resonance to that of a mode pair detuned by 100 MHz is about 1000. The second

reason for a reduction in the signal is the phase sensitive cancellation we are

interested in demonstrating. From Fig. (5.7) it can be seen that by changing

from zero to about 25,000 fs2 the signal is increased five fold, a clear signature of

the phase sensitive destructive interference.
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Figure 5.7: Steady state measured signal and calculated excited state popula-
tion versus chirp for a comb tuned symmetrically about the intermediate state
resonance.



Chapter 6

High-Resolution Coherent Control: Discrete Phase

6.1 Spatial Light Modulator Pulse Shaping

In this section the design and operation of the spatial light modulator (SLM)

based pulse shaper is described. There are several crucial calibrations that must

be conducted on both the SLM itself and the pulse shaper as a whole. It should be

noted that these calibrations greatly influenced the results of our coherent control

experiment. Although mundane, and perhaps obvious to some, the alignment and

calibration procedures presented in this section constitute a great deal of the the

necessary considerations for obtaining high quality coherent control results.

The design of our SLM based pulse shaper is shown in Fig. (6.1). It is based

on a folded 2f-2f configuration with the SLM liquid crystal element at the Fourier

plane. There are four optical elements shown on each side of the pulse shaper

in Fig. (6.1). There is a flat mirror used to divert the beam to the grating, this

mirror is on a removable mount such that the beam can pass directly though two

irises for alignment. A 1200 grooves per mm grating is used to diffract the light

to a pickoff mirror. The pickoff mirror is used to fold the optical path, this saves

space and allows the grating to be adjusted for its optimum diffraction efficiency.

Light is reflected from the pickoff mirror to the spherical mirror with a focal length

of 25 cm, used to focus into the SLM. There is a f/2 length distance between the

grating and pickoff mirror, f/2 distance from the pickoff mirror to spherical mirror,
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and one focal length from the spherical mirror to the center of the SLM element.

Before the pulse shaper we used a telescope to expand the Ti:Sapphire beam to

approximately 3.5 mm diameter, resulting in a beam radius in the Fourier plane

of about 30 µm. Ideally the spacing and angles of the elements on either side

of the SLM are equal. Note that the grating, spherical mirror, and SLM are all

mounted on micrometer translation stages for fine tuning.

6.1.1 Alignment Procedure

Proper alignment of the pulse shaper optics is essential for ensuring that the

beam exiting the shaper has as little spatial chirp as possible. Although it is in

principle simple to set the distances and angles of the optics on either side of the

SLM to be equal, in practice this proves to be more difficult. Even with careful

measurements of all the distances and beam heights, after the initial alignment, I

found the beam exiting the pulse shaper to generally have a significant amount of

spatial chirp and astigmatism. So it is useful, to explain the alignment procedure

we used.

There are two alignment irises mounted on the same optical breadboard as

the pulse shaper at equal heights. The first step is to ensure the input beam is

aligned to these irises without passing through the pulse shaper. This is done by

removing the two flat input/output mirrors. Next replace the flat mirrors, the

first mirror is angled to direct the beam to the grating with a shallow downward

slope, such that the beam is diffracted at the same angle to the pickoff mirror,

but not clipped by the mirror.

For this part of the alignment it is best to aperture the input beam to a small

diameter and filter the center wavelength with an optical interference filter. The

grating rotation angle should be adjusted such that the diffracted beam is almost

reflected back on itself, but tilted slightly down such that the full, unapertured
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f/2

f/2
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Figure 6.1: Spatial light modulator in a folded 2f-2f geometry pulse shaper. The
input beam is expanded prior to entering the pulse shaper to ∼3.5 mm diame-
ter, however it is shown as a thin line. The broad line represents the spectrally
dispersed beam after the grating. The dispersed beam is picked-off with a mirror
and diverted to the spherical mirror to focus into the SLM elements. Note that
the pick-off mirrors are below the beam sent to the SLM.
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mode, is incident on the center of the pickoff mirror. If this is done properly

the full mode will not be clipped by the pickoff mirror, but all vertical angles

are kept to a minimum. The pickoff mirror is aligned to reflect the beam 90o in

the horizontal plane and vertically upward such that the beam hits the spherical

mirror at the the same height as the input beam at the first iris. The spherical

mirror should be angled slightly upwards such that the beam after reflection is

parallel with the table.

At this point the SLM position can be roughly adjusted so that liquid crystal

elements are in the focus of the beam and roughly centered such that pixel number

∼160 corresponds to the center wavelength. It is normal for the full spectrum at

the SLM to be rotated about the propagation direction such that each wavelength

is at a slightly different height, this is due to the different heights at which the

wavelengths are reflected from the pickoff mirror. One half of the shaper should

be roughly aligned after this procedure and the output half can be aligned in the

same fashion to be a mirror image.

After the previous rough alignment is completed the beam should exit the

pulse shaper at a fixed height through the alignment iris. Assuming all the dis-

tances were initially set properly the interference filtered beam should be colli-

mated, if it is not the second spherical mirror should be adjusted via micrometer.

The final step in the pulse shaper alignment is to reduce the spatial chirp of

the output mode. This is best accomplished by walking the vertical and horizontal

angles of the second grating and pickoff mirrors with the full spectrum passing

through the shaper. To assist in this step and fine tune the spatial chirp it is very

useful to observe the mode via a CCD camera in the focus of a lens. We simply

picked off the beam after the lens used to focus into the MOT and diverted it to

a camera. The idea is to walk the vertical and horizontal angles of the second

pickoff mirror and grating, it may be necessary to adjust the last flat mirror to
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ensure the beam exits the center of the iris. With this adjustment combination it

should be possible to obtain a Gaussian mode on the CCD. Prior to alignment it

generally appears as a larger rotated ellipsoid due to astigmatism.

Once a small round spot is obtained, check for spatial chirp by blocking

narrow spectral regions directly in front of the SLM. For example, as a screwdriver

is passed through the spectrum generally a tilted dark line will appear on the

camera, this is due to spatial chirp. Using the same degrees of freedom it should

be possible to make the entire mode on the camera dim uniformly as different

spectral regions are blocked, meaning all wavelengths focus to approximately the

same spot. Although we never tried this idea, it might be best to use a frame

grabber with the camera and check the overlap of the modes corresponding to

different wavelengths. This could be done using the SLM directly between crossed

polarizers to select different spectral regions.

6.1.2 Calibration Procedure

We used a Jenoptik SLM-S320 SLM with a near-IR anti-reflection coating in

our pulse shaper. This SLM consists of 320 separately addressable liquid crystal

elements. Each element is a a rectangle of 97 µm width and 13 mm height. There is

a gap between each element of 3 µm width, in this region there is always a constant

phase retardation. Both the input and exit faces of each liquid crystal element

are coated with thin optically transparent electrodes. When there is no voltage

applied to the electrodes the liquid crystals are all aligned vertically, meaning

the long crystal axis is vertical. Under an applied voltage these crystals rotate,

the higher the applied electric field the more they align to the DC electric field

direction. This rotation causes a change in birefringence of the crystal, and thus

a change in the phase retardation a vertically polarized optical field experiences.

There are two voltage operating ranges for the SLM voltage, low is from 0 to 5
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volts and high is 0 to 8 volts. Each voltage range is divided into 4096 steps called

the voltage count, so 0 to 4095 voltage count covers the entire range. Within just

the low range the phase retardation may be varied approximately 12 radians over

the entire spectral width of our pulses, however, 2π radians is of course sufficient.

So we set the SLM, via software, to the low range for our experiments to give a

higher phase step resolution.

In the alignment section the SLM position was roughly adjusted such that

the middle of the pixels corresponds to the center of the Ti:Sapphire spectrum.

Next we use the repump laser to align the position of pixel 160 (middle pixel)

with respect to the input beam spectrum. The repump laser is conveniently

locked to the 87Rb 5S1/2F=1 to 5P3/2F=2 transition at approximately 780.25 nm,

so it serves as a frequency reference. For this calibration the repump laser was

diverted into the pulse shaper colinearly with the Ti:Sapphire. It is not necessary

to mode match the two lasers, the repump laser need only be collimated and have

a diameter large enough that the focal spot is ideally less than a pixel width.

Although normally the SLM is operated as a phase mask with no wavelength

dependent attenuation, it is possible to use the voltage controlled birefringence

to operate as amplitude mask. This is done simply by placing crossed polarizers

around the SLM element, one at +45o with respect to vertical and the other

at -45o. Note that the polarizers should be placed directly before and after the

SLM to avoid any polarization rotation due to reflections from other optics. The

transmitted repump laser power is monitored on a power meter at any point after

the second polarizer, and the Ti:Sapphire is blocked for this calibration.

Using a simple LabVIEW program written for this purpose the phase of a

variable width region of the SLM pixels can be controlled. It is generally best

to determine the voltage counts corresponding to maximum transmission and

attenuation by setting all pixels to a uniform voltage, this will determine the
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best case scenario for operating the entire SLM as an on/off switch. Once these

voltages are known a narrow region of the mask around pixel 160, for example

pixels 145-175, should be set to attenuate while all other pixels set to transmit.

By repeatedly adjusting the SLM position via the micrometer and reducing the

width of the attenuating region the majority of the repump power can be blocked

by only pixel number 160. This procedure allows one to determine that pixel

number 160 corresponds to a wavelength of 780.25 nm.

The position of the SLM with respect to the focal plane of the spherical

mirror is not yet calibrated. There are two ways to do this, either by adjusting

the SLM distance from the spherical mirror by hand or adjusting the mirror via

micrometer. Generally it was sufficient to adjust the SLM position by hand, this

also avoids misalignment of the pulse shaper when adjusting the mirror position.

When the SLM is positioned at the focus of the spherical mirror the attenuation

will be maximum, because more of the focused repump laser mode fits on pixel

number 160. It may be necessary to do one more iteration of the previous cali-

bration to ensure that pixel 160 still corresponds to 780.25 nm after the SLM has

been moved by hand.

One of the most important calibrations is to determine the phase retardation

versus voltage count at the operating wavelength. The manufacturer provides this

data measured at a wavelength of 633 nm. I feel it is necessary to point out for

future users of this SLM that the operating manual states the phase retardation

at any wavelength is calculable given the measurement data at 633 nm. The

argument proceeds as follows. Clearly for a given index of refraction different

wavelengths have varying retardations given by,

∆φ(V, λ) =
2πd

λ
∆n(V, λ) (6.1)

where V is the voltage applied to the pixel that wavelength λ passes through,
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and d is the thickness of the liquid crystal element, 10 µm in our case. The ITO

electrodes, glass plates, and anti-reflection coating of course cause an extra phase

retardation, however, it is constant versus voltage. The manufacturer claims the

birefringence of the crystal has approximately constant wavelength dependence,

so the change in refractive index may be rewritten as,

∆n(V, λ) = ∆n(λ)f(V ) (6.2)

where the function f(V ) contains all the voltage dependence. At a voltage of 0

all the liquid crystals are oriented vertically and the resulting refractive index is

a maximum, at this voltage f(V ) is taken to be unity. From measurements of the

index of refraction versus wavelength an empirical formula for the index dispersion

is found to be,

∆n(λ) =
∆noλ√
λ2 − λ2

o

(6.3)

with ∆no=0.2002 and λo=327.44 nm. It is then possible to calculate the retar-

dance at any voltage and wavelength using,

∆φ(V, λ) = Γ(V )m
λm

λ

∆n(λ)

∆(λm)
(6.4)

where Γ(V ) is the given measurement of phase versus voltage at 633 nm, λm is

the calibration wavelength of 633 nm, and λ is the wavelength of interest. We

found that using this method to calibrate the SLM phase versus voltage at our

wavelength of 780 nm is too inaccurate.

Determining the phase retardation at 780 nm directly via measurement

proved to be a much more accurate calibration technique. This was done by

operating the SLM as an attenuator between crossed polarizers. Unlike the previ-

ous calibration of the pixel versus wavelength, for this measurement high quality

polarizers must be used and oriented at exactly ±45o from vertical. We conducted

this calibration two ways. The first was to use the repump laser again and mea-
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sure the transmitted power via a single photodiode, giving a calibration at one

wavelength.

To check for variations over the bandwidth of our Ti:Sapphire spectrum a

second technique was used in which the attenuation versus voltage was measured

via an optical spectrum analyzer. Software was written to measure the spectrum

power versus voltage and extract the full phase retardation across the pulse band-

width. In principle we could have used this data directly to calibrate the SLM,

however, we found using Eq.(6.4) in conjunction with the repump laser measure-

ment was sufficient over the 55 nm bandwidth of our spectrum. The measured

transmission curve, normalized to unity, and the extracted phase dependence ver-

sus voltage count using the repump laser technique is shown in Fig. (6.2). Note

that this was measured with SLM operating in low voltage mode. A specific ex-

ample illustrating the necessity of this calibration is shown in Fig. (6.8) of section

(6.2) using the results of the coherent control experiment directly.

We have discussed some of the calibration necessary to change the spectral

phase of the Ti:Sapphire pulses with the SLM based pulse shaper. However, for

our coherent control experiment we wish to know the actual spectral phase of the

pulses at the Rb atoms. Dispersion due to optical components such as lenses, the

Pockels cell, and the pulse shaper must be compensated for by the SLM phase

mask to ensure the pulses at the MOT have a flat spectral phase. The amount

of dispersion possible with the SLM phase mask is much less than the grating

pulse stretcher used in section (5.2). It is limited by the use of a pixelated phase

mask to approximate a smooth dispersion function. For example, if the phase

versus wavelength varies by 2π radians between adjacent pixels the approximation

completely breaks down.

The two-photon photocurrent was measured on a GaAsP photodiode versus

the second, third, and fourth order dispersion applied to the SLM. More specifi-
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Figure 6.2: Measured transmission and extracted phase versus SLM voltage count
using the repump laser at 780.2 nm.
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cally, to search for a global maximum in the photocurrent and thus the shortest

pulse, a two dimensional map versus both the second and third order dispersion

was measured. Figure (6.3) is an image constructed from the two-dimensional

scan, the lighter areas correspond to higher photocurrent. One particularly im-

portant feature is that there are local maxima, so it is necessary to survey a

sufficiently large region to find a global maximum with high confidence. In our

case we varied the second order dispersion from about 1000 fs2 to -8000 fs2 and

the third order from 100,000 fs3 to -250,000 fs3. The global maximum was found

and set on the SLM to be -4350 fs2 and -74,000 fs3. We also checked for fourth

order dispersion and found an optimum value of -37,500 fs3 with the second and

third orders fixed. Considering the negligible amount of fourth order dispersion

we can conclude that this method is sufficient to find the shortest pulse. Note

that this calibration neglects any spectrally sharp dispersion that may occur, for

example due to the rubidium atoms themselves.

Once the spectral phase of the pulses is adjusted to be nearly flat at the

MOT the spectral amplitude must be calibrated as well. One of the calibration

techniques is to use the SLM as a variable attenuator by placing the liquid crystal

element between crossed polarizers and varying the birefringence. Nominally the

input polarization is vertical, this is set by the PBS at the exit of the Pockels cell.

However, due to the fact some of the grating and mirror reflections in the pulse

shaper occur with both s- and p-polarizations there is some ellipticity induced in

the polarization, due to slightly different phase shifts between the two polarization

projections upon reflection. This is particularly true for the dielectric pickoff

mirror. The slightly elliptic polarization of the Ti:Sapphire light will become

more elliptic after passing through the liquid crystal of the SLM and in general

any subsequent optics before the MOT.

For this experiment we used a PBS cube as a beam splitter in conjunction
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Figure 6.3: Map of two-photon photocurrent versus second and third order dis-
persion applied to the SLM.
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with a zero order half-wave plate before the MOT two create two equally balanced

probe beams. Recall that to obtain a flat spectral phase at the MOT requires

dispersion compensation, which is done via a spectral phase mask on the SLM.

Figure (6.4)(a) shows the spectrum measured on an OSA placed in one output

port of the PBS before the MOT with just dispersion compensation applied to

the SLM and one of the phase masks used in section(6.2). The details of the

phase mask are not important at this point, only the fact that the spectrum

changes when the phase mask applied to the SLM is changed. This is of course

a problem for conducting a coherent control experiment in which we desire to

change only the spectral phase of the pulses. Placing a polarizer before the half-

wave plate remedies this problem to a large extent, see Fig. (6.4)(b). There is

some residual reshaping of the spectrum that occurs due to the pulse shaper, for

example the plateau at 770 nm, however we were unable to determine the cause.

One remaining unavoidable source of spectral amplitude modulation as a function

of the SLM phase mask is due to diffraction. Diffraction occurs for wavelengths

that have a focal spot covering two adjacent pixels with different phases. For

example, if half the mode undergoes 0 phase shift and half π radians phase shift

the wavefront will be distorted from that of a Gaussian mode and therefore diffract

differently.
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Figure 6.4: (a) Power spectrum of Ti:Sapphire measured on one exit port of
the PBS before the MOT versus applied SLM phase mask (no polarizer between
SLM and PBS) (b) Power spectrum measured the same as in (a) with a polarizer
between the SLM and PBS before the MOT.
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6.2 Four-Level Interference Experiment

In our first coherent control experiment we demonstrated the effects of fre-

quency chirp on a three-level system. The quantum interference that occurred

was due only to the different optical modes of the comb. In this experiment we

use the high-resolution of the comb to excite two different two-photon transitions

to the same final state with different resonant intermediate states. This type of

level structure is referred to as a closed-loop diamond configuration, see Fig. (6.5).

There have been several theoretical studies of close-loop four-level systems pre-

dicting the optical phase sensitive response of the excited population in double-Λ

[90, 91] and diamond configurations [92, 93, 94]. Applications of close-loop four-

level systems have been proposed to enhance and control four-wave mixing [95, 96],

amplification without inversion [97], and lasing without inversion [98] for cw-VUV

lasers. This type of level sub-structure can also be of importance to studies of

molecules, for example the sign of the product of dipole moments is of impor-

tance for two-dimensional spectroscopy [99], for which there are molecular states

excited in a closed-loop configuration. Controlling the interference of two two-

photon transitions can also be used for changing molecular dissociation pathways

[100].

There have been a limited number of experiments done using cw-lasers to

excite a closed-loop four-level system. For example, to control population trapping

[101], and to phase correlate independent lasers [102]. However, these previous

experiments were severely limited by the optical bandwidth of their lasers. The

bandwidth was limited by the phase modulation frequency of a cw-laser via an

electro-optic modulator. In our comb experiment we demonstrate phase control

of the two-photon absorption with a visibility of 69% using resonant wavelengths

spanning 32 nm, far surpasing the bandwidth of previous experiments.
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Figure 6.5: Relevant 87Rb level subsystem for the diamond coherence experiment.
The dotted lines indicate an extra off-resonant transition via the 5P1/2F=1 state.
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It is possible to find two combinations of fr and fo, both resonant with a

four-level diamond configuration subset of 87Rb levels. In particular, by tun-

ing fr=100.59660605 MHz and fo=+16.94 MHz the four resonant states are:

5S1/2F=2, 5P1/2F=2, 5P3/2F=2, and 5D3/2F=1. This choice of levels is well suited

for our coherent control experiment because the different transition wavelengths

are easily resolved with our SLM pulse shaper. Furthermore these two resonant

two-photon transitions can be nearly equal in amplitude for a sufficiently broad

pulse spectrum. Figure (6.5) shows a simplified energy level diagram of the reso-

nant four levels with the corresponding transition wavelengths indicated by solid

red lines. This figure also shows the intermediate state 5P1/2F=1; the nearest

comb mode is detuned about two linewidths from this state, however, the impor-

tance of this transition path will be demonstrated in our subsequent calculations.

A slightly shifted value of fr=100.59660525 MHz with the same fo creates

a different four-level diamond consisting of the same intermediate and excited

states but from the 5S1/2F=1 ground state. All 7S and 5D states with the excep-

tion of 5D3/2F=1 are detuned at least 6 MHz for either choice of fr. For both

four-level subsystems the corresponding resonant wavelengths are approximately:

794 nm, 762 nm, 780 nm, and 776 nm. The first two wavelengths correspond

to the transition via 5P1/2F=2 and the second two via 5P3/2F=2. So the largest

separation between resonant wavelengths is 32 nm, the difference between the

wavelengths resonant with the 5P1/2F=2 transition. We would like the electric

fields strength of the resonant modes to be approximately equal so for this ex-

periment the Ti:Sapphire was operated with a spectrum centered at 778 nm with

a spectral width of about 63 nm FWHM, the largest we could achieve. Recall

that the pulse shaper reshapes the spectrum somewhat, as seen in Fig.(6.4). So in

our calculations we used electric field values derived from this reshaped spectrum

measured directly before the MOT.
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The data collection procedure and general experiment setup is very similar

to our previous experiments. Rubidium atoms are cooled and trapped in a MOT

for 6.5 ms. The trap and repump lasers, and magnetic field, are then switched off.

To allow sufficient time for the magnetic field to turn off there is a 3 ms delay.

After 3 ms the Pockels cell is switched on and transmits the Ti:Sapphire laser

pulses through the pulse shaper and to the Rb atoms for 0.5 ms. This sequence

results in a total MOT operation plus probing cycle time of 10 ms, and is repeated

continuously so that we retrap and probe the atoms 100 times per second. During

the 0.5 ms probing time the cascade fluorescence at 420 nm is measured via a

PMT and counted using a SR430 multi-channel photon counter. The SR430 multi-

channel photon counter was operated with 1024 separate channels (or bins), each

with a temporal width of 640 ns and triggered simultaneously with the Pockels

cell. All data points presented in this section were accumulated over 4000 MOT

cycles, or 40 s per point in terms of experiment operation time.

The Ti:Sapphire probe beam was split into two paths using a PBS cube

and a zero-order half wave plate just before the MOT. This allowed us to either

transmit all the power into one probe beam, or balance the power between two

counter-propagating probe beams. A second zero-order half wave plate was placed

in one of the two paths to rotate the polarization 90o, so that the atoms are excited

by two horizontally polarized, equal intensity, counter-propagating probe beams.

For this experiment one of the two probe beam paths passes through an adjustable

optical delay line, this was set such that the optical path from the PBS to the

center of the MOT is equal with an estimated uncertainty of about ±5 mm.

We demonstrate coherent control of the excited state, 5D3/2F=1, population

by adjusting the phase of one resonant path of the diamond with respect to the

other. This demonstration was accomplished using the phase mask shown in

Fig.(6.6) to apply a variable phase, denoted as ∆Φ, to the spectral region from
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772 nm to 784 nm. The phase shifted spectral region covers the comb mode

pair resonant with the 5S1/2F=2 to 5P1/2F=2 to 5D3/2F=1 transition. It also

covers the spectral region up to 4 nm shorter than the resonant wavelength 776

nm and 4 nm longer than 780 nm. By choosing a large region over which to

adjust the phase we can assume all comb mode pairs with an intermediate state

detuning of up to ∼4 nm acquire the same phase, ∆Φ. This is important for this

experiment because we would like to neglect the comb mode pairs detuned from

an intermediate resonance, which can only be done if the net amplitude from these

pairs cancels to zero. Note that although it is not shown in Fig.(6.6) the SLM

is always operated with the necessary dispersion to compensate for the optics in

the beam path from our previous calibration. So the actual spectral phase of the

pulses at the Rb atoms is ideally just due to the phase mask shown in Fig.(6.6).

It is useful to cover some of the initial results of this experiment to demon-

strate how we arrived at our final data. For this experiment, in particular the

road to the final results is most useful to an experimentalist. One of the first

aspects of the data to optimize is the fringe visibility as we varied the phase step

∆Φ. Initially we used a two-channel photon counter and integrated the counts

for relatively long durations, between 100 µs and 500 µs per MOT cycle. During

this time we also only probed the atoms from one direction, so that all atoms

are excited by the same exact pulse shape, something we will discuss later. The

important point is that when probing from one direction the atoms are pushed off

of resonance, as we expected from our experience with radiation pressure. How-

ever, we noticed that the fringe visibility varied dramatically as a function of our

photon counting window width. The reason for this proved to be a surprise.

Figure (6.7) shows the signal versus phase step ∆Φ versus time, acquired

using the SR430 multi-channel photon counter. At short times, less than 100 µs,

we measure a clear fringe with a peak near ∆Φ=0 radians. At slightly longer
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Figure 6.6: Spectrum of a pulse (directly from Ti:Sapphire) and the phase mask
used in the four-level coherent control experiment. Red arrows indicate the posi-
tions of the resonant transition wavelengths with respect to the phase step of ∆Φ
radians.
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times the signal rapidly drops to near zero and remains there for about 150 µs,

as expected. The surprising feature is that at about 300 µs we again measure

a fringe with a smaller signal but clearly shifted in phase, by almost ∆Φ=90o.

Clearly integrating the signal versus time will result in a reduced fringe visibility

for times longer than about 300 µs, because it is in fact two separate fringes

that are completely out of phase. Keeping in mind that we are accelerating the

atoms in one direction as we scatter photons the comb fr in the frame of the

atoms appears on average to be reducing versus time, or more accurately versus

velocity. This is how we discovered the second fr resonance condition mentioned

previously, which happens to correspond to excitation from the 5S1/2F=1 ground

state. However, this does not explain the obvious phase shift between the two

fringes, we defer that discussion until we present the final fringe results and a

more complete analysis of the transitions.

Still with the intention of increasing the fringe visibility we considered the

effect of the hot Rb vapor in the MOT chamber. Although the comb is tuned to

be resonant with a specific subset of four Rb levels, this is only true for the atoms

that are cooled in the MOT to have negligible velocity in the lab frame. Due to

the fact that the comb mode spacing of 100 MHz is much less than the Doppler

width of the hot Rb atoms, all allowed transitions within the bandwidth of the

comb will in general be excited in these hot atoms. For example, the strongest

two-photon transition in terms of dipole moments is the 5S1/2F=2 to 5P3/2F=3

to 5D5/2F=4 transition. In terms of the product of dipole moments, meaning

the dipole moment from 5S to 5P multiplied by the dipole from 5P to 5D, this

transition is about 9 times as strong as either transition path in the intended

four-level system.

The transitions in the hot atoms will in general yield a constant background

signal that does not vary as a function of the applied ∆Φ. For example, none of the
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Figure 6.7: Measured single beam signal versus SLM phase step versus excitation
time. The initial fringe is due to transitions from 5S1/2F=2. At longer times
the atoms are Doppler shifted onto resonance with the same transition but from
the 5S1/2F=1 ground state. Notice the clear phase shift between the two fringes,
clearly averaging the signal too long can reduce the fringe contrast.
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transitions to 5D5/2 states can be accessed via the 5P1/2 intermediates states, and

therefore will not be affected by shifting the phase of the 5P3/2 transition paths.

It was easily verified that indeed the hot atoms were contributing a significant

background signal to our initial results by simply measuring the signal without

ever forming a MOT.

We tried to reduce the signal due to these hot atoms by two methods.

First, we modified the optics before the PMT to form an image of the cooled

atomic cloud onto an aperture that was adjustable via micrometers, thus blocking

light originating from outside the cooled atom cloud. This was only moderately

successful due to the fact that in the 3 ms after cooling the atoms, but before

probing them, the hot atoms have ample time to redistribute throughout the

chamber. So when we actually probe there are hot atoms distributed throughout

the cold atomic cloud. This forced us to operate the Rb getter at a significantly

lower current, thus lowering the density of hot Rb vapor. At a getter current of

about 2.5 Amps, really only relevant for our specific setup, we were able to reduce

the signal from the hot atoms. At this getter current the signal from the hot

atoms was not the dominant contribution to the fringe minimum, and there was

sufficient signal from the reduced number of trapped atoms.

Now that we have an understanding of how to increase the fringe visibility

we turn our attention to the fringe period. Due to the fact the phase mask covers

both resonant wavelengths of the transition through 5P3/2F=2 the fringe period

in terms of ∆Φ is expected to be π radians. Ruling out any physics of the light-

matter interaction that could give rise to a period other than π, we attribute any

measured deviation from this periodicity to miscalibration of the SLM. Figure

(6.8) shows the fringe measured with two different SLM phase versus voltage

calibrations. The details of this calibration procedure were discussed in section

(6.1.2). Initially we used the manufacturers SLM calibration done at 633 nm and
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used Eq. (6.4) to determine the phase versus voltage at our desired wavelengths

centered around 778 nm. With this calibration technique the measured fringe

period was approximately 1.15×π radians. Using direct calibration of the SLM

at 780 nm with the repump laser we repeated the measurement and recovered a

much improved fringe period of (1 ± 0.01)×π radians.

We now proceed to discuss our final data sets demonstrating the ability to

control the excited 5D3/2F=1 population via our SLM phase mask. Figure (6.9)

shows four fringes taken under different experimental conditions to demonstrate

some of the relevant physics. The fringes in the top two panels labeled as (a)

and (b) were measured using traveling wave excitation, meaning the atoms were

probed from only one direction with the Ti:Sapphire. The bottom two panels

labeled as (c) and (d) present the results under what we refer to multi-mode

standing wave excitation, meaning if we probe the atoms with counter-propagating

beams.

As mentioned previously, there are two different resonance conditions ob-

tained using slightly shifted values of fr. The left panels were taken with fr

corresponding to excitation from the 5S1/2F=2 ground state and the right pan-

els using the fr for excitation from the 5S1/2F=1 ground state. In the case of

traveling wave excitation we have discussed the reduced fringe visibility versus

probing time, due to the radiation pressure Doppler shifting the comb to another

resonance. For this reason we only show the signal accumulated during the first

20.48 µs of probing time, short enough to avoid significant Doppler shifting.

After aligning the counter-propagating probe beams very well, we found that

the atoms remain on resonance for about 250 µs, much longer than the ∼40 µs

for the traveling wave data. So in the case of excitation via counter-propagating

beams the atoms may be probed longer with essentially no reduction in fringe

visibility. Despite this fact, the data presented in the bottom two panels for
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Figure 6.8: Measured fringe versus phase step, corresponding to ∆Φ in Fig. (6.6),
using SLM phase vs. voltage calibrations at 780 nm and 633 nm. The period of the
fringe using the 633 nm calibration is too long, 1.15π radians. Using calibration
at our operating wavelength of 780 nm produced a much better 1.0±0.01π radians
period.
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counter-propagating excitation correspond to only the first 20.48 µs of excitation

for consistency. To avoid changing anything about the experiment except the

excitation scheme the traveling wave data was measured simply by blocking the

counter-propagating beam. So the Ti:Sapphire probe power used in the traveling

wave case is half of the 75 mW used in the counter-propagating case. Both probe

beams were focused into the MOT by the same 750 mm focal length lens mounted

before the PBS cube used to split the probe beams. This results in about a 180 µm

diameter focal spot at the center of the cold atom cloud. In general we measure

the MOT atom number stability with a photodiode setup to image the MOT, it

is not necessary to calibrate for the absolute number of atoms. This photodiode

measures the scattered trap and repump laser light during the last 1 ms of MOT

formation, and is a useful tool for normalizing any slow drift in atom number.

Each fringe in Fig. (6.9) is shown with a fitting function of the form c1 +

c2cos(Φ + c3)2, with the free variable Φ, which is the phase step applied via our

SLM mask. After determining that the observed period was very nearly π, we

dropped any dependence in the fit function on the period. The parameter c1

represents the fringe minimum, c2 is simply the magnitude of variation due to the

interference, and c3 is the fringe offset phase from zero. Combining the c1 and c2

parameters we can write the fringe visibility, defined max−min
max+min

, as c2
2c1+c2

. In each

panel of Fig. (6.9) the extracted fringe offset and visibility is shown. Our best

measured fringe visibility is 69%. This is a significant improvement from our intial

results which were as low as 25%, clearly the previously mentioned techniques for

improving fringe contrast were successful.

We have used two theoretical approaches to understand our results and

compare them with the predicted fringe visibility and phase offset. The first and

significantly more complicated approach is to directly solve the Liouville equation

for the density matrix of the system under shaped pulse excitation. To this end
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Figure 6.9: Measured signal fringes versus SLM phase for four excitation config-
urations. (a) Traveling wave excitation from F=2, (b) traveling wave excitation
from F=1, (c) multimode standing wave excitation from F=2, and (d) multimode
standing wave excitation from F=1.
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we initially developed a four-level model which incorporated only the four reso-

nantly excited states. The driving field in this model was constructed by taking

the Fourier transform of the measured spectrum, shown in Fig. (6.4), with a

spectral phase given by the applied SLM mask mask. As a practical side note

the sharp steps in the pixelated phase mask were smoothed, this is a necessary

step to ensure the time domain field falls off to zero in a reasonable amount of

time for our simulation. The results of this simulation were only partially success-

ful. In particular the predicted fringe visibility was nearly perfect, approximately

99%, and the difference in phase offset between excitation from 5S1/2F=2 versus

5S1/2F=1 was 90o. We will come back to the source of this phase offset in the

context of second-order perturbation theory.

Based on our prior observation of the fringe visibility being reduced when

accumulating data from both ground states, due to the Doppler shift of the comb,

it stands to reason that both ground states should be included in the model.

To try and account for the reduced fringe visibility we observed compared to

theory we expanded our density matrix simulation to include five-levels. The fifth

level being the second ground state. First it must be pointed out that when the

comb is tuned to be resonant from the 5S1/2F=2 ground state, transitions from

the other ground state to the same intermediate states are only 6 MHz detuned,

slightly off-resonance. So a non-perturbative model which takes into account

power broadening may predict some effects only in the presence of both ground

states. In fact this five-level model does predict a reduction in fringe visibility

as a function of field strength, however, this occurs at slightly higher fields than

used in our experiment. To check this we measured the traveling wave fringes

with reduced powers, but the fringe visibility was not improved. At this point

we determined that perhaps other intermediate states needed to be included in

the model and turned to using a treatment based on second-order perturbation
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theory.

The simplicity of using second-order perturbation theory makes it an ideal

method to model many different simultaneous two-photon transitions. In our

experiment this is particularly true due to the fact that we are far from saturating

the 5D3/2F=1 population. Furthermore the majority of the incoherent optical

pumping that occurs is due to relaxation of the population in the intermediate

states, and is therefore not phase sensitive. As a reminder the resonant two-photon

amplitude for absorption from two modes with one intermediate state is given by,

cgf ∝ |En ||Em| ei(φn+φm)µgiµif

i(ωgf − (m + n)2πfr − 4πfo) + π∆νf

×
[

1

i(ωgi − 2π(nfr + fo)) + π∆νi
+

1

i(ωgi − 2π(mfr + fo)) + π∆νi

]
, (6.5)

where |EN(1,2)| and φN1,2 are the magnitude and phase of the N1 and N2 modes,

ωgf(ωgi) are the transition frequencies from ground to final(intermediate) states,

and ∆νi(f) are the intermediate(final) state linewidths in Hertz. Equation (6.5)

is valid only for mode pairs that are two-photon resonant. The total two-photon

amplitude is then reasonably approximated by the summation of two-photon am-

plitudes for each transition path, for example in the four-level diamond there are

only two main transition paths corresponding to each intermediate state. Note

that we refer to these as the main transitions, it is also possible to have much

weaker transitions, for example absorption from 5P3/2F=2 to 5D3/2F=1 followed

by stimulated emission to 5P1/2F=2.

One of the benefits of using a comb for coherent control is that there are

many modes; in this experiment it allowed us to use four phase coherent modes

to excite the four-level diamond system. The remaining hundreds of thousands

of modes can lead to complications and must be considered. In particular we
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show the 5P1/2F=1 level in Fig. (6.5) and two modes resonant from either ground

state to the 5D3/2F=1 excited state via this intermediate state. In our initial

analysis of the physics the two-photon amplitude due to this transition pathway

was disregarded because the closest modes to this state are detuned by nearly two

linewidths, about 12 MHz. Due to the fact this transition path has larger dipole

moments than the other two resonant paths it may not be neglected.

The information necessary for estimating a fringe phase offset and visibility,

assuming no residual pulse chirp, is tabulated in table (6.10). The top section

is for transitions from the 5S1/2F=2 ground state and the bottom for transitions

from the 5S1/2F=1. It is important to notice that the angular part of the dipole

moment matrix elements for the 5S to 5P transitions are a function of the particu-

lar ground state. Corresponding to each single photon transition step the angular

part of the dipole moment matrix element is given by 〈LmF F ||r̂||L′m′
F F ′〉, these

are labeled as µ′
gi and µ′

if in Table (6.10), for the 5S to 5P, and 5P to 5D transi-

tions respectively. The next column in the table denoted ∆(MHz) is the detuning

of the nearest comb mode for that particular transition from the intermediate

state. Using the dipole moments, intermediate state detuning, and measured

pulse spectrum, we calculated the corresponding two-photon amplitude. The last

two columns of the table are the magnitude (only relative values) and phase of the

amplitude, assuming excitation by a transform limited pulse. Each intermediate

state is labeled by its mF quantum number, since we are exciting with linearly

polarized light with nominally zero magnetic field we use q=0 selection rules.

Noting that transitions in which ∆F=0 there can be no mF =0 transition for q=0

we only need to include mF =0 states for excitation from 5S1/2F=1. We do not

tabulate the mF =-1 transitions because, although each step may have different

dipole moment signs, the two-photon amplitude is the same as for mF =1 transi-

tions. Concerning estimates of the fringe properties for transitions from 5S1/2F=1,
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in which mF =0,±1, we assume an equal population distribution between all mF

ground states.

Using the two-photon amplitudes in Table (6.10) we can estimate the total

two-photon amplitude due to transitions through the 5P1/2 states. For example,

in the case of transitions from the 5S1/2F=2 ground state, the total two-photon

amplitude due to transitions through 5P1/2 states is given by,

c5P1/2
= 3.4ei(−7.6π/180) + 4.3ei(75.4π/180). (6.6)

The phase of this amplitude is 39.8o, the phase of the transition through 5P3/2F=2

is -3.8o, so even for a transform limited pulse we expect the fringe peak to be

shifted by ∆Φ = 39.8o+3.8o

2
, or 21.8o. We attribute the extra phase shift beyond

this value, as seen in Fig. (6.9)(a), to residual pulse chirp. Within the scope of

this theoretical model the visibility is given by,

2|c5P1/2
c5P3/2

|
|c5P1/2

|2 + |c5P3/2
|2 (6.7)

Again using the values from Table (6.10) the predicted visibility is 82%, clearly

much larger than the observed 69%. We do not know what sets the limit on

the measured fringe visibility, however we have determined that is not a trivial

background source such as stray light or hot atoms, due to the fact that the

background level is present only with the Ti:Sapphire probing cold atoms. We have

also used our theory model based on four-order perturbation and all the Rb 5S, 5P,

and 5D states to estimate the population exited to all other 5D levels. However,

this yields only a very small background contribution at our experimental field

strength.

We can use the same estimation procedure for transitions starting from

the 5S1/2F=1 ground state. In this case the total two-photon amplitude for the

different mF states do not interfere and therefore are only added incoherently.
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µµ ∆ θ

Figure 6.10: Relevant reduced dipole moments, detunings, and two-photon am-
plitudes for the 5-level system from both hyperfine ground states.
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One unknown quantity is the population distribution between the different mF

states. If we neglect population in the mF =0 states we calculate a fringe visibility

of 99% and a phase offset of ∆Φ=78.2o. The majority of this phase shift is

due to sign of the angular part of the dipole moment matrix elements. More

specifically the dipole moments for the resonant transitions from 5S1/2F=2 are all

negative. However, in the case of excitation from 5S1/2F=1 one of the four dipole

moments is positive. This is an example of the importance in considering not only

the magnitude but also the sign of the dipole moments in closed-loop excitation

schemes.

As mentioned previously there is an overall phase shift regardless of ground

state due to the chirp. However, we can make a comparison with experiment

in terms of the difference in phase offsets between excitation from 5S1/2F=2 and

5S1/2F=1. In this case the agreement between our model and experimental results

is quite good. The theory prediction is 56o and the measured difference in the case

of traveling wave excitation is 54o. If we include the mF =0 transitions and assume

equal population distribution the fringe is shifted by about 8o and the visibility is

reduced to 92%. So the analysis based on second-order perturbation theory gives

quite a good understanding of the relative phase shifts between fringes.

So far we have only discussed the fringes measured under traveling wave ex-

citation. Panels (c) and (d) in Fig. (6.9) show the fringe measured using counter-

propagating beams. The fringe visibility in both data sets is clearly reduced from

the case of traveling wave excitation. Panel (c) corresponds to excitation from the

5S1/2F=2 ground state and shows a fringe with a visibility of 26%, compared to

68% for travling wave excitation. Similarly, panel (d) corresponds to excitation

from the 5S1/2F=1 ground state and shows a visibility of only 23%. Generally we

only use counter-propagating probe beams to balance the radiation pressure on

the atoms and reduce the net Doppler shift, which usually results in an increased
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signal to noise ratio.

Unlike our previous spectroscopy experiments, we must now consider the

effect of standing wave electric fields within the atom cloud. Recall that we aligned

the path lengths of the two probe beams to be equal such that the pulses overlap

temporally and spatially in the center of the atom cloud. Figure (6.11) illustrates

the standing waves created by the two resonant frequencies for transitions via

5P3/2, and similarly for 5P1/2, as a function of position from the center of the cloud.

At the point in space where the pulses overlap temporally the average intensity

of each comb mode is a maximum. In either direction along the probe beams the

average intensity of a particular comb mode will vary spatially, just like a single

frequency standing wave. The important point is that the resonant wavelengths

used in our experiment have significantly different standing wave periods. So the

electric field driving an atom is a function of the atom position with respect to the

point in space where the pulses overlap temporally. For example, there are spatial

regions of the atom cloud in which there is no average electric field at 780 nm.

In this four-level experiment we wish to observe the interference produced by all

four resonant comb modes, so if the average electric field corresponding to any of

the four modes is zero the interference will not occur. However, it is still possible

to excite population to 5D3/2F=1 if the electric fields for a pair of two-photon

resonant modes is non-zero. In spatial regions where this occurs, the 5D3/2F=1

population, and thus the fluorescence at 420 nm, will not be phase sensitive.

To expand our theory model to include the multi-mode standing wave effect

we simply average predicted the signal over the spatial dimension of the atom

cloud. We did this over a distance of 0.5 mm corresponding to the atom cloud di-

ameter, and assumed a uniform atom number spatially. The electric field strengths

used in Eq. (6.5) were modulated spatially with a standing wave period appropri-

ate to the particular comb mode. Again using the information from Table (6.10)
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Figure 6.11: The black line is the average product of electric fields two-photon res-
onant via the 5P1/2 intermediate state, corresponding to wavelengths 795 nm and
762 nm. Similarly, the red line is for transitions via the 5P3/2 intermediate state
and corresponds to wavelengths 780 nm and 776 nm. Notice that the two stand-
ing waves generated (black and red) have very different periods, due to the larger
difference in wavelengths for the transition via 5P1/2. The blue line is the product
of the red and black lines, this represents the spatial regions, and extent to which,
all four resonant wavelengths are present. Clearly there is a spatial dependence
not only on the expected 5D population (only two wavelengths required), but also
on the phase dependence of this population (all four wavelengths required).
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we calculated fringe visibilities of 36% for excitation from the F=2 ground state

and 44% for the F=1 ground state.

This concludes the discussion of the four-level interference experiment. We

have demonstrated coherent control of the 5D3/2F=1 population by tuning the

interference between two different two-photon transition pathways. This inter-

ference is nominally due to only those comb mode pairs that are resonant or

near-resonant with an intermediate state. The relative phase shift of the interfer-

ence fringes can be explained within second-order perturbation theory using three

intermediate states and six comb modes. This general scheme of enhancing and

controlling a two-photon transition rate via multiple resonant or near-resonant

pathways can in principle be extended to incorporate many more intermediate

states. For example, this forms the basis of a proposal from our group to enhance

a Raman type two-photon transition between highly excited and deeply bound

molecular vibrational states [103]. The proposal relies on forcing constructive in-

terference between two-photon amplitudes, due to different intermediate states,

to a specific target state.

6.3 Four-level Enhancement Experiment

In the previous four-level interference experiment, the two-photon transition

rate was solely due to the comb mode pairs near an intermediate state resonance.

The goal of this experiment is to enhance the total two-photon transition rate

by incorporating the many thousands of comb mode pairs detuned from an in-

termediate resonance. Recall that for a transform limited pulse the two-photon

amplitudes from these modes pairs detuned from an intermediate state tend to

cancel out, see Eq. (5.17) and the following explanation. This cancellation is

due to a relative phase shift of 180o in the two-photon amplitudes for mode pairs

detuned above versus below an intermediate state. To compensate for this 180o
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phase shift we use the SLM phase mask shown in Fig. (6.12).

This experiment follows closely the experiment in reference [104] in which it

was shown that the two-photon transition rate could be increased by pulse shaping

if a resonant intermediate state is present. In that experiment a single femtosecond

pulse from a Ti:Sapphire laser was used to excite all of the allowed 5S to 5P3/2 to

5D transitions in a Rb vapor cell. Due to the fact that the spectral resolution in

that experiment is limited by the single pulse bandwidth any intermediate state

covered by the spectrum is considered resonant. They show a seven fold increase in

the measured fluorescence from the 5D states by applying a π
2

phase step between

the resonant wavelengths of 780.2 nm and 776.0 nm. Clearly a signal increase by

a factor of 7 is significant and could potentially be used to improve the signal to

noise ratio in DFCS experiments. Especially because this outweighs the loss in

signal incurred due to the power attenuation in the pulse shaper.

In our experiment, we use pulse shaping in a similar manner to increase the

two-photon transition rate of the four-level system shown in Fig. (6.5), particu-

larly from the 5S1/2F=2 ground state. The fact we use a comb to resonantly excite

only the 5D3/2F=1 hyperfine level changes the physics significantly from the single

pulse case. This is due to selection rules and dipole moments, analogous to our

discussion of two-photon selection rules in chapter (4.3), subsection (4.3.3). In the

single pulse excitation of Rb the dominant transition is to the 5D5/2F=4 hyperfine

level due to the fact the dipole moments are larger than any other two-photon

transition. Compared to either of the resonant transitions in our experiment, the

product of the angular part of the dipole moments for the first and second steps

to 5D5/2F=4, is a factor of 10 larger. Therefore the signal due to a single pulse is

primarily from the 5D5/2F=4 population. Furthermore, the only transition path

to 5D5/2F=4 is via 5S1/2F=2 to 5P3/2F=3, due to the ∆F=0,±1 selection rule.

So in the application of Eq.(6.5) to calculate the total two-photon amplitude only
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π 

Figure 6.12: Spectrum of a single pulse (directly from Ti:Sapphire) and the phase
mask used to enhance the two-photon transition rate (optimal 4-level mask). Red
arrows roughly indicate the positions of the resonant transition wavelengths with
respect to the phase steps of π radians.
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one intermediate state is necessary regardless of detuning, when only 5D5/2F=4

is resonantly excited. In other words a three-level model with the corresponding

dipole moments for the transition to 5D5/2F=4 correctly predicts a two-photon

transition rate enhancement by a factor of 7 for the single pulse experiment. This

is not the case for all two-photon transitions as we will show below.

In our comb experiment the number of possible intermediate states is four.

Table (6.1) shows the angular part of the relevant reduced dipole matrix ele-

ments denoted µ′
gi and µ′

if for the ground to intermediate and intermediate to

final state transitions. Equation (6.5) can be used to sum over all possible two-

photon transition pathways using the dipole moments and states in this table. In

the calculation of the two-photon amplitude the correct (measured) electric field

strength and phase of each mode must be used.

Intermediate State µ′
gi µ′

if µ′
giµ

′
if

5P3/2F=2 1
6

−
√

2
15

5
-0.0122

5P3/2F=1 −1
2
√

15
1

15
√

2
-0.0061

5P1/2F=2 1
6

−1
2
√

30
-0.0152

5P1/2F=1 −1
2
√

3

√
5
2

6
-0.0761

Table 6.1: Angular part of the reduced dipole matrix elements for the four possible
transitions from 5S1/2F=2 to 5D3/2F=1, the final column is the product of the
given dipole moments.

In our previous experiment with the SLM pulse shaper the resolution was not

important because we used a broad phase mask covering the resonant wavelengths

for the transition via 5P3/2F=2, so knowing the exact wavelengths of each phase

step was not essential. However, in this experiment we would like the π phase

steps to occur as close as possible to 5P3/2F=2 and 5P1/2F=2. Our pulse shaper

has a per pixel resolution of approximately 150 GHz at 780 nm, meaning each

pixel corresponds to about 150 GHz of spectral width. This corresponds to the
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resolution at which we can set the phase steps in Fig. (6.12) via software.

For finer resolution we mounted the entire SLM on a micrometer driven

translation stage. By translating the SLM through the spectrally dispersed beam

we are able to fine tune the frequencies at which the π phase steps occur, however

not independently. The focal spot diameter with our given 3.5 mm input beam

diameter and mirror focal length of 22 cm is about 60 µm. This is about half

the pixel width so roughly speaking we may fine tune the frequency of one phase

step with about a 75 GHz resolution. Given the fixed per pixel resolution of the

pulse shaper once the frequency of one phase step is fine tuned the frequency of

the second step is fixed for a set phase mask. Unfortunately this means that if we

optimize the position of the phase step, around 5P1/2 for example, the position of

the step near 5P3/2 is also fixed.

Using the phase mask shown in Fig. (6.12) the phase of the mode pairs

that are detuned below either the 5P3/2 or 5P1/2 sets of states gain an extra π

phase shift. We used the repump laser method described in section (6.1.2) to

calibrate the wavelength corresponding to the center of pixel number 160. This

results in the phase step near 5P3/2 occurring at λ=775.984 nm and the resonant

wavelength effected is λres,1=776.157 nm. Similarly for the phase step near 5P1/2

we have λ=761.706 nm and the resonant wavelength effected is λres,2=762.103

nm. The difference in frequency offsets between the phase steps and resonant

wavelengths is about 111 GHz, so this places a limit on how well we can optimize

around the two fine-structure sets of states simultaneously.

The experiment was run similarly to our resonant four-level coherent con-

trol experiment. We used the same MOT timings, 6.5 ms load time, 3 ms for

magnetic and MOT optical fields to be turned off, then probed for 0.5 ms. The

full Ti:Sapphire power of 70 mW was focused into the atoms with a 750 mm focal

length lens and used to probe the atoms from one direction only. Because we
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are only interested in the enhancement of the two-photon transition rate due to

the phase mask, we used a differential measurement technique. The atoms were

probed for 1000 MOT cycles with the phase mask in Fig. (6.12) applied, then

for 1000 MOT cycles with only dispersion compensation on the phase mask. Us-

ing the two-channel photon counter we measured probing times of 0-25 µs and

0-500 µs. Figure (6.13) shows the ratio of the signals with and without the phase

mask, versus an arbitrary frequency offset. Each frequency offset corresponds to

a different micrometer setting, or equivalently position of the SLM within the

dispersed spectrum. Using the fact that each pixel center is separated by 100 µm

and corresponds to a 150 GHz different frequency we were able to calibrate the

frequency versus position.

We achieved a maximum enhancement ratio of 2.56 using the short probing

time data from 0 to 25 µs. Using a simple theoretical model which summed all

the possible two-photon amplitudes for each comb pair and intermediate state we

estimated the enhancement versus frequency offset. The theoretical enhancement

is shown in Fig. (6.14), it has a peak value of 2.85 using the phase mask from Fig.

(6.12) and the measured power spectrum from Fig. (6.4) with no diffraction loss.

There are two peaks in the theory results corresponding to enhancement of the

5P1/2 transitions (larger peak), and offset by 120 GHz, the transitions through

the 5P3/2 states are enhanced. We tried including diffraction loss to account for

the dip below unity enhancement seen in our measurements at about 300 GHz,

however this only reduced the peak enhancement ratio and did not change the

characteristic shape significantly. As seen in our results for longer probing times

from 0 to 500 µs the dip below unity is no longer present. The only difference that

we can attribute this to is the radiation pressure Doppler shifting the atoms onto

resonance from the 5S1/2F=1 state. Why this would change the characteristic

shape of the enhancement versus frequency though is unknown.
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µ
µ

Figure 6.13: Measured signal enhancement ratio versus SLM position for short
and long integration times. The x-axis is the frequency offset of the SLM pixels
from some reference value.

∆ν

Figure 6.14: Theoretically predicted enhancement ratio assuming no diffraction
loss using second-order perturbation theory.
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In this experiment we have demonstrated the ability to increase the two-

photon transition rate from 5S1/2F=2 to 5D3/2F=1. This was done by using a

phase mask to force constructive interference between the two-photon amplitudes

from comb modes pairs detuned from an intermediate state. Unlike the single

pulse excitation we have the ability to select a specific excited hyperfine level,

which in turn determines the possible intermediate states due to selection rules.

In our experiment we must consider four possible intermediate states.

This type of coherent control can be extended much like the previous reso-

nant experiment in section (6.2) to optimize the total two-photon transition rate

with many intermediate states, for example in a molecule. One of the limitations

of our experiment is the SLM pulse shaping resolution. To truly optimize the

SLM phase mask for a specific transition would require the ability to control the

phase of each individual comb mode. The ideal phase mask would compensate for

the phase shift due to intermediate state detuning of each two-photon amplitude,

which varies from 0o for a comb pair on intermediate resonance, to ±90o for pairs

detuned ±fr and further. Due to the limited per pixel resolution of our SLM

pulse shaper, we are not able to make the phase of the amplitudes from mode

pairs detuned from intermediate resonance the same as those that are resonant.

Therefore with the phase mask used in this experiment the two-photon amplitude

via only intermediate resonant transitions is 90o out of phase with the two-photon

amplitudes from mode pairs detuned from intermediate resonance. For this reason

future experiments of this type would benefit from using a pulse shaper with per-

mode resolution, a feat that is already possible with high-repetition rate combs

[105].



Chapter 7

Future Directions

In this thesis we have demonstrated the ability to use an optical frequency

comb to conduct absolute frequency measurements. All of the transitions were

excited directly by the frequency comb. Although the range of wavelengths used

in our experiments was quite wide, ∼50 nm, it is possible to vastly extend the

bandwidth of the comb.

Due to the extremely high peak intensities possible with a femtosecond

laser it is well suited for non-linear frequency conversion. For example, the super-

continuum generation in a micro-structured nonlinear fiber is a result of four-wave

mixing. The super-continuum spectrum is far wider than the original Ti:Sapphire

spectrum, recall we used two wavelengths separated by one octave for our fo mea-

surement. This is just one simple example of how the frequency comb spectrum

may be extended for spectroscopic use at wavelengths that are difficult to reach

with cw-lasers.

There has already been some experiments conducted using the principle of

DFCS at very short wavelengths. Using traditional non-linear frequency conver-

sion techniques the group of Eikema has conducted spectroscopy of two-photon

transitions in krypton and xenon with a burst of up to six phase-coherent pulses.

The first demonstration of this technique used two-photon absorption at 212 nm in

krypton by a pair of phase coherent pulses [68]. The most recent example demon-
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strates multi-pulse DFCS of the 5p6 1So → 5p5 (2P3/2)5d[1
2
]1 transition in xenon

at 125 nm, see reference [106]. The required VUV wavelengths were generated by

first doubling a series of amplified Ti:Sapphire pulses in BBO, and subsequently

tripling them in either oxygen or krypton. Using this technique the authors were

able to scan fr and recover a transition linewidth as narrow as 7.5 MHz FWHM

after excitation by six pulses. One of the drawbacks of this technique is that only

a limited number of pulses were generated, limiting the comb mode linewidths.

In an effort to extend the number of phase coherent pulses generated at

very short wavelengths researchers in the group of Ye have turned to using high-

harmonic generation. Instead of amplifying the phase-coherent pulse they are

coupled into a broad-band optical cavity to increase the peak intensity. Within

the cavity there are two spherical mirrors to focus the pulses into a xenon gas jet.

In the intense peak electric field of the femtosecond pulses the xenon atoms un-

dergo high-harmonic generation. Using this technique it was possible to generate

wavelengths as short as 114 nm, and could in principle be extended to shorter

wavelengths by increasing the peak intensity [107], also see reference [108]. We

have published a theoretical study on the use of short wavelength optical combs

for high-resolution two-photon helium spectroscopy [109]. An interesting proposal

that is closely related to DFCS, is to Doppler cool atoms at traditionally hard to

reach wavelengths using a femtosecond frequency comb [110].

In the context of coherent control we have mentioned the possibility of ex-

tending our technique to molecules. The idea is to combine pulse shaping with

the comb, to enhance and control a Raman transition between a highly excited

vibrational state and a deeply bound vibrational state. Instead of forcing the con-

structive interference between only a few intermediate states like in our research,

we proposed to use many intermediate vibrational states [103]. On a more general

note, the combination of very-broad-bandwidth frequency combs with the possi-
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bility of line-by-line pulse shaping allows for very complicated coherent control

experiments. I’m sure many imaginative experiments will utilize this technology

in the future.
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